
Contents

Contents viii

Illustrations xix

Preface xxxviii

1 Introduction to Computers, the Internet,
the Web and C# 1
1.1 Introduction 2
1.2 What Is a Computer? 3
1.3 Computer Organization 3
1.4 Evolution of Operating Systems 4
1.5 Personal Computing, Distributed Computing and Client/Server Computing 5
1.6 Machine Languages, Assembly Languages and High-level Languages 6
1.7 C, C++, Visual Basic .NET and Java™ 7
1.8 C# 9
1.9 Other High-level Languages 10
1.10 Structured Programming 10
1.11 Key Software Trend: Object Technology 11
1.12 Hardware Trends 13
1.13 History of the Internet and World Wide Web 13
1.14 World Wide Web Consortium (W3C) 15
1.15 Extensible Markup Language (XML) 15
1.16 Introduction to Microsoft .NET 16
1.17 .NET Framework and the Common Language Runtime 18
1.18 Tour of the Book 20
1.19 Internet and World Wide Web Resources 29

Contents IX

2 Introduction to the Visual Studio .NET IDE 33
2.1 Introduction 34
2.2 Visual Studio .NET Integrated Development Environment (IDE) Overview 34
2.3 Menu Bar and Toolbar 37
2.4 Visual Studio .NET Windows 39

2.4.1 Solution Explorer 39
2.4.2 Toolbox 40
2.4.3 Properties Window 42

2.5 Using Help 42
2.6 Simple Program: Displaying Text and an Image 44

3 Introduction to C# Programming 59
3.1 Introduction 60
3.2 Simple Program: Printing a Line of Text 60
3.3 Another Simple Program: Adding Integers 71
3.4 Memory Concepts 75
3.5 Arithmetic 76
3.6 Decision Making: Equality and Relational Operators 80

4 Control Structures: Part 1 94
4.1 Introduction 95
4.2 Algorithms 95
4.3 Pseudocode 96
4.4 Control Structures 96
4.5 if Selection Structure 99
4.6 if/else Selection Structure 100
4.7 while Repetition Structure 105
4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled Repetition) 106
4.9 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 2 (Sentinel-Controlled Repetition) 109
4.10 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 3 (Nested Control Structures) 116
4.11 Assignment Operators 120
4.12 Increment and Decrement Operators 121
4.13 Introduction to Windows Application Programming 124

5 Control Structures: Part 2 139
5.1 Introduction 140
5.2 Essentials of Counter-Controlled Repetition 140
5.3 for Repetition Structure 142
5.4 Examples Using the for Structure 146
5.5 switch Multiple-Selection Structure 152
5.6 do/while Repetition Structure 156
5.7 Statements break and continue 158
5.8 Logical and Conditional Operators 160
5.9 Structured-Programming Summary 166

X Contents

6 Methods 178
6.1 Introduction 179
6.2 Program Modules in C# 179
6.3 Math Class Methods 181
6.4 Methods 181
6.5 Method Definitions 183
6.6 Argument Promotion 193
6.7 C# Namespaces 195
6.8 Value Types and Reference Types 196
6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference 197
6.10 Random-Number Generation 200
6.11 Example: Game of Chance 207
6.12 Duration of Variables 212
6.13 Scope Rules 212
6.14 Recursion 215
6.15 Example Using Recursion: The Fibonacci Series 219
6.16 Recursion vs. Iteration 222
6.17 Method Overloading 223

7 Arrays 236
7.1 Introduction 237
7.2 Arrays 237
7.3 Declaring and Allocating Arrays 239
7.4 Examples Using Arrays 240

7.4.1 Allocating an Array and Initializing Its Elements 240
7.4.2 Totaling the Elements of an Array 242
7.4.3 Using Histograms to Display Array Data Graphically 243
7.4.4 Using the Elements of an Array as Counters 244
7.4.5 Using Arrays to Analyze Survey Results 247

7.5 Passing Arrays to Methods 250
7.6 Passing Arrays by Value and by Reference 253
7.7 Sorting Arrays 257
7.8 Searching Arrays: Linear Search and Binary Search 260

7.8.1 Searching an Array with Linear Search 260
7.8.2 Searching a Sorted Array with Binary Search 261

7.9 Multiple-Subscripted Arrays 265
7.10 foreach Repetition Structure 272

8 Object-Based Programming 280
8.1 Introduction 281
8.2 Implementing a Time Abstract Data Type with a Class 282
8.3 Class Scope 290
8.4 Controlling Access to Members 290
8.5 Initializing Class Objects: Constructors 292
8.6 Using Overloaded Constructors 293
8.7 Properties 297

Contents XI

8.8 Composition: Objects References as Instance Variables of Other Classes 306
8.9 Using the this Reference 309
8.10 Garbage Collection 311
8.11 static Class Members 312
8.12 const and readonly Members 317
8.13 Indexers 319
8.14 Data Abstraction and Information Hiding 326
8.15 Software Reusability 327
8.16 Namespaces and Assemblies 328
8.17 Class View and Object Browser 333

9 Object-Oriented Programming: Inheritance 342
9.1 Introduction 343
9.2 Base Classes and Derived Classes 344
9.3 protected and internal Members 347
9.4 Relationship between Base Classes and Derived Classes 347
9.5 Case Study: Three-Level Inheritance Hierarchy 368
9.6 Constructors and Destructors in Derived Classes 371
9.7 Software Engineering with Inheritance 377

10 Object-Oriented Programming: Polymorphism 382
10.1 Introduction 383
10.2 Derived-Class-Object to Base-Class-Object Conversion 383
10.3 Type Fields and switch Statements 390
10.4 Polymorphism Examples 391
10.5 Abstract Classes and Methods 392
10.6 Case Study: Inheriting Interface and Implementation 394
10.7 sealed Classes and Methods 402
10.8 Case Study: Payroll System Using Polymorphism 403
10.9 Case Study: Creating and Using Interfaces 413
10.10 Delegates 425
10.11 Operator Overloading 430

11 Exception Handling 438
11.1 Introduction 439
11.2 Exception Handling Overview 440
11.3 Example: DivideByZeroException 443
11.4 .NET Exception Hierarchy 448
11.5 finally Block 449
11.6 Exception Properties 457
11.7 Programmer-Defined Exception Classes 462
11.8 Handling Overflows with Operators checked and unchecked 466

12 Graphical User Interface Concepts: Part 1 474
12.1 Introduction 475
12.2 Windows Forms 476

XII Contents

12.3 Event-Handling Model 479
12.3.1 Basic Event Handling 480

12.4 Control Properties and Layout 484
12.5 Labels, TextBoxes and Buttons 488
12.6 GroupBoxes and Panels 495
12.7 CheckBoxes and RadioButtons 498
12.8 PictureBoxes 507
12.9 Mouse Event Handling 509
12.10 Keyboard Event Handling 511

13 Graphical User Interfaces Concepts:
Part 2 520
13.1 Introduction 521
13.2 Menus 521
13.3 LinkLabels 530
13.4 ListBoxes and CheckedListBoxes 534

13.4.1 ListBoxes 537
13.4.2 CheckedListBoxes 539

13.5 ComboBoxes 542
13.6 TreeViews 547
13.7 ListViews 553
13.8 Tab Control 560
13.9 Multiple-Document-Interface (MDI) Windows 565
13.10 Visual Inheritance 574
13.11 User-Defined Controls 578

14 Multithreading 590
14.1 Introduction 591
14.2 Thread States: Life Cycle of a Thread 592
14.3 Thread Priorities and Thread Scheduling 594
14.4 Thread Synchronization and Class Monitor 599
14.5 Producer/Consumer Relationship without Thread Synchronization 601
14.6 Producer/Consumer Relationship with Thread Synchronization 607
14.7 Producer/Consumer Relationship: Circular Buffer 616

15 Strings, Characters and Regular Expressions 632
15.1 Introduction 633
15.2 Fundamentals of Characters and Strings 633
15.3 String Constructors 635
15.4 String Indexer, Length Property and CopyTo Method 636
15.5 Comparing Strings 638
15.6 String Method GetHashCode 642
15.7 Locating Characters and Substrings in Strings 643
15.8 Extracting Substrings from Strings 646
15.9 Concatenating Strings 647
15.10 Miscellaneous String Methods 648

Contents XIII

15.11 Class StringBuilder 650
15.12 StringBuilder Indexer, Length and Capacity Properties,

and EnsureCapacity Method 652
15.13 StringBuilder Append and AppendFormat Methods 654
15.14 StringBuilder Insert, Remove and Replace Methods 658
15.15 Char Methods 661
15.16 Card Shuffling and Dealing Simulation 664
15.17 Regular Expressions and Class Regex 668

16 Graphics and Multimedia 684
16.1 Introduction 685
16.2 Graphics Contexts and Graphics Objects 687
16.3 Color Control 688
16.4 Font Control 696
16.5 Drawing Lines, Rectangles and Ovals 701
16.6 Drawing Arcs 704
16.7 Drawing Polygons and Polyli]nes 707
16.8 Advanced Graphics Capabilities 711
16.9 Introduction to Multimedia 717
16.10 Loading, Displaying and Scaling Images 718
16.11 Animating a Series of Images 720
16.12 Windows Media Player 733
16.13 Microsoft Agent 736

17 Files and Streams 757 6
17.1 Introduction 757
17.2 Data Hierarchy 757
17.3 Files and Streams 759
17.4 Classes File and Directory 761
17.5 Creating a Sequential-Access File 771
17.6 Reading Data from a Sequential-Access File 783
17.7 Random-Access Files 794
17.8 Creating a Random-Access File 798
17.9 Writing Data Randomly to a Random-Access File 802
17.10 Reading Data Sequentially from a Random-Access File 807
17.11 Case Study: A Transaction-Processing Program 812

18 Extensible Markup Language (XML) 838
18.1 Introduction 839
18.2 XML Documents 839
18.3 XML Namespaces 844
18.4 Document Object Model (DOM) 847
18.5 Document Type Definitions (DTDs), Schemas and Validation 865

18.5.1 Document Type Definitions 866
18.5.2 Microsoft XML Schemas 869
18.5.3 W3C XML Schema 872

XIV Contents

18.5.4 Schema Validation in C# 873
18.6 Extensible Stylesheet Language and XslTransform 877
18.7 Microsoft BizTalk™ 884
18.8 Internet and World Wide Web Resources 887

19 Database, SQL and
ADO .NET 895
19.1 Introduction 896
19.2 Relational Database Model 897
19.3 Relational Database Overview: Books Database 898
19.4 Structured Query Language (SQL) 905

19.4.1 Basic SELECT Query 905
19.4.2 WHERE Clause 906
19.4.3 ORDER BY Clause 909
19.4.4 Merging Data from Multiple Tables: INNER JOIN 912
19.4.5 Joining Data from Tables Authors, AuthorISBN,

Titles and Publishers 914
19.4.6 INSERT Statement 917
19.4.7 UPDATE Statement 918
19.4.8 DELETE Statement 919

19.5 ADO .NET Object Model 920
19.6 Programming with ADO .NET: Extracting Information from a DBMS 921

19.6.1 Connecting to and Querying an Access Data Source 921
19.6.2 Querying the Books Database 928

19.7 Programming with ADO.NET: Modifying a DBMS 930
19.8 Reading and Writing XML Files 938

20 ASP .NET, Web Forms and Web Controls 948
20.1 Introduction 949
20.2 Simple HTTP Transaction 950
20.3 System Architecture 952
20.4 Creating and Running a Simple Web Form Example 953
20.5 Web Controls 966

20.5.1 Text and Graphics Controls 967
20.5.2 AdRotator Control 971
20.5.3 Validation Controls 976

20.6 Session Tracking 987
20.6.1 Cookies 988
20.6.2 Session Tracking with HttpSessionState 997

20.7 Case Study: Online Guest Book 1006
20.8 Case Study: Connecting to a Database in ASP .NET 1013
20.9 Tracing 1027
20.10 Internet and World Wide Web Resources 1030

21 ASP .NET and Web Services 1039
21.1 Introduction 1040

Contents XV

21.2 Web Services 1041
21.3 Simple Object Access Protocol (SOAP) and Web Services 1044
21.4 Publishing and Consuming Web Services 1046
21.5 Session Tracking in Web Services 1062
21.6 Using Web Forms and Web Services 1075
21.7 Case Study: Temperature Information Application 1081
21.8 User-Defined Types in Web Services 1091

22 Networking: Streams-Based Sockets and Datagrams1106
22.1 Introduction 1107
22.2 Establishing a Simple Server (Using Stream Sockets) 1108
22.3 Establishing a Simple Client (Using Stream Sockets) 1110
22.4 Client/Server Interaction with Stream-Socket Connections 1111
22.5 Connectionless Client/Server Interaction with Datagrams 1120
22.6 Client/Server Tic-Tac-Toe Using a Multithreaded Server 1125

23 Data Structures and Collections 1145
23.1 Introduction 1146
23.2 Self-Referential Classes 1146
23.3 Linked Lists 1148
23.4 Stacks 1160
23.5 Queues 1165
23.6 Trees 1168

23.6.1 Binary Search Tree of Integer Values 1170
23.6.2 Binary Search Tree of IComparable Objects 1177

23.7 Collection Classes 1185
23.7.1 Class Array 1185
23.7.2 Class ArrayList 1188
23.7.3 Class Stack 1194
23.7.4 Class Hashtable 1198

24 Accessibility 1212
24.1 Introduction 1213
24.2 Regulations and Resources 1214
24.3 Web Accessibility Initiative 1216
24.4 Providing Alternatives for Images 1216
24.5 Maximizing Readability by Focusing on Structure 1218
24.6 Accessibility in Visual Studio .NET 1218

24.6.1 Enlarging Toolbar Icons 1219
24.6.2 Enlarging the Text 1220
24.6.3 Modifying the Toolbox 1221
24.6.4 Modifying the Keyboard 1221
24.6.5 Rearranging Windows 1222

24.7 Accessibility in C# 1224
24.8 Accessibility in XHTML Tables 1230
24.9 Accessibility in XHTML Frames 1234

XVI Contents

24.10 Accessibility in XML 1235
24.11 Using Voice Synthesis and Recognition with VoiceXML™ 1235
24.12 CallXML™ 1243
24.13 JAWS® for Windows 1248
24.14 Other Accessibility Tools 1249
24.15 Accessibility in Microsoft® Windows® 2000 1251

24.15.1 Tools for People with Visual Impairments 1252
24.15.2 Tools for People with Hearing Impairments 1254
24.15.3 Tools for Users Who Have Difficulty Using the Keyboard 1255
24.15.4 Microsoft Narrator 1258
24.15.5 Microsoft On-Screen Keyboard 1261
24.15.6 Accessibility Features in Microsoft Internet Explorer 5.5 1262

24.16 Internet and World Wide Web Resources 1264

A Operator Precedence Chart 1273

B Number Systems (on CD) 1275
B.1 Introduction 1276
B.2 Abbreviating Binary Numbers as Octal Numbers and

Hexadecimal Numbers 1279
B.3 Converting Octal Numbers and Hexadecimal Numbers

to Binary Numbers 1281
B.4 Converting from Binary, Octal or Hexadecimal to Decimal 1281
B.5 Converting from Decimal to Binary, Octal, or Hexadecimal 1282
B.6 Negative Binary Numbers: Two’s Complement Notation 1283

C Career Opportunities (on CD) 1289
C.1 Introduction 1290
C.2 Resources for the Job Seeker 1291
C.3 Online Opportunities for Employers 1292
C.4 Recruiting Services 1297
C.5 Career Sites 1298
C.6 Internet and World Wide Web Resources 1303

D Visual Studio .NET Debugger 1311
D.1 Introduction 1312
D.2 Breakpoints 1313
D.3 Examining Data 1315
D.4 Program Control 1318
D.5 Additional Method Debugging Capabilities 1322
D.6 Additional Class Debugging Capabilities 1324

E Generating Documentation in Visual Studio (on CD) 1329
E.1 Introduction 1330
E.2 Documentation Comments 1330
E.3 Documenting C# Source Code 1331

Contents XVII

E.4 Creating Comment Web Pages 1339
E.5 Creating XML Documentation Files 1341

F ASCII Character Set 1348

G Unicode® (on CD) 1349
G.1 Introduction 1350
G.2 Unicode Transformation Formats 1351
G.3 Characters and Glyphs 1352
G.4 Advantages and Disadvantages of Unicode 1353
G.5 Unicode Consortium’s Web Site 1353
G.6 Using Unicode 1355
G.7 Character Ranges 1357

H COM Integration (on CD) 1362
H.1 Introduction 1362
H.2 ActiveX Integration 1364
H.3 DLL Integration 1367
H.4 Internet and World Wide Web Resources 1371

I Introduction to HyperText Markup Language 4:
Part 1 (on CD) 1374
I.1 Introduction 1375
I.2 Markup Languages 1375
I.3 Editing HTML 1376
I.4 Common Elements 1376
I.5 Headers 1379
I.6 Linking 1380
I.7 Images 1382
I.8 Special Characters and More Line Breaks 1386
I.9 Unordered Lists 1388
I.10 Nested and Ordered Lists 1389
I.11 Internet and World Wide Web Resources 1392

J Introduction to HyperText Markup Language 4:
Part 2 (on CD) 1397
J.1 Introduction 1398
J.2 Basic HTML Tables 1398
J.3 Intermediate HTML Tables and Formatting 1400
J.4 Basic HTML Forms 1403
J.5 More Complex HTML Forms 1406
J.6 Internal Linking 1413
J.7 Creating and Using Image Maps 1416
J.8 <meta> Tags 1418
J.9 frameset Element 1420

XVIII Contents

J.10 Nested framesets 1422
J.11 Internet and World Wide Web Resources 1424

K Introduction to XHTML: Part 1 (on CD) 1430
K.1 Introduction 1431
K.2 Editing XHTML 1431
K.3 First XHTML Example 1432
K.4 W3C XHTML Validation Service 1435
K.5 Headers 1436
K.6 Linking 1438
K.7 Images 1441
K.8 Special Characters and More Line Breaks 1445
K.9 Unordered Lists 1447
K.10 Nested and Ordered Lists 1448
K.11 Internet and World Wide Web Resources 1451

L Introduction to XHTML: Part 2 (on CD) 1456
L.1 Introduction 1457
L.2 Basic XHTML Tables 1457
L.3 Intermediate XHTML Tables and Formatting 1460
L.4 Basic XHTML Forms 1462
L.5 More Complex XHTML Forms 1465
L.6 Internal Linking 1473
L.7 Creating and Using Image Maps 1476
L.8 meta Elements 1478
L.9 frameset Element 1479
L.10 Nested framesets 1483
L.11 Internet and World Wide Web Resources 1485

M HTML/XHTML Special Characters 1491

N HTML/XHTML Colors 1492

O Bit Manipulation (on CD) 1495
O.1 Introduction 1496
O.2 Bit Manipulation and the Bitwise Operators 1496
O.3 Class BitArray 1508

P Crystal Reports® for Visual Studio .NET 1513
P.1 Introduction 1513
P.2 Crystal Reports Web Site Resources 1513
P.3 Crystal Reports and Visual Studio .NET 1514

Bibliography 1518

Index 1522

Illustrations

1 Introduction to Computers, the Internet, the Web and C#
1.1 .NET Languages . 19

2 Introduction to the Visual Studio .NET IDE
2.1 Start Page in Visual Studio .NET. 35
2.2 New Project dialog. 36
2.3 Visual Studio .NET environment after a new project has been created. 37
2.4 Visual Studio .NET menu bar. 38
2.5 Visual Studio .NET menu summary. 38
2.6 Visual Studio .NET toolbar. 38
2.7 Tool tip demonstration. 39
2.8 Toolbar icons for various Visual Studio .NET windows. 39
2.9 Solution Explorer window. 40
2.10 Toolbox window. 41
2.11 Demonstrating window auto-hide. 41
2.12 Properties window. 43
2.13 Dynamic Help window. 44
2.14 Simple program as it executes. 45
2.15 Creating a new Windows application. 45
2.16 Setting the project location. 46
2.17 Setting the form’s Text property. 46
2.18 Form with sizing handles. 47
2.19 Changing property BackColor. 47
2.20 Adding a new label to the form. 48
2.21 Label in position with its Text property set. 48
2.22 Properties window displaying the label’s properties. 49
2.23 Font window for selecting fonts, styles and sizes. 49
2.24 Centering the text in the label. 50

XX Illustrations

2.25 Inserting and aligning the picture box. 50
2.26 Image property of the picture box. 51
2.27 Selecting an image for the picture box. 51
2.28 Picture box after the image has been inserted. 51
2.29 IDE in run mode, with the running application in the foreground. 52

3 Introduction to C# Programming
3.1 Our first program in C#. 60
3.2 Visual Studio .NET-generated console application. 65
3.3 Execution of the Welcome1 program. 66
3.4 Printing on one line with separate statements. 67
3.5 Printing on multiple lines with a single statement. 67
3.6 Some common escape sequences. 68
3.7 Displaying multiple lines in a dialog. 68
3.8 Adding a reference to an assembly in Visual Studio .NET. 70
3.9 Internet Explorer’s GUI. 71
3.10 Dialog displayed by calling MessageBox.Show. 71
3.11 Addition program that adds two values entered by the user. 72
3.12 Memory location showing name and value of variable number1. 75
3.13 Memory locations after values for variables number1 and number2

have been input. 76
3.14 Memory locations after a calculation. 76
3.15 Arithmetic operators. 77
3.16 Precedence of arithmetic operators. 78
3.17 Order in which a second-degree polynomial is evaluated. 80
3.18 Equality and relational operators. 81
3.19 Using equality and relational operators. 81
3.20 Precedence and associativity of operators discussed in this chapter. 85

4 Control Structures: Part 1
4.1 Flowcharting C#’s sequence structure. 97
4.2 C# keywords. 98
4.3 Flowcharting a single-selection if structure. 100
4.4 Flowcharting a double-selection if/else structure. 101
4.5 Flowcharting the while repetition structure. 106
4.6 Pseudocode algorithm that uses counter-controlled repetition to solve

the class-average problem. 107
4.7 Class average program with counter-controlled repetition. 107
4.8 Pseudocode algorithm that uses sentinel-controlled repetition to solve

the class-average problem. 111
4.9 Class-average program with sentinel-controlled repetition. 112
4.10 Pseudocode for examination-results problem. 118
4.11 C# program for examination-results problem. 118
4.12 Arithmetic assignment operators. 120
4.13 The increment and decrement operators. 121
4.14 The difference between preincrementing and postincrementing. 122
4.15 Precedence and associativity of the operators discussed so far in this book. 123

Illustrations XXI

4.16 IDE showing program code for Fig. 2.15. 125
4.17 Windows Form Designer generated code when expanded. 126
4.18 Code generated by the IDE for welcomeLabel. 127
4.19 Using the Properties window to set a property value. 127
4.20 Windows Form Designer generated code reflecting new property values. 128
4.21 Changing a property in the code view editor. 128
4.22 New Text property value reflected in design mode. 129
4.23 Method FrmASimpleProgram_Load. 129
4.24 Changing a property value at runtime. 130

5 Control Structures: Part 2
5.1 Counter-controlled repetition with while structure. 141
5.2 Counter-controlled repetition with the for structure. 142
5.3 Components of a typical for header. 143
5.4 Flowcharting a typical for repetition structure. 146
5.5 Summation using for. 147
5.6 Icons for message dialogs. 148
5.7 Buttons for message dialogs. 148
5.8 Calculating compound interest with for. 149
5.9 string formatting codes. 151
5.10 switch multiple-selection structure. 152
5.11 Flowcharting the switch multiple-selection structure. 155
5.12 do/while repetition structure. 156
5.13 Flowcharting the do/while repetition structure. 157
5.14 break statement in a for structure. 158
5.15 continue statement in a for structure. 159
5.16 Truth table for the && (conditional AND) operator. 161
5.17 Truth table for the || (conditional OR) operator. 162
5.18 Truth table for the logical exclusive OR (^) operator. 163
5.19 Truth table for operator! (logical NOT). 163
5.20 Conditional and logical operators. 164
5.21 Precedence and associativity of the operators discussed so far. 166
5.22 C#’s single-entry/single-exit sequence, selection and repetition structures. 167
5.23 Rules for forming structured programs. 168
5.24 Simplest flowchart. 168
5.25 Repeatedly applying rule 2 of Fig. 5.23 to the simplest flowchart. 169
5.26 Applying rule 3 of Fig. 5.23 to the simplest flowchart. 169
5.27 Stacked, nested and overlapped building blocks. 170
5.28 Unstructured flowchart. 170

6 Methods
6.1 Hierarchical boss method/worker method relationship. 180
6.2 Commonly used Math class methods. 182
6.3 Using programmer-defined method Square. 183
6.4 Programmer-defined Maximum method. 188
6.5 Allowed implicit conversions. 194
6.6 Namespaces in the Framework Class Library. 195

XXII Illustrations

6.7 C# built-in data types. 196
6.8 Demonstrating ref and out parameters. 198
6.9 Random integers in the range 1–6. 201
6.10 Rolling dice in a Windows application . 203
6.11 Simulating rolling 12 six-sided dice. 205
6.12 Program to simulate the game of craps. 208
6.13 Scoping. 213
6.14 Recursive evaluation of 5!. 217
6.15 Calculating factorials with a recursive method. 217
6.16 Recursively generating Fibonacci numbers. 219
6.17 Set of recursive calls to method Fibonacci. 221
6.18 Using overloaded methods. 223
6.19 Syntax error generated from overloaded methods with identical

parameter lists and different return types. 225
6.20 The Towers of Hanoi for the case with four disks. 234

7 Arrays
7.1 A 12-element array. 238
7.2 Precedence and associativity of the operators discussed so far. 239
7.3 Initializing element arrays in three different ways. 240
7.4 Computing the sum of the elements of an array. 242
7.5 Program that prints histograms. 243
7.6 Using arrays to eliminate a switch structure. 245
7.7 Simple student-poll analysis program. 248
7.8 Passing arrays and individual array elements to methods. 251
7.9 Passing an array reference by value and by reference . 254
7.10 Sorting an array with bubble sort. 257
7.11 Linear search of an array. 260
7.12 Binary search of a sorted array. 262
7.13 Double-subscripted array with three rows and four columns. 266
7.14 Initializing multidimensional arrays. 267
7.15 Example using double-subscripted arrays. 270
7.16 Using For Each/Next with an array. 272

8 Object-Based Programming
8.1 Time1 abstract data type represents the time in 24-hour format. 283
8.2 Using an abstract data type. 287
8.3 Accessing private class members from client code generates

syntax errors. 291
8.4 Overloaded constructors provide flexible object-initialization options. 293
8.5 Overloaded constructor demonstration. 295
8.6 Properties provide controlled access to an object’s data. 298
8.7 Properties demonstration for class Time3. 301
8.8 Date class encapsulates day, month and year information. 306
8.9 Employee class encapsulates employee name, birthday and hire date. 308
8.10 Composition demonstration. 309

Illustrations XXIII

8.11 this reference used implicitly and explicitly to enable an object to
manipulate its own data and invoke its own methods. (Part 1 of 2) 310

8.12 this reference demonstration. 311
8.13 static members are accessible to all objects of a class. 314
8.14 static member demonstration. 315
8.15 const and readonly class member demonstration. 318
8.16 Indexers provide subscripted access to an object’s members. 320
8.17 Assembly TimeLibrary contains class Time3. 329
8.18 Simple Class Library. 332
8.19 Assembly TimeLibrary used from class AssemblyTest. 333
8.20 Class View of class Time1 (Fig. 8.1) and class TimeTest (Fig. 8.2). 334
8.21 Object Browser when user selects Object from Time1.cs. 335

9 Object-Oriented Programming: Inheritance
9.1 Inheritance examples. 345
9.2 Inheritance hierarchy for university CommunityMembers. 346
9.3 Portion of a Shape class hierarchy. 347
9.4 Point class represents an x-y coordinate pair. 348
9.5 PointTest class demonstrates class Point functionality. 350
9.6 Circle class contains an x-y coordinate and a radius. 351
9.7 CircleTest demonstrates class Circle functionality. 354
9.8 Circle2 class that inherits from class Point. 355
9.9 Point2 class represents an x-y coordinate pair as protected data. 357
9.10 Circle3 class that inherits from class Point2. 359
9.11 CircleTest3 demonstrates class Circle3 functionality. 360
9.12 Point3 class uses properties to manipulate its private data. 362
9.13 Circle4 class that inherits from class Point3, which does not

provide protected data. 364
9.14 CircleTest4 demonstrates class Circle4 functionality. 366
9.15 Cylinder class inherits from class Circle4 and overrides

method Area. 368
9.16 Testing class Cylinder. 370
9.17 Point4 base class contains constructors and finalizer. 372
9.18 Circle5 class inherits from class Point3 and overrides a

finalizer method. 374
9.19 Order in which constructors and destructors are called. 376

10 Object-Oriented Programming: Polymorphism
10.1 Point class represents an x-y coordinate pair. 384
10.2 Circle class that inherits from class Point. 385
10.3 Assigning derived-class references to base-class references. 387
10.4 Abstract Shape base class. 394
10.5 Point2 class inherits from abstract class Shape. 395
10.6 Circle2 class that inherits from class Point2. 397
10.7 Cylinder2 class inherits from class Circle2. 398
10.8 AbstractShapesTest demonstrates polymorphism in

Point-Circle-Cylinder hierarchy. 400

XXIV Illustrations

10.9 abstract class Employee definition. 404
10.10 Boss class inherits from class Employee. 405
10.11 CommissionWorker class inherits from class Employee. 406
10.12 PieceWorker class inherits from class Employee. 408
10.13 HourlyWorker class inherits from class Employee . 410
10.14 EmployeesTest class tests the Employee class hierarchy. 412
10.15 Interface for returning age of objects of disparate classes. 415
10.16 Person class implements IAge interface. 415
10.17 Tree class implements IAge interface. 416
10.18 Demonstrate polymorphism on objects of disparate classes. 417
10.19 IShape interface provides methods Area and Volume and

property Name. 419
10.20 Point3 class implements interface IShape. 420
10.21 Circle3 class inherits from class Point3. 421
10.22 Cylinder3 class inherits from class Circle3. 423
10.23 Interfaces2Test uses interfaces to demonstrate polymorphism

in Point-Circle-Cylinder hierarchy. 424
10.24 Bubble sort using delegates. 426
10.25 Bubble-sort Form application. 427
10.26 Overloading operators for complex numbers. 430
10.27 Using operator overloading. 433

11 Exception Handling
11.1 Exception handlers for FormatException and

DivideByZeroException. 443
11.2 Demonstrating that finally blocks always execute regardless of

whether or not an exception occurs. 452
11.3 Exception properties and stack unwinding. 458
11.4 ApplicationException subclass thrown when a program

performs illegal operations on negative numbers. 463
11.5 SquareRootTest class thrown an exception if error occurs

when calculating the square root. 464
11.6 Operators checked and unchecked and the handling of

arithmetic overflow. 467

12 Graphical User Interface Concepts: Part 1
12.1 Sample Internet Explorer window with GUI components. 476
12.2 Some basic GUI components. 476
12.3 Components and controls for Windows Forms. 477
12.4 Common Form properties and events. 478
12.5 Event-handling model using delegates. 479
12.6 Events section of the Properties window. 480
12.7 Simple event-handling example using visual programming. 481
12.8 List of Form events. 482
12.9 Details of Click event. 483
12.10 Class Control properties and methods. 485
12.11 Anchoring demonstration. 486

Illustrations XXV

12.12 Manipulating the Anchor property of a control. 487
12.13 Docking demonstration. 487
12.14 Class Control layout properties. 487
12.15 Label properties. 489
12.16 TextBox properties and events. (Part 1 of 2) 489
12.17 Button properties and events. 490
12.18 Program to display hidden text in a password box. 490
12.19 GroupBox properties. 495
12.20 Panel properties. 495
12.21 Creating a Panel with scrollbars. 496
12.22 Using GroupBoxes and Panels to arrange Buttons. 496
12.23 CheckBox properties and events. 498
12.24 Using CheckBoxes to change font styles. 499
12.25 RadioButton properties and events. 502
12.26 Using RadioButtons to set message-window options. 502
12.27 PictureBox properties and events. 507
12.28 Using a PictureBox to display images. 507
12.29 Mouse events, delegates and event arguments. 509
12.30 Using the mouse to draw on a form. 510
12.31 Keyboard events, delegates and event arguments. 512
12.32 Demonstrating keyboard events . 513
12.33 GUI for Exercise 12.4. 519
12.34 GUI for Exercise 12.5. 519
12.35 GUI for Exercise 12.6. 519

13 Graphical User Interfaces Concepts: Part 2
13.1 Expanded and checked menus. 522
13.2 Visual Studio .NET Menu Designer. 523
13.3 MainMenu and MenuItem properties and events. 524
13.4 Menus for changing text font and color. 525
13.5 LinkLabel control in the design phase and in running program. 531
13.6 LinkLabel properties and events. 531
13.7 LinkLabels used to link to a folder, a Web page and an application. 532
13.8 ListBox and CheckedListBox on a form. 535
13.9 ListBox properties, methods and events. 535
13.10 String Collection Editor. 537
13.11 ListBox used in a program to add, remove and clear items. 537
13.12 CheckedListBox properties, methods and events. 540
13.13 CheckedListBox and ListBox used in a program to display a

user selection. 541
13.14 ComboBox demonstration. 543
13.15 ComboBox properties and events. 543
13.16 ComboBox used to draw a selected shape. 544
13.17 TreeView displaying a sample tree. 548
13.18 TreeView properties and events. 548
13.19 TreeNode properties and methods. 549

XXVI Illustrations

13.20 TreeNode Editor. 550
13.21 TreeView used to display directories. 550
13.22 ListView properties and events. 554
13.23 Image Collection Editor window for an ImageList component. 555
13.24 ListView displaying files and folders. 555
13.25 Tabbed pages in Visual Studio .NET. 560
13.26 TabControl with TabPages example. 561
13.27 TabPages added to a TabControl. 561
13.28 TabControl properties and events. 561
13.29 TabControl used to display various font settings. 562
13.30 MDI parent window and MDI child windows. 566
13.31 SDI and MDI forms. 566
13.32 MDI parent and MDI child events and properties. 567
13.33 Minimized and maximized child windows. 568
13.34 MenuItem property MdiList example. 569
13.35 LayoutMdi enumeration values. 570
13.36 MDI parent-window class. 571
13.37 Child class for MDI demonstration. 574
13.38 Class FrmInheritance, which inherits from class Form, contains

a button (Learn More). 575
13.39 Visual Inheritance through the Form Designer. 577
13.40 Class FrmVisualTest, which inherits from class

VisualForm.FrmInheritance, contains an additional button. 577
13.41 Custom control creation. 579
13.42 Programmer-defined control that displays the current time. 580
13.43 Custom-control creation. 582
13.44 Project properties dialog. 582
13.45 Custom control added to the ToolBox. 582
13.46 Custom control added to a Form. 583

14 Multithreading
14.1 Thread life cycle. 593
14.2 Thread-priority scheduling. 596
14.3 Threads sleeping and printing. 596
14.4 Producer and consumer threads accessing a shared object without

synchronization. 602
14.5 Producer and consumer threads accessing a shared object with

synchronization. 607
14.6 Producer and consumer threads accessing a circular buffer. 617

15 Strings, Characters and Regular Expressions
15.1 String constructors. 635
15.2 String indexer, Length properties and CopyTo method. 636
15.3 String test to determine equality. 639
15.4 StartsWith and EndsWith methods. 641
15.5 GetHashCode method demonstration. 642
15.6 Searching for characters and substrings in strings. 643

Illustrations XXVII

15.7 Substrings generated from strings. 646
15.8 Concat static method. 648
15.9 String methods Replace, ToLower, ToUpper, Trim and ToString. 649
15.10 StringBuilder class constructors. 651
15.11 StringBuilder size manipulation. 653
15.12 Append methods of StringBuilder. 655
15.13 StringBuilder’s AppendFormat method. 656
15.14 StringBuilder text insertion and removal. 658
15.15 StringBuilder text replacement. 659
15.16 Char’s static character-testing methods and case-conversion methods. 661
15.17 Card class. 664
15.18 Card dealing and shuffling simulation. 665
15.19 Character classes. 669
15.20 Regular expressions checking birthdays. 669
15.21 Quantifiers used regular expressions. 672
15.22 Validating user information using regular expressions. 672
15.23 Regex methods Replace and Split. 677

16 Graphics and Multimedia
16.1 System.Drawing namespace’s classes and structures. 686
16.2 GDI+ coordinate system. Units are measured in pixels. 687
16.3 Color structure static constants and their RGB values. 689
16.4 Color structure members . 689
16.5 Classes that derive from class Brush. 690
16.6 Color value and alpha demonstration. 690
16.7 ColorDialog used to change background and text color. 693
16.8 Font class read-only properties. 696
16.9 Fonts and FontStyles. 697
16.10 An illustration of font metrics. 699
16.11 FontFamily methods that return font-metric information. 699
16.12 FontFamily class used to obtain font-metric information. 699
16.13 Graphics methods that draw lines, rectangles and ovals. 702
16.14 Demonstration of methods that draw lines, rectangles and ellipses. 702
16.15 Ellipse bounded by a rectangle. 704
16.16 Positive and negative arc angles. 705
16.17 Graphics methods for drawing arcs. 705
16.18 Arc-method demonstration. 705
16.19 Graphics methods for drawing polygons. 708
16.20 Polygon-drawing demonstration. 708
16.21 Shapes drawn on a form. 712
16.22 Paths used to draw stars on a form. 715
16.23 Image resizing. 718
16.24 Animation of a series of images. 720
16.25 Container class for chess pieces. 723
16.26 Chess-game code. 725
16.27 Windows Media Player demonstration. 733

XXVIII Illustrations

16.28 Peedy introducing himself when the window opens. 737
16.29 Peedy’s Pleased animation. 738
16.30 Peedy’s reaction when he is clicked. 738
16.31 Peedy flying animation. 739
16.32 Peedy waiting for speech input. 740
16.33 Peedy repeating the user’s request for Seattle-style pizza. 740
16.34 Peedy repeating the user’s request for anchovies as an additional topping. 741
16.35 Peedy recounting the order. 741
16.36 Peedy calculating the total. 742
16.37 Microsoft Agent demonstration. 742
16.38 GUI for Eight Queens exercise. 755

17 Files and Streams
17.1 Data hierarchy. 759
17.2 C#’s view of an n-byte file. 760
17.3 File class methods (partial list). 761
17.4 Directory class methods (partial list). 761
17.5 Testing classes File and Directory. 762
17.6 Regular expression used to determine file types. 766
17.7 Base class for GUIs in our file-processing applications. 772
17.8 Record for sequential-access file-processing applications. 774
17.9 Create and write to a sequential-access file. 777
17.10 Sample data for the program of Fig. 17.9. 783
17.11 Reading sequential-access files. 784
17.12 Credit-inquiry program. 788
17.13 Random-access file with fixed-length records. 795
17.14 Record for random-access file-processing applications. 795
17.15 Creating files for random-access file-processing applications. 799
17.16 Writing records to random-access files. 802
17.17 Reading records from random-access files sequentially. 807
17.18 Record-transaction class for the transaction-processor case study. 812
17.19 TransactionProcessorForm class runs the transaction-processor

application. 816
17.20 StartDialogForm class enables users to access dialog boxes

associated with various transactions. 817
17.21 UpdateDialogForm class enables users to update records in

transaction-processor case study. 822
17.22 NewDialogForm class enables users to create records in

transaction-processor case study. 827
17.23 DeleteDialogForm class enables users to remove records from

files in transaction-processor case study. 830
17.24 Inventory of a hardware store. 837

18 Extensible Markup Language (XML)
18.1 XML used to mark up an article. 839
18.2 article.xml displayed by Internet Explorer. 842
18.3 XML to mark up a business letter. 842

Illustrations XXIX

18.4 XML namespaces demonstration. 844
18.5 Default namespaces demonstration. 846
18.6 Tree structure for Fig. 18.1. 847
18.7 XmlNodeReader used to iterate through an XML document. 848
18.8 DOM structure of an XML document illustrated by a class . 851
18.9 XPathNavigator class used to navigate selected nodes. 858
18.10 XML document that describes various sports . 864
18.11 XPath expressions and descriptions. 865
18.12 Document Type Definition (DTD) for a business letter. 866
18.13 XML document referencing its associated DTD. 867
18.14 XML Validator validates an XML document against a DTD. 869
18.15 XML Validator displaying an error message. 870
18.16 XML document that conforms to a Microsoft Schema document. 870
18.17 Microsoft Schema file that contains structure to which

bookxdr.xml conforms. 871
18.18 XML document that conforms to W3C XML Schema. 872
18.19 XSD Schema document to which bookxsd.xml conforms. 872
18.20 Schema-validation example. 874
18.21 XML document that does not conform to the XSD schema of Fig. 18.19. 876
18.22 XML file that does not conform to the Schema in Fig. 18.17. 876
18.23 XML document containing book information. 878
18.24 XSL document that transforms sorting.xml (Fig. 18.23) into XHTML. 879
18.25 XSL style sheet applied to an XML document. 882
18.26 BizTalk terminology. 885
18.27 BizTalk markup using an offer Schema. 885

19 Database, SQL and ADO .NET
19.1 Relational-database structure of an Employee table. 897
19.2 Result set formed by selecting Department and Location data

from the Employee table. 898
19.3 Authors table from Books. 898
19.4 Data from the Authors table of Books . 899
19.5 Publishers table from Books. 899
19.6 Data from the Publishers table of Books. 899
19.7 AuthorISBN table from Books. 900
19.8 Data from AuthorISBN table in Books. 900
19.9 Titles table from Books. 901
19.10 Data from the Titles table of Books. 901
19.11 Table relationships in Books. 904
19.12 SQL query keywords. 905
19.13 authorID and lastName from the Authors table. 906
19.14 Titles with copyrights after 1999 from table Titles. 907
19.15 Authors from the Authors table whose last names start with D. 908
19.16 Authors from table Authors whose last names contain i as the

second letter. 909
19.17 Authors from table Authors in ascending order by lastName. 909

XXX Illustrations

19.18 Authors from table Authors in descending order by lastName. 910
19.19 Authors from table Authors in ascending order by lastName and

by firstName. 911
19.20 Books from table Titles whose titles end with How to Program

in ascending order by title. 912
19.21 Authors from table Authors and ISBN numbers of the authors’

books, sorted in ascending order by lastName and firstName. 913
19.22 TitleAuthor query of Books database. 914
19.23 Portion of the result set produced by the query in Fig. 19.22. 915
19.24 Authors after an INSERT operation to add a record. 917
19.25 Table Authors after an UPDATE operation to change a record. 919
19.26 Table Authors after a DELETE operation to remove a record. 920
19.27 Accessing and displaying a database’s data. 921
19.28 Execute SQL statements on a database. 928
19.29 Modifying a database. 930
19.30 Application that writes an XML representation of a DataSet to a file. 939
19.31 XML document generated from DataSet in DatabaseXMLWriter. 941

20 ASP .NET, Web Forms and Web Controls
20.1 Web server/client interaction. Step 1: The GET request,

GET /books/downloads.htm HTTP/1.1. 951
20.2 Client interacting with Web server. Step 2: The HTTP response,

HTTP/1.1 200 OK. 951
20.3 Three-tier architecture. 952
20.4 ASPX page that displays the Web server’s time. 953
20.5 Code-behind file for a page that displays the Web server’s time. 955
20.6 HTML response when the browser requests WebTime.aspx. 958
20.7 Creating an ASP.NET Web Application in Visual Studio. 960
20.8 Visual Studio creating and linking a virtual directory for the

WebTime project folder. 961
20.9 Solution Explorer window for project WebTime. 961
20.10 Web Forms menu in the Toolbox. 962
20.11 Design mode of Web Form designer. 962
20.12 HTML mode of Web Form designer. 963
20.13 Code-behind file for WebForm1.aspx generated by Visual Studio .NET. 964
20.14 GridLayout and FlowLayout illustration. 965
20.15 WebForm.aspx after adding two Labels and setting their properties. 966
20.16 Web controls commonly used in ASP.NET applications. 967
20.17 Web controls demonstration. 967
20.18 AdRotator class demonstrated on a Web form . 972
20.19 Code-behind file for page demonstrating the AdRotator class. 973
20.20 AdvertisementFile used in AdRotator example. 974
20.21 Validators used in a Web Form that generates possible letter

combinations from a phone number. 977
20.22 Code-behind file for the word-generator page. 979
20.23 HTML and ECMAScript sent to the client browser. 984

Illustrations XXXI

20.24 ASPX file that presents a list of programming languages. 989
20.25 Code-behind file that writes cookies to the client. 991
20.26 ASPX page that displays book information. 994
20.27 Cookies being read from a client in an ASP .NET application. 995
20.28 HttpCookie properties. 997
20.29 Options supplied on an ASPX page. 997
20.30 Sessions are created for each user in an ASP .NET Web application. 999
20.31 HttpSessionState properties. 1003
20.32 Session information displayed in a ListBox. 1003
20.33 Session data read by an ASP .NET Web application to provide

recommendations for the user. 1004
20.34 Guest-book application GUI. 1007
20.35 ASPX file for the guest book application. 1007
20.36 Code-behind file for the guest book application. 1009
20.37 Log in Web Form. 1013
20.38 ASCX code for the header. 1015
20.39 Code-behind file for the log-in page of authors application. 1016
20.40 ASPX file that allows a user to select an author from a drop-down list. 1021
20.41 Database information input into a DataGrid . 1023
20.42 ASPX page with tracing turned off. 1028
20.43 Tracing enabled on a page. 1029
20.44 Tracing information for a project. 1029

21 ASP .NET and Web Services
21.1 ASMX file rendered in Internet Explorer. 1042
21.2 Service description for a Web service. 1043
21.3 Invoking a method of a Web service from a Web browser. 1044
21.4 Results of invoking a Web-service method from a Web browser. 1044
21.5 SOAP request for the HugeInteger Web service. 1045
21.6 HugeInteger Web service. 1046
21.7 Design view of a Web service. 1054
21.8 Adding a Web service reference to a project. 1055
21.9 Add Web Reference dialog. 1055
21.10 Web services located on localhost. 1056
21.11 Web reference selection and description. 1056
21.12 Solution Explorer after adding a Web reference to a project. 1057
21.13 Using the HugeInteger Web service. 1057
21.14 Blackjack Web service. 1063
21.15 Blackjack game that uses Blackjack Web service. 1067
21.16 Airline reservation Web service. 1076
21.17 Airline Web Service in design view. 1078
21.18 ASPX file that takes reservation information. 1078
21.19 Code-behind file for the reservation page. 1079
21.20 TemperatureServer Web service. 1082
21.21 Class that stores weather information about a city. 1085
21.22 Receiving temperature and weather data from a Web service. 1087

XXXII Illustrations

21.23 Class that stores equation information. 1093
21.24 Web service that generates random equations . 1095
21.25 Returning an object from a Web-service method. 1097
21.26 Math tutor application. 1098

22 Networking: Streams-Based Sockets and Datagrams
22.1 Server portion of a client/server stream-socket connection. 1111
22.2 Client portion of a client/server stream-socket connection. 1114
22.3 Server-side portion of connectionless client/server computing. 1120
22.4 Client portion of connectionless client/server computing. 1122
22.5 Server side of client/server Tic-Tac-Toe program. 1126
22.6 Client side of client/server Tic-Tac-Toe program. 1132
22.7 Class Square. 1139
22.8 English letters of the alphabet and decimal digits as expressed in

international Morse code. 1144

23 Data Structures and Collections
23.1 Sample self-referential Node class definition. 1147
23.2 Two self-referential class objects linked together. 1148
23.3 A graphical representation of a linked list. 1149
23.4 Definitions of classes ListNode, List and EmptyListException. 1151
23.5 Demonstrating the linked list. 1155
23.6 A graphical representation of the InsertAtFront operation. 1158
23.7 A graphical representation of the InsertAtBack operation. 1158
23.8 A graphical representation of the RemoveFromFront operation. 1159
23.9 A graphical representation of the RemoveFromBack operation. 1160
23.10 StackInheritance extends class List. 1161
23.11 Using class StackInheritance. 1162
23.12 StackComposition class encapsulates functionality of class List. 1164
23.13 QueueInheritance extends class List . 1166
23.14 Using inheritance to create a queue. 1167
23.15 A graphical representation of a binary tree. 1169
23.16 A binary search tree containing 12 values. 1169
23.17 Definitions of TreeNode and Tree for a binary search tree. 1170
23.18 Creating and traversing a binary tree. 1174
23.19 A binary search tree. 1176
23.20 Definitions of class TreeNode and Tree for manipulating

IComparable objects. 1178
23.21 Demonstrating class Tree with IComparable objects. 1181
23.22 Program that demonstrates class Array . 1186
23.23 Some methods of class ArrayList. 1189
23.24 Demomstrating the ArrayList class. 1189
23.25 Using the Stack class . 1195
23.26 Using the Hashtable class. 1200

Illustrations XXXIII

24 Accessibility
24.1 Acts designed to improve Internet and computer accessibility

for people with disabilities. 1214
24.2 We Media’s home page. (Courtesy of WeMedia, Inc.) 1215
24.3 Enlarging icons using the Customize feature. 1219
24.4 Enlarged icons in the development window. 1219
24.5 Text Editor before modifying the font size. 1220
24.6 Enlarging text in the Options window. 1220
24.7 Text Editor after the font size is modified. 1221
24.8 Adding tabs to the Toolbox. 1222
24.9 Shortcut key creation. 1223
24.10 Removing tabs from Visual Studio environment. 1223
24.11 Console windows with tabs and without tabs. 1224
24.12 Properties of class Control related to accessibility. 1225
24.13 Application with accessibility features. 1226
24.14 XHTML table without accessibility modifications. 1231
24.15 Table optimized for screen reading, using attribute headers. 1232
24.16 Home page written in VoiceXML. 1236
24.17 Publication page of Deitel and Associates’ VoiceXML page. 1238
24.18 VoiceXML tags. 1242
24.19 Hello World CallXML example. (Courtesy of Voxeo, © Voxeo

Corporation 2000–2001.) 1243
24.20 CallXML example that reads three ISBN values. (Courtesy of Voxeo,

© Voxeo Corporation 2000–2001.) 1245
24.21 CallXML elements. 1248
24.22 Display Settings dialog. 1251
24.23 Accessibility Wizard initialization options. 1252
24.24 Scroll Bar and Window Border Size dialog. 1252
24.25 Adjusting window-element sizes. 1253
24.26 Display Color Settings options. 1253
24.27 Accessibility Wizard mouse cursor adjustment tool. 1254
24.28 SoundSentry dialog. 1254
24.29 ShowSounds dialog. 1255
24.30 StickyKeys window. 1255
24.31 BounceKeys dialog. 1256
24.32 ToggleKeys window. 1256
24.33 Extra Keyboard Help dialog. 1257
24.34 MouseKeys window. 1257
24.35 Mouse Button Settings window. 1258
24.36 Mouse Speed dialog. 1259
24.37 Set Automatic Timeouts dialog. 1259
24.38 Saving new accessibility settings. 1260
24.39 Narrator window. 1260
24.40 Voice-settings window. 1261
24.41 Narrator reading Notepad text. 1261
24.42 Microsoft On-Screen Keyboard. 1262

XXXIV Illustrations

24.43 Microsoft Internet Explorer 5.5’s accessibility options. 1262
24.44 Advanced accessibility settings in Microsoft Internet Explorer 5.5. 1263

A Operator Precedence Chart
A.1 Operator precedence chart. 1273

B Number Systems (on CD)
B.1 Digits of the binary, octal, decimal and hexadecimal number systems. 1277
B.2 Comparison of the binary, octal, decimal and hexadecimal

number systems. 1278
B.3 Positional values in the decimal number system. 1278
B.4 Positional values in the binary number system. 1278
B.5 Positional values in the octal number system. 1279
B.6 Positional values in the hexadecimal number system. 1279
B.7 Decimal, binary, octal, and hexadecimal equivalents . 1279
B.8 Converting a binary number to decimal. 1281
B.9 Converting an octal number to decimal. 1281
B.10 Converting a hexadecimal number to decimal. 1282

C Career Opportunities (on CD)
C.1 Monster.com home page. (Courtesy of Monster.com.] 1292
C.2 FlipDog.com job search. (Courtesy of Flipdog.com.) 1293
C.3 List of a job seeker’s criteria. 1295
C.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of

Advantage Hiring, Inc.) 1298
C.5 eLance.com request for proposal (RFP) example.

(Courtesy of eLance, Inc.] 1301

D Visual Studio .NET Debugger
D.1 Syntax error. 1312
D.2 Debug sample program. 1313
D.3 Setting a breakpoint. 1314
D.4 Debug configuration setting. 1315
D.5 Console application suspended for debugging. 1315
D.6 Execution suspended at a breakpoint. 1316
D.7 Watch window. 1316
D.8 Autos, Locals and This windows. 1317
D.9 Immediate window. 1319
D.10 Debug toolbar icons. 1319
D.11 Breakpoints window. 1319
D.12 Disabled breakpoint. 1320
D.13 New Breakpoint dialog. 1321
D.14 Breakpoint Hit Count dialog. 1321
D.15 Breakpoint Condition dialog. 1321
D.16 Debugging methods. 1322
D.17 Call Stack window. 1323

Illustrations XXXV

D.18 IDE displaying a method’s calling point. 1323
D.19 Debug program control features. 1324
D.20 Using the Immediate window to debug methods. 1324
D.21 Object debugging example. 1325
D.22 Breakpoint location for class debugging. 1326
D.23 Expanded class in Watch window. 1327
D.24 Expanded array in Watch window. 1327

E Generating Documentation in Visual Studio (on CD)
E.1 Point marked up with XML comments. 1331
E.2 Circle class marked up with XML comments. 1333
E.3 CircleTest class marked up with XML comments. 1336
E.4 Selecting the Build Comment Web Pages from Tools menu. 1339
E.5 Saving a document to a file. 1340
E.6 XHTML documentation of class Circle. 1340
E.7 XHTML documentation of method Area method of class Circle. 1341
E.8 XML documentation generated by Visual Studio .NET. 1341

F ASCII Character Set
F.1 ASCII character set. 1348

G Unicode® (on CD) 1349
G.1 Correlation between the three encoding forms. 1352
G.2 Various glyphs of the character A. 1352
G.3 Unicode values for multiple languages. 1354
G.4 Some character ranges. 1357

H COM Integration (on CD)
H.1 ActiveX control registration. 1363
H.2 Customize Toolbox dialog with an ActiveX control selected. 1364
H.3 IDE’s toolbox and LabelScrollbar properties. 1365
H.4 ActiveX COM control integration in C#. 1365
H.5 Add Reference dialog DLL Selection. 1368
H.6 COM DLL component in C#. 1369

I Introduction to HyperText Markup Language 4:
Part 1 (on CD)
I.1 Basic HTML file. 1377
I.2 Header elements h1 through h6. 1379
I.3 Linking to other Web pages. 1380
I.4 Linking to an email address. 1381
I.5 Placing images in HTML files. 1382
I.6 Using images as link anchors. 1384
I.7 Inserting special characters into HTML. 1386
I.8 Unordered lists in HTML. 1388

XXXVI Illustrations

I.9 Nested and ordered lists in HTML. 1389

J Introduction to HyperText Markup Language 4:
Part 2 (on CD)
J.1 HTML table. 1398
J.2 Complex HTML table. 1401
J.3 Simple form with hidden fields and a text box. 1403
J.4 Form including textareas, password boxes and checkboxes. 1406
J.5 Form including radio buttons and pulldown lists. 1409
J.6 Using internal hyperlinks to make your pages more navigable. 1413
J.7 Picture with links anchored to an image map. 1416
J.8 Using meta to provide keywords and a description. 1418
J.9 Web site using two frames—navigation and content. 1420
J.10 Framed Web site with a nested frameset. 1423

K Introduction to XHTML: Part 1 (on CD)
K.1 First XHTML example. 1432
K.2 Validating an XHTML document. (Courtesy of World Wide Web

Consortium (W3C).) 1434
K.3 XHTML validation results. (Courtesy of World Wide Web

Consortium (W3C).) 1436
K.4 Header elements h1 through h6. 1437
K.5 Linking to other Web pages. 1438
K.6 Linking to an e-mail address. 1440
K.7 Placing images in XHTML files. 1441
K.8 Using images as link anchors. 1443
K.9 Inserting special characters into XHTML. 1445
K.10 Nested and ordered lists in XHTML. 1448

L Introduction to XHTML: Part 2 (on CD)
L.1 XHTML table. 1457
L.2 Complex XHTML table. 1460
L.3 Simple form with hidden fields and a textbox. 1463
L.4 Form with textareas, password boxes and checkboxes. 1466
L.5 Form including radio buttons and drop-down lists. 1469
L.6 Using internal hyperlinks to make pages more easily navigable. 1473
L.7 Image with links anchored to an image map. 1476
L.8 Using meta to provide keywords and a description. 1478
L.9 Web document containing two frames—navigation and content. 1480
L.10 XHTML document displayed in the left frame of Fig. L.5. 1482
L.11 Framed Web site with a nested frameset. 1484
L.12 XHTML table for Exercise L.7. 1489
L.13 XHTML table for Exercise L.8. 1490

M HTML/XHTML Special Characters
M.1 XHTML special characters. 1491

Illustrations XXXVII

N HTML/XHTML Colors
N.1 HTML/XHTML standard colors and hexadecimal RGB values. 1492
N.2 XHTML extended colors and hexadecimal RGB values . 1493

O Bit Manipulation (on CD)
O.1 Bitwise operators. 1497
O.2 Results of combining two bits with the bitwise AND operator (&). 1497
O.3 Results of combining two bits with the bitwise inclusive OR operator (|). 1497
O.4 Results of combining two bits with the bitwise exclusive OR operator (^). 1498
O.5 Displaying the bit representation of an integer. 1498
O.6 Demonstrating the bitwise AND, bitwise inclusive OR, bitwise

exclusive OR and bitwise complement operators. 1501
O.7 Using the bitshift operators. 1505
O.8 Bitwise assignment operators. 1507
O.9 Sieve of Eratosthenes. 1508

P Crystal Reports® for Visual Studio .NET
P.1 Report expert choices. (Courtesy Crystal Decisions) 1514
P.2 Expert formatting menu choices. (Courtesy of Crystal Decisions) 1515
P.3 Crystal Reports designer interface. (Courtesy of Crystal Decisions) 1516

Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

We wove a web in childhood,
A web of sunny air.
Charlotte Brontë

Welcome to C# and the world of Windows, Internet and World-Wide-Web programming
with Visual Studio and the .NET platform! This book is the second in our new .NET How
to Program series, which presents various leading-edge computing technologies in the con-
text of the .NET platform.

 C# is the next phase in the evolution of C and C++ and was developed expressly for
Microsoft’s .NET platform. C# provides the features that are most important to program-
mers, such as object-oriented programming, strings, graphics, graphical-user-interface
(GUI) components, exception handling, multithreading, multimedia (audio, images, ani-
mation and video), file processing, prepackaged data structures, database processing,
Internet and World-Wide-Web-based client/server networking and distributed computing.
The language is appropriate for implementing Internet- and World-Wide-Web-based appli-
cations that seamlessly integrate with PC-based applications.

The .NET platform offers powerful capabilities for software development and deploy-
ment, including independence from a specific language or platform. Rather than requiring
developers to learn a new programming language, programmers can contribute to the same
software project, but write code using any (or several) of the .NET languages (such as C#,
Visual Basic .NET, Visual C++ .NET and others) with which they are most competent. In
addition to providing language independence, .NET extends program portability by
enabling .NET applications to reside on, and communicate across, multiple platforms—
thus facilitating the delivery of Web services over the Internet. The .NET platform enables
Web-based applications to be distributed to consumer-electronic devices, such as cell

Preface XXXIX

phones and personal digital assistants, as well as to desktop computers. The capabilities that
Microsoft has incorporated into the .NET platform create a new software-development par-
adigm that will increase programmer productivity and decrease development time.

New Features in C# How to Program

This edition contains many new features and enhancements, including:

• Full-Color Presentation. This book is now in full color. Full color enables readers
to see sample outputs as they would appear on a color monitor. Also, we now syn-
tax color the C# code, similar to the way Visual Studio .NET colors the code in its
editor window. Our syntax-coloring conventions are as follows:

comments appear in green
keywords appear in dark blue
literal values appear in light blue
text, class, method and variable names appear in black
errors and ASP .NET directives appear in red

• “Code Washing.” This is our term for the process we use to format the programs
in the book so that they have a carefully commented, open layout. The code ap-
pears in full color and is grouped into small, well-documented pieces. This greatly
improves code readability—an especially important goal for us, considering that
this book contains approximately 23,500 lines of code.

• Web Services and ASP .NET. Microsoft’s .NET strategy embraces the Internet
and Web as integral to the software development and deployment processes. Web
services—a key technology in this strategy—enables information sharing, com-
merce and other interactions using standard Internet protocols and technologies,
such as Hypertext Transfer Protocol (HTTP), Simple Object Access Protocol
(SOAP) and Extensible Markup Language (XML). Web services enable program-
mers to package application functionality in a form that turns the Web into a li-
brary of reusable software components. In Chapter 21, ASP .NET and Web
Services, we present a Web service that allows users to make airline seat reserva-
tions. In this example, a user accesses a Web page, chooses a seating option and
submits the page to the Web server. The page then calls a Web service that checks
seat availability. We also present information related to Web services in Appendix
P, Crystal Reports® for Visual Studio® .NET, which discusses popular reporting
software for database-intensive applications. Crystal Reports, which is integrated
into Visual Studio .NET, provides the ability to expose a report as a Web service.
The appendix provides introductory information and directs readers to a walk-
through of this process on the Crystal Decisions Web site (www.crystalde-
cisions.com/net).

• Web Forms, Web Controls and ASP .NET. Application developers must be able
to create robust, scalable Web-based applications. The .NET platform architecture
supports such applications. Microsoft’s .NET server-side technology, Active
Server Pages (ASP) .NET, allows programmers to build Web documents that re-
spond to client requests. To enable interactive Web pages, server-side programs
process information users input into HTML forms. ASP .NET is a significant de-

XL Preface

parture from previous versions of ASP, allowing developers to program Web-
based applications using the powerful object-oriented languages of .NET. ASP
.NET also provides enhanced visual programming capabilities, similar to those
used in building Windows forms for desktop programs. Programmers can create
Web pages visually, by dragging and dropping Web controls onto Web forms.
Chapter 20, ASP .NET, Web Forms and Web Controls, introduces these powerful
technologies.

• Object-Oriented Programming. Object-oriented programming is the most widely
employed technique for developing robust, reusable software, and C# offers en-
hanced object-oriented programming features. This text offers a rich presentation
of object-oriented programming. Chapter 8, Object-Based Programming, intro-
duces how to create classes and objects. These concepts are extended in Chapter
9, Object-Oriented Programming: Inheritance, which discusses how programmers
can create new classes that “absorb” the capabilities of existing classes. Chapter
10, Object-Oriented Programming: Polymorphism, familiarizes the reader with
the crucial concepts of polymorphism, abstract classes, concrete classes and inter-
faces, which facilitate powerful manipulations among objects belonging to an in-
heritance hierarchy.

• XML. Use of Extensible Markup Language (XML) is exploding in the software-
development industry, the e-business and e-commerce communities, and is perva-
sive throughout the .NET platform. Because XML is a platform-independent tech-
nology for describing data and for creating markup languages, XML’s data
portability integrates well with C#’s portable applications and services. Chapter
18, Extensible Markup Language (XML), introduces XML. In this chapter, we in-
troduce basic XML markup and discuss the technologies such as DTDs and Sche-
ma, which are used to validate XML documents’ contents. We also explain how
to programmatically manipulate XML documents using the Document Object
Model (DOM™) and how to transform XML documents into other types of doc-
uments via Extensible Stylesheet Language Transformations (XSLT).

• Multithreading. Computers enable us to perform many tasks in parallel (or con-
currently), such as printing documents, downloading files from a network and
surfing the Web. Multithreading is the technology through which programmers
can develop applications that perform concurrent tasks. Historically, a computer
has contained a single, expensive processor, which its operating system would
share among all applications. Today, processors are becoming so inexpensive that
it is possible to build affordable computers that contain many processors that work
in parallel—such computers are called multiprocessors. Multithreading is effec-
tive on both single-processor and multiprocessor systems. C#’s multithreading ca-
pabilities make the platform and its related technologies better prepared to deal
with today’s sophisticated multimedia-intensive, database-intensive, network-
based, multiprocessor-based distributed applications. Chapter 14, Multithreading,
provides a detailed discussion of multithreading.

• ADO .NET. Databases store vast amounts of information that individuals and or-
ganizations must access to conduct business. As an evolution of Microsoft's Ac-
tiveX Data Objects (ADO), ADO .NET represents a new approach for building

Preface XLI

applications that interact with databases. ADO .NET uses XML and an enhanced
object model to provide developers with the tools they need to access and manip-
ulate databases for large-scale, extensible, mission-critical multi-tier applications.
Chapter 19, Database, SQL and ADO .NET, details the capabilities of ADO .NET
and the Structured Query Language (SQL) to manipulate databases.

• Visual Studio .NET Debugger. Debuggers are programs that help programmers
find and correct logic errors in program code. Visual Studio .NET contains a pow-
erful debugging tool that allows programmers to analyze their programs line-by-
line as those programs execute. In Appendix D, Visual Studio .NET Debugger, we
explain how to use key debugger features, such as setting breakpoints and “watch-
es,” stepping into and out of procedures, and examining the procedure call stack.

• COM (Component Object Model) Integration. Prior to the introduction of .NET,
many organizations spent tremendous amounts of time and money creating reus-
able software components called COM components, which include ActiveX®
controls and ActiveX DLLs (dynamic link libraries) for Windows applications. In
Appendix H, COM Integration, we discuss some of the tools available in Visual
Studio .NET for integrating these legacy components into .NET applications. This
integration allows programmers to use existing sets of COM-based controls with
.NET components.

• XML Documentation. Documenting program code is crucial for software devel-
opment, because different programmers often work on an application during the
software’s lifecycle, which usually includes multiple versions and can span many
years. If programmers document software code and methods, other programmers
working on the application can learn and understand the logic underlying the code,
thus saving time and avoiding misunderstandings. To automate documenting pro-
grams, Visual Studio .NET provides an XML tool for C# programmers. Appendix
E, XML Documentation, explains how a programmer can insert comments in the
code, which produces a separate file providing the code documentation.

• Career Opportunities. Appendix C, Career Opportunities, introduces career ser-
vices available on the Internet. We explore online career services from both the
employer’s and employee’s perspectives. We list many Web sites at which you
can submit applications, search for jobs and review applicants (if you are interest-
ed in hiring someone). We also review services that build recruiting pages directly
into e-businesses. One of our reviewers told us that he had used the Internet as a
primary tool in a recent job search, and that this appendix would have helped him
expand his search dramatically.

• Unicode. As computer systems evolved worldwide, computer vendors developed
numeric representations of character sets and special symbols for the local lan-
guages spoken in different countries. In some cases, different representations were
developed for the same languages. Such disparate character sets hindered commu-
nication among computer systems. C# supports the Unicode Standard (main-
tained by a non-profit organization called the Unicode Consortium), which
maintains a single character set that specifies unique numeric values for characters
and special symbols in most of the world’s languages. Appendix G, Unicode, dis-
cusses the standard, overviews the Unicode Consortium Web site (www.uni-

XLII Preface

code.org) and presents a C# application that displays “Welcome to Unicode!”
in several languages.

• XHTML. The World Wide Web Consortium (W3C) has declared HTML to be a
legacy technology that will undergo no further development. HTML is being re-
placed by the Extensible Hypertext Markup Language (XHTML)—an XML-
based technology that is rapidly becoming the standard for describing Web con-
tent. We use XHTML in Chapter 18, Extensible Markup Language (XML), and
offer an introduction to the technology in Appendix K, Introduction to XHTML:
Part 1, and Appendix L, Introduction to XHTML: Part 2. These appendices over-
view headers, images, lists, image maps and other features of this emerging mark-
up language. (We also present a treatment of HTML in Appendices I and J,
because ASP .NET, used in Chapters 20 and 21, generates HTML content).

• Accessibility. Although the World Wide Web has become an important part of
many people’s lives, the medium currently presents many challenges to people
with disabilities. Individuals with hearing and visual impairments, in particular,
have difficulty accessing multimedia-rich Web sites. In an attempt to improve this
situation, the World Wide Web Consortium (W3C) launched the Web Accessibil-
ity Initiative (WAI), which provides guidelines for making Web sites accessible
to people with disabilities. Chapter 24, Accessibility, describes these guidelines
and highlights various products and services designed to improve the Web-brows-
ing experiences of individuals with disabilities. For example, the chapter introduc-
es VoiceXML and CallXML—two XML-based technologies for increasing the
accessibility of Web-based content for people with visual impairments.

• Bit Manipulation. Computers work with data in the form of binary digits, or bits,
which can assume the values 1 or 0. Computer circuitry performs various simple
bit manipulations, such as examining the value of a bit, setting the value of a bit
and reversing a bit (from 1 to 0 or from 0 to 1). Operating systems, test-equipment,
networking software and many other kinds of software require that programs com-
municate “directly with the hardware” by using bit manipulation. Appendix O, Bit
Manipulation, overviews the bit manipulation capabilities that the .NET Frame-
work provides.

Some Notes to Instructors
Students Enjoy Learning a Leading-Edge Language
Dr. Harvey M. Deitel taught introductory programming courses in universities for 20 years
with an emphasis on developing clearly written, well-designed programs. Much of what is
taught in such courses represents the basic principles of programming, concentrating on the
effective use of data types, control structures, arrays and functions. Our experience has
been that students handle the material in this book in about the same way that they handle
other introductory and intermediate programming courses. There is one noticeable differ-
ence, though: Students are highly motivated by the fact that they are learning a leading-
edge language, C#, and a leading-edge programming paradigm (object-oriented program-
ming) that will be immediately useful to them as they enter the business world. This in-
creases their enthusiasm for the material—which is essential when you consider that there
is much more to learn in a C# course now that students must master both the base language

Preface XLIII

and substantial class libraries as well. Although C# is a new language that may require pro-
grammers to revamp their skills, programmers will be motivated to do so because of the
powerful range of capabilities that Microsoft is offering in its .NET initiative.

A World of Object Orientation
In the late 1990s, universities were still emphasizing procedural programming. The lead-
ing-edge courses were using object-oriented C++, but these courses generally mixed a sub-
stantial amount of procedural programming with object-oriented programming—
something that C++ lets programmers do. Many instructors now are emphasizing a pure ob-
ject-oriented programming approach. This book—the first edition of C# How to Program
and the second text in our .NET series—takes a predominantly object-oriented approach
because of the object orientation provided in C#.

Focus of the Book
Our goal was clear: Produce a C# textbook for introductory university-level courses in
computer programming aimed at students with little or no programming experience, yet of-
fer the depth and the rigorous treatment of theory and practice demanded by both profes-
sionals and students in traditional, upper-level programming courses. To meet these
objectives, we produced a comprehensive book that patiently teaches the principles of com-
puter programming and of the C# language, including control structures, object-oriented
programming, C# class libraries, graphical-user-interface concepts, event-driven program-
ming and more. After mastering the material in this book, students will be well-prepared to
program in C# and to employ the capabilities of the .NET platform.

Multimedia-Intensive Communications
People want to communicate. Sure, they have been communicating since the dawn of civili-
zation, but the potential for information exchange has increased dramatically with the evolu-
tion of various technologies. Until recently, even computer communications were limited
mostly to digits, alphabetic characters and special characters. The current wave of communi-
cation technology involves the distribution of multimedia—people enjoy using applications
that transmit color pictures, animations, voices, audio clips and even full-motion color video
over the Internet. At some point, we will insist on three-dimensional, moving-image transmis-
sion.

There have been predictions that the Internet will eventually replace radio and televi-
sion as we know them today. Similarly, it is not hard to imagine newspapers, magazines
and books delivered to “the palm of your hand” (or even to special eyeglasses) via wireless
communications. Many newspapers and magazines already offer Web-based versions, and
some of these services have spread to the wireless world. When cellular phones were first
introduced, they were large and cumbersome. Today, they are small devices that fit in our
pockets, and many are Internet-enabled. Given the current rate of advancement, wireless
technology soon could offer enhanced streaming-video and graphics-packed services, such
as video conference calls and high-power, multi-player video games.

Teaching Approach
C# How to Program contains a rich collection of examples, exercises and projects drawn
from many fields and designed to provide students with a chance to solve interesting, real-
world problems. The code examples in this text have been tested on Windows 2000 and

XLIV Preface

Windows XP. The book concentrates on the principles of good software engineering, and
stresses program clarity. We are educators who teach edge-of-the-practice topics in indus-
try classrooms worldwide. We avoid arcane terminology and syntax specifications in favor
of teaching by example. The text emphasizes good pedagogy.1

LIVE-CODE™ Teaching Approach
C# How to Program is loaded with numerous LIVE-CODE™ examples. This style exemplifies
the way we teach and write about programming and is the focus of our multimedia Cyber
Classrooms and Web-based training courses. Each new concept is presented in the context of
a complete, working example that is immediately followed by one or more windows showing
the program’s input/output dialog. We call this method of teaching and writing the LIVE-
CODE™ Approach. We use programming languages to teach programming languages.
Reading the examples in the text is much like entering and running them on a computer.

World Wide Web Access
All of the examples for C# How to Program (and our other publications) are available on
the Internet as downloads from the following Web sites:

www.deitel.com
www.prenhall.com/deitel

Registration is quick and easy and these downloads are free. We suggest downloading all
the examples, then running each program as you read the corresponding text. Make changes
to the examples and immediately see the effects of those changes—a great way to learn pro-
gramming. Each set of instructions assumes that the user is running Windows 2000 or Win-
dows XP and is using Microsoft’s Internet Information Services (IIS). Additional setup
instructions for Web servers and other software can be found at our Web sites along with
the examples. [Note: This is copyrighted material. Feel free to use it as you study, but you
may not republish any portion of it in any form without explicit permission from Prentice
Hall and the authors.]

Visual Studio .NET, which includes C#, can be purchased and downloaded from
Microsoft. Three different versions of Visual Studio .NET are available—Enterprise, Pro-
fessional and Academic. Visit developerstore.com/devstore/ for more details
and to order. If you are a member of the Microsoft Developer Network, visit
msdn.microsoft.com/default.asp.

Objectives
Each chapter begins with objectives that inform students of what to expect and give them an
opportunity, after reading the chapter, to determine whether they have met the intended goals.
The objectives serve as confidence builders and as a source of positive reinforcement.

Quotations
The chapter objectives are followed by sets of quotations. Some are humorous, some are
philosophical and some offer interesting insights. We have found that students enjoy relat-

1. We use fonts to distinguish between Visual Studio .NET’s Integrated Development Environment
(IDE) features (such as menu names and menu items) and other elements that appear in the IDE.
Our convention is to emphasize IDE features in a sans-serif bold Helvetica font (e.g., Project
menu) and to emphasize program text in a serif bold Courier font (e.g., bool x = true;).

Preface XLV

ing the quotations to the chapter material. Many of the quotations are worth a “second look”
after you read each chapter.

Outline
The chapter outline enables students to approach the material in top-down fashion. Along
with the chapter objectives, the outline helps students anticipate future topics and set a com-
fortable and effective learning pace.

Approximately 23,500 Lines of Code in 204 Example Programs (with Program Outputs)
We present C# features in the context of complete, working C# programs. The programs
range in size from just a few lines of code to substantial examples containing several hundred
lines of code. All examples are available on the CD that accompanies the book or as down-
loads from our Web site, www.deitel.com.

607 Illustrations/Figures
An abundance of charts, line drawings and program outputs is included. The discussion of
control structures, for example, features carefully drawn flowcharts. [Note: We do not
teach flowcharting as a program-development tool, but we do use a brief, flowchart-orient-
ed presentation to explain the precise operation of each C# control structure.]

509 Programming Tips
We have included programming tips to help students focus on important aspects of program
development. We highlight hundreds of these tips in the form of Good Programming Prac-
tices, Common Programming Errors, Testing and Debugging Tips, Performance Tips,
Portability Tips, Software Engineering Observations and Look-and-Feel Observations.
These tips and practices represent the best the authors have gleaned from a combined seven
decades of programming and teaching experience. One of our students—a mathematics
major—told us that she feels this approach is like the highlighting of axioms, theorems and
corollaries in mathematics books; it provides a foundation on which to build good software.

91 Good Programming Practices
Good Programming Practices are tips that call attention to techniques that will help students
produce better programs. When we teach introductory courses to nonprogrammers, we state
that the “buzzword” for each course is “clarity,” and we tell the students that we will high-
light (in these Good Programming Practices) techniques for writing programs that are clear-
er, more understandable and more maintainable. 0.0

165 Common Programming Errors
Students learning a language—especially in their first programming course—tend to make
certain kinds of errors frequently. Pointing out these Common Programming Errors reduces
the likelihood that students will make the same mistakes. It also shortens long lines outside
instructors’ offices during office hours! 0.0

44 Testing and Debugging Tips
When we first designed this “tip type,” we thought the tips would contain suggestions strictly
for exposing bugs and removing them from programs. In fact, many of the tips describe as-
pects of C# that prevent “bugs” from getting into programs in the first place, thus simplifying
the testing and debugging process. 0.0

XLVI Preface

57 Performance Tips
In our experience, teaching students to write clear and understandable programs is by far
the most important goal for a first programming course. But students want to write programs
that run the fastest, use the least memory, require the smallest number of keystrokes or dazzle
in other ways. Students really care about performance and they want to know what they can
do to “turbo charge” their programs. We have included 57 Performance Tips that highlight
opportunities for improving program performance—making programs run faster or minimiz-
ing the amount of memory that they occupy. 0.0

16 Portability Tips
We include Portability Tips to help students write portable code and to provide insights on
how C# achieves its high degree of portability. 0.0

115 Software Engineering Observations
The object-oriented programming paradigm necessitates a complete rethinking of the way
we build software systems. C# is an effective language for achieving good software engineer-
ing. The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems. Much of what the
student learns here will be useful in upper-level courses and in industry as the student begins
to work with large, complex real-world systems. 0.0

21 Look-and-Feel Observations
We provide Look-and-Feel Observations to highlight graphical-user-interface conventions.
These observations help students design attractive, user-friendly graphical user interfaces
that conform to industry norms. 0.0

Summary (1277 Summary bullets)
Each chapter ends with additional pedagogical devices. We present a thorough, bullet-list-
style summary of the chapter. On average, there are 39 summary bullets per chapter. This
helps the students review and reinforce key concepts.

Terminology (2932 Terms)
We include an alphabetized list of the important terms defined in the chapter in a Terminol-
ogy section. Again, this serves as further reinforcement. On average, there are 89 terms per
chapter. Each term also appears in the index, so the student can locate terms and definitions
quickly.

693 Self-Review Exercises and Answers (Count Includes Separate Parts)
Extensive self-review exercises and answers are included for self-study. These questions
and answers give the student a chance to build confidence with the material and prepare for
the regular exercises. Students should be encouraged to attempt all the self-review exercis-
es and check their answers.

367 Exercises (Solutions in Instructor’s Manual; Count Includes Separate Parts)
Each chapter concludes with a substantial set of exercises that involve simple recall of im-
portant terminology and concepts; writing individual C# statements; writing small portions
of C# methods and classes; writing complete C# methods, classes and applications; and
writing major projects. These exercises cover a wide variety of topics, enabling instructors
to tailor their courses to the unique needs of their audiences and to vary course assignments

Preface XLVII

each semester. Instructors can use the exercises to form homework assignments, short quiz-
zes and major examinations. The solutions for the exercises are included in the Instructor’s
Manual and on the disks available only to instructors through their Prentice-Hall represen-
tatives. [NOTE: Please do not write to us requesting the instructor’s manual. Distri-
bution of this publication is strictly limited to college professors teaching from the
book. Instructors may obtain the solutions manual from their regular Prentice Hall
representatives. We regret that we cannot provide the solutions to professionals.] So-
lutions to approximately half the exercises are included on the C# Multimedia Cyber Class-
room CD-ROM (available in April 2002 at www.InformIT.com/
cyberclassrooms; also see the last few pages of this book or visit www.dei-
tel.com for ordering instructions). Also available in April 2002 is the boxed product, The
Complete C# Training Course, which includes both our textbook, C# How to Program and
the C# Multimedia Cyber Classroom. All of our Complete Training Course products are
available at bookstores and online booksellers, including www.InformIT.com.

Approximately 5,420 Index Entries (with approximately 6,450 Page References)
We have included an extensive Index at the back of the book. Using this resource, students
can search for any term or concept by keyword. The Index is especially useful to practicing
programmers who use the book as a reference. Each of the 2932 terms in the Terminology
sections appears in the Index (along with many more index items from each chapter). Stu-
dents can use the index in conjunction with the Terminology sections to ensure that they
have covered the key material in each chapter.

“Double Indexing” of All C# LIVE-CODE™ Examples
C# How to Program has 204 LIVE-CODE™ examples, which we have “double indexed.”
For every C# source-code program in the book, we took the file name with the .cs exten-
sion, such as ChessGame.cs, and indexed it both alphabetically (in this case, under “C”)
and as a subindex item under “Examples.” This makes it easier to find examples using par-
ticular features.

C# Multimedia Cyber Classroom and The Complete C# Training
Course,

We have prepared an interactive, CD-ROM-based, software version of C# How to Pro-
gram, called the C# Multimedia Cyber Classroom. This resource is loaded with e-Learning
features that are ideal for both learning and reference. The Cyber Classroom is packaged
with the textbook at a discount in The Complete C# Training Course. If you already have
the book and would like to purchase the C# Multimedia Cyber Classroom separately, please
visit www.InformIT.com/cyberclassrooms. The ISBN number for the C# Mul-
timedia Cyber Classroom is 0-13-064587-7. All Deitel™ Cyber Classrooms are available
in CD-ROM and Web-based training formats.

The CD provides an introduction in which the authors overview the Cyber Class-
room’s features. The textbook’s 204 LIVE-CODE™ example C# programs truly “come
alive” in the Cyber Classroom. If you are viewing a program and want to execute it, you
simply click the lightning-bolt icon, and the program will run. You immediately will see—
and hear, when working with audio-based multimedia programs—the program’s outputs.
If you want to modify a program and see the effects of your changes, simply click the

XLVIII Preface

floppy-disk icon that causes the source code to be “lifted off” the CD and “dropped into”
one of your own directories so you can edit the text, recompile the program and try out your
new version. Click the audio icon, and one of the authors will discuss the program and
“walk you through” the code.

The Cyber Classroom also provides navigational aids, including extensive hyper-
linking. The Cyber Classroom is browser based, so it remembers sections that you have vis-
ited recently and allows you to move forward or backward among these sections. The
thousands of index entries are hyperlinked to their text occurrences. Furthermore, when
you key in a term using the “find” feature, the Cyber Classroom will locate occurrences of
that term throughout the text. The Table of Contents entries are “hot,” so clicking a chapter
name takes you immediately to that chapter.

Students like the fact that solutions to approximately half the exercises in the book are
included with the Cyber Classroom. Studying and running these extra programs is a great
way for students to enhance their learning experience.

Students and professional users of our Cyber Classrooms tell us that they like the inter-
activity and that the Cyber Classroom is an effective reference due to its extensive hyper-
linking and other navigational features. We received an e-mail from a person who said that
he lives “in the boonies” and cannot take a live course at a university, so the Cyber Class-
room provided an ideal solution to his educational needs.

Professors tell us that their students enjoy using the Cyber Classroom and spend more
time on the courses and master more of the material than in textbook-only courses. For a
complete list of the available and forthcoming Cyber Classrooms and Complete Training
Courses, see the Deitel™ Series page at the beginning of this book, the product listing and
ordering information at the end of this book or visit www.deitel.com, www.pren-
hall.com/deitel and www.InformIT.com/deitel.

Deitel e-Learning Initiatives

e-Books and Support for Wireless Devices
Wireless devices will play an enormous role in the future of the Internet. Given recent band-
width enhancements and the emergence of 2.5 and 3G technologies, it is projected that,
within two years, more people will access the Internet through wireless devices than
through desktop computers. Deitel & Associates, Inc., is committed to wireless accessibil-
ity and has recently published Wireless Internet & Mobile Business How to Program. To
fulfill the needs of a wide range of customers, we currently are developing our content both
in traditional print formats and in newly developed electronic formats, such as e-books so
that students and professors can access content virtually anytime, anywhere. Visit
www.deitel.com for periodic updates on this initiative.

e-Matter
Deitel & Associates, Inc., is partnering with Prentice Hall’s parent company, Pearson PLC,
and its information technology Web site, InformIT.com, to launch the Deitel e-Matter
series at www.InformIT.com/deitel. This series will provide professors, students
and professionals with an additional source of information on specific programming topics.
e-Matter consists of stand-alone sections taken from published texts, forthcoming texts or
pieces written during the Deitel research-and-development process. Developing e-Matter
based on pre-publication books allows us to offer significant amounts of the material to ear-

Preface XLIX

ly adopters for use in courses. Some possible C# e-Matter titles we are considering include
Object-Based Programming and Object-Oriented Programming in C#; Graphical User In-
terface Programming in C#; Multithreading in C#; ASP .NET and Web Forms: A C# View;
and ASP .NET and Web Services: A C# View.

Course Management Systems: WebCT, Blackboard, and CourseCompass
We are working with Prentice Hall to integrate our How to Program Series courseware into
three Course Management Systems: WebCT, Blackboard™ and CourseCompass. These
Course Management Systems enable instructors to create, manage and use sophisticated
Web-based educational programs. Course Management System features include course cus-
tomization (such as posting contact information, policies, syllabi, announcements, assign-
ments, grades, performance evaluations and progress tracking), class and student
management tools, a gradebook, reporting tools, communication tools (such as chat rooms),
a whiteboard, document sharing, bulletin boards and more. Instructors can use these products
to communicate with their students, create online quizzes and tests from questions directly
linked to the text and automatically grade and track test results. For more information about
these upcoming products, visit www.deitel.com/whatsnew.html. For demonstra-
tions of existing WebCT, Blackboard and CourseCompass courses, visit
cms.pren_hall.com/WebCT, cms.prenhall.com/Blackboard and
cms.prenhall.com/CourseCompass, respectively.

Deitel and InformIT Newsletters

Deitel Column in the InformIT Newsletters
Deitel & Associates, Inc., contributes a weekly column to the popular InformIT newsletter,
currently subscribed to by more than 800,000 IT professionals worldwide. For opt-in reg-
istration, visit www.InformIT.com.

Deitel Newsletter
Our own free, opt-in newsletter includes commentary on industry trends and developments,
links to articles and resources from our published books and upcoming publications, infor-
mation on future publications, product-release schedules and more. For opt-in registration,
visit www.deitel.com.

The Deitel .NET Series

Deitel & Associates, Inc., is making a major commitment to .NET programming through
the launch of our .NET Series. C# .NET How to Program and Visual Basic .NET How to
Program, Second Edition are the first books in this new series. We intend to follow these
books with Advanced C# How to Program and Advanced Visual Basic .NET How to Pro-
gram, which will be published in December 2002. We also plan to publish Visual C++
.NET How to Program in July 2002, followed by Advanced Visual C++ .NET How to Pro-
gram in July 2003.

Advanced C# How to Program

C# How to Program covers introductory through intermediate-level C# programming top-
ics, as well as core programming fundamentals. By contrast, our upcoming textbook Ad-

L Preface

vanced C# How to Program will be geared toward experienced C# developers. This new
book will cover enterprise-level programming topics, including: Creating multi-tier, data-
base intensive ASP .NET applications using ADO .NET and XML; constructing custom
Windows controls; developing custom Web controls; and building Windows services. The
book also will include more in-depth explanations of object-oriented programming (with
the UML), ADO .NET, XML Web services, wireless programming and security. Advanced
C# How to Program will be published in December 2002.

Acknowledgments

One of the great pleasures of writing a textbook is acknowledging the efforts of many peo-
ple whose names may not appear on the cover, but whose hard work, cooperation, friend-
ship and understanding were crucial to the production of the book.

Many other people at Deitel & Associates, Inc., devoted long hours to this project.

• Sean E. Santry, a graduate of Boston College with degrees in Computer Science
and Philosophy, Director of Software Development at Deitel & Associates, Inc.,
and co-author of Advanced Java 2 Platform How to Program, contributed to
Chapters 1–10, 12–13 and 18–23.

• Matthew R. Kowalewski, a graduate of Bentley College with a degree in Account-
ing Informations Systems, is the Director of Wireless Development at Deitel &
Associates, Inc. He contributed to Chapters 19–20, Appendices B, F, I–N, P and
edited the Index.

• Jonathan Gadzik, a graduate of the Columbia University School of Engineering
and Applied Science with a major in Computer Science, co-authored Chapter 17
and contributed to Chapters 9, 22 and Appendices D and E.

• Kyle Lomelí, a graduate of Oberlin College with a degree in Computer Science
and a minor in East Asian Studies, contributed to Chapters 11, 14–15, 19 and 24.

• Lauren Trees, a graduate if Brown University in English, edited the entire manu-
script for smoothness, clarity and effectiveness of presentation; she also co-au-
thored the Preface, Chapter 1 and Appendix P.

• Rashmi Jayaprakash, a graduate of Boston University with a major in Computer
Science, co-authored Chapter 24 and Appendix G.

• Laura Treibick, a graduate of the University of Colorado at Boulder with a degree
in Photography and Multimedia, is Director of Multimedia at Deitel & Associates,
Inc. She contributed to Chapter 16 and enhanced many of the graphics throughout
the text.

• Betsy DuWaldt, a graduate of Metropolitan State College of Denver with a major
in Technical Communications (Writing and Editing emphasis) and a minor in
Computer Information Systems, is Editorial Director at Deitel & Associates, Inc.
She co-authored the Preface, Chapter 1 and Appendix P and managed the permis-
sions process for the book.

• Barbara Deitel applied the copy edits to the manuscript. She did this in parallel
with handling her extensive financial and administrative responsibilities at Deitel

Preface LI

& Associates, Inc., which include serving as Chief Financial Officer. [Everyone
at the company works on book content.]

• Abbey Deitel, a graduate of Carnegie Mellon University’s Industrial Management
Program and President of Deitel & Associates, Inc., recruited 40 additional full-
time employees and interns during 2001. She also leased, equipped and furnished
our second building to create the work environment from which C# How to Pro-
gram and our other year 2001 publications were produced. She suggested the title
for the How to Program series, and edited this preface and several of the book’s
chapters.

We would also like to thank the participants in the Deitel & Associates, Inc., College
Internship Program.2

• Jeffrey Hamm, a sophomore at Northeastern University in Computer Science, co-
authored Chapters 16, 18, 20–21 and Appendices D and H.

• Kalid Azad, a sophomore at Princeton University in Computer Science, contrib-
uted to Chapters 1, 2, 12–13, 16 and Appendix D. He created PowerPoint-slide an-
cillaries for Chapters 1–7 and researched Visual Studio .NET and Microsoft's
.NET initiative.

• Christopher Cassa, a junior at MIT in Computer Science, contributed to Chapters
3–7 and 18.

• David Tuttle, a senior at Harvard in Computer Science, contributed to Chapters 8,
18–19 and 24 and coded examples for Chapters 3–6, 7, 11,16–17,19, 23 and 26.

• Ori Schwartz, a sophomore at Boston University in Computer Science, produced
solutions for all the chapters and contributed to Chapter 16.

• Thiago Lucas da Silva, a sophomore at Northeastern University in Computer Sci-
ence, tested all the programming examples through the various beta releases and
release candidates of Visual Studio .NET.

• Matthew Rubino, a sophomore at Northeastern University in Computer Science,
created ancillary materials for the entire book.

• Elizabeth Rockett, a senior in English at Princeton University, edited 1-3, 7–8, 14,
17 and 19-24.

• Barbara Strauss, a senior in English at Brandeis University, edited Chapters 1–6,
9–13 and 18–24.

• Christina Carney, a senior in Psychology and Business at Framingham State Col-
lege, helped with the Preface.

2. The Deitel & Associates, Inc. College Internship Program offers a limited number of salaried po-
sitions to Boston-area college students majoring in Computer Science, Information Technology,
Marketing, Management and English. Students work at our corporate headquarters in Sudbury,
Massachusetts full-time in the summers and (for those attending college in the Boston area) part-
time during the academic year. We also offer full-time internship positions for students interested
in taking a semester off from school to gain industry experience. Regular full-time positions are
available to college graduates. For more information about this competitive program, please con-
tact Abbey Deitel at deitel@deitel.com and visit our Web site, www.deitel.com.

LII Preface

• Reshma Khilnani, a junior in Computer Science and Mathematics at Massachu-
setts Institute of Technology, contributed to Chapter 18 and Appendix E.

• Brian Foster, a sophomore at Northeastern University in Computer Science,
helped with the Preface and Bibliography.

• Mike Preshman, a sophomore at Northeastern University with a major in Comput-
er Science and minors in Electrical Engineering and Math, helped with the Bibli-
ography.

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especially appreciate the
extraordinary efforts of our Computer Science editor, Petra Recter and her boss—our
mentor in publishing—Marcia Horton, Editorial Director of Prentice-Hall’s Engineering
and Computer Science Division. Camille Trentacoste and her boss Vince O’Brien did a
marvelous job managing the production of the book. Sarah Burrows handled editorial
responsibilities on the book’s extensive ancillary package.

The C# Multimedia Cyber Classroom was developed in parallel with C# How to Pro-
gram. We sincerely appreciate the “new media” insight, savvy and technical expertise of
our electronic-media editors, Mark Taub and Karen McLean. They and project manager
Mike Ruel did a wonderful job bringing the C# Multimedia Cyber Classroom and The
Complete C# Training Course to publication.

We owe special thanks to the creativity of Tamara Newnam (smart_art@earth-
link.net), who produced the art work for our programming-tip icons and for the cover.
She created the delightful creature who shares with you the book’s programming tips. Bar-
bara Deitel and Abbey Deitel contributed the bugs’ names for the front cover.

During the development of this manuscript, we were fortunate to have had two univer-
sities—the Massachusetts Institute of Technology and Yale University—beta-test the book
in the Fall 2001 semester. MIT Professor John Williams used the text to teach the graduate-
level class, Web System Architecting—Part I: Programming Clients and Web Services
Using C# and .NET, for the Off-Campus Advanced Study Program. Chris Cassa, a summer
2001 intern at Deitel & Associates, Inc., was the teaching fellow for the class. Yale Pro-
fessor Paul Hudak used the manuscript for an Introduction to Programming class, which
taught object-oriented programming languages. We would like to thank Professor Will-
iams, Professor Hudak and Chris for their contributions. The feedback we received was
crucial to fine-tuning this text.

We wish to acknowledge the efforts of our first- and second-round reviewers and to
thank Crissy Statuto and Jennifer Cappello of Prentice Hall, who recruited the reviewers
and managed the review process. Adhering to a tight time schedule, these reviewers scru-
tinized the text and the programs, providing countless suggestions for improving the accu-
racy and completeness of the presentation. It is a privilege to have the guidance of such
talented and busy professionals.

C# How to Program reviewers:
Hussein Abuthuraya (Microsoft)
Lars Bergstrom (Microsoft)
Indira Dhingra (Microsoft)
Eric Gunnerson (Microsoft)
Peter Hallam (Microsoft)

Preface LIII

Habib Hegdarian (Microsoft)
Anson Horton (Microsoft)
Latha Lakshminaray (Microsoft)
Kerry Loynd (Microsoft)
Tom McDade (Microsoft)
Syed Mehdi (Microsoft)
Cosmin Radu (Microsoft)
Ratta Rakshminarayana (Microsoft)
Imtiaz Syed (Microsoft)
Ed Thornburg (Microsoft)
Richard Van Fossen (Microsoft)
Rishabh Agarwal (Delteq Systems Pte. Ltd.)
José Antonio González Seco (Sadiel S.A.)
Paul Bohman (WebAIM)
Alex Bondarev (SureFire Commerce, Inc.)
Ron Braithwaite (Nutriware)
Filip Bulovic (Objectronics PTY Ltd.)
Mark Burhop (University of Cincinnati)
Carl Burnham (Southpoint)
Matt Butler (Oakscape Inc.)
Andrew Chau (Rich Solutions, Inc.)
Dharmesh Chauhan (Microsoft Consultant, Singapore)
Shyam Chebrolu (SAIC Broadway & Seymour Group)
Kunal Cheda (DotNetExtreme.com)
Edmund Chou (MIT Student, www.devhood.com project, Microsoft Intern)
James Chegwidden (Tarrant County College)
Vijay Cinnakonda (University of Toledo)
Michael Colynuck (Sierra Systems)
Jay Cook (Canon Information Systems)
Jeff Cowan (Magenic Technologies)
Robert Dombroski (AccessOnTime)
Shaun Eagan ((Eagan Consulting)
Brian Erwin (Extreme Logic)
Hamilton Fong (Montag & Caldwell, Inc.)
Gnanavel Gnana Arun Ganesh (Arun Microsystems)
Sam Gentile (Consultant)
Sam Gill (San Francisco State University)
John Godel (TJX)
Dave Haglin (Minnesota State University in Mankato)
Jeff Isom (WebAIM)
Rex Jaeschke (Consultant)
Amit Kalani (MobiCast)
Priti Kalani (Consultant)
Bryan Keller (csharphelp.com)
Patrick Lam (EdgeNet Communications)
Yi-Fung Lin (MIT Student, www.devhood.com project, Microsoft Intern)

LIV Preface

Maxim Loukianov (SoloMio Corporation)
Guarav Mantro (EDS PLM Solutions)
Jaimon Mathew (Osprey Software Technology)
Robert Meagher (Compuware NuMega Lab)
Arun Nair (iSpan Technologies)
Saurabh Nandu (Mastercsharp.com)
Simon North (Synopsys)
Jibin Pan (csharpcorner.com)
Graham Parker (VBUG)
Bryan Plaster (Valtech)
Chris Rausch (Sheridan Press)
Debbie Reid (Santa Fe Community College)
Bryn Rhodes (Softwise, Inc.)
Craig Schofding (C.A.S. Training)
Rahul Sharma (Maxutil Software)
Devan Shepherd (XMaLpha Technologies)
David Talbot (Reallinx, Inc.)
Satish Talim (Pune-Csharp)
Pavel Tsekov (Consultant)
John Varghese (UBS Warburg)
Peter Weng (MIT Student, www.devhood.com project, Microsoft Intern)
Jesse Wilkins (Metalinear Media)
Warren Wiltsie (Fairleigh Dickinson University/Seton Hall University)
Phil Wright (Crownwood Consulting Ltd.)
Norimasa Yoshida (MIT Graduate Student)

We would sincerely appreciate your comments, criticisms, corrections and suggestions
for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond promptly.
Well, that’s it for now. Welcome to the exciting world of C# programming. We hope

you enjoy this look at leading-edge computer applications. Good luck!

Dr. Harvey M. Deitel
Paul J. Deitel
Tem R. Nieto
Cheryl H. Yaeger
Marina Zlatkina
Jeff Listfield

About the Authors

Dr. Harvey M. Deitel, CEO and Chairman of Deitel & Associates, Inc., has 40 years expe-
rience in the computing field, including extensive industry and academic experience. Dr. De-
itel earned B.S. and M.S. degrees from the Massachusetts Institute of Technology and a Ph.D.
from Boston University. He worked on the pioneering virtual-memory operating-systems
projects at IBM and MIT that developed techniques now widely implemented in systems such

Preface LV

as UNIX, Linux and Windows NT. He has 20 years of college teaching experience, including
earning tenure and serving as the Chairman of the Computer Science Department at Boston
College before founding Deitel & Associates, Inc., with his son, Paul J. Deitel. He is the au-
thor or co-author of several dozen books and multimedia packages and is writing many more.
With translations published in Japanese, Russian, Spanish, Traditional Chinese, Simplified
Chinese, Korean, French, Polish, Italian and Portuguese, Dr. Deitel’s texts have earned inter-
national recognition. Dr. Deitel has delivered professional seminars to major corporations and
to government organizations and various branches of the military.

Paul J. Deitel, Executive Vice President and Chief Technical Officer of Deitel &
Associates, Inc., is a graduate of the Massachusetts Institute of Technology’s Sloan School
of Management, where he studied Information Technology. Through Deitel & Associates,
Inc., he has delivered Java, C, C++, Internet and World Wide Web courses to industry cli-
ents including Compaq, Sun Microsystems, White Sands Missile Range, Rogue Wave
Software, Boeing, Dell, Stratus, Fidelity, Cambridge Technology Partners, Open Environ-
ment Corporation, One Wave, Hyperion Software, Lucent Technologies, Adra Systems,
Entergy, CableData Systems, NASA at the Kennedy Space Center, the National Severe
Storm Laboratory, IBM and many other organizations. He has lectured on C++ and Java
for the Boston Chapter of the Association for Computing Machinery and has taught satel-
lite-based Java courses through a cooperative venture of Deitel & Associates, Inc., Prentice
Hall and the Technology Education Network. He and his father, Dr. Harvey M. Deitel, are
the world’s best-selling Computer Science textbook authors.

Tem R. Nieto, Director of Product Development of Deitel & Associates, Inc., is a
graduate of the Massachusetts Institute of Technology, where he studied engineering and
computing. Through Deitel & Associates, Inc., he has delivered courses for industry clients
including Sun Microsystems, Compaq, EMC, Stratus, Fidelity, NASDAQ, Art Tech-
nology, Progress Software, Toys “R” Us, Operational Support Facility of the National
Oceanographic and Atmospheric Administration, Jet Propulsion Laboratory, Nynex,
Motorola, Federal Reserve Bank of Chicago, Banyan, Schlumberger, University of Notre
Dame, NASA, various military installations and many others. He has co-authored
numerous books and multimedia packages with the Deitels and has contributed to virtually
every Deitel & Associates, Inc., publication.

Cheryl H. Yaeger, Director of Microsoft Software Publications with Deitel & Associ-
ates, Inc., graduated from Boston University in 3 years with a bachelor's degree in Computer
Science. Other Deitel publications she has contributed to include Perl How to Program, Wire-
less Internet & Mobile Business How to Program and Internet and World Wide Web How to
Program, Second Edition. Cheryl is increasingly interested in Microsoft’s .NET strategy and
in learning how Microsoft's .NET initiative will develop in the coming year.

Marina Zlatkina graduated from Brandeis University in three years with degrees in
Computer Science and Mathematics and is pursuing a Master’s degree in Computer Sci-
ence at Brandeis. During her Brandeis career, she has conducted research in databases and
has been a teaching assistant. She has also contributed to the Deitel & Associates, Inc. pub-
lication, e-Business & e-Commerce for Managers.

Jeff Listfield is a senior at Harvard College in Computer Science. His coursework
includes classes in computer graphics, networks and computational theory and he has pro-
gramming experience in C, C++, Java, Perl and Lisp. Jeff also contributed to the Deitel &
Associates, Inc., publication Perl How to Program.

LVI Preface

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e-
business/e-commerce software technology, object technology and computer programming
languages education. The company provides courses on Internet and World Wide Web/
programming, wireless Internet programming, object technology, and major programming
languages and platforms, such as Visual Basic .NET, C#, Java, advanced Java, C, C++,
XML, Perl, Python and more. The founders of Deitel & Associates, Inc., are Dr. Harvey M.
Deitel and Paul J. Deitel. The company’s clients include many of the world’s largest com-
puter companies, government agencies, branches of the military and business organiza-
tions. Through its 25-year publishing partnership with Prentice Hall, Deitel & Associates,
Inc., publishes leading-edge programming textbooks, professional books, interactive CD-
ROM-based multimedia Cyber Classrooms, Complete Training Courses, e-books, e-mat-
ter, Web-based training courses and course management systems e-content. Deitel & As-
sociates, Inc., and the authors can be reached via e-mail at:

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate
on-site curriculum, see the last few pages of this book or visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training Cours-
es and Web-based training courses can do so through bookstores, online booksellers and:

www.deitel.com
www.prenhall.com/deitel
www.InformIT.com/deitel
www.InformIT.com/cyberclassrooms

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)
Deitel & Associates, Inc., is a member of the World Wide Web Consortium
(W3C). The W3C was founded in 1994 “to develop common protocols for
the evolution of the World Wide Web.” As a W3C member, Deitel & As-
sociates, Inc., holds a seat on the W3C Advisory Committee (the compa-

ny’s representative is our Chief Technology Officer, Paul Deitel). Advisory Committee
members help provide “strategic direction” to the W3C through meetings held around the
world. Member organizations also help develop standards recommendations for Web tech-
nologies (such as XHTML, XML and many others) through participation in W3C activities
and groups. Membership in the W3C is intended for companies and large organizations. To
obtain information on becoming a member of the W3C visit www.w3.org/Consor-
tium/Prospectus/Joining.

1
Introduction to

Computers, the Internet,
the Web and C#

Objectives
• To understand basic computer concepts.
• To learn about various programming languages.
• To become familiar with the history of the C#

programming language.
• To understand the Microsoft® .NET initiative.
• To preview the remaining chapters of the book.
Things are always at their best in their beginning.
Blaise Pascal

High thoughts must have high language.
Aristophanes

Our life is frittered away by detail…Simplify, simplify.
Henry David Thoreau

Before beginning, plan carefully….
Marcus Tullius Cicero

Look with favor upon a bold beginning.
Virgil

I think I’m beginning to learn something about it.
Auguste Renoir

2 Introduction to Computers, the Internet, the Web and C# Chapter 1

1.1 Introduction
Welcome to C#! In creating this book, we have worked hard to provide students with the
most accurate and complete information regarding the C# language, and the .NET platform.
The book is designed to be appropriate for readers at all levels, from practicing program-
mers to individuals with little or no programming experience. We hope that working with
this text will be an informative, entertaining and challenging learning experience for you.

How can one book appeal to both novices and skilled programmers? The core of this
book emphasizes the achievement of program clarity through proven techniques of struc-
tured programming, object-based programming, object-oriented programming (OOP) and
event-driven programming. Nonprogrammers learn basic skills that underlie good pro-
gramming; experienced developers receive a rigorous explanation of the language and may
improve their programming styles. Perhaps most importantly, the book presents hundreds
of complete, working C# programs and depicts their outputs. We call this the LIVE-CODE™
approach. All of the book’s examples are available on the CD-ROM that accompanies this
book and on our Web site, www.deitel.com.

Outline

1.1 Introduction
1.2 What Is a Computer?
1.3 Computer Organization
1.4 Evolution of Operating Systems
1.5 Personal Computing, Distributed Computing and Client/Server

Computing
1.6 Machine Languages, Assembly Languages and High-level

Languages
1.8 C#
1.7 C, C++, Visual Basic .NET and Java™
1.9 Other High-level Languages
1.10 Structured Programming
1.11 Key Software Trend: Object Technology
1.12 Hardware Trends
1.13 History of the Internet and World Wide Web
1.14 World Wide Web Consortium (W3C)
1.15 Extensible Markup Language (XML)
1.16 Introduction to Microsoft .NET
1.17 .NET Framework and the Common Language Runtime
1.18 Tour of the Book
1.19 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 1 Introduction to Computers, the Internet, the Web and C# 3

Computer use is increasing in almost every field of endeavor. In an era of steadily
rising costs, computing costs have decreased dramatically because of rapid developments
in both hardware and software technology. Computers that filled large rooms and cost mil-
lions of dollars just two decades ago now can be inscribed on the surfaces of silicon chips
smaller than a fingernail, costing perhaps a few dollars each. Silicon is one of the most
abundant materials on earth—it is an ingredient in common sand. Silicon-chip technology
has made computing so economical that hundreds of millions of general-purpose com-
puters are in use worldwide, helping people in business, industry, government and their per-
sonal lives. Given the current rate of technological development, this number could easily
double over the next few years.

In beginning to study this text, you are starting on a challenging and rewarding educa-
tional path. As you proceed, if you would like to communicate with us, please send an e-
mail to deitel@deitel.com or browse our World Wide Web sites at
www.deitel.com, www.prenhall.com/deitel and www.InformIT.com/
deitel. We hope that you enjoy learning C# through reading C# How to Program.

1.2 What Is a Computer?
A computer is a device capable of performing computations and making logical decisions at
speeds millions and even billions of times faster than those of human beings. For example,
many of today’s personal computers can perform hundreds of millions—even billions—of
additions per second. A person operating a desk calculator might require decades to com-
plete the same number of calculations that a powerful personal computer can perform in one
second. (Points to ponder: How would you know whether the person had added the numbers
correctly? How would you know whether the computer had added the numbers correctly?)
Today’s fastest supercomputers can perform hundreds of billions of additions per second—
about as many calculations as hundreds of thousands of people could perform in one year!
Trillion-instruction-per-second computers are already functioning in research laboratories!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide computers through orderly sets of actions that are specified
by individuals known as computer programmers.

A computer is composed of various devices (such as the keyboard, screen, mouse,
disks, memory, CD-ROM and processing units) known as hardware. The programs that run
on a computer are referred to as software. Hardware costs have been declining dramatically
in recent years, to the point that personal computers have become a commodity. Software-
development costs, however, have been rising steadily, as programmers develop ever more
powerful and complex applications without being able to improve significantly the tech-
nology of software development. In this book, you will learn proven software-development
methods that can reduce software-development costs—top-down stepwise refinement,
functionalization and object-oriented programming. Object-oriented programming is
widely believed to be the significant breakthrough that can greatly enhance programmer
productivity.

1.3 Computer Organization
Virtually every computer, regardless of differences in physical appearance, can be envi-
sioned as being divided into six logical units, or sections:

4 Introduction to Computers, the Internet, the Web and C# Chapter 1

1. Input unit. This “receiving” section of the computer obtains information (data and
computer programs) from various input devices. The input unit then places this in-
formation at the disposal of the other units to facilitate the processing of the infor-
mation. Today, most users enter information into computers via keyboards and
mouse devices. Other input devices include microphones (for speaking to the
computer), scanners (for scanning images) and digital cameras (for taking photo-
graphs and making videos).

2. Output unit. This “shipping” section of the computer takes information that the
computer has processed and places it on various output devices, making the infor-
mation available for use outside the computer. Computers can output information
in various ways, including displaying the output on screens, playing it on audio/
video devices, printing it on paper or using the output to control other devices.

3. Memory unit. This is the rapid-access, relatively low-capacity “warehouse” sec-
tion of the computer, which facilitates the temporary storage of data. The memory
unit retains information that has been entered through the input unit, enabling that
information to be immediately available for processing. In addition, the unit re-
tains processed information until that information can be transmitted to output de-
vices. Often, the memory unit is called either memory or primary memory—
random access memory (RAM) is an example of primary memory. Primary mem-
ory is usually volatile, which means that it is erased when the machine is powered
off.

4. Arithmetic and logic unit (ALU). The ALU is the “manufacturing” section of the
computer. It is responsible for the performance of calculations such as addition,
subtraction, multiplication and division. It also contains decision mechanisms, al-
lowing the computer to perform such tasks as determining whether two items
stored in memory are equal.

5. Central processing unit (CPU). The CPU serves as the “administrative” section of
the computer. This is the computer’s coordinator, responsible for supervising the
operation of the other sections. The CPU alerts the input unit when information
should be read into the memory unit, instructs the ALU about when to use infor-
mation from the memory unit in calculations and tells the output unit when to send
information from the memory unit to certain output devices.

6. Secondary storage unit. This unit is the long-term, high-capacity “warehousing”
section of the computer. Secondary storage devices, such as hard drives and disks,
normally hold programs or data that other units are not actively using; the computer
then can retrieve this information when it is needed—hours, days, months or even
years later. Information in secondary storage takes much longer to access than does
information in primary memory. However, the price per unit of secondary storage
is much less than the price per unit of primary memory. Secondary storage is usu-
ally nonvolatile—it retains information even when the computer is off.

1.4 Evolution of Operating Systems
Early computers were capable of performing only one job or task at a time. In this mode of
computer operation, often called single-user batch processing, the computer runs one pro-

Chapter 1 Introduction to Computers, the Internet, the Web and C# 5

gram at a time and processes data in groups called batches. Users of these early systems
typically submitted their jobs to a computer center on decks of punched cards. Often, hours
or even days elapsed before results were returned to the users’ desks.

To make computer use more convenient, software systems called operating systems
were developed. Early operating systems oversaw and managed computers’ transitions
between jobs. By minimizing the time it took for a computer operator to switch from one
job to another, the operating system increased the total amount of work, or throughput,
computers could process in a given time period.

As computers became more powerful, single-user batch processing became inefficient,
because computers spent a great deal of time waiting for slow input/output devices to com-
plete their tasks. Developers then looked to multiprogramming techniques, which enabled
many tasks to share the resources of the computer to achieve better utilization. Multipro-
gramming involves the “simultaneous” operation of many jobs on a computer that splits its
resources among those jobs. However, users of early multiprogramming operating systems
still submitted jobs on decks of punched cards and waited hours or days for results.

In the 1960s, several industry and university groups pioneered timesharing operating
systems. Timesharing is a special type of multiprogramming that allows users to access a
computer through terminals (devices with keyboards and screens). Dozens or even hun-
dreds of people can use a timesharing computer system at once. It is important to note that
the computer does not actually run all the users’ requests simultaneously. Rather, it per-
forms a small portion of one user’s job and moves on to service the next user. However,
because the computer does this so quickly, it can provide service to each user several times
per second. This gives users’ programs the appearance of running simultaneously. Time-
sharing offers major advantages over previous computing systems in that users receive
prompt responses to requests, instead of waiting long periods to obtain results.

The UNIX operating system, which is now widely used for advanced computing, origi-
nated as an experimental timesharing operating system. Dennis Ritchie and Ken Thompson
developed UNIX at Bell Laboratories beginning in the late 1960s and developed C as the lan-
guage in which they wrote it. They freely distributed the source code to other programmers
who wanted to use, modify and extend it. A large community of UNIX users quickly devel-
oped. The operating system grew as UNIX users contributed their own programs and tools.
Through a collaborative effort among numerous researchers and developers, UNIX became
a powerful and flexible operating system able to handle almost any type of task that a user
required. Many versions of UNIX have evolved, including today’s phenomenally popular
open-source Linux operating system. Typically, the source code for open-source products is
freely available over the Internet. This enables developers to learn from, validate and modify
the source code. Often, open-source products require that developers publish any enhance-
ments they make so the open-source community can continue to evolve those products.

1.5 Personal Computing, Distributed Computing and Client/
Server Computing
In 1977, Apple Computer popularized the phenomenon of personal computing. Initially, it
was a hobbyist’s dream. However, the price of computers soon dropped so far that large
numbers of people could buy them for personal or business use. In 1981, IBM, the world’s
largest computer vendor, introduced the IBM Personal Computer. Personal computing rap-
idly became legitimate in business, industry and government organizations.

6 Introduction to Computers, the Internet, the Web and C# Chapter 1

The computers first pioneered by Apple and IBM were “stand-alone” units—people did
their work on their own machines and transported disks back and forth to share information.
(This process was often called “sneakernet.”) Although early personal computers were not
powerful enough to timeshare several users, the machines could be linked together into com-
puter networks, either over telephone lines or via local area networks (LANs) within an orga-
nization. These networks led to the distributed computing phenomenon, in which an
organization’s computing is distributed over networks to the sites at which the work of the
organization is performed, instead of being performed only at a central computer installation.
Personal computers were powerful enough to handle both the computing requirements of
individual users and the basic tasks involved in the electronic transfer of information between
computers. N-tier applications split up an application over numerous distributed computers.
For example, a three-tier application might have a user interface on one computer, business-
logic processing on a second and a database on a third; all interact as the application runs.

Today’s most advanced personal computers are as powerful as the million-dollar
machines of just two decades ago. High-powered desktop machines—called worksta-
tions—provide individual users with enormous capabilities. Information is easily shared
across computer networks, in which computers called servers store programs and data that
can be used by client computers distributed throughout the network. This type of configu-
ration gave rise to the term client/server computing. Today’s popular operating systems,
such as UNIX, Solaris, MacOS, Windows 2000, Windows XP and Linux, provide the kinds
of capabilities discussed in this section.

1.6 Machine Languages, Assembly Languages and High-level
Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others that require intermediate translation steps. Although
hundreds of computer languages are in use today, the diverse offerings can be divided into
three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Any computer can understand only its own machine language directly. As the “natural
language” of a particular computer, machine language is defined by the computer’s hard-
ware design. Machine languages generally consist of streams of numbers (ultimately
reduced to 1s and 0s) that instruct computers how to perform their most elementary opera-
tions. Machine languages are machine-dependent, which means that a particular machine
language can be used on only one type of computer. The following section of a machine-
language program, which adds overtime pay to base pay and stores the result in gross pay,
demonstrates the incomprehensibility of machine language to the human reader.

+1300042774
+1400593419
+1200274027

As the popularity of computers increased, machine-language programming proved to
be excessively slow, tedious and error prone. Instead of using the strings of numbers that

Chapter 1 Introduction to Computers, the Internet, the Web and C# 7

computers could directly understand, programmers began using English-like abbreviations
to represent the elementary operations of the computer. These abbreviations formed the
basis of assembly languages. Translator programs called assemblers convert assembly lan-
guage programs to machine language at computer speeds. The following section of an
assembly-language program also adds overtime pay to base pay and stores the result in
gross pay, but presents the steps more clearly to human readers than does its machine-lan-
guage equivalent:

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

Such code is clearer to humans but incomprehensible to computers until translated into ma-
chine language.

Although computer use increased rapidly with the advent of assembly languages, these
languages still required many instructions to accomplish even the simplest tasks. To speed
up the programming process, high-level languages, in which single statements accomplish
substantial tasks, were developed. Translation programs called compilers convert high-
level-language programs into machine language. High-level languages enable program-
mers to write instructions that look almost like everyday English and contain common
mathematical notations. A payroll program written in a high-level language might contain
a statement such as

grossPay = basePay + overTimePay

Obviously, programmers prefer high-level languages to either machine languages or as-
sembly languages.

The compilation of a high-level language program into machine language can require
a considerable amount of time. However, this problem was solved by the development of
interpreter programs that can execute high-level language programs directly, bypassing the
compilation step. Although programs that are already compiled execute faster than inter-
preted programs, interpreters are popular in program-development environments. In these
environments, developers change programs frequently as they add new features and correct
errors. Once a program is fully developed, a compiled version can be produced so that the
program runs at maximum efficiency.

1.7 C, C++, Visual Basic .NET and Java™
As high-level languages develop, new offerings build on aspects of their predecessors. C++
evolved from C, which in turn evolved from two previous languages, BCPL and B. Martin
Richards developed BCPL in 1967 as a language for writing operating systems, software
and compilers. Ken Thompson modeled his language, B, after BCPL. In 1970, Thompson
used B to create early versions of the UNIX operating system. Both BCPL and B were
“typeless” languages, meaning that every data item occupied one “word” in memory. Using
these languages, programmers assumed responsibility for treating each data item as a whole
number or real number, for example.

The C language, which Dennis Ritchie evolved from B at Bell Laboratories, was orig-
inally implemented in 1973. Although C employs many of BCPL and B’s important con-
cepts, it also offers data typing and other features. C first gained widespread recognition as

8 Introduction to Computers, the Internet, the Web and C# Chapter 1

a development language of the UNIX operating system. However, C is now available for
most computers, and many of today’s major operating systems are written in C or C++. C
is a hardware-independent language, and, with careful design, it is possible to write C pro-
grams that are portable to most computers.

C++, an extension of C using elements from Simula 67, a simulation programming lan-
guage, was developed by Bjarne Stroustrup in the early 1980s at Bell Laboratories. C++
provides a number of features that “spruce up” the C language, but, more importantly, it
provides capabilities for object-oriented programming (OOP).

At a time when demand for new and more powerful software is soaring, the ability to
build software quickly, correctly and economically remains an elusive goal. However, this
problem can be addressed in part through the use of objects, or reusable software compo-
nents that model items in the real world (see Section 1.11). Software developers are discov-
ering that a modular, object-oriented approach to design and implementation can make
software development groups much more productive than is possible via previous popular
programming techniques, such as structured programming. Furthermore, object-oriented
programs are often easier to understand, correct and modify.

In addition to C++, many other object-oriented languages have been developed. These
include Smalltalk, which was created at Xerox's Palo Alto Research Center (PARC).
Smalltalk is a pure object-oriented language, which means that literally everything is an
object. C++ is a hybrid language—it is possible to program in a C-like style, an object-ori-
ented style or both. Although some perceive this range of options as a benefit, most pro-
grammers today believe that it is best to program in a purely object-oriented manner.

Developing Microsoft Windows-based applications in languages such as C and C++,
however, proved to be a difficult and cumbersome process. When Bill Gates founded
Microsoft Corporation, he implemented BASIC on several early personal computers.
BASIC (Beginner’s All-Purpose Symbolic Instruction Code) is a programming language
developed in the mid-1960s by Professors John Kemeny and Thomas Kurtz of Dartmouth
College as a language for writing simple programs. BASIC’s primary purpose was to famil-
iarize novices with programming techniques. The natural evolution from BASIC to Visual
Basic was introduced in 1991 as a result of the development of the Microsoft Windows
graphical user interface (GUI) in the late 1980s and the early 1990s.

Although Visual Basic is derived from the BASIC programming language, it is a dis-
tinctly different language that offers such powerful features as graphical user interfaces,
event handling, access to the Windows 32-bit Application Programming Interface (Win32
API), object-oriented programming and error handling. Visual Basic is one of the most pop-
ular event-driven, visual programming interfaces.

The latest version of Visual Basic, called Visual Basic .NET1, is designed for
Microsoft’s new programming platform, .NET. Earlier versions of Visual Basic provided
object-oriented capabilities, but Visual Basic .NET offers enhanced object orientation and
makes use of the powerful library of reusable software components in .NET.

Around the same time that Visual Basic was being developed, many individuals pro-
jected that intelligent consumer-electronic devices would be the next major market in
which microprocessors would have a profound impact. Recognizing this, Sun Microsys-
tems in 1991 funded an internal corporate research project code-named Green. The project

1. The reader interested in Visual Basic .NET may want to consider our book, Visual Basic .NET
How to Program, Second Edition.

Chapter 1 Introduction to Computers, the Internet, the Web and C# 9

resulted in the development of a language based on C and C++. Although the language’s
creator, James Gosling, called it Oak (after an oak tree outside his window at Sun), it was
later discovered that a computer language called Oak already existed. When a group of Sun
employees visited a local coffee place, the name Java was suggested, and it stuck.

Unfortunately, the Green project ran into some difficulties. The marketplace for intel-
ligent consumer-electronic devices was not developing as quickly as Sun had anticipated.
Worse yet, a major contract for which Sun competed was awarded to another company. The
project was, at this point, in danger of being canceled. By sheer good fortune, the World
Wide Web exploded in popularity in 1993, and Sun saw immediate potential for using Java
to design dynamic content (i.e., animated and interactive content) for Web pages.

Sun formally announced Java at a conference in May 1995. Ordinarily, an event like
this would not generate much publicity. However, Java grabbed the immediate attention of
the business community because of the new, widespread interest in the World Wide Web.
Developers now use Java to create Web pages with dynamic content, to build large-scale
enterprise applications, to enhance the functionality of World Wide Web servers (the com-
puters that provide the content distributed to our Web browsers when we browse Web
sites), to provide applications for consumer devices (e.g., cell phones, pagers and PDAs)
and for many other purposes.

1.8 C#
The advancement of programming tools (e.g., C++ and Java) and consumer-electronic de-
vices (e.g., cell phones) created problems and new requirements. The integration of soft-
ware components from various languages proved difficult, and installation problems were
common because new versions of shared components were incompatible with old software.
Developers also discovered they needed Web-based applications that could be accessed
and used via the Internet. As a result of mobile electronic device popularity, software de-
velopers realized that their clients were no longer restricted to desktop computers. Devel-
opers recognized the need for software that was accessible to anyone and available via
almost any type of device. To address these needs, Microsoft announced its .NET (pro-
nounced “dot-net”) initiative and the C# (pronounced “C-Sharp”) programming language.

The .NET platform is one over which Web-based applications can be distributed to a
great variety of devices (even cell phones) and to desktop computers. The platform offers
a new software-development model that allows applications created in disparate program-
ming languages to communicate with each other. The C# programming language, devel-
oped at Microsoft by a team led by Anders Hejlsberg and Scott Wiltamuth, was designed
specifically for the .NET platform as a language that would enable programmers to migrate
easily to .NET. This migration is made easy due to the fact that C# has roots in C, C++ and
Java, adapting the best features of each and adding new features of its own. Because C# has
been built upon such widely used and well-developed languages, programmers will find
learning C# to be easy and enjoyable.

C# is an event-driven, fully object-oriented, visual programming language in which
programs are created using an Integrated Development Environment (IDE). With the IDE,
a programmer can create, run, test and debug C# programs conveniently, thereby reducing
the time it takes to produce a working program to a fraction of the time it would have taken
without using the IDE. The process of rapidly creating an application using an IDE is typ-
ically referred to as Rapid Application Development (RAD).

10 Introduction to Computers, the Internet, the Web and C# Chapter 1

C# also enables a new degree of language interoperability: Software components from
different languages can interact as never before. Developers can package even old software
to work with new C# programs. In addition, C# applications can interact via the Internet,
using industry standards such as the Simple Object Access Protocol (SOAP) and XML,
which we discuss in Chapter 18, Extensible Markup Language (XML). The programming
advances embodied in .NET and C# will lead to a new style of programming, in which
applications are created from building blocks available over the Internet.

1.9 Other High-level Languages
Although hundreds of high-level languages have been developed, only a few have achieved
broad acceptance. This section overviews several languages that, like BASIC, are long-
standing and popular high-level languages. IBM Corporation developed Fortran (FORmula
TRANslator) between 1954 and 1957 to create scientific and engineering applications that
require complex mathematical computations. Fortran is still widely used.

COBOL (COmmon Business Oriented Language) was developed in 1959 by a group
of computer manufacturers in conjunction with government and industrial computer users.
COBOL is used primarily for commercial applications that require the precise and efficient
manipulation of large amounts of data. A considerable portion of today’s business software
is still programmed in COBOL. Approximately one million programmers are actively
writing in COBOL.

Pascal was designed in the late 1960s by Professor Nicklaus Wirth and was intended
for academic use. We explore Pascal in the next section.

1.10 Structured Programming
During the 1960s, many large software-development efforts encountered severe difficul-
ties. Development typically ran behind schedule, costs greatly exceeded budgets and the
finished products were unreliable. People began to realize that software development was
a far more complex activity than they had imagined. Research activity, intended to address
these issues, resulted in the evolution of structured programming—a disciplined approach
to the creation of programs that are clear, demonstrably correct and easy to modify.

One of the more tangible results of this research was the development of the Pascal
programming language in 1971. Pascal, named after the seventeenth-century mathemati-
cian and philosopher Blaise Pascal, was designed for teaching structured programming in
academic environments and rapidly became the preferred introductory programming lan-
guage in most universities. Unfortunately, because the language lacked many features
needed to make it useful in commercial, industrial and government applications, it was not
widely accepted in these environments. By contrast, C, which also arose from research on
structured programming, did not have the limitations of Pascal, and programmers quickly
adopted it.

The Ada programming language was developed under the sponsorship of the United
States Department of Defense (DOD) during the 1970s and early 1980s. Hundreds of pro-
gramming languages were being used to produce DOD’s massive command-and-control
software systems. DOD wanted a single language that would meet its needs. Pascal was
chosen as a base, but the final Ada language is quite different from Pascal. The language

Chapter 1 Introduction to Computers, the Internet, the Web and C# 11

was named after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Lovelace is
generally credited with writing the world’s first computer program, in the early 1800s (for
the Analytical Engine mechanical computing device designed by Charles Babbage). One
important capability of Ada is multitasking, which allows programmers to specify that
many activities are to occur in parallel. As we will see in Chapter 14, C# offers a similar
capability, called multithreading.

1.11 Key Software Trend: Object Technology
One of the authors, HMD, remembers the great frustration felt in the 1960s by software-
development organizations, especially those developing large-scale projects. During the
summers of his undergraduate years, HMD had the privilege of working at a leading com-
puter vendor on the teams developing time-sharing, virtual-memory operating systems. It
was a great experience for a college student, but, in the summer of 1967, reality set in. The
company “decommitted” from producing as a commercial product the particular system
that hundreds of people had been working on for several years. It was difficult to get this
software right. Software is “complex stuff.”

As the benefits of structured programming (and the related disciplines of structured
systems analysis and design) were realized in the 1970s, improved software technology did
begin to appear. However, it was not until the technology of object-oriented programming
became widely used in the 1980s and 1990s that software developers finally felt they had
the necessary tools to improve the software-development process dramatically.

Actually, object technology dates back to at least the mid-1960s, but no broad-based
programming language incorporated the technology until C++. Although not strictly an
object-oriented language, C++ absorbed the capabilities of C and incorporated Simula’s
ability to create and manipulate objects. C++ was never intended for widespread use
beyond the research laboratories at AT&T, but grass-roots support rapidly developed for
the hybrid language.

What are objects, and why are they special? Object technology is a packaging scheme
that facilitates the creation of meaningful software units. These units are large and focused
on particular applications areas. There are date objects, time objects, paycheck objects,
invoice objects, audio objects, video objects, file objects, record objects and so on. In fact,
almost any noun can be reasonably represented as a software object. Objects have proper-
ties (i.e., attributes, such as color, size and weight) and perform actions (i.e., behaviors,
such as moving, sleeping or drawing). Classes represent groups of related objects. For
example, all cars belong to the “car” class, even though individual cars vary in make,
model, color and options packages. A class specifies the general format of its objects; the
properties and actions available to an object depend on its class.

We live in a world of objects. Just look around you—there are cars, planes, people, ani-
mals, buildings, traffic lights, elevators and so on. Before object-oriented languages
appeared, procedural programming languages (such as Fortran, Pascal, BASIC and C)
focused on actions (verbs) rather than things or objects (nouns). We live in a world of
objects, but earlier programming languages forced individuals to program primarily with
verbs. This paradigm shift made program writing a bit awkward. However, with the advent
of popular object-oriented languages, such as C++, Java and C#, programmers can program
in an object-oriented manner that reflects the way in which they perceive the world. This

12 Introduction to Computers, the Internet, the Web and C# Chapter 1

process, which seems more natural than procedural programming, has resulted in signifi-
cant productivity gains.

One of the key problems with procedural programming is that the program units cre-
ated do not mirror real-world entities effectively and therefore are not particularly reusable.
Programmers often write and rewrite similar software for various projects. This wastes pre-
cious time and money as people repeatedly “reinvent the wheel.” With object technology,
properly designed software entities (called objects) can be reused on future projects. Using
libraries of reusable componentry can greatly reduce the amount of effort required to imple-
ment certain kinds of systems (as compared to the effort that would be required to reinvent
these capabilities in new projects). C# programmers use the .NET Framework Class
Library (known commonly as the FCL).

Some organizations report that software reusability is not, in fact, the key benefit of
object-oriented programming. Rather, they indicate that object-oriented programming
tends to produce software that is more understandable because it is better organized and has
fewer maintenance requirements. As much as 80 percent of software costs are not associ-
ated with the original efforts to develop the software, but instead are related to the con-
tinued evolution and maintenance of that software throughout its lifetime. Object
orientation allows programmers to abstract the details of software and focus on the “big pic-
ture.” Rather than worrying about minute details, the programmer can focus on the behav-
iors and interactions of objects. A roadmap that showed every tree, house and driveway
would be difficult, if not impossible, to read. When such details are removed and only the
essential information (roads) remains, the map becomes easier to understand. In the same
way, a program that is divided into objects is easy to understand, modify and update
because it hides much of the detail. It is clear that object-oriented programming will be the
key programming methodology for at least the next decade.

Software Engineering Observation 1.1
Use a building-block approach to creating programs. By using existing pieces in new
projects, programmers avoid reinventing the wheel. This is called software reuse, and it is
central to object-oriented programming. 1.1

[Note: We will include many of these Software Engineering Observations throughout the
text to explain concepts that affect and improve the overall architecture and quality of a
software system and, particularly, of large software systems. We will also highlight Good
Programming Practices (practices that can help you write programs that are clearer, more
understandable, more maintainable and easier to test and debug), Common Programming
Errors (problems to watch for to ensure that you do not make these same errors in your pro-
grams), Performance Tips (techniques that will help you write programs that run faster and
use less memory), Portability Tips (techniques that will help you write programs that can
run, with little or no modification, on a variety of computers), Testing and Debugging Tips
(techniques that will help you remove bugs from your programs and, more importantly,
write bug-free programs in the first place) and Look-and-Feel Observations (techniques
that will help you design the “look and feel” of your graphical user interfaces for appear-
ance and ease of use). Many of these techniques and practices are only guidelines; you will,
no doubt, develop your own preferred programming style.]

The advantage of creating your own code is that you will know exactly how it works.
The code will be yours to examine, modify and improve. The disadvantage is the time and
effort that goes into designing, developing and testing new code.

Chapter 1 Introduction to Computers, the Internet, the Web and C# 13

Performance Tip 1.1
Reusing proven code components instead of writing your own versions can improve program
performance, because these components normally are written to perform efficiently. 1.1

Software Engineering Observation 1.2
Extensive class libraries of reusable software components are available over the Internet and
the World Wide Web; many are offered free of charge. 1.2

1.12 Hardware Trends
Every year, people generally expect to pay at least a little more for most products and ser-
vices. The opposite has been the case in the computer and communications fields, especial-
ly with regard to the costs of hardware supporting these technologies. For many decades,
and continuing into the foreseeable future, hardware costs have fallen rapidly, if not precip-
itously. Every year or two, the capacities of computers approximately double.2 This is es-
pecially true in relation to the amount of memory that computers have for programs, the
amount of secondary storage (such as disk storage) computers have to hold programs and
data over longer periods of time and their processor speeds—the speeds at which computers
execute their programs (i.e., do their work). Similar improvements have occurred in the
communications field, in which costs have plummeted as enormous demand for communi-
cations bandwidth (i.e., information-carrying capacity) has attracted tremendous competi-
tion. We know of no other fields in which technology moves so quickly and costs fall so
rapidly. Such phenomenal improvement in the computing and communications fields is
truly fostering the so-called Information Revolution.

When computer use exploded in the 1960s and 1970s, many discussed the dramatic
improvements in human productivity that computing and communications would cause.
However, these improvements did not materialize. Organizations were spending vast sums
of capital on computers and employing them effectively, but without fully realizing the
expected productivity gains. The invention of microprocessor chip technology and its wide
deployment in the late 1970s and 1980s laid the groundwork for the productivity improve-
ments that individuals and businesses have achieved in recent years.

1.13 History of the Internet and World Wide Web
In the late 1960s, one of the authors (HMD) was a graduate student at MIT. His research at
MIT’s Project Mac (now the Laboratory for Computer Science—the home of the World
Wide Web Consortium) was funded by ARPA—the Advanced Research Projects Agency
of the Department of Defense. ARPA sponsored a conference at which several dozen
ARPA-funded graduate students were brought together at the University of Illinois at Ur-
bana-Champaign to meet and share ideas. During this conference, ARPA rolled out the
blueprints for networking the main computer systems of approximately a dozen ARPA-
funded universities and research institutions. The computers were to be connected with
communications lines operating at a then-stunning 56 Kbps (1 Kbps is equal to 1,024 bits
per second), at a time when most people (of the few who had access to networking technol-
ogies) were connecting over telephone lines to computers at a rate of 110 bits per second.

2. This often is called Moore’s Law.

14 Introduction to Computers, the Internet, the Web and C# Chapter 1

HMD vividly recalls the excitement at that conference. Researchers at Harvard talked about
communicating with the Univac 1108 “supercomputer,” which was located across the
country at the University of Utah, to handle calculations related to their computer graphics
research. Many other intriguing possibilities were discussed. Academic research was about
to take a giant leap forward. Shortly after this conference, ARPA proceeded to implement
what quickly became called the ARPAnet, the grandparent of today’s Internet.

Things worked out differently from the original plan. Although the ARPAnet did
enable researchers to network their computers, its chief benefit proved to be the capability
for quick and easy communication via what came to be known as electronic mail (e-mail).
This is true even on today’s Internet, with e-mail, instant messaging and file transfer facil-
itating communications among hundreds of millions of people worldwide.

The network was designed to operate without centralized control. This meant that, if a
portion of the network should fail, the remaining working portions would still be able to
route data packets from senders to receivers over alternative paths.

The protocol (i.e., set of rules) for communicating over the ARPAnet became known
as the Transmission Control Protocol (TCP). TCP ensured that messages were properly
routed from sender to receiver and that those messages arrived intact.

In parallel with the early evolution of the Internet, organizations worldwide were
implementing their own networks to facilitate both intra-organization (i.e., within the orga-
nization) and inter-organization (i.e., between organizations) communication. A huge
variety of networking hardware and software appeared. One challenge was to enable these
diverse products to communicate with each other. ARPA accomplished this by developing
the Internet Protocol (IP), which created a true “network of networks,” the current archi-
tecture of the Internet. The combined set of protocols is now commonly called TCP/IP.

Initially, use of the Internet was limited to universities and research institutions; later,
the military adopted the technology. Eventually, the government decided to allow access to
the Internet for commercial purposes. When this decision was made, there was resentment
among the research and military communities—it was felt that response times would
become poor as “the Net” became saturated with so many users.

In fact, the opposite has occurred. Businesses rapidly realized that, by making effective
use of the Internet, they could refine their operations and offer new and better services to
their clients. Companies started spending vast amounts of money to develop and enhance
their Internet presence. This generated fierce competition among communications carriers
and hardware and software suppliers to meet the increased infrastructure demand. The
result is that bandwidth (i.e., the information-carrying capacity of communications lines)
on the Internet has increased tremendously, while hardware costs have plummeted. It is
widely believed that the Internet played a significant role in the economic growth that many
industrialized nations experienced over the last decade.

The World Wide Web allows computer users to locate and view multimedia-based doc-
uments (i.e., documents with text, graphics, animations, audios and/or videos) on almost
any subject. Even though the Internet was developed more than three decades ago, the
introduction of the World Wide Web (WWW) was a relatively recent event. In 1989, Tim
Berners-Lee of CERN (the European Organization for Nuclear Research) began to develop
a technology for sharing information via hyperlinked text documents. Basing the new lan-
guage on the well-established Standard Generalized Markup Language (SGML)—a stan-
dard for business data interchange—Berners-Lee called his invention the HyperText

Chapter 1 Introduction to Computers, the Internet, the Web and C# 15

Markup Language (HTML). He also wrote communication protocols to form the backbone
of his new hypertext information system, which he referred to as the World Wide Web.

Historians will surely list the Internet and the World Wide Web among the most impor-
tant and profound creations of humankind. In the past, most computer applications ran on
“stand-alone” computers (computers that were not connected to one another). Today’s
applications can be written to communicate among the world’s hundreds of millions of
computers. The Internet and World Wide Web merge computing and communications
technologies, expediting and simplifying our work. They make information instantly and
conveniently accessible to large numbers of people. They enable individuals and small
businesses to achieve worldwide exposure. They are profoundly changing the way we do
business and conduct our personal lives.

1.14 World Wide Web Consortium (W3C)
In October 1994, Tim Berners-Lee founded an organization, called the World Wide Web
Consortium (W3C), that is devoted to developing nonproprietary, interoperable technolo-
gies for the World Wide Web. One of the W3C’s primary goals is to make the Web univer-
sally accessible—regardless of disabilities, language or culture.

The W3C is also a standardization organization and is comprised of three hosts—the
Massachusetts Institute of Technology (MIT), France’s INRIA (Institut National de
Recherche en Informatique et Automatique) and Keio University of Japan—and over 400
members, including Deitel & Associates, Inc. Members provide the primary financing for
the W3C and help provide the strategic direction of the Consortium. To learn more about
the W3C, visit www.w3.org.

Web technologies standardized by the W3C are called Recommendations. Current W3C
Recommendations include Extensible HyperText Markup Language (XHTML™), Cas-
cading Style Sheets (CSS™) and the Extensible Markup Language (XML). Recommenda-
tions are not actual software products, but documents that specify the role, syntax and rules
of a technology. Before becoming a W3C Recommendation, a document passes through
three major phases: Working Draft—which, as its name implies, specifies an evolving draft;
Candidate Recommendation—a stable version of the document that industry can begin to
implement; and Proposed Recommendation—a Candidate Recommendation that is consid-
ered mature (i.e., has been implemented and tested over a period of time) and is ready to be
considered for W3C Recommendation status. For detailed information about the W3C Rec-
ommendation track, see “6.2 The W3C Recommendation track” at

www.w3.org/Consortium/Process/Process-19991111/
process.html#RecsCR

1.15 Extensible Markup Language (XML)
As the popularity of the Web exploded, HTML’s limitations became apparent. HTML’s
lack of extensibility (the ability to change or add features) frustrated developers, and its am-
biguous definition allowed erroneous HTML to proliferate. In response to these problems,
the W3C added limited extensibility to HTML. This was, however, only a temporary solu-
tion—the need for a standardized, fully extensible and structurally strict language was ap-
parent. As a result, XML was developed by the W3C. XML combines the power and
extensibility of its parent language, Standard Generalized Markup Language (SGML), with

16 Introduction to Computers, the Internet, the Web and C# Chapter 1

the simplicity that the Web community demands. At the same time, the W3C began devel-
oping XML-based standards for style sheets and advanced hyperlinking. Extensible
Stylesheet Language (XSL) incorporates elements of both Cascading Style Sheets (CSS),
which is used to format HTML documents and Document Style and Semantics Specifica-
tion Language (DSSSL), which is used to format SGML documents. Similarly, the Exten-
sible Linking Language (XLink) combines ideas from HyTime and the Text Encoding
Initiative (TEI), to provide extensible linking of resources.

Data independence, the separation of content from its presentation, is the essential
characteristic of XML. Because an XML document describes data, any application con-
ceivably can process an XML document. Recognizing this, software developers are inte-
grating XML into their applications to improve Web functionality and interoperability.
XML’s flexibility and power make it perfect for the middle tier of client/server systems,
which must interact with a wide variety of clients. Much of the processing that was once
limited to server computers now can be performed by client computers, because XML’s
semantic and structural information enables it to be manipulated by any application that can
process text. This reduces server loads and network traffic, resulting in a faster, more effi-
cient Web.

XML is not limited to Web applications. Increasingly, XML is being employed in data-
bases—the structure of an XML document enables it to be integrated easily with database
applications. As applications become more Web enabled, it seems likely that XML will
become the universal technology for data representation. All applications employing XML
would be able to communicate, provided that they could understand each other’s XML
markup, or vocabulary.

Simple Object Access Protocol (SOAP) is a technology for the distribution of objects
(marked up as XML) over the Internet. Developed primarily by Microsoft and Develop-
Mentor, SOAP provides a framework for expressing application semantics, encoding that
data and packaging it in modules. SOAP has three parts: The envelope, which describes the
content and intended recipient of a SOAP message; the SOAP encoding rules, which are
XML-based; and the SOAP Remote Procedure Call (RPC) representation for commanding
other computers to perform a task. Microsoft .NET (discussed in the next two sections) uses
XML and SOAP to mark up and transfer data over the Internet. XML and SOAP are at the
core of .NET—they allow software components to interoperate (i.e., communicate easily
with one another). SOAP is supported by many platforms, because of its foundations in
XML and HTTP. We discuss XML in Chapter 18, Extensible Markup Language (XML)
and SOAP in Chapter 21, ASP .NET and Web Services.

1.16 Introduction to Microsoft .NET
In June 2000, Microsoft announced its .NET initiative, a broad new vision for embracing
the Internet and the Web in the development, engineering and use of software. One key as-
pect of the .NET strategy is its independence from a specific language or platform. Rather
than forcing developers to use a single programming language, developers can create a
.NET application in any .NET-compatible language. Programmers can contribute to the
same software project, writing code in the .NET languages (such as C#, Visual C++ .NET,
Visual Basic .NET and many others) in which they are most competent. Part of the initia-
tive includes Microsoft’s Active Server Pages (ASP) .NET technology, which allows pro-
grammers to create applications for the Web.

Chapter 1 Introduction to Computers, the Internet, the Web and C# 17

The .NET architecture can exist on multiple platforms, further extending the porta-
bility of .NET programs. In addition, the .NET strategy involves a new program-develop-
ment process that could change the way programs are written and executed, leading to
increased productivity.

A key component of the .NET architecture is Web services, which are applications that
can be used over the Internet. Clients and other applications can use these Web services as
reusable building blocks. One example of a Web service is Dollar Rent a Car’s reservation
system.3 An airline partner wanted to enable customers to make rental-car reservations
from the airline’s Web site. To do so, the airline needed to access Dollar’s reservation
system. In response, Dollar created a Web service that allowed the airline to access Dollar’s
database and make reservations. Web services enable the two companies to communicate
over the Web, even though the airline uses UNIX systems and Dollar uses Microsoft Win-
dows. Dollar could have created a one-time solution for that particular airline, but the com-
pany would not have been able to reuse such a customized system. By creating a Web
service, Dollar can allow other airlines or hotels to use its reservation system without cre-
ating a custom program for each relationship.

The .NET strategy extends the concept of software reuse to the Internet, allowing pro-
grammers to concentrate on their specialties without having to implement every component
of every application. Instead, companies can buy Web services and devote their time and
energy to developing their products. The .NET strategy further extends the concept of soft-
ware reuse to the Internet by allowing programmers to concentrate on their specialties
without having to implement every component. Visual programming (discussed in Chapter
2) has become popular, because it enables programmers to create applications easily, using
such prepackaged components as buttons, text boxes and scrollbars. Similarly, program-
mers may create an application using Web services for databases, security, authentication,
data storage and language translation without having to know the internal details of those
components.

The .NET strategy incorporates the idea of software reuse. When companies link their
products in this way, a new user experience emerges. For example, a single application
could manage bill payments, tax refunds, loans and investments, using Web services from
various companies. An online merchant could buy Web services for online credit-card pay-
ments, user authentication, network security and inventory databases to create an e-com-
merce Web site.

The keys to this interaction are XML and SOAP, which enable Web services to com-
municate. XML gives meaning to data, and SOAP is the protocol that allows Web services
to communicate easily with one another. XML and SOAP act as the “glue” that combines
various Web services to form applications.

Universal data access is another essential concept in the .NET strategy. If two copies
of a file exist (such as on a personal and a company computer), the less recent version must
constantly be updated—this is called file synchronization. If the separate versions of the file
are different, they are unsynchronized, a situation that could lead to errors. Under .NET,
data could reside in one central location rather than on separate systems. Any Internet-con-
nected device could access the data (under tight control, of course), which would then be

3. Microsoft Corporation, “Dollar Rent A Car E-Commerce Case Study on Microsoft Business,” 1
July 2001 <www.microsoft.com/BUSINESS/casestudies/b2c/dollarrentac-
ar.asp>.

18 Introduction to Computers, the Internet, the Web and C# Chapter 1

formatted appropriately for use or display on the accessing device. Thus, the same docu-
ment could be seen and edited on a desktop PC, a PDA, a cell phone or other device. Users
would not need to synchronize the information, because it would be fully up-to-date in a
central area.

Microsoft’s HailStorm Web services facilitate such data organization.4 HailStorm
allows users to store data so that it is accessible from any HailStorm-compatible device
(such as a PDA, desktop computer or cell phone). HailStorm offers a suite of services, such
as an address book, e-mail, document storage, calendars and a digital wallet. Third-party
Web services also can interact with HailStorm—users can be notified when they win online
auctions or have their calendars updated if their planes arrive late. Information can be
accessed from anywhere and cannot become unsynchronized. Privacy concerns increase,
though, because all of a user’s data resides in one location. Microsoft has addressed this
issue by giving users control over their data. Users must authorize access to their data and
specify the duration of that access.

Microsoft plans to create Internet-based client applications. For example, software could
be distributed over the Internet on a subscription basis, enabling immediate corrections,
updates and communication with other applications over the Internet. HailStorm provides
basic services at no charge and users can pay via subscription for more advanced features.

The .NET strategy is an immense undertaking. We discuss various aspects of .NET
throughout this book. Additional information is available on Microsoft’s Web site
(www.microsoft.com/net).

1.17 .NET Framework and the Common Language Runtime
The Microsoft® .NET Framework is at the heart of the .NET strategy. This framework man-
ages and executes applications and Web services, contains a class library (called the
Framework Class Library or FCL), enforces security and provides many other program-
ming capabilities. The details of the .NET Framework are found in the Common Language
Specification (CLS), which contains information about the storage of data types, objects
and so on. The CLS has been submitted for standardization to ECMA (the European Com-
puter Manufacturers Association), making it easier to create the .NET Framework for other
platforms. This is like publishing the blueprints of the framework—anyone can build it, fol-
lowing the specifications. Currently, the .NET Framework exists only for the Windows
platform, although a version is under development for the FreeBSD operating system.5 The
FreeBSD project provides a freely available and open-source UNIX-like operating system
that is based on that UC Berkeley’s Berkeley System Distribution (BSD).

The Common Language Runtime (CLR) is another central part of the .NET Frame-
work—it executes C# programs. Programs are compiled into machine-specific instructions
in two steps. First, the program is compiled into Microsoft Intermediate Language (MSIL),
which defines instructions for the CLR. Code converted into MSIL from other languages
and sources can be woven together by the CLR. Then, another compiler in the CLR com-
piles the MSIL into machine code (for a particular platform), creating a single application.

4. Microsoft Corporation, “Building User-Centric Experiences: An Introduction to Microsoft Hail-
Storm,” 30 July 2001 <http://www.microsoft.com/net/hailstorm.asp>.

5. Microsoft Corporation, “The Microsoft Shared Source C# and CLI Specifications,” 30 July 2001
<http://www.microsoft.com/net/sharedsourcewp.asp>.

Chapter 1 Introduction to Computers, the Internet, the Web and C# 19

Why bother having the extra step of converting from C# to MSIL, instead of compiling
directly into machine language? The key reasons are portability between operating sys-
tems, interoperability between languages and execution-management features such as
memory management and security.

If the .NET Framework exists (and is installed) for a platform, that platform can run
any .NET program. The ability of a program to run (without modification) across multiple
platforms is known as platform independence. Code written once can be used on another
machine without modification, saving both time and money. In addition, software can
target a wider audience—previously, companies had to decide whether converting their
programs to different platforms (sometimes called porting) was worth the cost. With .NET,
porting is no longer an issue.

The .NET Framework also provides a high level of language interoperability. Pro-
grams written in different languages are all compiled into MSIL—the different parts can be
combined to create a single, unified program. MSIL allows the .NET Framework to be lan-
guage independent, because .NET programs are not tied to a particular programming lan-
guage. Any language that can be compiled into MSIL is called a .NET-compliant language.
Figure 1.1 lists many of the current languages that support the .NET platform.6

Language interoperability offers many benefits to software companies. C#, Visual
Basic .NET and Visual C++ .NET developers, for example, can work side-by-side on the
same project without having to learn another programming language—all their code com-
piles into MSIL and links together to form one program. In addition, the .NET Framework
can package old and new components to work together. This allows companies to reuse the
code that they have spent years developing and integrate it with the new .NET code that
they write. Integration is crucial, because companies cannot migrate easily to .NET unless
they can stay productive, using their existing developers and software.

6. Table information from Microsoft Web site, www.microsoft.com.

Programming Languages

APL Oberon

C# Oz

COBOL Pascal

Component Pascal Perl

Curriculum Python

Eiffel RPG

Fortran Scheme

Haskell Smalltalk

Java Standard ML

JScript Visual Basic .NET

Mercury Visual C++ .NET

Fig. 1.1 .NET Languages .

20 Introduction to Computers, the Internet, the Web and C# Chapter 1

Another benefit of the .NET Framework is the CLR’s execution-management features.
The CLR manages memory, security and other features, relieving the programmer of these
responsibilities. With languages like C++, programmers must take memory management
into their own hands. This leads to problems if programmers request memory and never
return it—programs could consume all available memory, which would prevent applica-
tions from running. By managing the program’s memory, the .NET Framework allows pro-
grammers to concentrate on program logic.

The .NET Framework also provides programmers with a huge library of classes. This
library, called the Framework Class Library (FCL), can be used by any .NET language. The
FCL contains a variety of reusable components, saving programmers the trouble of creating
new components. This book explains how to develop .NET software with C#. Steve
Ballmer, Microsoft’s CEO, stated in May 2001 that Microsoft was “betting the company”
on .NET. Such a dramatic commitment surely indicates a bright future for C# and its com-
munity of developers.

1.18 Tour of the Book
In this section, we tour the chapters and appendices of C# How to Program. In addition to
the topics presented in each chapter, several of the chapters contain an Internet and World
Wide Web Resources section that lists additional sources from which readers can enhance
their knowledge of C# programming.

Chapter 1—Introduction to Computers, Internet, World Wide Web and C#
The first chapter familiarizes the reader with what computers are, how they work and how
they are programmed. We explain the evolution of programming languages, from their or-
igins in machine languages to the development of high-level, object-oriented languages.
We overview the history of the Internet, World Wide Web and various technologies (such
as HTTP, SOAP and XML) that have led to advances in how computers are used. We then
discuss the development of the C# programming language and the Microsoft .NET initia-
tive, including Web services. We explore the impact of .NET on software development and
conclude by touring the remainder of the book.

Chapter 2—Introduction to the Visual Studio® .NET IDE
Chapter 2 introduces Microsoft Visual Studio .NET, an integrated development environment
(IDE) for the creation of C# programs. Visual Studio .NET enables visual programming, in
which controls (such as buttons or text boxes) are “dragged” and “dropped” into place, rather
than added by typing code. Visual programming has led to greatly increased productivity of
software developers because it eliminates many of the tedious tasks that programmers face.
For example, object properties (information such as height and color) can be modified
through Visual Studio .NET windows, allowing changes to be made quickly and causing the
results to appear immediately on the screen. Rather than having to guess how the GUI will
appear while writing a program, programmers view the GUI exactly as it will appear when
the finished program runs. Visual Studio .NET also contains advanced tools for debugging,
documenting and writing code. The chapter presents features of Visual Studio .NET, includ-
ing its key windows, toolbox and help features and overviews the process of compiling and
running programs. We provide an example of the capabilities of Visual Studio .NET by using
it to create a simple Windows application without typing a single line of code.

Chapter 1 Introduction to Computers, the Internet, the Web and C# 21

Chapter 3—Introduction to C# Programming
This chapter introduces readers to our LIVE-CODE™ approach. Every concept is presented in
the context of a complete working C# program and is followed by one or more sample outputs
depicting the program’s execution. In our first example, we print a line of text and carefully
discuss each line of code. We then discuss fundamental tasks, such as how a program inputs
data from its users and how to write arithmetic expressions. The chapter’s last example dem-
onstrates how to print a variety of character strings in a window called a message box.

Chapter 4—Control Structures: Part 1
This chapter formally introduces the principles of structured programming, a set of tech-
niques that will help the reader develop clear, understandable, maintainable programs
throughout the text. The first part of this chapter presents program-development and prob-
lem-solving techniques. The chapter demonstrates how to transform a written specification
to a program by using such techniques as pseudocode and top-down, stepwise refinement.
We then progress through the entire process, from developing a problem statement into a
working C# program. The notion of algorithms is also discussed. We build on information
presented in the previous chapter to create programs that are interactive (i.e., they change
their behavior to suit user-supplied inputs). The chapter then introduces the use of control
structures that affect the sequence in which statements are executed. Control structures pro-
duce programs that are easily understood, debugged and maintained. We discuss the three
forms of program control—sequence, selection and repetition—focusing on the if/then
and while control structures. Flowcharts (i.e., graphical representations of algorithms)
appear throughout the chapter, reinforcing and augmenting the explanations.

Chapter 5—Control Structures: Part 2
Chapter 5 introduces more complex control structures and the logical operators. It uses
flowcharts to illustrate the flow of control through each control structure, including the
for, do/while and switch structures. We explain the break and continue state-
ments and the logical operators. Examples include calculating compound interest and print-
ing the distribution of grades on an exam (with some simple error checking). The chapter
concludes with a structured programming summary, including each of C#’s control struc-
tures. The techniques discussed in Chapters 4 and 5 constitute a large part of what has been
taught traditionally under the topic of structured programming.

Chapter 6—Methods
A method allows the programmer to create a block of code that can be called upon from var-
ious points in a program. Groups of related methods can be separated into functional blocks
(classes), using the “divide and conquer” strategy. Programs are divided into simple compo-
nents that interact in straightforward ways. We discuss how to create our own methods that
can take input, perform calculations and return output. We examine the .NET library’s Math
class, which contains methods (i.e., methods in a class) for performing complex calculations
(e.g., trigonometric and logarithmic calculations). Recursive methods (methods that call
themselves) and method overloading, which allows multiple methods to have the same name,
are introduced. We demonstrate overloading by creating two Square methods that take an
integer (i.e., whole number) and a floating-point number (i.e., a number with a decimal point),
respectively. To conclude the chapter, we create a graphical simulation of the “craps” dice
game, using the random-number generation techniques presented in the chapter.

22 Introduction to Computers, the Internet, the Web and C# Chapter 1

Chapter 7—Arrays
Chapter 7 discusses arrays, our first data structures. (Chapter 24 discusses the topic of data
structures in depth.) Data structures are crucial to storing, sorting, searching and manipu-
lating large amounts of information. Arrays are groups of related data items that allow the
programmer to access any element directly. Rather than creating 100 separate variables that
are all related in some way, the programmer instead can create an array of 100 elements and
access these elements by their location in the array. We discuss how to declare and allocate
arrays, and we build on the techniques of the previous chapter by passing arrays to methods.
In addition, we discuss how to pass a variable number of arguments to methods. Chapters
4 and 5 provide essential background for the discussion of arrays, because repetition struc-
tures are used to iterate through elements in the array. The combination of these concepts
helps the reader create highly-structured and well-organized programs. We then demon-
strate how to sort and search arrays. We discuss multidimensional arrays (both rectangular
and jagged), which can be used to store tables of data.

Chapter 8—Object-Based Programming
Chapter 8 serves as our introduction into the powerful concepts of objects and classes
(classes are programmer-defined types). As mentioned in Chapter 1, object technology has
led to considerable improvements in software development, allowing programmers to cre-
ate reusable components. In addition, objects allow programs to be organized in natural and
intuitive ways. In this chapter, we present the fundamentals of object-based programming,
such as encapsulation, data abstraction and abstract data types (ADTs). These techniques
hide the details of components so that the programmer can concentrate on the “big picture.”
To demonstrate these concepts, we create a time class, which displays the time in standard
and military formats. Other topics examined include abstraction, composition, reusability
and inheritance. We overview how to create reusable software components with assem-
blies, namespaces and Dynamic Link Library (DLL) files. You will learn how to create
classes like those in the Framework Class Library. Other C# features discussed include
properties and the readonly and const keywords. This chapter lays the groundwork for
the next two chapters, which introduce object-oriented programming.

Chapter 9—Object-Oriented Programming: Inheritance
In this chapter, we discuss inheritance—a form of software reusability in which classes
(called derived classes) are created by absorbing attributes and methods of existing classes
(called base classes). The inherited class (i.e., the derived class) can contain additional at-
tributes and methods. We show how finding the commonality between classes of objects
can reduce the amount of work it takes to build large software systems. These proven tech-
niques help programmers create and maintain software systems. A detailed case study dem-
onstrates software reuse and good programming techniques by finding the commonality
among a three-level inheritance hierarchy: the point, circle and cylinder classes. We discuss
the software engineering benefits of object-oriented programming. The reader learns im-
portant object-oriented programming fundamentals, such as creating and extending cus-
tomized classes.

Chapter 10—Object-Oriented Programming: Polymorphism
Chapter 10 continues our formal introduction of object-oriented programming. We discuss
polymorphic programming and its advantages. Polymorphism permits classes to be treated

Chapter 1 Introduction to Computers, the Internet, the Web and C# 23

in a general manner, allowing the same method call to act differently depending on context
(e.g., “move” messages sent to a bird and a fish result in dramatically different types of ac-
tion—a bird flies and a fish swims). In addition to treating existing classes in a general man-
ner, polymorphism allows new classes to be added to a system easily. We identify
situations in which polymorphism is useful. A payroll system case study demonstrates
polymorphism—the system determines the wages for each employee differently to suit the
type of employee (bosses paid fixed salaries, hourly workers paid by the hour, commission
workers who receive a base salary plus commission and piece workers who are paid per
item produced). These programming techniques and those of the previous chapter allow the
programmer to create extensible and reusable software components.

Chapter 11—Exception Handling
Exception handling is one of the most important topics in C# from the standpoint of build-
ing mission-critical and business-critical applications. People can enter incorrect data, data
can be corrupted and clients can try to access records that do not exist or are restricted. A
simple division-by-zero error may cause a calculator program to crash, but what if such an
error occurs in the navigation system of a flying airplane? Programmers must deal with
these situations, because in some cases, the results of program failure could be disastrous.
Programmers need to know how to recognize the errors (exceptions) that could occur in
software components and handle those exceptions effectively, allowing programs to deal
with problems and continue executing instead of “crashing.” This chapter overviews the
proper use of exception handling and various exception-handling techniques. We cover the
details of C# exception handling, the termination model of exception handling, throwing
and catching exceptions, and library class Exception. Programmers who construct soft-
ware systems from reusable components built by other programmers often deal with the ex-
ceptions that those components may throw.

Chapter 12—Graphical User Interface Concepts: Part 1
Chapter 12 explains how to add graphical user interfaces (GUIs) to our programs, providing
a professional look and feel. By using the techniques of rapid application development
(RAD), we can create a GUI from reusable components, rather than explicitly program-
ming every detail. The Visual Studio .NET IDE makes developing GUIs even easier by al-
lowing the programmer to position components in a window through so-called visual
programming. We discuss how to construct user interfaces with Windows Forms GUI com-
ponents such as labels, buttons, text boxes, scroll bars and picture boxes. We also introduce
events, which are messages sent by a program to signal to an object or a set of objects that
an action has occurred. Events are most commonly used to signal user interactions with
GUI components, but also can signal internal actions in a program. We overview event han-
dling and discuss how to handle events specific to controls, the keyboard and the mouse.
Tips are included throughout the chapter to help the programmer create visually appealing,
well-organized and consistent GUIs.

Chapter 13—Graphical User Interface Concepts: Part 2
Chapter 13 introduces more complex GUI components, including menus, link labels, pan-
els, list boxes, combo boxes and tab controls. In a challenging exercise, readers create an
application that displays a disk drive’s directory structure in a tree—similar to that created
by Windows Explorer. The Multiple Document Interface (MDI) is presented, which allows

24 Introduction to Computers, the Internet, the Web and C# Chapter 1

multiple documents (i.e., forms) to be open simultaneously in a single GUI. We conclude
with a discussion of how to create custom controls by combining existing controls. The
techniques presented in this chapter allow readers to create sophisticated and well-orga-
nized GUIs, adding style and usability to their applications.

Chapter 14—Multithreading
We have come to expect much from our applications. We want to download files from the
Internet, listen to music, print documents and browse the Web—all at the same time! To do
this, we need a technique called multithreading, which allows applications to perform mul-
tiple activities concurrently. C# includes built-in capabilities to enable multithreaded appli-
cations, while shielding programmers from complex details. C# is better equipped to deal
with more sophisticated multimedia, network-based and multiprocessor-based applications
than other languages that do not have multithreading features. This chapter overviews the
built-in threading classes of C# and covers threads, thread life-cycles, time-slicing, sched-
uling and priorities. We analyze the producer-consumer relationship, thread synchroniza-
tion and circular buffers. This chapter lays the foundation for creating the impressive
multithreaded programs that clients demand.

Chapter 15—Strings, Characters and Regular Expressions
In this chapter, we discuss the processing of words, sentences, characters and groups of char-
acters. In C#, strings (groups of characters) are objects. This is yet another benefit of C#’s
emphasis on object-oriented programming. Objects of type string contain methods that
can copy, create hash codes, search, extract substrings and concatenate strings with one an-
other. As an interesting example of strings, we create a card shuffling-and-dealing simulation.
We discuss regular expressions, a powerful tool for searching and manipulating text.

Chapter 16—Graphics and Multimedia
In this chapter, we discuss GDI+ (an extension of the Graphics Device Interface—GDI), the
Windows service that provides the graphical features used by .NET. The extensive graphical
capabilities of GDI+ can make programs more visual and fun to create and use. We discuss
C#’s treatment of graphics objects and color control, and we discuss how to draw arcs, poly-
gons and other shapes. We use various pens and brushes to create color effects and include an
example demonstrating gradient fills and textures. This chapter introduces techniques for
turning text-only applications into exciting, aesthetically pleasing programs that even novice
programmers can write with ease. The second half of the chapter focuses on audio, video and
speech technology. We discuss adding sound, video and animated characters to programs
(primarily using existing audio and video clips). You will see how easy it is to incorporate
multimedia into C# applications. This chapter introduces an exciting technology called Mi-
crosoft Agent for adding interactive animated characters to a program. Each character allows
users to interact with the application, using more natural human communication techniques,
such as speech. The agent characters accept mouse and keyboard interaction, speak and hear
(i.e., they support speech synthesis and speech recognition). With these capabilities, your ap-
plications can speak to users and actually respond to their voice commands!

Chapter 17—Files and Streams
Imagine a program that could not save data to a file. Once the program is closed, all the
work performed in the program is lost forever. For this reason, this chapter is one of the

Chapter 1 Introduction to Computers, the Internet, the Web and C# 25

most important for programmers who will be developing commercial applications. We ex-
plain how to input and output streams of data from and to files, respectively. We discuss
how programs read and write data from and to secondary storage devices (such as disks).
A detailed example demonstrates these concepts by allowing the user to read and write
bank account information to and from files. We introduce those classes and methods in C#
that help perform input and output conveniently—they demonstrate the power of object-
oriented programming and reusable classes. We discuss benefits of sequential files, ran-
dom-access files and buffering. This chapter is crucial for developing C# file-processing
applications and networking applications (Chapter 22), which also use the techniques in
this chapter to send and receive data.

Chapter 18—Extensible Markup Language (XML)7

The Extensible Markup Language (XML) derives from SGML (Standardized General
Markup Language), which became an industry standard in 1986. Although SGML is em-
ployed in publishing applications worldwide, it has not been incorporated into the mainstream
computing and information technology curricula because of its sheer size and complexity.
XML is an effort to make SGML-like technology available to a much broader community. It
was created by the World Wide Web Consortium (W3C) for describing data in a portable for-
mat, is one of most important technologies in industry today and is being integrated into al-
most every field. XML differs in concept from markup languages such as the HyperText
Markup Language (HTML). HTML is a markup language for describing how information is
rendered in a browser. XML is a language for creating markup languages for virtually any
type of information. Document authors use XML to create entirely new markup languages to
describe specific types of data, including mathematical formulas, chemical molecular struc-
tures, music and recipes. Markup languages created with XML include WML (Wireless
Markup Language), XHTML (Extensible HyperText Markup Language, for Web content),
MathML (for mathematics), VoiceXML™ (for speech), SMIL™ (Synchronized Multimedia
Integration Language, for multimedia presentations), CML (Chemical Markup Language, for
chemistry) and XBRL (Extensible Business Reporting Language, for financial data ex-
change). Companies and individuals constantly are finding new and exciting uses for XML.
In this chapter, we present examples that illustrate the basics of marking up data with XML.
We demonstrate several XML-derived markup languages, such as XML Schema (for check-
ing an XML document’s grammar), XSLT (Extensible Stylesheet Language Transforma-
tions, for transforming an XML document’s data into another text-based format such as
XHTML) and Microsoft’s BizTalk™ (for marking up business transactions). (For readers
who are unfamiliar with XHTML, we provide Appendices K and L, which provide a de-
tailed introduction to XHTML.)

Chapter 19—Database, SQL and ADO .NET
Access and storage of data are integral to creating powerful software applications. This
chapter discusses .NET support for database manipulation. Today's most popular database
systems are relational databases. In this chapter, we introduce the Structured Query Lan-
guage (SQL) for performing queries on relational databases. We introduce ADO .NET—an
extension of Microsoft's ActiveX Data Objects that enables .NET applications to access and

7. The reader interested in a deeper treatment of XML may want to consider our book, XML How to
Program.

26 Introduction to Computers, the Internet, the Web and C# Chapter 1

manipulate databases. ADO .NET allows data to be exported as XML, which enables appli-
cations that use ADO .NET to communicate with a variety of programs that understand
XML. The reader will learn how to create database connections, using tools provided in Vi-
sual Studio .NET, and will learn how to use the classes in the System.Data namespace.

Chapter 20—ASP .NET, Web Forms and Web Controls
Previous chapters demonstrated how to create applications that execute locally on the us-
er’s computer. In this chapter and the next, we discuss how to create Web-based applica-
tions using Active Server Pages (ASP) .NET. This is a crucial aspect of .NET and of
Microsoft’s vision of how software should be deployed on the Internet. ASP .NET is an in-
tegral technology for creating dynamic Web content marked up as HTML. (For readers
who are unfamiliar with HTML, we provide a detailed introduction in Appendices I and J.)
Web Forms provide GUIs for ASP .NET pages and can contain Web controls, such as la-
bels, buttons and text boxes with which users interact. Like Windows Forms, Web Forms
are designed using visual programming. This chapter presents many interesting examples,
which include an online guest book application and a multi-tier, database intensive appli-
cation that allows users to query a database for a list of publications by a specific author.
Debugging Web Forms using the Trace property is also discussed.

Chapter 21—ASP .NET and Web Services
Chapter 21 continues our discussion of ASP .NET. In this chapter, we introduce Web servic-
es, which are programs that “expose” services (i.e., methods) to clients. Using Web services,
programmers can create methods that anyone can invoke. This enables applications to in-
voke methods remotely over a network. Web services offer increased software reusability,
making the Internet, in essence, a programming library available to programmers world-
wide. Web services use XML and SOAP to mark up and send information, respectively. This
chapter presents several interesting examples that include Web services for manipulating
huge numbers (up to 100 digits), simulating the card game of blackjack and implementing
an airline reservation system. One particularly interesting example is our temperature server,
a Web service that gathers weather information for dozens of cities in the United States.

Chapter 22—Networking: Streams-Based Sockets and Datagrams
Chapter 22 introduces the fundamental techniques of C#-based networking—streams and
datagrams. We demonstrate how streams-based sockets allow us to hide many networking
details. With sockets, networking is as simple as if we were reading from and writing to a
file. We also introduce datagrams in which packets of information are sent between pro-
grams. Each packet is addressed to its recipient and sent out to the network, which routes
the packet to its destination. The examples in this chapter focus on communication between
applications. One example demonstrates using streams-based sockets to communicate be-
tween two C# programs. Another similar example, sends datagrams between applications.
We also show how to create a multithreaded-server application that can communicate mul-
tiple clients in parallel. In this client/server tic-tac-toe game, the server maintains the status
of the game and two clients communicate with the server to play the game.

Chapter 23—Data Structures and Collections
This chapter discusses arranging data into aggregations such as linked lists, stacks, queues
and trees. Each data structure has properties that are useful in a wide variety of applications,

Chapter 1 Introduction to Computers, the Internet, the Web and C# 27

from sorting elements to keeping track of method calls. We discuss how to build each of these
data structures. This is also a valuable experience in crafting useful classes. In addition, we
cover prebuilt collection classes in the .NET Framework Class Library. These data structures
have many useful methods for sorting, inserting, and deleting items, plus methods to enable
data structures to resize themselves dynamically. When possible, C# programmers should use
the Framework Class Library to find appropriate data structures, rather than implementing
these data structures themselves. This chapter reinforces much of the object technology dis-
cussed in Chapters 8, 9 and 10, including classes, inheritance and composition.

Chapter 24—Accessibility
The World Wide Web presents a challenge to individuals with disabilities. Multimedia-rich
Web sites are difficult for text readers and other programs to interpret; thus, users with hear-
ing and visual impairments may have difficulty browsing such sites. To help rectify this sit-
uation, the World Wide Web Consortium (W3C) launched the Web Accessibility Initiative
(WAI), which provides guidelines for making Web sites accessible to people with disabili-
ties. This chapter provides a description of these guidelines, such as the use of the <head-
ers> tag to make tables more accessible to page readers, the alt attribute of the
tag to describe images, and XHTML and CSS to ensure that a page can be viewed on almost
any type of display or reader. We illustrate key accessibility features of Visual Studio .NET
and of Windows 2000. We also introduce VoiceXML and CallXML, two technologies for
increasing the accessibility of Web-based content. VoiceXML helps people with visual im-
pairments to access Web content via speech synthesis and speech recognition. CallXML al-
lows users with visual impairments to access Web-based content through a telephone. In
the chapter exercises, readers create their own voice mail applications, using CallXML.

Appendix A—Operator precedence chart
This appendix lists C# operators and their precedence.

Appendix B—Number Systems
This appendix explains the binary, octal, decimal and hexadecimal number systems. It also
reviews the conversion of numbers among these bases and illustrates mathematical opera-
tions in each base.

Appendix C—Career Opportunities
This appendix provides career resources for C# programmers.

Appendix D—Visual Studio .NET Debugger
This appendix introduces the Visual Studio .NET debugger for locating logic errors in pro-
grams. Key features of this appendix include setting breakpoints, stepping through pro-
grams line-by-line and “watching” variable values.

Appendix E—Generating Documentation in Visual Studio
Appendix E discusses how to create comments within C# code that can be extracted to cre-
ate powerful, XML-based documentation.

Appendix F—ASCII Character Set
This appendix contains a table of the 128 ASCII alphanumeric symbols and their corre-
sponding ASCII (American Standard Code for Information Interchange) numbers.

28 Introduction to Computers, the Internet, the Web and C# Chapter 1

Appendix G—Unicode®

This appendix introduces the Unicode Standard, an encoding scheme that assigns unique
numeric values to the characters of most of the world’s languages. We include a Windows
application that uses Unicode encoding to print welcome messages in several different lan-
guages.

Appendix H—COM Integration
Prior to .NET, COM (Component Object Model) was critical for specifying how different
Windows programming languages communicate at the binary level. For example, COM
components such as ActiveX controls and ActiveX DLLs often were written in Microsoft
Visual C++, but used in other programs. The .NET platform does not directly support COM
components, but Microsoft provides tools for the integration of COM components with
.NET applications. In this appendix, we explore some of these tools by integrating an Ac-
tiveX control and an ActiveX DLL into C# applications.

Appendices I and J—Introduction to HyperText Markup Language 4: 1 & 2 (on CD)
These appendices provide an introduction to HTML—the Hypertext Markup Language.
HTML is a markup language for describing the elements of an HTML document (Web
page) so that a browser, such as Microsoft’s Internet Explorer, can render (i.e., display) that
page. These appendices are included for our readers who do not know HTML or who would
like a review of HTML before studying Chapter 20, ASP .NET, Web Forms and Web Con-
trols. We do not present any C# programming in these appendices. Some key topics cov-
ered in Appendix I include: incorporating text and images in an HTML document, linking
to other HTML documents on the Web, incorporating special characters (such as copyright
and trademark symbols) into an HTML document and separating parts of an HTML docu-
ment with horizontal lines (called horizontal rules). In Appendix J, we discuss more sub-
stantial HTML elements and features. We demonstrate how to present information in lists
and tables. We discuss how to collect information from people browsing a site. We explain
how to use internal linking and image maps to make Web pages easier to navigate. We also
discuss how to use frames to display multiple documents in the browser window.

Appendices K and L—Introduction to XHTML: Parts 1 & 2 (on CD)
In these appendices, we introduce the Extensible Hypertext Markup Language (XHTML).
XHTML is an emerging W3C technology designed to replace HTML as the primary means
of describing Web content. As an XML-based language, XHTML is more robust and ex-
tensible than HTML. XHTML incorporates most of HTML 4’s elements and attributes—
the focus of these appendices. Appendices K and L are included for our readers who do not
know XHTML or who would like a review of XHTML before studying Chapter 18, Exten-
sible Markup Language (XML) and Chapter 24, Accessibility.

Appendix M—HTML/XHTML Special Characters (on CD)
This appendix provides many commonly used HTML/XHTML special characters, called
character entity references.

Appendix N—HTML/XHTML Colors (on CD)
This appendix lists commonly used HTML/XHTML color names and their corresponding
hexadecimal values.

Chapter 1 Introduction to Computers, the Internet, the Web and C# 29

Appendix O—Bit Manipulation
This appendix discusses C#’s powerful bit-manipulation capabilities. This helps programs
process bit strings, set individual bits on or off and store information more compactly. Such
capabilities—inherited from C—are characteristic of low-level assembly languages and are
valued by programmers writing systems software, such as operating system and network-
ing software.

1.19 Internet and World Wide Web Resources
www.deitel.com
This is the official Deitel & Associates, Inc. Web site. Here you will find updates, corrections, down-
loads and additional resources for all Deitel publications. In addition, this site provides information
about Deitel & Associates, Inc. professional, on-site seminars offered worldwide. In the near future,
you will be able to register here to receive the Deitel Buzz e-mail newsletter.

www.prenhall.com/deitel
This is Prentice Hall’s Web site for Deitel publications, which contains information about our prod-
ucts and publications, downloads, Deitel curriculum and author information.

www.InformIT.com/deitel
This is the Deitel & Associates, Inc. page on the InformIT Web site. InformIT is an all-around re-
source for IT professionals providing articles, electronic publications and other resources for today’s
hottest technologies. The Deitel kiosk at InformIT.com will have free articles and for-purchase elec-
tronic publications. In addition, you can purchase all Deitel products at this site.

www.w3.org
The World Wide Web Consortium (W3C) is an organization that develops and recommends technol-
ogies for the Internet and World Wide Web. This site includes links to W3C technologies, news, mis-
sion statements and frequently asked questions (FAQs).

www.elsop.com/wrc/h_comput.htm
This site contains presents the history of computing, content about famous innovators, the evolution
of languages and the development of operating systems.

www.w3.org/History.html
This site overviews the history of the Internet. After briefly covering developments from 1945 –1988,
the site details technological advances on a year-by-year basis, from 1989 to the present day.

www.netvalley.com/intval.html
This site presents the history of the Internet and the World Wide Web.

www.microsoft.com
The Microsoft Corporation Web site provides information and technical resources for all Microsoft
products, including .NET, enterprise software and the Windows operating system.

SUMMARY
[This chapter is primarily a summary of the rest of the book, so we have not provided a sum-
mary section. The remaining chapters include detailed summaries of their contents.]

TERMINOLOGY
action algorithm
“administrative” section of the computer Apple Computer
Advanced Research Projects Agency (ARPA) arithmetic and logic unit (ALU)

30 Introduction to Computers, the Internet, the Web and C# Chapter 1

assembler language interoperability
assembly language live-code™ approach
bandwidth logical decision
batch logical unit
batch processing machine dependent
building-block approach machine language
C programming language maintenance of software
C# programming language “manufacturing” section of the computer
C++ programming language memory
calculation memory unit
Cascading Style Sheets (CSS) Microsoft .NET
central processing unit (CPU) Microsoft Intermediate Language (MSIL)
clarity mouse
class multiprogramming
class libraries multitasking
Common Language Runtime (CLR) .NET Framework
Common Language Specification (CLS) .NET initiative
compiler .NET language
component n-tier application
computation object
computer object-based programming
computer program object-oriented language
computer programmer object-oriented programming (OOP)
data operating system
data independence output device
decision output unit
disk Pascal programming language
distributed computing personal computer
ECMA (European Computer
 Manufacturer’s Association)

platform independence
portability

e-mail (electronic mail) porting
Framework Class Library (FCL) primary memory
functionalization processing unit
HailStorm Web service program
hardware programmer
hardware platform property of an object
high-level language “receiving” section of the computer
HTML (HyperText Markup Language) reusable software component
HTTP (HyperText Transfer Protocol) screen
IBM (International Business Machines) secondary storage
input device share the resources of a computer
input unit “shipping” section of the computer
Internet silicon chip
interpreter SOAP (Simple Object Access Protocol)
intranet software
IP (Internet Protocol) software component
Java programming language software reuse
job structured programming
keyboard subscription-based software
language independence task

Chapter 1 Introduction to Computers, the Internet, the Web and C# 31

SELF-REVIEW EXERCISES
1.1 Fill in the blanks in each of the following statements:

a) A computer can directly understand only its native language, which is com-
posed only of 1s and 0s.

b) Computers process data under the control of sets of instructions called computer
.

c) SOAP is an acronym for .
d) is a technology derived from SGML that is used to create mark up languag-

es.
e) The three types of languages discussed in the chapter are machine languages,

 and .
f) Programs that translate high-level language programs into machine language are called

.
g) Visual Studio .NET is a/an (IDE) in which C# programs are developed.
h) C is widely known as the development language of the operating system.
i) The provides a large programming library for .NET languages.
j) The Department of Defense developed the Ada language with a capability called multi-

tasking, which allows programmers to specify activities that can proceed in parallel. C#
offers a similar capability called .

k) Web services use and to mark up and send information over the
Internet, respectively.

1.2 State whether each of the following is true or false. If false, explain why.
a) Universal data access is an essential part of .NET.
b) W3C standards are called recommendations.
c) C# is an object-oriented language.
d) The Common Language Runtime (CLR) requires that programmers manage their own

memory.
e) C# is the only language available for programming .NET applications.
f) Procedural programming models the world more naturally than object-oriented program-

ming.
g) Computers can directly understand high-level languages.
h) MSIL is the common intermediate format to which all .NET programs compile, regard-

less of their original .NET language.
i) The .NET Framework is portable to non-Windows platforms.
j) Compiled programs run faster than their corresponding interpreted programs.
k) Throughput is the amount of work a computer can process in a given time period.

TCP (Transmission Control Protocol) visual programming
TCP/IP (Transmission Control
 Protocol/Internet Protocol)

W3C (World Wide Web Consortium)
W3C Recommendation

terminal “warehouse” section of the computer
throughput Web Form
timesharing Web service
translator program Web site
universal data access Win32 API (Windows 32-bit Application
UNIX Programming Interface)
virtual-memory operating system World Wide Web (WWW)
Visual Basic .NET programming language XML (Extensible Markup Language)

32 Introduction to Computers, the Internet, the Web and C# Chapter 1

ANSWERS TO SELF-REVIEW EXERCISES
1.1 a) machine. b) programs. c) Simple Object Access Protocol. d) XML. e) assembly languages,
high-level languages. f) compilers. g) integrated development environment (IDE). h) UNIX.
i) Framework Class Library (FCL). j) multithreading. k) XML, SOAP.

1.2 a) True. b) True. c) True. d) False. The CLR handles memory management. e) False. C# is
one of many .NET languages (others include Visual Basic and Visual C++). f) False. Object-oriented
programming is a more natural way to model the world than is procedural programming. g) False.
Computers can directly understand only their own machine languages. h) True. i) True. j) True. k)
True.

EXERCISES
1.3 Categorize each of the following items as either hardware or software:

a) CPU.
b) Compiler.
c) Input unit.
d) A word-processor program.
e) A Visual Basic .NET program.

1.4 Distinguish between the terms HTML, XML and XHTML.

1.5 Translator programs, such as assemblers and compilers, convert programs from one language
(referred to as the source language) to another language (referred to as the object language or target
language). Determine which of the following statements are true and which are false:

a) An assembler translates source language programs into machine language programs.
b) A compiler converts source-language programs into object-language programs.
c) High-level languages are generally machine dependent.
d) A machine-language program requires translation before it can be run on a computer.
e) The Visual Basic .NET compiler translates a high-level language into SMIL.

1.6 What are the basic requirements of a .NET language? What is needed to run a .NET program
on a new type of computer (machine)?

1.7 Expand each of the following acronyms:
a) W3C.
b) XML.
c) SOAP.
d) TCP/IP.
e) OOP.
f) CLR.
g) CLS.
h) FCL.
i) MSIL.

1.8 What are the key benefits of the .NET Framework and the CLR? What are the drawbacks?

2
Introduction to the

Visual Studio .NET IDE

Objectives
• To become familiar with the Visual Studio .NET

Integrated development environment (IDE).
• To become familiar with the types of commands

contained in the IDE’s menus and toolbars.
• To identify and understand the use of various kinds of

windows in Visual Studio .NET.
• To understand the features provided by the toolbar.
• To understand Visual Studio .NET’s help features.
• To be able to create, compile and execute a simple C#

program.
Seeing is believing.
Proverb

Form ever follows function.
Louis Henri Sullivan

Intelligence… is the faculty of making artificial objects,
especially tools to make tools.
Henri-Louis Bergson

34 Introduction to the Visual Studio .NET IDE Chapter 2

2.1 Introduction
Visual Studio .NET is Microsoft’s integrated development environment (IDE) for creating,
documenting, running and debugging programs written in a variety of .NET programming
languages. Visual Studio .NET also offers editing tools for manipulating several types of
files. Visual Studio .NET is a powerful and sophisticated tool for creating business-critical
and mission-critical applications. In this chapter, we provide an overview of the Visual Stu-
dio .NET features needed to create a simple C# program. We introduce additional IDE fea-
tures throughout the book.

2.2 Visual Studio .NET Integrated Development Environment
(IDE) Overview
When Visual Studio .NET is executed for the first time, the Start Page is displayed
(Fig. 2.1). This page contains helpful links, which appear on the left side of the Start
Page. Users can click the name of a section (such as Get Started) to browse its contents.
We refer to single-clicking with the left mouse button as selecting or clicking and to click-
ing twice with the left mouse button as double-clicking. [Note: The user should be aware
that there are slight differences in the way Visual Studio appears based on the version being
used.]

The Get Started section contains links to recently opened projects. The most recently
opened projects appear on this list (such as ASimpleProgram in Fig. 2.1), along with
their modification dates. Alternately, the user can go to the select Recent Projects from
the File menu. The first time Visual Studio .NET is loaded, this section will be empty.
There are two buttons on the page: Open Project and New Project. A button is a raised,
rectangular area that performs an action when clicked.

The What’s New section displays new features and updates for Visual Studio .NET,
including downloads for code samples and new programming tools. The Online Commu-
nity section includes ways to contact other software developers, using newsgroups, Web
pages and other online resources. The Headlines section provides a way to browse news,

Outline

2.1 Introduction
2.2 Visual Studio .NET Integrated Development Environment (IDE)

Overview
2.3 Menu Bar and Toolbar
2.4 Visual Studio .NET Windows

2.4.1 Solution Explorer

2.4.2 Toolbox

2.4.3 Properties Window
2.5 Using Help
2.6 Simple Program: Displaying Text and an Image

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 2 Introduction to the Visual Studio .NET IDE 35

articles and how-to guides. Use the Search Online section to browse through the MSDN
(Microsoft Developer Network) online library. The MSDN site includes numerous articles,
downloads and tutorials for a variety of technologies. The Downloads section allows the
user to obtain updates and code samples. The XML Web Services page provides pro-
grammers with information about Web services, which are reusable pieces of software
available on the Internet. We discuss this technology in Chapter 21, ASP .NET and Web
Services. Web Hosting provides information for developers who wish to post their soft-
ware (such as Web services) online for public use. The My Profile page allows users to
customize Visual Studio .NET, such as setting keyboard and window layout preferences.
Users also can customize Visual Studio .NET selecting Options… or Customize… from
the Tools menu. [Note: From this point forward, we use the > character to indicate the
selection of a menu command. For example, we use the notation Tools > Options… and
Tools > Customize… to indicate the selection of the Options… and Customize…
commands, respectively.] Visual Studio .NET can even browse the Web—Internet
Explorer is part of the IDE. To access a Web page, type its address into the location bar (see
Fig. 2.1) and press the Enter key. [Note: The computer must be connected to the Internet.]

Fig. 2.1 Start Page in Visual Studio .NET.

Recent projectsStart Page links

Location barNavigation buttons

Hidden window Buttons

36 Introduction to the Visual Studio .NET IDE Chapter 2

Several other windows appear in the IDE in addition to the Start Page. We discuss these
windows in the following sections.

To create a new C# program, click the New Project button in the Get Started sec-
tion. This action displays the dialog in Fig. 2.2. Dialogs are windows used to communicate
with users. They typically contain buttons that allow the users to make decisions.

Visual Studio .NET organizes programs into projects and solutions. A project is a group
of related files, such as C# code, images and documentation. A solution is a group of projects
that represent a complete application, or a set of related applications. Each project in the
solution may perform a different task. In this chapter, we create a single-project solution.

Visual Studio .NET allows us to create projects in a variety of programming languages.
This book focuses on C#, so select the Visual C# Projects folder (Fig. 2.2). There are a
variety of project types from which to choose, several of which are used throughout this
book. In this case, create a Windows application. Windows applications are programs that
execute inside the Windows OS, like Microsoft Word, Internet Explorer and Visual Studio
.NET. Typically, they contain controls—graphical elements, such as buttons and labels—
with which the user interacts.

By default, Visual Studio .NET assigns the name WindowsApplication1 to the
project and to the solution (Fig. 2.2). The default location for storing related files is the
folder where the last project was created. The first time Visual Studio .NET executes, the
default folder is the Visual Studio Projects folder in the My Documents folder. The
user can change both the name and the location of the folder in which to save the project.
After selecting a name and location for the project, click OK in the New Project dialog.
The IDE will then change its appearance, as shown in Fig. 2.3.

Fig. 2.2 New Project dialog.

Visual C# Windows application (selected)

Project nameProject location

Visual C# Projects folder

Description
of selected
project

Chapter 2 Introduction to the Visual Studio .NET IDE 37

The gray rectangle represents the window for our application. This rectangle is called
the form. We discuss how to add controls to the form later in this chapter. The form and con-
trols are the graphical user interface (GUI) of the program. They are the graphical compo-
nents through which the user interacts with the program. Users enter data (inputs) into the
program by entering information from the keyboard and by clicking the mouse buttons. The
program displays instructions and other information (outputs) for users to read in the GUI.

The top of the IDE window (the title bar in Fig. 2.3) displays Windows-
Application1 - Microsoft Visual C# .NET [design] - Form1.cs [Design]. This title
provides the name of the project (WindowsApplication1), the programming language
(Microsoft Visual C# .NET), the mode of the IDE (design mode), the file being viewed
(Form1.cs) and the mode of the file being viewed (Design mode). The file name
Form1.cs is the default for Windows applications. We discuss the various modes in
Section 2.6.

Notice how a tab appears for each open document. In our case, the documents are the
Start Page and Form1.cs [Design]. To view a tabbed document, click the tab with the
name of the document you wish to view. Tabbing saves space and allows easy access to
multiple documents.

2.3 Menu Bar and Toolbar
Commands for managing the IDE and for developing, maintaining and executing programs
are contained in the menus. Figure 2.4 shows the menus displayed on the menu bar. Menus

Fig. 2.3 Visual Studio .NET environment after a new project has been created.

Menu

Active tabForm (Windows application)

Tabs

Properties window

Solution ExplorerMenu barTitle bar

38 Introduction to the Visual Studio .NET IDE Chapter 2

contain groups of related commands that, when selected, cause the IDE to perform various
actions (e.g., open a window). For example, new projects can be created by selecting File >
New > Project... from the menu bar. The menus shown in Fig. 2.4 are summarized in
Fig. 2.5. Visual Studio .NET provides different modes for the user. One of these modes is
the design mode, which will be discussed later. Certain menu items appear only in specific
IDE modes.

Rather than having to navigate the menus for certain commonly used commands, the
programmer can access the commands from the toolbar (Fig. 2.6). The toolbar contains
pictures called icons that represent commands. To execute a command, click its icon. Click
the down arrow beside an icon to display other available options. Figure 2.6 shows the stan-
dard (default) toolbar and an icon that uses the down arrow.

Fig. 2.4 Visual Studio .NET menu bar.

Menu Description

File Contains commands for opening projects, closing projects, printing projects, etc.

Edit Contains commands such as cut, paste, find, undo, etc.

View Contains commands for displaying IDE windows and toolbars.

Project Contains commands for adding features, such as forms, to the project.

Build Contains commands for compiling a program.

Debug Contains commands for debugging and executing a program.

Data Contains commands for interacting with databases.

Format Contains commands for arranging a form’s controls.

Tools Contains commands for additional IDE tools and options for customizing the
environment.

Windows Contains commands for arranging and displaying windows.

Help Contains commands for getting help.

Fig. 2.5 Visual Studio .NET menu summary.

Fig. 2.6 Visual Studio .NET toolbar.

Toolbar icon (indicates a command to open a file)

Down arrow
indicates
additional
commands

Toolbar

Chapter 2 Introduction to the Visual Studio .NET IDE 39

Holding the mouse pointer over an icon on the toolbar highlights that icon and displays
a description called a tool tip (Fig. 2.7). Tool tips help users understand the purposes of
unfamiliar icons.

2.4 Visual Studio .NET Windows
Visual Studio .NET provides users with windows for exploring files and customizing con-
trols. In this section, we discuss the windows that are essential for developing C# applica-
tions. These windows can be accessed using the toolbar icons below the menu bar and on
the right edge of the toolbar (Fig. 2.8), or by selecting the name of the desired window from
the View menu.

2.4.1 Solution Explorer

The Solution Explorer window (Fig. 2.9) lists all the files in the solution. When Visual
Studio .NET is first loaded, the Solution Explorer is empty—there are no files to display.
After a new project has been created or an existing project has been loaded, the Solution
Explorer displays that project’s contents.

The startup project of the solution is the project that runs when the solution is exe-
cuted. It appears in bold text in the Solution Explorer. For our single-project solution,
the startup project (WindowsApplication1) is the only project. The C# file is
Form1.cs; it contains the program’s code. We discuss the other files and folders later in
the book.

The plus and minus boxes to the left of the project and solution names expand and col-
lapse the tree, respectively (similar to those in Windows Explorer). Click a plus box to dis-
play more options; click a minus box to collapse a tree that already is expanded. Users also
can expand or collapse a tree by double-clicking the name of the folder. Many other Visual
Studio .NET windows use the plus/minus convention as well.

Fig. 2.7 Tool tip demonstration.

Fig. 2.8 Toolbar icons for various Visual Studio .NET windows.

Tool tip

Solution Explorer Properties Toolbox

40 Introduction to the Visual Studio .NET IDE Chapter 2

The Solution Explorer contains a toolbar. One icon on the toolbar reloads the files
in the solution (refreshes), and another icon displays all files in the solution (including
hidden ones). The number of icons in the toolbar changes depending on the type of file
selected. We discuss these icons later in the book.

2.4.2 Toolbox

The Toolbox (Fig. 2.10) contains reusable software components (or controls) that can be
used to customize applications. Using visual programming, programmers can “drag and
drop” controls onto a form instead of writing code themselves. Just as people do not need
to know how to build an engine to drive a car, programmers do not need to build a control
to use it. This allows them to concentrate on the big picture, rather than the complex details
of every control. The wide variety of tools available to programmers is a powerful feature
of C#. We demonstrate the power of the controls in the Toolbox when we create our own
program later in the chapter.

The Toolbox contains groups of related components (e.g., Data, Components,
Windows Forms). Expand the members of a group by clicking the name of the group.
Users can scroll through the individual items by using the black scroll arrows on the right
side of the Toolbox. The first item in the group is not a control—it is the mouse pointer.
Clicking this icon allows the user to deselect the current control in the Toolbox. Note that
there are no tool tips, because the Toolbox icons already are labeled with the names of the
controls. In later chapters, we discuss many of these controls.

Initially, the Toolbox may be hidden, with only the name of the window showing on
the side of the IDE (Fig. 2.11). Moving the mouse pointer over a window name opens this
window. Moving the mouse pointer outside the window causes the window to disappear.
This feature is known as auto hide. To “pin down” the Toolbox (i.e., disable auto hide),
click the pin icon in the upper right corner of the window (see Fig. 2.11). To enable auto
hide (if it previously has been disabled), click the pin icon again. Notice that when auto hide
is enabled, the pin points to the side, as is shown in Fig. 2.11.

Fig. 2.9 Solution Explorer window.

ollapse tree

xpand tree

Refresh Display all files

Solution Explorer with
an open solution

Properties window

tartup project

Solution Explorer without
an open solution

Chapter 2 Introduction to the Visual Studio .NET IDE 41

Fig. 2.10 Toolbox window.

Fig. 2.11 Demonstrating window auto-hide.

Controls Scroll Arrow

Toolbox group

Mouse over window name Toggle auto hide Close button

42 Introduction to the Visual Studio .NET IDE Chapter 2

2.4.3 Properties Window
The Properties window (Fig. 2.12) allows manipulation of the properties for a form or
control. Properties specify information about a control, such as size, color and position.
Each control has its own set of properties. The bottom of the Properties window contains
a description of the selected property.

The left column of the Properties window shows the properties of the control (a form
in Fig. 2.12). The right column displays their current values. Icons on the toolbar sort the
properties either alphabetically (by clicking the Alphabetic icon) or categorically (by
clicking the Categorized icon). Users can scroll through the list of properties by dragging
the scrollbar up or down (i.e., holding down the left mouse button while the mouse cursor
is over the scrollbar, moving the mouse up or down and releasing the mouse button). The
Event icon allows the control or form to respond to certain user actions. We discuss events
in Chapter 12, Graphical User Interface Concepts: Part 1. We show how to set individual
properties later in this chapter and throughout the book.

The Properties window also is important to visual programming. Controls are usu-
ally customized after they are created from the Toolbox. The Properties window allows
programmers to modify controls visually, without writing code. This setup has a number of
benefits. First, the programmer can see which properties are available for modification and
what the possible values are; the programmer does not have to look up or remember what
settings a particular property can have. Second, the window displays a brief description of
each property, allowing the programmer to understand each property’s purpose. Third, a
property’s value can be set quickly using the window; only a single click is required, and
no code need be written. All these features are designed to help software developers pro-
gram without performing many repetitive tasks.

At the top of the Properties window is a drop-down list called the component selec-
tion. This list shows the current component that is being altered. The programmer can use
the list to choose which component to edit. For example, if a GUI contains several buttons,
the programmer can select the name of a specific button to configure.

2.5 Using Help
Visual Studio .NET has an extensive help mechanism. The Help menu contains a variety
of options. The Contents menu item displays a categorized table of contents. Menu item
Index displays an alphabetical index that users can browse. The Search feature allows us-
ers to find particular help articles based on a few search words. In each case, a filter can
narrow the search to articles related only to C#.

Dynamic help (Fig. 2.13) provides a list of articles based on the current content (i.e.,
the items around the location of the mouse cursor). To open dynamic help (if it is not
already open), select the Help menu’s Dynamic Help command. Once you click an
object to display in Visual Studio .NET, relevant help articles will appear in the Dynamic
Help window. The window lists relevant help entries, samples and “Getting Started” infor-
mation, in addition to providing a toolbar for the regular help features. Dynamic help is an
excellent way to get information about the features of Visual Studio .NET. Note that for
some users, Dynamic Help slows down Visual Studio.

Chapter 2 Introduction to the Visual Studio .NET IDE 43

Performance Tip 2.1
If you experience slow response times from Visual Studio, you can disable (i.e., close) Dy-
namic Help by clicking the X in the upper-right corner of the window. 2.1

In addition to dynamic help, Visual Studio .NET provides context-sensitive help. Con-
text-sensitive help is similar to dynamic help, except that context-sensitive text immedi-
ately brings up a relevant help article rather than presenting a list. To use context-sensitive
help, select an item and press the F1 key. Help can appear either internally or externally.
With external help, a relevant article immediately pops up in a separate window, outside
the IDE. With internal help, a help article appears as a tabbed window inside Visual Studio
.NET. The help options can be set from the My Profile section of the Start Page.
Dynamic help and context-sensitive help are explained in the context of C# code later in
the book.

Fig. 2.12 Properties window.

Property Current value

Description

Categorized icon

Alphabetic icon

Event icon

Component
selection

Scroll bar

44 Introduction to the Visual Studio .NET IDE Chapter 2

2.6 Simple Program: Displaying Text and an Image
In this section, we create a program that displays the text “Welcome to C#!” and an im-
age. The program consists of a single form that uses a label to display text and a picture box
to display an image. Figure 2.14 shows the program as it executes. The example here (as
well as the image file used in the example) is available on our Web Site (www.dei-
tel.com) under the Downloads/Resources link.

We do not write a single line of program code. Instead, we use the techniques of visual
programming. Various programmer gestures (such as using the mouse for pointing,
clicking, dragging and dropping) provide Visual Studio .NET with sufficient information
for it to generate all or a major portion of the program code. In the next chapter, we begin
our discussion of writing program code. Throughout the book, we produce increasingly
substantial and powerful programs. Visual C# programming usually involves a combina-
tion of writing a portion of the program code and having Visual Studio .NET generate the
remaining code.

To create, run and terminate this first program, perform the following steps:

1. Create the new project. If a project is already open, close it by selecting File >
Close Solution from the menu. A dialog asking whether to save the current so-
lution may appear in order to keep any unsaved changes, save the solution. Create

Fig. 2.13 Dynamic Help window.

Selected item

Relevant help articles for currently
selected item (Start Page)

Dynamic Help window

Chapter 2 Introduction to the Visual Studio .NET IDE 45

a new Windows application for our program. Open Visual Studio .NET, and select
File > New > Project... > Visual C# Projects > Windows Application
(Fig. 2.15). Name the project ASimpleProgram, and select a directory in which
to save the project. To do this, click the Browse... button, which opens a Project
Location dialog (Fig. 2.16). Navigate through the directories, find one in which
to place the project and select OK. This selection returns us to the New Project
dialog; the selected folder appears in the Location text field. When you are sat-
isfied with the location of the project, click OK. Visual Studio .NET will load the
new solution, and a form labeled Form1 will appear.

Fig. 2.14 Simple program as it executes.

Fig. 2.15 Creating a new Windows application.

Project
name

Project
location

Click to change
project location

Project
type

46 Introduction to the Visual Studio .NET IDE Chapter 2

2. Set the form’s title bar. First, set the text that appears in the title bar. This text is
determined by the form’s Text property (Fig. 2.17). If the form’s Properties
window is not open, click the Properties icon in the toolbar or select the View
menu’s Properties Window command. Use the mouse to select the form; the
Properties window shows information about the currently selected item. In the
window, click in the box to the right of the Text property’s box. To set a value
for the Text property, type the value in the box. In this case, type A Simple
Program, as in Fig. 2.17. Press the Enter key (the Return key) when you have
finished to update the form’s title bar in the design area.

Fig. 2.16 Setting the project location.

Fig. 2.17 Setting the form’s Text property.

Selected project location Click to set project location

Selected
property Property value

Name and type
of object

Property
description

Chapter 2 Introduction to the Visual Studio .NET IDE 47

3. Resize the form. Click and drag one of the form’s enabled sizing handles (the small
squares around the form shown in Fig. 2.18) to change the size of the form. En-
abled sizing handles are white. The mouse cursor changes appearance when it is
over an enabled sizing handle. Disabled sizing handles are gray. The grid on the
background of the form is used to align controls and does not appear when the pro-
gram executes.

4. Change the form’s background color. The BackColor property specifies a
form’s or control’s background color. Clicking BackColor in the Properties
window causes a down-arrow button to appear next to the property value
(Fig. 2.19). When clicked, the down arrow drops down to display other options.
(The options vary, depending on the property.) In this case, it displays the tabs
System (the default), Web and Custom. Click the Custom tab to display the
palette (a selection box of colors). Select the box that represents yellow. The pal-
ette will disappear, and the form’s background color will change to yellow.

Fig. 2.18 Form with sizing handles.

Fig. 2.19 Changing property BackColor.

Disabled sizing handle

Enabled sizing handle

Grid

Title bar

Mouse pointer over
a sizing handle

Down arrow

Current color

Custom pallete

48 Introduction to the Visual Studio .NET IDE Chapter 2

5. Add a label control to the form. Double-click the label control in the Toolbox.
This action creates a label with sizing handles in the upper-left corner of the form
(Fig. 2.20). Double-clicking any Toolbox control places it on the form. Alterna-
tively, programmers can “drag” controls from the Toolbox to the form. Labels
display text; our label displays label1 by default. Notice that our label is the
same color as the form’s background color. The form’s background color is also
the default background color of controls added to the form.

6. Set the label’s text. Select the label so that its properties appear in the Properties
window. The label’s Text property determines the text (if any) that the label dis-
plays. The form and label each have their own Text property. Forms and controls
can have the same types of properties without conflict. We will see that many con-
trols have property names in common. Set the Text property of the label to Wel-
come to C#! (Fig. 2.21). Resize the label (using the sizing handles) if the text
does not fit. Move the label to the top center of the form by dragging it or using
the arrow keys. Alternatively, you can move the label by selecting Format >
Center In Form > Horizontally from the menu bar.

Fig. 2.20 Adding a new label to the form.

Fig. 2.21 Label in position with its Text property set.

Label control
New background
color

Label centered
with updated
Text property

Chapter 2 Introduction to the Visual Studio .NET IDE 49

7. Set the label’s font size, and align the label’s text. Clicking the Font property val-
ue causes an ellipsis button (…) to appear next to the value, as in Fig. 2.22. The
ellipsis button indicates that a dialog will appear when the programmer clicks the
button. When the button is clicked, the Font window shown in Fig. 2.23 is dis-
played. Users can select the font name (Microsoft Sans Serif, Arial, etc.), font
style (Regular, Bold, etc.) and font size (8, 10, etc.) in this window. The text in
the Sample area displays the selected font. Under the Size category, select 24
and click OK. If the text does not fit on a single line, it will wrap to the next line.
Resize the label if it is not large enough to hold the text. Next, select the label’s
TextAlign property, which determines how the text is aligned within the label.
A three-by-three grid of alignment choices is displayed, corresponding to where
the text appears in the label (Fig. 2.24). Select the top-center grid item, so that the
text will appear at the top center of the label.

8. Add a picture box to the form. The picture-box control displays images. This step is
similar to Step 5. Find the picture box in the toolbox, and add it to the form. Move
it underneath the label, by either dragging it or using the arrow keys (Fig. 2.25).

Fig. 2.22 Properties window displaying the label’s properties.

Fig. 2.23 Font window for selecting fonts, styles and sizes.

Ellipsis indicates
dialog will
appear

Current font

Font sample

50 Introduction to the Visual Studio .NET IDE Chapter 2

9. Insert an image. Click the picture box to load its properties in the Properties
window, and find the Image property. The Image property shows a preview of
the current picture. No picture has been assigned, so the Image property displays
(none) (Fig. 2.26). Click the ellipsis button to display an Open dialog
(Fig. 2.27). Browse for a picture to insert, and press Enter key. The proper formats
of an image include PNG (Portable Networks Graphic), GIF (Graphic Interchange
Format) and JPEG (Joint Photographics Experts Group). Each of these file for-
mats is widely supported on the Internet. To create a new picture, it is necessary
to use image-editing software, such as Jasc Paint Shop Pro, Adobe Photoshop El-
ements or Microsoft Paint. We use the picture ASimpleProgramImage.png,
which is located with this example on the CD that accompanies the book and on
our Web site (www.deitel.com). After the image has been inserted, the picture
box displays as much of the picture as it can (depending on size) and the Image
property shows a small preview. To display the entire image, resize the picture
box by dragging the picture box’s handles (Fig. 2.28).

Fig. 2.24 Centering the text in the label.

Fig. 2.25 Inserting and aligning the picture box.

Text alignment
options

Top-center
alignment option

Updated
label

New picture box

Chapter 2 Introduction to the Visual Studio .NET IDE 51

Fig. 2.26 Image property of the picture box.

Fig. 2.27 Selecting an image for the picture box.

Fig. 2.28 Picture box after the image has been inserted.

Image property
value (no image
selected)

Newly inserted
image (after resizing
the picture box)

52 Introduction to the Visual Studio .NET IDE Chapter 2

10. Save the project. Select File > Save All to save the entire solution. To save an
individual file, select it in the Solution Explorer, and select File > Save. The
created program stores the source code in the C# file Form1.cs. The project file
contains the names and locations of all the files in the project. Choosing Save All
saves both the project and the C# file.

11. Run the project. Prior to this step, we have been working in the IDE design mode
(i.e., the program being created is not executing). This mode is indicated by the
text Microsoft Visual C# .NET [design] in the title bar. While in design mode,
programmers have access to all the environment windows (i.e., Toolbox and
Properties), menus, toolbars and so forth. While in run mode, however, the pro-
gram is executing, and users can interact with only a few IDE features. Features
that are not available are disabled or grayed out. The text Form1.cs [Design] in
the title bar means that we are designing the form visually, rather than program-
ming it using code. If we had been writing code, the title bar would have contained
only the text Form1.cs. To execute or run our program, we first need to compile
it, which is accomplished by clicking on the Build Solution option in the Build
menu (or type <Ctrl> + Shift + B). The program can then be executed by clicking
the Start button (the blue triangle), selecting the Debug menu’s Start command
or pressing the F5 key. Figure 2.29 shows the IDE in run mode. Note that the IDE
title bar displays [run] and that many toolbar icons are disabled.

Fig. 2.29 IDE in run mode, with the running application in the foreground.

Running applicationForm design (with grid)

Run modeStart button End button Designing form

Chapter 2 Introduction to the Visual Studio .NET IDE 53

12. Terminating execution. To terminate the program, click the running application’s
Close button (the x in the top-right corner). Alternatively, click the End button
(the blue square) in the toolbar. Either action stops program execution and puts the
IDE into design mode.

We have just created a working C# program without writing a single line of code.
Visual programming allows us to create controls and set properties using windows, rather
than lines of code. In the next chapter, we discuss nonvisual, or conventional, program-
ming—we create a program using only code. C# programming is a mixture of the two
styles: Visual programming allows us to develop a GUI and avoid tedious tasks, while
conventional programming specifies the behavior of our program. The most important
part of an application is its behavior, which we explain how to program in the upcoming
chapters.

Software Engineering Observation 2.1
Visual programming can be simpler and faster than writing code. 2.1

Software Engineering Observation 2.2
Most programs require more than visual programming. In such programs, some code must
be written by hand. Examples include applications that use event handlers (used to respond
to the user’s actions), databases, security, networking, text editing, graphics and multimedia. 2.2

SUMMARY
• Visual Studio .NET is Microsoft’s integrated development environment (IDE) for creating, docu-

menting, running and debugging programs.

• When Visual Studio .NET is loaded for the first time, the Start Page is displayed. This page con-
tains helpful links, such as recent projects, online newsgroups, downloads and user profile settings.

• The Get Started section contains links to recent files.

• The My Profile page allows users to customize Visual Studio .NET.

• In the Visual Studio .NET IDE, users can browse the Web via Internet Explorer.

• Dialogs are windows that are used to communicate with users.

• Programs in Visual Studio .NET are organized into projects and solutions. A project is a group of
related files. A solution is a group of projects that are combined to solve a developer’s problem.

• Windows applications are programs that execute inside the Windows OS, like Microsoft Word,
Internet Explorer and Visual Studio .NET. They contain controls—reusable graphical elements,
such as buttons and labels—which the user uses to interact with the application.

• The form is what the users interact with and view when programs run.

• The form and its controls constitute the graphical user interface (GUI) of the program. Controls
are the graphical components with which the user interacts. Users enter data (inputs) into the pro-
gram by entering information from the keyboard and clicking the mouse buttons. The program dis-
plays instructions and other information (outputs) for users to read in the GUI.

• The title bar displays the name of the project, the programming language, the mode of the IDE, the
file being viewed and the mode of the file being viewed.

• To view a tabbed document, click the tab with the name of the document. Tabbing saves space and
allows easy access to multiple documents.

54 Introduction to the Visual Studio .NET IDE Chapter 2

• Menus contain groups of related commands that, when selected, cause the IDE to perform some
action. Visual Studio .NET provides different modes for the user. Certain menu items appear only
in some of these modes.

• The toolbar contains icons that represent menu commands. To execute a command, click the cor-
responding icon. Click the down arrow beside an icon to display other available options.

• Moving the mouse pointer over an icon highlights the icon and displays a tool tip.

• The Solution Explorer window lists all the files in the solution.

• The startup project of the solution is the project that runs when the program is executed.

• The plus and minus boxes to the left of the project and solution names expand and collapse the
tree, respectively.

• The Toolbox contains controls that customize forms.

• By using visual programming, programmers can “drag and drop” controls onto the form instead
of writing the code themselves.

• Moving the mouse pointer over the label of a hidden window opens the window. Moving the
mouse pointer outside the window causes the window to disappear. This feature is known as auto
hide. To “pin down” the Toolbox window (i.e., to disable auto hide), click the pin icon in the up-
per-right corner.

• The Properties window displays the properties for a form or control. Properties are information
about a control, such as size, color and position.

• Each type of control has its own set of properties.

• The left column of the Properties window shows the properties of the control. The right column
displays their current values. The toolbar sorts the properties either alphabetically (by clicking the
Alphabetic icon) or categorically (by clicking the Categorized icon).

• The Properties window allows programmers to modify controls visually, without writing code.

• The Help menu contains a variety of options. The Contents menu item displays a categorized
table of contents. Menu item Index displays an alphabetical index that can be browsed. The
Search feature allows users to find particular help articles, based on a few search words.

• For each option of the Help menu, a filter can be used to narrow the search to articles relating only
to C#.

• Dynamic help provides a list of articles, based on the current content (i.e., the location of the
mouse cursor).

• Context-sensitive help is similar to dynamic help, except that context-sensitive help immediately
brings up a relevant help article. To use context-sensitive help, select an item and press the F1 key.

• Visual C# programming usually involves a combination of writing a portion of the program code
and having Visual Studio .NET generate the remaining code.

• To create a new Windows Forms project, open Visual Studio .NET and select File > New >
Project...> Visual C# Projects > Windows Application. Name the project, and select a di-
rectory. Then click OK. Visual Studio .NET will load the new solution, and a blank form labeled
Form1 will appear.

• The text that appears on the top of the form (the title bar) is determined by the Text property of
the form. To set a value for the property, simply type it in the space provided. Press the Enter key
(Return key) when you have finished.

• To resize the form, click and drag one of the form’s enabled sizing handles (the small squares
around the form). Enabled sizing handles are white; disabled sizing handles are gray.

• The grid on the background of the form is used to align controls and does not appear when the
program is running.

Chapter 2 Introduction to the Visual Studio .NET IDE 55

• The BackColor property specifies a form’s or control’s background color. The form’s back-
ground color is the default background color for any controls added to the form.

• Double-clicking any Toolbox control icon places a control of that type on the form. Alternatively,
programmers can “drag” controls from the Toolbox to the form.

• The label’s Text property determines the text (if any) that the label displays. The form and label
each have their own Text property.

• When clicked, the ellipsis button displays a dialog.

• In the Font dialog users can select a font using the font name, font style and font size.

• The TextAlign property determines how the text is aligned within the label’s boundaries.

• The picture-box control allows us to display an image on the form. The Image property shows a
preview of the current picture. To select an image, click the ellipsis button, which displays an
Open dialog. Browse for a picture to insert (of the proper format, such as PNG, GIF or JPEG),
and then press the Enter key.

• Select File > Save All to save the entire solution. To save an individual file, select it in the So-
lution Explorer and select File > Save.

• The IDE design mode (i.e., the program is not executing) is indicated by the text Microsoft Vi-
sual C# .NET [Design] in the title bar.

• While in run mode, the program is executing, and users can interact with only a few IDE features.

• When designing a program visually, the name of the C# file will appear in the title bar, followed
by [Design].

• To execute or run a program, click the Start button (the blue triangle), or select Debug> Start.
The IDE title bar displays [Run], and many toolbar icons are disabled.

• Terminate execution by clicking the Close button. Alternatively, click the End button (a blue
square) in the toolbar.

TERMINOLOGY
Alignment property debug a program
Alphabetic icon Debug menu
Appearance category in the
 Properties window

design mode
dialog

auto hide double-clicking
BackColor property down arrow
background color dynamic help
Build menu Dynamic Help window
button Edit menu
Categorized icon expand a tree
clicking external help
close a project F1 help key
Close button icon File menu
collapse a tree find
compile a program Font property
context-sensitive help font size
control font style
control layout Font window
customize a form form
customize Visual Studio .NET form’s background color
Data menu form’s title bar

56 Introduction to the Visual Studio .NET IDE Chapter 2

SELF-REVIEW EXERCISES
2.1 Fill in the blanks in each of the following statements:

a) The technique of allows us to create a GUI without writing any code.
b) A is a group of related files, compiled into one application.
c) The feature saves screen space when the mouse is moved away from a win-

dow.
d) A appears when the mouse cursor hovers over an icon.
e) The window allows you to browse the files in your solution.
f) A plus icon indicates that the tree in the Solution Explorer can .
g) The Properties window can be sorted or .
h) The form’s property determines the text that appears in its title bar.
i) The allows us to add controls to the form visually.
j) displays relevant help articles, based on the current context.

2.2 State whether each of the following is true or false. If false, explain why.
a) The title bar displays the mode of the IDE.
b) The Start Page allows the user to customize the IDE.
c) The x button toggles auto hide in most windows.
d) The toolbar provides a convenient way to execute certain menu commands.
e) The toolbar contains the control icons.
f) A form’s sizing handles are always enabled when the form is selected.
g) Both forms and labels have a title bar.
h) Controls can be modified only by writing code.
i) Buttons usually perform actions when clicked.
j) The grid appears when designing a form, but not during execution.

Format menu property for a form or control
GUI (Graphical User Interface) recent project
help filter Run menu
Help menu run mode
icon selecting
IDE (integrated development environment) single-clicking with the left mouse button
input sizing handle
internal help solution
Internet Explorer Solution Explorer in Visual Studio .NET
label Start button
menu Start Page
menu bar in Visual Studio .NET startup project
mouse pointer tabbed window
new project in Visual Studio .NET Text property
opening a project title bar
output tool tip
palette toolbar
paste toolbar icon
picture box Tools menu
pin a window undo
print a project View menu
project Visual Studio .NET
Project menu window layout
Properties window Windows application
property Windows menu

Chapter 2 Introduction to the Visual Studio .NET IDE 57

ANSWERS TO SELF-REVIEW EXERCISES
2.1 a) visual programming. b) project. c) auto hide. d) tool tip. e) Solution Explorer. f) expand.
g) alphabetically, categorically. h) Text. i) Toolbox. j) Dynamic help.

2.2 a) True. b) True. c) False. The pin icon toggles auto hide. d) True. e) False. The Toolbox
contains the control icons. f) False. Some of a form’s sizing handles are disabled. g) False. Forms
have a title bar; labels do not. h) False. Control properties can be set using the Properties window.
i) True. j) True.

EXERCISES
2.3 Fill in the blanks in each of the following statements:

a) The button in the Properties window indicates that a dialog will appear.
b) To save every file in a solution, use the menu selection .
c) help immediately brings up a relevant article. It can be accessed pressing the

 key.
d) GUI stands for .

2.4 State whether each of the following is true or false. If false, explain why.
a) Certain menu items appear only when designing a form.
b) The form, label and picture box have identical properties.
c) A person can browse the Internet from within Visual Studio .NET.
d) Visual C# programmers often create complex applications without writing any code.
e) Sizing handles are visible during execution.

2.5 Some features appear throughout Visual Studio .NET, performing similar actions in different
contexts. Explain and give examples of how plus/minus icons, ellipsis buttons, down arrows and tool
tips act in this manner. Why do you think Visual Studio .NET was designed to be this way?

2.6 Build the GUIs described in each part of the exercise. (You need not provide any functional-
ity.) Execute each program, and determine what happens when a control is clicked with the mouse.
Drag controls from the Toolbox onto the form, and resize them as necessary.

a) This GUI consists of a MainMenu and a RichTextBox. Both controls can be dragged
from the ToolBox onto the form or double clicked. After inserting the MainMenu, add
items by clicking in the Type Here section, typing in the name of a menu item and press-
ing the Enter key. Resize the RichTextBox to fill the form.

58 Introduction to the Visual Studio .NET IDE Chapter 2

b) This GUI consists of two Labels (font size 12, yellow background): a MonthCalen-
dar and a RichTextBox. The calendar is displayed when the MonthCalendar is
dragged on the form. The MonthCalendar and RichTextBox controls are similar
to the controls we have seen previously. They can be dragged onto the form (or double
clicked), then manipulated with the Properties window. [Hint: Use the BackColor
property to change the background color of the labels.]

2.7 Fill in the blanks in each of the following statements:
a) The property specifies which image a picture box displays.
b) The has an icon in the Toolbox, but is not a control.
c) The menu contains commands for arranging and displaying windows.
d) Property determines a form’s or control’s background color.

2.8 Briefly describe each of the following IDE features:
a) toolbar
b) menu bar
c) toolbox
d) control
e) form
f) project
g) title bar

3
Introduction to C#

Programming

Objectives
• To be able to write simple C# programs.
• To be able to use input and output statements.
• To become familiar with primitive data types.
• To understand basic memory concepts.
• To be able to use arithmetic operators.
• To understand the precedence of arithmetic operators.
• To be able to write decision-making statements.
• To be able to use relational and equality operators.
Comment is free, but facts are sacred.
C. P. Scott

The creditor hath a better memory than the debtor.
James Howell

When faced with a decision, I always ask, “What would be
the most fun?”
Peggy Walker

Equality, in a social sense, may be divided into that of
condition and that of rights.
James Fenimore Cooper

60 Introduction to C# Programming Chapter 3

3.1 Introduction
This chapter introduces C# programming and presents examples that illustrate several im-
portant features of the language. Examples are analyzed one line at a time. In this chapter,
we create console applications—applications that contain only text output. There are sev-
eral types of projects that we can create in C#; the console application is one of the basic
types. Text output in a console application is displayed in a console window (also called a
console window). On Microsoft Windows 95/98, the console window is the MS-DOS
prompt. On Microsoft Windows NT/2000/XP, the console window is called the com-
mand prompt. With C#, a program can be created with multiple types of output (win-
dows, dialogs and so forth). These programs are called Windows applications and provide
graphical user interfaces. We showed an example of a Windows application in Chapter 2,
when we printed a message on a form. These types of applications will be discussed in
greater detail, beginning with Chapter 4, Control Structures: Part 1 and Chapter 5, Control
Structures: Part 2. In these chapters, we will also provide a detailed treatment of program
development and program control in C#.

3.2 Simple Program: Printing a Line of Text
C# uses some notations that might appear strange to nonprogrammers. We begin by con-
sidering a simple program that displays a line of text. The program and its output are shown
in Fig. 3.1. The program is followed by an output window that displays the program’s re-
sults. When you execute this program, the output will appear in a console window.

Outline

3.1 Introduction
3.2 Simple Program: Printing a Line of Text
3.3 Another Simple Program: Adding Integers
3.4 Memory Concepts
3.5 Arithmetic
3.6 Decision Making: Equality and Relational Operators

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 // Fig. 3.1: Welcome1.cs
2 // A first program in C#.
3
4 using System;
5
6 class Welcome1
7 {
8 static void Main(string[] args)
9 {

10 Console.WriteLine("Welcome to C# Programming!");
11 }
12 }

Fig. 3.1 Our first program in C#. (Part 1 of 2.)

Chapter 3 Introduction to C# Programming 61

This program illustrates several important features of C#. All programs we present in
this book will include line numbers for the reader’s convenience; these line numbers are not
part of the C# programs. Line 10 in Fig. 3.1 does the “real work” of the program, displaying
the phrase Welcome to C# Programming! on the screen.

Line 1 begins with //, indicating that the remainder of the line is a comment. Program-
mers insert comments to document and improve the readability of their code. Comments
also help other people read and understand your programs. This comment simply indicates
the figure number and file name for this program. We begin each program in this book in
this manner. In this case, we have named the file Welcome1.cs. A comment that begins
with // is called a single-line comment, because the comment terminates at the end of the
line. Single-line comments can be placed almost anywhere in the program.

There is also a syntax for writing multiple-line comments. A multiple-line comment,
such as

/* This is a multiple–line
 comment. It can be
 split over many lines */

begins with delimiter /* and ends with delimiter */. All text between these delimiters is
treated as a comment and is ignored by the compiler. In the Visual Studio .NET IDE, all
comment text appears in green. Comments of the form // and /* … */ are ignored by the
compiler; therefore, they do not cause the computer to perform any action when the pro-
gram executes.

Common Programming Error 3.1
Forgetting one of the delimiters of a multiple-line comment is a syntax error. A syntax error
is caused when the compiler cannot recognize a statement. The compiler normally issues an
error message to help the programmer locate and fix the incorrect statement. Syntax errors
are violations of the language rules. Syntax errors are also called compile errors, compile-
time errors or compilation errors because they are detected during the compilation phase. A
program cannot compile or execute until all the syntax errors are corrected. 3.1

Software Engineering Observation 3.1
Visual Studio will often times catch syntax errors as you are creating the program, even be-
fore the program is compiled. Look out for red jagged lines that may appear directly below
a syntax error. 3.1

C# uses the same syntax as the C programming language for multiple-line comments
(/*…*/) and the same syntax as C++ for single-line comments (//). C# programmers
generally use C++-style single-line comments, instead of C-style comments. Throughout
this book, we use mostly C++-style single-line comments.

Good Programming Practice 3.1
Every program should begin with one or more comments that describe the program’s pur-
pose. 3.1

Welcome to C# Programming!

Fig. 3.1 Our first program in C#. (Part 2 of 2.)

62 Introduction to C# Programming Chapter 3

Line 4 (known as a using directive) is generated by the Visual Studio IDE and
declares that the program uses features in the System namespace. A namespace groups
various C# features into related categories. One of the great strengths of C# is that C# pro-
grammers can use the rich set of namespaces provided by the .NET framework. These
namespaces contain code that programmers can reuse, rather than “reinventing the
wheel.” This makes programming easier and faster. The namespaces that are defined in
the .NET Framework contain preexisting code known as the .NET Framework Class
Library. An example of one of the features in namespace System is Console, which
we discuss momentarily. The various features are organized into namespaces that enable
programmers to locate them easily. We discuss many namespaces and their features
throughout the book.

Line 5 is a blank line. Programmers often use blank lines and space characters
throughout a program to make the program easier to read. Collectively, blank lines, space
characters, newline characters and tab characters are known as whitespace (space charac-
ters and tabs are known specifically as whitespace characters). Newline characters charac-
ters are “special characters” that indicate when to position the output cursor at the
beginning of the next line in the console window to continue output. The compiler ignores
blank lines, tabs and extra spaces that separate language elements. Several conventions for
using whitespace characters are discussed in this and subsequent chapters.

Good Programming Practice 3.2
Use blank lines, space characters and tab characters in a program to enhance program read-
ability. 3.2

Lines 6–12 define our first class (these lines collectively are called a class definition).
C# programs consist of pieces called classes, which are logical groupings of members (e.g.,
methods) that simplify program organization. These methods (which are like functions in
procedural programming languages) perform tasks and return information when the tasks
are completed. A C# program consists of classes and methods created by the programmer
and of preexisting classes found in the Framework Class Library. Throughout this book, we
will teach the reader how to use both techniques in their programs. Every program in C#
consists of at least one class definition that the programmer defines. These classes are
known as programmer-defined classes. In Chapter 8, Object-Based Programming, we dis-
cuss programs that contain multiple programmer-defined classes. The class keyword
begins a class definition in C# and is followed immediately by the class name (Welcome1,
in this example). Keywords (or reserved words) are reserved for use by C# and always con-
sist of lowercase letters. (A complete table of C# keywords is presented in the next chapter.)
By convention, each word in a class name begins with an uppercase first letter and has an
uppercase letter for each word in the class name (e.g., SampleClassName). The name
of the class is known as an identifier, which is a series of characters consisting of letters,
digits, underscores (_) and “at” symbols (@). Identifiers cannot begin with a digit and
cannot contain spaces. Examples of valid identifiers are Welcome1, _value,
m_inputField1 and button7. The name 7button is not a valid identifier because it
begins with a digit, and the name input field is not a valid identifier because it contains
a space. The “at” character (@) can be used only as the first character in an identifier. C# is
case sensitive—uppercase and lowercase letters are considered different letters, so a1 and
A1 are different identifiers.

Chapter 3 Introduction to C# Programming 63

Common Programming Error 3.2
C# is case sensitive. Not using the proper case for an identifier, e.g.,writing Total when the
identifier is total, is a compiler error. 3.2

Good Programming Practice 3.3
Always begin a class name with an uppercase first letter. This practice makes class names
easier to identify. 3.3

The left brace ({) at line 7 begins the body of the class definition. The corresponding
right brace (}) at line 12 ends the class definition. Notice that lines 8–11 in the body of the
class are indented. This is one of the spacing conventions mentioned earlier. Indentation
improves program readability. We define each spacing convention as a Good Program-
ming Practice.

Common Programming Error 3.3
If braces do not occur in matching pairs, a syntax error occurs. 3.3

Good Programming Practice 3.4
When typing an opening left brace ({) in a program, immediately type the closing right brace
(}) then reposition the cursor between the braces to begin typing the body. This practice
helps prevent missing braces. Readers may notice that, when they type the closing brace, Vi-
sual Studio .NET makes both braces bold (as well as the first line of the class definition). This
is helpful in the creation of more complex programs that involve multiple sets of opening and
closing braces. 3.4

Good Programming Practice 3.5
Indent the entire body of each class definition one “level” of indentation between the left
brace ({) and the right brace (}) that delimit the class body. This emphasizes the structure
of the class definition and helps make the class definition easier to read. Visual Studio .NET
provides indentation in several places as programmers enter code. 3.5

Line 8 is present in all C# console and Windows applications. These applications begin
executing at Main, which is known as the entry point of the program. The parentheses after
Main indicate that Main is a program building block, called a method. C# class definitions
normally contain one or more methods and C# applications contain one or more classes.
For a C# console or Windows application, exactly one of those methods must be called
Main, and it must be defined as shown on line 8; otherwise, the program is not executable.
Normally, a console applications’s Main method is defined as shown on line 8. Methods
are explained in detail in Chapter 6, Methods. For now, simply mimic Main’s first line in
each C# application.

The left brace ({) on line 9 begins the body of the method definition (the code which
will be executed as a part of our program). A corresponding right brace (}) terminates the
method definition’s body (line 11). Notice that the line in the body of the method is
indented between these braces.

Good Programming Practice 3.6
Indent the entire body of each method definition one “level” of indentation between the left
brace ({) and the right brace (}) that define the method body. This makes the structure of the
method stand out, improving the method definition’s readability. 3.6

64 Introduction to C# Programming Chapter 3

Line 10 instructs the computer to perform an action, namely, to print a series of char-
acters contained between the double quotation marks. Characters delimited in this
manner are called strings, character strings or string literals. We refer to characters
between double quotation marks generically as strings. Whitespace characters in strings
are significant—the compiler does not ignore these characters when they appear in
strings.

The Console class enables programs to output information to the computer’s stan-
dard output. Class Console provides methods that allow C# programs to display strings
and other types of information in the Windows command prompt.

Method Console.WriteLine displays (or prints) a line of text in the console
window. When Console.WriteLine completes its task, it positions the output cursor
(the location where the next character will be displayed) at the beginning of the next line in
the console window. (This is similar to pressing the Enter key when typing in a text
editor—the cursor is repositioned at the beginning of the next line in the file.)

The entire line, including Console.WriteLine, its argument in the parentheses
("Welcome to C# Programming!") and the semicolon (;), is called a statement.
Every statement must end with a semicolon (known as the statement terminator). When this
statement executes, it displays the message Welcome to C# Programming! in the con-
sole window (Fig. 3.1).

In C# statements we normally precede each class name with its namespace name and
a period. For example, line 10 would normally be

System.Console.WriteLine("Welcome to C# Programming!");

for the program to run correctly. The using directive on line 4 eliminates the need to spec-
ify explicitly the namespace System when using classes in the namespace. This can save
time and confusion for programmers.

Common Programming Error 3.4
Omitting the semicolon at the end of a statement is a syntax error. 3.4

Testing and Debugging Tip 3.1
When the compiler reports a syntax error, the error might not be on the line indicated by the
error message. First, check the line where the error was reported. If that line does not con-
tain syntax errors, check the lines that precede the one reported. 3.1

Now that we have presented this program to you, let us explain step-by-step how to
create and run it in Visual Studio.

1. Create the console application. Go to the File menu and choose New, then
Project…. A dialog will appear. In the left pane, choose Visual C# Projects;
from the right pane, choose Console Application. It is possible to specify other
information about the project in the bottom portion of this dialog (i.e., the name
and location of the project). After entering all the necessary information, click OK
to create the project. The project is created, and the code window is opened for
editing. The new application is shown in Fig. 3.2. Note that this is the same way
we created our application in Chapter 2, except that now we have chosen a console
application, instead of a Windows application.

Chapter 3 Introduction to C# Programming 65

This application can be built (compiled) and executed, but will not do any-
thing until we add more code (this is done in Step 3). Let us briefly look at the code
generated for us by the IDE.

Notice that this code contains features that we have not yet discussed. We
have done this for both display and clarity reasons—at this point in the book, this
code is neither required nor relevant to the discussion of this program. Much of
the extra code that the IDE provides is used either for documentation or to help
create graphical user interfaces. One of the things that the reader will no doubt no-
tice is that we do not show the lines directly above and below the class definition.
These lines are used to create namespaces, a topic that will be discussed in Chapter
8, Object-Based Programming. [Note: Several times early in this text, we ask the
reader to mimic certain C# features that we introduce. We do this especially when
it is not yet important to know all the details of a feature to use that feature in C#.
All programmers initially learn how to program by mimicking what other pro-
grammers have done. For each detail, we ask the reader to mimic, we indicate
where the full discussion will be presented later in the text.] The code for all ex-
amples in the book is included for the reader on our Web site www.deitel.com
under the Downloads/Resources link.

2. Change the name of the program file. For the programs in this book, we usually
change the name of the code file. By default, the file is named Class1.cs. This
can be changed by right-clicking the name of the file in the Solution Explorer

Fig. 3.2 Visual Studio .NET-generated console application.

66 Introduction to C# Programming Chapter 3

and selecting Rename. The reader can then enter a new name for the file, provid-
ed that this file ends in .cs (the file extension for C# code files).

3. Complete the code. In the text editor, replace the comment

//
// TODO: Add code to start application here
//

which is located within method Main with line 10 from Fig. 3.1 (this comment is
no longer necessary, for we are adding code to the program).

4. Run the program. We are now ready to compile and execute our program. To do
this, we simply follow the same steps that we executed for the example in Chapter
2. To compile the program, go to the Build menu and select Build Solution. If
the program contains no syntax errors, the preceding command creates a new file
called Welcome1.exe, containing the MSIL code for our application. To exe-
cute this program, choose option Start Without Debugging1 in the Debug
menu.

Program execution begins with method Main, which is the entry point to the program.
Next, the statement at line 10 of Main displays Welcome to C# Programming!
Figure 3.3 shows result of executing the program.

The message Welcome to C# Programming! can be displayed via multiple
method calls. Class Welcome2 of Fig. 3.4 uses two statements to produce the same output
shown in Fig. 3.3.

Lines 10–11 of Fig. 3.4 display one line in the console window. The first statement
calls Console method Write to display a string. Unlike WriteLine, Write does not
position the output cursor at the beginning of the next line in the console window after dis-
playing its string. The next character displayed in the console window appears immediately
after the last character displayed with Write. Thus, when line 11 executes, the first char-
acter displayed (C) appears immediately after the last character displayed with Write (i.e.,
the space character after the word "to" in line 10). Each Write or WriteLine state-
ment resumes displaying characters from where the last Write or WriteLine stopped.

1. Selecting Debug > Start Without Debugging causes the command window to prompt the user
to press a key after the program terminates, allowing the user to observe the program’s output. In
contrast, if we run this program using Debug > Start, as we did for the Windows application in
Chapter 2, a command window opens, the program displays the message Welcome to C# Pro-
gramming!, then the command window closes immediately.

Fig. 3.3 Execution of the Welcome1 program.

Chapter 3 Introduction to C# Programming 67

A single statement can display multiple lines by using newline characters. Recall that
these characters indicate when to position the output cursor at the beginning of the next line
in the console window to continue output. Figure 3.5 demonstrates using newline characters.

Line 10 produces four separate lines of text in the console window. Normally, the char-
acters in a string are displayed exactly as they appear between the double quotes. However,
notice that the two characters “\” and “n” do not appear on the screen. The backslash (\)
is called an escape character. It indicates that a “special” character is to be output. When a
backslash is encountered in a string of characters, the next character is combined with the
backslash to form an escape sequence. This escape sequence \n is the newline character.
It causes the cursor (i.e., the current screen position indicator) to move to the beginning of
the next line in the console window. Some common escape sequences are listed in Fig. 3.6.

1 // Fig. 3.4: Welcome2.cs
2 // Printing a line with multiple statements.
3
4 using System;
5
6 class Welcome2
7 {
8 static void Main(string[] args)
9 {

10 Console.Write("Welcome to ");
11 Console.WriteLine("C# Programming!");
12 }
13 }

Welcome to C# Programming!

Fig. 3.4 Printing on one line with separate statements.

1 // Fig. 3.5: Welcome3.cs
2 // Printing multiple lines with a single statement.
3
4 using System;
5
6 class Welcome3
7 {
8 static void Main(string[] args)
9 {

10 Console.WriteLine("Welcome\nto\nC#\nProgramming!");
11 }
12 }

Welcome
to
C#
Programming!

Fig. 3.5 Printing on multiple lines with a single statement.

68 Introduction to C# Programming Chapter 3

Although the first several programs display output in the command prompt, most C#
applications use windows or dialogs to display output. As mentioned earlier, dialogs are
windows that typically display important messages to the user of an application. The .NET
Framework Class Library includes class MessageBox for creating dialogs. Class Mes-
sageBox is defined in namespace System.Windows.Forms. The program in Fig. 3.7
displays the same string as Fig. 3.5 in a message dialog using class MessageBox.

Escape sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the cur-
rent line; do not advance to the next line. Any characters output after
the carriage return overwrite the previous characters output on that
line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote (") character.

Fig. 3.6 Some common escape sequences.

1 // Fig. 3.7: Welcome4.cs
2 // Printing multiple lines in a dialog Box.
3
4 using System;
5 using System.Windows.Forms;
6
7 class Welcome4
8 {
9 static void Main(string[] args)

10 {
11 MessageBox.Show("Welcome\nto\nC#\nprogramming!");
12 }
13 }

Fig. 3.7 Displaying multiple lines in a dialog.

Chapter 3 Introduction to C# Programming 69

Many compiled classes in C# (including MessageBox) need to be referenced before
they can be used in a program. Depending on the type of application we create, classes may
be compiled into files with a .exe (executable) extension, a .dll (or dynamic link
library) extension or one of several other extensions. Such files are called assemblies and
are the packaging units for code in C#. [Note: Assemblies can be comprised of many files
of several different types.] Namespaces group related classes together; the assembly is a
package containing the Microsoft Intermediate Language (MSIL) code that a project has
been compiled into, plus any other information that is needed for these classes. The
assembly that we need to reference can be found in the Visual Studio .NET documentation
(also called the MSDN Documentation) for the class we wish to use. The easiest way to
access this information is to go to the Help menu in Visual Studio, and choose Index. The
reader can then type in the name of the class to access the documentation. Class Mes-
sageBox is located in assembly System.Windows.Forms.dll. As mentioned pre-
viously, we must add a reference to this assembly to use class MessageBox in our
program. Let us discuss an example of adding a reference to System.Windows.Forms
within the IDE.

Common Programming Error 3.5
Including a namespace with the using directive, but not adding a reference to the proper
assembly, results in a compiler error. 3.5

To begin, make sure you have an application open. Select the Add Reference…
option from the Project menu, or right click the References folder in the Solution
Explorer and select Add Reference… from the popup menu that appears. This opens
the Add Reference dialog (Fig. 3.8). Double click System.Windows.Forms.dll
to add this file to the Selected Components list at the bottom of the dialog, then click
OK. Notice that System.Windows.Forms now appears in the References folder of
the Solution Explorer (Fig. 3.8).

After referencing the appropriate assembly and providing a using directive for the
corresponding namespace (line 5), we can use the classes in that namespace (such as
MessageBox).

The reader may notice that we did not add any references to our previous programs.
Visual Studio adds a few common references when a project is created. Also, by default,
some assemblies do not require references. Class Console, for instance, is located in the
assembly mscorlib.dll, but a reference to this assembly is not required to use it.

The System.Windows.Forms namespace contains many classes that help C# pro-
grammers define graphical user interfaces (GUIs) for their applications. GUI components
(e.g., buttons) facilitate both data entry by the user and the formatting or presenting of data
outputs to the user. For example, Fig. 3.9 is an Internet Explorer window with a bar con-
taining menus (File, Edit, View etc.). Below the menu bar there is a set of buttons, each
with a defined task in Internet Explorer. Below the buttons there is a text field in which the
user can type the location of a World Wide Web site to visit. To the left of the text field is
a label that indicates the purpose of the text field. The menus, buttons, text fields and labels
are part of Internet Explorer’s GUI. They enable users to interact with the Internet Explorer
program. C# contains classes that create the GUI components described here. Other classes
that create GUI components will be described in Chapters 12 and 13, Graphical User Inter-
faces: Part 1 and Graphical User Interfaces: Part 2.

70 Introduction to C# Programming Chapter 3

In Main, line 11 calls method Show of class MessageBox (Fig. 3.7). This method
takes a string as an argument and displays it to the user in a message dialog. Method Show
is called a static method. Such methods are always called by using their class name (in this
case, MessageBox) followed by a dot operator (.) and the method name (in this case,
Show). We discuss static methods in Chapter 8, Object-Based Programming.

Line 11 displays the dialog box shown in Fig. 3.10. The dialog includes an OK button
that allows the user to dismiss (close) the dialog. Positioning the mouse cursor (also called
the mouse pointer) over the OK button and clicking the mouse dismisses the dialog.

C# allows large statements to be split over many lines. For example, we could have
split the statement on line 11 into the following two lines:

MessageBox.Show(
"Welcome\nto\nC#\nprogramming!");

All statements end with a semicolon (;), so the compiler recognizes that these two lines
represent only one statement. However, you cannot split a statement in the middle of an
identifier (e.g., the class name) or a string.

Fig. 3.8 Adding a reference to an assembly in Visual Studio .NET.

Solution Explorer

System.Windows.Forms
reference

References folder

Add Reference dialog

Chapter 3 Introduction to C# Programming 71

Common Programming Error 3.6
Splitting a statement in the middle of an identifier or a string is a syntax error. 3.6

The user can close the dialog by clicking the OK button or the close box. Once this
occurs, the program terminates, because the Main method terminates.

3.3 Another Simple Program: Adding Integers
Our next application (Fig. 3.11) inputs two integers (whole numbers) typed by a user at the
keyboard, computes the sum of these values and displays the result. As the user types each
integer and presses the Enter key, the integer is read into the program and added to the total.
Lines 1–2 are single-line comments stating the figure number, file name and purpose of the
program.

As stated previously, every C# program consists of at least one class definition. Line
6 begins the definition of class Addition. Lines 7–37 define the body of the class. Recall
that all class definitions start with an opening left brace ({) and end with a closing right
brace (}).

Fig. 3.9 Internet Explorer’s GUI.

Fig. 3.10 Dialog displayed by calling MessageBox.Show.

Text fieldMenuButtonLabel Menu bar

OK button allows the user
to dismiss the dialog.

Dialog is automatically
sized to accommodate
its contents.

Mouse cursor

Close box

72 Introduction to C# Programming Chapter 3

The program begins execution with method Main on line 8. The left brace (line 9)
begins Main’s body and the corresponding right brace (line 35) terminates Main’s body.

Lines 10–11 are a declaration. The words firstNumber and secondNumber are
the names of variables. A variable is a location in the computer’s memory where a value
can be stored for use by a program. All variables must be declared with a name and a data
type before they can be used in a program. This declaration specifies that the variables
firstNumber and secondNumber are data of type string, which means that these

1 // Fig. 3.11: Addition.cs
2 // An addition program.
3
4 using System;
5
6 class Addition
7 {
8 static void Main(string[] args)
9 {

10 string firstNumber, // first string entered by user
11 secondNumber; // second string entered by user
12
13 int number1, // first number to add
14 number2, // second number to add
15 sum; // sum of number1 and number2
16
17 // prompt for and read first number from user as string
18 Console.Write("Please enter the first integer: ");
19 firstNumber = Console.ReadLine();
20
21 // read second number from user as string
22 Console.Write("\nPlease enter the second integer: ");
23 secondNumber = Console.ReadLine();
24
25 // convert numbers from type string to type int
26 number1 = Int32.Parse(firstNumber);
27 number2 = Int32.Parse(secondNumber);
28
29 // add numbers
30 sum = number1 + number2;
31
32 // display results
33 Console.WriteLine("\nThe sum is {0}.", sum);
34
35 } // end method Main
36
37 } // end class Addition

Please enter the first integer: 45

Please enter the second integer: 72

The sum is 117.

Fig. 3.11 Addition program that adds two values entered by the user.

Chapter 3 Introduction to C# Programming 73

variables store strings of characters. There are certain data types already defined in the
.NET Framework, known as built-in data types or primitive data types. Types such as
string, int, double and char are examples of primitive data types. Primitive type
names are keywords. The 15 primitive types are summarized in Chapter 4, Control Struc-
tures: Part 1.

A variable name can be any valid identifier. Declarations end with a semicolon (;) and
can be split over several lines with each variable in the declaration separated by a comma
(i.e., a comma-separated list of variable names). Several variables of the same type may be
declared in one or in multiple declarations. We could have written two declarations, one for
each variable, but the preceding declaration is more concise. Notice the single-line com-
ments at the end of each line. This is a common syntax used by programmers to indicate
the purpose of each variable in the program.

Good Programming Practice 3.7
Choosing meaningful variable names helps a program to be “self-documenting” (i.e., easier
to understand simply by reading it, rather than having to read manuals or use excessive com-
ments). 3.7

Good Programming Practice 3.8
By convention, variable-name identifiers begin with a lowercase letter. As with class names,
every word in the name after the first word should begin with a capital letter. For example,
identifier firstNumber has a capital N in its second word, Number. 3.8

Good Programming Practice 3.9
Some programmers prefer to declare each variable on a separate line. This format allows for
easy insertion of a comment that describes each variable. 3.9

Lines 13–15 declare that variables number1, number2 and sum are of data type
int, which means that these variables will hold integer values (i.e., whole numbers such
as –11, 7, 0 and 31914). In contrast, the data types float and double specify real num-
bers (i.e., floating-point numbers with decimal points, such as 3.4, 0.0 and –11.19) and vari-
ables of type char specify character data. A char variable may hold only a single
lowercase letter, a single uppercase letter, a single digit or a single character, such as x, $,
7, * and escape sequences (like as the newline character \n). Oftentimes in programs,
characters are denoted in single quotes, such as 'x', '$', '7', '*' and '\n', to differ-
entiate between a value and a variable name. C# is also capable of representing all Unicode
characters. Unicode is an extensive international character set (collection of characters)
that enables the programmer to display letters in different languages, mathematical sym-
bols and much more. For more information on this topic, see Appendix G, Unicode.

Lines 18–19 prompt the user to input an integer and read from the user a string rep-
resenting the first of the two integers that the program will add. The message on line 18 is
called a prompt, because it directs the user to take a specific action. Method ReadLine
(line 19) causes the program to pause and wait for user input. The user inputs characters
from the keyboard, then presses the Enter key to return the string to the program. Unfortu-
nately, the .NET Framework does not provide a simple input dialog. For this reason, the
examples in these early chapters receive user input through the command prompt.

Technically, the user can send anything to the program as input. For this program, if
the user types a noninteger value, a run-time logic error (an error that has its effect at exe-

74 Introduction to C# Programming Chapter 3

cution time) occurs. Chapter 11, Exception Handling, discusses how to make your pro-
grams more robust by handling such errors.

When the user enters a number and presses Enter, the program assigns the string rep-
resentation of this number to variable firstNumber (line 19) with the assignment oper-
ator =. The statement is read as, “firstNumber gets the value returned by method
ReadLine.” The = operator is a binary operator, because it has two operands—first-
Number, and the result of the expression Console.ReadLine. The entire statement is
an assignment statement, because it assigns a value to a variable. In an assignment state-
ment, first the right side of the assignment is evaluated, then the result is assigned to the
variable on the left side of the assignment. So, line 19 executes method ReadLine, then
assigns the string value to firstNumber.

Good Programming Practice 3.10
Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable. 3.10

Lines 22–23 prompt the user to enter a second integer and read from the user a string
representing the value. Lines 26–27 convert the two strings input by the user to int values
that can be used in a calculation. Method Int32.Parse (a static method of class Int32)
converts its string argument to an integer. Class Int32 is part of the System
namespace. Line 26 assigns the integer that Int32.Parse returns to variable number1.
Any subsequent references to number1 in the program use this integer value. Line 27
assigns the integer that Int32.Parse returns to variable number2. Any subsequent ref-
erences to number2 in the program use this integer value. You can eliminate the need for
string variables firstNumber and secondNumber by combining the input and
conversion operations as follows:

int number1;
number1 = Int32.Parse(Console.ReadLine());

In C#, users input data as strings. We convert these strings to perform integer arith-
metic. Arithmetic operations, as we will discuss in Section 3.5, do not work with strings
the same way operations work with integers. To add numbers and get the proper sum, we
must convert the strings to integers. The preceding statements do not make use of the
string variable (firstNumber). This variable is required only to store the string
temporarily until the program converts it. Reading the string and converting it on one
line makes the variable unnecessary.

The assignment statement on line 30 calculates the sum of the variables number1 and
number2 and assigns the result to variable sum by using the assignment operator =. The
statement is read as, “sum gets the value of number1 plus number2.” Most calculations
are performed in assignment statements.

After performing the calculation, line 33 displays the result of the addition. In this
example, we want to output the value in a variable using method WriteLine. Let us dis-
cuss how this is done.

The comma-separated arguments to Console.WriteLine

"\nThe sum is {0}.", sum

use {0} to indicate a placeholder for a variable’s value. If we assume that sum contains
the value 117, the expression evaluates as follows: Method WriteLine encounters a

Chapter 3 Introduction to C# Programming 75

number in curly braces, {0}, known as a format. This indicates that the variable found after
the string in the list of arguments (in this case, sum) will be evaluated and incorporated into
our string, in place of the format. The resulting string will be “The sum is 117.” Simi-
larly, in the statement

Console.WriteLine(
"The numbers entered are {0} and {1}", number1, number2);

the value of number1 would replace {0} (because it is the first variable) and the value of
number2 would replace {1} (because it is the second variable). The resulting string
would be "The numbers entered are 45 and 72". More formats can be used ({2},
{3} etc.) if there are more variables to display in the string.

Good Programming Practice 3.11
Place a space after each comma in a method’s argument list to make programs more read-
able. 3.11

Some programmers find it difficult, when reading or writing a program, to match the
left and right braces ({ and }) that delimit the body of a class or method definition. For this
reason, some programmers include a single-line comment after each closing right brace that
ends a method or class definition, as we do in lines 35 and 37.

Good Programming Practice 3.12
Follow the closing right brace (}) of the body of a method or class definition with a single-
line comment. This comment should indicate the method or class that the right brace termi-
nates. 3.12

3.4 Memory Concepts
Variable names, such as number1, number2 and sum, actually correspond to locations
in the computer’s memory. Every variable has a name, a type, a size and a value.

In the addition program in Fig. 3.11, the statement (line 26)

number1 = Int32.Parse(firstNumber);

converts to an int the string that the user entered. This int is placed into a memory loca-
tion to which the name number1 has been assigned by the compiler. Suppose the user en-
ters the string 45 as the value for firstNumber. The program converts firstNumber
to an int, and the computer places the integer value 45 into location number1, as shown
in Fig. 3.12.

When a value is placed in a memory location, this value replaces the previous value in
that location. The previous value is lost (or destroyed).

Fig. 3.12 Memory location showing name and value of variable number1.

45number1

76 Introduction to C# Programming Chapter 3

When the statement (line 27)

number2 = Int32.Parse(secondNumber);

executes, suppose the user types 72 as the value for secondNumber. The program con-
verts secondNumber to an int, the computer places the integer value 72 into location
number2 and memory appears as shown in Fig. 3.13.

Once the program has obtained values for number1 and number2, it adds these
values and places their total into variable sum. The statement

sum = number1 + number2;

performs the addition and replaces (i.e., destroys) sum’s previous value. After calculating
the sum, memory appears as shown in Fig. 3.14. Note that the values of number1 and
number2 appear exactly as they did before the calculation of sum. These values were
used, but not destroyed, as the computer performed the calculation. Thus, when a value is
read from a memory location, the process is nondestructive.

3.5 Arithmetic
Most programs perform arithmetic calculations. Figure 3.15 summarizes the arithmetic op-
erators. Note the use of various special symbols not used in algebra. The asterisk (*) indi-
cates multiplication, and the percent sign (%) represents the modulus operator, which is
discussed shortly. The arithmetic operators in Fig. 3.15 are binary operators, because they
each require two operands. For example, the expression sum + value contains the binary
operator + and the two operands sum and value.

Fig. 3.13 Memory locations after values for variables number1 and number2
have been input.

Fig. 3.14 Memory locations after a calculation.

45

72

number1

number2

45

72

number1

number2

117sumOfNumbers

Chapter 3 Introduction to C# Programming 77

Integer division contains two int operands. The result of this computation is an
integer quotient; for example, the expression 7 / 4 evaluates to 1 and the expression 17 /
5 evaluates to 3. Note that any fractional part in integer division simply is discarded (i.e.,
truncated)—no rounding occurs. C# provides the modulus operator, %, which yields the
remainder after integer division. The expression x % y yields the remainder after x is
divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. This operator is used most com-
monly with integer operands, but also can be used with other arithmetic types. In later chap-
ters, we consider interesting applications of the modulus operator, such as determining
whether one number is a multiple of another. There is no arithmetic operator for exponen-
tiation in C#. (Chapter 6, Methods, discusses how to perform exponentiation in C#.)

Arithmetic expressions in C# must be written in straight-line form to facilitate entering
programs into a computer. Thus, expressions such as “a divided by b” must be written as
a / b so that all constants, variables and operators appear in a straight line. The following
algebraic notation generally is not acceptable to compilers:

C# expressions can use parentheses in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + c, we write

a * (b + c)

C# applies the operators in arithmetic expressions in a precise sequence, determined
by the following rules of operator precedence, which are generally the same as those fol-
lowed in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Thus, parentheses may be used to force the order of evaluation to occur in any se-
quence desired by the programmer. Parentheses are at the highest level of prece-
dence. With nested (or embedded) parentheses, the operators in the innermost pair
of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an expression
contains several multiplication, division and modulus operations, operators are

C# operation
Arithmetic
operator

Algebraic
expression C# expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division /
x / y or or x ÷ y

x / y

Modulus % r mod s r % s

Fig. 3.15 Arithmetic operators.

x
y
--

a
b

78 Introduction to C# Programming Chapter 3

applied from left to right. Multiplication, division and modulus are said to have
the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains sev-
eral addition and subtraction operations, operators are applied from left to right.
Addition and subtraction have the same level of precedence.

The rules of operator precedence enable C# to apply operators in the correct order. When
we say operators are applied from left to right, we are referring to the associativity of the
operators. If there are multiple operators, each with the same precedence, the associativity
determines the order in which the operators are applied. We will see that some operators
associate from right to left. Figure 3.16 summarizes the rules of operator precedence. This
table will expand as we introduce additional C# operators in subsequent chapters. See Ap-
pendix A for a complete operator-precedence chart.

Notice in the chart that we make note of nested parentheses. Not all expressions with
several pairs of parentheses contain nested parentheses. For example, the expression

a * (b + c) + c * (d + e)

has multiple sets of parentheses, but not nested parentheses. Rather, these parentheses are
said to be “on the same level.”

Let us consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its C# equivalent.

The following is an example of an arithmetic mean (average) of five terms:

Algebra:

C#: m = (a + b + c + d + e) / 5;

The parentheses are required because division has higher precedence than addition. The en-
tire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are
erroneously omitted, we obtain a + b + c + d + e / 5, which evaluates as

a b c d e+ + + +
5

---------------------------------------=

Operator(s) Operation Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same
level” (i.e., not nested), they are evaluated left to
right.

*, / or % Multiplication
Division
Modulus

Evaluated second. If there are several such opera-
tors, they are evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several such operators,
they are evaluated left to right.

Fig. 3.16 Precedence of arithmetic operators.

Chapter 3 Introduction to C# Programming 79

The following is the equation of a straight line:

Algebra:

C#: y = m * x + b;

No parentheses are required. The multiplication occurs first because multiplication has a
higher precedence than addition. The assignment occurs last because it has a lower prece-
dence than multiplication and division.

The following example contains modulus (%), multiplication, division, addition and
subtraction operations:

Algebra:

C#: z = p * r % q + w / x - y;

The circled numbers under the statement indicate the order in which C# applies the opera-
tors. The multiplication, modulus and division operators evaluate first in left-to-right order
(i.e., they associate from left to right). The addition and subtraction evaluate next. These
also are applied from left to right.

To develop a better understanding of the rules of operator precedence, consider how a
second-degree polynomial (y = ax2 + bx + c) evaluates:

y = a * x * x + b * x + c;

The circled numbers under the statement indicate the order in which C# applies the opera-
tors. There is no arithmetic operator for exponentiation in C#; x2 is represented as x * x.
The .NET Framework Class Library provides method Math.Pow for exponentiation (see
Chapter 6, Methods).

Suppose a, b, c and x are initialized as follows: a = 2, b = 3, c = 7 and x = 5.
Figure 3.17 illustrates the order of evaluation of the operators.

As in algebra, it is acceptable to place unnecessary parentheses in an expression to
make the expression easier to read. Unnecessary parentheses are also called redundant
parentheses. For example, the preceding assignment statement might be parenthesized as

 y = (a * x * x) + (b * x) + c;

Good Programming Practice 3.13
Using parentheses for more complex arithmetic expressions, even when the parentheses are
not necessary can make the arithmetic expressions easier to read. 3.13

b c d
e
5
---+ + + +

y mx b+=

z pr%q w/x y–+=

6 1 342 5

6 1 342 5

80 Introduction to C# Programming Chapter 3

3.6 Decision Making: Equality and Relational Operators
This section introduces C#’s if structure, which allows a program to make a decision
based on the truth or falsity of some condition. If the condition is met (i.e., the condition is
true), the statement in the body of the if structure executes. If the condition is not met (i.e.,
the condition is false), the body statement does not execute. Conditions in if structures can
be formed by using the equality operators and relational operators, summarized in
Fig. 3.18. The relational operators all have the same level of precedence and associate from
left to right. The equality operators both have the same level of precedence, which is lower
than the precedence of the relational operators. The equality operators also associate from
left to right.

Common Programming Error 3.7
It is a syntax error if the operators ==, !=, >= and<= contain spaces between their symbols
(as in = =, ! =, > =, < =). 3.7

Common Programming Error 3.8
Reversing the operators !=, >= and <= (as in =!, => and =<) is a syntax error. 3.8

Fig. 3.17 Order in which a second-degree polynomial is evaluated.

y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10 (Leftmost multiplication)

y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50 (Leftmost multiplication)

y = 50 + 3 * 5 + 7;

 3 * 5 is 15 (Multiplication before addition)

y = 50 + 15 + 7;

 50 + 15 is 65 (Leftmost addition)

y = 65 + 7;

 65 + 7 is 72 (Last addition)

y = 72; (Last operation—place 72 into y)

Step 1.

Step 2.

Step 5.

Step 3.

Step 4.

Step 6.

Chapter 3 Introduction to C# Programming 81

Common Programming Error 3.9
Confusing the equality operator == with the assignment operator = is a logic error. The
equality operator should be read “is equal to,” and the assignment operator should be read
“gets” or “gets the value of.” Some people prefer to read the equality operator as “double
equals” or “equals equals.” 3.9

The next example uses six if statements to compare two numbers input into a program
by the user. If the condition in any of these if statements is true, the assignment statement
associated with that if executes. The user inputs values that the program converts to inte-
gers and stores in variables number1 and number2. The program compares the numbers
and displays the results of the comparison in the command prompt. The program and
sample outputs are shown in Fig. 3.19.

Standard algebraic
equality operator or
relational operator

C# equality
or relational
operator

Example
of C#
condition

Meaning of
C# condition

Equality operators

== == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 3.18 Equality and relational operators.

1 // Fig. 3.19: Comparison.cs
2 // Using if statements, relational operators and equality
3 // operators.
4
5 using System;
6
7 class Comparison
8 {
9 static void Main(string[] args)

10 {
11 int number1, // first number to compare
12 number2; // second number to compare
13
14 // read in first number from user
15 Console.Write("Please enter first integer: ");
16 number1 = Int32.Parse(Console.ReadLine());
17

Fig. 3.19 Using equality and relational operators. (Part 1 of 2.)

82 Introduction to C# Programming Chapter 3

18 // read in second number from user
19 Console.Write("\nPlease enter second integer: ");
20 number2 = Int32.Parse(Console.ReadLine());
21
22 if (number1 == number2)
23 Console.WriteLine(number1 + " == " + number2);
24
25 if (number1 != number2)
26 Console.WriteLine(number1 + " != " + number2);
27
28 if (number1 < number2)
29 Console.WriteLine(number1 + " < " + number2);
30
31 if (number1 > number2)
32 Console.WriteLine(number1 + " > " + number2);
33
34 if (number1 <= number2)
35 Console.WriteLine(number1 + " <= " + number2);
36
37 if (number1 >= number2)
38 Console.WriteLine(number1 + " >= " + number2);
39
40 } // end method Main
41
42 } // end class Comparison

Please enter first integer: 2000

Please enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

Please enter first integer: 1000

Please enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Please enter first integer: 1000

Please enter second integer: 1000
1000 == 1000
1000 <= 1000
1000 >= 1000

Fig. 3.19 Using equality and relational operators. (Part 2 of 2.)

Chapter 3 Introduction to C# Programming 83

The definition of class Comparison begins on line 7, and the Main method begins
on line 9. Lines 11–12 declare the variables used in method Main. Note that there are two
variables of type int. Remember that variables of the same type may be declared in one
declaration or in multiple declarations. Also recall that, if more than one variable is placed
in one declaration (lines 11–12), those variables are separated by commas (,). The com-
ment at the end of each line indicates the purpose of each variable in the program.

Line 16 reads in the first number from the user. Line 20 reads in the second number from
the user. These values are stored in variables number1 and number2, respectively. Recall
that arithmetic operators cannot be used with strings. Relational and equality operators also
cannot be used with strings. Therefore, the two input strings must be converted to integers.

Lines 16 and 20 both get an input, convert the input to type int and assign the values
to the appropriate variable in one step. Notice that this step can be combined with the vari-
able declaration and placed on one line with the statement

int number1 = Int32.Parse(Console.ReadLine());

which declares the variable, reads a string from the user, converts the string to an integer
and stores the integer in the variable.

The if structure in lines 22–23 compares the values of the variables number1 and
number2 for equality. If the values are equal, the program outputs the value of
number1 + " == " + number2. Notice that this expression uses the operator + to “add”
(or combine) numbers and strings. C# has a version of the + operator used for string con-
catenation. Concatenation is the process that enables a string and a value of another data
type (including another string) to be combined to form a new string.

If number1 contains the value 1000 and number2 contains the value 1000, the
expression evaluates as follows: C# determines that the operands of the + operator are of dif-
ferent types and that one of them is a string. Next, number1 and number2 are converted
to a string and concatenated with " == ". At this point, the string, namely "1000 ==
1000", is sent to Console.WriteLine to be output. As the program proceeds through
the if structures, more strings will be output by these Console.WriteLine state-
ments. For example, given the value 1000 for number1 and number2, the if conditions
at lines 34 (<=) and 37 (>=) will also be true. Thus, the output displayed will be

1000 == 1000
1000 <= 1000
1000 >= 1000

The second of output window of Fig. 3.19 demonstrates this case.

Common Programming Error 3.10
Confusing the + operator used for string concatenation with the + operator used for addition
can lead to strange results. For example, assuming integer variable y has the value 5, the
expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 = 7". First
the value of y (5) is concatenated with the string "y + 2 = ", then the value 2 is concate-
nated with the new, larger string "y + 2 = 5". The expression "y + 2 = " + (y + 2) pro-
duces the desired result. 3.10

Common Programming Error 3.11
Replacing operator == in the condition of an if structure, such as if (x == 1), with op-
erator =, as in if (x = 1), is a logic error. 3.11

84 Introduction to C# Programming Chapter 3

Notice the indentation in the if statements throughout the program. Such indentation
enhances program readability.

Good Programming Practice 3.14
Indent the statement in the body of an if structure to make the body of the structure stand
out and to enhance program readability. 3.14

Good Programming Practice 3.15
Place only one statement per line in a program. This enhances program readability. 3.15

Common Programming Error 3.12
Forgetting the left and right parentheses for the condition in an if structure is a syntax er-
ror. The parentheses are required. 3.12

There is no semicolon (;) at the end of the first line of each if structure. Such a semi-
colon would result in a logic error at execution time. For example,

if (number1 == number2);
 Console.WriteLine(number1 + " == " + number2);

would actually be interpreted by C# as

if (number1 == number2)
 ;

Console.WriteLine(number1 + " == " + number2);

where the semicolon on the line by itself—called the empty statement—is the statement to
execute if the condition is true. When the empty statement executes, no task is performed.
The program continues with the Console.WriteLine statement, which executes re-
gardless of whether the condition is true or false.

Common Programming Error 3.13
Placing a semicolon immediately after the right parenthesis of the condition in an if struc-
ture is normally a logic error. The semicolon causes the body of the if structure to be empty,
so the if structure performs no action, regardless of whether its condition is true. Worse,
the intended body statement of the if structure becomes a statement in sequence with the if
structure and always executes. 3.13

Notice the use of spacing in Fig. 3.19. Remember that the compiler normally ignores
whitespace characters, such as tabs, newlines and spaces. Statements may be split over sev-
eral lines and may be spaced according to the programmer’s preferences without affecting
the meaning of a program. It is incorrect to split identifiers and string literals. Ideally, state-
ments should be kept small, but it is not always possible to do so.

Good Programming Practice 3.16
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines with one level of indentation. 3.16

The chart in Fig. 3.20 shows the precedence of the operators introduced in this chapter.
The operators are displayed from top to bottom in decreasing order of precedence. Notice

Chapter 3 Introduction to C# Programming 85

that all these operators, with the exception of the assignment operator =, associate from left
to right. Addition is left associative, so an expression such as x + y + z is evaluated as if it
were written (x + y) + z. The assignment operator = associates from right to left, so an
expression such as x = y = 0 is evaluated as if it were written x = (y = 0). The latter
expression, x = (y = 0), first assigns the value 0 to variable y and then assigns the result
of that assignment, 0, to x.

Good Programming Practice 3.17
Refer to the operator-precedence chart when writing expressions containing many opera-
tors. Confirm that the operators in the expression are performed in the expected order. If you
are uncertain about the order of evaluation in a complex expression, use parentheses to force
the order, as you would do in an algebraic expression. Remember that some operators, such
as assignment (=), associate from right to left rather than from left to right. 3.17

In this chapter, we introduced important features of C#, including displaying data on
the screen, inputting data from the keyboard, performing calculations and making deci-
sions. The next chapter demonstrates many similar techniques, as we reintroduce C# Win-
dows applications (applications that provide a graphical user interface). We also introduce
structured programming and familiarize the reader further with indentation techniques. We
study how to specify and vary the order in which statements execute—this order is called
flow of control.

SUMMARY
• A console application is an application that, predominantly, displays text output in either a console

window (or MS-DOS window). This is also called a command prompt.

• Programmers insert comments to document programs and improve program readability. Every
program should begin with a comment describing the purpose of the program.

• A comment that begins with // is called a single-line comment, because the comment terminates
at the end of the current line. A // comment can begin in the middle of a line and continue until
that line’s end. Multiple-line comments begin with the delimiter /* and end with delimiter */.
The compiler ignores all text between the delimiters of the comment.

• A namespace groups various C# features into related categories, providing programmers with the
ability to locate them quickly.

Operators Associativity Type

() left to right parentheses

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 3.20 Precedence and associativity of operators discussed in this chapter.

86 Introduction to C# Programming Chapter 3

• The using directive declares the use of a namespace.

• Programmers use preexisting code to make programming easier and faster.

• Blank lines, space characters and tab characters are known as whitespace (space characters and
tabs are known, specifically, as whitespace characters). Such characters are ignored by the com-
piler and used to improve program readability.

• Classes consist of pieces (called methods) that perform tasks and return information (or simply
control) when they complete their tasks. The programmer can program each piece that is needed
to form a C# program.

• Classes defined by the programmer are known as programmer-defined or user-defined classes.

• The class keyword introduces a class definition and is followed immediately by the class name.

• Keywords are reserved for use by C# and are always spelled with lowercase letters.

• By convention, all class names in C# begin with an uppercase letter and have an uppercase letter
for the beginning of every word in the class name.

• The name of a class is called an identifier. An identifier is a series of characters, consisting of let-
ters, digits, underscores (_) and “at” symbols (@), that does not begin with a digit and does not
contain any spaces.

• C# is case sensitive—uppercase and lowercase letters are different, thus a1 and A1 are distinct
identifiers.

• A left brace ({) begins the body of every class or method definition. A corresponding right brace
(}) must end each class or method definition. If braces do not occur in matching pairs, the compiler
indicates an error.

• Set a convention for the indent size you prefer and apply that convention uniformly.

• C# applications begin executing at Main, which is known as the entry point of the program.

• C# class definitions normally contain one or more methods. C# applications contain one or more
classes. For a C# application, one of the classes in the application must contain method Main.

• Methods can perform tasks and return information when these tasks complete. Information also
can be passed to a method. This information may be necessary for the method to complete its task
and is called an argument.

• A string sometimes is called a character string, a message or a string literal.

• Whitespace characters in strings are not ignored by the compiler.

• Every statement must end with a semicolon (the statement terminator). Omitting the semicolon at
the end of a statement is a syntax error.

• A syntax error occurs when the compiler cannot recognize a statement. The compiler normally is-
sues an error message to help the programmer locate and fix the incorrect statement. Syntax errors
are violations of the language’s rules.

• When the compiler reports a syntax error, the error might not be on the line indicated by the error
message. First, check the line where the error was reported. If that line does not contain syntax
errors, check the preceding several lines in the program.

• Unlike WriteLine, method Write does not position the output cursor at the beginning of the
next line in the console window after displaying its argument.

• A single statement can display multiple lines by using newline characters.

• C# has a version of the + operator for string concatenation that enables a string and a value of an-
other data type (including another string) to be concatenated—the result of this operation is a new
(and normally longer) string.

Chapter 3 Introduction to C# Programming 87

• The backslash (\) is called an escape character. It indicates that a “special” character is to be out-
put. When a backslash is encountered in a string of characters, the next character is combined with
the backslash to form an escape sequence.

• String contents always must be delimited with double quotes.

• Class MessageBox allows you to display a dialog containing information.

• Class MessageBox is defined in namespace System.Windows.Forms.

• The predefined namespaces in C# contain classes that are collectively referred to as the .NET
Framework Class Library.

• GUI components facilitate data entry by the user and the formatting or presenting of data outputs
to the user.

• Method MessageBox.Show is a special method of class MessageBox, called a static method.
Such methods are always called with their class name followed by a dot operator (.) and the meth-
od name.

• Depending on the type of application we create, classes may be compiled into files with a .exe
(executable) extension, a .dll (or dynamic link library) extension or one of several other exten-
sions. This file is called an assembly, which is the packaging unit for code in C#.

• We need to add a reference to an assembly if we wish to use its classes. References to assemblies
can be created easily in Visual Studio .NET by selecting the Add Reference… option from the
Project menu and finding the necessary.dll.

• The System.Windows.Forms namespace contains many classes that help C# programmers
define graphical user interfaces (GUIs) for their applications.

• A message dialog by default includes an OK button that allows the user to dismiss the dialog.

• A variable is a location in memory where a value can be stored for use by a program.

• All variables must be declared with a name and a data type before they can be used in a program.

• A variable name can be any valid identifier.

• Declarations end with a semicolon (;) and can be split over several lines, with each variable in the
declaration separated by a comma.

• Several variables of the same type may be declared in either one declaration or separate declara-
tions.

• The keywords int, double and char are primitive types.

• Primitive type names are keywords.

• A prompt is a message that directs the user to take a specific action.

• The = operator is called a binary operator, because it has two operands. A statement containing an
= operation is called an assignment statement, because it assigns a value to a variable. The expres-
sion to the right side of the assignment operator = is always evaluated before the assignment occurs.

• Method Int32.Parse (a static method of class Int32) converts its string argument to an
integer.

• Sometimes, when displaying strings C# encounters a format. A format specifies a placeholder for
a value that will be inserted in a string.

• Variable names actually correspond to locations in the computer's memory. Every variable has a
name, a type, a size and a value.

• Whenever a value is placed in a memory location, this value replaces the previous value in that
location. The previous value is destroyed (lost).

• When a value is read from a memory location, the process is nondestructive.

88 Introduction to C# Programming Chapter 3

• Integer division yields an integer quotient. Note that any fractional part in integer division is sim-
ply discarded (i.e., truncated)—no rounding occurs.

• The modulus operator (%) yields the remainder after integer division.

• Arithmetic expressions must be written in straight-line form to facilitate entering programs into
the computer.

• Parentheses are used in C# expressions in the same manner as in algebraic expressions.

• C# applies the operators in arithmetic expressions in a precise sequence determined by the rules
of operator precedence.

• As in algebra, it is acceptable to place unnecessary (redundant) parentheses in an expression to
make the expression clearer.

• The if structure allows a program to make a decision based on the truth or falsity of some condition.
If the condition is met (i.e., the condition is true), the statement in the body of the if structure exe-
cutes. If the condition is not met (i.e., the condition is false), the body statement does not execute.

• Conditions in if structures can be formed by using equality operators and relational operators.

• A string containing no characters is known as an empty string.

• Every variable declared in a method must be initialized (given a value) before it can be used in an
expression, or a syntax error will occur.

• A semicolon by itself (not preceded by an actual statement) is known as an empty statement. When
an empty statement executes, no task is performed.

TERMINOLOGY
!= is-not-equal-to operator arithmetic operators
" double quotation assembly
% modulus operator assignment statement
*/ end a multiline comment associativity of operators
/* start a multiline comment asterisk (*) indicating multiplication
// single-line comment average
; statement terminator backslash (\)
< less-than operator binary operator
<= less-than-or-equal-to operator blank line
= assignment operator body of a class definition
== is-equal-to operator body of a method definition
> is-greater-than operator built-in data type
>= greater-than-or-equal-to operator button
\\ escape sequence C# compiler
\n escape sequence carriage return
\r escape sequence case sensitive
\t escape sequence char variable
_ underscore character set
{ left brace character string
} right brace class
‚ comma class definition
Add Reference dialog class keyword
algebraic notation class name
application comma (‚)
argument command prompt
arithmetic calculation console window

Chapter 3 Introduction to C# Programming 89

comma-separated list of variable names method definition
comment MS-DOS prompt
compiler MSIL (Microsoft Intermediate Language)
compile-time error multiple-line comment (/*… */)
concatenation of strings name of a variable
condition namespace
console application nested parentheses
Console class .NET Framework Class Library
Console.ReadLine method nondestructive
console window object
Console.Write method OK button on a dialog
Console.WriteLine method operand
data type operator precedence
decision output
declaration parentheses ()
dialog parentheses “on the same level”
display output Parse method
documentation performing a calculation
dot (.) operator polynomial
double precedence
embedded parentheses primitive data type
empty statement (;) programmer-defined class
Enter (or Return) key prompt
entry point of a program ReadLine method
error handling real number
escape sequence redundant parentheses
exponentiation “reinventing the wheel”
float reserved word
flow of control reuse
format robust
formatting strings rounding
identifier run-time logic error
if structure self-documenting code
indentation in if statements single-line comment
indentation techniques size of a variable
innermost pair of parentheses space character
inputting data from the keyboard spacing convention
Int32.Parse method special character
integer division standard output
integer quotient statement
keyboard static method
keyword straight-line form
left-to-right evaluation string
location in the computer’s memory string concatenation
logic error string formatting
Main method string literal
making decisions string of characters
matching left and right braces string type
MessageBox class structured programming
method syntax error

90 Introduction to C# Programming Chapter 3

SELF-REVIEW EXERCISES
3.1 Fill in the blanks in each of the following statements:

a) The and begin and end every method body.
b) Every statement must end with a statement terminator.
c) The structure makes decisions.
d) begins a single-line comment.
e) , , and are known as whitespace.
f) Class displays message dialogs.
g) are reserved for use by C#.
h) C# applications begin execution at method .
i) Methods and display information in the console window.
j) A method is invoked by preceding its name with its class name and a dot (.).
k) A begins the body of a method definition.
l) A C# program includes directives to indicate that we are incorporating class-

es from certain namespaces.
m) When a value is placed in a memory location, this value the previous value

in that location.
n) Saying that operators are applied from left to right refers to the of the operators.
o) C#’s if structure allows a program to make a decision based on the or

 of a condition.
p) Types such as int, float, double and char are often called data types.
q) A variable is a location in the computer’s where a value can be stored .
r) Data types and contain decimal points for storing numbers such

as 3.44 or 1.20846.
s) The expression to the of the assignment operator (=) is always evaluated first.
t) Arithmetic expressions in C# must be written in form to facilitate entering

programs into the computer.

3.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the pro-

gram is executed.
b) All variables must be given a type when they are declared.
c) C# considers the variables number and NuMbEr to be identical.
d) The arithmetic operators *, /, %, + and - all have the same level of precedence.
e) Method Int32.Parse converts an integer to a string.
f) A comment that begins with // is called a single-line comment.
g) A string of characters contained between double quotation marks is called a phrase or

phrase literal.
h) Blank lines, space characters, newline characters and tab characters are ignored by the

compiler when placed outside strings.

System namespace value of a variable
System.Windows.Forms namespace variable
tab character Visual Studio .NET-generated console application
text editor void keyword
truncate whitespace character
type of a variable Windows 95/98
Unicode Windows application
unnecessary parentheses Windows NT/2000
user-defined class Write method of class Console
using directive WriteLine method of class Console

Chapter 3 Introduction to C# Programming 91

i) Every C# application must contain one Main method.
j) Curly braces that define bodies of classes and methods need not occur in matching pairs.
k) C# applications begin executing at Main.
l) The compiler uses class statements to identify namespaces referenced in a C# pro-

gram.
m) Integer division yields an integer quotient.
n) Parentheses cannot be used in an arithmetic expression to force the order of evaluation

of operators to occur in a sequence determined by the programmer.

ANSWERS TO SELF-REVIEW EXERCISES
3.1 a) Left brace ({), right brace (}). b) Semicolon (;). c) if. d) //. e) Blank lines, space char-
acters, newline characters and tab characters. f) MessageBox. g) Keywords. h) Main.
i) Console.Write and Console.WriteLine. j) static. k) left brace. l) using. m) replaces.
n) associativity. o) truth, falsity. p) primitive (or built-in). q) memory. r) float, double. s) right.
t) straight-line.

3.2 a) False. Comments do not cause any action to be performed when the program is executed.
They are used to document programs and improve their readability. b) True. c) False. C# is case sen-
sitive, so these variables are distinct. d) False. The operators *, / and% are on the same level of pre-
cedence, and the operators + and - are on a lower level of precedence. e) False. Method
Integer.Parse converts a string to an integer (int) value. f) True. g) False. A string of char-
acters is called a string or string literal. h) True. i) True. j) False. Curly braces that do not match cause
syntax errors. k) True. l) False. The compiler uses using directives to identify and load namespaces.
m) True. n) False. Parentheses can be used to force the order of evaluation.

EXERCISES
3.3 Write C# statements that accomplish each of the following tasks:

a) Display the message "Enter two numbers", using class MessageBox.
b) Assign the product of variables b and c to variable a.
c) State that a program performs a sample payroll calculation (i.e., use text that helps to doc-

ument a program).

3.4 What displays in the message dialog when each of the following C# statements is performed?
Assume the value of x is 2 and the value of y is 3.

a) MessageBox.Show("x = " + x);
b) MessageBox.Show("The value of x + x is " + (x + x));
c) MessageBox.Show("x =");
d) MessageBox.Show((x + y) + " = " + (y + x));

3.5 Given y = ax3 + 7, which of the following are correct statements for this equation?
a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);
c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

3.6 Indicate the order of evaluation of the operators in each of the following C# statements, and
show the value of x after each statement is performed.

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

92 Introduction to C# Programming Chapter 3

3.7 Write an application that displays the numbers 1 to 4 on the same line with each pair of ad-
jacent numbers separated by one space. Write the program using the following methods:

a) Use one Console.Write statement.
b) Use four Console.Write statements.

3.8 Write an application that asks the user to enter two numbers, obtains the two numbers from
the user and prints the sum, product, difference and quotient of the two numbers.

3.9 Write an application that inputs from the user the radius of a circle and prints the circle’s di-
ameter, circumference and area. Use the following formulas (r is the radius): diameter = 2r, circum-

ference = 2πr, area = πr2.

3.10 Write an application that displays in the console window a box, an oval, an arrow and a dia-
mond, using asterisks (*) as follows:

3.11 Modify the program you created in Exercise 3.12 to display the shapes in a MessageBox
dialog. Does the program display the shapes exactly as in Exercise 3.12?

3.12 What does the following code print?

Console.WriteLine("*\n**\n***\n****\n*****");

3.13 What does the following code print?

Console.Write("*");
Console.Write("***");
Console.WriteLine("*****");
Console.Write("****");
Console.WriteLine("**");

3.14 Write an application that reads in two integers and determines and prints whether the first is
a multiple of the second. For example, if the user inputs 15 and 3, the first number is a multiple of the
second. If the user inputs 2 and 4, the first number is not a multiple of the second. [Hint: Use the mod-
ulus operator.]

3.15 Here is a peek ahead. In this chapter, you learned about integers and the data type int. C#
can also represent uppercase letters, lowercase letters and a considerable variety of special symbols.
Every character has a corresponding integer representation. The set of characters a computer uses and
the corresponding integer representations for those characters is called that computer’s character set.
You can indicate a character value in a program simply by enclosing that character in single quotes,
as with 'A'.

You can determine the integer equivalent of a character by preceding that character with
(int)—this is called a cast. (We will say more about casts in Chapter 4.)

(int) 'A'

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

Chapter 3 Introduction to C# Programming 93

The following statement would output a character and its integer equivalent:

Console.WriteLine(
"The character " + 'A' + " has the value " + (int) 'A');

When the preceding statement executes, it displays the character A and the value 65 (from the Uni-
code character set) as part of the string.

Write an application that displays the integer equivalents of some uppercase letters, lowercase
letters, digits and special symbols. As a minimum, display the integer equivalents of the following: A
B C a b c 0 1 2 $ * + / and the blank character.

3.16 Write an application that inputs one number consisting of five digits from the user, separates
the number into its individual digits and prints the digits separated from one another by three spaces
each. For example, if the user types in the number 42339, the program should print

[Hint: This exercise is possible with the techniques you learned in this chapter. You will need to
use both division and modulus operations to “pick off” each digit.]

For the purpose of this exercise, assume that the user enters the correct number of digits. What
happens when you execute the program and type a number with more than five digits? What happens
when you execute the program and type a number with fewer than five digits?

3.17 Using only the programming techniques you learned in this chapter, write an application that
calculates the squares and cubes of the numbers from 0 to 10 and prints the resulting values in table
format, as follows:

[Note: This program does not require any input from the user.]

3.18 Write a program that reads a first name and a last name from the user as two separate inputs
and concatenates the first name and last name, but separated by a space. Display the concatenated
name at the command prompt.

3.19 (“The Twelve Days of Christmas” Song) Write an application that uses repetition and if
structures to print the song “The Twelve Days of Christmas.” Visit the Web site
www.12days.com/library/carols/12daysofxmas.htm for the complete lyrics to the
song.

4 2 3 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

4
Control Structures:

Part 1

Objectives
• To understand basic problem-solving techniques of

programming.
• To develop algorithms through the process of top-

down, stepwise refinement.
• To use the if and if/else selection structures to

choose among alternative actions.
• To use the while repetition structure to execute

statements in a program repeatedly.
• To understand counter-controlled repetition and

sentinel-controlled repetition.
• To use the increment, decrement and assignment

operators.
Let’s all move one place on.
Lewis Carroll

The wheel is come full circle.
William Shakespeare, King Lear

How many apples fell on Newton’s head before he took the
hint?
Robert Frost, Comment

Chapter 4 Control Structures: Part 1 95

4.1 Introduction
Before writing a program to solve a problem, it is essential to have a thorough understand-
ing of the problem and a carefully planned approach. When writing a program, it is equally
essential to understand the types of building blocks that are available and to employ proven
program construction principles. In this chapter and the next, we present the theory and
principles of structured programming. The techniques you will learn are applicable to most
high-level languages, including C#. When we study object-based programming in more
depth in Chapter 8, we will see that control structures are helpful in building and manipu-
lating objects. The control structures discussed in this chapter will enable you to build these
objects in a quick and easy manner.

4.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to be executed and

2. the order in which these actions are to be executed

is called an algorithm. The example that follows demonstrates the importance of correctly
specifying the order in which the actions are to be executed.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) get out of bed, (2) take off pajamas, (3) take a shower, (4)

Outline

4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures

4.5 if Selection Structure

4.6 if/else Selection Structure

4.7 while Repetition Structure
4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled

Repetition)
4.9 Formulating Algorithms with Top-Down, Stepwise Refinement: Case

Study 2 (Sentinel-Controlled Repetition)
4.10 Formulating Algorithms with Top-Down, Stepwise Refinement: Case

Study 3 (Nested Control Structures)
4.11 Assignment Operators
4.12 Increment and Decrement Operators
4.13 Introduction to Windows Application Programming

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

96 Control Structures: Part 1 Chapter 4

get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to work
well-prepared to make critical decisions.

Suppose that the same steps are performed in a slightly different order: (1) get out of
bed, (2) take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6) carpool
to work. In this case, our executive shows up for work soaking wet.

The importance of correctly specifying the order in which actions appear applies to
computer programs, as well. Program control refers to the task of ordering a program’s
statements correctly. In this chapter, we begin to investigate the program control capabili-
ties of C#.

4.3 Pseudocode
Pseudocode is an artificial and informal language that helps programmers develop algo-
rithms. The pseudocode we present is particularly useful for developing algorithms that
will be converted to structured portions of C# programs. Pseudocode is similar to everyday
English; it is convenient and user-friendly, and it is not an actual computer programming
language.

Pseudocode is not executed on computers. Rather, pseudocode helps the programmer
“think out” a program before attempting to write it in a programming language, such as C#.
In this chapter, we provide several examples of pseudocode algorithms.

Software Engineering Observation 4.1
Pseudocode helps the programmer conceptualize a program during the program design pro-
cess. The pseudocode may then be converted to C#. 4.1

The style of pseudocode that we present consists solely of characters, thus program-
mers may type pseudocode conveniently using an editor program. Programmers can con-
vert carefully prepared pseudocode programs to corresponding C# programs easily. In
many cases, this conversion takes place simply by replacing pseudocode statements with
their C# equivalents.

Pseudocode normally describes only executable statements—the actions that are per-
formed when the pseudocode is converted to C# and executed. Declarations are not execut-
able statements. For example, the declaration

int i;

informs the compiler of the type of variable i and instructs the compiler to reserve space
in memory for this variable. This declaration does not cause any action, such as input, out-
put or a calculation, to occur when the program executes. Some programmers choose to list
variables and their purposes at the beginning of a pseudocode program.

4.4 Control Structures
Normally, statements in a program execute one after the other in the order in which they
appear in the program. This is called sequential execution. Various C# statements enable
the programmer to specify that the next statement to execute may not be the next one in
sequence. A transfer of control occurs when a statement other than the next one in the pro-
gram executes.

Chapter 4 Control Structures: Part 1 97

During the 1960s, it became clear that the indiscriminate use of transfers of control was
causing difficulty for software development groups. The problem was the goto statement,
which, in some programming languages, allows the programmer to specify a transfer of
control to one of a wide range of possible destinations in a program. This caused programs
to become quite unstructured and hard to follow. The notion of structured programming
became almost synonymous with “goto elimination.”

The research of Bohm and Jacopini1 demonstrated that all programs with goto state-
ments could be written without them. The challenge of the era for programmers was to shift
their styles to “goto-less programming.” It was not until the 1970s that programmers
started taking structured programming seriously. The results were impressive, as software
development groups reported reduced development times, more frequent on-time delivery
of systems and more frequent within-budget completion of software projects. The key to
these successes was that structured programs were clearer, easier to debug and modify and
more likely to be bug-free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms of
only three control structures, namely, the sequence structure, the selection structure and
the repetition structure. The sequence structure is built into C#. Unless directed otherwise,
the computer executes C# statements one after the other in the order in which they appear
in a program. The flowchart segment of Fig. 4.1 illustrates a typical sequence structure in
which two calculations are performed in order.

A flowchart is a graphical representation of an algorithm or of a portion of an algo-
rithm. Flowcharts contain certain special-purpose symbols, such as rectangles, diamonds,
ovals and small circles. These symbols are connected by arrows called flowlines, which
indicate the order in which the actions of the algorithm execute. This order is known as the
flow of control.

Like pseudocode, flowcharts often are useful for developing and representing algo-
rithms, although pseudocode is preferred by many programmers. Flowcharts show clearly
how control structures operate; that is all we use them for in this text. The reader should
compare carefully the pseudocode and flowchart representations of each control structure.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

Fig. 4.1 Flowcharting C#’s sequence structure.

add studentGrade to total total = total + studentGrade;

add 1 to counter counter = counter + 1;

98 Control Structures: Part 1 Chapter 4

Consider the flowchart segment for the sequence structure in Fig. 4.1. We use the rect-
angle symbol, also called the action symbol, to indicate any type of action, including a cal-
culation or an input/output operation. The flowlines in the figure indicate the order in which
the actions are to be performed—first, studentGrade is to be added to total, then 1
is to be added to counter. We can have as many actions as we want in a sequence struc-
ture. Anywhere in a sequence that a single action may be placed, several actions may also
be placed.

When drawing a flowchart that represents a complete algorithm, an oval symbol con-
taining the word “Begin” is the first symbol used; an oval symbol containing the word
“End” indicates where the algorithm ends. When drawing only a portion of an algorithm,
as in Fig. 4.1, the oval symbols are omitted in favor of using small circle symbols, also
called connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We discuss the diamond
symbol in Section 4.5.

C# provides three types of selection structures, which we discuss in this chapter and
the next. The if selection structure performs (selects) an action if a condition is true or
skips the action if the condition is false. The if/else selection structure performs an
action if a condition is true and performs a different action if the condition is false. The
switch selection structure, discussed in Chapter 5, Control Structures: Part 2, performs
one of many actions, depending on the value of an expression.

The if structure is called a single-selection structure because it selects or ignores a
single action (or a single group of actions). The if/else structure is called a double-selec-
tion structure because it selects between two different actions (or groups of actions). The
switch structure is called a multiple-selection structure because it selects among many
different actions (or groups of actions).

C# provides four repetition structures—while, do/while, for and foreach
(while is covered in this chapter, do/while and for are covered in Chapter 5, Control
Structures: Part 2, and foreach is covered in Chapter 8, Object-Based Programming).
Each of the words if, else, switch, while, do, for and foreach are C# keywords.
Figure 4.2 lists the complete set of C# keywords. We discuss the vast majority of C#’s key-
words throughout this book.

C# Keywords

abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

Fig. 4.2 C# keywords. (Part 1 of 2.)

Chapter 4 Control Structures: Part 1 99

C# has only eight control structures—sequence, three types of selection and four types
of repetition. Each program is formed by combining as many of each type of control struc-
ture as is necessary. As with the sequence structure in Fig. 4.1, each control structure is
flowcharted with two small circle symbols, one at the entry point to the control structure
and one at the exit point.

Single-entry/single-exit control structures make it easy to build programs—the control
structures are attached to one another by connecting the exit point of one control structure
to the entry point of the next. This is similar to the stacking of building blocks; thus, we call
it control-structure stacking. There is only one other way control structures may be con-
nected, and that is through control-structure nesting, where one control structure can be
placed inside another. Thus, algorithms in C# programs are constructed from only eight dif-
ferent types of control structures combined in only two ways.

4.5 if Selection Structure
In a program, a selection structure chooses among alternative courses of action. For exam-
ple, suppose that the passing grade on an examination is 60 (out of 100). Then the
pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

determines if the condition “student’s grade is greater than or equal to 60” is true or false.
If the condition is true, then Passed is printed, and the next pseudocode statement in order
is “performed.” (Remember that pseudocode is not a real programming language.) If the
condition is false, the print statement is ignored, and the next pseudocode statement in order
is performed. Note that the second line of this selection structure is indented. Such inden-
tation is optional, but it is highly recommended because it emphasizes the inherent structure
of structured programs. The preceding pseudocode If statement may be written in C# as

if (studentGrade >= 60)
 Console.WriteLine("Passed");

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

C# Keywords

Fig. 4.2 C# keywords. (Part 2 of 2.)

100 Control Structures: Part 1 Chapter 4

Notice that the C# code corresponds closely to the pseudocode, demonstrating how
pseudocode can be useful as a program development tool. The statement in the body of the
if structure outputs the character string "Passed" in the console window.

The flowchart in Fig. 4.3 illustrates the single-selection if structure. This flowchart
contains the most important flowcharting symbol—the decision (or diamond) symbol,
which indicates that a decision is to be made. The decision symbol contains a condition,
that can be either true or false. The decision symbol has two flowlines emerging from
it. One indicates the direction to be taken when the condition in the symbol is true; the other
indicates the direction to be taken when the condition is false. A decision can be made on
any expression that evaluates to a value of C#’s bool type (i.e., any expression that eval-
uates to true or false).

Note that the if structure, too, is a single-entry/single-exit structure. The flowcharts
for the remaining control structures also contain (aside from small circle symbols and flow-
lines) only rectangle symbols, to indicate the actions to be performed, and diamond sym-
bols, to indicate decisions to be made. This is the action/decision model of programming
we have been emphasizing.

We can envision eight bins, each containing control structures for only one of the eight
types. The control structures in each bin are empty; nothing is written in the rectangles or dia-
monds. The programmer’s task is to assemble a program using as many control structures as
the algorithm demands, combining those control structures in only two possible ways
(stacking or nesting), then filling in the actions and decisions in a manner appropriate for the
algorithm. We will discuss the variety of ways in which actions and decisions may be written.

4.6 if/else Selection Structure
The if selection structure performs an indicated action only when the condition evaluates
to true; otherwise, the action is skipped. The if/else selection structure allows the pro-
grammer to specify different actions to perform when the condition is true and when the
condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

Fig. 4.3 Flowcharting a single-selection if structure.

studentGrade >= 60 print “Passed”
true

false

Chapter 4 Control Structures: Part 1 101

prints Passed if the student’s grade is greater than or equal to 60, and prints Failed if the
student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.”

The preceding pseudocode If/Else structure may be written in C# as

if (studentGrade >= 60)
 Console.WriteLine("Passed");
else
 Console.WriteLine("Failed");

Good Programming Practice 4.1
Indent both body statements of an if/else structure. 4.1

Note that the body of the else statement also is indented. The indentation convention
you choose should be applied carefully throughout your programs. It is difficult to read pro-
grams that do not use uniform spacing conventions.

The flowchart in Fig. 4.4 illustrates the flow of control in the if/else structure. Note
that (besides small circles and arrows) the only symbols in the flowchart are rectangles (for
actions) and a diamond (for a decision). We continue to emphasize this action/decision
model of computing.

The conditional operator (?:) is related closely to the if/else structure. The ?: is
C#’s only ternary operator—it takes three operands. The operands and the ?: form a con-
ditional expression. The first operand is a condition (i.e., an expression that evaluates to a
bool value), the second is the value for the conditional expression if the condition evalu-
ates to true and the third is the value for the conditional expression if the condition eval-
uates to false. For example, the output statement

Console.WriteLine(studentGrade >= 60 ? "Passed" : "Failed");

contains a conditional expression that evaluates to the string "Passed" if the condition
studentGrade >= 60 is true and evaluates to the string "Failed" if the condition is
false.

Fig. 4.4 Flowcharting a double-selection if/else structure.

studentGrade >= 60

print “Failed” print “Passed”

truefalse

102 Control Structures: Part 1 Chapter 4

The statement with the conditional operator performs in the same manner as the pre-
ceding if/else statement. The precedence of the conditional operator is low, so the entire
conditional expression normally is placed in parentheses. Conditional operators can be
used in some situations where if/else statements cannot, such as the argument to the
WriteLine method shown earlier.

Nested if/else structures can test for multiple cases by placing if/else struc-
tures inside other if/else structures. For example, the following pseudocode statement
will print A for exam grades greater than or equal to 90, B for grades in the range 80–89,
C for grades in the range 70–79, D for grades in the range 60–69 and F for all other
grades:

If student’s grade is greater than or equal to 90
Print “A”

Else
If student’s grade is greater than or equal to 80

Print “B”
Else

If student’s grade is greater than or equal to 70
Print “C”

Else
If student’s grade is greater than or equal to 60

Print “D”
Else

Print “F”

This pseudocode may be written in C# as

if (studentGrade >= 90)
 Console.WriteLine("A");
else

if (studentGrade >= 80)
 Console.WriteLine("B");

else
 if (studentGrade >= 70)
 Console.WriteLine("C");
 else
 if (studentGrade >= 60)
 Console.WriteLine("D");
 else
 Console.WriteLine("F");

If studentGrade is greater than or equal to 90, the first four conditions are true, but only
the Console.WriteLine statement after the first test executes. After that particular
Console.WriteLine executes, the program skips the else part of the “outer” if/
else structure.

Good Programming Practice 4.2
If there are several levels of indentation, each level should be indented the same additional
amount of space. 4.2

Chapter 4 Control Structures: Part 1 103

Most C# programmers prefer to write the preceding if structure as

if (studentGrade >= 90)
 Console.WriteLine("A");
else if (studentGrade >= 80)
 Console.WriteLine("B");
else if (studentGrade >= 70)
 Console.WriteLine("C");
else if (studentGrade >= 60)
 Console.WriteLine("D");
else
 Console.WriteLine("F");

Both forms are equivalent. The latter form is popular because it avoids the deep indentation
of the code. Such indentation often leaves little room on a line, forcing lines to be split and
decreasing program readability.

The C# compiler always associates an else with the previous if, unless told to do
otherwise by the placement of braces ({}). This is referred to as the dangling-else problem.
For example,

if (x > 5)
if (y > 5)

 Console.WriteLine("x and y are > 5");
else
 Console.WriteLine("x is <= 5");

appears to indicate that if x is greater than 5, the if structure in its body determines if y
is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the else part of the if/else structure outputs the string
"x is <= 5".

Testing and Debugging Tip 4.1
The reader can use Visual Studio to indent code properly. In order to check indentation, the
reader should highlight the relevant code and press Ctrl-K followed immediately by Ctrl-F. 4.1

However, the preceding nested if structure does not execute as its indentation
implies. The compiler actually interprets the structure as

if (x > 5)
if (y > 5)

 Console.WriteLine("x and y are > 5");
else

 Console.WriteLine("x is <= 5");

in which the body of the first if structure is an if/else structure. This structure tests if
x is greater than 5. If so, execution continues by testing if y is also greater than 5. If the
second condition is true, the proper string—"x and y are > 5"—is displayed. However,
if the second condition is false, the string "x is <= 5" is displayed, even though we know
x is greater than 5.

To force the preceding nested if structure to execute as it was originally intended, the
structure must be written as follows:

104 Control Structures: Part 1 Chapter 4

if (x > 5)
{

if (y > 5)
 Console.WriteLine("x and y are > 5");
}
else
 Console.WriteLine("x is <= 5");

The braces ({}) indicate to the compiler that the second if structure is in the body of the
first if structure and that the else is matched with the first if structure.

The if selection structure normally expects only one statement in its body. To include
several statements in the body of an if, enclose these statements in braces ({ and }). A set
of statements contained in a pair of braces is called a block.

Software Engineering Observation 4.2
A block can be placed anywhere in a program at which a single statement can be placed. 4.2

The following example includes a block in the else part of an if/else structure:

if (studentGrade >= 60)
 Console.WriteLine("Passed");
else
{
 Console.WriteLine("Failed");
 Console.WriteLine("You must take this course again.");
}

In this case, if studentGrade is less than 60, the program executes both statements in
the body of the else and prints

Failed
You must take this course again.

Notice the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

Console.WriteLine("You must take this course again.");

would be outside the body of the else and would execute regardless of whether the grade
is less than 60.

Common Programming Error 4.1
Forgetting one of the braces that delimit a block can lead to syntax errors. Forgetting both
of the braces that delimit a block can lead to syntax and/or logic errors. 4.1

Syntax errors, such as when one brace in a block is left out of the program, are caught
by the compiler. A logic error, such as the error caused when both braces in a block are left
out of the program, has its effect at execution time. A fatal logic error causes a program to
fail and terminate prematurely. A nonfatal logic error allows a program to continue exe-
cuting, but the program produces incorrect results.

Software Engineering Observation 4.3
Just as a block can be placed anywhere a single statement can be placed, it is also possible
to have an empty statement, which is represented by placing a semicolon (;) where a state-
ment normally would be. 4.3

Chapter 4 Control Structures: Part 1 105

Common Programming Error 4.2
Placing a semicolon after the condition in an if structure leads to a logic error in single-
selection if structures and a syntax error in double-selection if structures (if the if clause
contains a nonempty body statement). 4.2

Good Programming Practice 4.3
Some programmers prefer to type the beginning and ending braces of blocks before typing
the individual statements within the braces. This practice helps avoid omitting one or both of
the braces. 4.3

In this section, we introduced the notion of a block. A block may contain declarations.
The declarations in a block commonly are placed first in the block before any action state-
ments, but declarations may be intermixed with action statements.

4.7 while Repetition Structure
A repetition structure allows the programmer to specify that an action is to be repeated
while a condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition, “there are more
items on my shopping list” may be true or false. If it is true, then the action, “Purchase next
item and cross it off my list” is performed. This action executes repeatedly while the con-
dition remains true. The statement(s) contained in the while repetition structure constitute
the body of the while. The while structure body may be a single statement or a block. Even-
tually, the condition becomes false (when the last item on the shopping list has been pur-
chased and crossed off the list). At this point, the repetition terminates, and the first
statement after the repetition structure executes.

As an example of a while structure, consider a program segment designed to find the
first power of 2 larger than 1000. Suppose int variable product contains the value 2.
When the following while structure finishes executing, product contains the result:

int product = 2;

while (product <= 1000)
 product = 2 * product;

The flowchart in Fig. 4.5 illustrates the flow of control of the preceding while repe-
tition structure. Once again, note that (besides small circles and arrows) the flowchart con-
tains only a rectangle symbol and a diamond symbol.

Common Programming Error 4.3
Not providing in the body of a while structure an action that eventually causes the con-
dition to become false is a logic error. Normally, such a repetition structure will never ter-
minate, which is an error called an “infinite loop.” 4.3

Common Programming Error 4.4
Beginning the keyword while with an uppercase W, as in While, is a syntax error. Remem-
ber that C# is a case-sensitive language. All of C#’s keywords—while, if, else, etc.—
contain only lowercase letters. 4.4

106 Control Structures: Part 1 Chapter 4

Testing and Debugging Tip 4.2
Visual Studio .NET will not color a keyword properly unless that keyword is spelled correctly
and with the correct case. 4.2

Imagine, again, a deep bin of empty while structures that may be stacked and nested
with other control structures to form a structured implementation of an algorithm’s flow of
control. The empty rectangles and diamonds are filled with appropriate actions and deci-
sions. The flowchart clearly shows the repetition. The flowline emerging from the rectangle
indicates that program control continues with the decision, which is tested during each iter-
ation of the loop until the decision eventually becomes false. At this point, the while
structure terminates, and control passes to the next statement following the while struc-
ture in the program.

When the while structure begins executing, product is 2. Variable product is
repeatedly multiplied by 2, taking on the values 4, 8, 16, 32, 64, 128, 256, 512 and 1024,
successively. When product becomes 1024, the condition product <= 1000 in the
while structure becomes false. This terminates the repetition with 1024 as product’s
final value. Execution continues with the next statement after the while. [Note: If a while
structure’s condition is initially false, the body statement(s) will never be executed.]

4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)
To illustrate how algorithms are developed, we solve several variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100)
for this quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation and display the result.

Let us use pseudocode to list the actions to execute and to specify the order of execu-
tion. We use counter-controlled repetition to input the grades one at a time. This technique
uses a variable called a counter to control the number of times a set of statements will exe-
cute. In this example, repetition terminates when the counter exceeds 10. This section pre-
sents a pseudocode algorithm (Fig. 4.6) and the corresponding program (Fig. 4.7). In

Fig. 4.5 Flowcharting the while repetition structure.

product <= 1000 product = 2 * product
true

false

Chapter 4 Control Structures: Part 1 107

Section 4.9, we show how to develop a pseudocode algorithm. Counter-controlled repeti-
tion is also called definite repetition because the number of repetitions is known before the
loop begins executing.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 4.6 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

1 // Fig. 4.7: Average1.cs
2 // Class average with counter-controlled repetition.
3
4 using System;
5
6 class Average1
7 {
8 static void Main(string[] args)
9 {

10 int total, // sum of grades
11 gradeCounter, // number of grades entered
12 gradeValue, // grade value
13 average; // average of all grades
14
15 // initialization phase
16 total = 0; // clear total
17 gradeCounter = 1; // prepare to loop
18
19 // processing phase
20 while (gradeCounter <= 10) // loop 10 times
21 {
22 // prompt for input and read grade from user
23 Console.Write("Enter integer grade: ");
24
25 // read input and convert to integer
26 gradeValue = Int32.Parse(Console.ReadLine());
27
28 // add gradeValue to total
29 total = total + gradeValue;
30

Fig. 4.7 Class average program with counter-controlled repetition. (Part 1 of 2.)

108 Control Structures: Part 1 Chapter 4

Note the references in the algorithm (Fig. 4.6) to a total and a counter. The pseudocode
variable total accumulates the sum of a series of values. A counter is a variable that
counts—in this case, that counts the number of grades entered. Variables that store totals
normally should be initialized to zero before being used in a program; otherwise, the sum
would include the previous value stored in the total’s memory location.

Testing and Debugging Tip 4.3
Initialize counters and totals. 4.3

Line 6 begins the definition of class Average1. Remember that an application class
definition must contain a Main method (lines 8–41) to begin execution of the application.

Lines 10–13 declare variables total, gradeCounter, gradeValue and
average to be of type int. Variable gradeValue will store the value the user inputs
after the value is converted from a string to an int.

Good Programming Practice 4.4
Always place a blank line between a declaration and executable statements. This makes the
declarations stand out in a program and contributes to program clarity. 4.4

Lines 16–17 are assignment statements that initialize total to 0 and grade-
Counter to 1. Variables total and gradeCounter are initialized before they are

31 // add 1 to gradeCounter
32 gradeCounter = gradeCounter + 1;
33 }
34
35 // termination phase
36 average = total / 10; // integer division
37
38 // display average of exam grades
39 Console.WriteLine("\nClass average is {0}", average);
40
41 } // end Main
42
43 } // end class Average1

Enter integer grade: 100
Enter integer grade: 88
Enter integer grade: 93
Enter integer grade: 55
Enter integer grade: 68
Enter integer grade: 77
Enter integer grade: 83
Enter integer grade: 95
Enter integer grade: 73
Enter integer grade: 62

Class average is 79

Fig. 4.7 Class average program with counter-controlled repetition. (Part 2 of 2.)

Chapter 4 Control Structures: Part 1 109

used in a calculation. Recall that using uninitialized variables in calculations results in com-
pilation errors.

Line 20 indicates that the while structure should continue as long as the value of
gradeCounter is less than or equal to 10. Lines 23 and 26 correspond to the pseudocode
statement “Input the next grade.” The statement on line 23 displays the prompt “Enter
integer grade:” on the screen. The statement on line 26 reads the information entered
by the user, converts it to an int and stores the value in gradeValue. Next, line 29
updates the total with the new gradeValue by adding gradeValue to the previous
value of total and assigning the result to total.

The program is now ready to increment the variable gradeCounter to indicate that
a grade has been processed. Line 32 adds 1 to gradeCounter, so the condition in the
while structure eventually will become false and terminate the loop. Line 36 assigns the
results of the average calculation to variable average. Line 39 displays a message con-
taining the string "Class average is " followed by the value of variable average.

The averaging calculation produces an integer result. Actually, the sum of the grade-
point values in this example is 794, which, when divided by 10, yields 79.4. Such numbers
with a decimal point are called floating-point numbers; we discuss floating-point numbers
in the next section.

4.9 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 2 (Sentinel-Controlled Repetition)
Let us generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that processes an arbitrary number of grades each time
the program executes.

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades are to be input. The program must pro-
cess an arbitrary number of grades. How can the program determine when to stop the input
of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user inputs all grades and then types the sentinel value to indicate that the last grade has
been entered. Sentinel-controlled repetition often is called indefinite repetition because the
number of repetitions is not known before the loop begins executing.

The sentinel value cannot be confused with an acceptable input value. Grades on a quiz
are normally nonnegative integers, thus -1 is an acceptable sentinel value for this problem.
A run of the class-average program might process a stream of inputs such as 95, 96, 75, 74,
89 and -1. The program would then compute and print the class average for the grades 95,
96, 75, 74 and 89. The sentinel value, -1, should not enter into the averaging calculation.

Common Programming Error 4.5
Choosing a sentinel value that is also a legitimate data value results in a logic error and may
prevent a sentinel-controlled loop from terminating properly, a problem known as an infinite
loop. 4.5

We approach the class-average program with top-down, stepwise refinement, a tech-
nique essential to the development of well-structured algorithms. We begin with a
pseudocode representation of the top:

110 Control Structures: Part 1 Chapter 4

Determine the class average for the quiz

The top is a single statement that conveys the overall function of the program. As such, the
top is a complete representation of a program. Unfortunately, the top rarely conveys a suf-
ficient amount of detail from which to write the C# algorithm. Therefore, we conduct the
refinement process. We divide the top into a series of smaller tasks and list these in the or-
der in which they must be performed. This results in the following first refinement:

Initialize variables
Input, sum up and count the quiz grades
Calculate and print the class average

Here, only the sequence structure has been used—the steps listed are to be executed in or-
der, one after the other.

Software Engineering Observation 4.4
Each refinement, including the top, is a complete specification of the algorithm; only the lev-
el of detail in each refinement varies. 4.4

To proceed to the next level of refinement (i.e., the second refinement), we commit to
specific variables. We need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade and a variable to hold the
calculated average. The pseudocode statement

Initialize variables

may be refined as follows:

Initialize total to zero
Initialize counter to zero

Notice that only the variables total and counter are initialized before they are used; the vari-
ables average and grade (for the calculated average and the user input, respectively) need
not be initialized because their values are determined as they are calculated or input.

The pseudocode statement

Input, sum up and count the quiz grades

requires a repetition structure (i.e., a loop) that successively inputs each grade. We do not
know how many grades are to be processed, thus we use sentinel-controlled repetition. The
user types in legitimate grades one at a time. After the last legitimate grade is typed, the
user types the sentinel value. The program tests for the sentinel value after each grade is
input and terminates the loop when the user enters the sentinel value. The second refine-
ment of the preceding pseudocode statement is then

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

We do not use braces around the pseudocode that forms the body of the while structure. We
simply indent the pseudocode under the while to show that it belongs to the while structure.

Chapter 4 Control Structures: Part 1 111

Note that a value is input both before reaching the loop and at the end of the loop’s body.
As we enter the loop, the value input before the loop is tested to determine whether it is the
sentinel. If so, the loop terminates; otherwise, the body of the loop executes. The body pro-
cesses the grade, then inputs the next grade. Then, the new grade is tested at the top of the
loop to determine if that grade is the sentinel.

The pseudocode statement

Calculate and print the class average

may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

We test for the possibility of division by zero—a logic error that, if undetected, causes the
program to produce invalid output. The complete second refinement of the pseudocode al-
gorithm for the class-average problem is shown in Fig. 4.8.

Testing and Debugging Tip 4.4
When performing division by an expression whose value could be zero, explicitly test for this
case and handle it appropriately in your program, possibly printing an error message. 4.4

Good Programming Practice 4.5
Include blank lines in pseudocode programs for increased readability. The blank lines sep-
arate pseudocode control structures and the program’s phases. 4.5

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

Fig. 4.8 Pseudocode algorithm that uses sentinel-controlled repetition to solve
the class-average problem.

112 Control Structures: Part 1 Chapter 4

Software Engineering Observation 4.5
Many algorithms can be divided logically into three phases—an initialization phase that ini-
tializes the program variables, a processing phase that inputs data values and adjusts pro-
gram variables accordingly and a termination phase that calculates and prints the results. 4.5

The pseudocode algorithm in Fig. 4.8 solves the more general class-averaging
problem. This algorithm was developed after only two levels of refinement. Sometimes
more levels are necessary.

Software Engineering Observation 4.6
The programmer terminates the top-down, stepwise refinement process when the pseudocode
algorithm is specified in sufficient detail for the programmer to convert the pseudocode to a C#
program. Implementing the C# program then normally occurs in a straightforward manner. 4.6

The C# program for this pseudocode is shown in Fig. 4.9. Notice from the output that
each grade entered is an integer, although the averaging calculation is likely to produce a
number with a decimal point. The type int cannot represent real numbers, so this program
uses data type double to handle floating-point numbers.

The program also introduces the cast operator (line 44) to handle the type conversion
for the averaging calculation. These features are explained in detail in our discussion of
Fig. 4.9.

1 // Fig. 4.9: Average2.cs
2 // Class average with sentinel-controlled repetition.
3
4 using System;
5
6 class Average2
7 {
8 static void Main(string[] args)
9 {

10 int total, // sum of grades
11 gradeCounter, // number of grades entered
12 gradeValue; // grade value
13
14 double average; // average of all grades
15
16 // initialization phase
17 total = 0; // clear total
18 gradeCounter = 0; // prepare to loop
19
20 // processing phase
21 // prompt for input and convert to integer
22 Console.Write("Enter Integer Grade, -1 to Quit: ");
23 gradeValue = Int32.Parse(Console.ReadLine());
24
25 // loop until a -1 is entered by user
26 while (gradeValue != -1)
27 {
28 // add gradeValue to total
29 total = total + gradeValue;

Fig. 4.9 Class-average program with sentinel-controlled repetition. (Part 1 of 2.)

Chapter 4 Control Structures: Part 1 113

In this example, we examine how control structures may be stacked on top of one
another, in sequence. The while structure (lines 26–39) is followed immediately by an if
structure (lines 42–51). Much of the code in this program is identical to the code in Fig. 4.7,
so we concentrate on the new features in this example.

Line 14 declares variable average to be of type double. This change allows us to
store the result of the class-average calculation as a floating-point number. Line 18 initial-
izes gradeCounter to 0 because no grades have been input yet—recall that this program
uses sentinel-controlled repetition. To keep an accurate record of the number of grades
entered, variable gradeCounter is incremented only when a valid grade value is input.

Notice the differences between sentinel-controlled repetition and the counter-con-
trolled repetition of Fig. 4.7. In counter-controlled repetition, we read a value from the user
during each pass of the while structure for the specified number of iterations. In sentinel-
controlled repetition, we read one value (line 23) before the program reaches the while

30
31 // add 1 to gradeCounter
32 gradeCounter = gradeCounter + 1;
33
34 // prompt for input and read grade from user
35 // convert grade from string to integer
36 Console.Write("Enter Integer Grade, -1 to Quit: ");
37 gradeValue = Int32.Parse(Console.ReadLine());
38
39 } // end while
40
41 // termination phase
42 if (gradeCounter != 0)
43 {
44 average = (double) total / gradeCounter;
45
46 // display average of exam grades
47 Console.WriteLine("\nClass average is {0}", average);
48
49 }
50 else
51 {
52 Console.WriteLine("No grades were entered.");
53 }
54
55 } // end method Main
56
57 } // end class Average2

Enter Integer Grade, -1 to Quit: 97
Enter Integer Grade, -1 to Quit: 88
Enter Integer Grade, -1 to Quit: 72
Enter Integer Grade, -1 to Quit: -1

Class average is 85.6666666666667

Fig. 4.9 Class-average program with sentinel-controlled repetition. (Part 2 of 2.)

114 Control Structures: Part 1 Chapter 4

structure. This value is used to determine if the program’s flow of control should enter the
body of the while structure. If the while structure condition is false (i.e., the user has
entered the sentinel value), the body of the while structure does not execute (i.e., no
grades were entered). If, on the other hand, the condition is true, the body begins execution,
and the value input by the user is processed (added to the total). Then, the next value is
input from the user before the end of the while structure’s body. When program control
reaches the closing right brace (}) of the body (line 39), execution continues with the next
test of the while structure condition. The new value input by the user determines if the
while structure’s body should execute again. Notice that the next value is input from the
user immediately before the while structure condition is evaluated (line 37). This allows
the program to determine whether the value just input by the user is the sentinel value
before the program processes that value as a valid grade. If the value is the sentinel value,
the while structure terminates, and the value is not added to the total.

Notice the block that composes the while loop in Fig. 4.9. Without the braces, the
last three statements in the body of the loop would be outside the loop, causing the com-
puter to interpret the code incorrectly, as follows:

while (gradeValue != -1)

// add gradeValue to total
 total = total + gradeValue;

// add 1 to gradeCounter
gradeCounter = gradeCounter + 1;

// prompt for input and read grade from user
Console.Write("Enter Integer Grade, -1 to Quit: ");
gradeValue = Int32.Parse(Console.ReadLine());

An infinite loop occurs in the program if the user fails to input the sentinel -1 as the input
value at line 23 (before the while structure).

Common Programming Error 4.6
Omitting the curly braces that delimit a block in a repetition structure can lead to logic er-
rors, such as infinite loops. 4.6

Good Programming Practice 4.6
In a sentinel-controlled loop, the prompts requesting data entry should remind the user of the
sentinel value. 4.6

Averages do not always evaluate to integer values. Often, an average is a value such
as 3.333 or 2.7, that contains a fractional part. These values are floating-point numbers and
usually are represented by the data type double. We declare the variable average as
type double to capture the fractional result of our calculation. However, the result of the
calculation total / gradeCounter is an integer because total and grade-
Counter are both integer variables. Dividing two integers results in integer division, in
which any fractional part of the calculation is truncated and the result is a whole number.
The calculation is performed first, thus the fractional part is lost before the result is assigned
to average. To produce a floating-point calculation with integer values, we must create
temporary values that are floating-point numbers for the calculation. C# provides the unary

Chapter 4 Control Structures: Part 1 115

cast operator to create this temporary value. Line 44 uses the cast operator (double) to
create a temporary floating-point copy of its operand—total. Using a cast operator in this
manner is called explicit conversion. The value stored in total is still an integer. The cal-
culation now consists of a floating-point value (the temporary double version of total)
divided by the integer gradeCounter. Note that the cast does not modify the value
stored in memory for total. Rather it creates a temporary value that is used only for this
calculation.

Common Programming Error 4.7
Assuming that integer division rounds (rather than truncates) can lead to incorrect results. 4.7

C# can evaluate only arithmetic expressions in which the data types of the operands
are identical. To ensure that the operands are of the same type, C# performs implicit con-
version (also called promotion) on selected operands. Through implicit conversion, in an
expression containing the data types int and double, int operands are promoted to
double. In our example, the temporary double version of total is divided by the int
gradeCounter. Therefore, a temporary version of gradeCounter is promoted to
double, the calculation is performed and the result of the floating-point division is
assigned to average.

Cast operators are available for most data types. The cast operator is known as a unary
operator (i.e., an operator that takes only one operand) and is formed by placing paren-
theses around a data type name. In Chapter 3, Introduction to C# Programming, we studied
the binary arithmetic operators. C# also supports unary versions of the plus (+) and minus
(-) operators, so the programmer can write expressions like -7 or +5. Cast operators asso-
ciate from right to left and have the same precedence as other unary operators, such as unary
+ and unary -. This precedence is one level higher than that of the multiplicative operators
*, / and % and one level lower than that of parentheses. (See the operator precedence chart
in Appendix A.) In our precedence charts, we indicate the cast operator with the notation
(type) to show that any type name can form a cast operator.

Common Programming Error 4.8
Using floating-point numbers in a manner that assumes that they are precisely represented
real numbers can lead to incorrect results. Real numbers are represented only approximately
by computers. 4.8

Good Programming Practice 4.7
Do not compare floating-point values for equality or inequality. Rather, test that the absolute
value of the difference between two floating-point numbers is less than a specified small value. 4.7

Despite the fact that floating-point numbers are not always “100% precise,” they have
numerous applications. For example, when we speak of a “normal” body temperature of
98.6, we do not need to be precise to a large number of digits. When we view the temper-
ature on a thermometer and read it as 98.6, it may actually be 98.5999473210643. Calling
such a number simply 98.6 is fine for most applications.

Floating-point numbers also develop through division. When we divide 10 by 3, the
result is 3.3333333…, with the sequence of 3s repeating infinitely. The computer allocates
only a fixed amount of space to hold such a value, so the stored floating-point value can be
only an approximation.

116 Control Structures: Part 1 Chapter 4

Line 47 displays the value of average. We specify average as the second argument
to WriteLine. Method WriteLine will convert this argument to a string and dis-
play its value.

4.10 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)
Let us work through another complete problem. We will again formulate the algorithm us-
ing pseudocode and top-down, stepwise refinement; we will write a corresponding C# pro-
gram.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, several of the students who completed this course took the licensing
examination. The college wants to know how well its students did on the exam. You have
been asked to write a program to summarize the results. You have been given a list of the 10
students. Next to each name is written a 1 if the student passed the exam and a 2 if the stu-
dent failed the exam.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the
screen each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results, indicating the number of students who passed
and the number of students who failed the exam.

4. If more than 8 students passed the exam, print the message “Raise tuition.”

After reading the problem statement carefully, we make the following observations
about the problem:

1. The program must process test results for 10 students. A counter-controlled loop
will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine if the number is a 1 or a 2. We test for a 1 in
our algorithm. If the number is not a 1, we assume that it is a 2. (An exercise at the
end of the chapter considers the consequences of this assumption.)

3. Two counters keep track of the exam results—one to count the number of students
who passed the exam and one to count the number of students who failed.

4. After the program processes all the results, it must decide if more than eight stu-
dents passed the exam.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide if tuition should be raised

Once again, it is important to emphasize that the top is a complete representation of the pro-
gram, but several refinements are likely to be needed before the pseudocode can be evolved
naturally into a C# program. Our first refinement is

Chapter 4 Control Structures: Part 1 117

Initialize variables
Input the ten exam grades and count passes and failures
Print a summary of the exam results and decide if tuition should be raised

Even though we have a complete representation of the entire program, further refinement
is necessary. We must commit to specific variables. Counters are needed to record the pass-
es and failures. A counter controls the looping process and a variable stores the user input.
The pseudocode statement

Initialize variables

may be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Only the counters for the number of passes, number of failures and number of students are
initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here, it is known in ad-
vance that there are precisely ten exam results, so counter-controlled repetition is appropri-
ate. Inside the loop (i.e., nested within the loop) a double-selection structure determines
whether each exam result is a pass or a failure, and the structure increments the appropriate
counter accordingly. The refinement of the preceding pseudocode statement is

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

Notice the use of blank lines to offset the If/Else control structure to improve program read-
ability. The pseudocode statement

Print a summary of the exam results and decide if tuition should be raised

may be refined as follows:

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

The complete second refinement appears in Fig. 4.10. Notice that blank lines also set off
the While structure for program readability.

The pseudocode now is refined sufficiently for conversion to C#. The C# program and
sample executions are shown in Fig. 4.11.

118 Control Structures: Part 1 Chapter 4

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

Fig. 4.10 Pseudocode for examination-results problem.

1 // Fig. 4.11: Analysis.cs
2 // Analysis of Examination Results.
3
4 using System;
5
6 class Analysis
7 {
8 static void Main(string[] args)
9 {

10 int passes = 0, // number of passes
11 failures = 0, // number of failures
12 student = 1, // student counter
13 result; // one exam result
14
15 // process 10 students; counter-controlled loop
16 while (student <= 10)
17 {
18 Console.Write("Enter result (1=pass, 2=fail): ");
19 result = Int32.Parse(Console.ReadLine());
20
21 if (result == 1)
22 passes = passes + 1;
23
24 else
25 failures = failures + 1;

Fig. 4.11 C# program for examination-results problem. (Part 1 of 2.)

Chapter 4 Control Structures: Part 1 119

Lines 10–13 declare the variables used in Main to process the examination results. We
have taken advantage of a C# feature that incorporates variable initialization into declara-
tions (passes is assigned 0, failures is assigned 0 and student is assigned 1). Pro-
grams that contain repetition may require initialization at the beginning of each repetition;

26
27 student = student + 1;
28 }
29
30 // termination phase
31 Console.WriteLine();
32 Console.WriteLine("Passed: " + passes);
33 Console.WriteLine("Failed: " + failures);
34
35 if (passes > 8)
36 Console.WriteLine("Raise Tuition\n");
37
38 } // end of method Main
39
40 } // end of class Analysis

Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 2
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1

Passed: 9
Failed: 1
Raise Tuition

Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 2
Enter result (1=pass, 2=fail): 2
Enter result (1=pass, 2=fail): 2
Enter result (1=pass, 2=fail): 2
Enter result (1=pass, 2=fail): 2
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1
Enter result (1=pass, 2=fail): 1

Passed: 5
Failed: 5

Fig. 4.11 C# program for examination-results problem. (Part 2 of 2.)

120 Control Structures: Part 1 Chapter 4

such initialization normally occurs in assignment statements. Notice the use of the nested
if/else structure (lines 21–25) in the while structure’s body. Also, notice the new state-
ment at line 31 that uses Console.WriteLine to output a blank line.

Software Engineering Observation 4.7
The most difficult part of solving a problem on a computer is developing the algorithm for
the solution. Once a correct algorithm has been specified, the process of producing a work-
ing C# program from the algorithm is normally straightforward. 4.7

Software Engineering Observation 4.8
Many experienced programmers write programs without ever using program development
tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob-
lem on a computer, and that writing pseudocode merely delays the production of final output.
Although this may work for simple and familiar problems, it can lead to serious problems on
large, complex projects. 4.8

4.11 Assignment Operators
C# provides several assignment operators for abbreviating assignment expressions. For ex-
ample, the statement

c = c + 3;

can be abbreviated with the addition assignment operator += as

c += 3;

The += operator adds the value of the expression on the right of the operator to the value of
the variable on the left of the operator and stores the result in the variable on the left of the
operator. Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we will discuss later
in the book), can be written in the form

variable operator= expression;

Figure 4.12 includes the arithmetic assignment operators, sample expressions using
these operators and explanations.

Common Programming Error 4.9
Placing a space character between symbols that compose an arithmetic assignment operator
is a syntax error. 4.9

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

Fig. 4.12 Arithmetic assignment operators. (Part 1 of 2.)

Chapter 4 Control Structures: Part 1 121

4.12 Increment and Decrement Operators
C# provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 4.13. A program can increment the value of a variable called
c by 1 using the increment operator, ++, rather than the expression c = c + 1 or c += 1. If
an increment or decrement operator is placed before a variable, it is referred to as the pre-
increment or predecrement operator, respectively. If an increment or decrement operator
is placed after a variable, it is referred to as the postincrement or postdecrement operator,
respectively.

Preincrementing (or predecrementing) a variable causes the variable to be incremented
(or decremented) by 1, and then the new value of the variable is used in the expression in
which it appears. Postincrementing (or postdecrementing) the variable causes the current
value of the variable to be used in the expression in which it appears, and then the variable
value is incremented (or decremented) by 1.

The application in Fig. 4.14 demonstrates the difference between the preincrementing
version and the postincrementing version of the ++ increment operator. Postincrementing
the variable c causes it to be incremented after it is used in the Console.WriteLine
method call (line 14). Preincrementing the variable c causes it to be incremented before it
is used in the Console.WriteLine method call (line 21).

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Operator Called Sample expression Explanation

++ preincrement ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

++ postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.13 The increment and decrement operators.

Assignment operator Sample expression Explanation Assigns

Fig. 4.12 Arithmetic assignment operators. (Part 2 of 2.)

122 Control Structures: Part 1 Chapter 4

The program displays the value of c before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

Good Programming Practice 4.8
For readability, nary operators should be placed next to their operands, with no intervening
spaces. 4.8

Line 17,

Console.WriteLine(); // skip a line

uses Console.WriteLine to output a blank line. If Console.WriteLine receives
no arguments, it simply outputs a newline character.

The arithmetic assignment operators and the increment and decrement operators can
be used to simplify program statements. For example, the three assignment statements in
Fig. 4.11 (lines 22, 25 and 27)

1 // Fig. 4.14: Increment.cs
2 // Preincrementing and postincrementing
3
4 using System;
5
6 class Increment
7 {
8 static void Main(string[] args)
9 {

10 int c;
11
12 c = 5;
13 Console.WriteLine(c); // print 5
14 Console.WriteLine(c++); // print 5 then postincrement
15 Console.WriteLine(c); // print 6
16
17 Console.WriteLine(); // skip a line
18
19 c = 5;
20 Console.WriteLine(c); // print 5
21 Console.WriteLine(++c); // preincrement then print 6
22 Console.WriteLine(c); // print 6
23
24 } // end of method Main
25
26 } // end of class Increment

5
5
6

5
6
6

Fig. 4.14 The difference between preincrementing and postincrementing.

Chapter 4 Control Structures: Part 1 123

passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
student += 1;

with preincrement operators as

++passes;
++failures;
++student;

or with postincrement operators as

passes++;
failures++;
student++;

It is important to note here that when incrementing or decrementing a variable in an
expression or statement by itself, the preincrement and postincrement forms have the same
effect, and the predecrement and postdecrement forms have the same effect. It is only when
a variable appears in the context of a larger expression that preincrementing and postincre-
menting the variable have different effects (and similarly for predecrementing and postdec-
rementing).

Common Programming Error 4.10
Attempting to use the increment or decrement operator on an expression other than a vari-
able reference is a syntax error. A variable reference is a variable or expression that can ap-
pear on the left side of an assignment operation. For example, writing ++(x + 1) is a syntax
error, because (x + 1) is not a variable reference.2 4.10

The chart in Fig. 4.15 shows the precedence and associativity of the operators intro-
duced to this point. The operators are shown top to bottom in decreasing order of prece-
dence. The second column describes the associativity of the operators at each level of
precedence. Notice that the conditional operator (?:), the unary operators increment (++),
decrement (--), plus (+), minus (-), cast and the assignment operators (=, +=, -=, *=, /
= and %=) associate from right to left. All other operators in the operator precedence chart
of Fig. 4.15 associate from left to right. The third column names the groups of operators.

2. The term variable reference is equivalent to the term lvalue (“left value”), which is popular among
C and C++ programmers.

Operators Associativity Type

()
++ --

left to right
right to left

parentheses
unary postfix

Fig. 4.15 Precedence and associativity of the operators discussed so far in this
book. (Part 1 of 2.)

124 Control Structures: Part 1 Chapter 4

4.13 Introduction to Windows Application Programming
Today, users demand software with rich GUIs that allow them to click buttons, select items
from menus and much more. In this chapter and the previous, we created console applica-
tions. However, most C# programs used in industry are Windows applications with GUIs.
For this reason, we are introducing Windows applications early in the book, although doing
so exposes some concepts that we do not explain fully until later chapters.

In Chapter 2, Introduction to the Visual Studio .NET IDE, we introduced the concept
of visual programming, which allows programmers to create graphical user interfaces
(GUIs) without writing any programming code. In this section, we combine visual pro-
gramming with the conventional programming techniques introduced in this chapter and
Chapter 3, Introduction to C# Programming. Through this combination, we can enhance
considerably the Windows application introduced in Chapter 2.

Load the project ASimpleProject from Chapter 2 into the IDE. To identify easily
the form and its controls in the program code, change the (Name) properties of the form,
label and picture box to ASimpleProgram, welcomeLabel and bugPictureBox,
respectively. To change a GUI component’s properties, select (click) the component in the
design window, then locate the property in the Properties window. Click the box to the right
of the property name to input a new value, then press the Enter key.

With visual programming, the IDE generates the program code that creates the GUI.
This code contains instructions for the creation of the form and every control on it. Unlike
a console application, a Windows application’s program code is not displayed initially in
the editor window. Once the program’s project (e.g., ASimpleProgram) is opened in the
IDE, the program code can be viewed by selecting View > Code. Figure 4.16 shows the
code editor displaying the program code.

Windows applications use classes. We already have seen examples of classes such as
Console and MessageBox, which are defined within the .NET Framework Class
Library. Classes are logical groupings of procedures and data that simplify program organi-
zation. In-depth coverage of classes is provided in Chapter 8, Object-Based Programming.

Every Windows application consists of at least one class that inherits from class Form
(which represents a form) in the .NET Framework Class Library’s System.Win-
dows.Forms namespace. The keyword class begins a class definition and is followed

++ -- + - (type) right to left unary prefix

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Operators Associativity Type

Fig. 4.15 Precedence and associativity of the operators discussed so far in this
book. (Part 2 of 2.)

Chapter 4 Control Structures: Part 1 125

immediately by the class name (ASimpleProgram). Recall that the form’s name is set
using the (Name) property. A colon (:) indicates that the class ASimpleProgram inherits
existing pieces from another class. The class from which ASimpleProgram inherits—
here, System.Windows.Forms.Form—appears to the right of the colon. In this inher-
itance relationship, Form is called the base class (or superclass), and ASimpleProgram is
called the derived class (or subclass). With inheritance ASimpleProgram’s class defini-
tion has the attributes (data) and behaviors (methods) of class Form. We discuss the signifi-
cance of the keyword public in Chapter 6. [Note: Changing a control’s name in the
Properties window may not change all occurrences of the control’s name in the code. The
reader should search the code and replace names that were not changed by the IDE. For
example, the original form name (and class name) was Form1. Search the code for Form1
and change any remaining instances to ASimpleProgram.]

A key benefit of inheriting from class Form is that someone else has previously
defined “what it means to be a form.” The Windows operating system expects every
window (e.g., form) to have certain attributes and behaviors. However, because class Form
already provides those capabilities, programmers do not need to “reinvent the wheel” by
defining all those capabilities themselves. In fact, class Form has over 400 methods! In our
programs up to this point, we have used only one method (i.e., Main), so you can imagine
how much work went into creating class Form. The use of the colon to extend from class
Form enables programmers to create forms quickly.

In the editor window (Fig. 4.16), notice the text Windows Form Designer gen-
erated code, which is colored gray and has a plus box next to it. The plus box indicates
that this section of code is collapsed. Although collapsed code is not visible, it is still part
of the program. Code collapsing allows programmers to hide code in the editor, so that they
can focus on smaller (and perhaps more important) code segments. Notice that the entire
class definition also can be collapsed by clicking the minus box to the left of public. In
Fig. 4.16, the description in gray indicates that the collapsed code was created by the Win-
dows Form Designer (i.e., the part of the IDE that creates the code for the GUI). This col-
lapsed code contains the code created by the IDE for the form and its controls, as well as
code that enables the program to run. Click the plus box to view the code.

Fig. 4.16 IDE showing program code for Fig. 2.15.

Collapsed
code

Collapsed
comment

126 Control Structures: Part 1 Chapter 4

Upon initial inspection, the expanded code (Fig. 4.17) looks incredibly complex.This
code is created by the IDE and normally is not edited by the programmer. We feel it is
important for novice programmers to see the amount of code that is generated by the IDE,
even though much of the code is not explained until later in the book. This type of code is
present in every Windows application. Allowing the IDE to create this code saves the pro-
grammer considerable development time. If the IDE did not provide the code, the pro-
grammer would have to write it, and this would require a considerable amount of time. The
vast majority of the code shown has not been introduced yet, so you are not expected to
understand how it works. However, certain programming constructs, such as comments
and control structures, should be familiar. Our explanation of this code will enable us to
discuss visual programming in greater detail. As you continue to study C#, especially in
Chapters 8–13, the purpose of this code will become clearer.

When we created this application in Chapter 2, we used the Properties window to set
properties for the form, label and picture box. Once a property was set, the form or control
was updated immediately. Forms and controls contain a set of default properties, which are
displayed initially in the Properties window when a form or control is selected. These
default properties provide the initial characteristics of a form or control when it is created.
When a control, such as a label, is placed on the form, the IDE adds code to the class (e.g.,
ASimpleProgram) that creates the control and that sets some of the control’s property
values, such as the name of the control and its location on the form. Figure 4.18 shows a
portion of the code generated by the IDE for setting the label’s (i.e., welcomeLabel’s)
properties. These include the label’s Font, Location, Name, Text and TextAlign
properties. Recall from Chapter 2 that we explicitly set values for the label’s Name, Text
and TextAlign properties. Other properties, such as Location are set only when the
label is placed on the form.

Fig. 4.17 Windows Form Designer generated code when expanded.

Expanded
code

Chapter 4 Control Structures: Part 1 127

The values assigned to the properties are based on the values in the Properties
window. We now demonstrate how the IDE updates the Windows Form Designer gener-
ated code it generates when a property value in the Properties window changes. During
this process, we must switch between code view and design view. To switch views, select
the corresponding tabs—Form1.cs* for code view and Form1.cs* [Design] for design
view. Alternatively, the programmer can select View > Code or View > Designer. Per-
form the following steps:

1. Modify the label control’s Text property using the Properties window. Recall
that properties can be changed in design view by clicking a form or control to se-
lect it, then modifying the appropriate property in the Properties window.
Change the Text property of the label to “Deitel” (Fig. 4.19).

Fig. 4.18 Code generated by the IDE for welcomeLabel.

Fig. 4.19 Using the Properties window to set a property value.

Click here for
code view

Click here for
design view

Property initializations
for welcomeLabel

Text
property

128 Control Structures: Part 1 Chapter 4

2. Examine the changes in the code view. Switch to code view and examine the code.
Notice that the label’s Text property is now assigned the text that we entered in
the Properties window (Fig. 4.20). When a property is changed in design mode,
the Windows Form Designer updates the appropriate line of code in the class to
reflect the new value.

3. Modifying a property value in code view. In the code view editor, locate the three
lines of comments indicating the initialization for welcomeLabel and change
the string assigned to this.welcomeLabel.Text from “Deitel” to
“Visual C# .NET” (Fig. 4.21). Now, switch to design mode. The label now dis-
plays the updated text, and the Properties window for welcomeLabel dis-
plays the new Text value (Fig. 4.22). [Note: Property values should not be set
using the techniques presented in this step. Here, we modify the property value in
the IDE generated code only as a demonstration of the relationship between pro-
gram code and the Windows Form Designer.]

Fig. 4.20 Windows Form Designer generated code reflecting new property values.

Fig. 4.21 Changing a property in the code view editor.

Text property

Chapter 4 Control Structures: Part 1 129

4. Change the label’s Text property at runtime. In the previous steps, we set proper-
ties at design time. Often, however, it is necessary to modify a property while a pro-
gram is running. For example, to display the result of a calculation, a label’s text can
be assigned a string containing the result. In console applications, such code is
located in Main. In Windows applications, we must create a method that executes
when the form is loaded into memory during program execution. Like Main, this
method is invoked when the program is run. Double-clicking the form in design
view adds a method named ASimpleProgram_Load to the class (Fig. 4.23).
The cursor is placed in the body of the ASimpleProgram_Load method defini-
tion. Notice that ASimpleProgram_Load is not part of the Windows Form De-
signer generated code. Add the statement welcomeLabel.Text = "C#"; in the
body of the method definition (Fig. 4.23). In C#, properties are accessed by placing
the property name (i.e., Text) after the object name (i.e., welcomeLabel), sepa-
rated by the dot operator. This syntax is similar to that used when accessing object
methods. Notice that the IntelliSense feature displays the Text property in the
member list after the class name and dot operator have been typed (Fig. 4.29). In
Chapter 8, Object-Based Programming, we discuss how programmers can create
their own properties.

Fig. 4.22 New Text property value reflected in design mode.

Fig. 4.23 Method FrmASimpleProgram_Load.

Text property value

ASimpleProgram_Load method

130 Control Structures: Part 1 Chapter 4

5. Examine the results of the ASimpleProgram_Load method. Notice that the
text in the label looks the same in Design mode as it did in Fig. 4.22. Note also
that the property window still displays the value “Visual C# .NET” as the la-
bel’s Text property and that the IDE generated code has not changed either. Se-
lect Build > Build then Debug > Start to run the program. Once the form is
displayed, the text in the label reflects the property assignment in
ASimpleProgram_Load (Fig. 4.24).

6. Terminate program execution. Click the close button to terminate program execu-
tion. Once again, notice that both the label and the label’s Text property contain
the text Visual C# .NET. The IDE generated code also contains the text Vi-
sual C# .NET, which is assigned to the label’s Text property.

In this chapter, we introduced program building blocks called control structures. We
also discussed aspects of Windows application programming. In Chapter 5, Control Struc-
tures: Part 2, we continue our discussion of control structures by presenting additional
selection and repetition structures. In addition, we also build upon the Windows application
concepts presented in this chapter by creating a richer Windows application.

SUMMARY
• Executing a series of actions in a specific order can solve many computing problems.

• A procedure for solving a problem in terms of the actions to execute and the order in which these
actions execute is an algorithm.

• Program control specifies the order in which statements execute in a computer program.

• Pseudocode is an artificial and informal language that helps programmers develop algorithms and
“think out” a program during the program design process.

• C# code corresponds closely to pseudocode. This is a property of pseudocode that makes it a useful
program development tool.

• Normally, statements in a program execute one after the other in the order in which they appear.
This is called sequential execution.

Fig. 4.24 Changing a property value at runtime.

Chapter 4 Control Structures: Part 1 131

• Various C# statements enable the programmer to specify that the next statement to execute may
be other than the next one in sequence. This is called transfer of control.

• Many programming complications in the 1960’s were a result of misusing the goto statement,
which allows the programmer to specify a transfer of control to one of a wide range of possible
destinations in a program. The notion of structured programming became almost synonymous with
“goto elimination.”

• Bohm and Jacopini’s work demonstrated that all programs could be written in terms of only three
control structures—namely, sequence, selection and repetition.

• The sequence structure is built into C#. Unless directed otherwise, the computer executes C# state-
ments one after the other in the order in which they appear.

• A flowchart is a graphical representation of an algorithm or of a portion of an algorithm. Flow-
charts are drawn using symbols, such as rectangles, diamonds, ovals and small circles; these sym-
bols are connected by arrows called flowlines, which indicate the order in which the algorithm’s
actions execute.

• The if selection structure performs (selects) an action if a condition is true or skips the action if
the condition is false.

• The if/else selection structure performs an action if a condition is true and performs a differ-
ent action if the condition is false.

• A single-selection structure is one that selects or ignores a single action.

• A double-selection structure is one that selects between two actions.

• A multiple-selection structure is one that selects among many actions.

• Keywords are reserved by the language to implement various features, such as C#’s control struc-
tures. Keywords cannot be used as identifiers.

• Each program is formed by combining as many of each type of C#’s eight control structures as is
appropriate for the algorithm the program implements.

• Single-entry/single-exit control structures make it easy to build programs. The control structures
are attached to one another by connecting the exit point of one control structure to the entry point
of the next. This is called control-structure stacking.

• Algorithms in C# programs are constructed from only eight different types of control structures
combined in only two ways.

• The decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the expression in the symbol is true; the other indicates the direction to be taken when the
expression is false.

• Control structure flowcharts contain (besides small circle symbols and flowlines) only rectangle
symbols to indicate the actions to be performed and diamond symbols to indicate decisions to be
made. This is the action/decision model of programming.

• The ternary conditional operator (?:) is closely related to the if/else structure. The operands
and the ?: form a conditional expression. The first operand is a condition that evaluates to a bool
value, the second is the value for the conditional expression if the condition evaluates to true and
the third is the value for the conditional expression if the condition evaluates to false.

• Nested if/else structures test for multiple cases by placing if/else structures inside other if/
else structures.

• A set of statements in a pair of braces is called a block. A block can be placed anywhere in a pro-
gram that a single statement can be placed.

• A syntax error is caught by the compiler at compile time, while a logic error has its effect during
execution.

132 Control Structures: Part 1 Chapter 4

• A fatal logic error causes a program to fail and terminate prematurely. A nonfatal logic error al-
lows a program to continue executing, but the program produces incorrect results.

• A repetition structure repeats an action (or set of actions) while some condition remains true.

• Eventually, the condition in a while structure will become false. At this point, the repetition ter-
minates, and the first statement after the repetition structure executes.

• It is a logic error to fail to provide in the body of a while structure an action that eventually causes
the condition to become false. Normally, such a repetition structure will never terminate, which is
an error called an “infinite loop.”

• We use counter-controlled repetition to input data values one at a time, a specified number of
times. This technique uses a variable called a counter to control the number of times a set of state-
ments will execute.

• Counter-controlled repetition often is called definite repetition because the number of repetitions
is known before the loop begins executing.

• Sentinel-controlled repetition is often called indefinite repetition because the number of repeti-
tions is not known before the loop begins executing.

• The sentinel value (also called the signal value, dummy value or flag value) determines when to
terminate a repetition structure.

• We approach programming problems with top-down, stepwise refinement—a technique that is es-
sential to the development of well-structured algorithms.

• The top is a single statement that conveys the overall function of the program. As such, the top is
a complete representation of a program.

• We divide the top into a series of smaller tasks and list these in the order in which they must be
performed. Each refinement, including the top itself, is a complete specification of the algorithm;
only the level of detail in each refinement varies.

• Many algorithms can be divided logically into three phases—an initialization phase that initializes
the program variables, a processing phase that inputs data values and adjusts program variables
accordingly and a termination phase that calculates and prints the results.

• The programmer terminates the top-down, stepwise refinement process when the pseudocode algo-
rithm is specified in sufficient detail for the programmer to convert the pseudocode to a C# program.

• Omitting the curly braces that delineate a block in the body of a repetition structure can lead to
logic errors, such as infinite loops.

• Dividing two integers results in integer division, in which any fractional part of the calculation is
truncated.

• To ensure that the operands in an expression are of the same type, C# performs implicit conversion
on selected operands and promotes them to the same type.

• C# provides the unary increment operator, ++, and the unary decrement operator, --. These op-
erators add 1 to or subtract 1 from their operand, respectively.

• If an increment or decrement operator is placed before a variable, it is referred to as the preincre-
ment or predecrement operator, respectively.

• If an increment or decrement operator is placed after a variable, it is referred to as the postincre-
ment or postdecrement operator, respectively.

• A key benefit of extending classes using inheritance is that all the general capabilities are provided
by the original class—programmers do not need to define these capabilities on their own.

• Method InitializeComponent contains the code to configure component properties in a GUI.

• The value in parentheses after the type in a new operation initializes the new object.

Chapter 4 Control Structures: Part 1 133

• Visual Studio .NET generates code that builds the GUI for an application.

• The primitive types are the building blocks for more complicated types.

TERMINOLOGY
--, unary decrement operator diamond symbol
%=, modulus assignment operator Dispose method
(type), cast operator division by zero
*=, multiplication assignment operator do/while repetition structure
++, unary increment operator double primitive data type
+=, addition assignment operator double-selection structure
/=, division assignment operator else statement
;, empty statement empty statement (;)
=, assignment operator end of data entry
-=, subtraction assignment operator #endregion directive
?:, ternary conditional operator entry point of control structure
{, open brace examination-results problem
}, close brace exit point of control structure
abbreviating an assignment expression expanded code
action symbol explicit conversion
action/decision model of programming false
algorithm fatal logic error
application class definition first refinement
assignment operator (=) flag value
associate left to right floating-point data type
associate right to left floating-point division
associativity of operators floating-point number
binary arithmetic operator flow of control
block flowchart
body of the while flowline
bool primitive data type for repetition structure
boolean expression fractional result
braces that delimit a block goto elimination
building block “goto-less programming”
case-sensitive language graphical representation of an algorithm
cast operator if selection structure
collapsed code if/else selection structure
complete representation of a program implicit conversion
conditional expression indefinite repetition
conditional operator (?:) indentation
connector symbol indentation convention
control structure infinite loop
control-structure nesting inheriting from

 System.Windows.Forms.Form class control-structure stacking
counter initialization phase
counter-controlled repetition initialize
dangling-else problem InitializeComponent method
decision symbol IntelliSense
declaration input/output operation
definite repetition integer division
design phase integral data type

134 Control Structures: Part 1 Chapter 4

SELF-REVIEW EXERCISES
4.1 Fill in the blanks in each of the following statements:

a) All programs can be written in terms of three types of control structures: ,
 and .

b) The selection structure executes one action when a condition is true and an-
other action when a condition is false.

c) Repetition of a set of instructions a specific number of times is called repe-
tition.

d) When it is not known in advance how many times a set of statements will be repeated, a
 value can be used to terminate the repetition.

e) Specifying the order in which statements are to be executed in a computer program is
called .

f) is an artificial and informal language that helps programmers develop algo-
rithms.

g) are reserved by C# to implement various features, such as the language’s
control structures.

h) A(n) statement specifying that no action is to be taken is indicated by placing
a semicolon where a statement normally would be.

keyword repetition structure
level of refinement second refinement
logic error selection structure
loop sentinel-controlled repetition
main form sentinel value
multiple-selection structure sequence structure
multiplicative operators: *, / and % sequential execution
nonfatal logic error signal value
oval symbol single-entry/single-exit control structure
postdecrement operator single-selection structure
postdecrementing small circle symbol
postincrement operator string primitive data type
postincrementing strongly typed language
precedence of operators structured programming
predecrement operator switch selection structure
predecrementing syntax error
preincrement operator System.Windows.Forms.Form class
preincrementing temporary value
preprocessor directives termination phase
primitive (or built-in) data type ternary operator (?:)
procedure for solving a problem top-down, stepwise refinement
processing phase transfer of control
program control true
program development tool truncate
promotion unary operator
pseudocode Unicode
pseudocode algorithm variable reference
real number vertical spacing
rectangle symbol while repetition structure
refinement process white-space characters
#region directive

Chapter 4 Control Structures: Part 1 135

i) The increment operator (++) and decrement operator (--) increment and decrement a
variable’s value by .

j) Explicit conversion makes use of the operator.

4.2 State whether each of the following is true or false. If false, explain why.
a) It is difficult to convert pseudocode into a working C# program.
b) Sequential execution refers to statements in a program that execute one after another.
c) It is recommended for C# programmers to use goto statements.
d) The if structure is called a single-selection structure.
e) Structured programs are clear, easy to debug and modify and more likely than unstruc-

tured programs to be bug-free in the first place.
f) The sequence structure is not built into C#.
g) Pseudocode usually resembles actual C# code.
h) Placing a semicolon after the condition in an if structure is a syntax error.
i) The while structure body may be a single or a block.

4.3 Write four different C# statements that each add 1 to integer variable x and store the result
in x.

4.4 Write C# statements to accomplish each of the following:
a) Assign the sum of x and y to z then increment x by 1 after the calculation. Use only one

statement.
b) Test if the value of the variable count is greater than 10. If it is, print "Count is

greater than 10".
c) Decrement the variable x by 1, then subtract it from the variable total. Use only one

statement.
d) Calculate the remainder after q is divided by divisor and assign the result to q. Write

this statement two different ways.

4.5 Write a C# statement to accomplish each of the following tasks:
a) Declare variables sum and x to be of type int.
b) Assign 1 to variable x.
c) Assign 0 to variable sum.
d) Add variable x to variable sum and assign the result to variable sum.
e) Print "The sum is : " followed by the value of variable sum.

4.6 Combine the statements that you wrote in Exercise 4.5 into a C# application that calculates
and prints the sum of the integers from 1 to 10. Use the while structure to loop through the calcula-
tion and increment statements. The loop should terminate when the value of x becomes 11.

4.7 Determine the values of each variable after the calculation is performed. Assume that when
each statement begins executing, all variables have the integer value 5.

a) product *= x++;
b) quotient /= ++x;

4.8 Identify and correct the errors in each of the following:
a) while (c <= 5)

{
 product *= c;
 ++c;

b) if (gender == 1)
 Console.WriteLine("Woman");
else;
 Console.WriteLine("Man");

136 Control Structures: Part 1 Chapter 4

4.9 What is wrong with the following while repetition structure?

while (z >= 0)
 sum += z;

ANSWERS TO SELF-REVIEW EXERCISES
4.1 a) sequence, selection, repetition. b) if/else. c) counter-controlled or definite. d)
sentinel, signal, flag or dummy. e) program control. f) Pseudocode. g) Keywords. h) empty. i)
one. j) cast.

4.2 a) False. Pseudocode should convert easily into C# code. b) True. c) False. Some pro-
grammers argue that goto statements violate structured programming and cause considerable
problems. d) True. e) True. f) False. The sequence structure is built into C#; lines of code exe-
cute in the order in which they are written, unless explicitly directed to do otherwise. g) True. h) False.
Placing a semicolon after the condition in an if structure is usually a logic error. i) True.

4.3 x = x + 1;
x += 1;
++x;
x++;

4.4 a) z = x++ + y;
b) if (count > 10)

 Console.WriteLine("Count is greater than 10");
c) total -= --x;
d) q %= divisor;

q = q % divisor;

4.5 a) int sum, x;
b) x = 1;
c) sum = 0;
d) sum += x; or sum = sum + x;
e) Console.WriteLine("The sum is: " + sum); or

Console.WriteLine("The sum is: {0}", sum);

4.6

1 // Calculate the sum of the integers from 1 to 10
2
3 using System;
4
5 class Calculate
6 {
7 static void Main(string[] args)
8 {
9 int sum, x;

10
11 x = 1;
12 sum = 0;
13
14 while (x <= 10)
15 {
16 sum += x++;
17 }

Chapter 4 Control Structures: Part 1 137

4.7 a) product = 25, x = 6;
b) quotient = 0, x = 6;

4.8 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement ++c;.

b) Error: Semicolon after else results in a logic error. The second output statement will
always be executed.
Correction: Remove the semicolon after else.

4.9 The value of the variable z is never changed in the while structure. Therefore, if the loop-
continuation condition (z >= 0) is true, an infinite loop is created. To prevent the infinite loop, z
must be decremented so that it eventually becomes less than 0.

EXERCISES
4.10 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. De-
velop a C# program that will input the miles driven and gallons used (both as doubles) for each tank-
ful. The program should calculate and display the miles per gallon obtained for each tankful and print
the combined miles per gallon obtained for all tankfuls up to this point. All average calculations
should produce floating-point results.

4.11 Develop a C# application that will determine if a department store customer has exceeded the
credit limit on a charge account. For each customer, the following facts are available:

a) Account number
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The program should input as integers each of these facts, calculate the new balance (= begin-
ning balance + charges – credits), display the new balance and determine if the new balance exceeds
the customer's credit limit. For those customers whose credit limit is exceeded, the program should
display the message, “Credit limit exceeded.”

4.12 Write a C# application that uses looping to print the following table of values:

4.13 (Dangling-Else Problem) Determine the output for each of the following, when x is 9 and y
is 11 and when x is 11 and y is 9. Note that the compiler ignores the indentation in a C# program.
Also, the C# compiler always associates an else with the previous if unless told to do otherwise

18
19 Console.WriteLine("The sum is: " + sum);
20 }
21 }

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

138 Control Structures: Part 1 Chapter 4

by the placement of braces ({}). On first glance, the programmer may not be sure which if and
else match; this is referred to as the “dangling-else” problem. We have eliminated the indentation
from the following code to make the problem more challenging. (Hint: Apply indentation conven-
tions that you have learned.)

a) if (x < 10)
if (y > 10)
Console.WriteLine("*****");
else
Console.WriteLine("#####");
Console.WriteLine("$$$$$");

b) if (x < 10) {
if (y > 10)
Console.WriteLine("*****");
}
else {
Console.WriteLine("#####");
Console.WriteLine("$$$$$");
}

4.14 A palindrome is a number or a text phrase that reads the same backwards as forwards. For
example, each of the following five-digit integers are palindromes: 12321, 55555, 45554 and 11611.
Write an application that reads in a five-digit integer and determines whether it is a palindrome. If the
number is not five digits, display an error message dialog indicating the problem to the user. When
the user dismisses the error dialog, allow the user to enter a new value.

4.15 A company wants to transmit data over the telephone, but they are concerned that their
phones may be tapped. All their data are transmitted as four-digit integers. They have asked you to
write a program that will encrypt their data so that it may be transmitted more securely. Your appli-
cation should read a four-digit integer entered by the user in an input dialog and encrypt it as follows:
Replace each digit by (the sum of that digit plus 7) modulus 10. Then swap the first digit with the
third, and swap the second digit with the fourth. Print the encrypted integer. Write a separate appli-
cation that inputs an encrypted four-digit integer and decrypts it to form the original number.

4.16 The factorial of a nonnegative integer n is written n! (pronounced “n factorial”) and is defined
as follows:

n! = n · (n - 1) · (n - 2) · ... · 1 (for values of n greater than or equal to 1)
and

n! = 1 (for n = 0).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.

a) Write an application that reads a nonnegative integer from an input dialog and computes
and prints its factorial.

b) Write an application that estimates the value of the mathematical constant e by using the
formula

c) Write an application that computes the value of ex by using the formula

e 1
1
1!

1
2!

1
3!
----- …+ + + +=

ex 1
x
1!

x2

2!

x3

3!
----- …+ + + +=

5
Control Structures:

Part 2

Objectives
• To be able to use the for and do/while repetition

structures to execute statements in a program
repeatedly.

• To understand multiple selection that uses the
switch selection structure.

• To be able to use the break and continue
program-control statements.

• To be able to use the logical operators.
Who can control his fate?
William Shakespeare, Othello

The used key is always bright.
Benjamin Franklin

Man is a tool-making animal.
Benjamin Franklin

Intelligence … is the faculty of making artificial objects,
especially tools to make tools.
Henri Bergson

140 Control Structures: Part 2 Chapter 5

5.1 Introduction
Chapter 4 began our introduction to the types of building blocks that are available for prob-
lem solving and used those building blocks to implement proven program-construction
principles. In this chapter, we continue our presentation of the theory and principles of
structured programming by introducing C#’s remaining control structures. As in Chapter
4, the C# techniques you learn here are applicable to most high-level languages. When we
begin our formal treatment of object-based programming in C# in Chapter 8, we will see
that the control structures we study in this chapter and in Chapter 4 are helpful in building
and manipulating objects.

5.2 Essentials of Counter-Controlled Repetition
In the last chapter, we introduced the concept of counter-controlled repetition. In this sec-
tion, we formalize the elements needed in counter-controlled repetition, namely:

1. The name of a control variable (or loop counter), used to determine whether the
loop continues.

2. The initial value of the control variable.

3. The increment (or decrement) by which the control variable is modified each time
through the loop (also known as each iteration of the loop).

4. The condition that tests for the final value of the control variable (i.e., whether
looping should continue).

To see the four elements of counter-controlled repetition, consider the simple program
in Fig. 5.1, which displays the digits 1–5.

The declaration (line 10)

int counter = 1;

names the control variable (counter), declares it to be an integer, reserves space for it in
memory and sets it to an initial value of 1. This statement is a declaration that includes an

Outline

5.1 Introduction
5.2 Essentials of Counter-Controlled Repetition
5.3 for Repetition Structure
5.4 Examples Using the for Structure
5.5 switch Multiple-Selection Structure
5.6 do/while Repetition Structure
5.7 Statements break and continue
5.8 Logical and Conditional Operators
5.9 Structured-Programming Summary

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 5 Control Structures: Part 2 141

initialization. The declaration and initialization of counter could also have been accom-
plished with the declaration and statement

int counter; // declare counter
counter = 1; // initialize counter to 1

The declaration is not executable, but the assignment statement is. We use both approaches
to initialization throughout this book.

Lines 12–17 define the while structure. During each iteration of the loop, line 14 dis-
plays the current value of counter, and line 15 increments the control variable by 1 upon
each iteration of the loop. The loop-continuation condition in the while structure tests
whether the value of the control variable is less than or equal to 5 (the final value for which
the condition is true). The body of this while is performed even when the control variable
is 5. The loop terminates when the control variable exceeds 5 (i.e., counter becomes 6).

The program in Fig. 5.1 can be made more concise by initializing counter to 0 and
replacing the while structure with

while (++counter <= 5) // repetition condition
 Console.WriteLine(counter);

This code saves a statement and eliminates the need for braces around the loop’s bod,y be-
cause the incrementing occurs directly in the while condition before the condition is test-
ed (remember that the precedence of ++ is higher than <=).

1 // Fig. 5.1: WhileCounter.cs
2 // Counter-controlled repetition.
3
4 using System;
5
6 class WhileCounter
7 {
8 static void Main(string[] args)
9 {

10 int counter = 1; // initialization
11
12 while (counter <= 5) // repetition condition
13 {
14 Console.WriteLine(counter);
15 counter++; // increment
16
17 } // end while
18
19 } // end method Main
20
21 } // end class WhileCounter

1
2
3
4
5

Fig. 5.1 Counter-controlled repetition with while structure.

142 Control Structures: Part 2 Chapter 5

Good Programming Practice 5.1
Control counting loops with integer values. 5.1

Good Programming Practice 5.2
Place a blank line before and after each major control structure to make it stand out in the
program. 5.2

Good Programming Practice 5.3
Vertical spacing above and below control structures, and indentation of the bodies of control
structures within the control structure headers, gives programs a two-dimensional appear-
ance that enhances readability. 5.3

5.3 for Repetition Structure
The for repetition structure handles the details of counter-controlled repetition. To illus-
trate the power of for, let us rewrite the program in Fig. 5.1. The result is displayed in
Fig. 5.2.

The Main method (lines 8–14) operates as follows: When the for structure (line 12)
begins executing, the program initializes the control variable counter to 1 (the first two
elements of counter-controlled repetition—control variable name and initial value). Next,
the program tests the loop-continuation condition, counter <= 5. The initial value of
counter is 1, thus the condition is true, so line 13 outputs the counter’s value. Then,
the program increments variable counter in the expression counter++, and the loop
begins again with the loop-continuation test. The control variable is now equal to 2. This
value does not exceed the final value, so the program performs the body statement again
(i.e., performs the next iteration of the loop). This process continues until the control vari-
able counter becomes 6, causing the loop-continuation test to fail and repetition to ter-
minate. The program continues by performing the first statement after the for structure.
(In this case, method Main terminates because the program reaches the end of Main’s
body.)

1 // Fig. 5.2: ForCounter.cs
2 // Counter-controlled repetition with the for structure.
3
4 using System;
5
6 class ForCounter
7 {
8 static void Main(string[] args)
9 {

10 // initialization, repetition condition and incrementing
11 // are all included in the for structure
12 for (int counter = 1; counter <= 5; counter++)
13 Console.WriteLine(counter);
14 }
15 }

Fig. 5.2 Counter-controlled repetition with the for structure. (Part 1 of 2.)

Chapter 5 Control Structures: Part 2 143

Figure 5.3 takes a closer look at the for structure in Fig. 5.2. The first line of the for
structure (including the keyword for and everything in parentheses after for) sometimes
is called the for structure header. Notice that the for structure specifies each of the items
needed for counter-controlled repetition with a control variable. If there is more than one
statement in the body of the for, braces ({ and }) are required to define the loop’s body.

Figure 5.2 uses the loop-continuation condition counter <= 5. If the programmer
incorrectly writes counter < 5, the loop executes only four times. This common logic
error is called an off-by-one error.

Common Programming Error 5.1
Using an incorrect relational operator or using an incorrect final value for a loop counter
in the condition of a while, for or do/while structure (introduced in Section 5.6) can
cause an off-by-one error. 5.1

Common Programming Error 5.2
Floating-point values may be approximate, so controlling counting loops with floating-point
variables can result in imprecise counter values and inaccurate tests for termination. 5.2

Testing and Debugging Tip 5.1
Using the final value in the condition of a while or for structure and using the <= rela-
tional operator will help avoid off-by-one errors. For a loop used to print the values from 1
to 10, for example, the loop-continuation condition should be counter <= 10, rather than
counter < 10 (which is an off-by-one error) or counter < 11 (which also works). This
approach is commonly known as one-based counting. When we study arrays in Chapter 7,
Arrays, we will see when programmers prefer zero-based counting, in which to count 10
times through a loop, counter is initialized to zero and the loop-continuation test is
counter < 10. 5.1

1
2
3
4
5

Fig. 5.2 Counter-controlled repetition with the for structure. (Part 2 of 2.)

Fig. 5.3 Components of a typical for header.

for (int counter = 1; counter <= 5; counter++)

Initial value of
control variable

Increment of
control variable

Control variable name
Final value of

control variablefor keyword

Loop-continuation
condition

144 Control Structures: Part 2 Chapter 5

The general format of the for structure is

for (expression1; expression2; expression3)
statement

where expression1 names the loop’s control variable and provides its initial value,
expression2 is the loop-continuation condition (containing the control variable’s final val-
ue) and expression3 increments or decrements the control variable. In most cases, the for
structure can be represented with an equivalent while structure, with expression1,
expression2 and expression3 placed as follows:

expression1;

while (expression2)
{

statement
expression3;

}

In Section 5.7, we discuss an exception to this rule.
In C#, programmers may declare the control variable in expression1 of the for struc-

ture header (i.e., the control variable’s type is specified before the variable name), rather
than earlier in the code. When this occurs, the control variable can be used only in the body
of the for structure (i.e., the name of the control variable will be unknown outside the for
structure). Such a restriction on the use of a control variable name defines the variable’s
scope. The scope of a variable defines where it can be used in a program. Scope is discussed
in detail in Chapter 6, Methods.

Common Programming Error 5.3
When a for structure declares its control variable in the initialization section of the for
structure header, using the control variable after the for structure’s body is a compiler
error. 5.3

Sometimes, expression1 and expression3 in a for structure are comma-separated lists
of expressions that enable the programmer to use multiple initialization expressions and/or
multiple increment or decrement expressions. For example, there may be several control
variables in a single for structure that must be initialized and incremented or decremented.

Good Programming Practice 5.4
Place only expressions involving control variables in the initialization and increment or
decrement sections of a for structure. Manipulations of other variables should appear ei-
ther before the loop (if they execute only once, like initialization statements) or in the loop
body (if they execute once per iteration of the loop, like incrementing or decrementing
statements). 5.4

The three expressions in the for structure are optional. If expression2 is omitted, C#
assumes that the loop-continuation condition is always true, thus creating an infinite loop.
A programmer might omit expression1 if the program initializes the control variable before
the loop. Expression3 might be omitted if statements in the body of the for calculate the
increment or decrement, or if no increment or decrement is necessary. The increment (or
decrement) expression in the for structure acts as if it were a standalone statement at the
end of the for body. Therefore, the expressions

Chapter 5 Control Structures: Part 2 145

counter = counter + 1
counter += 1
++counter
counter++

are equivalent when used in expression3. Some programmers prefer the form
counter++, because the control variable increment occurs after the loop body executes.
For this reason, the postincrementing (or postdecrementing) form in which the variable is
incremented after it is used seems more natural. Because the variable being either incre-
mented or decremented does not appear in a larger expression, preincrementing and postin-
crementing the variable have the same effect. The two semicolons in the for structure are
required.

Common Programming Error 5.4
Using commas in a for structure header instead of the two required semicolons is a syntax
error. 5.4

Common Programming Error 5.5
Placing a semicolon immediately to the right of a for structure header’s right parenthesis
makes the body of that for structure an empty statement. This is normally a logic error. 5.5

The initialization, loop-continuation condition and increment or decrement portions of
a for structure can contain arithmetic expressions. For example, assume that x = 2 and y
= 10. If x and y are not modified in the loop body, the statement

for (int j = x; j <= 4 * x * y; j += y / x)

is equivalent to the statement

for (int j = 2; j <= 80; j += 5)

The “increment” of a for structure may be negative, in which case it is really a dec-
rement and the loop actually counts downward.

If the loop-continuation condition in the for structure is initially false, the body of the
for structure does not execute. Instead, execution proceeds with the statement that follows
the for structure.

The control variable frequently is printed or used in calculations in the body of a for
structure, but it does not have to be. Often the control variable simply controls repetition
and is not mentioned in the body of the for structure.

Testing and Debugging Tip 5.2
Avoid changing the value of the control variable in the body of a for loo, to avoid subtle
errors. 5.2

The for structure flowchart is similar to that of the while structure. For example,
the flowchart of the for structure in Fig. 5.2 appears in Fig. 5.4. This flowchart clarifies
that the initialization occurs only once, and that incrementing occurs each time after the
body statement is performed. Note that (besides small circles and flowlines) the flowchart
contains only rectangle symbols and a diamond symbol. The rectangles and diamonds are
filled with actions and decisions appropriate to the algorithm.

146 Control Structures: Part 2 Chapter 5

5.4 Examples Using the for Structure
The following examples demonstrate methods of varying the control variable in a for
structure. In each case, we write the appropriate for header. Note the change in the rela-
tional operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

for (int i = 1; i <= 100; i++)

b) Vary the control variable from 100 to 1 in increments of -1 (decrements of 1).

for (int i = 100; i >= 1; i--)

c) Vary the control variable from 7 to 77 in steps of 7.

for (int i = 7; i <= 77; i += 7)

d) Vary the control variable from 20 to 2 in steps of -2.

for (int i = 20; i >= 2; i -= 2)

e) Vary the control variable over the sequence of the following values: 2, 5, 8, 11,
14, 17, 20.

for (int j = 2; j <= 20; j += 3)

f) Vary the control variable over the sequence of the following values: 99, 88, 77,
66, 55, 44, 33, 22, 11, 0.

for (int j = 99; j >= 0; j -= 11)

Common Programming Error 5.6
Not using the proper relational operator in the loop-continuation condition of a loop that
counts downward (e.g., using i <= 1 in a loop counting down to 1) is usually a logic error
that will yield incorrect results when the program runs. 5.6

Fig. 5.4 Flowcharting a typical for repetition structure.

counter++

Establish initial
value of control
variable.

Determine if final
value of control
variable has
been reached.

counter <= 5
Console.WriteLine
(counter * 10);

int counter = 1

Body of loop (this
may be multiple
statements)

Increment
the control
variable.

true

false

Chapter 5 Control Structures: Part 2 147

The next two sample programs demonstrate simple applications of the for repetition
structure. The program in Fig. 5.5 uses the for structure to sum all the even integers from
2 to 100, then displays the result in a MessageBox. Remember that to use Mes-
sageBox, you must add a reference to System.Windows.Forms.dll to your
project, as explained in Chapter 3 (Section 3.2).

Figure 5.5 uses a version of method MessageBox.Show (lines 16–19) that takes
four arguments. The dialog in the output of Fig. 5.5 illustrates the four arguments. As with
the version that takes one argument, the first argument is the message to display. The
second argument is the string to display in the dialog’s title bar. The third argument is a
value indicating which button(s) to display. The fourth argument indicates which icon to
display to the left of the message. The MSDN documentation provided with Visual Studio
.NET includes the complete listing of MessageBoxButtons and MessageBoxIcon
choices. Figure 5.6 describes the message-dialog icons and Fig. 5.7 describes the message-
dialog buttons.

1 // Fig. 5.5: Sum.cs
2 // Summation with the for structure.
3
4 using System;
5 using System.Windows.Forms;
6
7 class Sum
8 {
9 static void Main(string[] args)

10 {
11 int sum = 0;
12
13 for (int number = 2; number <= 100; number += 2)
14 sum += number;
15
16 MessageBox.Show("The sum is " + sum,
17 "Sum Even Integers from 2 to 100",
18 MessageBoxButtons.OK,
19 MessageBoxIcon.Information);
20
21 } // end method Main
22
23 } // end class Sum

Fig. 5.5 Summation using for.

Argument 4:
MessageBox

Icon (Optional)

Arugument 3: OK
dialog button.

(Optional)

Argument 2: Title bar
string (Optional)

Argument 1:
Message to display

148 Control Structures: Part 2 Chapter 5

MessageBox Icons Icon Description

MessageBoxIcon.Exclamation Specifies an exclamation point icon.
Typically used to caution the user
against potential problems.

MessageBoxIcon.Information Specifies that the dialog contains an
informational message for the user.

MessageBoxIcon.Question Specifies a question mark icon. Typi-
cally used in dialogs that ask the user
a question.

MessageBoxIcon.Error Specifies a dialog with an × in a red
circle. Alerts user of errors or impor-
tant messages.

Fig. 5.6 Icons for message dialogs.

MessageBox Buttons Description

MessageBoxButton.OK Specifies that the dialog should include an
OK button.

MessageBoxButton.OKCancel Specifies that the dialog should include OK
and Cancel buttons. Warns the user about
some condition and allows the user to either
continue or cancel an operation.

MessageBoxButton.YesNo Specifies that the dialog should contain Yes
and No buttons. Used to ask the user a ques-
tion.

MessageBoxButton.YesNoCancel Specifies that the dialog should contain Yes,
No and Cancel buttons. Typically used to
ask the user a question but still allows the user
to cancel the operation.

MessageBoxButton.RetryCancel Specifies that the dialog should contain Retry
and Cancel buttons. Typically used to inform
a user about a failed operation and allow the
user to retry or cancel the operation.

MessageBoxButton.AbortRetryIgnore Specifies that the dialog should contain
Abort, Retry and Ignore buttons. Typically
used to inform the user that one of a series of
operations has failed and allow the user to
abort the series of operations, retry the failed
operation or ignore the failed operation and
continue.

Fig. 5.7 Buttons for message dialogs.

Chapter 5 Control Structures: Part 2 149

The body of the for structure in Fig. 5.5 actually could be merged into the rightmost
portion of the for header by using a comma as follows:

for (int number = 2; number <= 100;
 sum += number, number += 2)
 ; // empty statement

Similarly, the initialization sum = 0 could be merged into the initialization section of
the for structure. Statements that precede a for and statements in the body of a for often
can be merged into the for header. However, such merging could decrease the readability
of the program.

Good Programming Practice 5.5
Limit the size of control structure headers to a single line if possible. 5.5

The next example uses a for structure to compute compound interest. Consider the
following problem statement:

A person invests $1000.00 in a savings account yielding 5% interest. Assuming that all
interest is left on deposit, calculate and print the amount of money in the account at the end
of each year for 10 years. To determine these amounts, use the following formula:

a = p (1 + r) n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the 10
years that the money remains on deposit. A solution is the program shown in Fig. 5.8.

Line 11 in method Main declares two decimal variables—amount and prin-
cipal—and initializes principal to 1000.00. The type decimal is a primitive data
type used for monetary calculations. C# treats such constants as the 1000.00 in Fig. 5.8
as type double. Similarly, C# treats whole number constants, like 7 and -22, as having
type int. Values of type double cannot be converted implicitly to type decimal, so we
use a cast operator to convert the double value 1000.00 to type decimal. It also is pos-
sible to specify that a constant is of type decimal by appending the letter m to the con-
stant, as in 1000.0m. Line 12 declares double variable rate, which we initialize to .05.

1 // Fig. 5.8: Interest.cs
2 // Calculating compound interest.
3
4 using System;
5 using System.Windows.Forms;
6
7 class Interest
8 {

Fig. 5.8 Calculating compound interest with for. (Part 1 of 2.)

150 Control Structures: Part 2 Chapter 5

The for structure executes its body 10 times, varying control variable year from 1
to 10 in increments of 1. Note that year represents n in the problem statement. C# does
not have an exponentiation operator, so we use static method Pow in class Math for
this purpose. Math.Pow(x, y) calculates the value of x raised to the yth power.
Method Math.Pow takes two arguments of type double and returns a double value.
Lines 19–20 perform the calculation from the problem statement

a = p (1 + r) n

where a is amount, p is principal, r is rate and n is year.
Lines 22–23 append additional text to the end of the string output. The text includes

the current year value, a tab character to position to the second column, the result of the

9 static void Main(string[] args)
10 {
11 decimal amount, principal = (decimal) 1000.00;
12 double rate = .05;
13 string output;
14
15 output = "Year\tAmount on deposit\n";
16
17 for (int year = 1; year <= 10; year++)
18 {
19 amount = principal *
20 (decimal) Math.Pow(1.0 + rate, year);
21
22 output += year + "\t" +
23 String.Format("{0:C}", amount) + "\n";
24 }
25
26 MessageBox.Show(output, "Compound Interest",
27 MessageBoxButtons.OK, MessageBoxIcon.Information);
28
29 } // end method Main
30
31 } // end class Interest

Fig. 5.8 Calculating compound interest with for. (Part 2 of 2.)

Chapter 5 Control Structures: Part 2 151

method call String.Format("{0:C}", amount) and a newline character to posi-
tion to the next line. The call to method String.Format converts amount to a
string and formats this string so that it will display with two decimal places. [Note:
Method Format uses the string formatting codes to represent numeric and monetary
values in a form that is appropriate to the execution environment. For example, in the US,
monetary values are formatted with two digits to the right of the decimal point and the thou-
sands separator is a comma.] The first argument is the format string. We have already seen
such strings in the form {0}, {1} and so on. In those cases, the digit indicated the argu-
ment being displayed. In more complicated format strings, such as the one shown in this
example ("{0:C}"), the first digit (0) still represents the argument to display. The infor-
mation specified after the colon (:) specifies the formatting of the argument, and usually is
called the formatting code. In this case, we are using formatting code C, which indicates
that our string should be displayed as a monetary amount with two digits after the decimal
point. There are several other formatting codes, which can be found in the MSDN docu-
mentation. Figure 5.9 shows several formatting codes.

The variables amount and principal were declared to be of type decimal
because the program deals with fractional parts of dollars. In such cases, programs need a
type that allows decimal points in its values. Variable rate is of type double because it
is used in the calculation 1.0 + rate, which appears as a double argument to the Pow
method of class Math. Note that the calculation 1.0 + rate appears in the body of the
for statement. The calculation produces the same result each time through the loop, so
repeating the calculation is unnecessary.

Performance Tip 5.1
Avoid placing expressions with values that do not change inside a loop. Such expressions
should be evaluated once before the loop. Most good compilers will fix this automatically
with a process that compilers perform called optimization. 5.1

Format Code Description

C or c Formats the string as currency. Precedes the number with an appropriate cur-
rency symbol ($ in the US). Separates digits with an appropriate separator char-
acter (comma in the US) and sets the number of decimal places to two by
default.

D or d Formats the string as a decimal. Displays number as an integer.

N or n Formats the string with commas and two decimal places.

E or e Formats the number using scientific notation with a default of six decimal
places.

F or f Formats the string with a fixed number of decimal places (two by default).

G or g General. Either E or F.

X or x Formats the string as hexadecimal.

Fig. 5.9 string formatting codes.

152 Control Structures: Part 2 Chapter 5

5.5 switch Multiple-Selection Structure
The previous chapter discussed the if single-selection and the if/else double-selection
structures. Occasionally, an algorithm contains a series of decisions in which the algorithm
tests a variable or expression separately for each constant integral expression or constant
string expression the variable or expression may assume. A constant integral expression is
any expression involving character and integer constants that evaluates to an integer value
(i.e., values of type byte, sbyte, short, ushort, int, uint, long, ulong and
char). A constant string expression is any expression composed of string literals that always
results in the same string. The algorithm then takes different actions based on those values.
C# provides the switch multiple-selection structure to handle such decision making.

In the next example (Fig. 5.10), let us assume that a class of 10 students took an exam
and that each student received a letter grade of A, B, C, D or F. The program will input the
letter grades and summarize the results by using switch to count the number of each dif-
ferent letter grade that students earned on an exam. Line 10 declares variable grade as
type char. Lines 11–15 define counter variables that the program uses to count each letter
grade. This variable stores the user’s input for each grade. Line 17 begins a for structure
that loops 10 times. At each iteration, line 19 prompts the user for the next grade, and line
20 invokes Char method Parse to read the user input as a char. Nested in the body of
the for structure is a switch structure (lines 22–56) that processes the letter grades. The
switch structure consists of a series of case labels and an optional default case.

When the flow of control reaches the switch structure, the program evaluates the
controlling expression (grade in this example) in the parentheses following keyword
switch. The value of this expression is compared with each case label until a match
occurs. Assume the user entered the letter B as the grade. B is compared to each case in
the switch, until a match occurs at line 29 (case 'B':). When this happens, the state-
ments for that case execute. For the letter B, lines 31–32 increment the number of B grades
stored in variable bCount, and the switch structure exits immediately with the break
statement. The break statement causes program control to proceed with the first statement
after the switch structure. In this case, we reach the end of the for structure’s body, so
control flows to the control-variable increment expression in the for structure header.
Then the counter variable in the for structure is incremented, and the loop-continuation
condition is evaluated to determine whether another iteration of the loop is necessary.

1 // Fig. 5.10: SwitchTest.cs
2 // Counting letter grades.
3
4 using System;
5
6 class SwitchTest
7 {
8 static void Main(string[] args)
9 {

10 char grade; // one grade
11 int aCount = 0, // number of As
12 bCount = 0, // number of Bs
13 cCount = 0, // number of Cs

Fig. 5.10 Example using switch. (Part 1 of 3.)

Chapter 5 Control Structures: Part 2 153

14 dCount = 0, // number of Ds
15 fCount = 0; // number of Fs
16
17 for (int i = 1; i <= 10; i++)
18 {
19 Console.Write("Enter a letter grade: ");
20 grade = Char.Parse(Console.ReadLine());
21
22 switch (grade)
23 {
24 case 'A': // grade is uppercase A
25 case 'a': // or lowercase a
26 ++aCount;
27 break;
28
29 case 'B': // grade is uppercase B
30 case 'b': // or lowercase b
31 ++bCount;
32 break;
33
34 case 'C': // grade is uppercase C
35 case 'c': // or lowercase c
36 ++cCount;
37 break;
38
39 case 'D': // grade is uppercase D
40 case 'd': // or lowercase d
41 ++dCount;
42 break;
43
44 case 'F': // grade is uppercase F
45 case 'f': // or lowercase f
46 ++fCount;
47 break;
48
49 default: // processes all other characters
50 Console.WriteLine(
51 "Incorrect letter grade entered." +
52 "\nEnter a new grade");
53 break;
54
55 } // end switch
56
57 } // end for
58
59 Console.WriteLine(
60 "\nTotals for each letter grade are:\nA: {0}" +
61 "\nB: {1}\nC: {2}\nD: {3}\nF: {4}", aCount, bCount,
62 cCount, dCount, fCount);
63
64 } // end method Main
65
66 } // end class SwitchTest

Fig. 5.10 Example using switch. (Part 2 of 3.)

154 Control Structures: Part 2 Chapter 5

Good Programming Practice 5.6
Indent the body statements of each case in a switch structure. 5.6

If no match occurs between the controlling expression’s value and a case label, the
default case (line 49) executes. Lines 50–52 display an error message. Note that the
default case is optional in the switch structure. If the controlling expression does not
match a case and there is no default case, program control proceeds to the next state-
ment after the switch structure. It is also important to understand that, in C#, only the
statements for one case can be executed in one switch statement.

Each case can contain multiple actions or no actions at all. A case with no state-
ments is considered an empty case, and can omit the break statement. The break state-
ment is required for each case (including the default case) that contains statements.
The last case in a switch structure must not be an empty case. If the case label for
an empty case matches our controlling expression, fall through occurs. This means that
the switch structure executes the statements in the next case. If that case is also empty,
this process will continue until a nonempty case is found, and then that case’s statements
will execute. This provides the programmer with a way to specify statements to executed
for several labels. Figure 5.10 demonstrates this. Lines 26–27 execute for both cases on
lines 24–25 (if the grade entered was either A or a), lines 31–32 execute for both cases on
lines 29–30 (if the grade entered was either B or b) and so on.

Common Programming Error 5.7
Not including a break statement at the end of each case in a switch is a syntax error.
The exception to this rule is the empty case. 5.7

Enter a letter grade: a
Enter a letter grade: A
Enter a letter grade: c
Enter a letter grade: F
Enter a letter grade: z
Incorrect letter grade entered.
Enter a new grade
Enter a letter grade: D
Enter a letter grade: d
Enter a letter grade: B
Enter a letter grade: a
Enter a letter grade: C
Enter a letter grade: C

Totals for each letter grade are:
A: 3
B: 1
C: 3
D: 2
F: 1

Fig. 5.10 Example using switch. (Part 3 of 3.)

Chapter 5 Control Structures: Part 2 155

Common Programming Error 5.8
Be sure to check all possible values when creating cases to confirm that no two cases in
a switch statement are for the same integral value. If the values are the same, a compile-
time error will occur. 5.8

Finally, it is important to notice that the switch structure is different from other
structures in that braces are not required around multiple actions in a case of a switch.
The general switch structure (using a break in each case) is flowcharted in Fig. 5.11.

Again, note that (besides small circles and flowlines) the flowchart contains only rect-
angle and diamond symbols. The programmer fills the rectangles and diamonds with
actions and decisions appropriate to the algorithm. Although nested control structures are
common, it is rare to find nested switch structures in a program.

Good Programming Practice 5.7
Provide a default case in every switch structure. Cases not explicitly tested in a
switch that lacks a default case are ignored. Including a default case focuses the
programmer on processing exceptional conditions. There are situations, however, in which
no default processing is required. 5.7

Fig. 5.11 Flowcharting the switch multiple-selection structure.

case a case a action(s)

.

.

.

case b action(s)

case z

default action(s)

case b

case z action(s)

true

true

true

false

false

false

break

break

break

break

156 Control Structures: Part 2 Chapter 5

Good Programming Practice 5.8
Although the cases in a switch structure can occur in any order, it is considered a good
programming practice to place the default case last. 5.8

When using the switch structure, remember that all cases in a particular switch struc-
ture must be either integral values or strings. A character constant is represented as a spe-
cific character in single quotes (such as 'A'). An integer constant is simply an integer
value. The expression after each case can also be a constant variable—a variable that con-
tains a value that does not change throughout the entire program. Such a variable is declared
with keyword const (discussed in Chapter 6, Methods).

Chapter 10, Object-Oriented Programming: Polymorphism, presents a more elegant way
of implementing switch logic. We use a technique called polymorphism to create programs
that are clearer and easier to maintain and extend than programs that use switch logic.

5.6 do/while Repetition Structure
The do/while repetition structure is similar to the while structure. In the while structure,
the test of the loop-continuation condition occurs at the beginning of the loop, before the body
of the loop executes. The do/while structure tests the loop-continuation condition after the
loop body executes; therefore, the loop body always executes at least once. When a do/
while structure terminates, execution continues with the statement after the while clause.
The program in Fig. 5.12 uses a do/while structure to output the values 1–5.

1 // Fig. 5.12: DoWhileLoop.cs
2 // The do/while repetition structure.
3
4 using System;
5
6 class DoWhileLoop
7 {
8 static void Main(string[] args)
9 {

10 int counter = 1;
11
12 do
13 {
14 Console.WriteLine(counter);
15 counter++;
16 } while (counter <= 5);
17
18 } // end method Main
19
20 } // end class DoWhileLoop

1
2
3
4
5

Fig. 5.12 Using the do/while repetition structure.

Chapter 5 Control Structures: Part 2 157

Lines 12–16 demonstrate the do/while structure. When program execution reaches
the do/while structure, the program executes lines 14–15, which display the value of
counter (at this point, 1) and increment counter by 1. Then, the program evaluates
the condition on line 16. At this point, variable counter is 2, which is less than or equal
to 5, so the do/while structure’s body executes again. The fifth time the structure exe-
cutes, line 14 outputs the value 5 and line 15 increments counter to 6. Then the condition
on line 16 evaluates to false and the do/while structure exits.

The do/while flowchart (Fig. 5.13) makes it clear that the loop-continuation condi-
tion does not execute until the body executes at least once. The flowchart contains only a
rectangle and a diamond. The programmer fills the rectangle and diamond with actions and
decisions appropriate to the algorithm.

Note that it is not necessary to use braces in the do/while structure if there is only
one statement in the body. However, the braces normally are included to avoid confusion
between the while and do/while structures. For example,

while (condition)

typically is the header to a while structure. A do/while with no braces around the single
statement body appears as

do
statement

while (condition);

which can be confusing. The last line—while(condition);—might be misinterpreted
by the reader as a while structure containing an empty statement (the semicolon by itself).
Thus, the do/while with one statement often is written as follows to avoid confusion:

do
{

statement
} while (condition);

Fig. 5.13 Flowcharting the do/while repetition structure.

condition

action(s)

true

false

158 Control Structures: Part 2 Chapter 5

Good Programming Practice 5.9
Some programmers always include braces in a do/while structure, even when the braces
are unnecessary. This helps eliminate ambiguity between a while structure and a do/
while structure that contains only one statement. 5.9

Common Programming Error 5.9
Infinite loops occur when the loop-continuation condition in a while, for or do/while
structure never becomes false. To prevent this, make sure there is no semicolon immediately
after the header of a while or for structure or after the word do in a do/while state-
ment. In a counter-controlled loop, make sure the control variable is incremented (or decre-
mented) in the body of the loop. In a sentinel-controlled loop, make sure the sentinel value
eventually is input. 5.9

5.7 Statements break and continue
The break and continue statements alter the flow of control. The break statement,
when executed in a while, for, do/while or switch structure, causes immediate exit
from that structure. Execution continues with the first statement that follows the structure.
Common uses of the break statement are to exit prematurely from a loop or to exit a
switch structure (as in Fig. 5.10). Figure 5.14 demonstrates the break statement in a
for repetition structure.

When the if structure in line 16 detects that count is 5, break is executed. This
terminates the for structure and the program proceeds to line 24 (immediately after the
for). The string-concatenation statement produces the string that is displayed in the mes-
sage dialog in lines 26–27. The loop executes its body only four times.

1 // Fig. 5.14: BreakTest.cs
2 // Using the break statement in a for structure.
3
4 using System;
5 using System.Windows.Forms;
6
7 class BreakTest
8 {
9 static void Main(string[] args)

10 {
11 string output = "";
12 int count;
13
14 for (count = 1; count <= 10; count++)
15 {
16 if (count == 5)
17 break; // skip remaining code in loop
18 // if count == 5
19
20 output += count + " ";
21
22 } // end for loop
23

Fig. 5.14 Using the break statement in a for structure. (Part 1 of 2.)

Chapter 5 Control Structures: Part 2 159

The continue statement, when executed in a while, for or do/while structure,
skips the remaining statements in the body of that structure and proceeds with the next iter-
ation of the loop. In while and do/while structures, the loop-continuation condition
evaluates immediately after continue executes. In a for structure, the increment/decre-
ment expression executes, then the loop-continuation test evaluates.

We have stated that the while structure can replace the for structure in most cases.
One exception occurs when the increment/decrement expression in the while structure
follows the continue statement. In this case, the increment/decrement does not execute
before the repetition-continuation condition is tested, and the while does not execute in
the same manner as the for.

Figure 5.15 uses the continue statement in a for structure to skip the string-con-
catenation statement on line 19 when the if structure (line 15) determines that the value of
count is 5. When the continue statement executes, program control continues with the
increment of the control variable in the for structure.

Good Programming Practice 5.10
Some programmers believe that break and continue violate structured programming.
The effects of these statements can be achieved by structured programming techniques, so
these programmers avoid break and continue. 5.10

24 output += "\nBroke out of loop at count = " + count;
25
26 MessageBox.Show(output, "Demonstrating the break statement",
27 MessageBoxButtons.OK, MessageBoxIcon.Information);
28
29 } // end method Main
30
31 } // end class BreakTest

Fig. 5.14 Using the break statement in a for structure. (Part 2 of 2.)

1 // Fig. 5.15: ContinueTest.cs
2 // Using the continue statement in a for structure.
3
4 using System;
5 using System.Windows.Forms;
6
7 class ContinueTest
8 {
9 static void Main(string[] args)

10 {
11 string output = "";

Fig. 5.15 Using the continue statement in a for structure.

160 Control Structures: Part 2 Chapter 5

Performance Tip 5.2
When used properly, the break and continue statements perform faster than their cor-
responding structured techniques. 5.2

Software Engineering Observation 5.1
There is a debate between achieving quality software engineering and achieving the best per-
forming software. Often, one of these goals is achieved at the expense of the other. For all
but the most performance-intensive situations, apply the following “rule of thumb”: First,
make your code simple and correct; then make it fast and small, but only if necessary. 5.1

5.8 Logical and Conditional Operators
So far, we have studied only simple conditions, such as count <= 10, total > 1000
and number != sentinelValue. These conditions were expressed in terms of the re-
lational operators >, <, >= and <= and the equality operators == and !=. Each decision
tested one condition. To test multiple conditions in the process of making a decision, we
performed these tests in separate statements or in nested if or if/else structures.

C# provides several logical and conditional operators that may be used to form com-
plex conditions by combining simple conditions. The operators are && (conditional AND),
& (logical AND), || (conditional OR), | (logical OR), ^ (logical exclusive OR or logical
XOR) and ! (logical NOT, also called logical negation). We will consider examples using
each of these operators.

12
13 for (int count = 1; count <= 10; count++)
14 {
15 if (count == 5)
16 continue; // skip remaining code in loop
17 // only if count == 5
18
19 output += count + " ";
20 }
21
22 output += "\nUsed continue to skip printing 5";
23
24 MessageBox.Show(output, "Using the continue statement",
25 MessageBoxButtons.OK, MessageBoxIcon.Information);
26
27 } // end method Main
28
29 } // end class ContinueTest

Fig. 5.15 Using the continue statement in a for structure.

Chapter 5 Control Structures: Part 2 161

Common Programming Error 5.10
Placing a space between the && or || operator results in a syntax error. 5.10

Suppose we wish to ensure that two conditions are both true in a program before we
choose a certain path of execution. In this case, we can use the conditional && operator as
follows:

if (gender == 1 && age >= 65)
 ++seniorFemales;

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated to determine whether a person is female. The condition age >= 65 is evaluated
to determine whether a person is a senior citizen. The two simple conditions are evaluated
first, because the precedences of == and >= are both higher than the precedence of &&. The
if statement then considers the combined condition

gender == 1 && age >= 65

This condition is true if and only if both the simple conditions are true. Finally, if this com-
bined condition is true, the body statement increments the count of seniorFemales by
1. If either or both of the simple conditions are false, the program skips the incrementing
and proceeds to the statement that follows the if structure. The preceding combined con-
dition can be made more readable by adding redundant parentheses:

(gender == 1) && (age >= 65)

The table in Fig. 5.16 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables often
are called truth tables. C# evaluates to true or false expressions that include relational oper-
ators, equality operators, logical operators and/or conditional operators.

Now let us consider the || (conditional OR) operator. Suppose we wish to ensure that
either or both of two conditions are true before we choose a certain path of execution. We
use the || operator in the following program segment:

if (semesterAverage >= 90 || finalExam >= 90)
 Console.WriteLine("Student grade is A");

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 5.16 Truth table for the && (conditional AND) operator.

162 Control Structures: Part 2 Chapter 5

which also contains two simple conditions. The condition semesterAverage >= 90
determines whether the student deserves an “A” in the course because of a solid perfor-
mance throughout the semester. The condition finalExam >= 90 determines whether the
student deserves an “A” in the course because of an outstanding performance on the final
exam. The if statement then considers the combined condition

semesterAverage >= 90 || finalExam >= 90

and awards the student an “A” if either or both of the simple conditions are true. Note that
the message “Student grade is A” prints unless both of the simple conditions are false.
Figure 5.17 is a truth table for the conditional OR operator (||).

The && operator has a higher precedence than the || operator. Both operators asso-
ciate from left to right. An expression containing && or || operators is evaluated only until
truth or falsity is known. Thus, evaluation of the expression

gender == 1 && age >= 65

stops immediately if gender is not equal to 1 (i.e., the entire expression is false) and con-
tinue if gender is equal to 1 (i.e., the entire expression is true, even if the condition age
>= 65 is true). This performance feature for the evaluation of conditional AND and condi-
tional OR expressions is called short-circuit evaluation.

Performance Tip 5.3
In expressions using operator &&, if the separate conditions are independent of one another,
make the condition most likely to be false the leftmost condition. In expressions using oper-
ator ||, make the condition most likely to be true the leftmost condition. This use of short-
circuit evaluation can reduce a program’s execution time. 5.3

The logical AND (&) and logical OR (|) operators are similar to the conditional AND
and conditional OR operators, with one exception—the logical operators always evaluate
both of their operands (i.e., there is no short-circuit evaluation). Therefore, the expression

gender == 1 & age >= 65

evaluates age >= 65, regardless of whether gender is equal to 1. This is useful if the
right operand of the logical AND or logical OR operator includes a needed side effect—a
modification of a variable’s value. For example, the expression

birthday == true | ++age >= 65

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 5.17 Truth table for the || (conditional OR) operator.

Chapter 5 Control Structures: Part 2 163

guarantees that the condition ++age >= 65 evaluates and increments the variable age in
the preceding expression, regardless of whether the overall expression is true or false. Like-
wise, if we want the condition in the right operand to be the result of a method call, and we
want the method to execute in any case, then we can use the | operator.

Common Programming Error 5.11
Avoid expressions with side effects in conditions. The side effects might look clever, but they
often cause subtle errors and can be confusing to other people reading or maintaining your
code. 5.11

A condition containing the logical exclusive OR (^) operator is true if and only if one
of its operands results in a true value and one results in a false value. If both operands are
true or both are false, the result of the entire condition is false. Figure 5.18 is a truth table
for the logical exclusive OR operator (^). This operator evaluates both of its operands (i.e.,
there is no short-circuit evaluation).

C# provides the ! (logical negation) operator to enable a programmer to “reverse” the
meaning of a condition. Unlike the logical operators &&, &, ||, | and ^, which combine
two conditions (binary operators), the logical negation operator has only a single condition
as an operand (unary operator). The logical negation operator is placed before a condition
to choose a path of execution if the original condition (without the logical negation oper-
ator) is false. This is demonstrated by the following program segment:

if (! (grade == sentinelValue))
 Console.WriteLine("The next grade is " + grade);

The parentheses around the condition grade == sentinelValue are needed because
the logical negation operator has a higher precedence than the equality operator.
Figure 5.19 is a truth table for the logical negation operator.

expression1 expression2 expression1 ^ expression2

false false false

false true true

true false true

true true false

Fig. 5.18 Truth table for the logical exclusive OR (^) operator.

expression !expression

false true

true false

Fig. 5.19 Truth table for operator! (logical NOT).

164 Control Structures: Part 2 Chapter 5

In most cases, the programmer can avoid using logical negation by expressing the con-
dition differently with relational or equality operators. For example, the preceding state-
ment may also be written as follows:

if (grade != sentinelValue)
 Console.WriteLine("The next grade is " + grade);

This flexibility can help a programmer express a condition more naturally.
The console application in Fig. 5.20 demonstrates all the conditional and logical oper-

ators by displaying their truth tables in a label.

1 // Fig. 5.20: LogicalOperators.cs
2 // Demonstrating the logical operators.
3 using System;
4
5 class LogicalOperators
6 {
7 // main entry point for application
8 static void Main(string[] args)
9 {

10 // testing the conditional AND operator (&&)
11 Console.WriteLine("Conditional AND (&&)" +
12 "\nfalse && false: " + (false && false) +
13 "\nfalse && true: " + (false && true) +
14 "\ntrue && false: " + (true && false) +
15 "\ntrue && true: " + (true && true));
16
17 // testing the conditional OR operator (||)
18 Console.WriteLine("\n\nConditional OR (||)" +
19 "\nfalse || false: " + (false || false) +
20 "\nfalse || true: " + (false || true) +
21 "\ntrue || false: " + (true || false) +
22 "\ntrue || true: " + (true || true));
23
24 // testing the logical AND operator (&)
25 Console.WriteLine("\n\nLogical AND (&)" +
26 "\nfalse & false: " + (false & false) +
27 "\nfalse & true: " + (false & true) +
28 "\ntrue & false: " + (true & false) +
29 "\ntrue & true: " + (true & true));
30
31 // testing the logical OR operator (|)
32 Console.WriteLine("\n\nLogical OR (|)" +
33 "\nfalse | false: " + (false | false) +
34 "\nfalse | true: " + (false | true) +
35 "\ntrue | false: " + (true | false) +
36 "\ntrue | true: " + (true | true));
37
38 // testing the logical exclusive OR operator (^)
39 Console.WriteLine("\n\nLogical exclusive OR (^)" +
40 "\nfalse ^ false: " + (false ^ false) +
41 "\nfalse ^ true: " + (false ^ true) +

Fig. 5.20 Demonstrating the conditional and logical operators. (Part 1 of 2.)

Chapter 5 Control Structures: Part 2 165

On line 11, we begin class LogicalOperators. Method Main (lines 8–49) con-
tains the code for this program. Lines 11–15 demonstrate the && operator; lines 25–29 dem-
onstrate the & operator. Notice that, to display one & symbol, two &s are required. The
remainder of the constructor demonstrates the ||, |, ^ and! operators.

42 "\ntrue ^ false: " + (true ^ false) +
43 "\ntrue ^ true: " + (true ^ true));
44
45 // testing the logical NOT operator (!)
46 Console.WriteLine("\n\nLogical NOT (!)" +
47 "\n!false: " + (!false) +
48 "\n!true: " + (!true));
49 }
50 }

Conditional AND (&&)
false && false: False
false && true: False
true && false: False
true && true: True

Conditional OR (||)
false || false: False
false || true: True
true || false: True
true || true: True

Logical AND (&)
false & false: False
false & true: False
true & false: False
true & true: True

Logical OR (|)
false | false: False
false | true: True
true | false: True
true | true: True

Logical exclusive OR (^)
false ^ false: False
false ^ true: True
true ^ false: True
true ^ true: False

Logical NOT (!)
!false: True
!true: False

Fig. 5.20 Demonstrating the conditional and logical operators. (Part 2 of 2.)

166 Control Structures: Part 2 Chapter 5

When a bool value is concatenated to a string, C# adds the string representation
of the boolean value, which will be either "False" or "True".

Figure 5.21 shows the precedence and associativity of the C# operators introduced to
this point. The operators are shown from top to bottom in decreasing order of precedence.

5.9 Structured-Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We have learned that structured programming
produces programs that are easier to understand, test, debug, modify and prove correct in a
mathematical sense than unstructured programs.

Figure 5.22 summarizes C#’s control structures. Small circles in the figure indicate the
single entry point and the single exit point of each structure. Connecting individual flowchart
symbols arbitrarily can lead to unstructured programs. Therefore, the programming profes-
sion has chosen to combine flowchart symbols to form only a limited set of control structures
and to build structured programs by combining control structures in only two simple ways.

For simplicity, only single-entry/single-exit control structures are used—there is only
one way to enter and only one way to exit each control structure. To connect control struc-
tures in sequence to form structured programs, the exit point of one control structure is con-
nected to the entry point of the next control structure (i.e., the control structures are simply
placed one after another in a program). We call this process “control-structure stacking.”
The rules for forming structured programs also allow control structures to be nested.
Figure 5.23 contains the rules for forming properly structured programs. The rules assume
that the rectangle flowchart symbol can indicate any action, including input/output.

Operators Associativity Type

()
++ --

left to right
right to left

parentheses
unary postfix

++ -- + - ! (type) right to left unary prefix

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

& left to right logical AND

^ left to right logical exclusive OR

| left to right logical inclusive OR

&& left to right conditional AND

|| left to right conditional OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 5.21 Precedence and associativity of the operators discussed so far.

Chapter 5 Control Structures: Part 2 167

Fig. 5.22 C#’s single-entry/single-exit sequence, selection and repetition
structures.

Se
q

ue
nc

e

i
f

 s
tr

u
c

tu
re

(s
in

g
le

 s
e

le
c

tio
n

)
i
f

/e
l
s
e

 s
tr

u
c

tu
re

(d
o

u
b

le
 s

e
le

c
tio

n
)

s
w
i
t
c
h

 s
tr

u
c

tu
re

(m
u

lti
p

le
 s

e
le

c
tio

n
)

. . .

w
h
i
l
e

 s
tr

u
c

tu
re

f
o
r

 s
tr

u
c

tu
re

/f
o
r
e
a
c
h

 s
tr

u
c

tu
re

d
o

/w
h
i
l
e

 s
tr

u
c

tu
re

. . .

Se
le

c
tio

n
Re

p
e

tit
io

n

b
r
e
a
k

b
r
e
a
k

b
r
e
a
k

b
r
e
a
k

T

F

T

F

T

F

T

F

T

F

T

FT

F

T
F

168 Control Structures: Part 2 Chapter 5

Applying the rules of Fig. 5.23 always results in a structured flowchart with a neat,
building-block appearance. For example, repeatedly applying rule 2 to the simplest flow-
chart results in a structured flowchart that contains many rectangles in sequence (Fig. 5.25).
Notice that rule 2 generates a stack of control structures; therefore, we call rule 2 the
stacking rule.

Rule 3 is the nesting rule. Repeatedly applying rule 3 to the simplest flowchart results in
a flowchart with neatly nested control structures. For example, in Fig. 5.26, the rectangle in
the simplest flowchart first is replaced with a double-selection (if/else) structure. Then
rule 3 is applied again to both rectangles in the double-selection structure, replacing each of
the rectangles with a double-selection structure. The dashed boxes around each of the double-
selection structures represent the rectangles that were replaced with these structures.

Good Programming Practice 5.11
Too many levels of nesting can make a program difficult to understand. As a general rule, try
to avoid using more than three levels of nesting. 5.11

Rule 4 generates larger, more involved and deeply-nested structures. The flowcharts
that emerge from applying the rules in Fig. 5.23 constitute the set of all possible structured
flowcharts and the set of all possible structured programs.The structured approach has the
advantage of using only eight simple single-entry/single-exit pieces and allowing us to
assemble them in only two simple ways. Figure 5.27 shows the kinds of correctly stacked
building blocks that emerge from applying rule 2 and the kinds of correctly nested building
blocks that emerge from applying rule 3. The figure also shows the kind of overlapped
building blocks that cannot occur in structured flowcharts (as a result of avoiding goto
statements).

Rules for Forming Structured Programs

1) Begin with the “simplest flowchart” (Fig. 5.24).

2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

3) Any rectangle (action) can be replaced by any control structure (sequence, if, if/else,
switch, while, do/while, for or foreach, as we will see in Chapter 7, Arrays).

4) Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 5.23 Rules for forming structured programs.

Fig. 5.24 Simplest flowchart.

Chapter 5 Control Structures: Part 2 169

Fig. 5.25 Repeatedly applying rule 2 of Fig. 5.23 to the simplest flowchart.

Fig. 5.26 Applying rule 3 of Fig. 5.23 to the simplest flowchart.

.

.

.

Rule 2 Rule 2 Rule 2

Rule 3Rule 3

Rule 3

170 Control Structures: Part 2 Chapter 5

If the rules in Fig. 5.23 are followed, an unstructured flowchart (such as that in
Fig. 5.28) cannot be created. If you are uncertain about whether a particular flowchart is
structured, apply the rules in Fig. 5.23 in reverse to try to reduce the flowchart to the sim-
plest flowchart. If the flowchart can be reduced to the simplest flowchart, the original flow-
chart is structured; otherwise, it is not.

In summary, structured programming promotes simplicity. Bohm and Jacopini have
found that only three forms of control are necessary:

• Sequence

• Selection

• Repetition

Sequence is trivial. Selection is implemented in one of three ways:

• if structure (single selection)

• if/else structure (double selection)

• switch structure (multiple selection)

Fig. 5.27 Stacked, nested and overlapped building blocks.

Fig. 5.28 Unstructured flowchart.

Overlapping building blocks
(Illegal in structured programs)

Stacked building blocks Nested building blocks

Chapter 5 Control Structures: Part 2 171

In fact, it is straightforward to prove that the if structure is sufficient to provide any form
of selection. Everything that can be done with the if/else and switch structures can be
implemented by combining if structures (although perhaps not as elegantly).

Repetition is implemented in one of four ways:

• while structure

• do/while structure

• for structure

• foreach structure (discussed in Chapter 7)

It is straightforward to prove that the while structure is sufficient to provide any form of
repetition. Everything that can be done with the do/while, for and foreach structures
can be done with the while structure (although perhaps not as elegantly).

Combining these results illustrates that any form of control ever needed in a C# pro-
gram can be expressed in terms of:

• sequence

• if structure (selection)

• while structure (repetition)

These control structures can be combined in only two ways—stacking and nesting. Indeed,
structured programming promotes simplicity.

In this chapter, we discussed how to compose programs from control structures that
contain actions and decisions. In Chapter 6, Methods, we introduce another program-
structuring unit, called the method. We will learn to compose large programs by com-
bining methods that are composed of control structures. We also discuss how methods
promote software reusability. In Chapter 8, Object-Based Programming, we discuss in
more detail another C# program-structuring unit, called the class. We then create objects
from classes and proceed with our treatment of object-oriented programming—the key
focus of this book.

SUMMARY
• Counter-controlled repetition requires the name of a control variable (or loop counter), the initial

value of the control variable, the increment (or decrement) by which the control variable is modi-
fied each time through the loop and the condition that tests for the final value of the control vari-
able (i.e., whether looping should continue).

• Declarations that include initialization are executable statements.

• Floating-point values may be approximate, so controlling counting loops with floating-point vari-
ables may result in imprecise counter values and inaccurate tests for termination.

• If there is more than one statement in the body of the for, braces ({ and }) are needed to define
the body of the loop.

• Using an incorrect relational operator or an incorrect final value of a loop counter in the condition
of a while, for or do/while structure can cause an off-by-one error.

• The general format of the for structure is

for (expression1; expression2; expression3)
statement

172 Control Structures: Part 2 Chapter 5

where expression1 names the loop’s control variable and provides its initial value, expression2 is
the loop-continuation condition (containing the control variable’s final value) and expression3 in-
crements the control variable.

• In most cases, the for structure can be represented with an equivalent while structure with
expression1, expression2 and expression3 placed as follows:

expression1;

while (expression2)
{

statement
expression3;

}

• If the initialization section in the for structure header defines the control variable, the control
variable can be used only in the body of the for structure.

• The scope of a variable defines where the variable can be used in a program.

• The three expressions in the for structure are optional. The two semicolons in the for structure
are required.

• If the loop-continuation condition is initially false, the body of the for structure does not execute.

• Changing the value of the control variable in the body of a for loop can lead to subtle errors.

• Do not use variables of type float or double to perform precise monetary calculations. The
imprecision of floating-point numbers can cause errors that will result in incorrect monetary val-
ues. Type decimal is available for performing monetary calculations properly.

• The switch multiple-selection structure consists of a series of case labels and an optional de-
fault case. Each label (case or default) contains statements to be executed if that label is
selected.

• A break is required in every case of a switch structure, except for empty cases.

• Listing case labels together (such as case 'C': case 'c':, with no statements between the
cases) causes the same set of actions to be performed for each of the cases.

• When using the switch structure, remember that the expression after each case must be a con-
stant integral expression (i.e., any combination of character and integer constants that evaluates to
a constant integer value) or a string.

• The do/while structure tests the loop-continuation condition after the loop body executes; there-
fore, the loop body always executes at least once.

• The break statement, when executed in a while, for, do/while or switch structure, causes
immediate exit from that structure. Execution continues with the first statement after the structure.

• The continue statement, when executed in a while, for or do/while structure, skips the re-
maining statements in the body of that structure and proceeds with the next iteration of the loop.

• C# uses conditional and logical operators to form complex conditions by combining simple ones.

• The conditional and logical operators are && (conditional AND), & (logical AND), || (conditional
OR), | (logical inclusive OR), ^ (logical exclusive OR) and! (logical NOT, also called logical
negation).

• The conditional && operator ensures that two conditions are both true before we choose a certain
path of execution.

• The logical || operator ensures that at least one of two conditions is true before we choose a
certain path of execution.

Chapter 5 Control Structures: Part 2 173

• A condition containing the boolean logical exclusive OR (^) operator is true if and only if one of
its operands is true and one is false.

• The ! (logical negation) operator “reverses” the meaning of a condition.

• When a bool value is concatenated to a string, C# adds the string "False" or "True" based
on the bool value.

• In flowcharts, small circles indicate the single entry point and exit point of each structure.

• Connecting individual flowchart symbols arbitrarily can lead to unstructured programs. Therefore,
the programming profession has chosen to combine flowchart symbols to form a limited set of
control structures and to build structured programs by properly combining control structures in
two simple ways—stacking and nesting.

• Structured programming promotes simplicity.

• Bohm and Jacopini have given us the result that only three forms of control are needed—sequence,
selection and repetition.

• Selection is implemented with one of three control structures—if, if/else and switch.

• Repetition is implemented with one of four control structures—while, do/while, for and
foreach.

• The if structure is sufficient to provide any form of selection.

• The while structure is sufficient to provide any form of repetition.

TERMINOLOGY
! logical NOT controlling expression
!= ”is not equal to” control-structure nesting
& logical AND control-structure stacking
&& conditional AND counter variable
^ boolean logical exclusive OR counter-controlled repetition
| boolean logical inclusive OR D formatting code
|| conditional OR decimal
<= less than or equal decrement expression
AND operator boolean logical default statement
AND operator logical delay loop
binary diamond symbol
binary operator do/while structure
body of a loop double-selection structure
bool values E formatting code
braces ({ and }) empty case
break statement empty statement (semicolon by itself)
buttons for message dialogs entry point of a control structure
C formatting code Error
case F formatting code
conditional AND operator (&&) flowchart symbol
conditional OR operator (||) for structure
const variable for structure header
constant integral expression foreach structure
constant variable formatting code
continue statement formatting data
control structure G formatting code
control variable goto statement

174 Control Structures: Part 2 Chapter 5

SELF-REVIEW EXERCISES
5.1 State whether each of the following is true or false. If false, explain why.

a) The default case is required in the switch selection structure.
b) If there is more than one statement in the body of the for, braces ({ and }) are needed

to define the body of the loop.
c) The expression (x > y && a < b) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands is true.
e) The expression (x <= y && y > 4) is true if x is less than or equal to y or y is

greater than 4.
f) A for loop requires two commas in its header.
g) Infinite loops are caused when the loop-termination condition is always true.
h) The following syntax continues iterating the loop while 10 < x < 100:

while (x > 10 && x < 100);

hexadecimal (base16) number system nested building block
icons for message dialogs nested control structure
if structure nesting rule
if/else structure off-by-one error
increment expression one-based counting
infinite loop optimization
initialization section of a for structure overlapped building block
iteration of a loop Pow method of class Math
labels in a switch structure program-construction principles
levels of nesting rectangle symbol
logical AND operator (&) repetition
logical exclusive OR operator (^) scope of a variable
logical negation (!) selection
logical NOT or logical negation operator (!) sequence
logical operators short-circuit evaluation
logical OR operator (|) side effect
loop body simple condition
loop counter simplest flowchart
loop-continuation condition single selection
Math class single-entry/single-exit control structure
message-dialog buttons small circle symbol
message-dialog icons stacking
MessageBoxButton.AbortRetryIgnore stacking rule
MessageBoxButton.OK string formatting codes
MessageBoxButton.OKCancel structured programming
MessageBoxButton.RetryCancel switch structure
MessageBoxButton.YesNo title bar string
MessageBoxButton.YesNoCancel truth table
MessageBoxIcon.Error unary operator
MessageBoxIcon.Exclamation unstructured flowchart
MessageBoxIcon.Information while structure
MessageBoxIcon.Question X formatting code
multiple-selection structure zero-based counting
N formatting code

Chapter 5 Control Structures: Part 2 175

i) The break statement, when executed in a repetition structure, causes immediate exit
from the repetition structure.

j) The || operator has a higher precedence than the && operator.

5.2 Fill in the blanks in each of the following statements:
a) Specifying the order in which statements are to be executed in a computer program is

called .
b) Placing a semicolon after a for statement typically results in a error.
c) A for loop should count with values.
d) Using the < relational operator instead of <= in a while-repetition condition that should

loop 10 times (as shown below) causes an error:

int x = 1;
while (x < 10) …

e) A control variable initialized within a for loop can be used only in the body of the loop.
This is called the of the variable.

f) In a for loop, incrementing occurs the body of the structure is performed
each time.

g) Multiple initializations in the for structure header should be separated by .
h) Placing expressions whose values do not change inside can lead to poor per-

formance.
i) The four types of MessageBox icons are exclamation, information, error and

.
j) The value in parentheses immediately following the keyword switch is called the

.

5.3 Write a C# statement or a set of C# statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99, using a for structure. Assume that the integer

variables sum and count have been declared.
b) Calculate the value of 2.5 raised to the power of 3, using the Math.Pow method.
c) Print the integers from 1 to 20, using a while loop and the counter variable x. Assume

that the variable x has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation x % 5. When the value of this is 0, print a newline character;
otherwise, print a tab character. Use the Console.WriteLine() method to output
the newline character, and use the Console.Write('\t') method to output the tab
character.]

d) Repeat part c, using a for structure.

ANSWERS TO SELF-REVIEW EXERCISES
5.1 a) False. The default case is optional. If no default action is required, then there is no
need for a default case. b) True. c) False. Both of the relational expressions must be true for the
entire expression to be true. d) True. e) False. The expression (x <= y && y > 4) is true if x is less
than or equal to y and y is greater than 4. f) False. A for loop requires two semicolons in its header.
g) False. Infinite loops are caused when the loop-continuation condition is always true. h) True.
i) True. j) False. The && operator has higher precedence than the || operator.

5.2 a) program control. b) logic. c) integral. d) off-by-one. e) scope. f) after. g) comma. h) loops.
i) question. j) controlling expression.

5.3 a) sum = 0;
for (count = 1; count <= 99; count += 2)
 sum += count;

176 Control Structures: Part 2 Chapter 5

b) Math.Pow(2.5, 3)
c) x = 1;

while (x <= 20)
{
 Console.Write(x);

if (x % 5 == 0)
 Console.WriteLine();

else
 Console.Write('\t');

 ++x;
}

d) for (x = 1; x <= 20; x++)
{
 Console.Write(x);

if (x % 5 == 0)
 Console.WriteLine();

else
 Console.Write('\t');
}

or

for (x = 1; x <= 20; x++)

if (x % 5 == 0)
 Console.WriteLine(x);

else
 Console.Write(x + "\t");

EXERCISES
5.4 The factorial method is used frequently in probability problems. The factorial of a positive
integer n (written n! and pronounced “n factorial”) is equal to the product of the positive integers from
1 to n. Write a program that evaluates the factorials of the integers from 1 to 20 with different integer
data types. Display the results in a three-column output table. [Hint: create a Windows application,
using Labels as the columns and the '\n' character to line up rows.] The first column should dis-
play the n values (1-20). The second column should display n!, calculated with int (Int32, a 32-
bit integer value). The third column should display n!, calculated with long (Int64, a 64-bit integer
value). What happens when int (Int32) is too small in size to hold the result of a factorial calcu-
lation?

5.5 Write two programs that each print a table of the binary, octal, and hexadecimal equivalents
of the decimal numbers in the range 1–256. If you are not familiar with these number systems, read
Appendix C, Number Systems, first.

a) For the first program, print the results to the console without using any string formats.
b) For the second program, print the results to the console using both the decimal and hexa-

decimal string formats (there are no formats for binary and octal in C#).

Chapter 5 Control Structures: Part 2 177

5.6 (Pythagorean Triples) A right triangle can have sides that are all integers. A set of three in-
teger values for the sides of a right triangle is called a Pythagorean triple. These three sides must sat-
isfy the relationship that the sum of the squares of the two sides is equal to the square of the
hypotenuse. Write a program to find all Pythagorean triples for side1, side2 and hypotenuse,
none larger than 30. Use a triple-nested for loop that tries all possibilities. This is an example of
“brute force” computing. You will learn in more advanced computer science courses that there are
several problems for which there is no other known algorithmic approach.

5.7 Write a program that displays the following patterns separately, one below the other. Use
for loops to generate the patterns. All asterisks (*) should be printed by a single statement of the
form Console.Write('*'); (this causes the asterisks to print side by side). A statement of the
form Console.WriteLine(); can be used to position to the next line. A statement of the form
Console.Write(' '); can be used to display spaces for the last two patterns. There should be
no other output statements in the program. [Hint: The last two patterns require that each line begin
with an appropriate number of blanks.]

5.8 Modify Exercise 5.7 to combine your code from the four separate triangles of asterisks into
a single program that prints all four patterns side by side, making clever use of nested for loops.

5.9 Write a program that prints the following diamond shape. You may use output statements that
print a single asterisk (*), a single space or a single newline character. Maximize your use of repeti-
tion (with nested for structures) and minimize the number of output statements.

5.10 Modify the program you wrote in Exercise 5.9 to read an odd number in the range from 1 to
19 to specify the number of rows in the diamond. Your program should then display a diamond of the
appropriate size.

(A) (B) (C) (D)

* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

*

*

6
Methods

Objectives
• To construct programs modularly from small pieces

called methods.
• To introduce the common math methods available in

the Framework Class Library.
• To be able to create new methods.
• To understand the mechanisms for passing

information between methods.
• To introduce simulation techniques that use random

number generation.
• To understand how the visibility of identifiers is

limited to specific regions of programs.
• To understand how to write and use methods that call

themselves.
Form ever follows function.
Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
Virgil

O! call back yesterday, bid time return.
William Shakespeare

Call me Ishmael.
Herman Melville

When you call me that, smile.
Owen Wister

Chapter 6 Methods 179

6.1 Introduction
Most computer programs that solve real-world problems are much larger than the programs
presented in the first few chapters of this text. Experience has shown that the best way to
develop and maintain a large program is to construct it from small, simple pieces, or mod-
ules. This technique is known as divide and conquer. This chapter describes many key fea-
tures of the C# language that facilitate the design, implementation, operation and
maintenance of large programs.

6.2 Program Modules in C#1

Modules in C# are called methods and classes. C# programs are written by combining new
methods and classes that the programmer writes with “prepackaged” methods and classes
available in the .NET Framework Class Library (FCL). In this chapter, we concentrate on
methods. We discuss classes in detail in Chapter 8, Object-Based Programming.

The FCL provides a rich collection of classes and methods for performing common
mathematical calculations, string manipulations, character manipulations, input/output

Outline

6.1 Introduction
6.2 Program Modules in C#

6.3 Math Class Methods
6.4 Methods
6.5 Method Definitions
6.6 Argument Promotion
6.7 C# Namespaces
6.8 Value Types and Reference Types
6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference
6.10 Random-Number Generation
6.11 Example: Game of Chance
6.12 Duration of Variables
6.13 Scope Rules
6.14 Recursion
6.15 Example Using Recursion: The Fibonacci Series
6.16 Recursion vs. Iteration
6.17 Method Overloading

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. It is important to note that we are discussing modules in an abstract sense. In C#, there is another
form of code packaging (other than assemblies), called modules. This is not what we are discuss-
ing in this chapter, but the reader should know that this term can be used in two ways.

180 Methods Chapter 6

operations, error checking and many other useful operations. This set of modules makes the
programmer’s job easier, because the modules provide many of the capabilities program-
mers need. The FCL methods are part of the .NET Framework, which includes FCL classes
Console and MessageBox used in earlier examples.

Software Engineering Observation 6.1
Familiarize yourself with the rich collection of classes and methods in the FCL. 6.1

Software Engineering Observation 6.2
When possible, use .NET Framework classes and methods instead of writing new classes
and methods. This reduces program development time and avoids the introduction of new
errors. 6.2

The programmer can write methods to define specific tasks that may be used at many
points in a program. Such methods are known as programmer-defined (or user-defined)
methods. The actual statements defining the method are written only once and are hidden
from other methods.

A method is invoked (i.e., made to perform its designated task) by a method call. The
method call specifies the name of the method and may provide information (as arguments)
that the called method requires to perform its task. When the method call completes, the
method either returns a result to the calling method (or caller) or simply returns control to
the calling method. A common analogy for this is the hierarchical form of management. A
boss (the calling method or caller) asks a worker (the called method) to perform a task and
report back (i.e., return) the results after completing the task. The boss method does not
know how the worker method performs its designated tasks. The worker may also call other
worker methods, and the boss will be unaware of these calls. We will see how this “hiding”
of implementation details promotes good software engineering. Figure 6.1 shows a boss
method communicating with worker methods worker1, worker2 and worker3 in a
hierarchical manner. Note that worker1 acts as a “boss” method to worker4 and
worker5 in this particular example.

Fig. 6.1 Hierarchical boss method/worker method relationship.

Boss

Worker3Worker2Worker1

Worker4 Worker5

Chapter 6 Methods 181

6.3 Math Class Methods
Math class methods allow the programmer to perform certain common mathematical cal-
culations. We use various Math class methods to introduce the concept of methods in gen-
eral. Throughout the book, we discuss many other methods from the classes of the
Framework Class Library.

Methods are called by writing the name of the method, followed by a left parenthesis,
the argument (or a comma-separated list of arguments) of the method and a right paren-
thesis. The parentheses may be empty, if we are calling a method that needs no information
to perform its task. For example, a programmer wishing to calculate and print the square
root of 900.0 might write

Console.WriteLine(Math.Sqrt(900.0));

When this statement executes, the method Math.Sqrt calculates the square root of the
number in parentheses (900.0). The number 900.0 is the argument to the Math.Sqrt
method. The Math.Sqrt method takes an argument of type double and returns a result
of type double. The preceding statement uses the result of method Math.Sqrt as the
argument to method Console.WriteLine and displays 30.0. Note that all Math class
methods must be invoked by preceding the method name with the class name Math and a
dot (.) operator (also called the member access operator).

Software Engineering Observation 6.3
It is not necessary to add an assembly reference to use the Math class methods in a program.
Class Math is located in namespace System, which is available to every program. 6.3

Common Programming Error 6.1
Forgetting to invoke a Math class method by preceding the method name with the class name
Math and a dot operator (.) results in a syntax error. 6.1

Method arguments may be constants, variables or expressions. If c1 = 13.0, d = 3.0
and f = 4.0, then the statement

Console.WriteLine(Math.Sqrt(c1 + d * f));

calculates and displays the square root of 13.0 + 3.0 * 4.0 = 25.0, which is 5.0.
Figure 6.2 summarizes some Math class methods. In this figure, the variables x and y

are of type double; however, many of the methods provide versions that take values of other
data types as arguments. The Math class also defines two commonly used mathematical con-
stants—Math.PI (3.14159265358979323846) and Math.E (2.7182818284590452354).
The constant Math.PI of class Math is the ratio of a circle’s circumference to its diameter.
The constant Math.E is the base value for natural logarithms (calculated with the
Math.Log method).

6.4 Methods
Methods allow programmers to modularize programs. Variables declared in method defi-
nitions are local variables—only the method that defines them knows they exist. Most
methods have a list of parameters that enable method calls to communicate information be-
tween methods. A method’s parameters are also variables local to that method and are not
visible in any other methods.

182 Methods Chapter 6

There are several motivations for modularizing a program with methods. The divide-
and-conquer approach makes program development more manageable. Another motivation
is software reusability—using existing methods (and classes) as building blocks to create
new programs. With proper method naming and definition, we can create programs from
standardized methods, rather than building customized code. For example, we did not have
to define how to convert strings to integers—The .NET Framework Class Library
already defines such methods for us (Int32.Parse). A third motivation is to avoid
repeating code in a program. Packaging code as a method allows that code to be executed
from several locations in a program—we simply have to call that method.

Method Description Example

Abs(x) absolute value of x Abs(23.7) is 23.7
Abs(0) is 0
Abs(-23.7) is 23.7

Ceiling(x) rounds x to the smallest integer
not less than x

Ceiling(9.2) is 10.0
Ceiling(-9.8) is -9.0

Cos(x) trigonometric cosine of x
(x in radians)

Cos(0.0) is 1.0

Exp(x) exponential method ex Exp(1.0) is approximately
2.7182818284590451
Exp(2.0) is approximately
7.3890560989306504

Floor(x) rounds x to the largest integer
not greater than x

Floor(9.2) is 9.0
Floor(-9.8) is -10.0

Log(x) natural logarithm of x (base e) Log(2.7182818284590451)
is approximately 1.0
Log(7.3890560989306504)
is approximately 2.0

Max(x, y) larger value of x and y
(also has versions for float,
int and long values)

Max(2.3, 12.7) is 12.7
Max(-2.3, -12.7) is -2.3

Min(x, y) smaller value of x and y
(also has versions for float,
int and long values)

Min(2.3, 12.7) is 2.3
Min(-2.3, -12.7) is -12.7

Pow(x, y) x raised to power y (xy) Pow(2.0, 7.0) is 128.0
Pow(9.0, .5) is 3.0

Sin(x) trigonometric sine of x
(x in radians)

Sin(0.0) is 0.0

Sqrt(x) square root of x Sqrt(900.0) is 30.0
Sqrt(9.0) is 3.0

Tan(x) trigonometric tangent of x
(x in radians)

Tan(0.0) is 0.0

Fig. 6.2 Commonly used Math class methods.

Chapter 6 Methods 183

Good Programming Practice 6.1
Make good use of modularity to increase the clarity and organization of your program. This
will not only help others understand your program, but it also will aid in program develop-
ment, testing and debugging. 6.1

Software Engineering Observation 6.4
To promote reusability, each method should perform a single, well-defined task, and the
name of the method should express that task effectively. 6.4

Software Engineering Observation 6.5
If you cannot choose a concise name that expresses what the method does, it is possible that
your method is attempting to perform too many diverse tasks. Usually it is best to break such
a method into several smaller methods. 6.5

6.5 Method Definitions
The programs presented up to this point each contained at least one method definition (such
as Main) that called FCL methods to accomplish the program’s tasks. We now consider
how to write customized methods.

Consider the Windows application in Fig. 6.3, which uses a method called Square to
calculate the squares of the integers from 1 to 10. Notice the comment on line 15

// Visual Studio .NET generated code

Throughout the book we will use this comment to denote code that we are not displaying
in the chapter. In all cases, this represents code created by the IDE. Most of this code ini-
tializes properties of GUI components. The examples in all chapters of the book are includ-
ed in their entirety on the CD that accompanies this book. The examples also can be
downloaded from www.deitel.com via the Downloads/Resources link. Figure 6.4,
displays all the code. However, you do not need to understand all the code at this point in
the book. Chapter 12, Graphical User Interfaces: Part 1, presents an example in which we
discuss all the code in detail.

1 // Fig. 6.3: SquareInt.cs
2 // Demonstrates a programmer-defined Square method.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class SquareInt : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button calculateButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code

Fig. 6.3 Using programmer-defined method Square. (Part 1 of 2.)

184 Methods Chapter 6

Until now, our programs have used methods of class Console to obtain user input
from the command prompt. These programs output their results either to the command
prompt or in MessageBoxes. Although these are valid ways to receive input from a user
and display output, they are fairly limited in their capabilities—the command prompt can
obtain only one value at a time from the user, and a message dialog can display only one
message. It is much more common for programs to read multiple inputs simultaneously

16
17 [STAThread]
18 static void Main()
19 {
20 Application.Run(new SquareInt());
21 }
22
23 // Square method definition
24 int Square(int y)
25 {
26 return y * y; // return square of y
27
28 } // end method Square
29
30 private void calculateButton_Click(object sender,
31 System.EventArgs e)
32 {
33 outputLabel.Text = "";
34
35 // loop 10 times
36 for (int counter = 1; counter <= 10; counter++)
37 {
38 // calculate square of counter and store in result
39 int result = Square(counter);
40
41 // append result to outputLabel
42 outputLabel.Text += "The square of " + counter +
43 " is " + result + "\n";
44 }
45
46 } // end method calculateButton_Click
47
48 } // end of class SquareInt

Fig. 6.3 Using programmer-defined method Square. (Part 2 of 2.)

Chapter 6 Methods 185

(e.g., when the user enters name and address information) or to display many pieces of data
at once (such as the values of the first ten squares in this example). To introduce more elab-
orate user interfaces, the program in Fig. 6.3 illustrates two graphical user interface con-
cepts—attaching multiple GUI components to an application and event handling.

To build this application, we use the Windows Form Designer to add a Button GUI
component object to the Form. This example also uses a label to display the results of calcu-
lating the first ten squares. The program invokes a special method, known as an event handler,
when the user clicks the Calculate Squares button. An event handler is a method that per-
forms some action in response to an event. Events occur when certain actions take place in a
graphical user interface, such as when the user clicks a button. Using GUI component objects
and events together allows programmers to create applications that interact with users in more
sophisticated ways than we have seen previously. In Visual Studio .NET’s Windows Form
Designer, double clicking on a GUI component object causes Visual Studio .NET to generate
an empty event handler method. The event handler method’s name defaults to the GUI com-
ponent’s name, followed by an underscore and the name of the event. The programmer then
can fill in the event handler method with code that performs a particular task.

In Fig. 6.3, method calculateButton_Click (lines 30–46) is an event handler
method for calculateButton’s Click event (i.e., the event that occurs when the user
clicks the button). When the user clicks the button, line 33 assigns the empty string ("") to
outputLabel’s Text property to ensure that the output does not scroll off the form if
the user presses the Calculate Squares button more than once. Lines 36–44 repeatedly
invoke method Square to calculate the squares of the integers from 1 to 10. Line 39
invokes the Square method and passes the variable counter as an argument.

As in some of our previous Windows applications, we create a label called output-
Label to display the program’s output. Every label contains a string property called
Text, which can be accessed using the dot operator (.). We append the results of the
square calculations to this label’s Text property.

Line 39 declares int variable result to store the result of each square calculation.
Lines 36–44 contain a for repetition structure in which each iteration of the loop calcu-
lates the Square of the current value of control variable counter and stores the value in
result. Lines 42–43 concatenate each result to the Text property of outputLabel.
At the end of the loop, the Label contains the results of squaring the values from 1 to 10.

The program invokes method Square on line 39. The parentheses, (), after Square
represent the method-call operator, which has high precedence. At this point, the program
makes a copy of the value of counter (the argument to the method call), and program
control transfers to method Square (defined at lines 24–28). Method Square receives
the copy of the value of counter in the parameter y. Then, Square calculates y * y
(line 26). Method Square uses a return statement to return (i.e., give back) the result
of the calculation to the statement that invoked Square (located in line 39). Line 39 then
assigns the returned value to variable result. Lines 42–43 concatenate "The square
of", the value of counter, " is ", the value of result and a newline character to the
end of outputLabel’s Text property. The for repetition structure repeats this process
10 times.

The definition of method Square (line 24) shows (inside the parentheses) that
Square expects an integer parameter y. Parameter y is the name that holds the value
passed to Square as an argument. The parameter name provides access to the argument

186 Methods Chapter 6

value, so that code in the method body can use the value. Keyword int, which precedes
the method name, indicates that method Square returns an integer result. The return
statement in Square (line 26) passes the result of the calculation y * y back to the calling
statement. Note that the entire method definition appears inside the braces of class Squa-
reInt. All methods must be defined inside a class definition.

Good Programming Practice 6.2
Place a blank line between method definitions to separate the methods and enhance program
readability. 6.2

Common Programming Error 6.2
Defining a method outside the braces of a class definition is a syntax error. 6.2

The format of a method definition is

 return-value-type method-name(parameter-list)
{
 declarations and statements
}

The first line is sometimes known as the method header. The method-name is any valid
identifier. The return-value-type is the data type of the result that the method returns to its
caller. The return-value-type void indicates that a method does not return a value. Meth-
ods can return at most one value.

Common Programming Error 6.3
Omitting the return-value-type in a method definition is a syntax error. If a method does not
return a value, the method’s return-value-type must be void. 6.3

Common Programming Error 6.4
Forgetting to return a value from a method that is supposed to return a value is a syntax er-
ror. If a return-value-type other than void is specified, the method must contain a return
statement that returns a value. 6.4

Common Programming Error 6.5
Returning a value from a method whose return type has been declared void is a syntax error. 6.5

The parameter-list is a comma-separated list in which the method declares each
parameter’s type and name. The method call must specify one argument for each parameter
in the method definition and the arguments must appear in the same order as the parameters
in the method definition. The arguments also must be compatible with the parameter’s type.
For example, a parameter of type double could receive values of 7.35, 22 or –.03546, but
not "hello" because a double variable cannot contain a string. If a method does not
receive any values, the parameter list is empty (i.e., the method name is followed by an
empty set of parentheses). Each parameter in a method’s parameter list must have a data
type; otherwise, a syntax error occurs.

Common Programming Error 6.6
Declaring method parameters of the same type as floatx, y instead of float x,float
y is a syntax error, because types are required for each parameter in the parameter list. 6.6

Chapter 6 Methods 187

Common Programming Error 6.7
Placing a semicolon after the right parenthesis enclosing the parameter list of a method def-
inition is a syntax error. 6.7

Common Programming Error 6.8
Redefining a method parameter in the method’s body is a syntax error. 6.8

Common Programming Error 6.9
Passing to a method an argument that is not compatible with the corresponding parameter’s
type is a syntax error. 6.9

The declarations and statements within braces form the method body. The method
body is also referred to as a block. As discussed previously, a block is a set of declarations
and statements enclosed in curly braces. Variables can be declared in any block, and blocks
can be nested.

Common Programming Error 6.10
Defining a method inside another method is a syntax error (i.e., methods cannot be nested). 6.10

Good Programming Practice 6.3
Choosing meaningful method names and parameter names makes programs more readable
and helps avoid excessive use of comments. 6.3

Software Engineering Observation 6.6
As a rule of thumb, a method should be no longer than one page. Better yet, a method should
be no longer than half a page. Regardless of how long a method is, it should perform one task
well. Small methods promote software reusability. 6.6

Testing and Debugging Tip 6.1
Small methods are easier to test, debug and understand than large methods. 6.1

Software Engineering Observation 6.7
A method requiring a large number of parameters may be performing too many tasks. Con-
sider dividing the method into smaller methods that perform separate tasks. As a rule of
thumb, the method header should fit on one line (if possible). 6.7

Software Engineering Observation 6.8
The number, type and order of arguments in a method call must exactly match those of the
parameters in the corresponding method header. 6.8

There are three ways to return control to the point at which a method was invoked. If
the method does not return a result (i.e., the method has a void return type), control returns
when the program reaches the method-ending right brace or when the statement

return;

executes. If the method does return a result, the statement

return expression;

188 Methods Chapter 6

returns the value of expression to the caller. When a return statement executes, control
returns immediately to the point at which the method was invoked.

Notice the syntax that invokes method Square in Fig. 6.3—we use the method name,
followed by the arguments to the method in parentheses. Methods in a class definition are
allowed to invoke all other methods in the same class definition by using this syntax (an
exception to this is discussed in Chapter 8, Object-Based Programming). We now have
seen three ways to call a method—a method name by itself (as shown with Square(x)),
a reference to an object followed by the dot (.) operator and the method name (such as
string1.CompareTo(string2)) and a class name followed by a method name
(such as Math.Sqrt(9.0)). The last syntax is for calling the static methods of a
class (discussed in detail in Chapter 8, Object-Based Programming).

The application in our next example (Fig. 6.4) uses programmer-defined method
Maximum to determine and return the largest of three floating-point values that the user
inputs through the program’s graphical user interface. Note that in this example, we show
all of the code that the Windows Form Designer generates. Throughout the rest of the book,
we omit portions of the generated code that are not relevant to our discussions. In such pro-
grams, we place a comment that indicates where the Visual Studio .NET generated code
appears in the original source file.

1 // Fig. 6.4: MaximumValue.cs
2 // Finding the maximum of three double values.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 namespace MaximumValue
11 {
12 /// <summary>
13 /// Summary description for Form1.
14 /// </summary>
15 public class MaximumValue : System.Windows.Forms.Form
16 {
17 private System.Windows.Forms.Label firstNumberLabel;
18 private System.Windows.Forms.Label secondNumberLabel;
19 private System.Windows.Forms.Label thirdNumberLabel;
20 private System.Windows.Forms.Label maximumLabel;
21 private System.Windows.Forms.TextBox firstNumberTextBox;
22 private System.Windows.Forms.TextBox secondNumberTextBox;
23 private System.Windows.Forms.TextBox thirdNumberTextBox;
24 private System.Windows.Forms.Button calculateButton;
25
26 /// <summary>
27 /// Required designer variable.
28 /// </summary>
29 private System.ComponentModel.Container components = null;
30

Fig. 6.4 Programmer-defined Maximum method. (Part 1 of 5.)

Chapter 6 Methods 189

31 public MaximumValue()
32 {
33 //
34 // Required for Windows Form Designer support
35 //
36 InitializeComponent();
37
38 //
39 // TODO: Add any constructor code after
40 // InitializeComponent call
41 //
42 }
43
44 /// <summary>
45 /// Clean up any resources being used.
46 /// </summary>
47 protected override void Dispose(bool disposing)
48 {
49 if(disposing)
50 {
51 if (components != null)
52 {
53 components.Dispose();
54 }
55 }
56 base.Dispose(disposing);
57 }
58
59 #region Windows Form Designer generated code
60 /// <summary>
61 /// Required method for Designer support - do not modify
62 /// the contents of this method with the code editor.
63 /// </summary>
64 private void InitializeComponent()
65 {
66 this.calculateButton =
67 new System.Windows.Forms.Button();
68 this.secondNumberTextBox =
69 new System.Windows.Forms.TextBox();
70 this.thirdNumberTextBox =
71 new System.Windows.Forms.TextBox();
72 this.firstNumberLabel =
73 new System.Windows.Forms.Label();
74 this.secondNumberLabel =
75 new System.Windows.Forms.Label();
76 this.thirdNumberLabel =
77 new System.Windows.Forms.Label();
78 this.maximumLabel = new System.Windows.Forms.Label();
79 this.firstNumberTextBox =
80 new System.Windows.Forms.TextBox();
81 this.SuspendLayout();

Fig. 6.4 Programmer-defined Maximum method. (Part 2 of 5.)

190 Methods Chapter 6

82 //
83 // calculateButton
84 //
85 this.calculateButton.Location =
86 new System.Drawing.Point(24, 120);
87 this.calculateButton.Name = "calculateButton";
88 this.calculateButton.Size =
89 new System.Drawing.Size(112, 23);
90 this.calculateButton.TabIndex = 0;
91 this.calculateButton.Text = "Calculate Maximum";
92 this.calculateButton.Click +=
93 new System.EventHandler(this.calculateButton_Click);
94 //
95 // secondNumberTextBox
96 //
97 this.secondNumberTextBox.Location =
98 new System.Drawing.Point(176, 49);
99 this.secondNumberTextBox.Name = "secondNumberTextBox";
100 this.secondNumberTextBox.TabIndex = 2;
101 this.secondNumberTextBox.Text = "";
102 //
103 // thirdNumberTextBox
104 //
105 this.thirdNumberTextBox.Location =
106 new System.Drawing.Point(176, 81);
107 this.thirdNumberTextBox.Name = "thirdNumberTextBox";
108 this.thirdNumberTextBox.TabIndex = 3;
109 this.thirdNumberTextBox.Text = "";
110 //
111 // firstNumberLabel
112 //
113 this.firstNumberLabel.Location =
114 new System.Drawing.Point(8, 16);
115 this.firstNumberLabel.Name = "firstNumberLabel";
116 this.firstNumberLabel.Size =
117 new System.Drawing.Size(136, 23);
118 this.firstNumberLabel.TabIndex = 4;
119 this.firstNumberLabel.Text =
120 "First Floating-Point Value:";
121 //
122 // secondNumberLabel
123 //
124 this.secondNumberLabel.Location =
125 new System.Drawing.Point(8, 48);
126 this.secondNumberLabel.Name = "secondNumberLabel";
127 this.secondNumberLabel.Size =
128 new System.Drawing.Size(152, 23);
129 this.secondNumberLabel.TabIndex = 5;
130 this.secondNumberLabel.Text =
131 "Second Floating-Point Value:";
132 //
133 // thirdNumberLabel
134 //

Fig. 6.4 Programmer-defined Maximum method. (Part 3 of 5.)

Chapter 6 Methods 191

135 this.thirdNumberLabel.Location =
136 new System.Drawing.Point(8, 80);
137 this.thirdNumberLabel.Name = "thirdNumberLabel";
138 this.thirdNumberLabel.Size =
139 new System.Drawing.Size(144, 23);
140 this.thirdNumberLabel.TabIndex = 6;
141 this.thirdNumberLabel.Text =
142 "Third Floating-Point Value:";
143 //
144 // maximumLabel
145 //
146 this.maximumLabel.Location =
147 new System.Drawing.Point(176, 120);
148 this.maximumLabel.Name = "maximumLabel";
149 this.maximumLabel.Size =
150 new System.Drawing.Size(100, 80);
151 this.maximumLabel.TabIndex = 7;
152 //
153 // firstNumberTextBox
154 //
155 this.firstNumberTextBox.Location =
156 new System.Drawing.Point(176, 16);
157 this.firstNumberTextBox.Name = "firstNumberTextBox";
158 this.firstNumberTextBox.TabIndex = 1;
159 this.firstNumberTextBox.Text = "";
160 //
161 // MaximumValue
162 //
163 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
164 this.ClientSize = new System.Drawing.Size(292, 205);
165 this.Controls.AddRange(
166 new System.Windows.Forms.Control[] {
167 this.firstNumberTextBox,
168 this.maximumLabel,
169 this.thirdNumberLabel,
170 this.secondNumberLabel,
171 this.firstNumberLabel,
172 this.thirdNumberTextBox,
173 this.secondNumberTextBox,
174 this.calculateButton
175 }
176);
177 this.Name = "MaximumValue";
178 this.Text = "MaximumValue";
179 this.ResumeLayout(false);
180
181 }
182 #endregion
183
184 /// <summary>
185 /// The main entry point for the application.
186 /// </summary>
187 [STAThread]

Fig. 6.4 Programmer-defined Maximum method. (Part 4 of 5.)

192 Methods Chapter 6

188 static void Main()
189 {
190 Application.Run(new MaximumValue());
191 }
192
193 // Method Maximum uses method Math.Max to determine the
194 // maximum value among the three double arguments
195 double Maximum(double x, double y, double z)
196 {
197 return Math.Max(x, Math.Max(y, z));
198 }
199
200 // get the floating-point values that the user entered and
201 // invoke method Maximum to determine the maximum value
202 private void calculateButton_Click(object sender,
203 System.EventArgs e)
204 {
205 // get inputted values and convert strings to doubles
206 double number1 =
207 Double.Parse(firstNumberTextBox.Text);
208
209 double number2 =
210 Double.Parse(secondNumberTextBox.Text);
211
212 double number3 =
213 Double.Parse(thirdNumberTextBox.Text);
214
215 // invoke method Maximum to determine the largest value
216 double maximum = Maximum(number1, number2, number3);
217
218 // display maximum value
219 maximumLabel.Text = "maximum is: " + maximum;
220
221 } // end method calculateButton_Click
222
223 } // end class MaximumValue
224
225 } // end namespace MaximumValue

Fig. 6.4 Programmer-defined Maximum method. (Part 5 of 5.)

Chapter 6 Methods 193

The graphical user interface for this program consists of three TextBoxes in which
the user can enter floating-point numbers, a Button for calculating the maximum,
Labels for each TextBox and a Label for displaying the maximum value. Lines 31–
182 contain the Visual Studio .NET generated code for constructing this graphical user
interface. Lines 31–42 define a special type of method called a constructor. Programs
invoke constructors to create objects. The constructor performs tasks necessary for pre-
paring an object for use in a program. We discuss constructors in detail in Chapter 8. In the
case of Windows applications, the constructor invokes method InitializeCompo-
nent to create the program’s graphical user interface (line 36). Method Initialize-
Component (lines 64–181) configures and arranges the program’s graphical user
interface component objects, such as its Labels, Buttons and TextBoxes.

When the user closes a program’s window, the system invokes method Dispose
(lines 47–57) to “clean up” resources used by the Window.

To create the graphical user interface for this program, drag the appropriate compo-
nents from the Toolbox onto the Form in the Windows Form Designer. Arrange the com-
ponents as shown in the screen capture of Fig. 6.4 and set the Text properties for the
Labels and Button. Then, double click the Calculate Maximum button to add an
empty event handler. Fill in this empty event handler with the code shown on lines 202–
221. Lines 206–213 invoke Double method Parse on the Text property of each
TextBox to retrieve the values that the user entered. Line 216 then invokes our Maximum
method to determine which value is the largest. Method Maximum provides the largest
number as its return value, which line 216 stores in double variable maximum. Line 219
appends the maximum value to the maximumLabel’s Text property to display the result
to the user.

Now let us examine the implementation of method Maximum (lines 195–198). The
first line indicates that the method returns a double floating-point value, that the
method’s name is Maximum and that the method takes three double parameters (x, y
and z). The statement in the body of the method (line 197) returns the largest of the three
floating-point values using two calls to method Math.Max. First, method Math.Max
is invoked and passed the values of variables y and z to determine the larger of these two
values. Next, the value of variable x and the result of the first call to Math.Max are
passed to method Math.Max. Finally, the result of the second call to Math.Max is
returned to the caller.

6.6 Argument Promotion
Another important feature of method definitions is the coercion of arguments (i.e., forcing
arguments to the appropriate type to pass to a method). This process commonly is referred
to as implicit conversion, in that a copy of the variable’s value is converted to a different
type without an explicit cast. Explicit conversion occurs when an explicit cast specifies that
conversion is to occur. Such conversions also can be done with class Convert in
namespace System. C# supports both widening and narrowing conversions—widening
conversion occurs when a type is converted to other types (usually types that can hold more
data) without losing data, and a narrowing conversion occurs when data may be lost
through a conversion (usually to types that hold a smaller amount of data). Figure 6.5
shows allowed implicit conversions.

194 Methods Chapter 6

For example, the Math class method Sqrt can be called with an integer argument, even
though the method is defined in class Math to receive a double argument. The statement

Console.WriteLine(Math.Sqrt(4));

correctly evaluates Math.Sqrt(4) and displays the value 2. C# implicitly converts the
int value 4 to the double value 4.0 before passing the value to Math.Sqrt. In many cas-
es, C# applies implicit conversions to argument values that do not correspond precisely to the
parameter types in the method definition. In some cases, attempting these conversions leads
to compiler errors because C# uses conversion rules to determine when a widening conver-
sion can occur. In our previous Math.Sqrt example, C# converts an int to a double
without changing its value. However, converting a double to an int truncates the fraction-
al part of the double value. Converting large integer types to small integer types (e.g., long
to int) also can result in changed values. Such narrowing conversions can lose data; there-
fore, C# does not allow narrowing conversions without an explicit cast operation.

The conversion rules apply to expressions containing values of two or more data types
(also referred to as mixed-type expressions) and to primitive data-type values passed as
arguments to methods. C# converts the type of each value in a mixed-type expression to the
“highest” type in the expression. C# creates a temporary copy of each value and uses it in
the expression—the original values remain unchanged. A method argument’s type can be
promoted to any “higher” type.

Converting values to lower types can result in data loss. In cases where information
could be lost through conversion, the compiler requires the programmer to use a cast to
force the conversion to occur. To invoke our Square method, which takes an integer
parameter (Fig. 6.3) with the double variable y, the method call would be written as

Type Can be Converted to Type(s)

bool object

byte decimal, double, float, int, uint, long, ulong, object, short or
ushort

sbyte decimal, double, float, int, long, object or short

char decimal, double, float, int, uint, long, ulong, object or ushort

decimal object

double object

float double or object

int decimal, double, float, long or object

uint decimal, double, float, long, ulong, or object

long decimal, double, float or object

ulong decimal, double, float or object

short decimal, double, float, int, long or object

ushort decimal, double, float, int, uint, long, ulong or object

Fig. 6.5 Allowed implicit conversions.

Chapter 6 Methods 195

int result = Square((int) y);

This statement explicitly casts (converts) a copy of the value of y to an integer for use in
method Square. Thus, if y’s value is 4.5, method Square returns 16, not 20.25.

Common Programming Error 6.11
When performing a narrowing conversion (e.g., double to int), converting a primitive-
data-type value to another primitive data type may change the value. Also, converting any
integral value to a floating-point value and back to an integral value may introduce rounding
errors into the result. 6.11

6.7 C# Namespaces
As we have seen, C# contains many predefined classes that are grouped into namespaces.
Collectively we refer to this preexisting code as the Framework Class Library. The actual
code for the classes is located in .dll files called assemblies.

Throughout the text, using statements specify the namespaces we use in each pro-
gram. For example, a program includes the statement

using System;

to tell the compiler that we are using the System namespace. This using statement al-
lows us to write Console.WriteLine rather than System.Console.WriteLine
throughout the program. To use a class in a particular namespace, we must add a reference
to the appropriate assembly (demonstrated in Section 3.2). Assembly references for
namespace System are added automatically—other assemblies must be added explicitly.

We exercise a large number of the FCL classes in this book. Figure 6.6 lists a subset
of the many namespaces in the FCL and provides a brief description of each. We use classes
from these namespaces and others throughout the book. This table introduces readers to the
variety of reusable components in the FCL. When learning C#, spend time reading the
descriptions of the classes in the documentation.

Namespace Description

System Contains essential classes and data types (such as int, dou-
ble, char, etc.). Implicitly referenced by all C# programs.

System.Data Contains classes that form ADO .NET, used for database
access and manipulation.

System.Drawing Contains classes used for drawing and graphics.

System.IO Contains classes for the input and output of data, such as with
files.

System.Threading Contains classes for multithreading, used to run multiple parts
of a program simultaneously.

System.Windows.Forms Contains classes used to create graphical user interfaces.

System.Xml Contains classes used to process XML data.

Fig. 6.6 Namespaces in the Framework Class Library.

196 Methods Chapter 6

The set of namespaces available in the FCL is quite large. In addition to the namespaces
summarized in Fig. 6.6, the FCL includes namespaces for complex graphics, advanced
graphical user interfaces, printing, advanced networking, security, multimedia, accessibility
(for people with disabilities) and many more. For an overview of the namespaces in the FCL,
look up “.NET Framework, class library” in the help documentation.

6.8 Value Types and Reference Types
In the next section, we will discuss passing arguments to methods by value and by refer-
ence. To understand this, we first need to make a distinction between types in C#. Data
types are either value types or reference types. A variable of a value type contains data of
that type. A variable of a reference type, in contrast, contains the address of the location in
memory where the data are stored. Value types normally represent single pieces of data,
such as int or bool values. Reference types, on the other hand, refer to objects, which
can contain many individual pieces of data. We discuss objects in detail in Chapters 8, 9
and 10 (Object-Based Programming, and Object-Oriented Programming parts 1 and 2).

C# includes built-in value types and reference types. The built-in value types are the
integral types (sbyte, byte, char, short, ushort, int, uint, long and ulong),
the floating-point types (float and double) and the types decimal and bool. The
built-in reference types are string and object. Programmers also can create value
types and reference types. The reference types that programmers can create are classes
(Chapter 8), interfaces (Chapter 8) and delegates (Chapter 9).

The table in Fig. 6.7 lists the primitive data types, which are building blocks for more
complicated types. Like its predecessor languages C and C++, C# requires all variables to
have a type before they can be used in a program. For this reason, C# is referred to as a
strongly typed language.

Type Size in bits Values Standard

bool 8 true or false

char 16 '\u0000' to '\uFFFF' (Unicode character set)

byte 8 0 to 255 (unsigned)

sbyte 8 -128 to +127

short 16 –32,768 to +32,767

ushort 16 0 to 65,535 (unsigned)

int 32 –2,147,483,648 to 2,147,483,647

uint 32 0 to 4,294,967,295 (unsigned)

long 64 –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

ulong 64 0 to 18,446,744,073,709,551,615 (unsigned)

decimal 128 1.0 x 10-28 to 7.9 x 1028

float 32 ±1.5 × 10-45 to ±3.4 × 1038 (IEEE 754 floating point)

Fig. 6.7 C# built-in data types. (Part 1 of 2.)

Chapter 6 Methods 197

In C and C++ programs, programmers frequently must write separate program versions
to support different computer platforms because the primitive data types are not guaranteed
to be identical from computer to computer. For example, an int value on one computer
might occupy 16 bits (2 bytes) of memory, whereas an int value on another computer
might occupy 32 bits (4 bytes) of memory. In C#, int values are always 32 bits (4 bytes).

Portability Tip 6.1
Primitive data types in C# are portable across all platforms that support C#. 6.1

Each data type in the table is listed with its size in bits (there are 8 bits to a byte) and
its range of values. The designers of C# wanted code to be portable; therefore, they chose
to use internationally recognized standards for both character formats (Unicode) and
floating-point numbers (IEEE 754).

6.9 Passing Arguments: Pass-by-Value vs. Pass-by-Reference
Two ways to pass arguments to methods in many programming languages are pass-by-val-
ue and pass-by-reference. When an argument is passed by value, the called method receives
a copy of the argument’s value.

Testing and Debugging Tip 6.2
With pass-by-value, changes to the called method’s copy do not affect the original variable’s
value. This prevents some possible side effects that hinder the development of correct and re-
liable software systems. 6.2

When an argument is passed using pass-by-reference, the caller gives the method the
ability to access and modify the caller’s original data directly. Pass-by-reference can
improve performance because it eliminates the overhead of copying large data items such
as objects; however, pass-by-reference can weaken security because the called method can
modify the caller’s data.

Software Engineering Observation 6.9
When returning information from a method via a return statement, value-type variables
always are returned by value (i.e., a copy is returned), and reference-type variables are al-
ways returned by reference (i.e., a reference to the object is returned). 6.9

To pass an object reference into a method, simply specify the reference name in the
method call. Then, in the method body, reference the object using the parameter name. This
refers to the original object in memory, which allows the called method to access the orig-
inal object directly.

double 64 ±5.0 × 10-324 to ±1.7 × 10308 (IEEE 754 floating point)

object

string (Unicode character set)

Type Size in bits Values Standard

Fig. 6.7 C# built-in data types. (Part 2 of 2.)

198 Methods Chapter 6

In Section 6.8, we discussed the difference between value types and reference types.
At this point, the reader can understand one of the major differences between the two data
types—value-type variables are passed to methods by value, whereas reference-type vari-
ables are passed to methods by reference. What if the programmer would like to pass a
value type by reference? To do this, C# provides the ref and out keywords. The ref key-
word specifies that a value-type argument should be passed by reference, which enables the
called method to modify the original variable. This keyword is used for variables that
already have been initialized. The out keyword specifies an output parameter, which is an
argument to which the called method will assign a value. Normally, when a method
receives an uninitialized value, the compiler generates an error. Preceding the parameter
with keyword out specifies that the called method will initialize the variable and prevents
the compiler from generating an error message for the uninitialized variable. Figure 6.8
demonstrates using the ref and out keywords to manipulate integer values.2

This program contains three methods to calculate the square of an integer. The first
method, SquareRef (lines 26–29), multiplies its argument x by itself and assigns the new
value to x. SquareRef receives its argument as a ref int, specifying that x is an integer
that is passed by reference to the method. As a result, the assignment at line 28 modifies the
original argument’s value, rather than a copy of that value.

The second method, SquareOut (lines 33–37), does the same thing, but initializes x
to 6 on line 35. SquareOut receives its argument as an out int, which indicates that x
is an integer variable that the caller passes to method SquareOut by reference and that
SquareOut can assign a new value to this variable. The final method, Square (lines 41–
44), simply takes x as a value-type integer argument and squares its value.

2. In Chapter 7 we discuss passing reference-type arguments by value and by reference.

1 // Fig. 6.8: RefOutTest.cs
2 // Demonstrating ref and out parameters.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class RefOutTest : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button showOutputButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code
16
17 // main entry point for application
18 [STAThread]
19 static void Main()
20 {
21 Application.Run(new RefOutTest());
22 }

Fig. 6.8 Demonstrating ref and out parameters. (Part 1 of 3.)

Chapter 6 Methods 199

23
24 // x passed by reference and method modifies
25 // original variable's value
26 void SquareRef(ref int x)
27 {
28 x = x * x;
29 }
30
31 // x passed as out parameter and method initializes
32 // and modifies original variable's value
33 void SquareOut(out int x)
34 {
35 x = 6;
36 x = x * x;
37 }
38
39 // x passed by value and method cannot modify
40 // original variable's value
41 void Square(int x)
42 {
43 x = x * x;
44 }
45
46 private void showOutputButton_Click(object sender,
47 System.EventArgs e)
48 {
49 int y = 5; // create new int and initialize to 5
50 int z; // declare z, but do not initialize it
51
52 // display original values of y and z
53 outputLabel.Text = "Original value of y: " + y + "\n";
54 outputLabel.Text +=
55 "Original value of z: uninitialized\n\n";
56
57 // pass y and z by reference
58 SquareRef(ref y);
59 SquareOut(out z);
60
61 // display values of y and z after modified by methods
62 // SquareRef and SquareOut
63 outputLabel.Text +=
64 "Value of y after SquareRef: " + y + "\n";
65 outputLabel.Text +=
66 "Value of z after SqaureOut: " + z + "\n\n";
67
68 // pass y and z by value
69 Square(y);
70 Square(z);
71
72 // display unchanged values of y and z
73 outputLabel.Text += "Value of y after Square: " + y + "\n";
74 outputLabel.Text += "Value of z after Square: " + z + "\n";
75

Fig. 6.8 Demonstrating ref and out parameters. (Part 2 of 3.)

200 Methods Chapter 6

Method showOutputButton_Click (lines 46–77) is an event handler that
invokes methods SquareRef, SquareOut and Square when the user clicks the Show
Output button. This method begins by initializing y to 5 and declaring (but not initial-
izing) z. Lines 58–59 call methods SquareRef and SquareOut. Notice the syntax used
for passing y and z—in each case, we precede the argument either with ref or with out.
The output displays the values of y and z after the function calls. Notice that y has been
changed to 25 and z has been set to 36. Finally, on lines 69–70 we call method Square.
Arguments y and z both are passed by value—only copies of their values are passed to the
method. As a result, the values of y and z remain 25 and 36, respectively.

Common Programming Error 6.12
The ref and out arguments in a method call must match those specified in the method def-
inition; otherwise, a syntax error occurs. 6.12

Software Engineering Observation 6.10
By default, C# does not allow the programmer to choose whether to pass each argument by
value or by reference. Value-type variables are passed by value. Objects are not passed to
methods; rather, references to objects are passed to methods. The references themselves are
passed by value. When a method receives a reference to an object, the method can manipulate
the object directly, but the reference value cannot be changed (e.g., to refer to a new object). 6.10

6.10 Random-Number Generation
We now take a brief and hopefully entertaining diversion into a popular programming appli-
cation—simulation and game playing. In this section and the next, we develop a nicely struc-
tured game-playing program that includes multiple methods. The program uses most of the
control structures we have studied to this point and also introduces several new concepts.

There is something in the air of a gambling casino that invigorates every type of person—
from the high rollers at the plush mahogany-and-felt craps tables to the quarter poppers at the
one-armed bandits. It is the element of chance, the possibility that luck will convert a pock-
etful of money into a mountain of wealth. The element of chance can be introduced into com-
puter applications with the Random class (located in namespace System).

76
77 } // end method showOutputButton_Click
78 }

Fig. 6.8 Demonstrating ref and out parameters. (Part 3 of 3.)

Chapter 6 Methods 201

Consider the following statements:

Random randomObject = new Random();
int randomNumber = randomObject.Next();

The Next method generates a positive int value between zero and the constant
Int32.MaxValue (the value 2,147,483,647). If Next produces values at random, every
value in this range has an equal chance (or probability) of being chosen when Next is
called. Note that values returned by Next are actually pseudo-random numbers—a se-
quence of values produced by a complex mathematical calculation. A seed value is required
in this mathematical calculation. When we create our Random object, we use the current
time of day as the seed. A particular seed value always produces the same series of random
numbers. Programmers commonly use the current time of day as a seed value, since it
changes each second and, therefore produces different random-number sequences each
time the program executes.

The range of values produced directly by Next often is different from the range of
values required in a particular application. For example, a program that simulates coin-
tossing might require only 0 for “heads” and 1 for “tails.” A program that simulates rolling
a six-sided die would require random integers in the range 1–6. A video-game program that
randomly predicts the next type of spaceship (out of four possibilities) that will fly across
the horizon might require random integers in the range 1–4.

The one-argument version of method Next returns values in the range from 0 up to
(but not including) the value of that argument. For example,

value = randomObject.Next(6);

produces values from 0 through 5. This is called scaling, because the range of values pro-
duced has been scaled down from over two billion to only six. The number 6 is the scaling
factor. The two-argument version of method Next allows us to shift and scale the range of
numbers. For example, we can use method Next as follows

value = randomObject.Next(1, 7);

to produce integers in the range from 1 to 6. In this case, we have shifted the numbers to
produce a range from 1 up to (but not including) 7.

The Windows application of Fig. 6.9 simulates 20 rolls of a six-sided die and shows
the integer value of each roll. The dice-rolling simulation begins when the user clicks the
Show Ouput button, which invokes the showOutputButton_Click event handler
(lines 24–44). The for loop on lines 32–43 repeatedly invokes method Next of class
Random to simulate rolling the die. Lines 37–38 append the value rolled to output-
Label’s Text property. After every five rolls, line 42 appends a newline character to
make the output more readable.

1 // Fig. 6.9: RandomInt.cs
2 // Generating random integer values.
3 using System;
4 using System.Drawing;

Fig. 6.9 Random integers in the range 1–6. (Part 1 of 2.)

202 Methods Chapter 6

5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class RandomInt : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button showOutputButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code
16
17 // the main entry point for the application
18 [STAThread]
19 static void Main()
20 {
21 Application.Run(new RandomInt());
22 }
23
24 private void showOutputButton_Click(object sender,
25 System.EventArgs e)
26 {
27 Random randomInteger = new Random();
28
29 outputLabel.Text = "";
30
31 // loop 20 times
32 for (int counter = 1; counter <= 20; counter++)
33 {
34 // pick random integer between 1 and 6
35 int nextValue = randomInteger.Next(1, 7);
36
37 outputLabel.Text +=
38 nextValue + " "; // append value to output
39
40 // add newline after every 5 values
41 if (counter % 5 == 0)
42 outputLabel.Text += "\n";
43 }
44 }
45 }

Fig. 6.9 Random integers in the range 1–6. (Part 2 of 2.)

Chapter 6 Methods 203

The Windows application of Fig. 6.10 simulates rolls of four dice. The program enables
the user to click a button that “rolls” four dice at a time and displays an image of each die in
the window. The next example (Fig. 6.11) uses many of this example’s features to demon-
strate that the numbers generated by Next occur with approximately equal likelihood.

1 // Fig. 6.10: RollDie.cs
2 // Using random number generation to simulate dice rolling.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9 using System.IO; // enables reading data from files

10
11 public class RollDie : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Button rollButton;
14
15 private System.Windows.Forms.Label dieLabel2;
16 private System.Windows.Forms.Label dieLabel1;
17 private System.Windows.Forms.Label dieLabel3;
18 private System.Windows.Forms.Label dieLabel4;
19
20 private Random randomNumber = new Random();
21
22 // Visual Studio .NET generated code
23
24 // method called when rollButton clicked,
25 // passes labels to another method
26 protected void rollButton_Click(
27 object sender, System.EventArgs e)
28 {
29 // pass the labels to a method that will
30 // randomly assign a face to each die
31 DisplayDie(dieLabel1);
32 DisplayDie(dieLabel2);
33 DisplayDie(dieLabel3);
34 DisplayDie(dieLabel4);
35
36 } // end rollButton_Click
37
38 // determines image to be displayed by current die
39 public void DisplayDie(Label dieLabel)
40 {
41 int face = randomNumber.Next(1, 7);
42
43 // displays image specified by filename
44 dieLabel.Image = Image.FromFile(
45 Directory.GetCurrentDirectory() +
46 "\\images\\die" + face + ".gif");
47 }

Fig. 6.10 Rolling dice in a Windows application (Part 1 of 2.).

204 Methods Chapter 6

Method DisplayDie (lines 39–47) invokes Random method Next to simulate a
roll of a die (line 41) and loads an image that corresponds to the value rolled (lines 44–46).
Line 44 uses class Label’s Image property (introduced in Chapter 2) to display the die.
Notice that we specify which image will be displayed by invoking method FromFile of
class Image, which specifies the location of the file on disk that contains the image. Each
click of the button displays four images that represent the four new values of the dice. Note
that the user must click rollButton at least once to display the dice. Directory
method GetCurrentDirectory (line 45) returns the path of the folder in which the
program is executing. If you run the program from Visual Studio .NET, this will be the
bin\Debug directory in the project’s directory. The die images must be in this folder for
the example to operate properly. These images are placed in the proper folders on the CD
that accompanies this book.

To show that class Random produces numbers with approximately equal likelihood,
let us modify the program in Fig. 6.10 to keep some simple statistics. The Windows appli-
cation of Fig. 6.11 provides a Roll button for rolling the dice and a TextBox that displays
the frequencies for each value rolled. The program output shows the results of clicking Roll
10 times.

When the user clicks the Roll button, the program invokes the rollButton_Click
event handler on lines 38–73. This event handler invokes method DisplayDie for each of
the 12 dice that the program simulates (lines 43–54). Lines 56–71 then calculate the frequen-
cies for each die and displays the results by appending the information to display-
TextBox’s Text property. Method displayDie (lines 76–113) simulates a die roll (line
78), loads the appropriate Image and increments the frequency count for the rolled value.

48
49 // main entry point for application
50 [STAThread]
51 static void Main()
52 {
53 Application.Run(new RollDie());
54 }
55
56 } // end class RollDie

Fig. 6.10 Rolling dice in a Windows application (Part 2 of 2.).

Chapter 6 Methods 205

1 // Fig. 6.11: RollDie2.cs
2 // Rolling 12 dice with frequency chart.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9 using System.IO;

10
11 public class RollDie2 : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Button rollButton;
14
15 private System.Windows.Forms.RichTextBox displayTextBox;
16
17 private System.Windows.Forms.Label dieLabel1;
18 private System.Windows.Forms.Label dieLabel2;
19 private System.Windows.Forms.Label dieLabel3;
20 private System.Windows.Forms.Label dieLabel4;
21 private System.Windows.Forms.Label dieLabel5;
22 private System.Windows.Forms.Label dieLabel6;
23 private System.Windows.Forms.Label dieLabel7;
24 private System.Windows.Forms.Label dieLabel8;
25 private System.Windows.Forms.Label dieLabel9;
26 private System.Windows.Forms.Label dieLabel10;
27 private System.Windows.Forms.Label dieLabel11;
28 private System.Windows.Forms.Label dieLabel12;
29
30 private Random randomNumber = new Random();
31
32 private int ones, twos, threes, fours, fives, sixes;
33
34 // Visual Studio .NET generated code
35
36 // simulates roll by calling DisplayDie for
37 // each label and displaying the results
38 protected void rollButton_Click(
39 object sender, System.EventArgs e)
40 {
41 // pass the labels to a method that will
42 // randomly assign a face to each die
43 DisplayDie(dieLabel1);
44 DisplayDie(dieLabel2);
45 DisplayDie(dieLabel3);
46 DisplayDie(dieLabel4);
47 DisplayDie(dieLabel5);
48 DisplayDie(dieLabel6);
49 DisplayDie(dieLabel7);
50 DisplayDie(dieLabel8);
51 DisplayDie(dieLabel9);
52 DisplayDie(dieLabel10);

Fig. 6.11 Simulating rolling 12 six-sided dice. (Part 1 of 3.)

206 Methods Chapter 6

53 DisplayDie(dieLabel11);
54 DisplayDie(dieLabel12);
55
56 double total = ones + twos + threes + fours + fives + sixes;
57
58 // display the current frequency values
59 displayTextBox.Text = "Face\t\tFrequency\tPercent\n1\t\t" +
60 ones + "\t\t" +
61 String.Format("{0:F2}", ones / total * 100) +
62 "%\n2\t\t" + twos + "\t\t" +
63 String.Format("{0:F2}", twos / total * 100) +
64 "%\n3\t\t" + threes + "\t\t" +
65 String.Format("{0:F2}", threes / total * 100) +
66 "%\n4\t\t" + fours + "\t\t" +
67 String.Format("{0:F2}", fours / total * 100) +
68 "%\n5\t\t" + fives + "\t\t" +
69 String.Format("{0:F2}", fives / total * 100) +
70 "%\n6\t\t" + sixes + "\t\t" +
71 String.Format("{0:F2}", sixes / total * 100) + "%";
72
73 } // end rollButton_Click
74
75 // display the current die, and modify frequency values
76 public void DisplayDie(Label dieLabel)
77 {
78 int face = randomNumber.Next(1, 7);
79
80 dieLabel.Image = Image.FromFile(
81 Directory.GetCurrentDirectory() +
82 "\\images\\die" + face + ".gif");
83
84 // add one to frequency of current face
85 switch (face)
86 {
87 case 1:
88 ones++;
89 break;
90
91 case 2:
92 twos++;
93 break;
94
95 case 3:
96 threes++;
97 break;
98
99 case 4:
100 fours++;
101 break;
102
103 case 5:
104 fives++;
105 break;

Fig. 6.11 Simulating rolling 12 six-sided dice. (Part 2 of 3.)

Chapter 6 Methods 207

As the program output demonstrates, over a large number of die rolls, each of the pos-
sible faces from 1 through 6 appears with approximately equal likelihood (i.e., about one-
sixth of the time). After studying arrays in Chapter 7, Arrays, we will show how to replace
the entire switch structure in this program with a single-line statement.

6.11 Example: Game of Chance
One of the most popular games of chance is a dice game known as “craps,” played in casi-
nos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. Each face contains 1, 2, 3, 4, 5 or 6 spots.
After the dice have come to rest, the sum of the spots on the two upward faces is calculated.
If the sum is 7 or 11 on the first throw, the player wins. If the sum is 2, 3 or 12 on the first
throw (called “craps”), the player loses (i.e., the “house” wins). If the sum is 4, 5, 6, 8, 9 or
10 on the first throw, that sum becomes the player’s “point.” To win, players must continue
rolling the dice until they “make their point” (i.e., roll their point value). The player loses by
rolling a 7 before making the point.

Figure 6.12 simulates the game of craps with a simple graphical user interface.

106
107 case 6:
108 sixes++;
109 break;
110
111 } // end switch
112
113 } // end DisplayDie
114
115 // main entry point for the application
116 [STAThread]
117 static void Main()
118 {
119 Application.Run(new RollDie2());
120 }
121
122 } // end of class RollDie2

Fig. 6.11 Simulating rolling 12 six-sided dice. (Part 3 of 3.)

208 Methods Chapter 6

Notice that the player rolls two dice on each roll. When executing the application,
clicking the Play button begins the game and makes the first roll. The form displays the
results of each roll. The screen captures show the execution of several games.

1 // Fig. 6.12: CrapsGame.cs
2 // Simulating the game of Craps.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9 using System.IO;

10
11 public class CrapsGame : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Button rollButton;
14 private System.Windows.Forms.Button playButton;
15
16 int myPoint; // player's point value
17 private System.Windows.Forms.PictureBox pointFirstDieImage;
18 private System.Windows.Forms.Label statusLabel;
19 private System.Windows.Forms.PictureBox firstDieImage;
20 private System.Windows.Forms.PictureBox pointSecondDieImage;
21 private System.Windows.Forms.PictureBox secondDieImage;
22 private System.Windows.Forms.GroupBox pointGroupBox;
23 int myDie1; // value of first die
24 int myDie2; // value of second die
25
26 public enum DiceNames
27 {
28 SNAKE_EYES = 2,
29 TREY = 3,
30 YO_LEVEN = 11,
31 BOX_CARS = 12,
32 }
33
34 // Visual Studio .NET generated code
35
36 // simulate next roll and result of that roll
37 protected void rollButton_Click(
38 object sender, System.EventArgs e)
39 {
40 int sum = rollDice();
41
42 if (sum == myPoint)
43 {
44 statusLabel.Text = "You Win!!!";
45 rollButton.Enabled = false;
46 playButton.Enabled = true;
47 }

Fig. 6.12 Program to simulate the game of craps. (Part 1 of 4.)

Chapter 6 Methods 209

48 else
49 if (sum == 7)
50 {
51 statusLabel.Text = "Sorry. You lose.";
52 rollButton.Enabled = false;
53 playButton.Enabled = true;
54 }
55
56 } // end rollButton_Click
57
58 // simulate first roll and result of that roll
59 protected void playButton_Click(
60 object sender, System.EventArgs e)
61 {
62 pointGroupBox.Text = "Point";
63 statusLabel.Text = "";
64 pointFirstDieImage.Image = null;
65 pointSecondDieImage.Image = null;
66
67 myPoint = 0;
68 int sum = rollDice();
69
70 switch (sum)
71 {
72 case 7:
73 case (int) DiceNames.YO_LEVEN:
74 rollButton.Enabled = false; // disable Roll button
75 statusLabel.Text = "You Win!!!";
76 break;
77
78 case (int) DiceNames.SNAKE_EYES:
79 case (int) DiceNames.TREY:
80 case (int) DiceNames.BOX_CARS:
81 rollButton.Enabled = false;
82 statusLabel.Text = "Sorry. You lose.";
83 break;
84
85 default:
86 myPoint = sum;
87 pointGroupBox.Text = "Point is " + sum;
88 statusLabel.Text = "Roll Again";
89 displayDie(pointFirstDieImage, myDie1);
90 displayDie(pointSecondDieImage, myDie2);
91 playButton.Enabled = false;
92 rollButton.Enabled = true;
93 break;
94
95 } // end switch
96
97 } // end playButton_Click
98

Fig. 6.12 Program to simulate the game of craps. (Part 2 of 4.)

210 Methods Chapter 6

99 // display an image for the specified face
100 private void displayDie(PictureBox dieImage, int face)
101 {
102 dieImage.Image = Image.FromFile(
103 Directory.GetCurrentDirectory() +
104 "\\images\\die" + face + ".gif");
105 }
106
107 // simulates rolling two dice
108 private int rollDice()
109 {
110 int die1, die2, dieSum;
111 Random randomNumber = new Random();
112
113 die1 = randomNumber.Next(1, 7);
114 die2 = randomNumber.Next(1, 7);
115
116 displayDie(firstDieImage, die1);
117 displayDie(secondDieImage, die2);
118
119 myDie1 = die1;
120 myDie2 = die2;
121 dieSum = die1 + die2;
122 return dieSum;
123
124 } // end method rollDice
125
126 // main entry point for the application
127 [STAThread]
128 static void Main()
129 {
130 Application.Run(new CrapsGame());
131 }
132
133 } // end of class CrapsGame

Fig. 6.12 Program to simulate the game of craps. (Part 3 of 4.)

Chapter 6 Methods 211

Before its method definitions, the program includes several declarations, including an
enumeration on lines 26–32. An enumeration is a value type that contains a set of constant
values and is created using the keyword enum. This enumeration is a convenient way of
referring to constant values used throughout the program. We have used the identifiers
SNAKE_EYES, TREY, CRAPS, YO_LEVEN and BOX_CARS, to represent significant
values in craps. Using these identifiers makes the program more readable. Additionally, if
we need to change one of these values, we can modify the enumeration instead of changing
the values where they are used throughout the program.

This example introduces a few new GUI components. The first, called a GroupBox,
displays the user’s point. A GroupBox is a container for other components and helps group
components logically. Within the GroupBox, we add two PictureBoxes—components
that display images. These are added, as with other components, by clicking PictureBox
in the ToolBox and dragging this component within the borders of the GroupBox.

The playButton_Click event handler begins the game. Line 68 invokes method
rollDice (defined on lines 108–124), which rolls the dice, displays the dice and returns
their sum. Lines 70–95 use a switch structure to determine whether the player won, lost or
established a point value. If the player won by rolling a 7 or 11, line 74 disables roll-
Button to prevent the player from rolling the dice again. Line 75 displays a message to indi-
cate that the user won. If the player lost by rolling SNAKE_EYES, TREY or BOX_CARS (i.e.,
2, 3 or 12), line 82 displays a message to indicate that the user lost. Otherwise, the default case

Fig. 6.12 Program to simulate the game of craps. (Part 4 of 4.)

212 Methods Chapter 6

(lines 85–93) sets the player’s point, displays the dice in pointGroupBox, enables roll-
Button and disables playButton. Notice that for many of the cases, we cast the enu-
meration values to type int. Although each enumeration value is assigned an integer value
on lines 26–32, each value is considered to be of enum type DiceNames, and therefore must
be cast to int for use in the switch structure, which requires constant integral expressions.

The rollButton_Click event handler’s task is to roll the dice and determine if the
player won by making the point value or lost by rolling 7. Line 40 calls method roll-
Dice. Lines 42–54 in method rollButton_Click analyze the roll. Depending on the
value of the roll, the buttons rollButton and playButton will become either disabled
or enabled. This is done by setting the Enabled property to true or false.

6.12 Duration of Variables
The attributes of variables include name, type, size and value. Each variable in a program
has additional attributes, including duration and scope.

A variable’s duration (also called its lifetime) is the period during which the variable
exists in memory. Some variables exist briefly, some are created and destroyed repeatedly
and others exist for the entire execution of a program.

A variable’s scope is where the variable’s identifier (i.e., name) can be referenced in a
program. Some variables can be referenced throughout a program, while others can be ref-
erenced from limited portions of a program. This section discusses the duration of vari-
ables. Section 6.13 discusses the scope of identifiers.

Local variables in a method (i.e., parameters and variables declared in the method body)
have automatic duration. Automatic duration variables are created when program control
reaches their declaration; that is, they exist while the block in which they are declared is
active, and they are destroyed when that block is exited. For the remainder of the text, we refer
to variables of automatic duration as automatic variables, or local variables.

The instance variables of a class are initialized by the compiler if the programmer does
not provide initial values. Variables of most primitive data types are initialized to zero,
bool variables are initialized to false and references are initialized to null. Unlike
instance variables of a class, automatic variables must be initialized by the programmer
before they can be used.

Common Programming Error 6.13
Automatic variables must be initialized before their values are used in a method; otherwise,
the compiler issues an error message. 6.2

Variables of static duration exist from the time at which the class that defines them is
loaded into memory. These variables then last until the program terminates. Their storage
is allocated and initialized when their classes are loaded into memory. Static-duration vari-
able names exist when their classes are loaded into memory, but this does not mean that
these identifiers necessarily can be used throughout the program—their scopes may be lim-
ited as we will see in the next section.

6.13 Scope Rules
The scope (sometimes called declaration space) of an identifier for a variable, reference or
method is the portion of the program in which the identifier can be accessed. A local vari-

Chapter 6 Methods 213

able or reference declared in a block can be used only in that block or in blocks nested with-
in that block. The possible scopes for an identifier are class scope and block scope.

Members of a class have class scope and are visible in what is known as the declaration
space of a class. Class scope begins at the opening left brace ({) of the class definition and
terminates at the closing right brace (}). Class scope enables methods of a class to access
all members defined in that class. In Chapter 8, Object-Based Programming, we see that
static members are an exception to this rule. In a sense, all instance variables and
methods of a class are global to the methods of the class in which they are defined (i.e., the
methods can modify the instance variables directly and invoke other methods of the class).

Identifiers declared inside a block have block scope (local-variable declaration
space). Block scope begins at the identifier’s declaration and ends at the block’s termi-
nating right brace (}). Local variables of a method have block scope, as do method param-
eters, which are local variables of the method. Any block may contain variable declarations.
When blocks are nested in a method’s body, and an identifier declared in an outer block has
the same name as an identifier declared in an inner block, an error is generated. On the other
hand, if a local variable in a method has the same name as an instance variable, the value
in the calling method (main program) is “hidden” until the method terminates execution. In
Chapter 8, Object-Based Programming, we discuss how to access such “hidden” instance
variables. The reader should note that block scope also applies to methods and for struc-
tures. With for structures, any variable declared in the initialization portion of the for
header will be in scope only within that for structure.

Good Programming Practice 6.4
Avoid local-variable names that hide instance-variable names. 6.4

The program in Fig. 6.13 demonstrates scoping issues with instance variables and local
variables. Instance variable x (line 15) is initialized to 1. This instance variable is hidden in
any block (or method) that declares a local variable named x. The showOutput-
Button_Click event handler (lines 47–63) declares a local variable x and initializes it to
5 (line 50). Lines 52–53 display the value of this local variable to show that instance variable
x (with value 1) is “hidden” in method showOutputButton_Click.

1 // Fig. 6.13: Scoping.cs
2 // Demonstrating scope of local and instance variables.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class Scoping : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Label outputLabel;
13 private System.Windows.Forms.Button showOutputButton;
14
15 public int x = 1; // instance variable

Fig. 6.13 Scoping. (Part 1 of 3.)

214 Methods Chapter 6

16
17 // Visual Studio .NET generated code
18
19 public void MethodA()
20 {
21 int x = 25; // initialized each time a is called
22
23 outputLabel.Text = outputLabel.Text +
24 "\n\nlocal x in MethodA is " + x +
25 " after entering MethodA";
26
27 ++x; // increment local variable x
28
29 outputLabel.Text = outputLabel.Text +
30 "\nlocal x in MethodA is " + x +
31 " before exiting MethodA";
32 }
33
34 public void MethodB()
35 {
36 outputLabel.Text = outputLabel.Text +
37 "\n\ninstance variable x is " + x +
38 " on entering MethodB";
39
40 x *= 10;
41
42 outputLabel.Text = outputLabel.Text +
43 "\ninstance varable x is " + x +
44 " on exiting MethodB";
45 }
46
47 private void showOutputButton_Click(object sender,
48 System.EventArgs e)
49 {
50 int x = 5; // local x in method showOutputButton_Click
51
52 outputLabel.Text =
53 "local x in method showOutputButton_Click is " + x;
54
55 MethodA(); // MethodA has automatic local x;
56 MethodB(); // MethodB uses instance variable x
57 MethodA(); // MethodA creates new automatic local x
58 MethodB(); // instance variable x retains its value
59
60 outputLabel.Text = outputLabel.Text + "\n\n" +
61 "local x in method showOutputButton_Click is " + x;
62
63 } // end method showOutputButton_Click
64
65 // main entry point for the application
66 [STAThread]
67 static void Main()
68 {

Fig. 6.13 Scoping. (Part 2 of 3.)

Chapter 6 Methods 215

The program defines two other methods—MethodA and MethodB—that take no
arguments and return nothing. The program calls each method twice from method
Scoping. MethodA defines local variable x (line 21) and initializes it to 25. Each call
to MethodA displays the variable’s value in outputLabel, increments the variable and
displays it again before exiting the method. Each call to MethodA recreates automatic
variable x and initializes it to 25. Method MethodB does not declare any variables. There-
fore, when it refers to variable x, the instance variable x is used. Each call to MethodB
displays the instance variable in outputLabel, multiplies it by 10 (line 40) and displays
it again before exiting the method. The next time method MethodB is called, the instance
variable begins with its modified value, 10. After the calls to MethodA and MethodB,
the program again displays the local variable x in method showOutputButton_Click
to show that none of the method calls modified this specific variable x, as the methods all
referred to variables in other scopes.

6.14 Recursion
The programs we have discussed generally are structured as methods that call one another
in a hierarchical manner. For some problems, it is useful to have a method actually call it-
self. A recursive method is a method that calls itself either directly or indirectly through an-
other method. Recursion is an important topic discussed at length in upper-level computer
science courses. In this section and the next, we present two simple examples of recursion.
We consider recursion conceptually first, then examine several programs containing recur-
sive methods.

Recursive problem-solving approaches have a number of elements in common. A
recursive method is called to solve a problem. The method actually knows how to solve

69 Application.Run(new Scoping());
70 }
71
72 } // end of class Scoping

Fig. 6.13 Scoping. (Part 3 of 3.)

216 Methods Chapter 6

only the simplest case(s), or base case(s). If the method is called with a base case, the
method returns a result. If the method is called with a more complex problem, the method
divides the problem into two conceptual pieces—a piece that the method knows how to per-
form (base case) and a piece that the method does not know how to perform. To make recur-
sion feasible, the latter piece must resemble the original problem, but be a slightly simpler
or smaller version of it. The method invokes (calls) a fresh copy of itself to work on the
smaller problem—this is referred to as a recursive call, or a recursion step. The recursion
step also normally includes the keyword return, because its result will be combined with
the portion of the problem that the method knew how to solve. Such a combination will
form a result that will be passed back to the original caller.

The recursion step executes while the original call to the method is still “open” (i.e., it
has not finished executing). The recursion step can result in many more recursive calls, as
the method divides each new subproblem into two conceptual pieces. Each time the method
calls itself with a slightly simpler version of the original problem, the sequence of smaller
and smaller problems must converge on the base case, so the recursion can eventually ter-
minate. At that point, the method recognizes the base case and returns a result to the pre-
vious copy of the method. A sequence of returns ensues up the line until the original method
call returns the final result to the caller. As an example of these concepts, let us write a
recursive program to perform a popular mathematical calculation.

The factorial of a nonnegative integer n, written n! (and pronounced “n factorial”), is
the product

n · (n - 1) · (n - 2) · … · 1

with 1! equal to 1, and 0! defined as 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1, which
is equal to 120.

The factorial of an integer number greater than or equal to 0 can be calculated itera-
tively (nonrecursively) using for as follows:

factorial = 1;

for (int counter = number; counter >= 1; counter--)
 factorial *= counter;

We arrive at a recursive definition of the factorial method with the following relationship:

n! = n · (n - 1)!

For example, 5! is clearly equal to 5 * 4!, as shown by the following:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

A recursive evaluation of 5! would proceed as in Fig. 6.14. Figure 6.14a shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Each rectangle represents a method call. Figure 6.14 shows the values returned
from each recursive call to its caller until the final value is calculated and returned.

Figure 6.15 uses recursion to calculate and print the factorials of the integers 0–10.
The recursive method Factorial (lines 17–24) first determines whether its termi-
nating condition is true (i.e., number is less than or equal to 1). If number is less than
or equal to 1, factorial returns 1, no further recursion is necessary and the method

Chapter 6 Methods 217

returns. If number is greater than 1, line 23 expresses the problem as the product of
number and a recursive call to Factorial, evaluating the factorial of number - 1.
Note that Factorial(number - 1) is a slightly simpler problem than the original
calculation Factorial(number).

Fig. 6.14 Recursive evaluation of 5!.

1 // Fig. 6.15: FactorialTest.cs
2 // Calculating factorials with recursion.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class FactorialTest : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button showFactorialsButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code
16
17 public long Factorial(long number)
18 {
19 if (number <= 1) // base case
20 return 1;
21
22 else
23 return number * Factorial(number - 1);
24 }
25

Fig. 6.15 Calculating factorials with a recursive method. (Part 1 of 2.)

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

(a) Procession of recursive calls (b) Values returned from each recursive call

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

218 Methods Chapter 6

Method Factorial receives a parameter of type long and returns a result of type
long. As seen in Fig. 6.15, factorial values become large quickly. We choose data type
long so the program can calculate factorials greater than 20!. Unfortunately, the Facto-
rial method produces large values so quickly, even long does not help us print many
more factorial values before the size of even the long variable is exceeded.

Factorials of larger numbers require the program to use float and double variables.
This points to a weakness in most programming languages, namely, that the languages are not
easily extended to handle the unique requirements of various applications. As we will see in
our treatment of object-oriented programming beginning in Chapter 8, C# is an extensible
language—programmers with unique requirements can extend the language with new data
types (called classes). A programmer could create a HugeInteger class, for example, that
would enable a program to calculate the factorials of arbitrarily large numbers.

Common Programming Error 6.14
Forgetting to return a value from a recursive method can result in syntax and/or logic errors. 6.14

26 // main entry point for the application
27 [STAThread]
28 static void Main()
29 {
30 Application.Run(new FactorialTest());
31 }
32
33 private void showFactorialsButton_Click(object sender,
34 System.EventArgs e)
35 {
36 outputLabel.Text = "";
37
38 for (long i = 0; i <= 10; i++)
39 outputLabel.Text += i + "! = " +
40 Factorial(i) + "\n";
41 }
42
43 } // end of class FactorialTest

Fig. 6.15 Calculating factorials with a recursive method. (Part 2 of 2.)

Chapter 6 Methods 219

Common Programming Error 6.15
Omitting the base case or writing the recursion step so that it does not converge on the base
case will cause infinite recursion, eventually exhausting memory. Infinite recursion is anal-
ogous to the problem of an infinite loop in an iterative (nonrecursive) solution. 6.15

6.15 Example Using Recursion: The Fibonacci Series
The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum
of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges on a constant value of 1.618…. This number, too,
repeatedly occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings whose length and width are in the ratio of the golden mean.
Postcards often are designed with a golden mean width-to-height ratio.

The recursive definition of the Fibonacci series is as follows:

Fibonacci(0) = 0
Fibonacci(1) = 1
Fibonacci(n) = Fibonacci(n – 1) + Fibonacci(n – 2)

Note that there are two base cases for the Fibonacci calculation—fibonacci(0) evaluates to
0, and fibonacci(1) evaluates to 1. The application in Fig. 6.16 calculates the ith Fibonacci
number recursively using method Fibonacci. The user enters an integer in the text box,
indicating the ith Fibonacci number to calculate, and clicks the calculateButton
(which displays the text Calculate Fibonacci). Method calculateButton_Click
(lines 22–29) executes in response to the user interface event and calls recursive method
Fibonacci to calculate the specified Fibonacci number. In Fig. 6.16, the screen captures
show the results of calculating several Fibonacci numbers.

1 // Fig. 6.16: FibonacciTest.cs
2 // Recursive fibonacci method.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class FibonacciTest : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button calculateButton;
13
14 private System.Windows.Forms.TextBox inputTextBox;

Fig. 6.16 Recursively generating Fibonacci numbers. (Part 1 of 2.)

220 Methods Chapter 6

The call to Fibonacci (line 26) from calculateButton_Click is not a recur-
sive call, but all subsequent calls to Fibonacci from line 37 are recursive. Each time
Fibonacci is invoked, it immediately tests for the base case—number equal to 0 or 1
(line 34). If this is true, Fibonacci returns number (fibonacci(0) is 0 and fibonacci(1)
is 1). Interestingly, if number is greater than 1, the recursion step generates two recursive
calls (line 37), each of which is for a slightly simpler problem than the original call to
Fibonacci. Figure 6.17 shows how method Fibonacci would evaluate
Fibonacci(3).

15
16 private System.Windows.Forms.Label displayLabel;
17 private System.Windows.Forms.Label promptLabel;
18
19 // Visual Studio .NET generated code
20
21 // call Fibonacci and display results
22 protected void calculateButton_Click(
23 object sender, System.EventArgs e)
24 {
25 int number = Convert.ToInt32(inputTextBox.Text);
26 int fibonacciNumber = Fibonacci(number);
27 displayLabel.Text =
28 "Fibonacci Value is " + fibonacciNumber;
29 }
30
31 // calculates Fibonacci number
32 public int Fibonacci(int number)
33 {
34 if (number == 0 || number == 1)
35 return number;
36 else
37 return Fibonacci(number - 1) + Fibonacci(number - 2);
38 }
39
40 // main entry point for the application
41 [STAThread]
42 static void Main()
43 {
44 Application.Run(new FibonacciTest());
45 }
46
47 } // end of class FibonacciTest

Fig. 6.16 Recursively generating Fibonacci numbers. (Part 2 of 2.)

Chapter 6 Methods 221

This figure raises some issues about the order in which C# compilers will evaluate
operands. Figure 6.17 shows that, during the evaluation of Fibonacci(3), two recur-
sive calls will be made—Fibonacci(2) and Fibonacci(1). In what order will these
calls be made? Most programmers assume the operands will be evaluated from left to right;
in C# this is indeed true.

The C and C++ languages (on which many of C#’s features are based) do not specify
the order in which the operands of most operators (including +) are evaluated. Therefore,
in those languages, the programmer can make no assumption about the order in which these
calls execute. The calls could, in fact, execute Fibonacci(2), then Fibonacci(1),
or they could execute in the reverse order (Fibonacci(1), then Fibonacci(2)). In
this program and in most other programs, the final result would be the same. However, in
some programs, the evaluation of an operand could have side effects that would affect the
expression’s final result. C# specifies that the order of evaluation of the operands is from
left to right. Thus, the method calls are first Fibonacci(2), then Fibonacci(1).

Good Programming Practice 6.5
Do not write expressions that depend on the order of evaluation of the operator’s operands.
Doing so often results in programs that are difficult to read, debug, modify and maintain. 6.5

A word of caution about using a recursive program to generate Fibonacci numbers:
each invocation of the Fibonacci method that does not match one of the base cases (i.e.,
0 or 1) results in two recursive calls to the Fibonacci method. This quickly results in
many method invocations. Calculating the Fibonacci value of 20 using the program in
Fig. 6.16 requires 21,891 calls to the Fibonacci method; calculating the Fibonacci value
of 30 requires 2,692,537 calls to the Fibonacci method.

As the programmer tries larger values, each consecutive Fibonacci number that the
program is asked to calculate results in a substantial increase in the number of calls to the
Fibonacci method and hence in calculation time. For example, the Fibonacci value 31
requires 4,356,617 calls, and the Fibonacci value of 32 requires 7,049,155 calls. As you can

Fig. 6.17 Set of recursive calls to method Fibonacci.

Fibonacci(3)

return

return

+

+ return 1

return 1 return 0

Fibonacci(2) Fibonacci(1)

Fibonacci(1) Fibonacci(0)

222 Methods Chapter 6

see, the number of calls to Fibonacci increases quickly—1,664,080 additional calls
between the Fibonacci values of 30 and 31, and 2,692,538 additional calls between the
Fibonacci values of 31 and 32. This difference in number of calls made between the
Fibonacci values of 31 and 32 is more than 1.5 times the difference for Fibonacci values of
30 and 31. Problems of this nature humble even the world’s most powerful computers! In
the field called complexity theory, computer scientists determine how hard algorithms work
to do their jobs. Complexity issues are discussed in detail in the upper-level computer sci-
ence curriculum course generally called “Algorithms.”

Performance Tip 6.1
Avoid Fibonacci-style recursive programs, which result in an exponential “explosion” of
method calls. 6.1

6.16 Recursion vs. Iteration
In the previous sections, we studied two methods that can be implemented either recursive-
ly or iteratively. In this section, we compare the two approaches and discuss why the pro-
grammer might choose one approach over the other.

Both iteration and recursion are based on a control structure—iteration uses a repeti-
tion structure (such as for, while or do/while) and recursion uses a selection structure
(such as if, if/else or switch). Both iteration and recursion involve repetition—iter-
ation explicitly uses a repetition structure and recursion achieves repetition through
repeated method calls. Iteration and recursion each involve a termination test—iteration
terminates when the loop-continuation condition fails and recursion terminates when a base
case is recognized. Iteration with counter-controlled repetition and recursion both gradually
approach termination—iteration keeps modifying a counter until the counter assumes a
value that makes the loop-continuation condition fail and recursion keeps producing sim-
pler versions of the original problem until a base case is reached. Both iteration and recur-
sion can execute infinitely—an infinite loop occurs with iteration if the loop-continuation
test never becomes false and infinite recursion occurs if the recursion step does not reduce
the problem in a manner that converges on a base case.

Recursion has disadvantages as well. It repeatedly invokes the mechanism, and conse-
quently the overhead, of method calls. This can be costly in both processor time and
memory space. Each recursive call creates another copy of the method (actually, only the
method’s variables); this can consume considerable memory. Iteration normally occurs
within a method, so the overhead of repeated method calls and extra memory assignment
is omitted. Why then would a programmer choose recursion?

Software Engineering Observation 6.11
Any problem that can be solved recursively also can be solved iteratively (nonrecursively).
A recursive approach normally is chosen in preference to an iterative approach when the re-
cursive approach more naturally mirrors the problem and results in a program that is easier
to understand and debug. Recursive solutions also are chosen when iterative solutions are
not apparent. 6.11

Performance Tip 6.2
Avoid using recursion in performance situations. Recursive calls take time and consume ad-
ditional memory. 6.2

Chapter 6 Methods 223

Common Programming Error 6.16
Accidentally having a nonrecursive method call itself through another method can cause in-
finite recursion. 6.16

Most programming textbooks introduce recursion much later than we have done in this
book. We feel that recursion is a sufficiently rich and complex topic that it is better to intro-
duce it early and spread its examples over the remainder of the text.

6.17 Method Overloading
C# enables several methods of the same name to be defined in the same class, as long as these
methods have different sets of parameters (number of parameters, types of parameters or or-
der of the parameters). This is called method overloading. When an overloaded method is
called, the C# compiler selects the proper method by examining the number, types and order
of the call’s arguments. Method overloading commonly is used to create several methods
with the same name that perform similar tasks, but on different data types. Figure 6.18 uses
overloaded method Square to calculate the square of an int and a double.

Good Programming Practice 6.6
Overloading methods that perform closely related tasks can make programs more readable
and understandable. 6.6

1 // Fig. 6.18: MethodOverload.cs
2 // Using overloaded methods.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class MethodOverload : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button showOutputButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code
16
17 // first version, takes one integer
18 public int Square (int x)
19 {
20 return x * x;
21 }
22
23 // second version, takes one double
24 public double Square (double y)
25 {
26 return y * y;
27 }
28

Fig. 6.18 Using overloaded methods. (Part 1 of 2.)

224 Methods Chapter 6

The compiler distinguishes overloaded methods by their signatures. A method’s sig-
nature is a combination of the method’s name and parameter types. If the compiler looked
only at method names during compilation, the code in Fig. 6.18 would be ambiguous—the
compiler would not know how to distinguish the two Square methods. The compiler uses
overload resolution to determine which method to call. This process first searches for all
the methods that can be used in the context, based on the number and type of arguments
that are present. It might seem that only one method would match, but recall that C# can
convert variable values to other data types implicitly. Once all matching methods are found,
the closest match is chosen. This match is based on a “best-fit” algorithm, which analyzes
the implicit conversions that will take place.

Let us look at an example. In Fig. 6.18, the compiler might use the logical name
“Square of int” for the Square method that specifies an int parameter (line 30) and
“Square of double” for the Square method that specifies a double parameter (line
36). If a method Foo’s definition begins as

void Foo(int a, float b)

the compiler might use the logical name “Foo of int and float.” If the parameters are
specified as

void Foo(float a, int b)

the compiler might use the logical name “Foo of float and int.” The order of the pa-
rameters is important to the compiler; it considers the preceding two Foo methods distinct.

29 // main entry point for the application
30 [STAThread]
31 static void Main()
32 {
33 Application.Run(new MethodOverload());
34 }
35
36 private void showOutputButton_Click(object sender,
37 System.EventArgs e)
38 {
39 // call both versions of Square
40 outputLabel.Text =
41 "The square of integer 7 is " + Square(7) +
42 "\nThe square of double 7.5 is " + Square (7.5);
43 }
44
45 } // end of class MethodOverload

Fig. 6.18 Using overloaded methods. (Part 2 of 2.)

Chapter 6 Methods 225

So far, the logical names of methods that have been used by the compiler have not
mentioned the methods’ return types. This is because method calls cannot be distinguished
by return type. The program in Fig. 6.19 illustrates the syntax error that is generated when
two methods have the same signature and different return types. Overloaded methods with
different parameter lists can have different return types. Overloaded methods need not have
the same number of parameters.

Common Programming Error 6.17
Creating overloaded methods with identical parameter lists and different return types is a
syntax error. 6.17

SUMMARY
• The best way to develop and maintain a large program is to construct it from small pieces, or mod-

ules. This technique is called divide and conquer.

• Modules can be created with methods and classes.

• Programs are written by combining new methods and classes that the programmer writes with
“prepackaged” methods and classes in the .NET Framework Library, and in various other method
and class libraries.

• The .NET Framework Library provides a rich collection of classes and methods for performing
common mathematical calculations, string manipulations, character manipulations, input/output,
error checking and other useful operations.

1 // Fig. 6.19: InvalidMethodOverload.cs
2 // Demonstrating incorrect method overloading.
3
4 public class InvalidMethodOverload
5 {
6 public int Square(double x)
7 {
8 return x * x;
9 }

10
11 // ERROR! Second Square method takes same number, order
12 // and types of arguments.
13 public double Square(double y)
14 {
15 return y * y;
16 }
17 }

Fig. 6.19 Syntax error generated from overloaded methods with identical parameter
lists and different return types.

226 Methods Chapter 6

• The programmer can write methods to define specific tasks that may be used at many points in a
program. These methods sometimes are referred to as programmer-defined methods.

• The actual statements defining the method are written only once and are hidden from other meth-
ods.

• Methods are called by writing the name of the method (sometimes preceded by the class name and
a dot operator), followed by a left parenthesis, the method’s argument (or a comma-separated list
of arguments) and a right parenthesis.

• All variables declared in method definitions are local variables—they are known only in the meth-
od in which they are defined.

• Packaging code as a method allows that code to be executed from several locations in a program
when the method is called.

• The return statement in a method passes the results of the method back to the calling method.

• The format of a method definition is

return-value-type method-name(parameter-list)
{
 declarations and statements
}

• The first line of a method definition is sometimes known as the method header. The attributes and
modifiers in the method header are used to specify information about the method.

• The method return-value-type is the data type of the result that is returned from the method to the
caller. Methods can return one value at most.

• The parameter-list is a comma-separated list containing the declarations of the parameters re-
ceived by the called method. There must be one argument in the method call for each parameter
in the method definition.

• The declarations and statements within the braces that follow the method header form the method
body.

• Variables can be declared in any block, and blocks can be nested.

• A method cannot be defined inside another method.

• In many cases, an argument value that does not correspond precisely to the parameter types in the
method definition is converted to the proper type before the method is called.

• When an argument is passed by value, a copy of the argument’s value is made and passed to the
called method.

• With pass-by-reference, the caller enables the called method to access the caller’s data directly and
to modify that data if the called method chooses.

• The class Random can be used to generate random numbers.

• An event is a signal that is sent to a program when some action takes place, such as when the user
clicks a button. The programmer writes the application to perform tasks when these events occur.
An event handler is a method that executes when an event occurs (or is “raised”).

• An identifier’s duration (its lifetime) is the period during which that identifier exists in memory.

• Identifiers that represent local variables in a method (i.e., parameters and variables declared in the
method body) have automatic duration. Automatic-duration variables are created when program
control reaches the variable’s declaration. They exist while the block in which they are declared is
active, and they are destroyed when the block in which they are declared is exited.

• The scope (sometimes called a declaration space) of an identifier for a variable, reference or meth-
od is the portion of the program in which that identifier can be referenced.

Chapter 6 Methods 227

• A local variable or reference declared in a block can be used only in that block or in blocks nested
within that block.

• Members of a class have class scope and are visible in what is known as the declaration space of
the class.

• Class scope enables a class’s methods to access directly all members defined in that class or inher-
ited into that class. (static members are an exception to this rule.)

• Any variable declared in the initialization portion of a for structure will be visible only within
that for structure.

• A recursive method is one that calls itself either directly, or indirectly through another method.

• A recursive method knows how to solve only the simplest case(s), or base case(s). If the method
is called with a base case, the method returns a result. If the method is called with a more complex
problem, the method divides the problem into two conceptual pieces—a piece that the method
knows how to solve (base case) and a piece that the method does not know how to solve.

• To make recursion feasible, the portion of the problem that the method does not know how to solve
must resemble the original problem, but be a slightly simpler or smaller version.

• Certain recursive methods can lead to an exponential “explosion” of method calls.

• Both iteration and recursion are based on a control structure. Iteration uses a repetition structure
(such as for, while or do/while); recursion uses a selection structure (such as if, if/else
or switch).

• Both iteration and recursion involve repetition. Iteration explicitly uses a repetition structure; re-
cursion achieves repetition through repeated method calls.

• Iteration and recursion each involve a termination test. Iteration terminates when the loop-contin-
uation condition fails; recursion terminates when a base case is recognized.

• Both iteration and recursion can execute infinitely. An infinite loop occurs with iteration if the
loop-continuation test never becomes false; infinite recursion occurs if the recursion step does not
reduce the problem in a manner that converges on the base case.

• A recursive approach normally is chosen in preference to an iterative approach when the recursive
approach more naturally mirrors the problem and results in a program that is easier to understand
and debug.

• Several methods can have the same name, as long as these methods have different sets of param-
eters, in terms of number of parameters, types of the parameters and order of the parameters. This
is called method overloading.

• Method overloading commonly is used to create several methods with the same name that perform
similar tasks, but on different data types.

TERMINOLOGY
. (dot operator) coercion of arguments
argument to a method call comma-separated list of arguments
automatic duration complexity theory
automatic initialization of a variable constant variable
base case control structures in iteration
Button class control structures in recursion
calling method divide-and-conquer approach
cast operator duration of an identifier
class event handling
Click event exhausting memory

228 Methods Chapter 6

SELF-REVIEW EXERCISES
6.1 Fill in the blanks in each of the following statements:

a) Program modules in C# are called and .
b) A method is invoked with a .
c) A variable known only within the method in which it is defined is called a .
d) The statement in a called method can be used to pass the value of an expres-

sion back to the calling method.
e) The keyword is used in a method header to indicate that a method does not

return a value.
f) The of an identifier is the portion of the program in which the identifier can

be used.
g) The three ways to return control from a called method to a caller are ,

 and .
h) The method is used to produce random numbers.
i) Variables declared in a block or in a method’s parameter list are of duration.
j) A method that calls itself either directly or indirectly is a method.
k) A recursive method typically has two components: one that provides a means for the re-

cursion to terminate by testing for a case, and one that expresses the problem
as a recursive call for a slightly simpler problem than the original call.

l) In C#, it is possible to have various methods with the same name that operate on different
types or numbers of arguments. This is called method .

m) Local variables declared at the beginning of a method have scope, as do
method parameters, which are considered local variables of the method.

n) Iteration is based on a control structure. It uses a structure.
o) Recursion is based on a control structure. It uses a structure.

exponential “explosion” of calls pass-by-reference
factorial method pass-by-value
Fibonacci series defined recursively principle of least privilege
golden ratio programmer-defined method
hierarchical structure promotions for primitive data types
infinite loop Random class
infinite recursion recursive evaluation
instance variables of a class recursive method
invoke a method ref parameter
lifetime of an identifier return keyword
local variable return-value type
method scaling factor
method body scope of an identifier
method call sequence of random numbers
method header shifting value
method overloading side effect
modularizing a program with methods signature
monolithic program simulation
named constant software reusability
nested block static duration
nested control structure termination test
out parameter user-defined method
overloaded method user interface event
parameter list void return-value type

Chapter 6 Methods 229

p) Recursion achieves repetition through repeated calls.
q) The best way to develop and maintain a large program is to divide it into several smaller

program , each of which is more manageable than the original program.
r) It is possible to define methods with the same , but different parameter lists.
s) Recursion terminates when a is reached.
t) Placing a semicolon after the right parenthesis that encloses the parameter list of a meth-

od definition is a error.
u) The is a comma-separated list containing the declarations of the parameters

received by the called method.
v) The is the data type of the result returned from a called method.
w) A is a signal that is sent when some action takes place, such as a button being

clicked or a value being changed.

6.2 State whether each of the following is true or false. If false, explain why.
a) Math method Abs rounds its parameter to the smallest integer.

b) Math method Exp is the exponential method, ex.
c) Variable type float can be promoted to type double.
d) Variable type char cannot be promoted to type int.
e) A recursive method is one that calls itself.
f) When a method recursively calls itself, it is known as the base case.
g) 0! is equal to 1.
h) Forgetting to return a value from a recursive method when one is needed results in a syn-

tax error.
i) Infinite recursion occurs when a method converges on the base case.
j) A recursive implementation of the Fibonacci method is always efficient.
k) Any problem that can be solved recursively also can be solved iteratively.

6.3 For the following program, state the scope (either class scope or block scope) of each of the
following elements:

a) The variable x.
b) The variable y.
c) The method cube.
d) The method paint.
e) The variable yPos.

public class CubeTest {
int x;

public void paint()
 {
 int yPos = 25;

 for (x = 1; x <= 10; x++) {
 Console.WriteLine(x);
 yPos += 15;
 }
 }

public int cube(int y)
 {
 return y * y * y;
 }
}

230 Methods Chapter 6

6.4 Write an application that tests whether the examples of the math library method calls shown
in Fig. 6.2 actually produce the indicated results.

6.5 Give the method header for each of the following methods:
a) Method hypotenuse, which takes two double-precision, floating-point arguments

side1 and side2 and returns a double-precision, floating-point result.
b) Method smallest, which takes three integers, x, y, z, and returns an integer.
c) Method instructions, which does not take any arguments and does not return a val-

ue. [Note: Such methods commonly are used to display instructions to a user.]
d) Method intToFloat, which takes an integer argument, number, and returns a float-

ing-point result.

6.6 Find the error in each of the following program segments and explain how the error can be
corrected:

a) int g() {
 Console.WriteLine("Inside method g");

int h() {
 Console.WriteLine("Inside method h");
 }
}

b) int sum(int x, int y) {
int result;

 result = x + y;
}

c) int sum(int n) {
if (n == 0)

 return 0;
else

 n + sum(n - 1);
}

d) void f(float a); {
float a;

 Console.WriteLine(a);
}

e) void product() {
int a = 6, b = 5, c = 4, result;

 result = a * b * c;
 Console.WriteLine("Result is " + result);

return result;
}

ANSWERS TO SELF-REVIEW EXERCISES
6.1 a) methods, classes. b) method call. c) local variable. d) return. e) void. f) scope. g) re-
turn;, return expression;, encountering the closing right brace of a method. h) Random.Next.
i) automatic. j) recursive. k) base. l) overloading. m) block. n) repetition. o) selection. p) method. q)
modules. r) name. s) base case. t) syntax. u) parameter list. v) return-value-type. w) event.

6.2 a) False. Math method Abs returns the absolute value of a number. b) True. c) True. d) False.
Type char can be promoted to int, float, long and double. e) True. f) False. When a method
recursively calls itself, it is known as the recursive call or recursion step. g) True. h) True. i) False. In-
finite recursion will occur when a recursive method does not converge on the base case. j) False. Re-
cursion repeatedly invokes the mechanism, and consequently, the overhead, of method calls. k) True.

Chapter 6 Methods 231

6.3 a) Class scope. b) Block scope. c) Class scope. d) Class scope. e) Block scope.

6.4 The following code demonstrates the use of some Math library method calls:

1 // Exercise 6.4: MathTest.cs
2 // Testing the Math class methods
3 using System;
4
5 public class MathTest {
6 public static void Main(string[] args)
7 {
8 Console.WriteLine("Math.Abs(23.7) = " +
9 Math.Abs(23.7));

10 Console.WriteLine("Math.Abs(0.0) = " +
11 Math.Abs(0.0));
12 Console.WriteLine("Math.Abs(-23.7) = " +
13 Math.Abs(-23.7));
14 Console.WriteLine("Math.Ceiling(9.2) = " +
15 Math.Ceiling(9.2));
16 Console.WriteLine("Math.Ceiling(-9.8) = " +
17 Math.Ceiling(-9.8));
18 Console.WriteLine("Math.Cos(0.0) = " +
19 Math.Cos(0.0));
20 Console.WriteLine("Math.Exp(1.0) = " +
21 Math.Exp(1.0));
22 Console.WriteLine("Math.Exp(2.0) = " +
23 Math.Exp(2.0));
24 Console.WriteLine("Math.Floor(9.2) = " +
25 Math.Floor(9.2));
26 Console.WriteLine("Math.Floor(-9.8) = " +
27 Math.Floor(-9.8));
28 Console.WriteLine("Math.Log(2.718282) = " +
29 Math.Log(2.718282));
30 Console.WriteLine("Math.Log(7.389056) = " +
31 Math.Log(7.389056));
32 Console.WriteLine("Math.Max(2.3, 12.7) = " +
33 Math.Max(2.3, 12.7));
34 Console.WriteLine("Math.Max(-2.3, -12.7) = " +
35 Math.Max(-2.3, -12.7));
36 Console.WriteLine("Math.Min(2.3, 12.7) = " +
37 Math.Min(2.3, 12.7));
38 Console.WriteLine("Math.Min(-2.3, -12.7) = " +
39 Math.Min(-2.3, -12.7));
40 Console.WriteLine("Math.Pow(2, 7) = " +
41 Math.Pow(2, 7));
42 Console.WriteLine("Math.Pow(9, .5) = " +
43 Math.Pow(9, .5));
44 Console.WriteLine("Math.Sin(0.0) = " +
45 Math.Sin(0.0));
46 Console.WriteLine("Math.Sqrt(25.0) = " +
47 Math.Sqrt(25.0));
48 Console.WriteLine("Math.Tan(0.0) = " +
49 Math.Tan(0.0));
50 }
51 }

232 Methods Chapter 6

6.5 a) double hypotenuse(double side1, double side2)
b) int smallest(int x, int y, int z)
c) void instructions()
d) float intToFloat(int number)

6.6 a) Error: Method h is defined in method g.
Correction: Move the definition of h out of the definition of g.

b) Error: The method is supposed to return an integer, but does not.
Correction: Delete variable result and place the following statement in the method:

return x + y;
or add the following statement at the end of the method body:

return result;
c) Error: The result of n + sum(n - 1) is not returned by this recursive method, resulting

in a syntax error.
Correction: Rewrite the statement in the else clause as

return n + sum(n - 1);
d) Error: The semicolon after the right parenthesis that encloses the parameter list, and the

redefining of the parameter a in the method definition are both incorrect.
Correction: Delete the semicolon after the right parenthesis of the parameter list and de-
lete the declaration float a;.

e) Error: The method returns a value when it is not supposed to.
Correction: Change the return type to int.

EXERCISES
6.7 What is the value of x after each of the following statements is performed?

a) x = Math.Abs(7.5);
b) x = Math.Floor(7.5);
c) x = Math.Abs(0.0);
d) x = Math.Ceiling(0.0);

Math.Abs(23.7) = 23.7
Math.Abs(0.0) = 0
Math.Abs(-23.7) = 23.7
Math.Ceiling(9.2) = 10
Math.Ceiling(-9.8) = -9
Math.Cos(0.0) = 1
Math.Exp(1.0) = 2.71828
Math.Exp(2.0) = 7.38906
Math.Floor(9.2) = 9
Math.Floor(-9.8) = -10
Math.Log(2.718282) = 1
Math.Log(7.389056) = 2
Math.Max(2.3, 12.7) = 12.7
Math.Max(-2.3, -12.7) = -2.3
Math.Min(2.3, 12.7) = 2.3
Math.Min(-2.3, -12.7) = -12.7
Math.Pow(2, 7) = 128
Math.Pow(9, .5) = 3
Math.Sin(0.0) = 0
Math.Sqrt(25.0) = 5
Math.Tan(0.0) = 0

Chapter 6 Methods 233

e) x = Math.Abs(-6.4);
f) x = Math.Ceiling(-6.4);
g) x = Math.Ceiling(-Math.Abs(-8 + Math.Floor(-5.5)));

6.8 A parking garage charges a $2.00 minimum fee to park for up to three hours. The garage
charges an additional $0.50 per hour for each hour or part thereof in excess of three hours. The max-
imum charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24
hours at a time. Write a program that calculates and displays the parking charges for each customer
who parked a car in this garage yesterday. You should enter in a TextBox the hours parked for each
customer. The program should display the charge for the current customer. The program should use
the method CalculateCharges to determine the charge for each customer. Use the techniques
described in the chapter to read the double value from a TextBox.

6.9 Write a method IntegerPower(base, exponent) that returns the value of

base exponent

For example, IntegerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive,
nonzero integer, and base is an integer. Method IntegerPower should use for or while to
control the calculation. Do not use any Math library methods. Incorporate this method into a Win-
dows application that reads integer values from TextBoxes for base and exponent from the
user and performs the calculation with the IntegerPower method.

6.10 Define a method Hypotenuse that calculates the length of the hypotenuse of a right trian-
gle when the other two sides are given. The method should take two arguments of type double and
return the hypotenuse as a double. Incorporate this method into a Windows application that reads
integer values for side1 and side2 from TextBoxes and performs the calculation with the Hy-
potenuse method. Determine the length of the hypotenuse for each of the following triangles:

6.11 Write a method SquareOfAsterisks that displays a solid square of asterisks whose side
is specified in integer parameter side. For example, if side is 4, the method displays

Incorporate this method into an application that reads an integer value for side from the user and
performs the drawing with the SquareOfAsterisks method. This method should gather data
from Textboxes and should print to a label.

6.12 Modify the method created in Exercise 6.11 to form the square out of whatever character is
contained in character parameter fillCharacter. Thus, if side is 5 and fillCharacter is
“#,” this method should print

#####
#####
#####
#####
#####

Triangle Side 1 Side 2

1 3.0 4.0

2 5.0 12.0

3 8.0 15.0

234 Methods Chapter 6

6.13 Write an application that simulates coin tossing. Let the program toss the coin each time the
user presses the “Toss” button. Count the number of times each side of the coin appears. Display the
results. The program should call a separate method Flip that takes no arguments and returns false
for tails and true for heads. [Note: If the program realistically simulates the coin tossing, each side
of the coin should appear approximately half of the time.]

6.14 Computers are playing an increasing role in education. Write a program that will help an el-
ementary school student learn multiplication. Use the Next method from an object of type Random
to produce two positive one-digit integers. It should display a question in the status bar, such as

How much is 6 times 7?

The student should then type the answer into a TextBox. Your program should check the student’s
answer. If it is correct, draw the string "Very good!" in a read-only TextBox, then ask another
multiplication question. If the answer is wrong, draw the string "No. Please try again." in
the same read-only TextBox, then let the student try the same question again until the student
finally gets it right. A separate method should be used to generate each new question. This method
should be called once when the program begins execution and each time the user answers the ques-
tion correctly.

6.15 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic prob-
lems and the Towers of Hanoi (Fig. 6.20) is one of the most famous. Legend has it that in a temple in
the Far East, priests are attempting to move a stack of disks from one peg to another. The initial stack
had 64 disks threaded onto one peg and arranged from bottom to top by decreasing size. The priests
are attempting to move the stack from this peg to a second peg under the constraints that exactly one
disk is moved at a time, and at no time may a larger disk be placed above a smaller disk. A third peg
is available for temporarily holding disks. Supposedly, the world will end when the priests complete
their task, so there is little incentive for us to facilitate their efforts.

Let us assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will print the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we would find ourselves hope-
lessly knotted up in managing the disks. However, if we attack the problem with recursion in mind, it
becomes tractable. Moving n disks can be viewed in terms of moving only n – 1 disks (and hence,
the recursion) as follows:

Fig. 6.20 The Towers of Hanoi for the case with four disks.

Chapter 6 Methods 235

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This is
accomplished by trivially moving the disk without the need for a temporary holding area.

Write a program to solve the Towers of Hanoi problem. Allow the user to enter the number of
disks in a TextBox. Use a recursive Tower method with four parameters:

a) The number of disks to be moved
b) The peg on which these disks are threaded initially
c) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area

Your program should display in a read-only TextBox with scrolling functionality the precise
instructions for moving the disks from the starting peg to the destination peg. For example, to move
a stack of three disks from peg 1 to peg 3, your program should print the following series of moves:

1 → 3 (This means move one disk from peg 1 to peg 3.)
1 → 2
3 → 2
1 → 3
2 → 1
2 → 3
1 → 3

6.16 The greatest common divisor of integers x and y is the largest integer that evenly divides
both x and y. Write a recursive method Gcd that returns the greatest common divisor of x and y. The
Gcd of x and y is defined recursively as follows: If y is equal to 0, then Gcd(x, y) is x; otherwise,
Gcd(x, y) is Gcd(y, x % y), where % is the modulus operator.

7
Arrays

Objectives
• To introduce the array data structure.
• To understand how arrays store, sort and search lists

and tables of values.
• To understand how to declare an array, initialize an

array and refer to individual elements of an array.
• To be able to pass arrays to methods.
• To understand basic sorting techniques.
• To be able to declare and manipulate multiple-

subscript arrays.
With sobs and tears he sorted out
Those of the largest size …
Lewis Carroll

Attempt the end, and never stand to doubt;
Nothing’s so hard, but search will find it out.
Robert Herrick

Now go, write it before them in a table,
and note it in a book.
Isaiah 30:8

‘Tis in my memory lock’d,
And you yourself shall keep the key of it.
William Shakespeare

Chapter 7 Arrays 237

7.1 Introduction
This chapter serves as an introduction to data structures. Arrays are data structures consisting
of data items of the same type. Arrays are “static” entities, in that they remain the same size
once they are created. We begin by learning about creating and accessing arrays, then use
this knowledge to begin more complex manipulations of arrays, including powerful search-
ing and sorting techniques. We then demonstrate creating more sophisticated arrays that
have multiple dimensions. Chapter 24, Data Structures, introduces dynamic data structures
such as lists, queues, stacks and trees that can grow and shrink as programs execute. We also
introduce C#’s predefined data structures that enable the programmer to use existing data
structures for lists, queues, stacks and trees, rather than having to “reinvent the wheel.”

7.2 Arrays
An array is a group of contiguous memory locations that all have the same name and type.
To refer to a particular location or element in the array, we specify the name of the array
and the position number (a value that indicates a specific location within the array) of the
element to which we refer.

Figure 7.1 shows an integer array called c. This array contains 12 elements. A program
can refer to any element of an array by giving the name of the array followed by the position

Outline

7.1 Introduction
7.2 Arrays
7.3 Declaring and Allocating Arrays
7.4 Examples Using Arrays

7.4.1 Allocating an Array and Initializing Its Elements
7.4.2 Totaling the Elements of an Array
7.4.5 Using Arrays to Analyze Survey Results
7.4.3 Using Histograms to Display Array Data Graphically
7.4.4 Using the Elements of an Array as Counters
7.4.5 Using Arrays to Analyze Survey Results

7.5 Passing Arrays to Methods
7.6 Passing Arrays by Value and by Reference
7.7 Sorting Arrays
7.8 Searching Arrays: Linear Search and Binary Search

7.8.1 Searching an Array with Linear Search
7.8.2 Searching a Sorted Array with Binary Search

7.9 Multiple-Subscripted Arrays

7.10 foreach Repetition Structure

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

238 Arrays Chapter 7

number of the element in square brackets ([]). The first element in every array is the zeroth
element. Thus, the first element of array c is referred to as c[0], the second element of array
c is referred to as c[1], the seventh element of array c is referred to as c[6] and so on.
The ith element of array c is referred to as c[i - 1]. Array names follow the same conven-
tions as other variable names, as discussed in Chapter 3, Introduction to C# Programming.

The position number in square brackets is more formally called a subscript (or an
index). A subscript must be an integer or an integer expression. If a program uses an expres-
sion as a subscript, the program evaluates the expression first to determine the subscript.
For example, if variable a is equal to 5 and variable b is equal to 6, then the statement

c[a + b] += 2;

adds 2 to array element c[11]. Note that a subscripted array name is an lvalue—it can
be used on the left side of an assignment to place a new value into an array element.

Let us examine array c in Fig. 7.1 more closely. The name of the array is c. Every array
in C# “knows” its own length. The length of the array is determined by the expression:

c.Length

The array’s 12 elements are referred to as c[0], c[1], c[2], …, c[11]. The value
of c[0] is -45, the value of c[1] is 6, the value of c[2] is 0, the value of c[7]
is 62 and the value of c[11] is 78. To calculate the sum of the values contained in the
first three elements of array c and to store the result in variable sum, we would write

sum = c[0] + c[1] + c[2];

Fig. 7.1 A 12-element array.

Name of array (Note
that all elements of
this array have the

same name, c)

Position number (index
or subscript) of the

element within array c

-45

6

0

72

1543

-89

0

62

-3

1

6453

78

c[0]

c[1]

c[2]

c[3]

c[4]

c[5]

c[6]

c[7]

c[8]

c[9]

c[10]

c[11]

Chapter 7 Arrays 239

To divide the value of the seventh element of array c by 2 and assign the result to the vari-
able x, we would write

x = c[6] / 2;

Common Programming Error 7.1
It is important to note the difference between the “seventh element of the array” and “array
element seven.” Array subscripts begin at 0, thus the “seventh element of the array” has a
subscript of 6, while “array element seven” has a subscript of 7 and is actually the eighth
element of the array. This confusion is a source of “off-by-one” errors. 7.1

The brackets that enclose the subscript of an array are operators. Brackets have the
same level of precedence as parentheses. The chart in Fig. 7.2 shows the precedence and
associativity of the operators introduced to this point in the text. They are displayed top to
bottom in decreasing order of precedence, with their associativity and type. The reader
should note that the ++ and -- operators in the first row represent the postincrement and
postdecrement operators, while the ++ and -- operators in the second row represent the
preincrement and predecrement operators. Also, notice that in the first row the associativity
is mixed. This is because the associativity of the postincrement and postdecrement opera-
tors is right to left, while the associativity for the other operators is left to right.

7.3 Declaring and Allocating Arrays
Arrays occupy space in memory. The programmer specifies the type of the elements and
uses operator new to allocate dynamically the number of elements required by each array.
Arrays are allocated with new because arrays are objects and all objects must be created
with new. We will see an exception to this rule shortly.

Operators Associativity Type

() [] . ++ -- left to right highest (unary postfix)

++ -- + - ! (type) right to left unary (unary prefix)

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

& left to right logical AND

^ left to right logical exclusive OR

| left to right logical inclusive OR

&& left to right conditional AND

|| left to right conditional OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 7.2 Precedence and associativity of the operators discussed so far.

240 Arrays Chapter 7

The declaration

int[] c = new int[12];

allocates 12 elements for integer array c. The preceding statement can also be performed
in two steps as follows:

int[] c; // declares the array
c = new int[12]; // allocates the reference to the array

When arrays are allocated, the elements are initialized to zero for the numeric primitive-
data-type variables, to false for bool variables and to null for reference types.

Common Programming Error 7.2
Unlike in C or C++, in C# the number of elements in the array is never specified in the square
brackets after the array name. The declaration int[12] c; causes a syntax error. 7.2

Memory may be reserved for several arrays with a single declaration. The following dec-
laration reserves 100 elements for string array b and 27 elements for string array x:

string[] b = new string[100], x = new string[27];

Similarly, the following declaration reserves 10 elements for array1 and 20 elements for
array2 (both of type double):

double[] array1 = new double[10],
 array2 = new double[20];

Arrays may be declared to contain most data types. In an array of value types, every
element of the array contains one value of the declared type. For example, every element
of an int array is an int value.

In an array of reference types, every element of the array is a reference to an object of
the data type of the array. For example, every element of a string array is a reference to
a string. Each of these string references has the value null by default.

7.4 Examples Using Arrays
This section presents several examples using arrays that demonstrate declaring arrays, al-
locating arrays, initializing arrays and manipulating array elements in various ways. For
simplicity, the examples in this section use arrays that contain elements of type int. Please
remember that a program can declare arrays of most data types.

7.4.1 Allocating an Array and Initializing Its Elements
Figure 7.3 creates three integer arrays of 10 elements and displays those arrays in tabular
format. The program demonstrates several techniques for declaring and initializing arrays.

1 // Fig 7.3: InitArray.cs
2 // Different ways of initializing arrays.
3
4 using System;
5 using System.Windows.Forms;

Fig. 7.3 Initializing element arrays in three different ways. (Part 1 of 2.)

Chapter 7 Arrays 241

6
7 class InitArray
8 {
9 // main entry point for application

10 static void Main(string[] args)
11 {
12 string output = "";
13
14 int[] x; // declare reference to an array
15 x = new int[10]; // dynamically allocate array and set
16 // default values
17
18 // initializer list specifies number of elements
19 // and value of each element
20 int[] y = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };
21
22 const int ARRAY_SIZE = 10; // named constant
23 int[] z; // reference to int array
24
25 // allocate array of ARRAY_SIZE (i.e., 10) elements
26 z = new int[ARRAY_SIZE];
27
28 // set the values in the array
29 for (int i = 0; i < z.Length; i++)
30 z[i] = 2 + 2 * i;
31
32 output += "Subscript\tArray x\tArray y\tArray z\n";
33
34 // output values for each array
35 for (int i = 0; i < ARRAY_SIZE; i++)
36 output += i + "\t" + x[i] + "\t" + y[i] +
37 "\t" + z[i] + "\n";
38
39 MessageBox.Show(output,
40 "Initializing an array of int values",
41 MessageBoxButtons.OK, MessageBoxIcon.Information);
42
43 } // end Main
44
45 } // end class InitArray

Fig. 7.3 Initializing element arrays in three different ways. (Part 2 of 2.)

242 Arrays Chapter 7

Line 14 declares x as a reference to an array of integers. Each element in the array is
of type int. The variable x is of type int[], which denotes an array whose elements are
of type int. Line 15 allocates the 10 elements of the array with new and assigns the array
to reference x. Each element of this array has the default value 0.

Line 20 creates another int array and initializes each element using an initializer list.
In this case, the number of elements in the initializer list determines the array’s size. For
example, line 20 creates a 10-element array with the indices 0–9 and the values 32, 27,
64, and so on. Note that this declaration does not require the new operator to create the
array object—the compiler allocates memory for the object when it encounters an array
declaration that includes an initializer list.

On line 22, we create constant integer ARRAY_SIZE using keyword const. A con-
stant must be initialized in the same statement where it is declared and cannot be modified
thereafter. If an attempt is made to modify a const variable after it is declared, the com-
piler issues a syntax error.

Constants also are called named constants. They often are used to make a program
more readable and are usually denoted with variable names in all capital letters.

Common Programming Error 7.3
Assigning a value to a constant after the variable has been initialized is a compiler error. 7.3

On lines 23 and 26, we create integer array z of length 10 using the ARRAY_SIZE
named constant. The for structure in lines 29–30 initializes each element in array z. The
values are generated by multiplying each successive value of the loop counter by 2 and
adding 2 to the product. After this initialization, array z contains the even integers 2, 4, 6,
…, 20. The for structure in lines 35–37 uses the values in arrays x, y and z to build an
output string, which will be displayed in a MessageBox. Zero-based counting (remember,
array subscripts start at 0) allows the loop to access every element of the array. The constant
ARRAY_SIZE in the for structure condition (line 29) specifies the arrays’ lengths.

7.4.2 Totaling the Elements of an Array

Often, the elements of an array represent series of values to be used in calculations. For ex-
ample, if the elements of an array represent the grades for an exam in a class, the professor
may wish to total the elements of an array, then calculate the class average for the exam.

The application in Fig. 7.4 sums the values contained in the 10-element integer array a
(declared, allocated and initialized on line 12). Line 16 in the body of the for loop performs
the addition using the array element at position i during each loop iteration. Note that the
values being supplied as initializers for array a normally would be read into the program. For
example, in a Windows application, the user could enter the values through a TextBox, or
the values could be read from a file on disk. (See Chapter 17, Files and Streams.)

1 // Fig. 7.4: SumArray.cs
2 // Computing the sum of the elements in an array.
3
4 using System;
5 using System.Windows.Forms;

Fig. 7.4 Computing the sum of the elements of an array. (Part 1 of 2.)

Chapter 7 Arrays 243

7.4.3 Using Histograms to Display Array Data Graphically

Many programs present data to users in a graphical manner. For example, numeric values
often are displayed as bars in a bar chart. In such a chart, longer bars represent larger nu-
meric values. One simple way to display numeric data graphically is with a histogram that
shows each numeric value as a bar of asterisks (*).

Our next application (Fig. 7.5) reads numbers from an array and graphs the informa-
tion in the form of a bar chart, or histogram. The program displays each number followed
by a bar consisting of a corresponding number of asterisks. The nested for loops (lines
18–24) append the bars to the string that will be displayed in the MessageBox. Note
the loop continuation condition of the inner for structure on line 22 (j <= n[i]). Each
time the program reaches the inner for structure, the loop counts from 1 to n[i], using
a value in array n to determine the final value of the control variable j and the number of
asterisks to display.

6
7 class SumArray
8 {
9 // main entry point for application

10 static void Main(string[] args)
11 {
12 int[] a = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
13 int total = 0;
14
15 for (int i = 0; i < a.Length; i++)
16 total += a[i];
17
18 MessageBox.Show("Total of array elements: " + total,
19 "Sum the elements of an array",
20 MessageBoxButtons.OK, MessageBoxIcon.Information);
21
22 } // end Main
23
24 } // end class SumArray

1 // Fig. 7.6: Histogram.cs
2 // Using data to create a histogram.
3
4 using System;
5 using System.Windows.Forms;

Fig. 7.5 Program that prints histograms. (Part 1 of 2.)

Fig. 7.4 Computing the sum of the elements of an array. (Part 2 of 2.)

244 Arrays Chapter 7

7.4.4 Using the Elements of an Array as Counters

Sometimes programs use a series of counter variables to summarize data, such as the results
of a survey. In Chapter 6, Methods, we used a series of counters in our dice-rolling program
to track the number of occurrences of each side on a six-sided die as the program rolled 12
dice at a time. We also indicated that there is a more elegant method than that in Fig. 6.11 for
writing the dice-rolling program. An array version of this application is shown in Fig. 7.6.

The program uses the seven-element array frequency to count the occurrences of each
side of the die. Line 94, which uses the random face value as the subscript for array fre-

6
7 class Histogram
8 {
9 // main entry point for application

10 static void Main(string[] args)
11 {
12 int[] n = { 19, 3, 15, 7, 11, 9, 13, 5, 17, 1 };
13 string output = "";
14
15 output += "Element\tvalue\tHistogram\n";
16
17 // build output
18 for (int i = 0; i < n.Length; i++)
19 {
20 output += "\n" + i + "\t" + n[i] + "\t";
21
22 for (int j = 1; j <= n[i]; j++) // print a bar
23 output += "*";
24 }
25
26 MessageBox.Show(output, "Histogram Printing Program",
27 MessageBoxButtons.OK, MessageBoxIcon.Information);
28
29 } // end Main
30
31 } // end class Histogram

Fig. 7.5 Program that prints histograms. (Part 2 of 2.)

Chapter 7 Arrays 245

quency to determine which element should be incremented during each iteration of the
loop, replaces lines 95–115 of Fig. 6.11. The random number calculation on line 88 pro-
duces numbers 1–6 (the values for a six-sided die); thus, the frequency array must be
large enough to allow subscript values of 1–6. The smallest number of elements required
for an array to have these subscript values is seven elements (subscript values 0–6). In this
program, we ignore element 0 of array frequency. Lines 75–80 replace lines 69–81 from
Fig. 6.11. We can loop through array frequency; therefore, we do not have to enumerate
each line of text to display in the Label, as we did in Fig. 6.11.

1 // Fig. 7.7: RollDie.cs
2 // Rolling 12 dice.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.IO;
11
12 public class RollDie : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Button rollButton;
15
16 private System.Windows.Forms.RichTextBox displayTextBox;
17
18 private System.Windows.Forms.Label dieLabel1;
19 private System.Windows.Forms.Label dieLabel2;
20 private System.Windows.Forms.Label dieLabel3;
21 private System.Windows.Forms.Label dieLabel4;
22 private System.Windows.Forms.Label dieLabel5;
23 private System.Windows.Forms.Label dieLabel6;
24 private System.Windows.Forms.Label dieLabel7;
25 private System.Windows.Forms.Label dieLabel8;
26 private System.Windows.Forms.Label dieLabel9;
27 private System.Windows.Forms.Label dieLabel10;
28 private System.Windows.Forms.Label dieLabel11;
29 private System.Windows.Forms.Label dieLabel12;
30
31 private System.ComponentModel.Container components = null;
32
33 Random randomNumber = new Random();
34 int[] frequency = new int[7];
35
36 public RollDie()
37 {
38 InitializeComponent();
39 }
40
41 // Visual Studio .NET generated code
42

Fig. 7.6 Using arrays to eliminate a switch structure. (Part 1 of 3.)

246 Arrays Chapter 7

43 [STAThread]
44 static void Main()
45 {
46 Application.Run(new RollDie());
47 }
48
49 private void rollButton_Click(
50 object sender, System.EventArgs e)
51 {
52 // pass the labels to a method that will
53 // randomly assign a face to each die
54 DisplayDie(dieLabel1);
55 DisplayDie(dieLabel2);
56 DisplayDie(dieLabel3);
57 DisplayDie(dieLabel4);
58 DisplayDie(dieLabel5);
59 DisplayDie(dieLabel6);
60 DisplayDie(dieLabel7);
61 DisplayDie(dieLabel8);
62 DisplayDie(dieLabel9);
63 DisplayDie(dieLabel10);
64 DisplayDie(dieLabel11);
65 DisplayDie(dieLabel12);
66
67 double total = 0;
68
69 for (int i = 1; i < 7; i++)
70 total += frequency[i];
71
72 displayTextBox.Text = "Face\tFrequency\tPercent\n";
73
74 // output frequency values
75 for (int x = 1; x < frequency.Length; x++)
76 {
77 displayTextBox.Text += x + "\t" +
78 frequency[x] + "\t\t" + String.Format("{0:N}",
79 frequency[x] / total * 100) + "%\n";
80 }
81
82 } // end Main
83
84 // simulates roll, display proper
85 // image and increment frequency
86 public void DisplayDie(Label dieLabel)
87 {
88 int face = randomNumber.Next(1, 7);
89
90 dieLabel.Image = Image.FromFile(
91 Directory.GetCurrentDirectory() +
92 "\\images\\die" + face + ".gif");
93
94 frequency[face]++;
95 }

Fig. 7.6 Using arrays to eliminate a switch structure. (Part 2 of 3.)

Chapter 7 Arrays 247

7.4.5 Using Arrays to Analyze Survey Results
Our next example uses arrays to summarize the results of data collected in a survey. Con-
sider the following problem statement:

Forty students were asked to rate the quality of the food in the student cafeteria on a scale of
1 to 10, with 1 being awful and 10 being excellent. Place the 40 responses in an integer
array and summarize the frequency for each rating.

This is a typical array processing application (Fig. 7.7). We wish to summarize the
number of responses of each type (i.e., 1–10). The array responses is a 40-element
integer array of the students’ responses to the survey. We use an 11-element array fre-
quency to count the number of occurrences of each response. We ignore the first element,
frequency[0], because it is more logical to have a response of 1 increment
frequency[1] than frequency[0]. We can use each response directly as a sub-
script on the frequency array. Each element of the array is used as a counter for one of
the survey responses.

96
97 } // end class RollDie

Fig. 7.6 Using arrays to eliminate a switch structure. (Part 3 of 3.)

Results after one roll

Results after fifty rolls

248 Arrays Chapter 7

Good Programming Practice 7.1
Strive for program clarity. It is sometimes worthwhile to trade off the most efficient use of
memory or processor time for writing clearer programs. 7.1

1 // Fig. 7.5: StudentPoll.cs
2 // A student poll program.
3
4 using System;
5 using System.Windows.Forms;
6
7 class StudentPoll
8 {
9 // main entry point for application

10 static void Main(string[] args)
11 {
12 int[] responses = { 1, 2, 6, 4, 8, 5, 9, 7, 8, 10, 1,
13 6, 3, 8, 6, 10, 3, 8, 2, 7, 6, 5, 7, 6, 8, 6, 7,
14 5, 6, 6, 5, 6, 7, 5, 6, 4, 8, 6, 8, 10 };
15
16 int[] frequency = new int[11];
17 string output = "";
18
19 // increment the frequency for each response
20 for (int answer = 0; answer < responses.Length; answer++)
21 ++frequency[responses[answer]];
22
23 output += "Rating\tFrequency\n";
24
25 // output results
26 for (int rating = 1; rating < frequency.Length; rating++)
27 output += rating + "\t" + frequency[rating] + "\n";
28
29 MessageBox.Show(output, "Student poll program",
30 MessageBoxButtons.OK, MessageBoxIcon.Information);
31
32 } // end method Main
33
34 } // end class StudentPoll

Fig. 7.7 Simple student-poll analysis program.

Chapter 7 Arrays 249

The for loop (lines 20–21) takes the responses from the array response one at a
time and increments one of the 10 counters in the frequency array (frequency[1]
to frequency[10]). The key statement in the loop is on line 21, which increments
the appropriate counter in the frequency array, depending on the value of element
responses[answer].

Let us consider several iterations of the for loop. When counter answer is 0,
responses[answer] is the value of the first element of array responses (i.e., 1).
In this case, the program interprets ++frequency[responses[answer]]; as
++frequency[1];, which increments array element one. In evaluating the expression,
start with the value in the innermost set of square brackets (answer). Once you know the
value of answer, plug that value into the expression and evaluate the next outer set of
square brackets (responses[answer]). Use that value as the subscript for the fre-
quency array to determine which counter to increment.

When answer is 1, responses[answer] is the value of the second element of
array responses (i.e., 2), so the program interprets

++frequency[responses[answer]];

as ++frequency[2];, which increments array element two (the third element of the
array). When answer is 2, responses[answer] is the value of the third element of
array responses (i.e., 6), so the program interprets

++frequency[responses[answer]];

as ++frequency[6];, which increments array element six (the seventh element of the
array) and so on. Note that, regardless of the number of responses processed in the survey,
only an 11-element array is required (ignoring element zero) to summarize the results, be-
cause all the response values are between 1 and 10, and the subscript values for an 11-ele-
ment array are 0–10. The results are correct, because the elements of the frequency array
were initialized to zero when the array was allocated with new.

If the data contained invalid values, such as 13, the program would attempt to add 1 to
frequency[13]. This is outside the bounds of the array. In the C and C++ program-
ming languages, no checks are performed to prevent programs from reading data outside
the bounds of arrays. At execution time, the program would “walk” past the end of the array
to where element number 13 would be located and add 1 to whatever data are stored at that
location in memory. This could potentially modify another variable in the program or even
result in premature program termination. The .NET framework provides mechanisms to
prevent accessing elements outside the bounds of arrays.

Testing and Debugging Tip 7.1
When a C# program executes, array element subscripts are checked for validity (i.e., all sub-
scripts must be greater than or equal to 0 and less than the length of the array). 7.1

Testing and Debugging Tip 7.2
Exceptions indicate when errors occur in programs. Programmers can write code to recover
from exceptions and continue program execution instead of terminating the program abnor-
mally. When an invalid array reference occurs, C# generates an IndexOutOfRange-
Exception exception. We discuss exceptions in more detail in Chapter 11, Exception
Handling. 7.2

250 Arrays Chapter 7

Common Programming Error 7.4
Referring to an element outside the array bounds is a logic error. 7.4

Testing and Debugging Tip 7.3
When looping through an array, the array subscript never should go below 0 and should al-
ways be less than the total number of elements in the array (one less than the length of the
array). The loop-terminating condition should prevent accessing elements outside this range.7.3

Testing and Debugging Tip 7.4
Programs should validate the correctness of all input values to prevent erroneous infor-
mation from affecting a program’s calculations. 7.4

7.5 Passing Arrays to Methods
To pass an array argument to a method, specify the name of the array without using brack-
ets. For example, if array hourlyTemperatures declared as

int[] hourlyTemperatures = new int[24];

the method call

ModifyArray(hourlyTemperatures);

passes array hourlyTemperatures to method ModifyArray. Every array object
“knows” its own size (via the Length instance variable), so when we pass an array object
into a method, we do not pass the size of the array as an argument separately.

Although entire arrays are passed by reference, individual array elements of primitive
data types are passed by value, the same way as simple variables are. (The objects referred
to by individual elements of a nonprimitive-type array are still passed by reference.) Such
simple single pieces of data are sometimes called scalars or scalar quantities. To pass an
array element to a method, use the subscripted name of the array element as an argument
in the method call.

For a method to receive an array through a method call, the method’s parameter list
must specify that an array will be received. For example, the method header for method
ModifyArray might be written as

public void ModifyArray(int[] b)

indicating that ModifyArray expects to receive an integer array in parameter b. Arrays
are passed by reference; when the called method uses the array name b, it refers to the ac-
tual array in the caller (array hourlyTemperatures).

The application in Fig. 7.8 demonstrates the difference between passing an entire array
and passing an array element.

The for loop on lines 32–33 appends the five elements of integer array a to the Text
property of outputLabel. Line 33 invokes method ModifyArray and passes to it
array a. Method ModifyArray multiplies each element by 2. To illustrate that array a’s
elements were modified, the for loop on lines 41–42 appends the five elements of integer
array a to the Text property of outputLabel. As the screen capture indicates, the ele-
ments of a are modified by ModifyArray.

Chapter 7 Arrays 251

1 // Fig. 7.8: PassArray.cs
2 // Passing arrays and individual elements to methods.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class PassArray : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button showOutputButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code
16
17 [STAThread]
18 static void Main()
19 {
20 Application.Run(new PassArray());
21 }
22
23 private void showOutputButton_Click(object sender,
24 System.EventArgs e)
25 {
26 int[] a = { 1, 2, 3, 4, 5 };
27
28 outputLabel.Text = "Effects of passing entire array " +
29 "call-by-reference:\n\nThe values of the original " +
30 "array are:\n\t";
31
32 for (int i = 0; i < a.Length; i++)
33 outputLabel.Text += " " + a[i];
34
35 ModifyArray(a); // array is passed by reference
36
37 outputLabel.Text +=
38 "\n\nThe values of the modified array are:\n\t";
39
40 // display elements of array a
41 for (int i = 0; i < a.Length; i++)
42 outputLabel.Text += " " + a[i];
43
44 outputLabel.Text += "\n\nEffects of passing array " +
45 "element call-by-value:\n\na[3] before " +
46 "ModifyElement: " + a[3];
47
48 // array element passed call-by-value
49 ModifyElement(a[3]);
50
51 outputLabel.Text +=
52 "\na[3] after ModifyElement: " + a[3];
53 }

Fig. 7.8 Passing arrays and individual array elements to methods. (Part 1 of 2.)

252 Arrays Chapter 7

To show the value of a[3] before the call to ModifyElement, lines 44–46 append
the value of a[3] (and other information) to outputLabel.Text. Line 44 invokes
method ModifyElement and passes a[3]. Remember that a[3] is a single int
value in the array a. Also, remember that values of primitive types always are passed to
methods by value. Therefore, a copy of a[3] is passed. Method ModifyElement mul-
tiplies its argument by 2 and stores the result in its parameter e. The parameter of Modi-
fyElement is a local variable, so when the method terminates, the local variable is
destroyed. Thus, when control is returned to PassArray, the unmodified value of a[3]
is appended to the outputLabel.Text (line 51–52).

54
55 // method modifies the array it receives,
56 // original will be modified
57 public void ModifyArray(int[] b)
58 {
59 for (int j = 0; j < b.Length; j++)
60 b[j] *= 2;
61 }
62
63 // method modifies the integer passed to it
64 // original will not be modified
65 public void ModifyElement(int e)
66 {
67 outputLabel.Text +=
68 "\nvalue received in ModifyElement: " + e;
69
70 e *= 2;
71
72 outputLabel.Text +=
73 "\nvalue calculated in ModifyElement: " + e;
74 }
75 }

Fig. 7.8 Passing arrays and individual array elements to methods. (Part 2 of 2.)

Chapter 7 Arrays 253

7.6 Passing Arrays by Value and by Reference
In C#, a variable that “stores” an object, such as an array, does not actually store the object
itself. Instead, such a variable stores a reference to the object (i.e., the location in the com-
puter’s memory where the object itself is stored). The distinction between reference vari-
ables and primitive data type variables raises some subtle issues that programmers must
understand to create secure, stable programs.

When a program passes an argument to a method, the called method receives a copy
of that argument’s value. Changes to the local copy do not affect the original variable that
the program passed to the method. If the argument is of a reference type, the method makes
a local copy of the reference itself, not a copy of the actual object to which the reference
refers. The local copy of the reference also refers to the original object in memory. Thus,
reference types are always passed by reference, which means that changes to those objects
in called methods affect the original objects in memory.

Performance Tip 7.1
Passing arrays and other objects by reference makes sense for performance reasons. If ar-
rays were passed by value, a copy of each element would be passed. For large, frequently
passed arrays, this would waste time and would consume considerable storage for the copies
of the arrays—both of these problems cause poor performance. 7.1

C# also allows methods to pass references with keyword ref. This is a subtle capability,
which, if misused, can lead to problems. For instance, when a reference-type object like an
array is passed with ref, the called method actually gains control over the passed reference
itself, allowing the called method to replace the original reference in the caller with a different
object or even with null. Such behavior can lead to unpredictable effects, which can be
disastrous in mission-critical applications. The program in Fig. 7.9 demonstrates the subtle
difference between passing a reference by value and passing a reference with keyword ref.

Lines 26 and 29 declare two integer array variables, firstArray and firstArray-
Copy (we make the copy so we can determine whether reference firstArray gets over-
written). Line 26 initializes firstArray with the values 1, 2 and 3. The assignment
statement on line 29 copies reference firstArray to variable firstArrayCopy,
causing these variables to reference the same array object in memory. The for structure on
lines 38–39 prints the contents of firstArray before it is passed to method First-
Double (line 42) so we can verify that this array is passed by reference (i.e., the called
method indeed changes the array’s contents).

The for structure in method FirstDouble (lines 99–100) multiplies the values of
all the elements in the array by 2. Line 103 allocates a new array containing the values 11,
12 and 13; the reference for this array then is assigned to parameter array (in an attempt
to overwrite reference firstArray—this, of course, will not happen, because the refer-
ence was passed by value). After method FirstDouble executes, the for structure on
lines 48–49 prints the contents of firstArray, demonstrating that the values of the ele-
ments have been changed by the method (and confirming that in C# arrays are always
passed by reference). The if/else structure on lines 52–57 uses the == operator to com-
pare references firstArray (which we just attempted to overwrite) and firstAr-
rayCopy. The expression on line 40 evaluates to true if the operands to binary operator
== indeed reference the same object. In this case, the object represented is the array allo-
cated in line 26—not the array allocated in method FirstDouble (line 103).

254 Arrays Chapter 7

1 // Fig. 7.9: ArrayReferenceTest.cs
2 // Testing the effects of passing array references
3 // by value and by reference.
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class ArrayReferenceTest : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Label outputLabel;
14 private System.Windows.Forms.Button showOutputButton;
15
16 [STAThread]
17 static void Main()
18 {
19 Application.Run(new ArrayReferenceTest());
20 }
21
22 private void showOutputButton_Click(object sender,
23 System.EventArgs e)
24 {
25 // create and initialize firstArray
26 int[] firstArray = { 1, 2, 3 };
27
28 // copy firstArray reference
29 int[] firstArrayCopy = firstArray;
30
31 outputLabel.Text =
32 "Test passing firstArray reference by value";
33
34 outputLabel.Text += "\n\nContents of firstArray " +
35 "before calling FirstDouble:\n\t";
36
37 // print contents of firstArray
38 for (int i = 0; i < firstArray.Length; i++)
39 outputLabel.Text += firstArray[i] + " ";
40
41 // pass reference firstArray by value to FirstDouble
42 FirstDouble(firstArray);
43
44 outputLabel.Text += "\n\nContents of firstArray after " +
45 "calling FirstDouble\n\t";
46
47 // print contents of firstArray
48 for (int i = 0; i < firstArray.Length; i++)
49 outputLabel.Text += firstArray[i] + " ";
50

Fig. 7.9 Passing an array reference by value and by reference (Part 1 of 3.).

Chapter 7 Arrays 255

51 // test whether reference was changed by FirstDouble
52 if (firstArray == firstArrayCopy)
53 outputLabel.Text +=
54 "\n\nThe references refer to the same array\n";
55 else
56 outputLabel.Text +=
57 "\n\nThe references refer to different arrays\n";
58
59 // create and initialize secondArray
60 int[] secondArray = { 1, 2, 3 };
61
62 // copy secondArray reference
63 int[] secondArrayCopy = secondArray;
64
65 outputLabel.Text += "\nTest passing secondArray " +
66 "reference by reference";
67
68 outputLabel.Text += "\n\nContents of secondArray " +
69 "before calling SecondDouble:\n\t";
70
71 // print contents of secondArray before method call
72 for (int i = 0; i < secondArray.Length; i++)
73 outputLabel.Text += secondArray[i] + " ";
74
75 SecondDouble(ref secondArray);
76
77 outputLabel.Text += "\n\nContents of secondArray " +
78 "after calling SecondDouble:\n\t";
79
80 // print contents of secondArray after method call
81 for (int i = 0; i < secondArray.Length; i++)
82 outputLabel.Text += secondArray[i] + " ";
83
84 // test whether reference was changed by SecondDouble
85 if (secondArray == secondArrayCopy)
86 outputLabel.Text +=
87 "\n\nThe references refer to the same array\n";
88 else
89 outputLabel.Text +=
90 "\n\nThe references refer to different arrays\n";
91
92 } // end method showOutputButton_Click
93
94 // modify elements of array and attempt to modify
95 // reference
96 void FirstDouble(int[] array)
97 {
98 // double each element's value
99 for (int i = 0; i < array.Length; i++)
100 array[i] *= 2;
101

Fig. 7.9 Passing an array reference by value and by reference (Part 2 of 3.).

256 Arrays Chapter 7

Lines 60–90 perform similar tests, using array variables secondArray and sec-
ondArrayCopy and method SecondDouble (lines 108–116). Method Second-
Double performs the same operations as FirstDouble, but receives its array argument
using keyword ref. In this case, the reference stored in secondArray after the method
call is a reference to the array allocated on line 115 of SecondDouble, demonstrating
that a reference passed with keyword ref can be modified by the called method so that the
reference actually points to a different object, in this case an array allocated in procedure
SecondDouble. The if/else structure in lines 85–90 demonstrates that second-
Array and secondArrayCopy no longer refer to the same array.

102 // create new reference and assign it to array
103 array = new int[] { 11, 12, 13 };
104 }
105
106 // modify elements of array and change reference array
107 // to refer to a new array
108 void SecondDouble(ref int[] array)
109 {
110 // double each element's value
111 for (int i = 0; i < array.Length; i++)
112 array[i] *= 2;
113
114 // create new reference and assign it to array
115 array = new int[] { 11, 12, 13 };
116 }
117 }

Fig. 7.9 Passing an array reference by value and by reference (Part 3 of 3.).

Chapter 7 Arrays 257

Software Engineering Observation 7.1
When a method receives a reference-type object parameter by value, the object is not passed
by value—the object still passes by reference. Rather, the object’s reference is passed by val-
ue. This prevents a method from overwriting references passed to that method. In the vast
majority of cases, protecting the caller’s reference from modification is the desired behavior.
If you encounter a situation where you truly want the called procedure to modify the caller’s
reference, pass the reference-type using keyword ref—but, again, such situations are rare. 7.1

Software Engineering Observation 7.2
In C#, reference-type objects (including arrays) always pass by reference. So, a called pro-
cedure receiving a reference to an object in a caller can change the caller’s object. 7.2

7.7 Sorting Arrays
Sorting data (i.e., arranging the data into some particular order, such as ascending or de-
scending) is one of the most important computing applications. A bank sorts all checks by
account number so that it can prepare individual bank statements at the end of each month.
Telephone companies sort their lists of accounts by last name, and within that, by first name
to make it easy to find phone numbers. Virtually every organization must sort some data,
and in many cases, massive amounts of it. Sorting data is an intriguing problem that has
attracted some of the most intense research efforts in the computer science field. In this sec-
tion, we discuss one of the simplest sorting schemes. In the exercises, we investigate more
sophisticated sorting algorithms.

Performance Tip 7.2
Sometimes, the simplest algorithms perform poorly. Their virtue is that they are easy to write,
test and debug. Complex algorithms sometimes are needed to realize maximum performance
of a program. 7.2

Figure 7.10 sorts the values of the 10-element array a into ascending order. The tech-
nique we use is called the bubble sort, because smaller values gradually “bubble” their way
to the top of the array (i.e., toward the first element) like air bubbles rising in water. The
technique sometimes is called the sinking sort, because the larger values sink to the bottom
of the array. Bubble sort uses nested loops to make several passes through the array. Each
pass compares successive pairs of elements. If a pair is in increasing order (or the values
are equal), the values remain in the same order. If a pair is in decreasing order, the bubble
sort swaps the values in the array. The program contains methods Main, BubbleSort
and Swap. Method sortButton_Click (lines 23–41) creates array a, invokes Bub-
bleSort and displays output. Line 34 of sortButton_Click invokes method Bub-
bleSort (lines 44–52) to sort array a. Line 51 in method BubbleSort calls method
Swap (lines 55–62) to exchange two elements of the array.

1 // Fig. 7.10: BubbleSorter.cs
2 // Sorting an array's values into ascending order.
3 using System;
4 using System.Drawing;
5 using System.Collections;

Fig. 7.10 Sorting an array with bubble sort. (Part 1 of 3.)

258 Arrays Chapter 7

6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class BubbleSorter : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button sortButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code
16
17 [STAThread]
18 static void Main()
19 {
20 Application.Run(new BubbleSorter());
21 }
22
23 private void sortButton_Click(object sender,
24 System.EventArgs e)
25 {
26 int[] a = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
27
28 outputLabel.Text = "Data items in original order\n";
29
30 for (int i = 0; i < a.Length; i++)
31 outputLabel.Text += " " + a[i];
32
33 // sort elements in array a
34 BubbleSort(a);
35
36 outputLabel.Text += "\n\nData items in ascending order\n";
37
38 for (int i = 0; i < a.Length; i++)
39 outputLabel.Text += " " + a[i];
40
41 } // end method sortButton_Click
42
43 // sort the elements of an array with bubble sort
44 public void BubbleSort(int[] b)
45 {
46 for (int pass = 1; pass < b.Length; pass++) // passes
47
48 for (int i = 0; i < b.Length - 1; i++) // one pass
49
50 if (b[i] > b[i + 1]) // one comparison
51 Swap(b, i); // one swap
52 }
53
54 // swap two elements of an array
55 public void Swap(int[] c, int first)
56 {
57 int hold; // temporary holding area for swap
58

Fig. 7.10 Sorting an array with bubble sort. (Part 2 of 3.)

Chapter 7 Arrays 259

Method BubbleSort receives the array as parameter b. The nested for loop on lines
46–51 performs the sort. The outer loop controls the number of passes of the array. The inner
loop controls the comparisons and necessary swapping of the elements during each pass.

Method BubbleSort first compares b[0] to b[1], then b[1] to b[2], then
b[2] to b[3] and so on, until it completes the pass by comparing b[8] to b[9].
Although there are 10 elements, the comparison loop performs only nine comparisons. As
a result of the way the successive comparisons are made, a large value may move down the
array (sink) many positions (and sometimes all the way to the bottom of the array) on a
single pass. However, a small value may move up (bubble) only one position. On the first
pass, the largest value is guaranteed to sink to the bottom element of the array, b[9]. On
the second pass, the second largest value is guaranteed to sink to b[8]. On the ninth pass,
the ninth largest value sinks to b[1]. This leaves the smallest value in b[0], so only
nine passes are needed to sort a 10-element array.

If a comparison reveals that the two elements appear in descending order, BubbleSort
calls Swap to exchange the two elements so they will be in ascending order in the array.
Method Swap receives a reference to the array (which it calls c) and one integer representing
the subscript of the first element of the array to be exchanged. Three assignments on lines 59–
61 perform the exchange, where the extra variable hold temporarily stores one of the two
values being swapped. The swap cannot be performed with only the two assignments

c[first] = c[first + 1];
c[first + 1] = c[first];

If c[first] is 7 and c[first + 1] is 5, after the first assignment, both elements of
the array contain 5 and the value 7 is lost—hence, the need for the extra variable hold.

The advantage of the bubble sort is that it is easy to program. However, the bubble sort
runs slowly, which becomes apparent when sorting large arrays. More advanced courses
(often titled “Data Structures” or “Algorithms” or “Computational Complexity”) investi-
gate sorting and searching in greater depth. Note that the .NET framework includes a built-
in array-sorting capability that implements a high-speed sort. To sort the array a in
Fig. 7.10, you can use the statement

Array.Sort(a);

59 hold = c[first];
60 c[first] = c[first + 1];
61 c[first + 1] = hold;
62 }
63 }

Fig. 7.10 Sorting an array with bubble sort. (Part 3 of 3.)

260 Arrays Chapter 7

7.8 Searching Arrays: Linear Search and Binary Search
Often, programmers work with large amounts of data stored in arrays. It might be necessary
in this case to determine whether an array contains a value that matches a certain key value.
The process of locating a particular element value in an array is called searching. In this
section, we discuss two searching techniques—the simple linear search technique and the
more efficient binary search technique. Exercises 7.8 and 7.9 at the end of this chapter ask
you to implement recursive versions of the linear and binary search.

7.8.1 Searching an Array with Linear Search
In the program in Fig. 7.11, method LinearSearch (defined on lines 44–54) uses a for
structure containing an if structure to compare each element of an array with a search key
(line 44). If the search key is found, the method returns the subscript value for the element
to indicate the exact position of the search key in the array. If the search key is not found,
the method returns –1. (The value –1 is a good choice because it is not a valid subscript
number.) If the elements of the array being searched are not in any particular order, it is just
as likely that the value will be found in the first element as in the last. On average, the pro-
gram will have to compare the search key with half the elements of the array. The program
contains a 100-element array filled with the even integers from 0–198. The user types the
search key in a TextBox (called inputTextBox) and clicks the findButton to start
the search. [Note: The array is passed to LinearSearch even though the array is an in-
stance variable of the class. This is done because an array normally is passed to a method
of another class for searching.]

1 // Fig. 7.11: LinearSearcher.cs
2 // Demonstrating linear searching of an array.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class LinearSearcher : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button searchButton;
13 private System.Windows.Forms.TextBox inputTextBox;
14 private System.Windows.Forms.Label outputLabel;
15
16 int[] a = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
17 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 };
18
19 // Visual Studio .NET generated code
20
21 [STAThread]
22 static void Main()
23 {

Fig. 7.11 Linear search of an array. (Part 1 of 2.)

Chapter 7 Arrays 261

7.8.2 Searching a Sorted Array with Binary Search

The linear search method works well for small or unsorted arrays. However, for large ar-
rays, linear searching is inefficient. If the array is sorted, the high-speed binary search tech-
nique can be used. The binary search algorithm eliminates half of the elements in the array
being searched after each comparison. The algorithm locates the middle array element and
compares it with the search key. If they are equal, the search key has been found, and the
subscript of that element is returned. Otherwise, the problem is reduced to searching half
of the array. If the search key is less than the middle array element, the first half of the array
is searched; otherwise, the second half of the array is searched. If the search key is not the
middle element in the specified subarray (a piece of the original array), the algorithm is re-

24 Application.Run(new LinearSearcher());
25 }
26
27 private void searchButton_Click(object sender,
28 System.EventArgs e)
29 {
30 int searchKey = Int32.Parse(inputTextBox.Text);
31
32 int elementIndex = LinearSearch(a, searchKey);
33
34 if (elementIndex != -1)
35 outputLabel.Text =
36 "Found value in element " + elementIndex;
37
38 else
39 outputLabel.Text = "Value not found";
40
41 } // end method searchButton_Click
42
43 // search array for the specified key value
44 public int LinearSearch(int[] array, int key)
45 {
46 for (int n = 0; n < array.Length; n++)
47 {
48 if (array[n] == key)
49 return n;
50 }
51
52 return -1;
53
54 } // end method LinearSearch
55 }

Fig. 7.11 Linear search of an array. (Part 2 of 2.)

262 Arrays Chapter 7

peated in one quarter of the original array. The search continues until the search key is equal
to the middle element of a subarray, or until the subarray consists of one element that is not
equal to the search key (i.e., the search key is not found).

In a worst-case scenario, searching an array of 1024 elements will take only 10 com-
parisons by using a binary search. Repeatedly dividing 1024 by 2 (after each comparison
we eliminate from consideration half the array) yields the values 512, 256, 128, 64, 32, 16,
8, 4, 2 and 1. The number 1024 (210) is divided by 2 only ten times to get the value 1.
Dividing by 2 is equivalent to one comparison in the binary search algorithm. An array of
1,048,576 (220) elements takes a maximum of 20 comparisons to find the key. An array of
one billion elements takes a maximum of 30 comparisons to find the key. This is a tremen-
dous increase in performance over the linear search, which required comparing the search
key with an average of half the elements in the array. For a one-billion-element array, the
difference is between an average of 500 million comparisons and a maximum of 30 com-
parisons! The maximum number of comparisons needed for the binary search of any sorted
array is the exponent of the first power of 2 greater than the number of elements in the array.

Figure 7.12 presents the iterative version of method BinarySearch (lines 59–85).
The method receives two arguments—an integer array called array (the array to search) and
an integer key (the search key). The array is passed to BinarySearch even though the
array is an instance variable of the class. Once again, this is done because an array normally
is passed to a method of another class for searching. Line 67 calculates the middle element of
the array being searched by determining the number of elements in the array and dividing this
value by 2. Recall that using the / operator with integers performs an integer division, which
truncates the result. So, when there is an even number of elements in the array there is no
“middle” element—the middle of our array is actually between two elements. When this
occurs, the calculation on line 67 returns the smaller index of the two middle elements.

1 // Fig. 7.12: BinarySearchTest.cs
2 // Demonstrating a binary search of an array.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class BinarySearchTest : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Label promptLabel;
14
15 private System.Windows.Forms.TextBox inputTextBox;
16
17 private System.Windows.Forms.Label resultLabel;
18 private System.Windows.Forms.Label displayLabel;
19 private System.Windows.Forms.Label outputLabel;
20
21 private System.Windows.Forms.Button findButton;
22

Fig. 7.12 Binary search of a sorted array. (Part 1 of 4.)

Chapter 7 Arrays 263

23 private System.ComponentModel.Container components = null;
24
25 int[] a = { 0, 2, 4, 6, 8, 10, 12, 14, 16,
26 18, 20, 22, 24, 26, 28 };
27
28 // Visual Studio .NET generated code
29
30 // main entry point for application
31 [STAThread]
32 static void Main()
33 {
34 Application.Run(new BinarySearchTest());
35 }
36
37 // searches for an element by calling
38 // BinarySearch and displaying results
39 private void findButton_Click(object sender,
40 System.EventArgs e)
41 {
42 int searchKey = Int32.Parse(inputTextBox.Text);
43
44 // initialize display string for the new search
45 outputLabel.Text = "Portions of array searched\n";
46
47 // perform the binary search
48 int element = BinarySearch(a, searchKey);
49
50 if (element != -1)
51 displayLabel.Text = "Found value in element " +
52 element;
53 else
54 displayLabel.Text = "Value not found";
55
56 } // end findButton_Click
57
58 // searchs array for specified key
59 public int BinarySearch(int[] array, int key)
60 {
61 int low = 0; // low subscript
62 int high = array.Length - 1; // high subscript
63 int middle; // middle subscript
64
65 while (low <= high)
66 {
67 middle = (low + high) / 2;
68
69 // the following line displays the portion
70 // of the array currently being manipulated during
71 // each iteration of the binary search loop
72 BuildOutput(a, low, middle, high);
73
74 if (key == array[middle]) // match
75 return middle;

Fig. 7.12 Binary search of a sorted array. (Part 2 of 4.)

264 Arrays Chapter 7

76 else if (key < array[middle])
77 high = middle - 1; // search low end of array
78 else
79 low = middle + 1;
80
81 } // end BinarySearch
82
83 return -1; // search key not found
84
85 } // end method BinarySearch
86
87 public void BuildOutput(
88 int[] array, int low, int mid, int high)
89 {
90 for (int i = 0; i < array.Length; i++)
91 {
92 if (i < low || i > high)
93 outputLabel.Text += " ";
94
95 // mark middle element in output
96 else if (i == mid)
97 outputLabel.Text +=
98 array[i].ToString("00") + "* ";
99 else
100 outputLabel.Text +=
101 array[i].ToString("00") + " ";
102 }
103
104 outputLabel.Text += "\n";
105
106 } // end BuildOutput
107
108 } // end class BinarySearchTest

Fig. 7.12 Binary search of a sorted array. (Part 3 of 4.)

Chapter 7 Arrays 265

If key matches the middle element of a subarray (line 74), BinarySearch returns
middle (the subscript of the current element), indicating that the value was found and the
search is complete. If key does not match the middle element of a subarray, Binary-
Search adjusts the low subscript or high subscript (both declared in the method) so that
a smaller subarray can be searched. If key is less than the middle element (line 76), the
high subscript is set to middle - 1, and the search continues on the elements from low
to middle - 1. If key is greater than the middle element (line 78), the low subscript is
set to middle + 1, and the search continues on the elements from middle + 1 to high.
These comparisons occur in the nested if/else structure on lines 74–79.

The program uses a 15-element array. The first power of 2 greater than the number of
array elements is 16 (24)—so at most four comparisons are required to find the key. To
illustrate this concept, method BinarySearch calls method BuildOutput (lines 87–
106) to output each subarray during the binary search process. BuildOutput marks the
middle element in each subarray with an asterisk (*) to indicate the element with which the
key is compared. Each search in this example results in a maximum of four lines of
output—one per comparison. Note that the .NET framework includes a built-in array-
searching capability that implements the binary-search algorithm. To search for the key 7
in the sorted array a in Fig. 7.12, you can use the statement

Array.BinarySearch(a, 7);

7.9 Multiple-Subscripted Arrays
So far we have studied single-subscripted (or one-dimensional) arrays—i.e., those that con-
tain single lists of values. In this section, we introduce multiple-subscripted (often called mul-
tidimensional) arrays. Such arrays require two or more subscripts to identify particular
elements. Arrays that require two subscripts to identify a particular element commonly are
called double-subscripted arrays. We concentrate on double-subscripted arrays (often called
two-dimensional arrays). There are two types of multiple-subscripted arrays—rectangular
and jagged. Rectangular arrays with two subscripts often represent tables of values consisting
of information arranged in rows and columns, where each row is the same size, and each col-
umn is the same size. To identify a particular table element, we must specify the two sub-
scripts—by convention, the first identifies the element’s row and the second identifies the
element’s column. Multiple-subscripted arrays can have more than two subscripts.
Figure 7.13 illustrates a double-subscripted array, a, containing three rows and four columns
(i.e., a 3-by-4 array). An array with m rows and n columns is called an m-by-n array.

Fig. 7.12 Binary search of a sorted array. (Part 4 of 4.)

266 Arrays Chapter 7

Every element in array a is identified in Fig. 7.13 by an element name of the form
a[i , j], in which a is the name of the array, and i and j are the subscripts that uniquely
identify the row and column of each element in a. Notice that the names of the elements in
the first row all have a first subscript of 0; the names of the elements in the fourth column
all have a second subscript of 3.

Multiple-subscripted arrays can be initialized in declarations like single-subscripted
arrays. A double-subscripted array b with two rows and two columns could be declared and
initialized with

int[,] b = new int[2, 2];

b[0, 0] = 1;
b[0, 1] = 2;
b[1, 0] = 3;
b[1, 1] = 4;

or this can be written on one line using an initializer list as shown below:

int[,] b = { { 1, 2 }, { 3, 4 } };

The values are grouped by row in braces. Thus, 1 and 2 initialize b[0 , 0] and
b[0 , 1], and 3 and 4 initialize b[1 , 0] and b[1 , 1]. The compiler determines
the number of rows by counting the number of sub-initializer lists (represented by sets of
braces) in the main initializer list. The compiler determines the number of columns in each
row by counting the number of initializer values in the sub-initializer list for that row.
Method GetLength returns the length of a particular array dimension. In the preceding
example, b.GetLength(0) returns the length of the zeroth dimension of b, which is 2.

Jagged arrays are maintained as arrays of arrays. Unlike in rectangular arrays, the
arrays that compose jagged arrays can be of different lengths. The declaration

int[][] c = new int[2][]; // allocate rows

// allocate and initialize elements in row 0
c[0] = new int[] { 1, 2 };

Fig. 7.13 Double-subscripted array with three rows and four columns.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Column index (or subscript)

Row index (or subscript)

Array name

a[1, 0] a[1, 1] a[1, 2] a[1, 3]

a[0, 0] a[0, 1] a[0, 2] a[0, 3]

a[2, 0] a[2, 1] a[2, 2] a[2, 3]

Chapter 7 Arrays 267

// allocate and initialize elements in row 0
c[1] = new int[] { 3, 4, 5 };

creates integer array c with row 0 (which is an array itself) containing two elements (1 and
2), and row 1 containing three elements (3, 4 and 5). The Length property of each sub-
array can be used to determine the size of each column. For the jagged array c, the size of
the zeroth column is c[0].Length, which is 2.

The application in Fig. 7.14 demonstrates the initialization of double-subscripted
arrays in declarations and the use of nested for loops to traverse the arrays (i.e., to manip-
ulate each array element).

1 // Fig. 7.14: TwoDimensionalArrays.cs
2 // Initializing two-dimensional arrays.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class TwoDimensionalArrays : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button showOutputButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 // Visual Studio .NET generated code
16
17 [STAThread]
18 static void Main()
19 {
20 Application.Run(new TwoDimensionalArrays());
21 }
22
23 private void showOutputButton_Click(object sender,
24 System.EventArgs e)
25 {
26 // declaration and initialization of rectangular array
27 int[,] array1 = new int[,] { { 1, 2, 3 }, { 4, 5, 6 } };
28
29 // declaration and initialization of jagged array
30 int[][] array2 = new int[3][];
31 array2[0] = new int[] { 1, 2 };
32 array2[1] = new int[] { 3 };
33 array2[2] = new int[] { 4, 5, 6 };
34
35 outputLabel.Text = "Values in array1 by row are\n";
36
37 // output values in array1
38 for (int i = 0; i < array1.GetLength(0); i++)
39 {
40 for (int j = 0; j < array1.GetLength(1); j++)
41 outputLabel.Text += array1[i, j] + " ";

Fig. 7.14 Initializing multidimensional arrays. (Part 1 of 2.)

268 Arrays Chapter 7

The declaration of array1 (line 27) provides six initializers in two sublists. The first
sublist initializes the first row of the array to the values 1, 2 and 3. The second sublist ini-
tializes the second row of the array to the values 4, 5 and 6. The declaration of array2
(line 30) creates a jagged array of 3 arrays (specified by the 3 in the first set of square
brackets). Lines 31–33 initialize each subarray so that the first subarray contains the values
1 and 2, the second contains the value 3 and the last contains the values 4, 5 and 6.

The for structure on lines 38–44 appends the elements of array1 to string
output. Note the use of a nested for structure to output the rows of each double-sub-
scripted array. In the nested for structures for array1, we use method GetLength to
determine the number of elements in each dimension of the array. Line 38 determines the
number of rows in the array by invoking array1.GetLength(0), and line 40 deter-
mines the number of columns in the array by invoking array1.GetLength(1).
Arrays with additional dimensions would require more deeply nested for loops to process.

The nested for structures on lines 49–55 output the elements of jagged array
array2. Recall that a jagged array is essentially an array that contains additional arrays
as its elements. Line 49 uses the Length property of array2 to determine the number of
rows in the jagged array. Line 51 determines the Length of each subarray with the expres-
sion array2[i].Length.

Many common array manipulations use for repetition structures. For the remainder
of this section, we will focus on manipulations of jagged arrays. Imagine a jagged array a,

42
43 outputLabel.Text += "\n";
44 }
45
46 outputLabel.Text += "\nValues in array2 by row are\n";
47
48 // output values in array2
49 for (int i = 0; i < array2.Length; i++)
50 {
51 for (int j = 0; j < array2[i].Length; j++)
52 outputLabel.Text += array2[i][j] + " ";
53
54 outputLabel.Text += "\n";
55 }
56
57 } // end method showOutputButton_Click
58 }

Fig. 7.14 Initializing multidimensional arrays. (Part 2 of 2.)

Chapter 7 Arrays 269

which contains 3 rows, or arrays. The following for structure sets all the elements in the
third row of array a to zero:

for (int col = 0; col < a[2].Length; col++)
 a[2][col] = 0;

We specified the third row; therefore, we know that the first subscript is always 2 (0 is the
first row and 1 is the second row). The for loop varies only the second subscript (i.e., the
column subscript). Notice the use of a[2].Length in the for structure’s conditional ex-
pression. This statement demonstrates that each row of a is an array in itself, and therefore
the program can access a typical array’s properties, such as Length. Assuming the length of
array a[2] is 4, the preceding for structure is equivalent to the assignment statements

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

The following nested for structure determines the total of all the elements in array a. We
use a.Length in the conditional expression of the outer for structure to determine the
number of rows in a, in this case, 3.

int total = 0;

for (int row = 0; row < a.Length; row++)

for (int col = 0; col < a[row].Length; col++)
 total += a[row][col];

The for structure totals the elements of the array one row at a time. The outer for struc-
ture begins by setting the row subscript to 0, so the elements of the first row may be totaled
by the inner for structure. Then the outer for structure increments row to 1, so the sec-
ond row can be totaled. Finally, the outer for structure increments row to 2, so the third
row can be totaled. The result can be displayed when the nested for structure terminates.

The program in Fig. 7.15 performs several other array manipulations on 3-by-4 array
grades. Each row of the array represents a student, and each column represents a grade
on one of the four exams that the student took during the semester. The array manipulations
are performed by four methods. Method Minimum (lines 64–76) determines the lowest
grade of any student for the semester. Method Maximum (lines 79–91) determines the
highest grade of any student for the semester. Method Average (lines 94–102) determines
a particular student’s semester average.

Methods Minimum and Maximum use array grades and the variables students
(number of rows in the array) and exams (number of columns in the array). Each method
loops through array grades by using nested for structures. Consider the nested for
structure from method Minimum (lines 68–73). The outer for structure sets i (i.e., the
row subscript) to 0 so the elements of the first row can be compared with variable low-
Grade in the body of the inner for structure. The inner for structure loops through the
four grades of a particular row and compares each grade with lowGrade. If a grade is less
than lowGrade, then lowGrade is set to that grade. The outer for structure then incre-
ments the row subscript by 1. The elements of the second row are compared with variable
lowGrade. The outer for structure then increments the row subscript to 2. The elements

270 Arrays Chapter 7

1 // Fig. 7.15: DoubleArray.cs
2 // Manipulating a double-subscripted array.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class DoubleArray : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Button showOutputButton;
13 private System.Windows.Forms.Label outputLabel;
14
15 int[][] grades;
16 int students, exams;
17
18 // Visual Studio .NET generated code
19
20 [STAThread]
21 static void Main()
22 {
23 Application.Run(new DoubleArray());
24 }
25
26 private void showOutputButton_Click(object sender,
27 System.EventArgs e)
28
29 {
30 grades = new int[3][];
31 grades[0] = new int[]{ 77, 68, 86, 73 };
32 grades[1] = new int[]{ 96, 87, 89, 81 };
33 grades[2] = new int[]{ 70, 90, 86, 81 };
34
35 students = grades.Length; // number of students
36 exams = grades[0].Length; // number of exams
37
38 // line up column headings
39 outputLabel.Text = " ";
40
41 // output the column headings
42 for (int i = 0; i < exams; i++)
43 outputLabel.Text += "[" + i + "] ";
44
45 // output the rows
46 for (int i = 0; i < students; i++)
47 {
48 outputLabel.Text += "\ngrades[" + i + "] ";
49
50 for (int j = 0; j < exams; j++)
51 outputLabel.Text += grades[i][j] + " ";
52 }

Fig. 7.15 Example using double-subscripted arrays. (Part 1 of 3.)

Chapter 7 Arrays 271

53
54 outputLabel.Text += "\n\nLowest grade: " + Minimum() +
55 "\nHighest grade: " + Maximum() + "\n";
56
57 for (int i = 0; i < students; i++)
58 outputLabel.Text += "\nAverage for student " + i + " is " +
59 Average(grades[i]);
60
61 } // end method showOutputButton_Click
62
63 // find minimum grade in grades array
64 public int Minimum()
65 {
66 int lowGrade = 100;
67
68 for (int i = 0; i < students; i++)
69
70 for (int j = 0; j < exams; j++)
71
72 if (grades[i][j] < lowGrade)
73 lowGrade = grades[i][j];
74
75 return lowGrade;
76 }
77
78 // find maximum grade in grades array
79 public int Maximum()
80 {
81 int highGrade = 0;
82
83 for (int i = 0; i < students; i++)
84
85 for (int j = 0; j < exams; j++)
86
87 if (grades[i][j] > highGrade)
88 highGrade = grades[i][j];
89
90 return highGrade;
91 }
92
93 // determine average grade for a particular student
94 public double Average(int[] setOfGrades)
95 {
96 int total = 0;
97
98 for (int i = 0; i < setOfGrades.Length; i++)
99 total += setOfGrades[i];
100
101 return (double) total / setOfGrades.Length;
102 }
103
104 } // end class DoubleArray

Fig. 7.15 Example using double-subscripted arrays. (Part 2 of 3.)

272 Arrays Chapter 7

of the third row are compared with variable lowGrade. When execution of the nested
structure is complete, lowGrade contains the smallest grade in the double-subscripted
array. Method Maximum works similarly to method Minimum.

Method Average takes one argument—a single-subscripted array of test results for a
particular student. When Average is called (line 59), the argument grades[i] speci-
fies that a particular row of the double-subscripted array grades is to be passed to
Average. For example, the argument grades[1] represents the four values (a single-
subscripted array of grades) stored in the second row of the double-subscripted array
grades. Remember that a jagged two-dimensional array is an array with elements that are
single-subscripted arrays. Method Average calculates the sum of the array elements,
divides the total by the number of test results and then returns the floating-point result cast
as a double value (line 101).

7.10 foreach Repetition Structure
C# provides the foreach retition structure for iterating through values in data structures,
such as arrays. When used with one-dimensional arrays, foreach behaves like a for
structure that iterates through the range of indices from 0 to the array’s Length. Instead
of a counter, foreach uses a variable to represent the value of each element. The program
in Fig. 7.16 uses the foreach structure to determine the minimum value in a two-dimen-
sional array of grades.

1 // Fig. 7.16: ForEach.cs
2 // Demonstrating for/each structure.
3 using System;
4
5 class ForEach
6 {
7 // main entry point for the application
8 static void Main(string[] args)
9 {

Fig. 7.16 Using For Each/Next with an array. (Part 1 of 2.)

Fig. 7.15 Example using double-subscripted arrays. (Part 3 of 3.)

Chapter 7 Arrays 273

The header of the foreach structure (line 15) specifies a variable, grade, and an
array, gradeArray. The foreach structure iterates through all elements in grade-
Array, sequentially assigning each value to variable grade. Line 15 compares each
value to variable lowGrade, which stores the lowest grade in the array.

For rectangular arrays, the repetition of the foreach structure begins with the ele-
ment whose indices are all zero, then iterates through all possible combinations of indices,
incrementing the rightmost index first. When the rightmost index reaches its upper bound,
it is reset to zero, and the index to the left of it is incremented by 1. In this case, grade
takes the values as they are ordered in the initializer list in lines 10–11. When all the grades
have been processed, lowGrade is displayed (line 21).

Although many array calculations are handled best with a counter, foreach is useful
when the indices of the elements are not important. The foreach structure is particularly
useful for looping through arrays of objects, as we discuss in Chapter 10, Object-Oriented
Programming: Polymorphism.

SUMMARY
• An array is a group of contiguous memory locations that all have the same name and type.

• To refer to a particular location or element in an array, specify the name of the array and the posi-
tion number of the element within the array.

• The first element in every array is the zeroth element (i.e., element 0).

• The position number in square brackets is more formally called a subscript (or an index). This
number must be an integer or an integer expression.

• To reference the ith element of a single-dimensional array, use i-1 as the index.

• The brackets that enclose the subscript of an array are operators that have the same level of prece-
dence as parentheses.

• When arrays are allocated, the elements are initialized to zero for the numeric primitive-data-type
variables, to false for bool variables or to null for reference types.

• Arrays may be declared to contain most data types.

10 int[,] gradeArray = { { 77, 68, 86, 73 },
11 { 98, 87, 89, 81 }, { 70, 90, 86, 81 } };
12
13 int lowGrade = 100;
14
15 foreach (int grade in gradeArray)
16 {
17 if (grade < lowGrade)
18 lowGrade = grade;
19 }
20
21 Console.WriteLine("The minimum grade is: " + lowGrade);
22 }
23 }

The minimum grade is: 68

Fig. 7.16 Using For Each/Next with an array. (Part 2 of 2.)

274 Arrays Chapter 7

• In an array of primitive data types, every element of the array contains one value of the declared
data type of the array.

• In an array of a reference type, every element of the array is a reference to an object of the data
type of the array. For example, every element of a string array is a reference to a string and
that reference has the value null by default.

• The elements of single-dimensional and rectangular arrays can be allocated and initialized in the
array declaration by following the declaration with an equal sign and a comma-separated initializer
list enclosed in braces ({ and }).

• A const variable must be declared and initialized in the same statement.

• Constants also are called named constants. They often are used to make a program more readable.

• Unlike its predecessors C and C++, .NET-compliant languages provide mechanisms to prevent
accessing elements outside the bounds of the array.

• When a reference is made to a nonexistent element of an array, an IndexOutOfRangeExcep-
tion occurs.

• To pass an array argument to a method, specify the name of the array without any brackets.

• Although entire arrays are passed by reference, individual array elements of primitive data types
are passed by value, as are simple variables.

• To pass an array element to a method, use the subscripted name of the array element as an argu-
ment in the method call.

• Sorting data (i.e., placing the data into a particular order, such as ascending or descending) is one
of the most important computing applications.

• The chief virtue of the bubble sort is that it is easy to program. However, the bubble sort runs slow-
ly, which becomes apparent when sorting large arrays.

• The linear search method works well for small or unsorted arrays. However, for large arrays, linear
searching is inefficient.

• After each comparison, the binary search algorithm eliminates from consideration half the ele-
ments in the array being searched. The algorithm locates the middle array element and compares
it to the search key. If they are equal, the search key has been found, and the subscript of that ele-
ment is returned. Otherwise, the problem is reduced to searching half the array. If the search key
is less than the middle array element, the first half of the array is searched; otherwise, the second
half of the array is searched. The search continues until the search key is equal to the middle ele-
ment of a subarray, or until the subarray consists of one element that is not equal to the search key
(i.e., the search key is not found).

• The maximum number of comparisons needed for the binary search of any sorted array is the ex-
ponent of the first power of 2 that is greater than the number of elements in the array.

• There are two types of multiple-subscripted arrays—rectangular and jagged.

• In general, an array with m rows and n columns is referred to as an m-by-n array.

• Multiple-subscripted arrays can be initialized in declarations, as can single-subscripted arrays.

• The compiler determines the number of columns in each row by counting the number of initializer
values in the sub-initializer list for that row.

• Jagged arrays are maintained as arrays of arrays. Unlike rectangular arrays, rows in jagged arrays
can be of different lengths.

• Many common array manipulations use for repetition structures.

• When used with one-dimensional arrays, foreach behaves like a for structure that iterates
through the range of indices from 0 to the array’s Length.

Chapter 7 Arrays 275

• For rectangular arrays, the repetition of the foreach structure begins with the element whose in-
dices are all zero, then iterates through all possible combinations of indices, incrementing the
rightmost index first. When the rightmost index reaches its upper bound, it is reset to zero, and the
index to the left of it is incremented by 1.

TERMINOLOGY

SELF-REVIEW EXERCISES
7.1 Fill in the blanks in each of the following statements:

a) Lists and tables of values can be stored in .
b) The elements of an array are related by the fact that they have the same and

.
c) The number that refers to a particular element of an array is called its .
d) The process of placing the elements of an array in order is called the array.
e) Determining if an array contains a certain key value is called the array.
f) Arrays that use two or more subscripts are referred to as arrays.

[], subscript operator multiple-subscripted array
array allocated with new named constant
array automatically initialized to zeros nested for loop
array bounds new operator
array declaration null
array of arrays (jagged array) “off-by-one error”
bar chart one-dimensional array
binary search algorithm partition
brute force partitioning step
bubble sort pass of a bubble sort
column passing array to method
const passing array element to method
constant variable position number
declare an array read-only variable
dice-rolling program rectangular array
double-subscripted array search key
element searching
exception single-subscripted array
foreach structure sinking sort
graph information size of an array
histogram sorting
ignoring element zero square brackets, []
initializer list subarray
initializing double-subscripted arrays
 in declarations

sub-initializer list
subscript

innermost set of square brackets swap
invalid array reference table
jagged array table element
key value TextBox
length of an array “walk” past end of an array
linear search zero-based counting
lvalue (“left value”) zeroth element
m-by-n array

276 Arrays Chapter 7

g) arrays are maintained as arrays of arrays.
h) A variable must be declared and initialized in the same statement, or a syntax

error will occur.
i) C# provides the repetition structure for iterating through values in data struc-

tures, such as arrays.
j) When an invalid array reference is made, an is generated.

7.2 State whether each of the following is true or false. If false, explain why.
a) An array can store many different types of values at the same time.
b) An array subscript normally should be of data type float.
c) An individual array element that is passed to a method and modified in that method will

contain the modified value when the called method completes execution.
d) The maximum number of comparisons needed for the binary search of any sorted array

is the exponent of the first power of 2 greater than the number of elements in the array.
e) There are two types of multiple-subscripted arrays—square and jagged.
f) A const variable must be declared and initialized in the same statement, or a syntax er-

ror will occur.
g) After each comparison, the binary search algorithm eliminates from consideration one

third of the elements in the portion of the array that is being searched.
h) To determine the number of elements in an array, we can use the NumberOfElements

property.
i) The linear search method works well for small or unsorted arrays.
j) In an m-by-n array, the m stands for the number of columns and the n stands for the num-

ber of rows.

ANSWERS TO SELF-REVIEW EXERCISES
7.1 a) arrays. b) name, type. c) subscript, index or position number. d) sorting. e) searching.
f) multiple-subscripted. g.) Jagged. h) const. i) foreach. j) IndexOutofRangeException.

7.2 a) False. An array can store only values of the same type. b) False. An array subscript must
be an integer or an integer expression. c) False. For individual primitive-data-type elements of an ar-
ray, they are passed by value. If a reference to an array element is passed, then modifications to that
array element are reflected in the original. An individual element of a reference type is passed to a
method by reference. d) True. e) False. The two different types are called rectangular and jagged. f)
True. g) False. After each comparison, the binary search algorithm eliminates from consideration half
the elements in the portion of the array that is being searched. h) False. To determine the number of
elements in an array, we can use the Length property. i) True. j) False. In an m-by-n array, the m
stands for the number of rows and the n stands for the number of columns.

EXERCISES
7.3 Write statements to accomplish each of the following tasks:

a) Display the value of the seventh element of character array f.
b) Initialize each of the five elements of single-subscripted integer array g to 8.
c) Total the elements of floating-point array c of 100 elements.
d) Copy 11-element array a into the first portion of array b containing 34 elements.
e) Determine the smallest and largest values contained in 99-element floating-point array w.

7.4 Use a single-subscripted array to solve the following problem: A company pays its salespeo-
ple on a commission basis. The salespeople receive $200 per week, plus 9% of their gross sales for
that week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9%
of $5000, or a total of $650. Write a program (using an array of counters) that determines how many

Chapter 7 Arrays 277

of the salespeople earned salaries in each of the following ranges (assume that each salesperson’s sal-
ary is truncated to an integer amount):

a) $200–$299
b) $300–$399
c) $400–$499
d) $500–$599
e) $600–$699
f) $700–$799
g) $800–$899
h) $900–$999
i) $1000 and over

7.5 Use a single-subscripted array to solve the following problem: Read in 20 numbers, each of
which is between 10 and 100, inclusive. As each number is read, print it only if it is not a duplicate
of a number already read. Provide for the “worst case” (in which all 20 numbers are different). Use
the smallest possible array to solve this problem.

7.6 (Turtle Graphics) The Logo language made famous the concept of turtle graphics. Imagine
a mechanical turtle that walks around the room under the control of a program. The turtle holds a pen
in one of two positions, up or down. While the pen is down, the turtle traces out shapes as it moves;
while the pen is up, the turtle moves about without writing anything. In this problem, you will simu-
late the operation of the turtle and create a computerized sketchpad.

Use a 20-by-20 array floor, which is initialized to zeros. Read commands from an array that
contains them. At all times, keep track of the current position of the turtle and whether the pen is up
or down. Assume that the turtle always starts at position 0,0 of the floor with its pen up. The set of
turtle commands your program must process are as follows:

Suppose that the turtle is somewhere near the center of the floor. The following “pro-
gram” would draw and print a 12-by-12 square, leaving the pen in the up position:

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

Command Meaning

1 Pen up

2 Pen down

3 Turn right

4 Turn left

5,10 Move forward 10 spaces (or a number other than 10)

6 Print the 20-by-20 array

9 End of data (sentinel)

278 Arrays Chapter 7

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When the
6 command (print) is given, wherever there is a 1 in the array, display an asterisk or another charac-
ter. Wherever there is a zero, display a blank. Write a program to implement the turtle graphics capa-
bilities we have discussed. Write several turtle graphics programs to draw interesting shapes. Add
commands to increase the power of your turtle graphics language.

SPECIAL SECTION: RECURSION EXERCISES
7.7 (Palindromes) A palindrome is a string that is spelled the same forward and backward. Some
examples of palindromes are “radar,” “able was i ere i saw elba” and, if blanks are ignored, “a man a
plan a canal panama.” Write a recursive method testPalindrome that returns true if the string
stored in the array is a palindrome and false otherwise. The method should ignore spaces and punc-
tuation in the string.

7.8 (Linear Search) Modify Fig. 7.11 to use recursive method LinearSearch to perform a
linear search of the array. The method should receive an integer array and the size of the array as ar-
guments. If the search key is found, return the array subscript; otherwise, return –1.

7.9 (Binary Search) Modify the program in Fig. 7.12 to use a recursive method Binary-
Search to perform the binary search of the array. The method should receive an integer array and
the starting and ending subscript as arguments. If the search key is found, return the array subscript;
otherwise, return –1.

7.10 (Quicksort) In this chapter, we discussed the sorting technique bubble sort. We now present
the recursive sorting technique called Quicksort. The basic algorithm for a single-subscripted array
of values is as follows:

a) Partitioning Step. Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less than
the element, and all values to the right of the element in the array are greater than the el-
ement). We now have one element in its proper location and two unsorted subarrays.

b) Recursive Step. Perform step 1 on each unsorted subarray.

Each time Step 1 is performed on a subarray, another element is placed in its final location of the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, it
must be sorted; therefore, that element is in its final location.

The basic algorithm seems simple, but how do we determine the final position of the first ele-
ment of each subarray? Consider the following set of values (partitioning element in bold—it will be
placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

a) Starting from the rightmost element of the array, compare each element to 37 until an el-
ement less than 37 is found, then swap 37 and that element. The first element less than
37 is 12, so 37 and 12 are swapped. The new array is

12 2 6 4 89 8 10 37 68 45

Element 12 is italicized to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare each

element to 37 until an element greater than 37 is found, then swap 37 and that element.
The first element greater than 37 is 89, so 37 and 89 are swapped. The new array is

12 2 6 4 37 8 10 89 68 45

Chapter 7 Arrays 279

c) Starting from the right, but beginning with the element before 89, compare each element
to 37 until an element less than 37 is found, then swap 37 and that element. The first el-
ement less than 37 is 10, so 37 and 10 are swapped. The new array is

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare each element to
37 until an element greater than 37 is found, then swap 37 and that element. There are no
more elements greater than 37, so when we compare 37 to itself, we know that 37 has
been placed in its final location of the sorted array.

Once the partition has been applied to the previous array, there are two unsorted subarrays. The sub-
array with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37
contains 89, 68 and 45. The sort continues with both subarrays being partitioned in the same manner
as the original array.

Using the preceding discussion, write recursive method QuickSort to sort a single-sub-
scripted integer array. The method should receive as arguments an integer array, a starting subscript
and an ending subscript. Method Partition should be called by QuickSort to perform the par-
titioning step.

7.11 (Maze Traversal) The following grid of #s and dots (.) is a double-subscripted array repre-
sentation of a maze:

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

The #s represent the walls of the maze, and the dots represent squares in the possible paths through
the maze. Moves can be made only to a location in the array that contains a dot.

There is a simple algorithm for walking through a maze that guarantees finding the exit (assuming
there is an exit). If there is not an exit, you will arrive at the starting location again. Place your right
hand on the wall to your right and begin walking forward. Never remove your hand from the wall. If
the maze turns to the right, you follow the wall to the right. As long as you do not remove your hand
from the wall, eventually you will arrive at the exit of the maze. There may be a shorter path than the
one you have taken, but you are guaranteed to get out of the maze if you follow the algorithm.

Write recursive method MazeTraverse to walk through the maze. The method should
receive as arguments a 12-by-12 character array representing the maze and the starting location of
the maze. As MazeTraverse attempts to locate the exit from the maze, it should place the charac-
ter X in each square in the path. The method should display the maze after each move so the user can
watch as the maze is solved.

8
Object-Based
Programming

Objectives
• To understand encapsulation and data hiding.
• To understand the concepts of data abstraction and

abstract data types (ADTs).
• To be able to create, use and destroy objects.
• To be able to control access to object instance

variables and methods.
• To be able to use properties to keep objects in

consistent states.
• To understand the use of the this reference.
• To understand namespaces and assemblies.
• To be able to use the Class View and Object

Browser.
My object all sublime
I shall achieve in time.
W. S. Gilbert

Is it a world to hide virtues in?
William Shakespeare, Twelfth Night

Your public servants serve you right.
Adlai Stevenson

Classes struggle, some classes triumph, others are
eliminated.
Mao Zedong

This above all: to thine own self be true.
William Shakespeare, Hamlet

Chapter 8 Object-Based Programming 281

8.1 Introduction
In this chapter, we investigate object orientation in C#. Some readers might ask, why have
we deferred this topic until now? There are several reasons. First, the objects we build in
this chapter partially are composed of structured program pieces. To explain the organiza-
tion of objects, we needed to establish a basis in structured programming with control struc-
tures. We also wanted to study methods in detail before introducing object orientation.
Finally, we wanted to familiarize readers with arrays, which are C# objects.

In our discussions of object-oriented programs in Chapters 1–7, we introduced many
basic concepts (i.e., “object think”) and terminology (i.e., “object speak”) that relate to C#
object-oriented programming. We also discussed our program-development methodology:
We analyzed typical problems that required programs to be built and determined what
classes from the .NET Framework Class Library were needed to implement each program.
We then selected appropriate instance variables and methods for each program and speci-
fied the manner in which an object of our class collaborated with objects from the .NET
Framework classes to accomplish the program’s overall goals.

Let us briefly review some key concepts and terminology of object orientation. Object
orientation uses classes to encapsulate (i.e., wrap together) data (attributes) and methods
(behaviors). Objects have the ability to hide their implementation from other objects (this

Outline

8.1 Introduction
8.2 Implementing a Time Abstract Data Type with a Class
8.3 Class Scope
8.4 Controlling Access to Members
8.5 Initializing Class Objects: Constructors
8.6 Using Overloaded Constructors
8.7 Properties
8.8 Composition: Objects References as Instance Variables of Other

Classes

8.9 Using the this Reference
8.10 Garbage Collection

8.11 static Class Members

8.12 const and readonly Members
8.13 Indexers
8.14 Data Abstraction and Information Hiding
8.15 Software Reusability
8.16 Namespaces and Assemblies
8.17 Class View and Object Browser

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

282 Object-Based Programming Chapter 8

principle is called information hiding). Although some objects can communicate with one
another across well-defined interfaces (just like the driver’s interface to a car includes a
steering wheel, accelerator pedal, brake pedal and gear shift), objects are unaware of how
other objects are implemented (just as the driver is unaware of how the steering, engine,
brake and transmission mechanisms are implemented). Normally, implementation details
are hidden within the objects themselves. Surely, it is possible to drive a car effectively
without knowing the details of how engines, transmissions and exhaust systems work.
Later, we will see why information hiding is so crucial to good software engineering.

In procedural programming languages (like C), programming tends to be action ori-
ented. C# programming, however, is object oriented. In C, the unit of programming is the
function (functions are called methods in C#). In C#, the unit of programming is the class.
Objects eventually are instantiated (i.e., created) from these classes and functions are
encapsulated within the “boundaries” of classes as methods.

C programmers concentrate on writing functions. They group actions that perform some
task into a function and then group functions to form a program. Data are certainly important
in C, but they exist primarily to support the actions that functions perform. The verbs in a
system-requirements document describing the requirements for a new application help a C
programmer determine the set of functions that will work together to implement the system.

By contrast, C# programmers concentrate on creating their own user-defined types,
called classes. We also refer to classes as programmer-defined types. Each class contains both
data and a set of methods that manipulate the data. The data components, or data members,
of a class are called member variables, or instance variables (many C# programmers prefer
the term fields).1 Just as we call an instance of a built-in type—such as int—a variable, we
call an instance of a user-defined type (i.e., a class) an object. In C#, attention is focused on
classes, rather than on methods. The nouns in a system-requirements document help the C#
programmer determine an initial set of classes with which to begin the design process. Pro-
grammers use these classes to instantiate objects that work together to implement the system.

This chapter explains how to create and use classes and objects, a subject known as
object-based programming (OBP). Chapters 9 and 10 introduce inheritance and polymor-
phism—key technologies that enable object-oriented programming (OOP). Although we do
not discuss inheritance in detail until Chapter 9, it is part of several class definitions in this
chapter and has been used in several examples previously. For example, in the program of
Section 4.13 (and several subsequent programs), we inherited a class from System.Win-
dows.Forms.Form to create an application that executes in its own window.

Software Engineering Observation 8.1
All C# objects are passed by reference. 8.1

8.2 Implementing a Time Abstract Data Type with a Class
Classes in C# facilitate the creation of abstract data types (ADT), which hide their imple-
mentation from clients (or users of the class object). A problem in procedural programming

1. We sometimes use industry-standard terminology, such as data members and instance members.
rather than C# terms such as fields, For a listing of C#-specific terminology, please see the C# Lan-
guage Specification, which can be downloaded from msdn.microsoft.com/vstudio/
nextgen/technology/csharpdownload.asp.

Chapter 8 Object-Based Programming 283

languages is that client code often is dependent on implementation details of the data used
in the code. This dependency might necessitate rewriting the client code if the data imple-
mentation changes. ADTs eliminate this problem by providing implementation-indepen-
dent interfaces to their clients. The creator of a class can change the internal
implementation of that class without affecting the clients of that class.

Software Engineering Observation 8.2
It is important to write programs that are understandable and easy to maintain. Change is
the rule, rather than the exception. Programmers should anticipate that their code will be
modified. As we will see, classes facilitate program modifiability. 8.2

The following example (an susequent examples) will require multiple class definitions
in the same project. To add a class to a project, select Add Class… from the Project
menu. In the Add New Item dialog box that appears, enter the new class name in the
Name text box and click the Open button. Note that the file name (ending with the .cs
file extension) appears in the Solution Explorer below the project name.

Our next example consists of classes Time1 (Fig. 8.1) and TimeTest1 (Fig. 8.2).
Class Time1 contains the time of day in 24-hour clock format. Class TimeTest1 con-
tains method Main, which creates an instance of class Time1 and demonstrates the fea-
tures of that class.

1 // Fig. 8.1: Time1.cs
2 // Class Time1 maintains time in 24-hour format.
3
4 using System;
5
6 // Time1 class definition
7 public class Time1 : Object
8 {
9 private int hour; // 0-23

10 private int minute; // 0-59
11 private int second; // 0-59
12
13 // Time1 constructor initializes instance variables to
14 // zero to set default time to midnight
15 public Time1()
16 {
17 SetTime(0, 0, 0);
18 }
19
20 // Set new time value in 24-hour format. Perform validity
21 // checks on the data. Set invalid values to zero.
22 public void SetTime(
23 int hourValue, int minuteValue, int secondValue)
24 {
25 hour = (hourValue >= 0 && hourValue < 24) ?
26 hourValue : 0;
27 minute = (minuteValue >= 0 && minuteValue < 60) ?
28 minuteValue : 0;

Fig. 8.1Fig. 8.1Fig. 8.1Fig. 8.1 Time1 abstract data type represents the time in 24-hour format. (Part 1
of 2.)

284 Object-Based Programming Chapter 8

In Fig. 8.1, line 7 begins the Time1 class definition, indicating that class Time1
inherits from class Object (namespace System). C# programmers use inheritance to
create classes from existing classes. In fact, every class in C# (except Object) inherits
from an existing class definition. On line 7, the : followed by class name Object indi-
cates that class Time1 inherits existing pieces of class Object. If a new class definition
does not specify a : and class name to the right of the new class name, the new class implic-
itly inherits from class Object. It is not necessary to understand inheritance to learn the
concepts and programs in this chapter. We explore inheritance and class Object in detail
in Chapter 9.

The opening left brace ({) at line 8 and closing right brace (}) at line 49 delineate the
body of class Time1. Any information that we place in this body is said to be encapsulated
(i.e., wrapped) in the class. For example, lines 9–11 of class Time1 declare three int vari-
ables—hour, minute and second—that represent the time of day in universal-time
format (24-hour clock format). Variables declared in a class definition, but not inside a
method definition, are called instance variables—each instance (object) of the class con-
tains its own separate copy of the class’s instance variables.

Keywords public and private are member access modifiers. Instance variables or
methods with member access modifier public are accessible wherever the program has
a reference to a Time1 object. However, instance variables or methods declared with
member access modifier private are accessible only in that class definition. A class’s
public members and private members can be intermixed.

Good Programming Practice 8.1
Every instance variable or method definition should be preceded by a member access modi-
fier. The default access modifier for class members is private. 8.1

29 second = (secondValue >= 0 && secondValue < 60) ?
30 secondValue : 0;
31
32 } // end method SetTime
33
34 // convert time to universal-time (24 hour) format string
35 public string ToUniversalString()
36 {
37 return String.Format(
38 "{0:D2}:{1:D2}:{2:D2}", hour, minute, second);
39 }
40
41 // convert time to standard-time (12 hour) format string
42 public string ToStandardString()
43 {
44 return String.Format("{0}:{1:D2}:{2:D2} {3}",
45 ((hour == 12 || hour == 0) ? 12 : hour % 12),
46 minute, second, (hour < 12 ? "AM" : "PM"));
47 }
48
49 } // end class Time1

Fig. 8.1Fig. 8.1Fig. 8.1Fig. 8.1 Time1 abstract data type represents the time in 24-hour format. (Part 2
of 2.)

Chapter 8 Object-Based Programming 285

Good Programming Practice 8.2
Members in a class definition should be grouped by their member access modifiers to en-
hance clarity and readability. 8.2

Lines 9–11 declare each of the three int instance variables—hour, minute and
second—with member access modifier private, indicating that these instance vari-
ables of the class are accessible only to members of the class—this is known as data hiding.
When an object of the class encapsulates such instance variables, only methods of that
object’s class can access the variables. Normally, instance variables are declared private
and methods are declared public. However, it is possible to have private methods and
public instance variables, as we will see later. Often, private methods are called
utility methods, or helper methods, because they can be called only by other methods of that
class. The purpose of utility methods is to support the operation of a class’s other methods.
Using public data in a class is an uncommon and dangerous programming practice. Pro-
viding such access to data members is unsafe—foreign code (i.e., code in other classes)
could set public data members to invalid values, producing potentially disastrous results.

Good Programming Practice 8.3
We prefer to list instance variables of a class first, so that, when reading the code, programmers
see the name and type of each instance variable before it is used in the methods of the class. 8.3

Good Programming Practice 8.4
Even though private and public members can be intermixed, list all the private
members of a class first in one group, then list all the public members in another group. 8.4

Software Engineering Observation 8.3
Declare all instance variables of a class as private. The architecture of accessing pri-
vate data through public properties which first validate the data allows the developer to
ensure that an object’s data remains in a consistent state. 8.4

Software Engineering Observation 8.4
Make a class member private if there is no reason for that member to be accessed outside
of the class definition. 8.4

Classes often include access methods that can read or display data. Another common
use for access methods is to test the truth of conditions—such methods often are called
predicate methods. For example, we could design predicate method IsEmpty for a con-
tainer class—a class capable of holding many objects, such as a linked list, a stack or a
queue. (These data structures are discussed in detail in Chapter 23, Data Structures.)
IsEmpty would return true if the container is empty and false otherwise. A program
might test IsEmpty before attempting to read another item from the container object. Sim-
ilarly, a program might test another predicate method (e.g., IsFull) before attempting to
insert an item into a container object.

Class Time1 contains constructor Time1 (lines 15–18) and methods SetTime (lines
22–32), ToUniversalString (lines 35–39) and ToStandardString (lines 42–47).
These are the public methods (also called the public services or the public inter-
face) of the class. Clients of class Time1, such as class TimeTest1 (Fig. 8.2), use a
Time1’s public methods to manipulate the data stored in Time1 objects or to cause
class Time1 to perform some service.

286 Object-Based Programming Chapter 8

Lines 15–18 define the constructor of class Time1. A class’s constructor initializes
objects of that class. When a program creates an object of class Time1 with operator new,
the constructor automatically is called to initialize the object. Class Time1’s constructor
calls method SetTime (lines 22–32) to initialize instance variables hour, minute and
second to 0 (representing midnight). Constructors can take arguments, but cannot return
values. As we will see, a class can have overloaded constructors. An important difference
between constructors and other methods is that constructors cannot specify a return type.
Generally, constructors are declared public. Note that the constructor name must be the
same as the class name.

Common Programming Error 8.1
Attempting to return a value from a constructor is a syntax error. 8.1

Method SetTime (lines 22–32) is a public method that receives three int param-
eters and uses them to set the time. A conditional expression tests each argument to deter-
mine whether the value is in a specified range. For example, the hour value must be
greater than or equal to 0 and less than 24, because universal-time format represents hours
as integers from 0 to 23. Similarly, both minute and second values must be greater than or
equal to 0 and less than 60. Any values outside these ranges are invalid values and default
to zero. Setting invalid values to zero ensures that a Time1 object always contains valid
data (because, in this example, zero is a valid value for hour, minute and second).
When users supply invalid data to SetTime, the program might want to indicate that the
time was invalid. In Chapter 11, we discuss exception handling, which can be used to indi-
cate invalid initialization values.

Software Engineering Observation 8.5
Always define a class so that each of its instance variables always contains valid values. 8.5

Method ToUniversalString (lines 35–39) takes no arguments and returns a
string in universal-time format, consisting of six digits—two for the hour, two for the
minute and two for the second. For example, if the time were 1:30:07 PM, method ToUni-
versalString would return 13:30:07. Lines 37–38 use String method Format
to configure the universal time string. Line 37 passes to Format the format string
"{0:D2}:{1:D2}:{2:D2}", which contains several format specifications indicating
that arguments 0, 1 and 2 (the first three arguments after the format string argument)
should each have the format D2 (a two-digit base 10 decimal number format) for display
purposes. The D2 format specification causes single-digit values to appear as two digits
with a leading 0 (e.g., 8 would be represented as 08). The two colons that separate the curly
braces } and { are the colons that separate the hour from the minute and the minute from
the second in the resulting string.

Method ToStandardString (lines 42–47) takes no arguments and returns a
string in standard-time format, consisting of the hour, minute and second values
separated by colons and followed by an AM or a PM indicator (e.g., 1:27:06 PM). Like
method ToUniversalString, method ToStandardString uses String method
Format to format the minute and second as two-digit values with leading zeros if nec-
essary. Line 45 determines the value for hour in the string—if the hour is 0 or 12
(AM or PM), the hour appears as 12; otherwise, the hour appears as a value from 1–11.

Chapter 8 Object-Based Programming 287

After defining the class, we can use it as a type in declarations such as

Time1 sunset; // reference to a Time1 object

The class name (Time1) is a type name. A class can yield many objects, just as a primitive
data type, such as int, can yield many variables. Programmers can create class types as
needed; this is one reason why C# is known as an extensible language.

Class TimeTest1 (Fig. 8.2) uses an instance of class Time1. Method Main (lines
11–40) declares and initializes Time1 instance time (line 13). When the object is instan-
tiated, operator new allocates the memory in which the Time1 object will be stored, then
calls the Time1 constructor (lines 15–18 of Fig. 8.1) to initialize the instance variables of
the Time1 object. As mentioned before, this constructor invokes method SetTime of
class Time1 to initialize each private instance variable to 0. Operator new (line 13 of
Fig. 8.2) then returns a reference to the newly created object; this reference is assigned to
time.

1 // Fig. 8.2: TimeTest1.cs
2 // Demonstrating class Time1.
3
4 using System;
5 using System.Windows.Forms;
6
7 // TimeTest1 uses creates and uses a Time1 object
8 class TimeTest1
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 Time1 time = new Time1(); // calls Time1 constructor
14 string output;
15
16 // assign string representation of time to output
17 output = "Initial universal time is: " +
18 time.ToUniversalString() +
19 "\nInitial standard time is: " +
20 time.ToStandardString();
21
22 // attempt valid time settings
23 time.SetTime(13, 27, 6);
24
25 // append new string representations of time to output
26 output += "\n\nUniversal time after SetTime is: " +
27 time.ToUniversalString() +
28 "\nStandard time after SetTime is: " +
29 time.ToStandardString();
30
31 // attempt invalid time settings
32 time.SetTime(99, 99, 99);
33

Fig. 8.2Fig. 8.2Fig. 8.2Fig. 8.2 Using an abstract data type. (Part 1 of 2.)

288 Object-Based Programming Chapter 8

Software Engineering Observation 8.6
Note the relationship between operator new and the constructor of a class. When operator
new creates an object of a class, that class’s constructor is called to initialize the object’s
instance variables. 8.6

Note that the TimeTest.cs file does not use keyword using to import the
namespace that contains class Time1. If a class is in the same namespace as the class that
uses it, the using statement is not required. Every class in C# is part of a namespace. If a
programmer does not specify a namespace for a class, the class is placed in the default
namespace, which includes all compiled classes in the current directory that do not reside
in a namespace. In Visual Studio, this current directory is the one in which the current
project resides. We must specify using statements for classes from the .NET Framework,
because they are defined outside the namespace of each new application we create. Note
that using statements are not required if the program fully qualifies the name of each class
by preceding the class name with its namespace name and a dot operator. For example, a
program can invoke class MessageBox’s Show method as follows:

System.Windows.Forms.MessageBox.Show("Your message here");

However, such lengthy names can be cumbersome.
Line 14 declares string reference output to store the string containing the

results, which later will be displayed in a MessageBox. Lines 17–20 assign to output
the time in universal-time format (by invoking method ToUniversalString of the
Time1 object) and standard-time format (by invoking method ToStandardString of
the Time1 object). Note the syntax of the method call in each case—the reference time
is followed by a the member access operator (.) followed by the method name. The refer-
ence name specifies the object that will receive the method call.

34 output += "\n\nAfter attempting invalid settings: " +
35 "\nUniversal time: " + time.ToUniversalString() +
36 "\nStandard time: " + time.ToStandardString();
37
38 MessageBox.Show(output, "Testing Class Time1");
39
40 } // end method Main
41
42 } // end class TimeTest1

Fig. 8.2Fig. 8.2Fig. 8.2Fig. 8.2 Using an abstract data type. (Part 2 of 2.)

Chapter 8 Object-Based Programming 289

Line 23 sets the time for the Time1 object to which time refers by passing valid hour,
minute and second arguments to Time1 method SetTime. Lines 26–29 append to
output the new time in both universal and standard formats to confirm that the time was
set correctly.

To illustrate that method SetTime validates the values passed to it, line 32 passes
invalid time arguments to method SetTime. Lines 34–36 append to output the new
time in both formats. All three values passed to SetTime are invalid, so instance variables
hour, minute and second are set to 0. Line 38 displays a MessageBox with the
results of our program. Notice in the last two lines of the output window that the time was
indeed set to midnight when invalid arguments were passed to SetTime.

Time1 is our first example of a class that does not contain method Main. Thus, class
Time1 cannot be used to begin program execution. Class TimeTest1 defines a Main
method, so class TimeTest1 can be used to begin program execution. A class containing
method Main also is known as the entry point into the program.

Note that the program declares instance variables hour, minute and second as
private. Such instance variables are not accessible outside the class in which they are
defined. A class’s clients should not be concerned with the data representation of that class.
Clients of a class should be interested only in the services provided by that class. For
example, the class could represent the time internally as the number of seconds that have
elapsed since the previous midnight. Suppose the data representation changes. Clients still
are able to use the same public methods and obtain the same results without being aware
of the change in internal representation. In this sense, the implementation of a class is said
to be hidden from its clients.

Software Engineering Observation 8.7
Information hiding promotes program modifiability and simplifies the client’s perception of
a class. 8.7

Software Engineering Observation 8.8
Clients of a class can (and should) use the class without knowing the internal details of how
the class is implemented. If the class implementation changes (to improve performance, for
example), but the class interface remains constant, the client’s source code need not change.
This makes it much easier to modify systems. 8.8

In this program, the Time1 constructor initializes the instance variables to 0 (the uni-
versal time equivalent of 12 AM) to ensure that the object is created in a consistent state—
i.e., all instance variables have valid values. The instance variables of a Time1 object
cannot store invalid values, because the constructor, which calls SetTime, is called to ini-
tialize the instance variables when the Time1 object is created. Method SetTime scruti-
nizes subsequent attempts by a client to modify the instance variables.

Normally, the instance variables of a class are initialized in that class’s constructor, but
they also can be initialized when they are declared in the class body. If a programmer does
not initialize instance variables explicitly, the compiler implicitly initializes them. When
this occurs, the compiler sets primitive numeric variables to 0, bool values to false and
references to null.

Methods ToUniversalString and ToStandardString take no arguments,
because, by default, these methods manipulate the instance variables of the particular
Time1 object on which they are invoked. This often makes method calls more concise than

290 Object-Based Programming Chapter 8

conventional function calls in procedural programming langauages. It also reduces the like-
lihood of passing the wrong arguments, the wrong types of arguments or the wrong number
of arguments.

Software Engineering Observation 8.9
The use of an object-oriented programming approach often simplifies method calls by reducing
the number of parameters that must be passed. This benefit of object-oriented programming de-
rives from the fact that encapsulation of instance variables and methods within an object gives
the object’s methods the right to access the object’s instance variables. 8.9

Classes simplify programming, because the client need be concerned only with the
public operations encapsulated in the object. Usually, such operations are designed to be
client-oriented, rather than implementation-oriented. Clients are neither aware of, nor
involved in, a class’s implementation. Interfaces change less frequently than do implemen-
tations. When an implementation changes, implementation-dependent code must change
accordingly. By hiding the implementation, we eliminate the possibility that other program
parts will become dependent on the class-implementation details.

Often, programmers do not have to create classes “from scratch.” Rather, they can
derive classes from other classes that provide behaviors required by the new classes.
Classes also can include references to objects of other classes as members. Such software
reuse can greatly enhance programmer productivity. Chapter 9 discusses inheritance—the
process by which new classes are derived from existing classes. Section 8.8 discusses com-
position (or aggregation), in which classes include as members references to objects of
other classes.

8.3 Class Scope
In Section 6.13, we discussed method scope; now, we discuss class scope. A class’s in-
stance variables and methods belong to that class’s scope. Within a class’s scope, class
members are immediately accessible to all of that class’s methods and can be referenced
by name. Outside a class’s scope, class members cannot be referenced directly by name.
Those class members that are visible (such as public members) can be accessed only
through a “handle” (i.e., members can be referenced via the format referenceName.mem-
berName).

If a variable is defined in a method, only that method can access the variable (i.e., the
variable is a local variable of that method). Such variables are said to have block scope. If
a method defines a variable that has the same name as a variable with class scope (i.e., an
instance variable), the method-scope variable hides the class-scope variable in that
method’s scope. A hidden instance variable can be accessed in a method by preceding its
name with the keyword this and the dot operator, as in this.hour. We discuss key-
word this in Section 8.9.

8.4 Controlling Access to Members
The member access modifiers public and private control access to a class’s data and
methods. (In Chapter 9, we introduce the additional access modifiers protected and
internal.)

Chapter 8 Object-Based Programming 291

As previously stated, public methods present to the class’s clients a view of the ser-
vices that the class provides (i.e., the public interface of the class). Previously, we men-
tioned the merits of writing methods that perform only one task. If a method must execute
other tasks to calculate its final result, these tasks should be performed by a helper method.
A client does not need to call these helper methods, nor does it need to be concerned with
how the class uses its helper methods. For these reasons, helper methods are declared as
private members of a class.

Common Programming Error 8.2
Attempting to access a private class member from outside that class is a compiler error. 8.2

The application of Fig. 8.3 (which uses the Time1 class from Fig. 8.1) demonstrates
that private class members are not accessible outside the class. Lines 12–14 attempt to
access the private instance variables hour, minute and second of the Time1 object
to which time refers. When this program is compiled, the compiler generates errors stating
that the private members hour, minute and second are not accessible.

Access to private data should be controlled carefully by a class’s methods. To allow
clients to read the values of private data, the class can define a property that enables
client code to access this private data safely. Properties, which we discuss in detail in
Section 8.7, contain accessor methods that handle the details of modifying and returning
data. A property definition can contain a get accessor, a set accessor or both. A get
accessor enables a client to read a private data value; a set accessor enables the client
to modify that value. Such modification would seem to violate the notion of private
data. However, a set accessor can provide data-validation capabilities (such as range
checking) to ensure that the value is set properly. A set accessor also can translate
between the format of the data used in the interface and the format used in the underlying
implementation. Similarly, a get accessor need not expose the data in “raw” format;
rather, the get accessor can edit the data and limit the client’s view of that data.

1 // Fig. 8.3: RestrictedAccess.cs
2 // Demonstrate compiler errors from attempt to access
3 // private class members.
4
5 class RestrictedAccess
6 {
7 // main entry point for application
8 static void Main(string[] args)
9 {

10 Time1 time = new Time1();
11
12 time.hour = 7;
13 time.minute = 15;
14 time.second = 30;
15 }
16
17 } // end class RestrictedAccess

Fig. 8.3Fig. 8.3Fig. 8.3Fig. 8.3 Accessing private class members from client code generates syntax
errors. (Part 1 of 2.)

292 Object-Based Programming Chapter 8

Software Engineering Observation 8.10
Class designers need not provide set or get accessors for each private data member;
these capabilities should be provided only when doing so makes sense. 8.10

Software Engineering Observation 8.11
Declaring the instance variables of a class as private and the methods and properties of
the class as public facilitates debugging, because problems with data manipulations are
localized to the class methods that manipulate that data. 8.11

8.5 Initializing Class Objects: Constructors
When a program creates an instance of a class, the program invokes the class’s constructor to
initialize the class’s instance variables (data members). A class can contain overloaded con-
structors to provide multiple ways to initialize objects of that class. Instance variables can be
initialized either by a constructor or when they are declared in the class body. Regardless of
whether instance variables receive explicit initialization values, the instance variables always
are initialized. In such cases, instance variables receive their default values (0 for primitive
numeric type variables, false for bool variable and null for references).

Performance Tip 8.1
Because instance variables always are initialized to default values by the runtime, avoid ini-
tializing instance variables to their default values in the constructor. 8.1

Software Engineering Observation 8.12
When appropriate, provide a constructor to ensure that every object is initialized with mean-
ingful values. 8.4

When creating an object of a class, the programmer can provide initializers in paren-
theses to the right of the class name. These initializers are the arguments to the constructor.
In general, declarations take the form:

ClassName objectReference = new ClassName(arguments);

where objectReference is a reference of the appropriate data type, new indicates that an ob-
ject is being created, ClassName indicates the type of the new object (and the name of the
constructor being called) and arguments specifies a comma-separated list of the values
used by the constructor to initialize the object. Figure 8.4 demonstrates using initializers
and overloaded constructors.

Fig. 8.3Fig. 8.3Fig. 8.3Fig. 8.3 Accessing private class members from client code generates syntax
errors. (Part 2 of 2.)

Chapter 8 Object-Based Programming 293

If a class does not define any constructors, the compiler provides a default (no-argu-
ment) constructor. This compiler-provided default constructor contains no code (i.e., the
constructor has an empty body) and takes no parameters. The programmer also can provide
a default constructor, as we demonstrated in class Time1 (Fig. 8.1). Programmer-provided
default constructors can have code in their bodies.

Common Programming Error 8.3
If a class has constructors, but none of the public constructors is a default constructor,
and a program attempts to call a no-argument constructor to initialize an object of the class,
a compilation error occurs. A constructor can be called with no arguments only if there are
no constructors for the class (in which case the compiler-provided default constructor is
called) or if the class defines a public no-argument constructor. 8.3

8.6 Using Overloaded Constructors
Like methods, constructors of a class can be overloaded. The Time1 constructor in Fig. 8.1
initialized hour, minute and second to 0 (i.e., 12 midnight in universal time) via a call
to the class SetTime method. However, class Time2 (Fig. 8.4) overloads the constructor
to provide a variety of ways to initialize Time2 objects. Each constructor calls Time2
method SetTime, which ensures that the object begins in a consistent state by setting out-
of-range values to zero. C# invokes the appropriate constructor by matching the number,
types and order of the arguments specified in the constructor call with the number, types
and order of the parameters specified in each constructor definition.

1 // Fig. 8.4: Time2.cs
2 // Class Time2 provides overloaded constructors.
3
4 using System;
5
6 // Time2 class definition
7 public class Time2
8 {
9 private int hour; // 0-23

10 private int minute; // 0-59
11 private int second; // 0-59
12
13 // Time2 constructor initializes instance variables to
14 // zero to set default time to midnight
15 public Time2()
16 {
17 SetTime(0, 0, 0);
18 }
19
20 // Time2 constructor: hour supplied, minute and second
21 // defaulted to 0
22 public Time2(int hour)
23 {
24 SetTime(hour, 0, 0);
25 }

Fig. 8.4Fig. 8.4Fig. 8.4Fig. 8.4 Overloaded constructors provide flexible object-initialization options. (Part
1 of 2.)

294 Object-Based Programming Chapter 8

Because most of the code in class Time2 is identical to that in class Time1, this dis-
cussion concentrates only on the overloaded constructors. Lines 15–18 define the no-argu-

26
27 // Time2 constructor: hour and minute supplied, second
28 // defaulted to 0
29 public Time2(int hour, int minute)
30 {
31 SetTime(hour, minute, 0);
32 }
33
34 // Time2 constructor: hour, minute and second supplied
35 public Time2(int hour, int minute, int second)
36 {
37 SetTime(hour, minute, second);
38 }
39
40 // Time2 constructor: initialize using another Time2 object
41 public Time2(Time2 time)
42 {
43 SetTime(time.hour, time.minute, time.second);
44 }
45
46 // Set new time value in 24-hour format. Perform validity
47 // checks on the data. Set invalid values to zero.
48 public void SetTime(
49 int hourValue, int minuteValue, int secondValue)
50 {
51 hour = (hourValue >= 0 && hourValue < 24) ?
52 hourValue : 0;
53 minute = (minuteValue >= 0 && minuteValue < 60) ?
54 minuteValue : 0;
55 second = (secondValue >= 0 && secondValue < 60) ?
56 secondValue : 0;
57 }
58
59 // convert time to universal-time (24 hour) format string
60 public string ToUniversalString()
61 {
62 return String.Format(
63 "{0:D2}:{1:D2}:{2:D2}", hour, minute, second);
64 }
65
66 // convert time to standard-time (12 hour) format string
67 public string ToStandardString()
68 {
69 return String.Format("{0}:{1:D2}:{2:D2} {3}",
70 ((hour == 12 || hour == 0) ? 12 : hour % 12),
71 minute, second, (hour < 12 ? "AM" : "PM"));
72 }
73
74 } // end class Time2

Fig. 8.4Fig. 8.4Fig. 8.4Fig. 8.4 Overloaded constructors provide flexible object-initialization options. (Part
2 of 2.)

Chapter 8 Object-Based Programming 295

ment constructor that sets the time to midnight. Lines 22–25 define a Time2 constructor
that receives a single int argument representing the hour and sets the time using the spec-
ified hour value and zero for the minute and second. Lines 29–32 define a Time2
constructor that receives two int arguments representing the hour and minute and sets
the time using those values and zero for the second. Lines 35–38 define a Time2 con-
structor that receives three int arguments representing the hour, minute and second
and uses those values to set the time. Lines 41–44 define a Time2 constructor that receives
a reference to another Time2 object. When this last constructor is called, the values from
the Time2 argument are used to initialize the hour, minute and second values of the
new Time2 object. Even though class Time2 declares hour, minute and second as
private (lines 9–11), the Time2 constructor can access these values in its Time2 argu-
ment directly using the expressions time.hour, time.minute and time.second.

Software Engineering Observation 8.13
When one object of a class has a reference to another object of the same class, the first object
can access all the second object’s data and methods (including those that are private). 8.13

Notice that the second, third and fourth constructors (lines 22, 29 and 35) have some
arguments in common and that those arguments are kept in the same order. For instance,
the constructor that begins on line 29 has as its two arguments an integer representing the
hour and an integer representing the minute. The constructor on line 35 has these same two
arguments in the same order, followed by its last argument (an integer representing the
second).

Good Programming Practice 8.5
When defining overloaded constructors, keep the order of arguments as similar as possible;
this makes client programming easier. 8.5

Constructors do not specify return types; doing so results in syntax errors. Also, notice
that each constructor receives a different number or different types of arguments. Even
though only two of the constructors receive values for the hour, minute and second,
each constructor calls SetTime with values for hour, minute and second and uses
zeros for the missing values to satisfy SetTime’s requirement of three arguments.

Class TimeTest2 (Fig. 8.5) starts the application that demonstrates the use of over-
loaded constructors (Fig. 8.4). Lines 15–20 create six Time2 objects that invoke various
constructors of the class. Line 15 invokes the no-argument constructor by placing an empty
set of parentheses after the class name. Lines 16–20 invoke the Time2 constructors that
receive arguments. To invoke the appropriate constructor, pass the proper number, types
and order of arguments (specified by the constructor’s definition) to that constructor. For
example, line 16 invokes the constructor that is defined in lines 22–25 of Fig. 8.4. Lines
22–47 invoke methods ToUniversalString and ToStandardString for each
Time2 object to demonstrate that the constructors initialize the objects correctly.

1 // Fig. 8.5: TimeTest2.cs
2 // Using overloaded constructors.
3

Fig. 8.5Fig. 8.5Fig. 8.5Fig. 8.5 Overloaded constructor demonstration. (Part 1 of 3.)

296 Object-Based Programming Chapter 8

4 using System;
5 using System.Windows.Forms;
6
7 // TimeTest2 demonstrates constructors of class Time2
8 class TimeTest2
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 Time2 time1, time2, time3, time4, time5, time6;
14
15 time1 = new Time2(); // 00:00:00
16 time2 = new Time2(2); // 02:00:00
17 time3 = new Time2(21, 34); // 21:34:00
18 time4 = new Time2(12, 25, 42); // 12:25:42
19 time5 = new Time2(27, 74, 99); // 00:00:00
20 time6 = new Time2(time4); // 12:25:42
21
22 String output = "Constructed with: " +
23 "\ntime1: all arguments defaulted" +
24 "\n\t" + time1.ToUniversalString() +
25 "\n\t" + time1.ToStandardString();
26
27 output += "\ntime2: hour specified; minute and " +
28 "second defaulted" +
29 "\n\t" + time2.ToUniversalString() +
30 "\n\t" + time2.ToStandardString();
31
32 output += "\ntime3: hour and minute specified; " +
33 "second defaulted" +
34 "\n\t" + time3.ToUniversalString() +
35 "\n\t" + time3.ToStandardString();
36
37 output += "\ntime4: hour, minute, and second specified" +
38 "\n\t" + time4.ToUniversalString() +
39 "\n\t" + time4.ToStandardString();
40
41 output += "\ntime5: all invalid values specified" +
42 "\n\t" + time5.ToUniversalString() +
43 "\n\t" + time5.ToStandardString();
44
45 output += "\ntime6: Time2 object time4 specified" +
46 "\n\t" + time6.ToUniversalString() +
47 "\n\t" + time6.ToStandardString();
48
49 MessageBox.Show(output,
50 "Demonstrating Overloaded Constructors");
51
52 } // end method Main
53
54 } // end class TimeTest2

Fig. 8.5Fig. 8.5Fig. 8.5Fig. 8.5 Overloaded constructor demonstration. (Part 2 of 3.)

Chapter 8 Object-Based Programming 297

Each Time2 constructor can be written to include a copy of the appropriate statements
from method SetTime. This might be slightly more efficient, because it eliminates the
extra call to SetTime. However, consider what would happen if the programmer were to
change the representation of the time from three int values (requiring 12 bytes of
memory) to a single int value representing the total number of seconds that have elapsed
in the day (requiring 4 bytes of memory). Placing identical code in the Time2 constructors
and method SetTime makes such a change in the class definition more difficult, because
every constructor’s body would require modifications to manipulate the data as a single
int rather than three ints. If the Time2 constructors call SetTime directly, any
changes to the implementation of SetTime must be made only once, in the body of Set-
Time. This reduces the likelihood of introducing a programming error when altering the
implementation, because we make only one change in the class, rather than changing every
constructor and method SetTime.

Software Engineering Observation 8.14
If a method of a class provides functionality required by a constructor (or other method) of
the class, call that method from the constructor (or other method). This simplifies the main-
tenance of the code and reduces the likelihood of introducing errors into the code. 8.14

8.7 Properties
Methods of a class can manipulate that class’s private instance variables. A typical ma-
nipulation might be the adjustment of a customer’s bank balance—a private instance
variable of a class BankAccount—by a ComputeInterest method.

Classes often provide public properties to allow clients to set (i.e., assign values to)
or get (i.e., obtain the values of) private instance variables. For example, in Fig. 8.6, we
create three properties—Hour, Minute and Second—which access variables hour,
minute and second, respectively. Each property contains a get accessor (to retrieve
the field value) and a set accessor (to modify the field value).

Fig. 8.5Fig. 8.5Fig. 8.5Fig. 8.5 Overloaded constructor demonstration. (Part 3 of 3.)

298 Object-Based Programming Chapter 8

Providing set and get capabilities appears to be the same as making the instance
variables public. However, this is another one of C#’s subtleties that makes the language
so attractive from a software-engineering standpoint. If an instance variable is public, the
instance variable can be read or written to by any method in the program. If an instance
variable is private, a public get accessor seems to allow other methods to read the
data at will. However, the get accessor can control the formatting and display of the data.
Similarly, a public set accessor can scrutinize attempts to modify the instance vari-
able’s value, thus ensuring that the new value is appropriate for that data member. For
example, an attempt to set the day of the month to 37 would be rejected, and an attempt
to set a person’s weight to a negative value would be rejected. So, set and get accessors
can provide access to private data, but the implementation of these accessors controls
what the client code can do to the data.

The declaration of instance variables as private does not guarantee their integrity.
Programmers must provide validity checking—C# provides only the framework with
which programmers can design better programs.

Testing and Debugging Tip 8.1
Methods that set the values of private data should verify that the intended new values are
valid; if they are not, the set accessors should place the private instance variables into
an appropriate consistent state. 8.1

The set accessors of a property cannot return values indicating a failed attempt to
assign invalid data to objects of the class. Such return values could be useful to a client of
a class when handling errors. The client could take appropriate actions if the objects occupy
invalid states. Chapter 11 presents exception handling—a mechanism that can be used to
indicate attempts to set an object’s members to invalid values.

Figure 8.6 enhances our Time class, now called Time3, to include properties for the
private instance variables hour, minute and second. The set accessors of these
properties strictly control the setting of the instance variables to valid values. An attempt to
set any instance variable to an incorrect value causes the instance variable to be set to zero
(thus leaving the instance variable in a consistent state). Each get accessor returns the
appropriate instance variable’s value. This application also introduces enhanced GUI
event-handling techniques, as we define a GUI (Fig. 8.7) that includes several buttons the
user can click to manipulate the time stored in a Time3 object.

1 // Fig. 8.6: Time3.cs
2 // Class Time2 provides overloaded constructors.
3
4 using System;
5
6 // Time3 class definition
7 public class Time3
8 {
9 private int hour; // 0-23

10 private int minute; // 0-59
11 private int second; // 0-59
12

Fig. 8.6Fig. 8.6Fig. 8.6Fig. 8.6 Properties provide controlled access to an object’s data. (Part 1 of 3.)

Chapter 8 Object-Based Programming 299

13 // Time3 constructor initializes instance variables to
14 // zero to set default time to midnight
15 public Time3()
16 {
17 SetTime(0, 0, 0);
18 }
19
20 // Time3 constructor: hour supplied, minute and second
21 // defaulted to 0
22 public Time3(int hour)
23 {
24 SetTime(hour, 0, 0);
25 }
26
27 // Time3 constructor: hour and minute supplied, second
28 // defaulted to 0
29 public Time3(int hour, int minute)
30 {
31 SetTime(hour, minute, 0);
32 }
33
34 // Time3 constructor: hour, minute and second supplied
35 public Time3(int hour, int minute, int second)
36 {
37 SetTime(hour, minute, second);
38 }
39
40 // Time3 constructor: initialize using another Time3 object
41 public Time3(Time3 time)
42 {
43 SetTime(time.Hour, time.Minute, time.Second);
44 }
45
46 // Set new time value in 24-hour format. Perform validity
47 // checks on the data. Set invalid values to zero.
48 public void SetTime(
49 int hourValue, int minuteValue, int secondValue)
50 {
51 Hour = hourValue; // invoke Hour property set
52 Minute = minuteValue; // invoke Minute property set
53 Second = secondValue; // invoke Second property set
54 }
55
56 // property Hour
57 public int Hour
58 {
59 get
60 {
61 return hour;
62 }
63

Fig. 8.6Fig. 8.6Fig. 8.6Fig. 8.6 Properties provide controlled access to an object’s data. (Part 2 of 3.)

300 Object-Based Programming Chapter 8

64 set
65 {
66 hour = ((value >= 0 && value < 24) ? value : 0);
67 }
68
69 } // end property Hour
70
71 // property Minute
72 public int Minute
73 {
74 get
75 {
76 return minute;
77 }
78
79 set
80 {
81 minute = ((value >= 0 && value < 60) ? value : 0);
82 }
83
84 } // end property Minute
85
86 // property Second
87 public int Second
88 {
89 get
90 {
91 return second;
92 }
93
94 set
95 {
96 second = ((value >= 0 && value < 60) ? value : 0);
97 }
98
99 } // end property Second
100
101 // convert time to universal-time (24 hour) format string
102 public string ToUniversalString()
103 {
104 return String.Format(
105 "{0:D2}:{1:D2}:{2:D2}", Hour, Minute, Second);
106 }
107
108 // convert time to standard-time (12 hour) format string
109 public string ToStandardString()
110 {
111 return String.Format("{0}:{1:D2}:{2:D2} {3}",
112 ((Hour == 12 || Hour == 0) ? 12 : Hour % 12),
113 Minute, Second, (Hour < 12 ? "AM" : "PM"));
114 }
115
116 } // end class Time3

Fig. 8.6Fig. 8.6Fig. 8.6Fig. 8.6 Properties provide controlled access to an object’s data. (Part 3 of 3.)

Chapter 8 Object-Based Programming 301

Lines 57–69, 72–84 and 87–99 define Time3 properties Hour, Minute and Second,
respectively. Each property begins with a declaration line that includes the property’s access
modifier (public), type (int) and name (Hour, Minute or Second).

The body of each property contains get and set accessors, which are declared using
the reserved words get and set. The get accessor declarations are on lines 59–62, 74–77
and 89–92. These accessors return the hour, minute and second instance variable values
that objects request. The set accessors are declared on lines 64–67, 79–82 and 94–97. The
body of each set accessor performs the same conditional statement that was previously per-
formed by method SetTime to set the hour, minute or second.

Method SetTime (lines 48–54) now uses properties Hour, Minute and Second to
ensure that instance variables hour, minute and second have valid values. After we
define a property, we can use it in the same way that we use a variable. We assign values to
properties using the = (assignment) operator. When this assignment occurs, the code in the
set accessor for that property executes. The reserved word value represents the argument
to the set accessor. Similarly, methods ToUniversalString (102–106) and ToStan-
dardString (109–114) now use properties Hour, Minute and Second to obtain the
values of instance variables hour,minute and second. Referencing the property executes
the get accessor for that property.

When we use set and get accessor methods throughout the constructors and other
methods of class Time3, we minimize the changes that we must make to the class definition
in the event that we alter the data representation from hour, minute and second to
another representation (such as total elapsed seconds in the day). When such changes are
made, we must provide only new set and get accessor bodies. Using this technique also
enables programmers to change the implementation of a class without affecting the clients of
that class (as long as all the public methods of the class still are called in the same way).

Software Engineering Observation 8.15
Accessing private data through set and get accessors not only protects the instance
variables from receiving invalid values, but also hides the internal representation of the in-
stance variables from that class’s clients. Thus, if representation of the data changes (typi-
cally, to reduce the amount of required storage or to improve performance), only the method
implementations need to change—the client implementations need not change, as long as the
interface provided by the methods is preserved. 8.15

Class TimeTest3 (Fig. 8.7) defines an application with a GUI for manipulating an
object of class Time3. [Note: We do not show Visual Studio’s Windows Form Designer
generated code. Instead, line 45 provides a comment to indicate where the generated code
appears in the source code file. You can view this code on the CD that accompanies this
book.]

1 // Fig. 8.7: TimeTest3.cs
2 // Demonstrating Time3 properties Hour, Minute and Second.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Properties demonstration for class Time3. (Part 1 of 5.)

302 Object-Based Programming Chapter 8

8 using System.Windows.Forms;
9 using System.Data;

10
11 // TimeTest3 class definition
12 public class TimeTest3 : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Label hourLabel;
15 private System.Windows.Forms.TextBox hourTextBox;
16 private System.Windows.Forms.Button hourButton;
17
18 private System.Windows.Forms.Label minuteLabel;
19 private System.Windows.Forms.TextBox minuteTextBox;
20 private System.Windows.Forms.Button minuteButton;
21
22 private System.Windows.Forms.Label secondLabel;
23 private System.Windows.Forms.TextBox secondTextBox;
24 private System.Windows.Forms.Button secondButton;
25
26 private System.Windows.Forms.Button addButton;
27
28 private System.Windows.Forms.Label displayLabel1;
29 private System.Windows.Forms.Label displayLabel2;
30
31 // required designer variable
32 private System.ComponentModel.Container components = null;
33
34 private Time3 time;
35
36 public TimeTest3()
37 {
38 // Required for Windows Form Designer support
39 InitializeComponent();
40
41 time = new Time3();
42 UpdateDisplay();
43 }
44
45 // Visual Studio .NET generated code
46
47 // main entry point for application
48 [STAThread]
49 static void Main()
50 {
51 Application.Run(new TimeTest3());
52 }
53
54 // update display labels
55 public void UpdateDisplay()
56 {
57 displayLabel1.Text = "Hour: " + time.Hour +
58 "; Minute: " + time.Minute +
59 "; Second: " + time.Second;

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Properties demonstration for class Time3. (Part 2 of 5.)

Chapter 8 Object-Based Programming 303

60 displayLabel2.Text = "Standard time: " +
61 time.ToStandardString() + "\nUniversal time: " +
62 time.ToUniversalString();
63 }
64
65 // set Hour property when hourButton pressed
66 private void hourButton_Click(
67 object sender, System.EventArgs e)
68 {
69 time.Hour = Int32.Parse(hourTextBox.Text);
70 hourTextBox.Text = "";
71 UpdateDisplay();
72 }
73
74 // set Minute property when minuteButton pressed
75 private void minuteButton_Click(
76 object sender, System.EventArgs e)
77 {
78 time.Minute = Int32.Parse(minuteTextBox.Text);
79 minuteTextBox.Text = "";
80 UpdateDisplay();
81 }
82
83 // set Second property when secondButton pressed
84 private void secondButton_Click(
85 object sender, System.EventArgs e)
86 {
87 time.Second = Int32.Parse(secondTextBox.Text);
88 secondTextBox.Text = "";
89 UpdateDisplay();
90 }
91
92 // add one to Second when addButton pressed
93 private void addButton_Click(
94 object sender, System.EventArgs e)
95 {
96 time.Second = (time.Second + 1) % 60;
97
98 if (time.Second == 0)
99 {
100 time.Minute = (time.Minute + 1) % 60;
101
102 if (time.Minute == 0)
103 time.Hour = (time.Hour + 1) % 24;
104 }
105
106 UpdateDisplay();
107
108 } // end method addButton_Click
109
110 } // end class TimeTest3

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Properties demonstration for class Time3. (Part 3 of 5.)

304 Object-Based Programming Chapter 8

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Properties demonstration for class Time3. (Part 4 of 5.)

Chapter 8 Object-Based Programming 305

Line 34 declares Time3 reference time. Line 41 in the constructor creates an object
of class Time3 and assigns it to time. The GUI contains three text fields in which the user
can input values for the Time3 object’s hour, minute and second variables, respec-
tively. Next to each text field is a button the user can click to set the value of a particular
Time3 property. Lines 66–90 declare three event-handling methods for the buttons’
Click events. Each event handler alters the values a Time3 property (Hour, Minute or
Second). The GUI also contains a button that enables the user to increment the second
value by 1. Using the Time3 object’s properties, method addButton_Click (lines 93–
108) determines and sets the new time. For example, 23:59:59 becomes 00:00:00
when the user presses the button. Each modification of the time results in a call to
UpdateDisplay, which uses the Time3 properties to display the hour, minute and
second values, and also displays the universal- and standard-time representations.

Properties are not limited to accessing private data—properties also can be used to
calculate values associated with an object. One example of this would be a student
object with a property representing the student’s GPA (called GPA). Programmers can
either provide code that calculates the student’s GPA in the get accessor for this property,
or they can simply return a private variable containing the GPA, called gpa. (The value
in this variable will need to be calculated in some other way, such as using a Calcu-
lateGPA method.) The programmer can use either technique, but we recommend using a
property that calculates the GPA. Remember that client code should not be required to tell

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Properties demonstration for class Time3. (Part 5 of 5.)

306 Object-Based Programming Chapter 8

the student object when to calculate the GPA. The client code simply should use the
GPA property. The client should not be aware of the underlying implementation.

8.8 Composition: Objects References as Instance Variables of
Other Classes
In many situations, referencing existing objects is more convenient than rewriting the ob-
jects’ code for new classes in new projects. Suppose we were to implement an Alarm-
Clock object that needs to know when to sound its alarm. Referencing an existing Time
object (like those from earlier examples in this chapter) is easier than writing a new Time
object. The use of references to objects of preexisting classes as members of new objects is
called composition (or aggregation).

Software Engineering Observation 8.16
One form of software reuse is composition, in which a class has as members references to
objects of other classes. 8.16

The application of Fig. 8.8, Fig. 8.9 and Fig. 8.10 demonstrates composition. The pro-
gram contains three classes. Class Date (Fig. 8.8) encapsulates information relating to a spe-
cific date. Class Employee (Fig. 8.9) encapsulates the name of the employee and two Date
objects representing the Employee’s birthday and hire date. Class CompositionTest
(Fig. 8.10) creates an object of class Employee to demonstrate composition.

Class Date declares int instance variables month, day and year (lines 9–11). Lines
16–32 define the constructor, which receives values for month, day and year as arguments
and assigns these values to the instance variables after ensuring that the values are in a con-
sistent state. Note that lines 25–26 print an error message if the constructor receives an invalid
month value. Ordinarily, rather than printing error messages, a constructor would “throw an
exception.” We discuss exceptions in Chapter 11, Exception Handling. Method ToDat-
eString (lines 58–61) returns the string representation of a Date.

1 // Fig. 8.8: Date.cs
2 // Date class definition encapsulates month, day and year.
3
4 using System;
5
6 // Date class definition
7 public class Date
8 {
9 private int month; // 1-12

10 private int day; // 1-31 based on month
11 private int year; // any year
12
13 // constructor confirms proper value for month;
14 // call method CheckDay to confirm proper
15 // value for day
16 public Date(int theMonth, int theDay, int theYear)
17 {

Fig. 8.8Fig. 8.8Fig. 8.8Fig. 8.8 Date class encapsulates day, month and year information. (Part 1 of 2.)

Chapter 8 Object-Based Programming 307

Class Employee (Fig. 8.9) encapsulates information relating to an employee’s
birthday and hire date (lines 10–13) using instance variables firstName, lastName,
birthDate and hireDate. Members’ birthDate and hireDate are references to
Date objects, each of which contains instance variables month, day and year. In this
example, class Employee is composed of two references of type string and two refer-

18 // validate month
19 if (theMonth > 0 && theMonth <= 12)
20 month = theMonth;
21
22 else
23 {
24 month = 1;
25 Console.WriteLine(
26 "Month {0} invalid. Set to month 1.", theMonth);
27 }
28
29 year = theYear; // could validate year
30 day = CheckDay(theDay); // validate day
31
32 } // end Date constructor
33
34 // utility method confirms proper day value
35 // based on month and year
36 private int CheckDay(int testDay)
37 {
38 int[] daysPerMonth =
39 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
40
41 // check if day in range for month
42 if (testDay > 0 && testDay <= daysPerMonth[month])
43 return testDay;
44
45 // check for leap year
46 if (month == 2 && testDay == 29 &&
47 (year % 400 == 0 ||
48 (year % 4 == 0 && year % 100 != 0)))
49 return testDay;
50
51 Console.WriteLine(
52 "Day {0} invalid. Set to day 1.", testDay);
53
54 return 1; // leave object in consistent state
55 }
56
57 // return date string as month/day/year
58 public string ToDateString()
59 {
60 return month + "/" + day + "/" + year;
61 }
62
63 } // end class Date

Fig. 8.8Fig. 8.8Fig. 8.8Fig. 8.8 Date class encapsulates day, month and year information. (Part 2 of 2.)

308 Object-Based Programming Chapter 8

ences of class Date. The Employee constructor (lines 16–27) takes eight arguments
(first, last, birthMonth, birthDay, birthYear, hireMonth, hireDay
and hireYear). Line 24 passes arguments birthMonth, birthDay and birth-
Year to the Date constructor to create the birthDate object. Similarly, line 25 passes
arguments hireMonth, hireDay and hireYear to the Date constructor to create the
hireDate object. Method ToEmployeeString (lines 30–35) returns a string con-
taining the name of the Employee and the string representations of the Employee’s
birthDate and hireDate.

Class CompositionTest (Fig. 8.10) runs the application with method Main.
Lines 13–14 instantiate an Employee object and lines 16–17 display the string repre-
sentation of the Employee to the user.

1 // Fig. 8.9: Employee.cs
2 // Employee class definition encapsulates employee's first name,
3 // last name, birth date and hire date.
4
5 using System;
6
7 // Employee class definition
8 public class Employee
9 {

10 private string firstName;
11 private string lastName;
12 private Date birthDate; // reference to a Date object
13 private Date hireDate; // reference to a Date object
14
15 // constructor initializes name, birth date and hire date
16 public Employee(string first, string last,
17 int birthMonth, int birthDay, int birthYear,
18 int hireMonth, int hireDay, int hireYear)
19 {
20 firstName = first;
21 lastName = last;
22
23 // create new Date objects
24 birthDate = new Date(birthMonth, birthDay, birthYear);
25 hireDate = new Date(hireMonth, hireDay, hireYear);
26
27 } // end Employee constructor
28
29 // convert Employee to String format
30 public string ToEmployeeString()
31 {
32 return lastName + ", " + firstName +
33 " Hired: " + hireDate.ToDateString() +
34 " Birthday: " + birthDate.ToDateString();
35 }
36
37 } // end class Employee

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Employee class encapsulates employee name, birthday and hire date.

Chapter 8 Object-Based Programming 309

8.9 Using the this Reference
Every object can access a reference to itself, called the this reference. The this refer-
ence can refer implicitly to the instance variables, properties and methods of an object.
Keyword this is commonly used within methods, where this is a reference to the object
on which the method is performing operations. In the Windows application of Fig. 6.4,
there are several uses of this in method InitializeComponent. The application
uses the this keyword to reference the form that is being initialized. Every form has an
InitializeComponent methods, so the this reference provides us with an easy way
to access the information in the current object. Additional examples of this appear in
Chapters 12 and 13.

We now demonstrate implicit and explicit use of the this reference to display the pri-
vate data of a Time4 object. Class Time4 (Fig. 8.11) defines three private instance
variables—hour, minute and second (lines 9–11). The constructor (lines 14–19)
receives three int arguments to initialize a Time4 object. Note that, for this example, we
have made the parameter names for the constructor (line 14) identical to the instance variable
names for the class (lines 9–11). We did this to illustrate explicit use of the this reference.
If a method contains a local variable with the same name as an instance variable of that class,
that method will refer to the local variable, rather than to the instance variable (i.e., the local
variable hides the instance variable in that method’s scope). However, the method can use the
this reference to refer to the hidden instance variables explicitly (lines 16–18).

1 // Fig. 8.10: CompositionTest.cs
2 // Demonstrate an object with member object reference.
3
4 using System;
5 using System.Windows.Forms;
6
7 // Composition class definition
8 class CompositionTest
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 Employee e =
14 new Employee("Bob", "Jones", 7, 24, 1949, 3, 12, 1988);
15
16 MessageBox.Show(e.ToEmployeeString(),
17 "Testing Class Employee");
18
19 } // end method Main
20
21 } // end class CompositionTest

Fig. 8.10Fig. 8.10Fig. 8.10Fig. 8.10 Composition demonstration.

310 Object-Based Programming Chapter 8

Method BuildString (lines 22–27) returns a string created by a statement that
uses the this reference explicitly and implicitly. Line 25 uses the this reference explic-
itly to call method ToStandardString, whereas line 26 uses the this reference
implicitly to call the same method. Note that both lines perform the same task. Therefore,
programmers usually do not use the this reference explicitly to reference methods within
the current object.

Common Programming Error 8.4
For a method in which a parameter (or local variable) has the same name as an instance
variable, use reference this if you wish to access the instance variable; otherwise, the
method parameter (or local variable) will be referenced. 8.4

1 // Fig. 8.11: Time4.cs
2 // Class Time4 provides overloaded constructors.
3
4 using System;
5
6 // Time4 class definition
7 public class Time4
8 {
9 private int hour; // 0-23

10 private int minute; // 0-59
11 private int second; // 0-59
12
13 // constructor
14 public Time4(int hour, int minute, int second)
15 {
16 this.hour = hour;
17 this.minute = minute;
18 this.second = second;
19 }
20
21 // create string using this and implicit references
22 public string BuildString()
23 {
24 return "this.ToStandardString(): " +
25 this.ToStandardString() +
26 "\nToStandardString(): " + ToStandardString();
27 }
28
29 // convert time to standard-time (12-hour) format string
30 public string ToStandardString()
31 {
32 return String.Format("{0}:{1:D2}:{2:D2} {3}",
33 ((this.hour == 12 || this.hour == 0) ? 12 :
34 this.hour % 12), this.minute, this.second,
35 (this.hour < 12 ? "AM" : "PM"));
36 }
37
38 } // end class Time4

Fig. 8.11Fig. 8.11Fig. 8.11Fig. 8.11 this reference used implicitly and explicitly to enable an object to
manipulate its own data and invoke its own methods. (Part 1 of 2)

Chapter 8 Object-Based Programming 311

Testing and Debugging Tip 8.2
Avoid method-parameter names (or local variable names) that conflict with instance vari-
able names to prevent subtle, hard-to-trace bugs. 8.2

Good Programming Practice 8.6
The explicit use of the this reference can increase program clarity in some contexts where
this is optional. 8.6

Class ThisTest (Fig. 8.12) runs the application that demonstrates explicit use of the
this reference. Line 13 instantiates an instance of class Time4. Lines 15–16 invoke
method BuildString of the Time4 object, then display the results to the user in a Mes-
sageBox.

The problem of parameters (or local variables) hiding instance variables can be solved
by using properties. If we have a property Hour that accesses the hour instance variable,
then we would not need to use this.hour to distinguish between a parameter (or local
variable) hour and the instance variable hour—we would simply assign hour to Hour.

8.10 Garbage Collection
In previous examples, we have seen how a constructor initializes data in an object of a class
after the object is created. Operator new allocates memory for the object, then calls that ob-
ject’s constructor. The constructor might acquire other system resources, such as network
connections and databases or files. Objects must have a disciplined way to return memory
and release resources when the program no longer uses those objects. Failure to release
such resources causes resource leaks—potentially exhausting the pool of available resourc-
es that programs might need to continue executing.

1 // Fig. 8.12: ThisTest.cs
2 // Using the this reference.
3
4 using System;
5 using System.Windows.Forms;
6
7 // ThisTest class definition
8 class ThisTest
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 Time4 time = new Time4(12, 30, 19);
14
15 MessageBox.Show(time.BuildString(),
16 "Demonstrating the \"this\" Reference");
17 }
18 }

Fig. 8.12Fig. 8.12Fig. 8.12Fig. 8.12 this reference demonstration. (Part 1 of 2.)

312 Object-Based Programming Chapter 8

Unlike C and C++, in which programmers must manage memory explicitly, C# per-
forms memory management internally. The .NET Framework performs garbage collection
of memory to return to the system memory that is no longer needed. When the garbage col-
lector executes, it locates objects for which the application has no references. Such objects
can be collected at that time or during a subsequent execution of the garbage collector.
Therefore, the memory leaks that are common in such languages as C and C++, where
memory is not reclaimed automatically, are rare in C#.

Allocation and deallocation of other resources, such as network connections, database
connections and files, must be handled explicitly by the programmer. One technique
employed to handle these resources (in conjunction with the garbage collector) is to define
a destructor (sometimes known as a finalizer) that returns resources to the system. The gar-
bage collector calls an object’s destructor to perform termination housekeeping on that
object just before the garbage collector reclaims the object’s memory (called finalization).

Each class can contain only one destructor. The name of a destructor is formed by pre-
ceding the class name with a ~ character. For example, the destructor for class Time would
be ~Time(). Destructors do not receive arguments, so destructors cannot be overloaded.
When the garbage collector is removing an object from memory, the garbage collector first
invokes that object’s destructor to clean up resources used by the class. However, we
cannot determine exactly when the destructor is called, because we cannot determine
exactly when garbage collection occurs. At program termination, any objects that have not
been not garbage collected previously will receive destructor calls.

8.11 static Class Members
Each object of a class has its own copy of all the instance variables of the class. However,
in certain cases, all class objects should share only one copy of a particular variable. Such
variables are called static variables. A program contains only one copy of each of a
class’s static variables in memory, no matter how many objects of the class have been
instantiated. A static variable represents class-wide information—all class objects share
the same static data item.

The declaration of a static member begins with the keyword static. A static
variable can be initialized in its declaration by following the variable name with an = and
an initial value. In cases where a static variable requires more complex initialization,
programmers can define a static constructor to initialize only the static members.
Such constructors are optional and must be declared with the static keyword, followed
by the name of the class. static constructors are called before any static members are
used and before any class objects are instantiated.

Fig. 8.12Fig. 8.12Fig. 8.12Fig. 8.12 this reference demonstration. (Part 2 of 2.)

Chapter 8 Object-Based Programming 313

We now consider a video-game example to justify the need for static class-wide
data. Suppose that we have a video game involving Martians and other space creatures.
Each Martian tends to be brave and willing to attack other space creatures when the
Martian is aware that there are at least four other Martians present. If there are fewer
than five Martians present, each Martian becomes cowardly. For this reason, each
Martian must know the martianCount. We could endow class Martian with mar-
tianCount as instance data. However, if we were to do this, then every Martian would
have a separate copy of the instance data, and, every time we create a Martian, we would
have to update the instance variable martianCount in every Martian. The redundant
copies waste space, and updating those copies is time-consuming. Instead, we declare
martianCount to be static so that martianCount is class-wide data. Each Mar-
tian can see the martianCount as if it were instance data of that Martian, but C#
maintains only one copy of the static variable martianCount to save space. This
technique also saves time; because there is only one copy, we do not have to increment sep-
arate copies of martianCount for each Martian object.

Performance Tip 8.2
When a single copy of the data will suffice, use static variables to save storage. 8.2

Although static variables might seem like global variables (variables that can be
referenced anywhere in a program) in other programming languages, static variables
need not be globally accessible. static variables have class scope.

The public static data members of a class can be accessed through the class name
using the dot operator (e.g., Math.PI). The private static members can be accessed
only through methods or properties of the class. static members are available as soon as
the class is loaded into memory at execution time and they exist for the duration of program
execution, even when no objects of that class exist. To enable a program to access a pri-
vate static member when no objects of the class exist, the class must provide a
public static method or property.

A static method cannot access instance (non-static) members. Unlike instance
methods, a static method has no this reference, because static variables and
static methods exist independently of any class objects, even when there are no objects
of that class.

Common Programming Error 8.5
Using the this reference in a static method or static property is a compilation error. 8.5

Common Programming Error 8.6
A call to an instance method or an attempt to access an instance variable from a static
method is a compilation error. 8.6

Class Employee (Fig. 8.13) demonstrates a public static property that enables a
program to obtain the value of a private static variable. The static variable count
(line 11) is not initialized explicitly, so it receives the value zero by default. Class variable
count maintains a count of the number of objects of class Employee that have been instan-
tiated, including those objects that have already been marked for garbage collection, but have
not yet been reclaimed by the garbage collector.

314 Object-Based Programming Chapter 8

1 // Fig. 8.13: Employee.cs
2 // Employee class contains static data and a static method.
3
4 using System;
5
6 // Employee class definition
7 public class Employee
8 {
9 private string firstName;

10 private string lastName;
11 private static int count; // Employee objects in memory
12
13 // constructor increments static Employee count
14 public Employee(string fName, string lName)
15 {
16 firstName = fName;
17 lastName = lName;
18
19 ++count;
20
21 Console.WriteLine("Employee object constructor: " +
22 firstName + " " + lastName + "; count = " + Count);
23 }
24
25 // destructor decrements static Employee count
26 ~Employee()
27 {
28 --count;
29
30 Console.WriteLine("Employee object destructor: " +
31 firstName + " " + lastName + "; count = " + Count);
32 }
33
34 // FirstName property
35 public string FirstName
36 {
37 get
38 {
39 return firstName;
40 }
41 }
42
43 // LastName property
44 public string LastName
45 {
46 get
47 {
48 return lastName;
49 }
50 }
51

Fig. 8.13Fig. 8.13Fig. 8.13Fig. 8.13 static members are accessible to all objects of a class. (Part 1 of 2.)

Chapter 8 Object-Based Programming 315

When objects of class Employee exist, static member count can be used in any
method of an Employee object—in this example, the constructor (lines 14–23) incre-
ments count, and the destructor (lines 26–32) decrements count. If no objects of class
Employee exist, the value of member count can be obtained through static property
Count (lines 53–59); this also works when there are Employee objects in memory.

Class StaticTest (Fig. 8.14) runs the application that demonstrates the static
members of class Employee (Fig. 8.13). Lines 12–13 use the static property Count
of class Employee to obtain the current count value before the program creates
Employee objects. Notice that the syntax used to access a static member is:

ClassName.StaticMember

On line 13, ClassName is Employee and StaticMember is Count. Recall that we used
this syntax in prior examples to call the static methods of class Math (e.g., Math.Pow,
Math.Abs, etc.) and other methods, such as Int32.Parse and MessageBox.Show.

 Next, lines 16–17 instantiate two Employee objects and assign them to references
employee1 and employee2. Each call to the Employee constructor increments the
count value by one. Lines 19–26 display the value of Count as well as the names of the
two employees. Lines 30–31 set references employee1 and employee2 to null, so
they no longer refer to the Employee objects. Because these were the only references in
the program to the Employee objects, those objects can now be garbage collected.

52 // static Count property
53 public static int Count
54 {
55 get
56 {
57 return count;
58 }
59 }
60
61 } // end class Employee

Fig. 8.13Fig. 8.13Fig. 8.13Fig. 8.13 static members are accessible to all objects of a class. (Part 2 of 2.)

1 // Fig. 8.14: StaticTest.cs
2 // Demonstrating static class members.
3
4 using System;
5
6 // StaticTest class definition
7 class StaticTest
8 {
9 // main entry point for application

10 static void Main(string[] args)
11 {
12 Console.WriteLine("Employees before instantiation: " +
13 Employee.Count + "\n");
14

Fig. 8.14Fig. 8.14Fig. 8.14Fig. 8.14 static member demonstration. (Part 1 of 2.)

316 Object-Based Programming Chapter 8

The garbage collector is not invoked directly by the program. Either the garbage col-
lector reclaims the memory for objects when the runtime determines garbage collection is
appropriate, or the operating system recovers the memory when the program terminates.
However, it is possible to request that the garbage collector attempt to collect available
objects. Line 34 uses public static method Collect from class GC (namespace

15 // create two Employees
16 Employee employee1 = new Employee("Susan", "Baker");
17 Employee employee2 = new Employee("Bob", "Jones");
18
19 Console.WriteLine("\nEmployees after instantiation: " +
20 "Employee.Count = " + Employee.Count + "\n");
21
22 // display the Employees
23 Console.WriteLine("Employee 1: " +
24 employee1.FirstName + " " + employee1.LastName +
25 "\nEmployee 2: " + employee2.FirstName +
26 " " + employee2.LastName + "\n");
27
28 // remove references to objects to indicate that
29 // objects can be garbage collected
30 employee1 = null;
31 employee2 = null;
32
33 // force garbage collection
34 System.GC.Collect();
35
36 // wait until collection completes
37 System.GC.WaitForPendingFinalizers();
38
39 Console.WriteLine(
40 "\nEmployees after garbage collection: " +
41 Employee.Count);
42 }
43 }

Employees before instantiation: 0

Employee object constructor: Susan Baker; count = 1
Employee object constructor: Bob Jones; count = 2

Employees after instantiation: Employee.Count = 2

Employee 1: Susan Baker
Employee 2: Bob Jones

Employee object destructor: Bob Jones; count = 1
Employee object destructor: Susan Baker; count = 0

Employees after garbage collection: 0

Fig. 8.14Fig. 8.14Fig. 8.14Fig. 8.14 static member demonstration. (Part 2 of 2.)

Chapter 8 Object-Based Programming 317

System) to make this request. The garbage collector is not guaranteed to collect all objects
that are currently available for collection. If the garbage collector decides to collect objects,
the garbage collector first invokes the destructor of each object. It is important to under-
stand that the garbage collector executes as an independent entity called a thread. (Threads
are discussed in Chapter 14, Multithreading.) It is possible for multiple threads to execute
in parallel on a multiprocessor system or to share a processor on a single-processor system.
Thus, a program could run in parallel with garbage collection. For this reason, we call
static method WaitForPendingFinalizers of class GC (line 37), which forces
the program to wait until the garbage collector invokes the destructors for all objects that
are ready for collection and reclaims those objects. When the program reaches lines 41, we
are assured that both destructor calls completed and that the value of count has been dec-
remented accordingly.

In this example, the output shows that the destructor was called for each Employee,
which decrements the count value by two (once per Employee being collected). Lines
39–41 use property Count to obtain the value of count after invoking the garbage col-
lector. If the objects had not been collected, the count would be greater than zero.

Toward the end of the output, notice that the Employee object for Bob Jones was
finalized before the Employee object for Susan Baker. However, the output of this pro-
gram on your system could differ. The garbage collector is not guaranteed to collect objects
in a specific order.

8.12 const and readonly Members
C# allows programmers to create constants whose values cannot change during program
execution.

Testing and Debugging Tip 8.3
If a variable should never change, make it a constant. This helps eliminate errors that might
occur if the value of the variable were to change. 8.3

To create a constant data member of a class, declare that member using either the
const or readonly keyword. Data members declared as const implicitly are static
and must be initialized in their declaration. Data members declared as readonly can be
initialized in their declaration or in their class’s constructor. Neither const nor read-
only values can be modified once they are initialized, except that readonly variables
can be assigned values in several constructors (only one of which will be called when an
object is initialized).

Common Programming Error 8.7
Declaring a class data member as const but failing to initialize it in that class’s declaration
is a syntax error. 8.7

Common Programming Error 8.8
Assigning a value to a const variable after that variable is initialized is a compilation er-
ror. 8.8

Common Programming Error 8.9
The declaration of a const member as static is a syntax error, because a const mem-
ber implicitly is static. 8.9

318 Object-Based Programming Chapter 8

Common Programming Error 8.10
Declaring a class data member as readonly and attempting to use it before it is initialized
is a logic error. 8.10

Members that are declared as const must be assigned values at compile time. There-
fore, const members can be initialized only with other constant values, such as integers,
string literals, characters and other const members. Constant members with values that
cannot be determined at compile time must be declared with keyword readonly. We
mentioned previously that a readonly member can be assigned a value only once, either
when it is declared or within the constructor of the class. When initializing a static
readonly member in a constructor, a static constructor must be used.

Figure 8.15 demonstrates constants. The program consists of two classes—class Con-
stants (lines 8–22) defines two constants, and class UsingConstAndReadonly
(lines 25–43) demonstrates the constants in class Constants.

1 // Fig. 8.15: UsingConstAndReadOnly.cs
2 // Demonstrating constant values with const and readonly.
3
4 using System;
5 using System.Windows.Forms;
6
7 // Constants class definition
8 public class Constants
9 {

10 // create constant PI
11 public const double PI = 3.14159;
12
13 // radius is a constant
14 // that is uninitialized
15 public readonly int radius;
16
17 public Constants(int radiusValue)
18 {
19 radius = radiusValue;
20 }
21
22 } // end class Constants
23
24 // UsingConstAndReadOnly class definition
25 public class UsingConstAndReadonly
26 {
27 // method Main creates Constants
28 // object and displays its values
29 static void Main(string[] args)
30 {
31 Random random = new Random();
32
33 Constants constantValues =
34 new Constants(random.Next(1, 20));
35

Fig. 8.15Fig. 8.15Fig. 8.15Fig. 8.15 const and readonly class member demonstration. (Part 1 of 2.)

Chapter 8 Object-Based Programming 319

Line 11 in class Constants creates constant PI using keyword const and initial-
izes PI with the double value 3.14159—an approximation of π that the program uses
to calculate the circumferences of circles. Note that we could have used the predefined con-
stant PI of class Math (Math.PI) as the value, but we wanted to demonstrate how to
define a const variable explicitly. The compiler must be able to determine a const vari-
able’s value at compile time; otherwise, a compilation error will occur. For example, if line
11 initialized PI with the expression:

Double.Parse("3.14159")

the compiler would generate an error. Although the expression uses string literal
"3.14159" (a constant value) as an argument, the compiler cannot evaluate the method
call Double.Parse at compile time.

Variables declared readonly can be initialized at execution time. Line 15 declares
readonly variable radius, but does not initialize it. The Constants constructor
(lines 17–20) receives an int value and assigns it to radius when the program creates a
Constants object. Note that radius also can be initialized with a more complex expres-
sion, such as a method call that returns an int.

Class UsingConstAndReadonly (lines 25–43) uses the const and readonly
variables of class Constants. Lines 33–34 use a Random object to generate a random
int between 1 and 20 that corresponds to a circle’s radius, then pass that value to the
Constants constructor to initialize the readonly variable radius. Lines 36–39
output the radius and circumference of a circle in a MessageBox. Line 36 uses Con-
stants’s reference contantValues to access readonly variable radius. Line 38
computes the circle’s circumference using const variable Constants.PI and rea-
donly variable radius. Note that we use static syntax to access const variable PI,
because const variables implicitly are static.

8.13 Indexers
Sometimes a class encapsulates data that a program can manipulate as a list of elements.
Such a class can define special properties called indexers that allow array-style indexed ac-
cess to lists of elements. With “conventional” C# arrays, the subscript number must be an

36 MessageBox.Show("Radius = " + constantValues.radius +
37 "\nCircumference = " +
38 2 * Constants.PI * constantValues.radius,
39 "Circumference");
40
41 } // end method Main
42
43 } // end class UsingConstAndReadOnly

Fig. 8.15Fig. 8.15Fig. 8.15Fig. 8.15 const and readonly class member demonstration. (Part 2 of 2.)

320 Object-Based Programming Chapter 8

integer value. A benefit of indexers is that the programmer can define both integer sub-
scripts and non-integer subscripts. For example, a programmer could allow client code to
manipulate data using strings as subscripts that represent the data items’ names or de-
scriptions. When manipulating “conventional” C# array elements, the array subscript oper-
ator always returns the same data type—i.e., the type of the array. Indexers are more
flexible—they can return any data type, even one that is different from the type of the data
in the list of elements.

Although an indexer’s subscript operator is used like an array-subscript operator,
indexers are defined as properties in a class. Unlike normal properties, for which the pro-
grammer can choose an appropriate property name, indexers must be defined with keyword
this. Indexers have the general form:

accessModifier returnType this[IndexType1 name1, IndexType2 name2, …]
{

get
 {
 // use name1, name2, ... here to get data
 }

set
 {
 // use name1, name2, ... here to set data
 }
}

The IndexType parameters specified in the brackets ([]) are accessible to the get and set
accessors. These accessors define how to use the index (or indices) to select or modify the
appropriate data member. As with properties, get must return a value of type return-
Type and set can use the value keyword to reference the value that should be assigned
to the data member.

Common Programming Error 8.11
Declaring indexers as static is a syntax error. 8.11

The program of Fig. 8.16 contains two classes—class Box (lines 14–74) represents a
box with a length, a width and a height, and class IndexerTest (lines 77–177) demon-
strates class Box’s indexers.

1 // Fig. 8.16: IndexerTest.cs
2 // Indexers provide access to an object's members via a
3 // subscript operator.
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Indexers provide subscripted access to an object’s members. (Part 1 of 6.)

Chapter 8 Object-Based Programming 321

12 // Box class definition represents a box with length,
13 // width and height dimensions
14 public class Box
15 {
16 private string[] names = { "length", "width", "height" };
17 private double[] dimensions = new double[3];
18
19 // constructor
20 public Box(double length, double width, double height)
21 {
22 dimensions[0] = length;
23 dimensions[1] = width;
24 dimensions[2] = height;
25 }
26
27 // access dimensions by integer index number
28 public double this[int index]
29 {
30 get
31 {
32 return (index < 0 || index >= dimensions.Length) ?
33 -1 : dimensions[index];
34 }
35
36 set
37 {
38 if (index >= 0 && index < dimensions.Length)
39 dimensions[index] = value;
40 }
41
42 } // end numeric indexer
43
44 // access dimensions by their string names
45 public double this[string name]
46 {
47 get
48 {
49 // locate element to get
50 int i = 0;
51
52 while (i < names.Length &&
53 name.ToLower() != names[i])
54 i++;
55
56 return (i == names.Length) ? -1 : dimensions[i];
57 }
58
59 set
60 {
61 // locate element to set
62 int i = 0;
63

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Indexers provide subscripted access to an object’s members. (Part 2 of 6.)

322 Object-Based Programming Chapter 8

64 while (i < names.Length &&
65 name.ToLower() != names[i])
66 i++;
67
68 if (i != names.Length)
69 dimensions[i] = value;
70 }
71
72 } // end indexer
73
74 } // end class Box
75
76 // Class IndexerTest
77 public class IndexerTest : System.Windows.Forms.Form
78 {
79 private System.Windows.Forms.Label indexLabel;
80 private System.Windows.Forms.Label nameLabel;
81
82 private System.Windows.Forms.TextBox indexTextBox;
83 private System.Windows.Forms.TextBox valueTextBox;
84
85 private System.Windows.Forms.Button nameSetButton;
86 private System.Windows.Forms.Button nameGetButton;
87
88 private System.Windows.Forms.Button intSetButton;
89 private System.Windows.Forms.Button intGetButton;
90
91 private System.Windows.Forms.TextBox resultTextBox;
92
93 // required designer variable
94 private System.ComponentModel.Container components = null;
95
96 private Box box;
97
98 // constructor
99 public IndexerTest()
100 {
101 // required for Windows Form Designer support
102 InitializeComponent();
103
104 // create block
105 box = new Box(0.0, 0.0, 0.0);
106 }
107
108 // Visual Studio .NET generated code
109
110 // main entry point for application
111 [STAThread]
112 static void Main()
113 {
114 Application.Run(new IndexerTest());
115 }
116

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Indexers provide subscripted access to an object’s members. (Part 3 of 6.)

Chapter 8 Object-Based Programming 323

117 // display value at specified index number
118 private void ShowValueAtIndex(string prefix, int index)
119 {
120 resultTextBox.Text =
121 prefix + "box[" + index + "] = " + box[index];
122 }
123
124 // display value with specified name
125 private void ShowValueAtIndex(string prefix, string name)
126 {
127 resultTextBox.Text =
128 prefix + "box[" + name + "] = " + box[name];
129 }
130
131 // clear indexTextBox and valueTextBox
132 private void ClearTextBoxes()
133 {
134 indexTextBox.Text = "";
135 valueTextBox.Text = "";
136 }
137
138 // get value at specified index
139 private void intGetButton_Click(
140 object sender, System.EventArgs e)
141 {
142 ShowValueAtIndex(
143 "get: ", Int32.Parse(indexTextBox.Text));
144 ClearTextBoxes();
145 }
146
147 // set value at specified index
148 private void intSetButton_Click(
149 object sender, System.EventArgs e)
150 {
151 int index = Int32.Parse(indexTextBox.Text);
152 box[index] = Double.Parse(valueTextBox.Text);
153
154 ShowValueAtIndex("set: ", index);
155 ClearTextBoxes();
156 }
157
158 // get value with specified name
159 private void nameGetButton_Click(
160 object sender, System.EventArgs e)
161 {
162 ShowValueAtIndex("get: ", indexTextBox.Text);
163 ClearTextBoxes();
164 }
165
166 // set value with specified name
167 private void nameSetButton_Click(
168 object sender, System.EventArgs e)
169 {

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Indexers provide subscripted access to an object’s members. (Part 4 of 6.)

324 Object-Based Programming Chapter 8

170 box[indexTextBox.Text] =
171 Double.Parse(valueTextBox.Text);
172
173 ShowValueAtIndex("set: ", indexTextBox.Text);
174 ClearTextBoxes();
175 }
176
177 } // end class IndexerTest

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Indexers provide subscripted access to an object’s members. (Part 5 of 6.)

Before setting value
by index number

After setting value
by index number

Before getting value
by dimension name

After getting value
by dimension name

Before setting value
by dimension name

Chapter 8 Object-Based Programming 325

The private data members of class Box are string array names (line 16), which
contains the names (i.e., "length", "width" and "height") for the dimensions of a
Box, and double array dimensions (line 17), which contains the size of each dimen-
sion. Each element in array names corresponds to an element in array dimensions
(e.g., dimensions[2] contains the height of the Box).

Box defines two indexers (lines 28–42 and lines 45–72) that each return a double
value representing the size of the dimension specified by the indexer’s parameter. Indexers
can be overloaded like methods. The first indexer uses an int subscript to manipulate an
element in the dimensions array. The second indexer uses a string subscript repre-
senting the name of the dimension to manipulate an element in the dimensions array.
Each indexer returns -1 if its get accessor encounters an invalid subscript. Each indexer’s
set accessor assigns value to the appropriate element of dimensions only if the index
is valid. Normally, the programmer would have an indexer throw an exception if an indexer
received an invalid index. We discuss how to throw exceptions in Chapter 11, Exception
Handling.

Notice that the string indexer uses a while structure to search for a matching
string in the names array (lines 64–66). If a match is found, the indexer manipulates
the corresponding element in array dimensions (line 69).

Class IndexerTest is a System.Windows.Forms.Form that manipulates the
private data members of class Box through Box’s indexers. Instance variable box is
declared at line 96 and initialized in the constructor at line 105 with dimensions of 0.0. The
event handler for button Get Value by Index (lines 139–145) invokes method ShowVal-
ueAtIndex (lines 118–122) to retrieve the value at the index number specified in index-
TextBox. The event handler for button Set Value by Index (lines 148–156) assigns the

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Indexers provide subscripted access to an object’s members. (Part 6 of 6.)

After setting value
by dimension name

Before getting value
by index number

After getting value
by index number

326 Object-Based Programming Chapter 8

value in valueTextBox to the location specified in indexTextBox. The event handler
for button Get Value by Name (159–164) invokes the overloaded method ShowValue-
AtIndex (lines 125–129) to retrieve the value with the name specified in valueTextBox.
The event handler for button Set Value by Name (lines 167–175) assigns the value in
valueTextBox to the location with the name specified in indexTextBox.

8.14 Data Abstraction and Information Hiding
As we pointed out at the beginning of this chapter, classes normally hide the details of their
implementation from their clients. This is called information hiding. As an example of in-
formation hiding, let us consider a data structure called a stack.

Students can think of a stack as analogous to a pile of dishes. When a dish is placed on
the pile, it is always placed at the top (referred to as pushing the dish onto the stack). Sim-
ilarly, when a dish is removed from the pile, it is always removed from the top (referred to
as popping the dish off the stack). Stacks are known as last-in, first-out (LIFO) data struc-
tures—the last item pushed (inserted) on the stack is the first item popped (removed) from
the stack.

Stacks can be implemented with arrays and with other data structures, such as linked
lists. (We discuss stacks and linked lists in Chapter 23, Data Structures.) A client of a stack
class need not be concerned with the stack’s implementation. The client knows only that
when data items are placed in the stack, these items will be recalled in last-in, first-out
order. The client cares about what functionality a stack offers, but not about how that func-
tionality is implemented. This concept is referred to as data abstraction. Although pro-
grammers might know the details of a class’s implementation, they should not write code
that depends on these details. This enables a particular class (such as one that implements
a stack and its operations, push and pop) to be replaced with another version without
affecting the rest of the system. As long as the public services of the class do not change
(i.e., every method still has the same name, return type and parameter list in the new class
definition), the rest of the system is not affected.

Most programming languages emphasize actions. In these languages, data exist to sup-
port the actions that programs must take. Data are “less interesting” than actions. Data are
“crude.” Only a few built-in data types exist, and it is difficult for programmers to create
their own data types. C# and the object-oriented style of programming elevate the impor-
tance of data. The primary activities of object-oriented programming in C# is the creation
of data types (i.e., classes) and the expression of the interactions among objects of those
data types. To create languages that emphasize data, the programming-languages commu-
nity needed to formalize some notions about data. The formalization we consider here is
the notion of abstract data types (ADTs). ADTs receive as much attention today as struc-
tured programming did decades earlier. ADTs, however, do not replace structured pro-
gramming. Rather, they provide an additional formalization to improve the program-
development process.

Consider built-in type int, which most people would associate with an integer in math-
ematics. Rather, an int is an abstract representation of an integer. Unlike mathematical inte-
gers, computer ints are fixed in size. For example, type int in .NET is limited
approximately to the range –2 billion to +2 billion. If the result of a calculation falls outside
this range, an error occurs, and the computer responds in some machine-dependent manner.

Chapter 8 Object-Based Programming 327

It might, for example, “quietly” produce an incorrect result. Mathematical integers do not
have this problem. Therefore, the notion of a computer int is only an approximation of the
notion of a real-world integer. The same is true of float and other built-in types.

We have taken the notion of int for granted until this point, but we now consider it
from a new perspective. Types like int, float, char and others are all examples of
abstract data types. These types are representations of real-world notions to some satisfac-
tory level of precision within a computer system.

An ADT actually captures two notions: A data representation and the operations that
can be performed on that data. For example, in C#, an int contains an integer value (data)
and provides addition, subtraction, multiplication, division and modulus operations; how-
ever, division by zero is undefined. C# programmers use classes to implement abstract data
types.

Software Engineering Observation 8.17
Programmers can create types through the use of the class mechanism. These new types can
be designed so that they are as convenient to use as the built-in types. This marks C# as an
extensible language. Although the language is easy to extend via new types, the programmer
cannot alter the base language itself. 8.17

Another abstract data type we discuss is a queue, which is similar to a “waiting line.”
Computer systems use many queues internally. A queue offers well-understood behavior
to its clients: Clients place items in a queue one at a time via an enqueue operation, then get
those items back one at a time via a dequeue operation. A queue returns items in first-in,
first-out (FIFO) order, which means that the first item inserted in a queue is the first item
removed. Conceptually, a queue can become infinitely long, but real queues are finite.

The queue hides an internal data representation that keeps track of the items currently
waiting in line, and it offers a set of operations to its clients (enqueue and dequeue). The cli-
ents are not concerned about the implementation of the queue—clients simply depend upon
the queue to operate “as advertised.” When a client enqueues an item, the queue should accept
that item and place it in some kind of internal FIFO data structure. Similarly, when the client
wants the next item from the front of the queue, the queue should remove the item from its
internal representation and deliver the item in FIFO order (i.e., the item that has been in the
queue the longest should be the next one returned by the next dequeue operation).

The queue ADT guarantees the integrity of its internal data structure. Clients cannot
manipulate this data structure directly—only the queue ADT has access to its internal data.
Clients are able to perform only allowable operations on the data representation; the ADT
rejects operations that its public interface does not provide.

8.15 Software Reusability
C# programmers concentrate both on crafting new classes and on reusing classes from the
Framework Class Library (FCL), which contains thousands of predefined classes. Devel-
opers construct software by combining programmer-defined classes with well-defined,
carefully tested, well-documented, portable and widely available FCL classes. This kind of
software reusability speeds the development of powerful, high-quality software. Rapid
applications development (RAD) is of great interest today.

328 Object-Based Programming Chapter 8

The FCL allows C# programmers to achieve software reusability across platforms that
support .NET and rapid applications development. C# programmers focus on the high-level
programming issues and leave the low-level implementation details to classes in the FCL.
For example, a C# programmer who writes a graphics program does not need to know the
details of every .NET-platform graphics capability. Instead, C# programmers concentrate
on learning and using the FCL’s graphics classes.

The FCL enables C# developers to build applications faster by reusing preexisting,
extensively tested classes. In addition to reducing development time, FCL classes also
improve programmers’ abilities to debug and maintain applications, because proven soft-
ware compenents are being used. For programmers to take advantage of the FCL’s classes,
they must familiarize themselves with the FCL’s rich set of capabilities.

Software reuse is not limited to Windows-application development. The FCL also
includes classes for creating Web services, which are applications packaged as services that
clients can access via the Internet. Any C# application is a potential Web service, so C# pro-
grammers can reuse existing applications as building blocks to form larger more sophisti-
cated Web-enabled applications.

Many people believe that Web services represent the next phase in the evolution of soft-
ware development, in which the Web provides a library of functionality from which devel-
opers can build applications in a platform-independent manner. As Microsoft’s premier .NET
language, C# provides all the features necessary for creating scalable, robust Web services.
We formally introduce Web Services in Chapter 21, ASP .NET and Web Services.

8.16 Namespaces and Assemblies
As we have seen in almost every example in the text, classes from preexisting libraries,
such as the .NET Framework, must be imported into a C# program by adding a reference
to the appropriate libraries (a process we demonstrated in Section 3.2). Remember that each
class in the Framework Class Library belongs to a specific namespace. The preexisting
code in the FCL facilitates software reuse.

Programmers should concentrate on making the software components they create reus-
able. However, doing so often results in naming collisions. For example, two classes defined
by different programmers can have the same name. If a program needs both of those classes,
the program must have a way to distinguish between the two classes in the code.

Common Programming Error 8.12
Attempting to compile code that contains naming collisions will generate compilation errors. 8.12

Namespaces help minimize this problem by providing a convention for unique class
names. No two classes in a given namespace can have the same name, but different
namespaces can contain classes of the same name. With hundreds of thousands of people
writing C# programs, there is a good chance the names that one programmer chooses to
describe classes will conflict with the names that other programmers choose for their classes.

We begin our discussion of reusing existing class definitions in Fig. 8.17, which pro-
vides the code for class Time3 (originally defined in Fig. 8.6). When reusing class defini-
tions between programs, programmers create class libraries that can be imported for use in
a program via a using statement. Only public classes can be reused from class libraries.
Non-public classes can be used only by other classes in the same assembly.

Chapter 8 Object-Based Programming 329

The only difference between class Time3 in this example and the version in Fig. 8.6
is that we show the namespace, i.e., TimeLibrary, in which Time3 is defined. Each
class library is defined in a namespace that contains all the classes in the library. We will
demonstrate momentarily how to package class Time3 into TimeLibrary.dll—the
dynamic link library that we create for reuse in other programs. Programs can load dynamic
link libraries at execution time to access common functionality that can be shared among
many programs. A dynamic link library represents an assembly. When a project uses a class
library, the project must contain a reference to the assembly that defines the class library.

1 // Fig. 8.17: TimeLibrary.cs
2 // Placing class Time3 in an assembly for reuse.
3
4 using System;
5
6 namespace TimeLibrary // specifies namespace for class Time3
7 {
8 // Time3 class definition
9 public class Time3

10 {
11 private int hour; // 0-23
12 private int minute; // 0-59
13 private int second; // 0-59
14
15 // Time3 constructor initializes instance variables to
16 // zero to set default time to midnight
17 public Time3()
18 {
19 SetTime(0, 0, 0);
20 }
21
22 // Time3 constructor: hour supplied, minute and second
23 // defaulted to 0
24 public Time3(int hour)
25 {
26 SetTime(hour, 0, 0);
27 }
28
29 // Time3 constructor: hour and minute supplied, second
30 // defaulted to 0
31 public Time3(int hour, int minute)
32 {
33 SetTime(hour, minute, 0);
34 }
35
36 // Time3 constructor: hour, minute and second supplied
37 public Time3(int hour, int minute, int second)
38 {
39 SetTime(hour, minute, second);
40 }
41

Fig. 8.17Fig. 8.17Fig. 8.17Fig. 8.17 Assembly TimeLibrary contains class Time3. (Part 1 of 3.)

330 Object-Based Programming Chapter 8

42 // Time3 constructor: initialize using another Time3 object
43 public Time3(Time3 time)
44 {
45 SetTime(time.Hour, time.Minute, time.Second);
46 }
47
48 // Set new time value in 24-hour format. Perform validity
49 // checks on the data. Set invalid values to zero.
50 public void SetTime(
51 int hourValue, int minuteValue, int secondValue)
52 {
53 Hour = hourValue;
54 Minute = minuteValue;
55 Second = secondValue;
56 }
57
58 // property Hour
59 public int Hour
60 {
61 get
62 {
63 return hour;
64 }
65
66 set
67 {
68 hour = ((value >= 0 && value < 24) ? value : 0);
69 }
70
71 } // end property Hour
72
73 // property Minute
74 public int Minute
75 {
76 get
77 {
78 return minute;
79 }
80
81 set
82 {
83 minute = ((value >= 0 && value < 60) ? value : 0);
84 }
85
86 } // end property Minute
87
88 // property Second
89 public int Second
90 {
91 get
92 {
93 return second;
94 }

Fig. 8.17Fig. 8.17Fig. 8.17Fig. 8.17 Assembly TimeLibrary contains class Time3. (Part 2 of 3.)

Chapter 8 Object-Based Programming 331

We now describe, step-by-step, how to create the class library TimeLibrary con-
taining class Time3:

1. Create a class library project. From the File menu, choose option New, followed
by Project…. In the New Project dialog, ensure that C# Projects is selected in
the Project Types section and click Class Library. Name the project TimeLi-
brary and choose the directory in which you would like to store the project. A sim-
ple class library will be created, as shown in Fig. 8.18. There are two important
points to note about the generated code. The first is that the class does not contain a
Main method. This indicates that the class in the class library cannot be used to be-
gin the execution of an application. This class is designed to be used by other pro-
grams. Also notice that Class1 is created as a public class. If another project
uses this library, only the library’s public classes are accessible. We created class
Time3 as public for this purpose (line 9 of Fig. 8.17) by renaming the class
Class1 (created by Visual Studio as part of the project) to Time3. In the Solu-
tion Explorer, we also renamed the Class1.cs file as Time3.cs.

2. Add the code for class Time3. Delete the code for the Class1 constructor. Then,
copy the remainder of the Time3 code (lines 11–116) from Fig. 8.17 (you can
find this file in the examples on the CD that accompanies this book) and paste the
code in the body of the class definition shown in Fig. 8.18.

3. Compile the code. From the Build menu, choose option Build Solution. The
code should compile successfully. Remember that this code cannot be executed—

95
96 set
97 {
98 second = ((value >= 0 && value < 60) ? value : 0);
99 }
100
101 } // end property Second
102
103 // convert time to universal-time (24 hour) format string
104 public string ToUniversalString()
105 {
106 return String.Format(
107 "{0:D2}:{1:D2}:{2:D2}", Hour, Minute, Second);
108 }
109
110 // convert time to standard-time (12 hour) format string
111 public string ToStandardString()
112 {
113 return String.Format("{0}:{1:D2}:{2:D2} {3}",
114 ((Hour == 12 || Hour == 0) ? 12 : Hour % 12),
115 Minute, Second, (Hour < 12 ? "AM" : "PM"));
116 }
117
118 } // end class Time3
119 }

Fig. 8.17Fig. 8.17Fig. 8.17Fig. 8.17 Assembly TimeLibrary contains class Time3. (Part 3 of 3.)

332 Object-Based Programming Chapter 8

there is no entry point into the program. In fact, if you try running the program by
selecting the Debug menu and choosing Start, Visual Studio .NET displays an
error message.

Compiling the project creates an assembly (a dynamic link library) that represents the
new class library. This assembly can be found in the bin\Debug directory of the project.
By default, the assembly name will include the namespace name. (In this case, the name
will be TimeLibrary.dll.) The assembly file contains class Time3, which other
projects can use. Assembly files, which have file extensions .dll and .exe, are integral
to C#. The Windows operating system uses executable files (.exe) to run applications,
whereas it uses library files (.dll, or dynamic link library) to represent code libraries that
can be loaded dynamically by many applications and shared among those applications.

Next, we define a console application project containing class AssemblyTest
(Fig. 8.19), which uses class Time3 in assembly TimeLibrary.dll to create a Time3
object and display its standard and universal string formats.

Fig. 8.18Fig. 8.18Fig. 8.18Fig. 8.18 Simple Class Library.

Chapter 8 Object-Based Programming 333

Before class AssemblyTest can use class Time3, the project containing class
AssemblyTest must have a reference to the TimeLibrary assembly. To add the ref-
erence, select Add Reference from the Project menu. Using the Browse button, select
TimeLibrary.dll (located in the bin\Debug directory of the TimeLibrary
project), then click OK to add the resource to the project. After adding the reference, use
keyword using to inform the compiler that we will use classes from namespace Time-
Library (line 5 in Fig. 8.19).

8.17 Class View and Object Browser
Now that we have introduced key concepts of object-based programming, we present two
features that Visual Studio provides to facilitate the design of object-oriented applica-
tions—Class View and Object Browser.

The Class View displays the variables and methods for all classes in a project. To
access this feature, select Class View from the View menu. Figure 8.20 shows the Class
View for the TimeTest1 project of Fig. 8.1 and Fig. 8.2 (class Time1 and class
TimeTest1). The view follows a hierarchical structure, positioning the project name
(TimeTest1) as the root and including a series of nodes (e.g., classes, variables, methods
etc.). If a plus sign (+) appears to the left of a node, that node can be expanded to show other
nodes. By contrast, if a minus sign (-) appears to the left of a node, that node has been
expanded (and can be collapsed). According to the Class View, project TimeTest con-
tains class Time1 and class TimeTest1 as children. Class Time1 contains methods
SetTime, Time1, ToStandardString and ToUniversalString (indicated by
purple boxes) and instance variables hour, minute and second (indicated by blue

1 // Fig. 8.19: AssemblyTest.cs
2 // Using class Time3 from assembly TimeLibrary.
3
4 using System;
5 using TimeLibrary;
6
7 // AssemblyTest class definition
8 class AssemblyTest
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 Time3 time = new Time3(13, 27, 6);
14
15 Console.WriteLine(
16 "Standard time: {0}\nUniversal time: {1}\n",
17 time.ToStandardString(), time.ToUniversalString());
18 }
19 }

Standard time: 1:27:06 PM
Universal time: 13:27:06

Fig. 8.19Fig. 8.19Fig. 8.19Fig. 8.19 Assembly TimeLibrary used from class AssemblyTest.

334 Object-Based Programming Chapter 8

boxes). The lock icons, placed to the left of the blue-box icons for the instance variables,
specify that the variables are private. Class TimeTest1 contains method Main. Note
that both class Time1 and class TimeTest1 contain the Bases and Interfaces node.
If you expand this node, you will see class Object in each case, because each class
inherits from class System.Object (discussed in Chapter 9).

Visual Studio’s Object Browser lists all classes in the C# library. Developers use the
Object Browser to learn about the functionality provided by a specific class. To open the
Object Browser, right click any built-in C# class or method in the code editor and select
Go To Definition. Figure 8.21 depicts the Object Browser when the user right clicks
the class name Object in the code editor. Note that the Object Browser lists all methods
provided by class Object in the Members of 'Object' window—this window offers
developers “instant access” to information regarding the functionality of various objects.
Note also that the Object Browser lists in the Objects window all classes in the FCL.
The Object Browser can be a quick mechanism to learn about a class or method of a
class. Remember that you can also view the complete description of a class or method in
the online documentation available through the Help menu in Visual Studio .NET.

This chapter is the first in a series of three chapters that cover the fundamentals of
object-based and object-oriented programming. In this chapter, we discussed how to create
proper class definitions, how to control access to class members and several features com-
monly used to craft valuable classes for reuse by other programmers. Chapter 9, focusses
on inheritance. In that chapter, you will learn how to build classes that inherit data and
functionality from existing class definitions. You also will learn other C# features that are
specific to the inheritance relationship between classes. These features serve as the basis
for the object-oriented programming concept called polymorphism that we present in
Chapter 10.

Fig. 8.20Fig. 8.20Fig. 8.20Fig. 8.20 Class View of class Time1 (Fig. 8.1) and class TimeTest (Fig. 8.2).

Chapter 8 Object-Based Programming 335

Fig. 8.21Fig. 8.21Fig. 8.21Fig. 8.21 Object Browser when user selects Object from Time1.cs.

336 Object-Based Programming Chapter 8

SUMMARY
• Every class in C# inherits directly or indirectly from class Object.

• Keywords public and private are member access modifiers.

• Instance variables and methods that are declared with member access modifier public are ac-
cessible wherever the program has a reference to an object of that class.

• Instance variables and methods that are declared with member access modifier private are ac-
cessible only to non-static methods of the class in which the private members are defined.

• The private methods often are called utility methods, or helper methods, because they can be
called only by other methods of that class and are used to support the operation of those methods.

• Access methods can read or display data. Another common use for access methods is to test the
truth of conditions—such methods often are called predicate methods.

• A constructor initializes the instance variables of a class object. A class’s constructor is called au-
tomatically when an object of that class is instantiated.

• It is common to have overloaded constructors for a class. Normally, constructors are public.

• Every class in C#, such as the classes from the .NET Framework, belongs to a namespace.

• If the programmer does not specify the namespace for a class, the class is placed in the default
namespace, which includes the compiled classes in the current directory.

• Instance variables can be initialized by the class constructor, or they can be assigned values by the
set accessor of a property.

• Instance variables that are not initialized explicitly by the programmer are initialized by the com-
piler (primitive numeric variables are set to 0, bool values are set to false and references are
set to null).

• Classes simplify programming, because the client code need only be concerned with the public
operations encapsulated in an object of the class.

• A class’s non-static instance variables and methods belong to that class’s scope. Within a
class’s scope, class members are immediately accessible to all of that class’s non-static meth-
ods and can be referenced simply by name. Outside a class’s scope, class members cannot be ref-
erenced directly by name.

• Variables defined in a method are known only to that method (i.e., they are local to that method).
Such variables are said to have block scope.

• If a method defines a variable that has the same name as a variable with class scope, the class-
scope variable is hidden by the block-scope variable in that method.

• To allow clients to manipulate the value of private data, the class can provide a property defi-
nition, which will enable the user to access this private data in a safe way.

• A property definition contains accessor methods that handle the details of modifying and returning
data.

• A property definition can contain a set accessor, a get accessor or both. A get accessor enables
the client to read the field’s value and the set accessor enables the client to modify the value.

• When an object is created, its members can be initialized by a constructor of that object’s class.

• If no constructors are defined for a class, a default constructor will be provided by the compiler.
This constructor contains no code and takes no parameters.

• Methods and constructors of a class can be overloaded. To overload a method of a class, simply
provide a separate method definition with the same name for each version of the method. Remem-
ber that overloaded methods/constructors must have different parameter lists.

Chapter 8 Object-Based Programming 337

• Although set and get accessors can provide access to private data, the access is restricted by
the programmer’s implementation of those methods.

• One form of software reuse is composition, in which a class contains as members references to
objects of other classes.

• The this reference is used implicitly and explicitly to refer to both the instance variables and the
non-static methods of an object.

• The .NET Framework performs automatic garbage collection.

• Every class in C# can have a destructor that typically returns resources to the system. The destruc-
tor for an object is guaranteed to be called to perform termination housekeeping on the object just
before the garbage collector reclaims the memory for the object (called finalization).

• In certain cases, all objects of a class should share only one copy of a particular variable. Program-
mers use static variables for this and other reasons.

• A static variable represents class-wide information—all objects of the class share the same
piece of data.

• The declaration of a static member begins with the keyword static. Such variables have
class scope.

• A class’s public static members can be accessed via the class name and the dot operator
(e.g., Math.PI).

• A class’s private static members can be accessed only through methods or properties of the
class.

• A method declared static cannot access non-static members.

• C# allows programmers to create constants whose values cannot change during program execution.

• To create a constant member of a C# class, the programmer must declare that member using either
the const or readonly keyword.

• Members declared const must be initialized in the declaration; those declared with readonly
can be initialized in the constructor, but must be initialized before they are used.

• Neither const nor readonly values can be modified once they are initialized.

• A class can define indexers to provide subscripted access to the data in an object of that class.

• Indexers can be defined to use any data type as the subscript.

• Each indexer can define a get and set accessor.

• Classes normally hide their implementation details from the clients of the classes. This is called
information hiding.

• C# and the object-oriented style of programming elevate the importance of data. The primary ac-
tivities of object-oriented programming in C# are the creation of data types (i.e., classes) and the
expression of the interactions among objects of those data types.

• C# programmers concentrate on crafting new classes and reusing existing classes.

• Software reusability speeds the development of powerful, high-quality software. Rapid applica-
tions development (RAD) is of great interest today.

• Each class and interface in the .NET Framework belongs to a specific namespace (or library) that
contains a group of related classes and interfaces. Namespaces provide a mechanism for software
reuse.

• There is a good chance that the names you choose for classes will conflict with the names that other
programmers choose for their classes. For this reason, namespaces provide a convention for
unique class names.

338 Object-Based Programming Chapter 8

• The Visual Studio .NET Class View displays the variables and methods for all classes in a
project.

• The Visual Studio .NET Object Browser lists all classes in the C# library. Developers use the
Object Browser to learn about the functionality provided by a specific object.

TERMINOLOGY
abstract data type (ADT) dynamic link library
access method encapsulate
action enqueue operation
action-oriented .exe
aggregation explicit use of this reference
assembly extensible language
attribute (data) finalizer
behavior (method) first-in, first-out (FIFO) data structure
block scope garbage collector
body of a class definition GC class
built-in data types get accessor
case sensitivity GUI event handling
class helper method
class definition hide an instance variable
class library hide implementation details
class scope hide internal data representation
class implements abstract data type implementation
class-scope variable hidden by
 method-scope variable

indexer
indexer get accessor

Class View indexer set accessor
“class-wide” information information hiding
client of a class inheritance
Collect method of GC initial set of classes
compile a class initialize to default values
composition initialize a class object
consistent state initialize an instance variable
constant insert an item into a container object
constructor instance of a built-in type
create a code library instance of a user-defined type
create class from existing class definition instance variable
create a namespace instantiate (or create) an object
create a reusable class interactions among objects
create data types interface
data abstraction internal data representation
data in support of actions IsEmpty
data integrity IsFull
data member last-in, first-out (LIFO) data structure
data representation of an abstract data type library
data structure linked list
default constructor local variable of a method
destructor member access modifier
division by zero is undefined memory leak
.dll method overloading
dot (.) operator namespace

Chapter 8 Object-Based Programming 339

SELF-REVIEW EXERCISES
8.1 Fill in the blanks in each of the following statements:

a) Client code can access a class’s members via the operator in conjunction
with a reference to an object of the class.

b) Members of a class declared are accessible only to methods of the class in
which those members are defined.

c) A initializes the instance variables of a class.
d) A property accessor is used to assign values to private instance variables

of a class.
e) Methods of a class normally are declared , and instance variables of a class

normally are declared .
f) A accessor of a property is used to retrieve values of private data of a class.
g) The keyword introduces a class definition.
h) Members of a class declared are accessible anywhere that an object of the

class is in scope.
i) The operator allocates memory dynamically for an object of a specified type

and returns a to that type.
j) A variable represents class-wide information.
k) The keyword specifies that an object or variable is not modifiable after it is

initialized at execution time.
l) A method declared static cannot access class members.

new operator pushing into a stack
no-argument constructor queue
non-public method rapid applications development (RAD)
object (or instance) reclaim memory
Object Browser reference to a new object
Object class resource leak
object orientation reusable software component
object passed by reference service of a class
“object speak” set accessor of a property
“object think” signature
object-based programming (OBP) software reuse
object-oriented programming (OOP) stack
overloaded constructor standard-time format
overloaded method static variable
polymorphism static variables have class scope
popping off a stack static keyword
predicate method structured programming
private keyword termination housekeeping
private static member this keyword
procedural programming language universal-time format
program-development process user-defined type
programmer-defined type utility method
public keyword validity checking
public method variable
public operations encapsulated in an object WaitForPendingFinalizers method

 of class GCpublic service
public static member waiting line

340 Object-Based Programming Chapter 8

8.2 State whether each of the following is true of false. If false explain why.
a) All objects are passed by reference.
b) Constructors can have return values.
c) Properties must define get and set accessors.
d) The this reference of an object is a reference to that object itself.
e) A static member can be referenced when no object of that type exists.
f) A static member of a class can be referenced through an instance of the class.
g) Variables declared const must be initialized either in a declaration or in the class con-

structor.
h) Different namespaces cannot have classes/methods with the same names.
i) Assembly files are not required to define an entry point (Main method).
j) Indexers can return any type in C#.

ANSWERS TO SELF-REVIEW EXERCISES
8.1 a) dot (.). b) private. c) constructor. d) set. e) public, private. f) get. g) class.
h) public. i) new, reference. j) static. k) readonly. l) non-static.

8.2 a) True. b) False. Constructors are not permitted to return values. c) False. A property defi-
nition can specify a set accessor, a get accessor or both. d) True. e) True. f) False. A static
member of a class can only be referenced through the class name. g) False. Variables declared const
must be initialized when they are declared. h) False. Different namespaces can have classes/methods
with the same names. i) True. j) True.

EXERCISES
8.3 Create a class called Complex for performing arithmetic with complex numbers. Write a
driver program to test your class.

Complex numbers have the form

realPart + imaginaryPart * i

where i is

Use floating-point variables to represent the private data of the class. Provide a constructor
that enables an object of this class to be initialized when it is declared. Provide a no-argument con-
structor with default values in case no initializers are provided. Provide public methods for each
of the following:

a) Addition of two Complex numbers. The real parts are added together and the imaginary
parts are added together.

b) Subtraction of two Complex numbers. The real part of the right operand is subtracted
from the real part of the left operand and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Printing of Complex numbers in the form (a, b), where a is the real part and b is the
imaginary part.

8.4 Modify the Date class of Fig. 8.8 to perform error checking on the initializer values for in-
stance variables month, day and year. Also, provide a method NextDay to increment the day by
one. The Date object should always remain in a consistent state. Write a program that tests the
NextDay method in a loop that prints the date during each iteration of the loop to illustrate that the
NextDay method works correctly. Be sure to test the following cases:

-1

Chapter 8 Object-Based Programming 341

a) Incrementing into the next month.
b) Incrementing into the next year.

8.5 Create a class TicTacToe that will enable you to write a complete program to play the
game of Tic-Tac-Toe. The class contains as private data a 3-by-3 double array of characters. The
constructor should initialize the empty board to all spaces, ' '. Allow two players. Wherever the
first player moves, place an 'X' in the specified square; place an 'O' wherever the second player
moves. Each move must be to an empty square. After each move, determine whether the game has
been won or if the game is a draw via a GameStatus method. [Hint: use an enumeration constant
to return the following statuses: WIN, DRAW, CONTINUE.] Write Windows Application TicTac-
ToeTest to test your class. If you feel ambitious, modify your program so that the computer makes
the moves for one of the players automatically. Also, allow the player to specify whether he or she
wants to go first or second. If you feel exceptionally ambitious, develop a program that will play
three-dimensional Tic-Tac-Toe on a 4-by-4-by-4 board [Note: This is a challenging project that could
take many weeks of effort!]

8.6 Create a Date class with the following capabilities:
a) Output the date in multiple formats such as

MM/DD/YYYY
June 14, 2001
DDD YYYY

b) Use overloaded constructors to create Date objects initialized with dates of the formats
in part a).

8.7 Create class SavingsAccount. Use static variable annualInterestRate to store
the interest rate for all account holders. Each object of the class contains a private instance variable
savingsBalance indicating the amount the saver currently has on deposit. Provide method
CalculateMonthlyInterest to calculate the monthly interest by multiplying the sav-
ingsBalance by annualInterestRate divided by 12; this interest should be added to sav-
ingsBalance. Provide a static method ModifyInterestRate that sets the
annualInterestRate to a new value. Write a driver program to test class SavingsAccount.
Instantiate two savingsAccount objects, saver1 and saver2, with balances of $2000.00 and
$3000.00, respectively. Set annualInterestRate to 4%, then calculate the monthly interest and
print the new balances for each of the savers. Then set the annualInterestRate to 5% and cal-
culate the next month’s interest and print the new balances for each of the savers.

8.8 Write a console application that implements a Square shape. Class Square should contain
an instance property Side that has get and set accessors for private data. Provide two con-
structors: one that takes no arguments and another that takes a side length as a value. Write an ap-
plication class that tests class Square’s functionality.

9
Object-Oriented
Programming:

Inheritance

Objectives
• To understand inheritance and software reusability.
• To understand the concepts of base classes and

derived classes.
• To understand member access modifier protected

and internal.
• To be able to use the base reference to access base-

class members
• To understand the use of constructors and finalizers in

base classes and derived classes.
• To present a case study that demonstrates the

mechanics of inheritance.
Say not you know another entirely, till you have divided an
inheritance with him.
Johann Kasper Lavater

This method is to define as the number of a class the class of
all classes similar to the given class.
Bertrand Russell

Good as it is to inherit a library, it is better to collect one.
Augustine Birrell

Chapter 9 Object-Oriented Programming: Inheritance 343

9.1 Introduction
In this chapter, we begin our discussion of object-oriented programming (OOP) by intro-
ducing one of its main features—inheritance. Inheritance is a form of software reusability
in which classes are created by absorbing an existing class’s data and behaviors and embel-
lishing them with new capabilities. Software reusability saves time during program devel-
opment. It also encourages the reuse of proven and debugged high-quality software, which
increases the likelihood that a system will be implemented effectively.

When creating a class, instead of writing completely new instance variables and
methods, the programmer can designate that the new class should inherit the class vari-
ables, properties and methods of another class. The previously defined class is called the
base class, and the new class is referred to as the derived class. (Other programming lan-
guages, such as Java, refer to the base class as the superclass, and the derived class as the
subclass.) Once created, each derived class can become the base class for future derived
classes. A derived class, to which unique class variables, properties and methods normally
are added, is often larger than its base class. Therefore, a derived class is more specific than
its base class and represents a more specialized group of objects. Typically, the derived
class contains the behaviors of its base class and additional behaviors. The direct base class
is the base class from which the derived class explicitly inherits. An indirect base class is
inherited from two or more levels up the class hierarchy. In the case of single inheritance,
a class is derived from one base class. C#, unlike C++, does not support multiple inherit-
ance (which occurs when a class is derived from more than one direct base class). (We
explain in Chapter 10 how C# can use interfaces to realize many of the benefits of multiple
inheritance while avoiding the associated problems.)

Every object of a derived class is also an object of that derived class’s base class. How-
ever, base-class objects are not objects of their derived classes. For example, all cars are
vehicles, but not all vehicles are cars. As we continue our study of object-oriented program-
ming in Chapters 9 and 10, we take advantage of this relationship to perform some inter-
esting manipulations.

Experience in building software systems indicates that significant amounts of code
deal with closely related special cases. When programmers are preoccupied with special
cases, the details can obscure the “big picture.” With object-oriented programming, pro-

Outline

9.1 Introduction
9.2 Base Classes and Derived Classes

9.3 protected Members
9.4 Relationship between Base Classes and Derived Classes
9.5 Case Study: Three-Level Inheritance Hierarchy
9.6 Constructors and Destructors in Derived Classes
9.7 Software Engineering with Inheritance

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

344 Object-Oriented Programming: Inheritance Chapter 9

grammers focus on the commonalities among objects in the system, rather than on the spe-
cial cases. This process is called abstraction.

We distinguish between the “is-a” relationship and the “has-a” relationship. “Is-a”
represents inheritance. In an “is-a” relationship, an object of a derived class also can be
treated as an object of its base class. For example, a car is a vehicle. By contrast, “has-a”
stands for composition (composition is discussed in Chapter 8). In a “has-a” relationship, a
class object contains one or more object references as members. For example, a car has a
steering wheel.

Derived-class methods might require access to their base-class instance variables,
properties and methods. A derived class can access the non-private members of its base
class. Base-class members that should not be accessible to properties or methods of a class
derived from that base class via inheritance are declared private in the base class. A
derived class can effect state changes in private base-class members, but only through
non-private methods and properties provided in the base class and inherited into the
derived class.

Software Engineering Observation 9.1
Properties and methods of a derived class cannot directly access private members of their
base class. 9.1

Software Engineering Observation 9.2
Hiding private members helps programmers test, debug and correctly modify systems. If
a derived class could access its base class’s private members, classes that inherit from
that derived class could access that data as well. This would propagate access to what should
be private data, and the benefits of information hiding would be lost. 9.2

One problem with inheritance is that a derived class can inherit properties and methods
it does not need or should not have. It is the class designer’s responsibility to ensure that
the capabilities provided by a class are appropriate for future derived classes. Even when a
base-class property or method is appropriate for a derived class, that derived class often
requires the property or method to perform its task in a manner specific to the derived class.
In such cases, the base-class property or method can be overridden (redefined) in the
derived class with an appropriate implementation.

New classes can inherit from abundant class libraries. Organizations develop their
own class libraries and can take advantage of other libraries available worldwide. Someday,
the vast majority of new software likely will be constructed from standardized reusable
components, as most hardware is constructed today. This will facilitate the development of
more powerful and abundant software.

9.2 Base Classes and Derived Classes
Often, an object of one class “is an” object of another class, as well. For example, a rectan-
gle is a quadrilateral (as are squares, parallelograms and trapezoids). Thus, class Rectan-
gle can be said to inherit from class Quadrilateral. In this context, class
Quadrilateral is a base class, and class Rectangle is a derived class. A rectangle
is a specific type of quadrilateral, but it is incorrect to claim that a quadrilateral is a rectan-
gle—the quadrilateral could be a parallelogram or some other type of Quadrilateral.
Figure 9.1 lists several simple examples of base classes and derived classes.

Chapter 9 Object-Oriented Programming: Inheritance 345

Every derived-class object “is an” object of its base class, and one base class can have
many derived classes; therefore, the set of objects represented by a base class typically is
larger than the set of objects represented by any of its derived classes. For example, the base
class Vehicle represents all vehicles, including cars, trucks, boats, bicycles and so on. By
contrast, derived-class Car represents only a small subset of all Vehicles.

Inheritance relationships form tree-like hierarchical structures. A class exists in a hier-
archical relationship with its derived classes. Although classes can exist independently,
once they are employed in inheritance arrangements, they become affiliated with other
classes. A class becomes either a base class, supplying data and behaviors to other classes,
or a derived class, inheriting its data and behaviors from other classes.

Let us develop a simple inheritance hierarchy. A university community has thousands
of members. These members consist of employees, students and alumni. Employees are
either faculty members or staff members. Faculty members are either administrators (such
as deans and department chairpersons) or teachers. This organizational structure yields the
inheritance hierarchy, depicted in Fig. 9.2. Note that the inheritance hierarchy could con-
tain many other classes. For example, students can be graduate or undergraduate students.
Undergraduate students can be freshmen, sophomores, juniors and seniors. Each arrow in
the hierarchy represents an “is-a” relationship. For example, as we follow the arrows in this
class hierarchy, we can state, “an Employee is a CommunityMember” and “a
Teacher is a Faculty member.” CommunityMember is the direct base class of
Employee, Student and Alumnus. In addition, CommunityMember is an indirect
base class of all the other classes in the hierarchy diagram.

Starting from the bottom of the diagram, the reader can follow the arrows and apply
the is-a relationship to the topmost base class. For example, an Administrator is a
Faculty member, is an Employee and is a CommunityMember. In C#, an Admin-
istrator also is an Object, because all classes in C# have Object as either a direct
or indirect base class. Thus, all classes in C# are connected via a hierarchical relationship

Base class Derived classes

Student GraduateStudent
UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

Fig. 9.1Fig. 9.1Fig. 9.1Fig. 9.1 Inheritance examples.

346 Object-Oriented Programming: Inheritance Chapter 9

in which they share the eight methods defined by class Object. We discuss some of these
methods inherited from Object throughout the text.

Another inheritance hierarchy is the Shape hierarchy of Fig. 9.3. To specify that class
TwoDimensionalShape is derived from (or inherits from) class Shape, class
TwoDimensionalShape could be defined in C# as follows:

class TwoDimensionalShape : Shape

In Chapter 8, we briefly discussed has-a relationships, in which classes have as mem-
bers references to objects of other classes. Such relationships create classes by composition
of existing classes. For example, given the classes Employee, BirthDate and Tele-
phoneNumber, it is improper to say that an Employee is a BirthDate or that an
Employee is a TelephoneNumber. However, it is appropriate to say that an
Employee has a BirthDate and that an Employee has a TelephoneNumber.

With inheritance, private members of a base class are not accessible directly from
that class’s derived classes, but these private base-class members are still inherited. All
other base-class members retain their original member access when they become members
of the derived class (e.g., public members of the base class become public members
of the derived class, and, as we will soon see, protected members of the base class
become protected members of the derived class). Through these inherited base-class
members, the derived class can manipulate private members of the base class (if these
inherited members provide such functionality in the base class).

It is possible to treat base-class objects and derived-class objects similarly; their com-
monalities are expressed in the member variables, properties and methods of the base class.
Objects of all classes derived from a common base class can be treated as objects of that
base class. In Chapter 10, Object-Oriented Programming: Polymorphism we consider
many examples that take advantage of this relationship.

Software Engineering Observation 9.3
Constructors never are inherited—they are specific to the class in which they are defined. 9.3

Fig. 9.2Fig. 9.2Fig. 9.2Fig. 9.2 Inheritance hierarchy for university CommunityMembers.

Employee Student

Faculty Staff

Administrator Teacher

Alumnus

CommunityMember

Chapter 9 Object-Oriented Programming: Inheritance 347

9.3 protected and internal Members
Chapter 8 discussed public and private member access modifiers. A base class’s
public members are accessible anywhere that the program has a reference to an object of
that base class or one of its derived classes. A base class’s private members are acces-
sible only within the body of that base class. In this section, we introduce two additional
member access modifiers, protected and internal.

Using protected access offers an intermediate level of protection between
public and private access. A base class’s protected members can be accessed
only in that base class or in any classes derived from that base class.

Another intermediate level of access is known as internal access. A base class’s
internal members can be accessed only by objects declared in the same assembly. Note
that an internal member is accessible in any part of the assembly in which that
internal member is declared.

Derived-class methods normally can refer to public, protected and internal
members of the base class simply by using the member names. When a derived-class
method overrides a base-class member, the base-class member can be accessed from the
derived class by preceding the base-class member name with keyword base, followed by
the dot operator (.). We discuss keyword base in Section 9.4.

9.4 Relationship between Base Classes and Derived Classes
In this section, we use a point-circle hierarchy1 to discuss the relationship between a base
class and a derived class. We divide our discussion of the point-circle relationship into sev-
eral parts. First, we create class Point, which directly inherits from class System.Ob-
ject and contains as private data an x-y coordinate pair. Then, we create class
Circle, which also directly inherits from class System.Object and contains as pri-
vate data an x-y coordinate pair (representing the location of the center of the circle) and
a radius. We do not use inheritance to create class Circle; rather, we construct the class
by writing every line of code the class requires. Next, we create a separate Circle2 class,

Fig. 9.3Fig. 9.3Fig. 9.3Fig. 9.3 Portion of a Shape class hierarchy.

1. The point-circle relationship may seem unnatural when we discuss it in the context of a circle “is
a” point. This example teaches what is sometimes called structural inheritance; the example fo-
cuses on the “mechanics” of inheritance and how a base class and a derived class relate to one an-
other. In Chapter 10, we present more natural inheritance examples.

TwoDimensionalShape

Circle Square

Shape

ThreeDimensionalShape

Triangle Sphere Cube Cylinder

348 Object-Oriented Programming: Inheritance Chapter 9

which directly inherits from class Point (i.e., class Circle2 “is a” Point but also con-
tains a radius) and attempts to use the Point private members—this results in compi-
lation errors, because the derived class does not have access to the base-class’s private
data. We then show that if Point’s data is declared as protected, a Circle3 class
that inherits from class Point can access that data. Both the inherited and non-inherited
Circle classes contain identical functionality, but we show how the inherited Circle3
class is easier to create and manage. After discussing the merits of using protected data,
we set the Point data back to private (to enforce good software engineering), then
show how a separate Circle4 class (which also inherits from class Point) can use
Point methods to manipulate Point’s private data.

 Let us first examine the Point (Fig. 9.4) class definition. The public services of
class Point include two Point constructors (lines 13–24), properties X and Y (lines 27–
54) and method ToString (lines 57–60). The instance variables x and y of Point are
specified as private (line 10), so objects of other classes cannot access x and y directly.
Technically, even if Point’s variables x and y were made public, Point can never
maintain an inconsistent state, because the x-y coordinate plane is infinite in both direc-
tions, so x and y can hold any int value. In general, however, declaring data as private,
while providing non-private properties to manipulate and perform validation checking
on that data, enforces good software engineering.

We mentioned in Section 9.2 that constructors are not inherited. Therefore, Class
Point does not inherit class Object’s constructor. However, class Point’s construc-
tors (lines 13–24) call class Object’s constructor implicitly. In fact, the first task of any
derived-class constructor is to call its direct base class’s constructor, either implicitly or
explicitly. (The syntax for calling a base-class constructor is discussed later in this section.)
If the code does not include an explicit call to the base-class constructor, an implicit call is
made to the base class’s default (no-argument) constructor. The comments in lines 15 and
21 indicate where the implicit calls to the base-class Object’s default constructor occur.

1 // Fig. 9.4: Point.cs
2 // Point class represents an x-y coordinate pair.
3
4 using System;
5
6 // Point class definition implicitly inherits from Object
7 public class Point
8 {
9 // point coordinates

10 private int x, y;
11
12 // default (no-argument) constructor
13 public Point()
14 {
15 // implicit call to Object constructor occurs here
16 }
17
18 // constructor
19 public Point(int xValue, int yValue)
20 {

Fig. 9.4Fig. 9.4Fig. 9.4Fig. 9.4 Point class represents an x-y coordinate pair. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 349

Note that method ToString (lines 57–60) contains the keyword override in its
declaration. Every class in C# (such as class Point) inherits either directly or indirectly
from class System.Object, which is the root of the class hierarchy. As we mentioned
previously, this means that every class inherits the eight methods defined by class Object.
One of these methods is ToString, which returns a string containing the object’s type
preceded by its namespace—this method obtains an object’s string representation and
sometimes is called implicitly by the program (such as when an object is concatenated to a
string). Method ToString of class Point overrides the original ToString from

21 // implicit call to Object constructor occurs here
22 X = xValue;
23 Y = yValue;
24 }
25
26 // property X
27 public int X
28 {
29 get
30 {
31 return x;
32 }
33
34 set
35 {
36 x = value; // no need for validation
37 }
38
39 } // end property X
40
41 // property Y
42 public int Y
43 {
44 get
45 {
46 return y;
47 }
48
49 set
50 {
51 y = value; // no need for validation
52 }
53
54 } // end property Y
55
56 // return string representation of Point
57 public override string ToString()
58 {
59 return "[" + x + ", " + y + "]";
60 }
61
62 } // end class Point

Fig. 9.4Fig. 9.4Fig. 9.4Fig. 9.4 Point class represents an x-y coordinate pair. (Part 2 of 2.)

350 Object-Oriented Programming: Inheritance Chapter 9

class Object—when invoked, method ToString of class Point returns a string
containing an ordered pair of the values x and y (line 59), instead of returning a string
containing the object’s class and namespace. To override a base-class method definition, a
derived class must specify that the derived-class method overrides the base-class method
with keyword override in the method header.

Software Engineering Observation 9.4
The C# compiler sets the base class of a derived class to Object when the program does
not specify a base class explicitly. 9.4

In C#, a base-class method must be declared virtual if that method is to be over-
ridden in a derived class. Method ToString of class Object is, in fact, declared vir-
tual, which enables derived class Point to override this method. To view the method
header for ToString, select Help > Index..., and enter Object.ToString method
(filtered by .Net Framework SDK) in the search text box. The page displayed contains a
description of method ToString, which includes the following header:

public virtual string ToString();

Keyword virtual allows programmers to specify those methods that a derived class
can override—a method that has not been declared virtual cannot be overridden. We
use this later in this section to enable certain methods in our base classes to be overridden.

Common Programming Error 9.1
A derived class attempting to override (using keyword override) a method that has not
been declared virtual is a syntax error. 9.1

Class PointTest (Fig. 9.5) tests class Point. Line 14 instantiates an object of class
Point and assigns 72 as the x-coordinate value and 115 as the y-coordinate value. Lines
17–18 use properties X and Y to retrieve these values, then append the values to string
output. Lines 20–21 change the values of properties X and Y (implicitly invoking their
set accessors), and line 24 calls Point’s ToString method implicitly to obtain the
Point’s string representation.

1 // Fig. 9.5: PointTest.cs
2 // Testing class Point.
3
4 using System;
5 using System.Windows.Forms;
6
7 // PointTest class definition
8 class PointTest
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 // instantiate Point object
14 Point point = new Point(72, 115);
15

Fig. 9.5Fig. 9.5Fig. 9.5Fig. 9.5 PointTest class demonstrates class Point functionality. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 351

We now discuss the second part of our introduction to inheritance by creating and
testing (a completely new) class Circle (Fig. 9.6), which directly inherits from class
System.Object and represents an x-y coordinate pair (representing the center of the
circle) and a radius. Lines 9–10 declare the instance variables x, y and radius as pri-
vate data. The public services of class Circle include two Circle constructors
(lines 13–25), properties X, Y and Radius (lines 28–71), methods Diameter (lines 74–
77), Circumference (lines 80–83), Area (lines 86–89) and ToString (lines 92–96).
These properties and methods encapsulate all necessary features (i.e., the “analytic geom-
etry”) of a circle; in the next section, we show how this encapsulation enables us to reuse
and extend this class.

16 // display point coordinates via X and Y properties
17 string output = "X coordinate is " + point.X +
18 "\n" + "Y coordinate is " + point.Y;
19
20 point.X = 10; // set x-coordinate via X property
21 point.Y = 10; // set y-coordinate via Y property
22
23 // display new point value
24 output += "\n\nThe new location of point is " + point;
25
26 MessageBox.Show(output, "Demonstrating Class Point");
27
28 } // end method Main
29
30 } // end class PointTest

1 // Fig. 9.6: Circle.cs
2 // Circle class contains x-y coordinate pair and radius.
3
4 using System;
5
6 // Circle class definition implicitly inherits from Object
7 public class Circle
8 {
9 private int x, y; // coordinates of Circle's center

10 private double radius; // Circle's radius
11

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 Circle class contains an x-y coordinate and a radius. (Part 1 of 3.)

Fig. 9.5Fig. 9.5Fig. 9.5Fig. 9.5 PointTest class demonstrates class Point functionality. (Part 2 of 2.)

352 Object-Oriented Programming: Inheritance Chapter 9

12 // default constructor
13 public Circle()
14 {
15 // implicit call to Object constructor occurs here
16 }
17
18 // constructor
19 public Circle(int xValue, int yValue, double radiusValue)
20 {
21 // implicit call to Object constructor occurs here
22 x = xValue;
23 y = yValue;
24 Radius = radiusValue;
25 }
26
27 // property X
28 public int X
29 {
30 get
31 {
32 return x;
33 }
34
35 set
36 {
37 x = value; // no need for validation
38 }
39
40 } // end property X
41
42 // property Y
43 public int Y
44 {
45 get
46 {
47 return y;
48 }
49
50 set
51 {
52 y = value; // no need for validation
53 }
54
55 } // end property Y
56
57 // property Radius
58 public double Radius
59 {
60 get
61 {
62 return radius;
63 }
64

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 Circle class contains an x-y coordinate and a radius. (Part 2 of 3.)

Chapter 9 Object-Oriented Programming: Inheritance 353

Class CircleTest (Fig. 9.7) tests class Circle. Line 14 instantiates an object of
class Circle, assigning 37 as the x-coordinate value, 43 as the y-coordinate value and 2.5
as the radius value. Lines 17–19 use properties X, Y and Radius to retrieve these values, then
concatenate the values to string output. Lines 22–24 use Circle’s X, Y and Radius
properties to change the x-y coordinates and the radius, respectively. Property Radius
ensures that member variable radius cannot be assigned a negative value. Line 28 calls
Circle’s ToString method implicitly to obtain the Circle’s string representation,
and lines 32–40 call Circle’s Diameter, Circumference and Area methods.

After writing all the code for class Circle (Fig. 9.6), we note that a major portion of
the code in this class is similar, if not identical, to much of the code in class Point. For
example, the declaration in Circle of private variables x and y and properties X and Y
are identical to those of class Point. In addition, the class Circle constructors and method
ToString are almost identical to those of class Point, except that they also supply
radius information. The only other additions to class Circle are private member vari-
able radius, property Radius and methods Diameter, Circumference and Area.

65 set
66 {
67 if (value >= 0) // validation needed
68 radius = value;
69 }
70
71 } // end property Radius
72
73 // calculate Circle diameter
74 public double Diameter()
75 {
76 return radius * 2;
77 }
78
79 // calculate Circle circumference
80 public double Circumference()
81 {
82 return Math.PI * Diameter();
83 }
84
85 // calculate Circle area
86 public double Area()
87 {
88 return Math.PI * Math.Pow(radius, 2);
89 }
90
91 // return string representation of Circle
92 public override string ToString()
93 {
94 return "Center = [" + x + ", " + y + "]" +
95 "; Radius = " + radius;
96 }
97
98 } // end class Circle

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 Circle class contains an x-y coordinate and a radius. (Part 3 of 3.)

354 Object-Oriented Programming: Inheritance Chapter 9

It appears that we literally copied code from class Point, pasted this code in the code
from class Circle, then modified class Circle to include a radius. This “copy-and-
paste” approach is often error-prone and time-consuming. Worse yet, it can result in many
physical copies of the code existing throughout a system, creating a code-maintenance
“nightmare.” Is there a way to “absorb” the attributes and behaviors of one class in a way
that makes them part of other classes without duplicating code?

1 // Fig. 9.7: CircleTest.cs
2 // Testing class Circle.
3
4 using System;
5 using System.Windows.Forms;
6
7 // CircleTest class definition
8 class CircleTest
9 {

10 // main entry point for application.
11 static void Main(string[] args)
12 {
13 // instantiate Circle
14 Circle circle = new Circle(37, 43, 2.5);
15
16 // get Circle's initial x-y coordinates and radius
17 string output = "X coordinate is " + circle.X +
18 "\nY coordinate is " + circle.Y + "\nRadius is " +
19 circle.Radius;
20
21 // set Circle's x-y coordinates and radius to new values
22 circle.X = 2;
23 circle.Y = 2;
24 circle.Radius = 4.25;
25
26 // display Circle's string representation
27 output += "\n\nThe new location and radius of " +
28 "circle are \n" + circle + "\n";
29
30 // display Circle's diameter
31 output += "Diameter is " +
32 String.Format("{0:F}", circle.Diameter()) + "\n";
33
34 // display Circle's circumference
35 output += "Circumference is " +
36 String.Format("{0:F}", circle.Circumference()) + "\n";
37
38 // display Circle's area
39 output += "Area is " +
40 String.Format("{0:F}", circle.Area());
41
42 MessageBox.Show(output, "Demonstrating Class Circle");
43
44 } // end method Main

Fig. 9.7Fig. 9.7Fig. 9.7Fig. 9.7 CircleTest demonstrates class Circle functionality. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 355

In the next examples we answer that question, we use a more elegant class construction
approach emphasizing the benefits of inheritance. Now, we create and test a class
Circle2 (Fig. 9.8) that inherits variables x and y and properties X and Y from class
Point (Fig. 9.4). This class Circle2 “is a” Point (because inheritance absorbs the
capabilities of class Point), but also contains radius (line 9). The colon (:) symbol in
the class declaration (line 7) indicates inheritance. As a derived class, Circle2 inherits
all the members of class Point, except for the constructors. Thus, the public services
to Circle2 include the two Circle2 constructors (lines 12–24); the public methods
inherited from class Point; property Radius (lines 27–40); and the Circle2 methods
Diameter, Circumference, Area and ToString (lines 43–65). We declare method
Area as virtual, so that derived classes (such as class Cylinder, as we will see in
Section 9.5) can override this method to provide a more appropriate implementation.

45
46 } // end class CircleTest

1 // Fig. 9.8: Circle2.cs
2 // Circle2 class that inherits from class Point.
3
4 using System;
5
6 // Circle2 class definition inherits from Point
7 class Circle2 : Point
8 {
9 private double radius; // Circle2's radius

10
11 // default constructor
12 public Circle2()
13 {
14 // implicit call to Point constructor occurs here
15 }
16

Fig. 9.8Fig. 9.8Fig. 9.8Fig. 9.8 Circle2 class that inherits from class Point. (Part 1 of 3.)

Fig. 9.7Fig. 9.7Fig. 9.7Fig. 9.7 CircleTest demonstrates class Circle functionality. (Part 2 of 2.)

356 Object-Oriented Programming: Inheritance Chapter 9

17 // constructor
18 public Circle2(int xValue, int yValue, double radiusValue)
19 {
20 // implicit call to Point constructor occurs here
21 x = xValue;
22 y = yValue;
23 Radius = radiusValue;
24 }
25
26 // property Radius
27 public double Radius
28 {
29 get
30 {
31 return radius;
32 }
33
34 set
35 {
36 if (value >= 0)
37 radius = value;
38 }
39
40 } // end property Radius
41
42 // calculate Circle diameter
43 public double Diameter()
44 {
45 return radius * 2;
46 }
47
48 // calculate Circle circumference
49 public double Circumference()
50 {
51 return Math.PI * Diameter();
52 }
53
54 // calculate Circle area
55 public virtual double area()
56 {
57 return Math.PI * Math.Pow(radius, 2);
58 }
59
60 // return string representation Circle
61 public override string ToString()
62 {
63 return "Center = [" + x + ", " + y + "]" +
64 "; Radius = " + radius;
65 }
66
67 } // end class Circle2

Fig. 9.8Fig. 9.8Fig. 9.8Fig. 9.8 Circle2 class that inherits from class Point. (Part 2 of 3.)

Chapter 9 Object-Oriented Programming: Inheritance 357

Lines 14 and 20 in the Circle2 constructors (lines 12–24) invoke the default Point
constructor implicitly to initialize the base-class portion (variables x and y, inherited from
class Point) of a Circle2 object to 0. However, because the parameterized constructor
(lines 18–24) should set the x-y coordinate to a specific value, lines 21–22 attempt to assign
argument values to x and y directly. Even though lines 21–22 attempt to set x and y values
explicitly, line 20 first calls the Point default constructor to initialize these variables to
their default values. The compiler generates syntax errors for lines 21 and 22 (and line 63,
where Circle2’s method ToString attempts to use the values of x and y directly),
because the derived class Circle2 is not allowed to access the base class Point’s pri-
vate members x and y. C# rigidly enforces restriction on accessing private data mem-
bers, so that even a derived class (i.e., which is closely related to its base class) cannot
access base-class private data.

To enable class Circle2 to access Point member variables x and y directly, we
can declare those variables as protected. As we discussed in Section 9.3, a base class’s
protected members can be accessed only in that base class or in any classes derived
from that base class. Class Point2 (Fig. 9.9) modifies class Point (Fig. 9.4) to declare
variables x and y as protected (line 10) instead of private.

1 // Fig. 9.9: Point2.cs
2 // Point2 class contains an x-y coordinate pair as protected data.
3
4 using System;
5
6 // Point2 class definition implicitly inherits from Object
7 public class Point2
8 {
9 // point coordinate

10 protected int x, y;
11
12 // default constructor
13 public Point2()
14 {
15 // implicit call to Object constructor occurs here
16 }
17

Fig. 9.9Fig. 9.9Fig. 9.9Fig. 9.9 Point2 class represents an x-y coordinate pair as protected data.
(Part 1 of 2.)

Fig. 9.8Fig. 9.8Fig. 9.8Fig. 9.8 Circle2 class that inherits from class Point. (Part 3 of 3.)

358 Object-Oriented Programming: Inheritance Chapter 9

Class Circle3 (Fig. 9.10) modifies class Circle2 (Fig. 9.8) to inherit from class
Point2 rather than inheriting from class Point. Because class Circle3 is a class
derived from class Point2, class Circle3 can access class Point2’s protected
member variables x and y directly, and the compiler does not generate errors when com-
piling Fig. 9.10. This shows the special privileges that a derived class is granted to access

18 // constructor
19 public Point2(int xValue, int yValue)
20 {
21 // implicit call to Object constructor occurs here
22 X = xValue;
23 Y = yValue;
24 }
25
26 // property X
27 public int X
28 {
29 get
30 {
31 return x;
32 }
33
34 set
35 {
36 x = value; // no need for validation
37 }
38
39 } // end property X
40
41 // property Y
42 public int Y
43 {
44 get
45 {
46 return y;
47 }
48
49 set
50 {
51 y = value; // no need for validation
52 }
53
54 } // end property Y
55
56 // return string representation of Point2
57 public override string ToString()
58 {
59 return "[" + x + ", " + y + "]";
60 }
61
62 } // end class Point2

Fig. 9.9Fig. 9.9Fig. 9.9Fig. 9.9 Point2 class represents an x-y coordinate pair as protected data.
(Part 2 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 359

protected base-class data members. A derived class also can access protected
methods in any of that derived class’s base classes.

1 // Fig. 9.10: Circle3.cs
2 // Circle2 class that inherits from class Point2.
3
4 using System;
5
6 // Circle3 class definition inherits from Point2
7 public class Circle3 : Point2
8 {
9 private double radius; // Circle's radius

10
11 // default constructor
12 public Circle3()
13 {
14 // implicit call to Point constructor occurs here
15 }
16
17 // constructor
18 public Circle3(
19 int xValue, int yValue, double radiusValue)
20 {
21 // implicit call to Point constructor occurs here
22 x = xValue;
23 y = yValue;
24 Radius = radiusValue;
25 }
26
27 // property Radius
28 public double Radius
29 {
30 get
31 {
32 return radius;
33 }
34
35 set
36 {
37 if (value >= 0)
38 radius = value;
39 }
40
41 } // end property Radius
42
43 // calculate Circle diameter
44 public double Diameter()
45 {
46 return radius * 2;
47 }
48

Fig. 9.10Fig. 9.10Fig. 9.10Fig. 9.10 Circle3 class that inherits from class Point2. (Part 1 of 2.)

360 Object-Oriented Programming: Inheritance Chapter 9

Class CircleTest3 (Fig. 9.11) performs identical tests on class Circle3 as class
CircleTest (Fig. 9.7) performed on class Circle (Fig. 9.6). Note that the outputs of
the two programs are identical. We created class Circle without using inheritance and
created class Circle3 using inheritance; however, both classes provide the same func-
tionality. However, observe that the code listing for class Circle3, which is 68 lines, is
considerably shorter than the code listing for class Circle, which is 98 lines, because
class Circle3 absorbs part of its functionality from Point2, whereas class Circle
does not. Also, there is now only one copy of the point functionality.

49 // calculate circumference
50 public double Circumference()
51 {
52 return Math.PI * Diameter();
53 }
54
55 // calculate Circle area
56 public virtual double Area()
57 {
58 return Math.PI * Math.Pow(radius, 2);
59 }
60
61 // return string representation of Circle3
62 public override string ToString()
63 {
64 return "Center = [" + x + ", " + y + "]" +
65 "; Radius = " + radius;
66 }
67
68 } // end class Circle3

1 / Fig. 9.11: CircleTest3.cs
2 // Testing class Circle3.
3
4 using System;
5 using System.Windows.Forms;
6
7 // CircleTest3 class definition
8 class CircleTest3
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 // instantiate Circle3
14 Circle3 circle = new Circle3(37, 43, 2.5);
15
16 // get Circle3's initial x-y coordinates and radius
17 string output = "X coordinate is " + circle.X + "\n" +
18 "Y coordinate is " + circle.Y + "\nRadius is " +
19 circle.Radius;

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 CircleTest3 demonstrates class Circle3 functionality. (Part 1 of 2.)

Fig. 9.10Fig. 9.10Fig. 9.10Fig. 9.10 Circle3 class that inherits from class Point2. (Part 2 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 361

In the previous example, we declared the base-class instance variables as pro-
tected, so that a derived class could modify their values directly. The use of pro-
tected variables allows for a slight increase in performance, because we avoid incurring
the overhead of a method call to a property’s set or get accessor. However, in most C#
applications, in which user interaction comprises a large part of the execution time, the opti-
mization offered through the use of protected variables is negligible.

Using protected instance variables creates two major problems. First, the derived-
class object does not have to use a property to set the value of the base-class’s protected
data. Therefore, a derived-class object can easily assign an illegal value to the protected

20
21 // set Circle3's x-y coordinates and radius to new values
22 circle.X = 2;
23 circle.Y = 2;
24 circle.Radius = 4.25;
25
26 // display Circle3's string representation
27 output += "\n\n" +
28 "The new location and radius of circle are " +
29 "\n" + circle + "\n";
30
31 // display Circle3's Diameter
32 output += "Diameter is " +
33 String.Format("{0:F}", circle.Diameter()) + "\n";
34
35 // display Circle3's Circumference
36 output += "Circumference is " +
37 String.Format("{0:F}", circle.Circumference()) + "\n";
38
39 // display Circle3's Area
40 output += "Area is " +
41 String.Format("{0:F}", circle.Area());
42
43 MessageBox.Show(output, "Demonstrating Class Circle3");
44
45 } // end method Main
46
47 } // end class CircleTest3

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 CircleTest3 demonstrates class Circle3 functionality. (Part 2 of 2.)

362 Object-Oriented Programming: Inheritance Chapter 9

data, thus leaving the object in an inconsistent state. For example, if we were to declare
Circle3’s variable radius as protected, a derived-class object (e.g., Cylinder),
could then assign a negative value to radius. The second problem with using protected
data is that derived-class methods are more likely to be written to depend on base-class imple-
mentation. In practice, derived classes should depend only on the base-class services (i.e.,
non-private methods and properties) and not on base-class implementation. With pro-
tected data in the base class, if the base-class implementation changes, we may need to
modify all derived classes of that base class. For example, if for some reason we were to
change the names of variables x and y to xCoordinate and yCoordinate, then we
would have to do so for all occurrences in which a derived class references these base-class
variables directly. In such a case, the software is said to be fragile or brittle. The programmer
should be able to change the base-class implementation freely, while still providing the same
services to derived classes. (Of course, if the base class services change, we must reimplement
our derived classes, but good object-oriented design attempts to prevent this.)

Software Engineering Observation 9.5
The most appropriate time to use the protected access modifier is when a base class
should provide a service only to its derived classes (i.e., the base class should not provide the
service to other clients). 9.5

Software Engineering Observation 9.6
Declaring base-class instance variables private (as opposed to declaring them pro-
tected) enables programmers to change base-class implementation without having to
change derived-class implementation. 9.6

Testing and Debugging Tip 9.1
When possible, avoid including protected data in a base class. Rather, include non-
private properties and methods that access private data, ensuring that the object
maintains a consistent state. 9.1

We reexamine our point-circle hierarchy example once more; this time, attempting to
use the best software engineering. We use Point3 (Fig. 9.12), which declares variables x
and y as private and uses properties in method ToString to access these values. We
show how derived class Circle4 (Fig. 9.13) can invoke non-private base-class
methods and properties to manipulate these variables.

1 // Fig. 9.12: Point3.cs
2 // Point3 class represents an x-y coordinate pair.
3
4 using System;
5
6 // Point3 class definition implicitly inherits from Object
7 public class Point3
8 {
9 // point coordinate

10 private int x, y;
11

Fig. 9.12Fig. 9.12Fig. 9.12Fig. 9.12 Point3 class uses properties to manipulate its private data. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 363

12 // default constructor
13 public Point3()
14 {
15 // implicit call to Object constructor occurs here
16 }
17
18 // constructor
19 public Point3(int xValue, int yValue)
20 {
21 // implicit call to Object constructor occurs here
22 X = xValue; // use property X
23 Y = yValue; // use property Y
24 }
25
26 // property X
27 public int X
28 {
29 get
30 {
31 return x;
32 }
33
34 set
35 {
36 x = value; // no need for validation
37 }
38
39 } // end property X
40
41 // property Y
42 public int Y
43 {
44 get
45 {
46 return y;
47 }
48
49 set
50 {
51 y = value; // no need for validation
52 }
53
54 } // end property Y
55
56 // return string representation of Point3
57 public override string ToString()
58 {
59 return "[" + X + ", " + Y + "]";
60 }
61
62 } // end class Point3

Fig. 9.12Fig. 9.12Fig. 9.12Fig. 9.12 Point3 class uses properties to manipulate its private data. (Part 2 of 2.)

364 Object-Oriented Programming: Inheritance Chapter 9

1 // Fig. 9.13: Circle4.cs
2 // Circle4 class that inherits from class Point3.
3
4 using System;
5
6 // Circle4 class definition inherits from Point3
7 public class Circle4 : Point3
8 {
9 private double radius;

10
11 // default constructor
12 public Circle4()
13 {
14 // implicit call to Point constructor occurs here
15 }
16
17 // constructor
18 public Circle4(int xValue, int yValue, double radiusValue)
19 : base(xValue, yValue)
20 {
21 Radius = radiusValue;
22 }
23
24 // property Radius
25 public double Radius
26 {
27 get
28 {
29 return radius;
30 }
31
32 set
33 {
34 if (value >= 0) // validation needed
35 radius = value;
36 }
37
38 } // end property Radius
39
40 // calculate Circle diameter
41 public double Diameter()
42 {
43 return Radius * 2; // use property Radius
44 }
45
46 // calculate Circle circumference
47 public double Circumference()
48 {
49 return Math.PI * Diameter();
50 }
51

Fig. 9.13Fig. 9.13Fig. 9.13Fig. 9.13 Circle4 class that inherits from class Point3, which does not provide
protected data (Part 1 of 2.).

Chapter 9 Object-Oriented Programming: Inheritance 365

Software Engineering Observation 9.7
When possible, use properties to alter and obtain the values of member variables, even if
those values can be modified directly. A property’s set accessor can prevent attempts to as-
sign an inappropriate value to that the value, and a property’s get accessor can help control
the presentation of the data to clients. 9.7

Performance Tip 9.1
Using a property to access a variable’s value is slightly slower than accessing the data di-
rectly. However, attempting to optimize programs by referencing data directly often is un-
necessary, because the compiler optimizes the programs implicitly. [Today’s so-called
“optimizing compilers” are carefully designed to perform many optimizations implicitly,
even if the programmer does not write what appears to be the most optimal code. A good rule
is, “Do not second-guess the compiler.” 9.1

For the purpose of this example, to demonstrate both explicit and implicit calls to base-
class constructors, we include a second constructor that calls the base-class constructor
explicitly. Lines 18–22 declare the Circle4 constructor that invokes the second Point3
constructor explicitly (line 19) using the base-class constructor-call syntax (i.e., reference
base followed by a set of parentheses containing the arguments to the base-class con-
structor). In this case, xValue and yValue are passed to initialize the private base-
class members x and y. The colon symbol (:) followed by the base keyword accesses the
base-class version of that method explicitly (line 19). By making this call, we can initialize
x and y in the base class to specific values, rather than to 0.

Common Programming Error 9.2
It is a syntax error if a derived class uses base to call its base-class constructor with argu-
ments that do not match exactly the number and types of parameters specified in one of the
base-class constructor definitions. 9.2

Class Circle4’s ToString method (line 59–64) overrides class Point3’s
ToString method (lines 57–60 of Fig. 9.12). As we discussed earlier, overriding this
method is possible, because method ToString of class System.Object (class

52 // calculate Circle area
53 public virtual double Area()
54 {
55 return Math.PI * Math.Pow(Radius, 2); // use property
56 }
57
58 // return string representation of Circle4
59 public override string ToString()
60 {
61 // use base reference to return Point string representation
62 return "Center= " + base.ToString() +
63 "; Radius = " + Radius; // use property Radius
64 }
65
66 } // end class Circle4

Fig. 9.13Fig. 9.13Fig. 9.13Fig. 9.13 Circle4 class that inherits from class Point3, which does not provide
protected data (Part 2 of 2.).

366 Object-Oriented Programming: Inheritance Chapter 9

Point3’s base class) is declared virtual. Method ToString of class Circle4 dis-
plays the private instance variables x and y of class Point3 by calling the base class’s
ToString method (in this case, Point3’s ToString method). The call is made in line
62 via the expression base.ToString() and causes the values of x and y to become
part of the Circle4’s string representation. Using this approach is a good software
engineering practice: Recall that Software Engineering Observation 8.11 stated that, if an
object’s method performs the actions needed by another object, call that method rather than
duplicating its code body. Duplicate code creates code-maintenance problems. By having
Circle4’s ToString method use the formatting provided by Point3’s ToString
method, we avoid duplicating code. Also, Point3’s ToString method performs part of
the task of Circle4’s ToString method, so we call Point3’s ToString method
from class Circle4 with the expression base.ToString().

Common Programming Error 9.3
When a base-class method is overridden in a derived class, the derived-class version often
calls the base-class version to do additional work. Failure to use the base reference when
referencing the base class’s method causes infinite recursion, because the derived-class
method would then call itself. 9.3

Common Programming Error 9.4
The use of “chained” base references to refer to a member (a method, property or variable)
several levels up the hierarchy (as in base.base.mX) is a syntax error. 9.4

Software Engineering Observation 9.8
A redefinition in a derived class of a base-class method that uses a different signature than
that of the base-class method is method overloading rather than method overriding. 9.8

Software Engineering Observation 9.9
Although method ToString certainly could be overridden to perform arbitrary actions, the
general understanding in the C# .NET community is that method ToString should be over-
ridden to obtain an object’s string representation. 9.9

Class CircleTest4 (Fig. 9.14) performs identical manipulations on class
Circle4 as did classes CircleTest (Fig. 9.7) and CircleTest3 (Fig. 9.11). Note
that the outputs of all three modules are identical. Therefore, although each “circle” class
appears to behave identically, class Circle4 is the most properly engineered. Using
inheritance, we have efficiently and effectively constructed a well-engineered class.

1 // Fig. 9.14: CircleTest4.cs
2 // Testing class Circle4.
3
4 using System;
5 using System.Windows.Forms;
6
7 // CircleTest4 class definition
8 class CircleTest4
9 {

Fig. 9.14Fig. 9.14Fig. 9.14Fig. 9.14 CircleTest4 demonstrates class Circle4 functionality. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 367

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 // instantiate Circle4
14 Circle4 circle = new Circle4(37, 43, 2.5);
15
16 // get Circle4's initial x-y coordinates and radius
17 string output = "X coordinate is " + circle.X + "\n" +
18 "Y coordinate is " + circle.Y + "\n" +
19 "Radius is " + circle.Radius;
20
21 // set Circle4's x-y coordinates and radius to new values
22 circle.X = 2;
23 circle.Y = 2;
24 circle.Radius = 4.25;
25
26 // display Circle4's string representation
27 output += "\n\n" +
28 "The new location and radius of circle are " +
29 "\n" + circle + "\n";
30
31 // display Circle4's Diameter
32 output += "Diameter is " +
33 String.Format("{0:F}", circle.Diameter()) + "\n";
34
35 // display Circle4's Circumference
36 output += "Circumference is " +
37 String.Format("{0:F}", circle.Circumference()) + "\n";
38
39 // display Circle4's Area
40 output += "Area is " +
41 String.Format("{0:F}", circle.Area());
42
43 MessageBox.Show(output, "Demonstrating Class Circle4");
44
45 } // end method Main
46
47 } // end class CircleTest4

Fig. 9.14Fig. 9.14Fig. 9.14Fig. 9.14 CircleTest4 demonstrates class Circle4 functionality. (Part 2 of 2.)

368 Object-Oriented Programming: Inheritance Chapter 9

9.5 Case Study: Three-Level Inheritance Hierarchy
Let us consider a more substantial inheritance example involving a three-level point-circle-
cylinder hierarchy. In Section 9.4, we developed classes Point3 (Fig. 9.12) and
Circle4 (Fig. 9.13). Now, we present an example in which we derive class Cylinder
from class Circle4.

The first class that we use in our case study is class Point3 (Fig. 9.12). We declared
Point3’s instance variables as private. Class Point3 also contains properties X and
Y for accessing x and y and method ToString (which Point3 overrides from class
Object) for obtaining a string representation of the x-y coordinate pair.

We also created class Circle4 (Fig. 9.13), which inherits from class Point3. Class
Circle4 contains the Point3 functionality, in addition to providing property Radius,
which ensures that the radius member variable cannot hold a negative value, and methods
Diameter, Circumference, Area and ToString. Recall that method Area was
declared virtual (line 53). As we discussed in Section 9.4, this keyword enables derived
classes to override a base-class method. Derived classes of class Circle4 (such as class
Cylinder, which we introduce momentarily) can override these methods and provide spe-
cific implementations. A circle has an area that is calculated by the formula, πr2, in which r
represents the circle’s radius. However, a cylinder has a surface area that is calculated by the
formula, (2πr2) + (2πrh), in which r represents the cylinder’s radius and h represents the cyl-
inder’s height. Therefore, class Cylinder must override method Area to include this cal-
culation, so we declared class Circle4’s method Area as virtual.

Figure 9.15 presents class Cylinder, which inherits from class Circle4 (line 7).
Class Cylinder’s public services include the inherited Circle4 methods Diam-
eter, Circumference, Area and ToString; the inherited Circle4 property
Radius; the indirectly inherited Point3 properties X and Y; the Cylinder constructor,
property Height and method Volume. Method Area (lines 41–44) overrides method
Area of class Circle4. Note that, if class Cylinder were to attempt to override
Circle4’s methods Diameter and Circumference, syntax errors would occur,
because class Circle4 did not declare these methods virtual. Method ToString
(lines 53–56) overrides method ToString of class Circle4 to obtain a string repre-
sentation for the cylinder. Class Cylinder also includes method Volume (lines 47–50)
to calculate the cylinder’s volume. Because we do not declare method Volume as vir-
tual, no derived class of class Cylinder can override this method.

1 // Fig. 9.15: Cylinder.cs
2 // Cylinder class inherits from class Circle4.
3
4 using System;
5
6 // Cylinder class definition inherits from Circle4
7 public class Cylinder : Circle4
8 {
9 private double height;

10

Fig. 9.15Fig. 9.15Fig. 9.15Fig. 9.15 Cylinder class inherits from class Circle4 and overrides method
Area. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 369

Figure 9.16 is a CylinderTest application that tests the Cylinder class. Line 14
instantiates an object of class Cylinder. Lines 17–19 use properties X, Y, Radius and

11 // default constructor
12 public Cylinder()
13 {
14 // implicit call to Circle4 constructor occurs here
15 }
16
17 // four-argument constructor
18 public Cylinder(int xValue, int yValue, double radiusValue,
19 double heightValue) : base(xValue, yValue, radiusValue)
20 {
21 Height = heightValue; // set Cylinder height
22 }
23
24 // property Height
25 public double Height
26 {
27 get
28 {
29 return height;
30 }
31
32 set
33 {
34 if (value >= 0) // validate height
35 height = value;
36 }
37
38 } // end property Height
39
40 // override Circle4 method Area to calculate Cylinder area
41 public override double Area()
42 {
43 return 2 * base.Area() + base.Circumference() * Height;
44 }
45
46 // calculate Cylinder volume
47 public double Volume()
48 {
49 return base.Area() * Height;
50 }
51
52 // convert Cylinder to string
53 public override string ToString()
54 {
55 return base.ToString() + "; Height = " + Height;
56 }
57
58 } // end class Cylinder

Fig. 9.15Fig. 9.15Fig. 9.15Fig. 9.15 Cylinder class inherits from class Circle4 and overrides method
Area. (Part 2 of 2.)

370 Object-Oriented Programming: Inheritance Chapter 9

Height to obtain information about the Cylinder object, because CylinderTest
cannot reference the private data of class Cylinder directly. Lines 22–25 use proper-
ties X, Y, Radius and Height to reset the Cylinder’s x-y coordinates (we assume the
cylinder’s x-y coordinates specify its position on the x-y plane), radius and height. Class
Cylinder can use class Point3’s X and Y properties, because class Cylinder inherits
them indirectly from class Point3—Class Cylinder inherits properties X and Y
directly from class Circle4, which inherited them directly from class Point3. Line 29
invokes method ToString implicitly to obtain the string representation of the Cyl-
inder object. Lines 33–37 invoke methods Diameter and Circumference of the
Cylinder object—because class Cylinder inherits these methods from class
Circle4 and cannot override them, these methods, exactly as listed in Circle4, are
invoked. Lines 41–45 invoke methods Area and Volume.

Using the point-circle-cylinder example, we have shown the use and benefits of inher-
itance. We were able to develop classes Circle4 and Cylinder using inheritance much
faster than if we had developed these classes “from scratch.” Inheritance avoids duplicating
code and the associated code-maintenance problems.

1 // Fig. 9.16: CylinderTest.cs
2 // Tests class Cylinder.
3
4 using System;
5 using System.Windows.Forms;
6
7 // CylinderTest class definition
8 class CylinderTest
9 {

10 // main entry point for application
11 static void Main(string[] args)
12 {
13 // instantiate object of class Cylinder
14 Cylinder cylinder = new Cylinder(12, 23, 2.5, 5.7);
15
16 // properties get initial x-y coordinate, radius and height
17 string output = "X coordinate is " + cylinder.X + "\n" +
18 "Y coordinate is " + cylinder.Y + "\nRadius is " +
19 cylinder.Radius + "\n" + "Height is " + cylinder.Height;
20
21 // properties set new x-y coordinate, radius and height
22 cylinder.X = 2;
23 cylinder.Y = 2;
24 cylinder.Radius = 4.25;
25 cylinder.Height = 10;
26
27 // get new x-y coordinate and radius
28 output += "\n\nThe new location, radius and height of " +
29 "cylinder are\n" + cylinder + "\n\n";
30
31 // display Cylinder's Diameter
32 output += "Diameter is " +
33 String.Format("{0:F}", cylinder.Diameter()) + "\n";

Fig. 9.16Fig. 9.16Fig. 9.16Fig. 9.16 Testing class Cylinder (Part 1 of 2.).

Chapter 9 Object-Oriented Programming: Inheritance 371

9.6 Constructors and Destructors in Derived Classes
As we explained in the previous section, instantiating a derived-class object begins a chain of
constructor calls in which the derived-class constructor, before performing its own tasks, in-
vokes the base-class constructor either explicitly or implicitly. Similarly, if the base-class was
derived from another class, the base-class constructor must invoke the constructor of the next
class up in the hierarchy, and so on. The last constructor called in the chain is class Object’s
constructor whose body actually finishes executing first—the original derived class’s body
finishes executing last. Each base-class constructor initializes the base-class instance vari-
ables that the derived-class object inherits. For example, consider the Point3/Circle4 hi-
erarchy from Fig. 9.12 and Fig. 9.13. When a program creates a Circle4 object, one of the
Circle4 constructors is called. That constructor calls class Point3’s constructor, which
in turn calls class Object’s constructor. When class Object’s constructor completes exe-
cution, it returns control to class Point3’s constructor, which initializes the x-y coordinates
of Circle4. When class Point3’s constructor completes execution, it returns control to
class Circle4’s constructor, which initializes the Circle4’s radius.

34
35 // display Cylinder's Circumference
36 output += "Circumference is " +
37 String.Format("{0:F}", cylinder.Circumference()) + "\n";
38
39 // display Cylinder's Area
40 output += "Area is " +
41 String.Format("{0:F}", cylinder.Area()) + "\n";
42
43 // display Cylinder's Volume
44 output += "Volume is " +
45 String.Format("{0:F}", cylinder.Volume());
46
47 MessageBox.Show(output, "Demonstrating Class Cylinder");
48
49 } // end method Main
50
51 } // end class CylinderTest

Fig. 9.16Fig. 9.16Fig. 9.16Fig. 9.16 Testing class Cylinder (Part 2 of 2.).

372 Object-Oriented Programming: Inheritance Chapter 9

Software Engineering Observation 9.10
When a program creates a derived-class object, the derived-class constructor immediately
calls the base-class constructor, the base-class constructor’s body executes, then the de-
rived-class constructor’s body executes. 9.10

When the garbage collector removes a derived-class object from memory, the garbage
collector calls that object’s destructor. This begins a chain of destructor calls in which the
derived-class destructor and the destructors of the direct and indirect base classes execute
in the reverse order of the order in which the constructors executed. Executing the destruc-
tors should free all the resources the object acquired before the garbage collector reclaims
the memory for that object. When the garbage collector calls a derived-class object’s
destructor, the destructor performs its task, then invokes the destructor of the base class.
This process repeats until class Object’s destructor is called.

C# actually implements destructors using class Object’s Finalize method (one of
the eight methods that every C# class inherits). When compiling a class definition that con-
tains a destructor, the compiler translates a destructor definition into a Finalize method
that performs the destructor’s tasks, then invokes the base class Finalize method as the
last statement in the derived-class Finalize method. As mentioned in Chapter 8, we
cannot determine exactly when the destructor call will occur, because we cannot determine
exactly when garbage collection occurs. However, by defining a destructor, we can specify
code to execute before the garbage collector removes an object from memory.

Our next example revisits the point-circle hierarchy by defining class Point4
(Fig. 9.17) and class Circle5 (Fig. 9.18) that contain constructors and destructors, each
of which prints a message when it runs.

Class Point4 (Fig. 9.17) contains the features shown in Fig. 9.4. We modified the con-
structors (lines 13–17 and 20–26) to output a line of text when they are called and added a
destructor (lines 29–32) that also outputs a line of text when it is called. Each output statement
(lines 16, 25 and 31) adds reference this to the output string. This implicitly invokes the
class’s ToString method to obtain the string representation of Point4’s coordinates.

1 // Fig. 9.17: Point4.cs
2 // Point4 class represents an x-y coordinate pair.
3
4 using System;
5
6 // Point4 class definition
7 public class Point4
8 {
9 // point coordinate

10 private int x, y;
11
12 // default constructor
13 public Point4()
14 {
15 // implicit call to Object constructor occurs here
16 Console.WriteLine("Point4 constructor: {0}", this);
17 }

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Point4 base class contains constructors and finalizer. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 373

18
19 // constructor
20 public Point4(int xValue, int yValue)
21 {
22 // implicit call to Object constructor occurs here
23 X = xValue;
24 Y = yValue;
25 Console.WriteLine("Point4 constructor: {0}", this);
26 }
27
28 // destructor
29 ~Point4()
30 {
31 Console.WriteLine("Point4 destructor: {0}", this);
32 }
33
34 // property X
35 public int X
36 {
37 get
38 {
39 return x;
40 }
41
42 set
43 {
44 x = value; // no need for validation
45 }
46
47 } // end property X
48
49 // property Y
50 public int Y
51 {
52 get
53 {
54 return y;
55 }
56
57 set
58 {
59 y = value; // no need for validation
60 }
61
62 } // end property Y
63
64 // return string representation of Point4
65 public override string ToString()
66 {
67 return "[" + x + ", " + y + "]";
68 }
69
70 } // end class Point4

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Point4 base class contains constructors and finalizer. (Part 2 of 2.)

374 Object-Oriented Programming: Inheritance Chapter 9

Class Circle5 (Fig. 9.18) contains the features in Fig. 9.13, and we modified the two
constructors (lines 12–16 and 19–24) to output a line of text when they are called. We also
added a destructor (lines 27–30) that also outputs a line of text when it is called. Each output
statement (lines 15, 23 and 29) adds reference this to the output string. This implicitly
invokes the Circle5’s ToString method to obtain the string representation of
Circle5’s coordinates and radius.

Class ConstructorAndFinalizer (Fig. 9.19) demonstrates the order in which
constructors and finalizers are called for objects of classes that are part of an inheritance
class hierarchy. Method Main (lines 11–28) begins by instantiating an object of class
Circle5, then assigns it to reference circle1 (line 16). This invokes the Circle5
constructor, which invokes the Point4 constructor immediately. Then, the Point4 con-
structor invokes the Object constructor. When the Object constructor (which does not
print anything) returns control to the Point4 constructor, the Point4 constructor initial-
izes the x-y coordinates, then outputs a string indicating that the Point4 constructor
was called. The output statement also calls method ToString implicitly (using reference
this) to obtain the string representation of the object being constructed. Then, control
returns to the Circle5 constructor, which initializes the radius and outputs the
Circle5’s x-y coordinates and radius by calling method ToString implicitly.

1 // Fig. 9.18: Circle5.cs
2 // Circle5 class that inherits from class Point4.
3
4 using System;
5
6 // Circle5 class definition inherits from Point4
7 public class Circle5 : Point4
8 {
9 private double radius;

10
11 // default constructor
12 public Circle5()
13 {
14 // implicit call to Point3 constructor occurs here
15 Console.WriteLine("Circle5 constructor: {0}", this);
16 }
17
18 // constructor
19 public Circle5(int xValue, int yValue, double radiusValue)
20 : base(xValue, yValue)
21 {
22 Radius = radiusValue;
23 Console.WriteLine("Circle5 constructor: {0}", this);
24 }
25
26 // destructor overrides version in class Point4
27 ~Circle5()
28 {
29 Console.WriteLine("Circle5 destructor: {0}", this);
30 }

Fig. 9.18Fig. 9.18Fig. 9.18Fig. 9.18 Circle5 class inherits from class Point3 and overrides a finalizer
method. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 375

Notice that the first two lines of the output from this program contain values for the x-
y coordinates and the radius of Circle5 object circle1. When constructing a
Circle5 object, the this reference used in the body of both the Circle5 and Point4
constructors refers to the Circle5 object being constructed. When a program invokes
method ToString on an object, the version of ToString that executes is always the
version defined in that object’s class. Because reference this refers to the current

31
32 // property Radius
33 public double Radius
34 {
35 get
36 {
37 return radius;
38 }
39
40 set
41 {
42 if (value >= 0)
43 radius = value;
44 }
45
46 } // end property Radius
47
48 // calculate Circle5 diameter
49 public double Diameter()
50 {
51 return Radius * 2;
52 }
53
54 // calculate Circle5 circumference
55 public double Circumference()
56 {
57 return Math.PI * Diameter();
58 }
59
60 // calculate Circle5 area
61 public virtual double Area()
62 {
63 return Math.PI * Math.Pow(Radius, 2);
64 }
65
66 // return string representation of Circle5
67 public override string ToString()
68 {
69 // use base reference to return Point3 string
70 return "Center = " + base.ToString() +
71 "; Radius = " + Radius;
72 }
73
74 } // end class Circle5

Fig. 9.18Fig. 9.18Fig. 9.18Fig. 9.18 Circle5 class inherits from class Point3 and overrides a finalizer
method. (Part 2 of 2.)

376 Object-Oriented Programming: Inheritance Chapter 9

Circle5 object being constructed, Circle5’s ToString method executes even when
ToString is invoked from the body of class Point4’s constructor. [Note: This would
not be the case if the Point4 constructor were called to initialize a an object that was actu-
ally a new Point4 object.] When the Point4 constructor invokes method ToString
for the Circle5 being constructed, the program displays 0 for the radius value,
because the Circle5 constructor’s body has not yet initialized the radius. Remember
that 0 is the default value of a double variable. The second line of output shows the
proper radius value (4.5), because that line is output after the radius is initialized.

1 // Fig. 9.19: ConstructorAndDestructor.cs
2 // Display order in which base-class and derived-class constructors
3 // and destructors are called.
4
5 using System;
6
7 // ConstructorAndFinalizer class definition
8 class ConstructorAndFinalizer
9 {

10 // main entry point for application.
11 static void Main(string[] args)
12 {
13 Circle5 circle1, circle2;
14
15 // instantiate objects
16 circle1 = new Circle5(72, 29, 4.5);
17 circle2 = new Circle5(5, 5, 10);
18
19 Console.WriteLine();
20
21 // mark objects for garbage collection
22 circle1 = null;
23 circle2 = null;
24
25 // inform garbage collector to execute
26 System.GC.Collect();
27
28 } // end method Main
29
30 } // end class ConstructorAndDestructor

Point4 constructor: Center = [72, 29]; Radius = 0
Circle5 constructor: Center = [72, 29]; Radius = 4.5
Point4 constructor: Center = [5, 5]; Radius = 0
Circle5 constructor: Center = [5, 5]; Radius = 10

Circle5 destructor: Center = [5, 5]; Radius = 10
Point4 destructor: Center = [5, 5]; Radius = 10
Circle5 destructor: Center = [72, 29]; Radius = 4.5
Point4 destructor: Center = [72, 29]; Radius = 4.5

Fig. 9.19Fig. 9.19Fig. 9.19Fig. 9.19 Order in which constructors and destructors are called.

Chapter 9 Object-Oriented Programming: Inheritance 377

Line 17 instantiates another object of class Circle5, then assigns it to reference
circle2. Again, this begins the chain of constructor calls in which the Circle5 con-
structor, the Point4 constructor and the Object constructor are called. In the output,
notice that the body of the Point4 constructor executes before the body of the Circle5
constructor. This demonstrates that objects are constructed “inside out” (i.e., the base-class
constructor is called first).

Lines 22–23 set references circle1 and circle2 to null. This removes the only
references to these Circle5 objects in the program. Thus, the garbage collector can
release the memory that these objects occupy. Remember that we cannot guarantee when
the garbage collector will execute, nor can we guarantee that it will collect all available
objects when it does execute. To demonstrate the destructor invocations for the two
Circle5 objects, line 26 invokes class GC’s method Collect to request the garbage col-
lector to run. Notice that each Circle5 object’s destructor outputs information before
calling class Point4’s destructor. Objects are destroyed “outside in” (i.e., the derived-
class destructor completes its tasks before invoking the base-class destructor).

9.7 Software Engineering with Inheritance
In this section, we discuss the use of inheritance to customize existing software. When we
use inheritance to create a new class from an existing one, the new class inherits the mem-
ber variables, properties and methods of the existing class. We can customize the new class
to meet our needs by including additional member variables, properties and methods, and
by overriding base-class members.

Sometimes, it is difficult for students to appreciate the scope of problems faced by
designers who work on large-scale software projects in industry. People experienced with
such projects say that effective software reuse improves the software-development process.
Object-oriented programming facilitates software reuse, thus shortening development times.

C# encourages software reuse by providing the .NET Framework Class Library (FCL),
which delivers the maximum benefits of software reuse through inheritance. As interest in
C# grows, interest in the FCL class libraries also increases. There is a worldwide commit-
ment to the continued evolution of the FCL class libraries for a wide variety of applications.
The FCL will grow as the .NET world grows explosively.

Software Engineering Observation 9.11
At the design stage in an object-oriented system, the designer often determines that certain
classes are closely related. The designer should “factor out” common attributes and behav-
iors and place these in a base class. Then, use inheritance to form derived classes, endowing
them with capabilities beyond those inherited from the base class. 9.11

Software Engineering Observation 9.12
The creation of a derived class does not affect its base class’s source code. Inheritance pre-
serves the integrity of a base class. 9.12

Software Engineering Observation 9.13
Just as designers of non-object-oriented systems should avoid proliferation of functions, de-
signers of object-oriented systems should avoid proliferation of classes. Proliferation of
classes creates management problems and can hinder software reusability, because it be-
comes difficult for a client to locate the most appropriate class of a huge class library. The

378 Object-Oriented Programming: Inheritance Chapter 9

alternative is to create fewer classes, in which each provides more substantial functionality,
but such classes might provide too much functionality. 9.13

Performance Tip 9.2
If classes produced through inheritance are larger than they need to be (i.e., contain too
much functionality), memory and processing resources might be wasted. Inherit from the
class whose functionality is “closest” to what is needed. 9.2

Reading derived-class definitions can be confusing, because inherited members are not
shown physically in the derived class, but nevertheless are present in the derived classes. A
similar problem exists when documenting derived class members.

In this chapter, we introduced inheritance—the ability to create classes by absorbing
an existing class’s data members and behaviors and embellishing these with new capabili-
ties. In Chapter 10, we build upon our discussion of inheritance by introducing polymor-
phism—an object-oriented technique that enables us to write programs that handle, in a
more general manner, a wide variety of classes related by inheritance. After studying
Chapter 10, you will be familiar with encapsulation, inheritance and polymorphism—the
most crucial aspects of object-oriented programming.

SUMMARY
• Software reusability reduces program-development time.

• The direct base class of a derived class is the base class from which the derived class inherits [via
the colon (:) symbol]. An indirect base class of a derived class is two or more levels up the class
hierarchy from that derived class.

• With single inheritance, a class is derived from one base class. C# does not support multiple in-
heritance (i.e., deriving a class from more than one direct base class).

• Because a derived class can include its own class variables, properties and methods, a derived class
is often larger than its base class.

• A derived class is more specific than its base class and represents a smaller group of objects.

• Every object of a derived class is also an object of that class’s base class. However, base-class ob-
jects are not objects of that class’s derived classes.

• Derived-class methods and properties can access protected base-class members directly.

• An “is-a” relationship represents inheritance. In an “is-a” relationship, an object of a derived class
also can be treated as an object of its base class.

• A “has-a” relationship represents composition. In a “has-a” relationship, a class object has refer-
ences to one or more objects of other classes as members.

• A derived class cannot access private members of its base class directly.

• A derived class can access the public, protected and internal members of its base class
if the derived class is in the same assembly as the base class.

• When a base-class member is inappropriate for a derived class, that member can be overridden (re-
defined) in the derived class with an appropriate implementation.

• To override a base-class method definition, a derived class must specify that the derived-class
method overrides the base-class method with keyword override in the method header.

• Inheritance relationships form tree-like hierarchical structures. A class exists in a hierarchical re-
lationship with its derived classes.

Chapter 9 Object-Oriented Programming: Inheritance 379

• It is possible to treat base-class objects and derived-class objects similarly; the commonality
shared between the object types is expressed in the member variables, properties and methods of
the base class.

• A base class’s public members are accessible anywhere that the program has a reference to an
object of that base class or to an object of one of that base class’s derived classes.

• A base class’s private members are accessible only within the definition of that base class.

• A base class’s protected members have an intermediate level of protection between public
and private access. A base class’s protected members can be accessed only in that base
class or in any classes derived from that base class.

• A base class’s internal members can be accessed only by objects in the same assembly.

• Unfortunately, the inclusion of protected instance variables often yields two major problems.
First, the derived-class object does not have to use a property to set the value of the base-class’s
protected data. Second, derived class methods are more likely to be written to depend on base-
class implementation.

• C# rigidly enforces restriction on accessing private data members, so that even derived classes
(i.e,. which are closely related to their base class) cannot access base-class private data.

• When a derived-class method overrides a base-class method, the base-class method can be access-
ed from the derived class by preceding the base-class method name with the base reference, fol-
lowed by the dot operator (.).

• A derived class can redefine a base-class method using the same signature; this is called overriding
that base-class method.

• A base-class method must be declared virtual if that method is to be overridden in a derived class.

• When a method is overridden in a derived class and that method is called on a derived-class object,
the derived-class version (not the base-class version) is called.

• When an object of a derived class is instantiated, the base class’s constructor is called immediately
(either explicitly or implicitly) to do any necessary initialization of the base-class instance vari-
ables in the derived-class object (before the derived classes instance variable are initialized).

• Declaring member variables private, while providing non-private properties to manipulate
and perform validation checking on this data, enforces good software engineering.

• If an object’s method/property performs the actions needed by another object, call that method/prop-
erty rather than duplicating its code body. Duplicated code creates code-maintenance problems.

• Base-class constructors and destructors are not inherited by derived classes.

TERMINOLOGY
abstraction data abstraction
base class default constructor
base-class constructor derived class
base-class default constructor derived-class constructor
base-class finalizer derived-class reference
base-class object direct base class
base-class reference dot (.) operator
behavior garbage collector
class library “has-a” relationship
colon (:) symbol hierarchy diagram
composition indirect base class
constructor information hiding

380 Object-Oriented Programming: Inheritance Chapter 9

SELF-REVIEW EXERCISES
9.1 Fill in the blanks in each of the following statements:

a) is a form of software reusability in which new classes absorb the data and
behaviors of existing classes and embellish these classes with new capabilities.

b) A base class’s members can be accessed only in the base-class definition or
in derived-class definitions.

c) In a(n) relationship, an object of a derived class also can be treated as an ob-
ject of its base class.

d) In a(n) relationship, a class object has one or more references to objects of
other classes as members.

e) A class exists in a(n) relationship with its derived classes.
f) A base class’s members are accessible anywhere that the program has a ref-

erence to that base class or to one of its derived classes.
g) A base class’s protected access members have a level of protection between those of

public and access.
h) A base class’s members can be accessed only in the same assembly.
i) When an object of a derived class is instantiated, the base class’s is called

implicitly or explicitly to do any necessary initialization of the base-class instance vari-
ables in the derived-class object.

j) Derived-class constructors can call base-class constructors via the reference.

9.2 State whether each of the following is true or false. If false, explain why.
a) It is possible to treat base-class objects and derived-class objects similarly.
b) Base-class constructors are not inherited by derived classes.
c) A “has-a” relationship is implemented via inheritance.
d) All methods, by default, can be overridden.
e) Method ToString of class System.Object is declared as virtual.
f) When a derived class redefines a base-class method using the same signature, the derived

class is said to overload that base-class method.
g) A Car class has an “is a” relationship with its SteeringWheel and Brakes.
h) Inheritance encourages the reuse of proven high-quality software.

inheritance override keyword
inheritance hierarchy overriding
inherited instance variable overriding a base-class method
instance variable (of an object) overriding a method
internal member access modifier private base-class member
“is-a” relationship protected access
member-access operator protected base-class member
member variable (of a class) protected variable
multiple inheritance protected member of a base class
base reference protected member of a derived class
Object class public member of a derived class
object of a base class reusable component
object of a derived class single inheritance
object-oriented programming (OOP) software reusability
overloaded constructor software reuse
overloading virtual keyword

Chapter 9 Object-Oriented Programming: Inheritance 381

ANSWERS TO SELF-REVIEW EXERCISES
9.1 a) Inheritance. b) protected. c) “is a” or inheritance. d) “has a” or composition or
aggregation. e) hierarchical. f) public. g) private. h) internal. i) constructor. j) base.

9.2 a) True. b) True. c) False. A “has-a” relationship is implemented via composition. An “is-
a” relationship is implemented via inheritance. d) False. Overridable methods must be declared ex-
plicitly as virtual. e) True. f) False. When a derived class redefines a base-class method using the
same signature, the derived class overrides that base-class method. g) False. This is an example of a
“has a” relationship. Class Car has an “is a” relationship with class Vehicle. h) True.

EXERCISES
9.3 Many programs written with inheritance could be written with composition instead, and vice
versa. Rewrite classes Point3, Circle4 and Cylinder to use composition, rather than inherit-
ance. After you do this, assess the relative merits of the two approaches for both the Point3,
Circle4, Cylinder problem, as well as for object-oriented programs in general. Which approach
is more natural, why?

9.4 Some programmers prefer not to use protected access because it breaks the encapsulation
of the base class. Discuss the relative merits of using protected access vs. insisting on using pri-
vate access in base classes.

9.5 Rewrite the case study in Section 9.5 as a Point, Square, Cube program. Do this two
ways—once via inheritance and once via composition.

9.6 Write an inheritance hierarchy for class Quadrilateral, Trapezoid, Parallelo-
gram, Rectangle and Square. Use Quadrilateral as the base class of the hierarchy. Make
the hierarchy as deep (i.e., as many levels) as possible. The private data of Quadrilateral
should be the x-y coordinate pairs for the four endpoints of the Quadrilateral. Write a program
that instantiates objects of each of the classes in your hierarchy and polymorphically outputs each ob-
ject’s dimensions and area.

9.7 Modify classes Point3, Circle4 and Cylinder to contain destructors. Then, modify
the program of Fig. 9.19 to demonstrate the order in which constructors and destructors are invoked
in this hierarchy.

9.8 Write down all the shapes you can think of—both two-dimensional and three-dimensional—
and form those shapes into a shape hierarchy. Your hierarchy should have base class Shape from
which class TwoDimensionalShape and class ThreeDimensionalShape are derived. Once
you have developed the hierarchy, define each of the classes in the hierarchy. We will use this hier-
archy in the exercises of Chapter 10 to process all shapes as objects of base-class Shape. (This is a
technique called polymorphism.)

10
Object-Oriented
Programming:
Polymorphism

Objectives
• To understand the concept of polymorphism.
• To understand how polymorphism makes systems

extensible and maintainable.
• To understand the distinction between abstract classes

and concrete classes.
• To learn how to create abstract classes, interfaces and

delegates.
One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.
John Ronald Reuel Tolkien, The Fellowship of the Ring

General propositions do not decide concrete cases.
Oliver Wendell Holmes

A philosopher of imposing stature doesn’t think in a vacuum.
Even his most abstract ideas are, to some extent, conditioned
by what is or is not known in the time when he lives.
Alfred North Whitehead

Chapter 10 Object-Oriented Programming: Polymorphism 383

10.1 Introduction
The previous chapter’s object-oriented programming (OOP) discussion focussed on one of
OOP’s key component technologies, inheritance. In this chapter, we continue our study of
OOP polymorphism. Both inheritance and polymorphism are crucial technologies in the de-
velopment of complex software. Polymorphism enables us to write programs that handle a
wide variety of related classes in a generic manner and facilitates adding new classes and
capabilities to a system.

With polymorphism, it is possible to design and implement systems that are easily
extensible. Programs can process objects of all classes in a class hierarchy generically as
objects of a common base class. Furthermore, new classes can be added with little or no
modification to the generic portions of the program, as long as those classes are part of the
inheritance hierarchy that the program processes generically. The only parts of a program
that must be altered to accommodate new classes are those program components that
require direct knowledge of the new classes that the programmer adds to the hierarchy. In
this chapter, we demonstrate two substantial class hierarchies and manipulate objects from
those hierarchies polymorphically.

10.2 Derived-Class-Object to Base-Class-Object Conversion
Section 9.4 created a point-circle class hierarchy, in which class Circle inherited from
class Point. The programs that manipulated objects of these classes always used Point
references to refer to Point objects and Circle references to refer to Circle objects.
In this section, we discuss the relationships between classes in a hierarchy that enable pro-
grams to assign derived-class objects to base-class references—a fundamental part of pro-
grams that process objects polymorphically. This section also discusses explicit casting
between types in a class hierarchy.

An object of a derived class can be treated as an object of its base class. This enables
various interesting manipulations. For example, a program can create an array of base-class

Outline

10.1 Introduction
10.2 Derived-Class-Object to Base-Class-Object Conversion

10.3 Type Fields and switch Statements
10.4 Polymorphism Examples
10.5 Abstract Classes and Methods
10.6 Case Study: Inheriting Interface and Implementation
10.7 sealed Classes and Methods
10.8 Case Study: Payroll System Using Polymorphism
10.9 Case Study: Creating and Using Interfaces
10.10 Delegates
10.11 Operator Overloading

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

384 Object-Oriented Programming: Polymorphism Chapter 10

references that refer to objects of many derived-class types. This is allowed despite the fact
that the derived-class objects are of different data types. However, the reverse is not true—
a base-class object is not an object of any of its derived classes. For example, a Point is
not a Circle in the hierarchy defined in Chapter 9. If a base-class reference refers to a
derived-class object, it is possible to convert the base-class reference to the object’s actual
data type and manipulate the object as that type.

The example in Fig. 10.1–Fig. 10.3 demonstrates assigning derived-class objects to
base-class references and casting base-class references to derived-class references. Class
Point (Fig. 10.1), which we discussed in Chapter 9, represents an x-y coordinate pair.
Class Circle (Fig. 10.2), which we also discussed in Chapter 9, represents a circle and
inherits from class Point. Each Circle object “is a” Point and also has a radius (rep-
resented via property Radius). We declare method Area as virtual, so that a derived
class (such as class Cylinder) can override method Area to calculate the derived-class
object’s area. Class PointCircleTest (Fig. 10.3) demonstrates the assignment and
cast operations.

1 // Fig. 10.1: Point.cs
2 // Point class represents an x-y coordinate pair.
3
4 using System;
5
6 // Point class definition implicitly inherits from Object
7 public class Point
8 {
9 // point coordinate

10 private int x, y;
11
12 // default constructor
13 public Point()
14 {
15 // implicit call to Object constructor occurs here
16 }
17
18 // constructor
19 public Point(int xValue, int yValue)
20 {
21 // implicit call to Object constructor occurs here
22 X = xValue;
23 Y = yValue;
24 }
25
26 // property X
27 public int X
28 {
29 get
30 {
31 return x;
32 }
33

Fig. 10.1Fig. 10.1Fig. 10.1Fig. 10.1 Point class represents an x-y coordinate pair. (Part 1 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 385

34 set
35 {
36 x = value; // no need for validation
37 }
38
39 } // end property X
40
41 // property Y
42 public int Y
43 {
44 get
45 {
46 return y;
47 }
48
49 set
50 {
51 y = value; // no need for validation
52 }
53
54 } // end property Y
55
56 // return string representation of Point
57 public override string ToString()
58 {
59 return "[" + X + ", " + Y + "]";
60 }
61
62 } // end class Point

1 // Fig. 10.2: Circle.cs
2 // Circle class that inherits from class Point.
3
4 using System;
5
6 // Circle class definition inherits from Point
7 public class Circle : Point
8 {
9 private double radius; // circle's radius

10
11 // default constructor
12 public Circle()
13 {
14 // implicit call to Point constructor occurs here
15 }
16
17 // constructor
18 public Circle(int xValue, int yValue, double radiusValue)
19 : base(xValue, yValue)
20 {

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 Circle class that inherits from class Point. (Part 1 of 2.)

Fig. 10.1Fig. 10.1Fig. 10.1Fig. 10.1 Point class represents an x-y coordinate pair. (Part 2 of 2.)

386 Object-Oriented Programming: Polymorphism Chapter 10

Class PointCircleTest (Fig. 10.3) demonstrates assigning derived-class refer-
ences to base-class references and casting base-class references to derived-class references.
Lines 13–14 declare a Point reference (point1) and a Circle reference (circle1).
Lines 16–17 append String representations of each object to String output to show
the values used to initialize these objects. Because point1 is reference to a Point object,

21 Radius = radiusValue;
22 }
23
24 // property Radius
25 public double Radius
26 {
27 get
28 {
29 return radius;
30 }
31
32 set
33 {
34 if (value >= 0) // validate radius
35 radius = value;
36 }
37
38 } // end property Radius
39
40 // calculate Circle diameter
41 public double Diameter()
42 {
43 return Radius * 2;
44 }
45
46 // calculate Circle circumference
47 public double Circumference()
48 {
49 return Math.PI * Diameter();
50 }
51
52 // calculate Circle area
53 public virtual double Area()
54 {
55 return Math.PI * Math.Pow(Radius, 2);
56 }
57
58 // return string representation of Circle
59 public override string ToString()
60 {
61 return "Center = " + base.ToString() +
62 "; Radius = " + Radius;
63 }
64
65 } // end class Circle

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 Circle class that inherits from class Point. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 387

method ToString of point1 prints the object as a Point. Similarly, because
circle1 is reference to a Circle object, method ToString of circle1 prints the
object as a Circle.

1 // Fig. 10.3: PointCircleTest.cs
2 // Demonstrating inheritance and polymorphism.
3
4 using System;
5 using System.Windows.Forms;
6
7 // PointCircleTest class definition
8 class PointCircleTest
9 {

10 // main entry point for application.
11 static void Main(string[] args)
12 {
13 Point point1 = new Point(30, 50);
14 Circle circle1 = new Circle(120, 89, 2.7);
15
16 string output = "Point point1: " + point1.ToString() +
17 "\nCircle circle1: " + circle1.ToString();
18
19 // use 'is a' relationship to assign
20 // Circle circle1 to Point reference
21 Point point2 = circle1;
22
23 output += "\n\nCCircle circle1 (via point2): " +
24 point2.ToString();
25
26 // downcast (cast base-class reference to derived-class
27 // data type) point2 to Circle circle2
28 Circle circle2 = (Circle) point2;
29
30 output += "\n\nCircle circle1 (via circle2): " +
31 circle2.ToString();
32
33 output += "\nArea of circle1 (via circle2): " +
34 circle2.Area().ToString("F");
35
36 // attempt to assign point1 object to Circle reference
37 if (point1 is Circle)
38 {
39 circle2 = (Circle) point1;
40 output += "\n\ncast successful";
41 }
42 else
43 {
44 output += "\n\npoint1 does not refer to a Circle";
45 }
46
47 MessageBox.Show(output,
48 "Demonstrating the 'is a' relationship");

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 Assigning derived-class references to base-class references. (Part 1 of 2.)

388 Object-Oriented Programming: Polymorphism Chapter 10

Line 21 assigns circle1 (a reference to a derived-class object) to point2 (a base-
class reference). In C#, it is acceptable to assign a derived-class object to a base-class refer-
ence, because of the inheritance “is a” relationship. Class Circle inherits from class
Point, because a Circle is a Point (in a structural sense, at least). However, assigning
a base-class reference to a derived-class reference is potentially dangerous, as we will discuss.

Lines 23–24 invoke point2.ToString and append the result to output. When
C# encounters a virtual method invocation (such as method ToString), C# deter-
mines which version of the method to call from the type of the object on which the method
is called, not the type of the reference that refers to the object. In this case, point2 refers
to a Circle object, so C# calls Circle method ToString, rather than Point method
ToString (as one might expect from the point2 reference, which was declared as type
Point). The decision about which method to call is an example of polymorphism, a con-
cept that we discuss in detail throughout this chapter. Note that if point2 referenced a
Point object rather than a Circle object, C# would invoke Point’s ToString
method.

Previous chapters used methods such as Int32.Parse and Double.Parse to
convert between various built-in C# types. Now, we convert between object references of
programmer-defined types. We use explicit casts to perform these conversions. If the cast
is valid, our program can treat a base-class reference as a derived-class reference. If the cast
is invalid, C# throws an InvalidCastException, which indicates that the cast oper-
ation is not allowed. Exceptions are discussed in detail in Chapter 11, Exception Handling.

Common Programming Error 10.1
Assigning a base-class object (or a base-class reference) to a derived-class reference (with-
out an explicit cast) is a syntax error. 10.1

Software Engineering Observation 10.1
If a derived-class object has been assigned to a reference of one of its direct or indirect base
classes, it is acceptable to cast that base-class reference back to a reference of the derived-
class type. In fact, this must be done to send that object messages that do not appear in the
base class. [Note: We sometimes use the term “messages” to represent the invocation of
methods and the use of object properties.] 10.1

49
50 } // end method Main
51
52 } // end class PointCircleTest

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 Assigning derived-class references to base-class references. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 389

Line 28 casts point2, which currently refers to a Circle object (circle1), to a
Circle and assigns the result to circle2. As we discuss momentarily, this cast would
be dangerous if point2 were referencing a Point. Lines 30–31 invoke method
ToString of the Circle object to which circle2 now refers (note that the fourth line
of the output demonstrates that Circle’s ToString method is called). Lines 33–34 cal-
culate and output circle2’s Area.

Line 39 explicitly casts reference point1 to a Circle. This is a dangerous operation,
because point refers to a Point object, and a Point is not a Circle. Objects can be cast
only to their own type or to their base-class types. If this statement were to execute, C# would
determine that point1 references a Point object, recognize the cast to Circle as dan-
gerous and indicate an improper cast with an InvalidCastException message. How-
ever, we prevent this statement from executing by including an if/else structure (lines 37–
45). The condition at line 37 uses keyword is to determine whether the object to which
point1 refers “is a” Circle. Keyword is discovers the type of the object to which the left
operand refers and compares this type to the right operand (in this case, Circle). In our
example, point1 does not refer to a Circle, so the condition fails, and line 44 appends to
output a string that indicates the result. Note that the is comparison will be true if the
left operand is a reference to an instance of the right operand or a derived class.

Common Programming Error 10.2
Attempting to cast a base-class reference to a derived-class type causes an Invalid-
CastException if the reference refers to a base-class object rather than an appropriate
derived-class object. 10.2

Software Engineering Observation 10.2
The is keyword enables a program to determine whether a cast operation would be success-
ful by ensuring that the reference type and target type are compatible. 10.2

If we remove the if test and execute the program, C# displays a MessageBox that
contains the message:

An unhandled exception of type 'System.InvalidCastException'
occurred in

followed by the name and path of the executing program. We discuss how to deal with such
situations in Chapter 11.

Despite the fact that a derived-class object also “is a” base-class object, the derived-
class and base-class objects are different. As we have discussed previously, derived-class
objects can be treated as if they were base-class objects. This is a logical relationship,
because the derived class contains members that correspond to all members in the base
class, but the derived class can have additional members. For this reason, assigning a base-
class object to a derived-class reference is not allowed without an explicit cast. Such an
assignment would leave the additional derived-class members undefined.

There are four ways to mix base-class references and derived-class references with
base-class objects and derived-class objects:

1. Referring to a base-class object with a base-class reference is straightforward.

2. Referring to a derived-class object with a derived-class reference is straightfor-
ward.

390 Object-Oriented Programming: Polymorphism Chapter 10

3. Referring to a derived-class object with a base-class reference is safe, because the
derived-class object is an object of its base class. However, this reference can refer
only to base-class members. If this code refers to derived-class-only members
through the base-class reference, the compiler reports an error.

4. Referring to a base-class object with a derived-class reference generates a compil-
er error. To avoid this error, the derived-class reference first must be cast to a base-
class reference explicitly. In this cast, the derived-class reference must reference
a derived-class object, or C# generates an InvalidCastException.

Common Programming Error 10.3
After assigning a derived-class object to a base-class reference, attempting to reference de-
rived-class-only members with the base-class reference is a compilation error. 10.3

Common Programming Error 10.4
Treating a base-class object as a derived-class object can cause errors. 10.4

Though it is convenient to treat derived-class objects as base-class objects by manipu-
lating derived-class objects with base-class references, doing so can cause significant prob-
lems. For example, a payroll system, must be able to traverse an array of employees and
calculate the weekly pay for each person. Intuition suggests that using base-class references
would enable the program to call only the base-class payroll calculation routine (if there is
such a routine in the base class). Using only base-class references, we can invoke the proper
payroll calculation routine for each object, whether the object is a base-class object or a
derived-class object. We learn how to create classes that exhibit this behavior as we intro-
duce polymorphism throughout this chapter.

10.3 Type Fields and switch Statements
One way to determine the type of an object that is incorporated in a larger program is to use
a switch structure. This allows us to distinguish among object types, then invoke an ap-
propriate action for a particular object. For example, in a hierarchy of shapes in which each
shape object has a ShapeType property, a switch structure could employ the object’s
ShapeType to determine which Print method to call.

However, using switch logic exposes programs to a variety of potential problems.
For example, the programmer might forget to include a type test when one is warranted, or
the programmer might forget to test all possible cases in a switch structure. When mod-
ifying a switch-based system by adding new types, the programmer might forget to insert
the new cases in all relevant switch statements. Every addition or deletion of a class
requires the modification of every switch statement in the system; tracking these state-
ments down can be time consuming and error prone.

Software Engineering Observation 10.3
Polymorphic programming can eliminate the need for unnecessary switch logic. By using
C#’s polymorphism mechanism to perform the equivalent logic, programmers can avoid the
kinds of errors typically associated with switch logic. 10.0

Chapter 10 Object-Oriented Programming: Polymorphism 391

Testing and Debugging Tip 10.1
An interesting consequence of using polymorphism is that programs take on a simplified ap-
pearance. They contain less branching logic and more simple, sequential code. This simpli-
fication facilitates testing, debugging and program maintenance. 10.1

10.4 Polymorphism Examples
In this section, we discuss several examples of polymorphism. If class Rectangle is de-
rived from class Quadrilateral, then a Rectangle object is a more specific version
of a Quadrilateral object. Any operation (such as calculating the perimeter or the ar-
ea) that can be performed on an object of class Quadrilateral also can be performed
on an object of class Rectangle. Such operations also can be performed on other kinds
of Quadrilaterals, such as Squares, Parallelograms and Trapezoids. When
a program invokes a derived-class method through a base-class (i.e., Quadrilateral)
reference, C# polymorphically chooses the correct overriding method in the derived class
from which the object was instantiated. We investigate this behavior in later examples.

Suppose that we design a video game that manipulates objects of many different types,
including objects of classes Martian, Venutian, Plutonian, SpaceShip and
LaserBeam. Also, imagine that each of these classes inherits from the common base class
called SpaceObject, which contains method DrawYourself. Each derived class
implements this method. A screen-manager program would maintain a container (such as
a SpaceObject array) of references to objects of the various classes. To refresh the
screen, the screen manager would periodically send each object the same message—
namely, DrawYourself. However, each object responds in a unique way. For example,
a Martian object would draw itself in red with the appropriate number of antennae. A
SpaceShip object would draw itself as a bright, silver flying saucer. A LaserBeam
object would draw itself as a bright red beam across the screen. Thus the same message sent
to a variety of objects would have “many forms” of results—hence the term polymorphism.

A polymorphic screen manager facilitates adding new classes to a system with min-
imal modifications to the system’s code. Suppose we want to add class Mercurians to
our video game. To do so, we must build a class Mercurian that inherits from
SpaceObject, but provides its own definition of method DrawYourself. Then, when
objects of class Mercurian appear in the container, the programmer does not need to
modify the code for the screen manager. The screen manager invokes method Draw-
Yourself on every object in the container, regardless of the object’s type, so the new
Mercurian objects simply “plug right in.” Thus, without modifying the system (other
than to build and include the classes themselves), programmers can use polymorphism to
include additional types of classes that were not envisioned when the system was created.

With polymorphism, one method can cause different actions to occur, depending on
the type of the object on which the method is invoked. This gives the programmer tremen-
dous expressive capability. In the next several sections, we provide examples that demon-
strate polymorphism.

Software Engineering Observation 10.4
With polymorphism, the programmer can deal in generalities and let the execution-time en-
vironment concern itself with the specifics. The programmer can command a wide variety of
objects to behave in manners appropriate to those objects, even if the programmer does not
know the objects’ types. 10.4

392 Object-Oriented Programming: Polymorphism Chapter 10

Software Engineering Observation 10.5
Polymorphism promotes extensibility. Software used to invoke polymorphic behavior is writ-
ten to be independent of the types of the objects to which messages (i.e., method calls) are
sent. Thus, programmers can include into a system additional types of objects that respond
to existing messages and can do this without modifying the base system. 10.5

10.5 Abstract Classes and Methods
When we think of a class as a type, we assume that programs will create objects of that type.
However, there are cases in which it is useful to define classes for which the programmer
never intends to instantiate any objects. Such classes are called abstract classes. Because
such classes normally are used as base classes in inheritance hierarchies, we refer to such
classes as abstract base classes. These classes cannot be used to instantiate objects, since
abstract classes are incomplete. Derived classes must define the “missing pieces.” Abstract
classes normally contain one or more abstract methods or abstract properties, which are
methods and properties that do not provide implementations. Derived classes must override
inherited abstract methods and properties to enable objects of those derived classes to be
instantiated. We discuss abstract classes extensively in Section 10.6 and Section 10.8.

The purpose of an abstract class is to provide an appropriate base class from which
other classes may inherit. Classes from which objects can be instantiated are called con-
crete classes. Such classes provide implementations of every method and property they
define. We could have an abstract base class TwoDimensionalObject and derive such
concrete classes as Square, Circle and Triangle. We could also have an abstract
base class ThreeDimensionalObject and derive such concrete classes as Cube,
Sphere and Cylinder. Abstract base classes are too generic to define real objects; we
need to be more specific before we can think of instantiating objects. For example, if
someone tells you to “draw the shape,” what shape would you draw? Concrete classes pro-
vide the specifics that make it reasonable to instantiate objects.

A class is made abstract by declaring it with keyword abstract. An inheritance hier-
archy does not need to contain any abstract classes, but, as we will see, many good object-
oriented systems have class hierarchies headed by abstract base classes. In some cases,
abstract classes constitute the top few levels of the hierarchy. A good example of this is the
shape hierarchy in Fig. 9.3. The hierarchy begins with abstract base-class Shape. On the
next level of the hierarchy, we have two more abstract base classes, namely TwoDimen-
sionalShape and ThreeDimensionalShape. The next level of the hierarchy
would define concrete classes for two-dimensional shapes, such as Circle and Square,
and for three-dimensional shapes, such as Sphere and Cube.

Software Engineering Observation 10.6
An abstract class defines a common set of public methods and properties for the various
members of a class hierarchy. An abstract class typically contains one or more abstract
methods and properties that derived classes will override. All classes in the hierarchy can
use this common set of public methods and properties. 10.6

Abstract classes must specify signatures for their abstract methods and properties. C#
provides keyword abstract to declare a method or property as abstract. Methods and
properties that are abstract do not provide implementations—attempting to do so is a

Chapter 10 Object-Oriented Programming: Polymorphism 393

syntax error. Every concrete derived class must override all base-class abstract
methods and properties (using keyword override) and provide concrete implementa-
tions of those methods or properties. Any class with an abstract method in it must be
declared abstract. The difference between an abstract method and a virtual
method is that a virtual method has an implementation and provides the derived class
with the option of overriding the method; by contrast, an abstract method does not pro-
vide an implementation and forces the derived class to override the method (for that derived
class to be concrete).

Common Programming Error 10.5
Defining an abstract method in a class that has not been declared as abstract results
is a syntax error. 10.5

Common Programming Error 10.6
Attempting to instantiate an object of an abstract class results in a compilation error. 10.6

Common Programming Error 10.7
Failure to override an abstract method in a derived class is a syntax error, unless the de-
rived class also is an abstract class. 10.7

Software Engineering Observation 10.7
An abstract class can have instance data and non-abstract methods (including con-
structors), which are subject to the normal rules of inheritance by derived classes. 10.7

Although we cannot instantiate objects of abstract base classes, we can use abstract
base classes to declare references; these references can refer to instances of any concrete
classes derived from the abstract class. Programs can use such references to manipulate
instances of the derived classes polymorphically.

Let us consider another application of polymorphism. A screen manager needs to dis-
play a variety of objects, including new types of objects that the programmer will add to the
system after writing the screen manager. The system might need to display various shapes,
such as Circle, Triangle or Rectangle, which are derived from abstract class
Shape. The screen manager uses base-class references of type Shape to manage the
objects that are displayed. To draw any object (regardless of the level at which that object’s
class appears in the inheritance hierarchy), the screen manager uses a base-class reference
to the object to invoke the object’s Draw method. Method Draw is an abstract method
in base class Shape; therefore, each derived class must implement method Draw. Each
Shape object in the inheritance hierarchy knows how to draw itself. The screen manager
does not have to worry about the type of each object or whether the screen manager has
ever encountered objects of that type.

Polymorphism is particularly effective for implementing layered software systems. In
operating systems, for example, each type of physical device could operate quite differently
from the others. Even so, commands to read or write data from and to devices may have a
certain uniformity. The write message sent to a device-driver object needs to be interpreted
specifically in the context of that device driver and how that device driver manipulates
devices of a specific type. However, the write call itself really is no different from the write
to any other device in the system—place some number of bytes from memory onto that
device. An object-oriented operating system might use an abstract base class to provide an

394 Object-Oriented Programming: Polymorphism Chapter 10

interface appropriate for all device drivers. Then, through inheritance from that abstract
base class, derived classes are formed that all operate similarly. The capabilities (i.e., the
public services) offered by the device drivers are provided as abstract methods in the
abstract base class. The implementations of these abstract methods are provided in the
derived classes that correspond to the specific types of device drivers.

It is common in object-oriented programming to define an iterator class that can
traverse all the objects in a container (such as an array). For example, a program can print
a list of objects in a linked list by creating an iterator object, then using the iterator to obtain
the next element of the list each time the iterator is called. Iterators often are used in poly-
morphic programming to traverse an array or a linked list of objects from various levels of
a hierarchy. The references in such a list are all base-class references. (See Chapter 23, Data
Structures, to learn more about linked lists.) A list of objects of base class TwoDimen-
sionalShape could contain objects from classes Square, Circle, Triangle and
so on. Using polymorphism to send a Draw message to each object in the list would draw
each object correctly on the screen.

10.6 Case Study: Inheriting Interface and Implementation
Our next example (Fig. 10.4–Fig. 10.8) reexamines the Point, Circle, Cylinder hi-
erarchy that we explored in Chapter 9. In this example, the hierarchy begins with abstract
base class Shape (Fig. 10.4). This hierarchy mechanically demonstrates the power of
polymorphism. In the exercises, we explore a more substantial shape hierarchy.

1 // Fig. 10.4: Shape.cs
2 // Demonstrate a shape hierarchy using an abstract base class.
3 using System;
4
5 public abstract class Shape
6 {
7 // return Shape's area
8 public virtual double Area()
9 {

10 return 0;
11 }
12
13 // return Shape's volume
14 public virtual double Volume()
15 {
16 return 0;
17 }
18
19 // return Shape's name
20 public abstract string Name
21 {
22 get;
23 }
24 }

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 Abstract Shape base class.

Chapter 10 Object-Oriented Programming: Polymorphism 395

Class Shape defines two concrete methods and one abstract property. All shapes
have an area and a volume, so we include virtual methods Area (lines 8–11) and Volume
(lines 14–17), which return the shape’s area and volume, respectively. The volume of two-
dimensional shapes is always zero, whereas three-dimensional shapes have a positive, non-
zero volume. In class Shape, methods Area and Volume return zero, by default. Pro-
grammers can override these methods in derived classes when those classes should have
different area calculations [e.g., classes Circle2 (Fig. 10.6) and Cylinder2
(Fig. 10.7)] and/or different volume calculations (e.g., Cylinder2). Read-only property
Name (lines 20–23) is declared abstract, so derived classes must implement this prop-
erty to become concrete classes. Note that abstract methods and properties are implic-
itly virtual.

Class Point2 (Fig. 10.5) inherits from abstract class Shape and overrides the
abstract property Name, which makes Point2 a concrete class. A point’s area and
volume are zero, so class Point2 does not override base-class methods Area and
Volume. Lines 59–65 implement property Name. If we did not provide this implementa-
tion, class Point2 would be an abstract class that would require keyword abstract in
the first line of the class definition.

1 // Fig. 10.5: Point2.cs
2 // Point2 inherits from abstract class Shape and represents
3 // an x-y coordinate pair.
4 using System;
5
6 // Point2 inherits from abstract class Shape
7 public class Point2 : Shape
8 {
9 private int x, y; // Point2 coordinates

10
11 // default constructor
12 public Point2()
13 {
14 // implicit call to Object constructor occurs here
15 }
16
17 // constructor
18 public Point2(int xValue, int yValue)
19 {
20 X = xValue;
21 Y = yValue;
22 }
23
24 // property X
25 public int X
26 {
27 get
28 {
29 return x;
30 }
31

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 Point2 class inherits from abstract class Shape. (Part 1 of 2.)

396 Object-Oriented Programming: Polymorphism Chapter 10

Figure 10.6 defines class Circle2, which inherits from class Point2. Class
Circle2 contains property Radius (lines 24–37) for accessing the circle’s radius. Note
that we do not declare property Radius as virtual, so classes derived from this class
cannot override this property. A circle has zero volume, so we do not override base-class
method Volume. Rather, Circle2 inherits this method from class Point2, which
inherited the method from Shape. However, a circle does have an area, so Circle2 over-
rides Shape method Area (lines 52–55). Property Name (lines 65–71) of class Circle2
overrides property Name of class Point2. If this class did not override property Name,
the class would inherit the Point2 version of property Name. In that case, Circle2’s
Name property would erroneously return “Point2.”

32 set
33 {
34 x = value; // no validation needed
35 }
36 }
37
38 // property Y
39 public int Y
40 {
41 get
42 {
43 return y;
44 }
45
46 set
47 {
48 y = value; // no validation needed
49 }
50 }
51
52 // return string representation of Point2 object
53 public override string ToString()
54 {
55 return "[" + X + ", " + Y + "]";
56 }
57
58 // implement abstract property Name of class Shape
59 public override string Name
60 {
61 get
62 {
63 return "Point2";
64 }
65 }
66
67 } // end class Point2

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 Point2 class inherits from abstract class Shape. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 397

1 // Fig. 10.6: Circle2.cs
2 // Circle2 inherits from class Point2 and overrides key members.
3 using System;
4
5 // Circle2 inherits from class Point2
6 public class Circle2 : Point2
7 {
8 private double radius; // Circle2 radius
9

10 // default constructor
11 public Circle2()
12 {
13 // implicit call to Point2 constructor occurs here
14 }
15
16 // constructor
17 public Circle2(int xValue, int yValue, double radiusValue)
18 : base(xValue, yValue)
19 {
20 Radius = radiusValue;
21 }
22
23 // property Radius
24 public double Radius
25 {
26 get
27 {
28 return radius;
29 }
30
31 set
32 {
33 // ensure non-negative radius value
34 if (value >= 0)
35 radius = value;
36 }
37 }
38
39 // calculate Circle2 diameter
40 public double Diameter()
41 {
42 return Radius * 2;
43 }
44
45 // calculate Circle2 circumference
46 public double Circumference()
47 {
48 return Math.PI * Diameter();
49 }
50
51 // calculate Circle2 area
52 public override double Area()
53 {

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Circle2 class that inherits from class Point2. (Part 1 of 2.)

398 Object-Oriented Programming: Polymorphism Chapter 10

Figure 10.7 defines class Cylinder2, which inherits from class Circle2. Class
Cylinder2 contains property Height (lines 24–37) for accessing the cylinder’s height.
Note that we do not declare property Height as virtual, so classes derived from class
Cylinder2 cannot override this property. A cylinder has different area and volume cal-
culations from those of a circle, so this class overrides method Area (lines 40–43) to cal-
culate the cylinder’s surface area (i.e., 2πr2 + 2πrh) and overrides method Volume (lines
46–49). Property Name (lines 58–64) overrides property Name of class Circle2. If this
class did not override property Name, the class would inherit property Name of class
Circle2, and this property would erroneously return “Circle2.”

54 return Math.PI * Math.Pow(Radius, 2);
55 }
56
57 // return string representation of Circle2 object
58 public override string ToString()
59 {
60 return "Center = " + base.ToString() +
61 "; Radius = " + Radius;
62 }
63
64 // override property Name from class Point2
65 public override string Name
66 {
67 get
68 {
69 return "Circle2";
70 }
71 }
72
73 } // end class Circle2

1 // Fig. 10.7: Cylinder2.cs
2 // Cylinder2 inherits from class Circle2 and overrides key members.
3 using System;
4
5 // Cylinder2 inherits from class Circle2
6 public class Cylinder2 : Circle2
7 {
8 private double height; // Cylinder2 height
9

10 // default constructor
11 public Cylinder2()
12 {
13 // implicit call to Circle2 constructor occurs here
14 }
15

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 Cylinder2 class inherits from class Circle2. (Part 1 of 2.)

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Circle2 class that inherits from class Point2. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 399

16 // constructor
17 public Cylinder2(int xValue, int yValue, double radiusValue,
18 double heightValue) : base(xValue, yValue, radiusValue)
19 {
20 Height = heightValue;
21 }
22
23 // property Height
24 public double Height
25 {
26 get
27 {
28 return height;
29 }
30
31 set
32 {
33 // ensure non-negative height value
34 if (value >= 0)
35 height = value;
36 }
37 }
38
39 // calculate Cylinder2 area
40 public override double Area()
41 {
42 return 2 * base.Area() + base.Circumference() * Height;
43 }
44
45 // calculate Cylinder2 volume
46 public override double Volume()
47 {
48 return base.Area() * Height;
49 }
50
51 // return string representation of Circle2 object
52 public override string ToString()
53 {
54 return base.ToString() + "; Height = " + Height;
55 }
56
57 // override property Name from class Circle2
58 public override string Name
59 {
60 get
61 {
62 return "Cylinder2";
63 }
64 }
65
66 } // end class Cylinder2

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 Cylinder2 class inherits from class Circle2. (Part 2 of 2.)

400 Object-Oriented Programming: Polymorphism Chapter 10

Class Test2 (Fig. 10.8), creates an object of each of the three concrete classes and
manipulates those objects polymorphically using an array of Shape references. Lines 11–13
instantiate Point2 object point, Circle2 object circle, and Cylinder2 object
cylinder, respectively. Next, line 16 allocates array arrayOfShapes, which contains
three Shape references. Line 19 assigns reference point to the array element
arrayOfShapes[0], line 22 assigns reference circle to the array element
arrayOfShapes[1] and line 25 assigns reference cylinder to the array element
arrayOfShapes[2]. These assignments are possible because a Point2 is a Shape, a
Circle2 is a Shape and a Cylinder2 is a Shape. Therefore, we can assign instances
of derived classes Point2, Circle2 and Cylinder2 to base-class Shape references.

1 // Fig. 10.8: AbstractShapesTest.cs
2 // Demonstrates polymorphism in Point-Circle-Cylinder hierarchy.
3 using System;
4 using System.Windows.Forms;
5
6 public class AbstractShapesTest
7 {
8 public static void Main(string[] args)
9 {

10 // instantiate Point2, Circle2 and Cylinder2 objects
11 Point2 point = new Point2(7, 11);
12 Circle2 circle = new Circle2(22, 8, 3.5);
13 Cylinder2 cylinder = new Cylinder2(10, 10, 3.3, 10);
14
15 // create empty array of Shape base-class references
16 Shape[] arrayOfShapes = new Shape[3];
17
18 // arrayOfShapes[0] refers to Point2 object
19 arrayOfShapes[0] = point;
20
21 // arrayOfShapes[1] refers to Circle2 object
22 arrayOfShapes[1] = circle;
23
24 // arrayOfShapes[1] refers to Cylinder2 object
25 arrayOfShapes[2] = cylinder;
26
27 string output = point.Name + ": " + point + "\n" +
28 circle.Name + ": " + circle + "\n" +
29 cylinder.Name + ": " + cylinder;
30
31 // display Name, Area and Volume for each object
32 // in arrayOfShapes polymorphically
33 foreach(Shape shape in arrayOfShapes)
34 {
35 output += "\n\n" + shape.Name + ": " + shape +
36 "\nArea = " + shape.Area().ToString("F") +
37 "\nVolume = " + shape.Volume().ToString("F");
38 }
39

Fig. 10.8Fig. 10.8Fig. 10.8Fig. 10.8 AbstractShapesTest demonstrates polymorphism in Point-Circle-
Cylinder hierarchy. (Part 1 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 401

Lines 27–29 access property Name and invoke method ToString (implicitly) for
objects point, circle and cylinder. Property Name returns the object’s class name
and method ToString returns the object’s String representation (i.e., x-y coordinate
pair, radius and height, depending on each object’s type). Note that lines 27–29 use
derived-class references to invoke each derived-class object’s methods and properties.

By contrast, the foreach structure (lines 33–38) uses base-class Shape references
to invoke each derived-class object’s methods and properties. The foreach structure calls
property Name and methods ToString, Area and Volume for each Shape reference
in arrayOfShapes. The property and methods are invoked on each object in array-
OfShapes. When the compiler looks at each method/property call, the compiler deter-
mines whether each Shape reference (in arrayOfShapes) can make these calls. This
is the case for property Name and methods Area and Volume, because they are defined
in class Shape. However, class Shape does not define method ToString. For this
method, the compiler proceeds to Shape’s base class (class Object) and determines that
Shape inherited a no-argument ToString method from class Object.

The screen capture of Fig. 10.8 illustrates that the “appropriate” property Name and
methods ToString, Area and Volume were invoked for each type of object in array-
OfShapes. By “appropriate,” we mean that C# maps each property and method call to the
proper object. For example, in the foreach structure’s first iteration, reference
arrayOfShapes[0] (which is of type Shape) refers to the same object as point
(which is of type Point2). Class Point2 overrides property Name, and method
ToString and inherits method Area and Volume from class Shape. At runtime,
arrayOfShapes[0] accesses property Name and invokes methods ToString,
Area and Volume of the Point object. C# determines the correct object type, then uses
that type to determine the appropriate methods to invoke. Through polymorphism, the call
to property Name returns the string "Point2:"; the call to method ToString returns
the String representation of point’s x-y coordinate pair; and methods Area and
Volume each return 0 (as shown in the second group of outputs in Fig. 10.8).

40 MessageBox.Show(output, "Demonstrating Polymorphism");
41 }
42 }

Fig. 10.8Fig. 10.8Fig. 10.8Fig. 10.8 AbstractShapesTest demonstrates polymorphism in Point-Circle-
Cylinder hierarchy. (Part 2 of 2.)

402 Object-Oriented Programming: Polymorphism Chapter 10

Polymorphism occurs in the next two iterations of the foreach structure as well. Ref-
erence arrayOfShapes[1] refers to the same object as circle (which is of type
Circle2). Class Circle2 provides implementations for property Name, method
ToString and method Area, and inherits method Volume from class Point2 (which,
in turn, inherited method Volume from class Shape). C# associates property Name and
methods ToString, Area and Volume of the Circle2 object to reference
arrayOfShapes[1]. As a result, property Name returns the string "Circle2:";
method ToString returns the String representation of circle’s x-y coordinate pair
and radius; method Area returns the area (38.48); and method Volume returns 0.

For the final iteration of the foreach structure, reference arrayOfShapes[2]
refers to the same object as cylinder (which is of type Cylinder2). Class
Cylinder2 provides its own implementations for property Name and for methods
ToString, Area and Volume. C# associates property Name and methods ToString,
Area and Volume of the Cylinder2 object to reference arrayOfShapes[2].
Property Name returns the string "Cylinder2:"; method ToString returns the
String representation of cylinder’s x-y coordinate pair, radius and height; method
Area returns the cylinder’s surface area (275.769…); and method Volume returns the
cylinder’s volume (342.119…).

10.7 sealed Classes and Methods
In Chapter 8, Object-Based Programming, we saw that variables can be declared const and
readonly to indicate that they cannot be modified after they are initialized. Variables de-
clared with const must be initialized when they are declared; variables declared with rea-
donly can be initialized in the constructor, but cannot be changed after they are initialized.

The keyword sealed provides is applied to methods and classes to prevent over-
riding and inheritance. A method that is declared sealed cannot be overridden in a
derived class. Methods that are declared static and methods that are declared private
are implicitly sealed.

Performance Tip 10.1
The sealed keyword allows certain compiler optimizations. A sealed method’s definition
can never change, so the compiler can optimize the program by removing calls to sealed
methods and replacing them with the expanded code of their definitions at each method call
location—a technique known as inlining the code. 10.1

Software Engineering Observation 10.8
If a method is declared sealed, it cannot be overridden in derived classes. Method calls
must not be sent polymorphically to objects of those derived classes. The method call still
may be sent to derived classes, but they will respond identically, rather than polymorphical-
ly. Remember that a method cannot be overridden (using the keyword override) if it is not
declared either virtual or abstract. Therefore, keyword sealed is not needed for
these cases. Keyword sealed is used for methods that have been overridden, but that we
do not want to be overridden in derived classes. 10.8

Performance Tip 10.2
The compiler can decide to inline a sealed method call and will do so for small, simple
sealed methods. Inlining does not violate encapsulation or information hiding (but does
improve performance, because it eliminates the overhead of making a method call). 10.2

Chapter 10 Object-Oriented Programming: Polymorphism 403

Performance Tip 10.3
Pipelined processors can improve performance by executing portions of the next several in-
structions simultaneously, but not if those instructions follow a method call. Inlining (which
the compiler can perform on a sealed method) can improve performance in these proces-
sors as it eliminates the out-of-line transfer of control associated with a method call. 10.3

Software Engineering Observation 10.9
A class that is declared sealed cannot be a base class (i.e., a class cannot inherit from a
sealed class). All methods in a sealed class are sealed implicitly. 10.9

Using the sealed keyword with classes allows other runtime optimizations. For
example, virtual method calls can be transformed into non-virtual method calls.

A sealed class is the opposite of an abstract class in certain ways. An
abstract class cannot be instantiated—other classes derive from the abstract base class
and implement the base class’s abstract members. A sealed class, on the other hand,
cannot have any derived classes. This relationship is similar with regard to methods. An
abstract method must be overridden in a derived class. A sealed method cannot be
overridden in a derived class.

10.8 Case Study: Payroll System Using Polymorphism
Let us use abstract classes, abstract methods and polymorphism to perform payroll
calculations for various types of employees. We begin by creating abstract base class Em-
ployee. The derived classes of Employee are Boss (paid a fixed weekly salary, regard-
less of the number of hours worked), CommissionWorker (paid a flat base salary plus
a percentage of the worker’s sales), PieceWorker (paid a flat fee per item produced) and
HourlyWorker (paid by the hour with “time-and-a-half” for overtime).

The application must determine the weekly earnings for all types of employees, so
each class derived from Employee requires method Earnings. However, each derived
class uses a different calculation to determine earnings for each specific type of employee.
Therefore, we declare method Earnings as abstract in Employee and declare
Employee to be an abstract class. Each derived class overrides this method to calcu-
late earnings for that employee type.

To calculate any employee’s earnings, the program can use a base-class reference to a
derived-class object and invoke method Earnings. A real payroll system might reference
the various Employee objects with individual elements in an array of Employee refer-
ences. The program would traverse the array one element at a time, using the Employee
references to invoke the appropriate Earnings method of each object.

Software Engineering Observation 10.10
The ability to declare an abstract method gives the class designer considerable control over
how derived classes are defined in a class hierarchy. Any class that inherits directly from a
base class containing an abstract method must override the abstract method. Otherwise, the
new class also would be abstract, and attempts to instantiate objects of that class would fail. 10.10

Let us consider class Employee (Fig. 10.9). The public members include a con-
structor (lines 11–16) that takes as arguments the employee’s first and last names; proper-
ties FirstName (lines 19–30) and LastName (lines 33–44); method ToString (lines
47–50), which returns the first name and last name separated by a space; and abstract

404 Object-Oriented Programming: Polymorphism Chapter 10

method Earnings (line 54). The abstract keyword (line 5) indicates that class
Employee is abstract; thus, it cannot be used to instantiate Employee objects. Method
Earnings is declared abstract, so the class does not provide a method implementa-
tion. All classes derived directly from class Employee—except for abstract derived
classes—must implement this method. Method Earnings is abstract in Employee,
because we cannot calculate the earnings for a generic employee. To determine earnings,
we first must know of what kind the employee is. By declaring this method abstract,
we indicate that we will provide an implementation in each concrete derived class, but not
in the base class itself.

1 // Fig. 10.9: Employee.cs
2 // Abstract base class for company employees.
3 using System;
4
5 public abstract class Employee
6 {
7 private string firstName;
8 private string lastName;
9

10 // constructor
11 public Employee(string firstNameValue,
12 string lastNameValue)
13 {
14 FirstName = firstNameValue;
15 LastName = lastNameValue;
16 }
17
18 // property FirstName
19 public string FirstName
20 {
21 get
22 {
23 return firstName;
24 }
25
26 set
27 {
28 firstName = value;
29 }
30 }
31
32 // property LastName
33 public string LastName
34 {
35 get
36 {
37 return lastName;
38 }
39

Fig. 10.9Fig. 10.9Fig. 10.9Fig. 10.9 abstract class Employee definition. (Part 1 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 405

Class Boss (Fig. 10.10) inherits from Employee. Class Boss’s constructor (lines
10–15) receives as arguments a first name, a last name and a salary. The constructor passes
the first name and last name to the Employee constructor (line 12), which initializes the
FirstName and LastName members of the base-class part of the derived-class object.
Other public methods in class Boss include method Earnings (lines 34–37), which
defines the calculation of a boss’ earnings, and method ToString (lines 40–43), which
returns a string that indicates the type of employee (i.e., "Boss: ") and the boss’s name.
Class Boss also includes property WeeklySalary (lines 18–31), which manipulates the
value for member variable salary. Note that this property ensures only that salary
cannot hold a negative value—in a real payroll system, this validation would be more
extensive and carefully controlled.

40 set
41 {
42 lastName = value;
43 }
44 }
45
46 // return string representation of Employee
47 public override string ToString()
48 {
49 return FirstName + " " + LastName;
50 }
51
52 // abstract method that must be implemented for each derived
53 // class of Employee to calculate specific earnings
54 public abstract decimal Earnings();
55
56 } // end class Employee

1 // Fig. 10.10: Boss.cs
2 // Boss class derived from Employee.
3 using System;
4
5 public class Boss : Employee
6 {
7 private decimal salary; // Boss's salary
8
9 // constructor

10 public Boss(string firstNameValue, string lastNameValue,
11 decimal salaryValue)
12 : base(firstNameValue, lastNameValue)
13 {
14 WeeklySalary = salaryValue;
15 }
16

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 Boss class inherits from class Employee. (Part 1 of 2.)

Fig. 10.9Fig. 10.9Fig. 10.9Fig. 10.9 abstract class Employee definition. (Part 2 of 2.)

406 Object-Oriented Programming: Polymorphism Chapter 10

Class CommissionWorker (Fig. 10.11) also inherits from class Employee. The
constructor for this class (lines 12–20) receives as arguments a first name, a last name, a
salary, a commission and a quantity of items sold. Line 15 passes the first name and last
name to the base-class Employee constructor. Class CommissionWorker also pro-
vides properties WeeklySalary (lines 23–36), Commission (lines 39–52) and Quan-
tity (lines 55–68); method Earnings (lines 72–75), which calculates the worker’s
wages; and method ToString (lines 78–81), which returns a string that indicates the
employee type (i.e., "CommissionWorker: ") and the worker’s name.

17 // property WeeklySalary
18 public decimal WeeklySalary
19 {
20 get
21 {
22 return salary;
23 }
24
25 set
26 {
27 // ensure positive salary value
28 if (value > 0)
29 salary = value;
30 }
31 }
32
33 // override base-class method to calculate Boss's earnings
34 public override decimal Earnings()
35 {
36 return WeeklySalary;
37 }
38
39 // return string representation of Boss
40 public override string ToString()
41 {
42 return "Boss: " + base.ToString();
43 }
44 }

1 // Fig. 10.11: CommisionWorker.cs
2 // CommissionWorker class derived from Employee
3 using System;
4
5 public class CommissionWorker : Employee
6 {
7 private decimal salary; // base weekly salary
8 private decimal commission; // amount paid per item sold
9 private int quantity; // total items sold

10

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 CommissionWorker class inherits from class Employee. (Part 1 of 3.)

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 Boss class inherits from class Employee. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 407

11 // constructor
12 public CommissionWorker(string firstNameValue,
13 string lastNameValue, decimal salaryValue,
14 decimal commissionValue, int quantityValue)
15 : base(firstNameValue, lastNameValue)
16 {
17 WeeklySalary = salaryValue;
18 Commission = commissionValue;
19 Quantity = quantityValue;
20 }
21
22 // property WeeklySalary
23 public decimal WeeklySalary
24 {
25 get
26 {
27 return salary;
28 }
29
30 set
31 {
32 // ensure non-negative salary value
33 if (value > 0)
34 salary = value;
35 }
36 }
37
38 // property Commission
39 public decimal Commission
40 {
41 get
42 {
43 return commission;
44 }
45
46 set
47 {
48 // ensure non-negative commission value
49 if (value > 0)
50 commission = value;
51 }
52 }
53
54 // property Quantity
55 public int Quantity
56 {
57 get
58 {
59 return quantity;
60 }
61

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 CommissionWorker class inherits from class Employee. (Part 2 of 3.)

408 Object-Oriented Programming: Polymorphism Chapter 10

Class PieceWorker (Fig. 10.12) inherits from class Employee. The constructor
for this class (lines 11–18) receives as arguments a first name, a last name, a wage per piece
and a quantity of items produced. Line 14 then passes the first name and last name to the
base-class Employee constructor. Class PieceWorker also provides properties
WagePerPiece (lines 21–33) and Quantity (lines 36–48); method Earnings (lines
52–55), which calculates a piece worker’s earnings; and method ToString (lines 58–61),
which returns a string that indicates the type of the employee (i.e., "PieceWorker: ")
and the piece worker’s name.

62 set
63 {
64 // ensure non-negative quantity value
65 if (value > 0)
66 quantity = value;
67 }
68 }
69
70 // override base-class method to calculate
71 // CommissionWorker's earnings
72 public override decimal Earnings()
73 {
74 return WeeklySalary + Commission * Quantity;
75 }
76
77 // return string representation of CommissionWorker
78 public override string ToString()
79 {
80 return "CommissionWorker: " + base.ToString();
81 }
82
83 } // end class CommissionWorker

1 // Fig. 10.12: PieceWorker.cs
2 // PieceWorker class derived from Employee.
3 using System;
4
5 public class PieceWorker : Employee
6 {
7 private decimal wagePerPiece; // wage per piece produced
8 private int quantity; // quantity of pieces produced
9

10 // constructor
11 public PieceWorker(string firstNameValue,
12 string lastNameValue, decimal wagePerPieceValue,
13 int quantityValue)
14 : base(firstNameValue, lastNameValue)
15 {
16 WagePerPiece = wagePerPieceValue;

Fig. 10.12Fig. 10.12Fig. 10.12Fig. 10.12 PieceWorker class inherits from class Employee. (Part 1 of 2.)

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 CommissionWorker class inherits from class Employee. (Part 3 of 3.)

Chapter 10 Object-Oriented Programming: Polymorphism 409

Class HourlyWorker (Fig. 10.13) inherits from class Employee. The constructor
for this class (lines 11–17) receives as arguments a first name, a last name, a wage and the
number of hours worked. Line 13 passes the first name and last name to the base-class

17 Quantity = quantityValue;
18 }
19
20 // property WagePerPiece
21 public decimal WagePerPiece
22 {
23 get
24 {
25 return wagePerPiece;
26 }
27
28 set
29 {
30 if (value > 0)
31 wagePerPiece = value;
32 }
33 }
34
35 // property Quantity
36 public int Quantity
37 {
38 get
39 {
40 return quantity;
41 }
42
43 set
44 {
45 if (value > 0)
46 quantity = value;
47 }
48 }
49
50 // override base-class method to calculate
51 // PieceWorker's earnings
52 public override decimal Earnings()
53 {
54 return Quantity * WagePerPiece;
55 }
56
57 // return string representation of PieceWorker
58 public override string ToString()
59 {
60 return "PieceWorker: " + base.ToString();
61 }
62 }

Fig. 10.12Fig. 10.12Fig. 10.12Fig. 10.12 PieceWorker class inherits from class Employee. (Part 2 of 2.)

410 Object-Oriented Programming: Polymorphism Chapter 10

Employee constructor. Class HourlyWorker also provides properties Wage (lines 20–
33) and HoursWorked (lines 36–49); method Earnings (lines 53–70), which calcu-
lates an hourly worker’s earnings; and method ToString (lines 73–76), which returns a
string that indicates the type of the employee (i.e., "HourlyWorker:") and the hourly
worker’s name. Note that hourly workers are paid “time-and-a-half” for “overtime” (i.e.,
hours worked in excess of 40 hours).

1 // Fig. 10.13: HourlyWorker.cs
2 // HourlyWorker class derived from Employee.
3 using System;
4
5 public class HourlyWorker : Employee
6 {
7 private decimal wage; // wage per hour of work
8 private double hoursWorked; // hours worked during week
9

10 // constructor
11 public HourlyWorker(string firstNameValue, string LastNameValue,
12 decimal wageValue, double hoursWorkedValue)
13 : base(firstNameValue, LastNameValue)
14 {
15 Wage = wageValue;
16 HoursWorked = hoursWorkedValue;
17 }
18
19 // property Wage
20 public decimal Wage
21 {
22 get
23 {
24 return wage;
25 }
26
27 set
28 {
29 // ensure non-negative wage value
30 if (value > 0)
31 wage = value;
32 }
33 }
34
35 // property HoursWorked
36 public double HoursWorked
37 {
38 get
39 {
40 return hoursWorked;
41 }
42

Fig. 10.13Fig. 10.13Fig. 10.13Fig. 10.13 HourlyWorker class inherits from class Employee (Part 1 of 2.).

Chapter 10 Object-Oriented Programming: Polymorphism 411

Method Main (lines 9–48) of class EmployeesTest (Fig. 10.14) declares
Employee reference employee (line 22). Each employee type is handled similarly in
Main, so we discuss only the manipulations of the Boss object.

Line 11 assigns to Boss reference boss a Boss object and passes to its constructor
the boss’s first name (“John”), last name (“Smith”) and fixed weekly salary (800). Line
22 assigns the derived-class reference boss to the base-class Employee reference
employee, so we can demonstrate the polymorphic determination of boss’s earnings.
Line 24 passes reference employee as an argument to method GetString (lines 51–
55), which polymorphically invokes methods ToString and Earnings on the
Employee object the method receives as an argument. At this point, C# determines that
the object passed to GetString is of type Boss, so lines 53–54 invoke Boss methods
ToString and Earnings. These are classic examples of polymorphic behavior.

43 set
44 {
45 // ensure non-negative hoursWorked value
46 if (value > 0)
47 hoursWorked = value;
48 }
49 }
50
51 // override base-class method to calculate
52 // HourlyWorker earnings
53 public override decimal Earnings()
54 {
55 // compensate for overtime (paid "time-and-a-half")
56 if (HoursWorked <= 40)
57 {
58 return Wage * Convert.ToDecimal(HoursWorked);
59 }
60
61 else
62 {
63 // calculate base and overtime pay
64 decimal basePay = Wage * Convert.ToDecimal(40);
65 decimal overtimePay = Wage * 1.5M *
66 Convert.ToDecimal(HoursWorked - 40);
67
68 return basePay + overtimePay;
69 }
70 }
71
72 // return string representation of HourlyWorker
73 public override string ToString()
74 {
75 return "HourlyWorker: " + base.ToString();
76 }
77 }

Fig. 10.13Fig. 10.13Fig. 10.13Fig. 10.13 HourlyWorker class inherits from class Employee (Part 2 of 2.).

412 Object-Oriented Programming: Polymorphism Chapter 10

1 // Fig. 10.14: EmployeesTest.cs
2 // Demonstrates polymorphism by displaying earnings
3 // for various Employee types.
4 using System;
5 using System.Windows.Forms;
6
7 public class EmployeesTest
8 {
9 public static void Main(string[] args)

10 {
11 Boss boss = new Boss("John", "Smith", 800);
12
13 CommissionWorker commissionWorker =
14 new CommissionWorker("Sue", "Jones", 400, 3, 150);
15
16 PieceWorker pieceWorker = new PieceWorker("Bob", "Lewis",
17 Convert.ToDecimal(2.5), 200);
18
19 HourlyWorker hourlyWorker = new HourlyWorker("Karen",
20 "Price", Convert.ToDecimal(13.75), 50);
21
22 Employee employee = boss;
23
24 string output = GetString(employee) + boss + " earned " +
25 boss.Earnings().ToString("C") + "\n\n";
26
27 employee = commissionWorker;
28
29 output += GetString(employee) + commissionWorker +
30 " earned " +
31 commissionWorker.Earnings().ToString("C") + "\n\n";
32
33 employee = pieceWorker;
34
35 output += GetString(employee) + pieceWorker +
36 " earned " + pieceWorker.Earnings().ToString("C") +
37 "\n\n";
38
39 employee = hourlyWorker;
40
41 output += GetString(employee) + hourlyWorker +
42 " earned " + hourlyWorker.Earnings().ToString("C") +
43 "\n\n";
44
45 MessageBox.Show(output, "Demonstrating Polymorphism",
46 MessageBoxButtons.OK, MessageBoxIcon.Information);
47
48 } // end method Main
49
50 // return string that contains Employee information
51 public static string GetString(Employee worker)
52 {

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 EmployeesTest class tests the Employee class hierarchy. (Part 1 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 413

Method Earnings returns a Decimal object on which line 54 then calls method
ToString. In this case, the string "C", which is passed to an overloaded version of Dec-
imal method ToString, stands for Currency, and ToString formats the string as a
currency amount.

When method GetString returns to Main, lines 24–25 explicitly invoke methods
ToString and Earnings through derived-class Boss reference boss to show the
method invocations that do not use polymorphic processing. The output generated in lines
24–25 is identical to that generated by methods ToString and Earnings through base-
class reference employee (i.e., the methods that use polymorphism), which verifies that
the polymorphic methods invoke the appropriate methods in derived class Boss.

To prove that the base-class reference employee can invoke the proper derived-class
versions of methods ToString and Earnings for the other types of employees, lines
27, 33 and 39 assign to base-class reference employee a different type of Employee
object (CommissionWorker, PieceWorker and HourlyWorker, respectively).
After each assignment, the application calls method GetString to return the results via
the base-class reference. Then, the application calls methods ToString and Earnings
of each derived-class reference to show that C# correctly associates each method call to its
corresponding derived-class object.

10.9 Case Study: Creating and Using Interfaces
We now present two more examples of polymorphism using interfaces that specify sets of
public services (i.e., methods and properties) that classes must implement. An interface
is used when there is no default implementation to inherit (i.e., no instance variables and
no default-method implementations). Whereas an abstract class is best used for providing
data and services for objects in a hierarchical relationship, an interface can be used for pro-
viding services that “bring together” disparate objects that relate to one another only
through that interface.

53 return worker.ToString() + " earned " +
54 worker.Earnings().ToString("C") + "\n";
55 }
56 }

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 EmployeesTest class tests the Employee class hierarchy. (Part 2 of 2.)

414 Object-Oriented Programming: Polymorphism Chapter 10

An interface definition begins with the keyword interface and contains a list of
public methods and properties. To use an interface, a class must specify that it imple-
ments the interface and must provide implementations for every method and property spec-
ified in the interface definition. A class that implements an interface effectively signs a
contract with the compiler that states, “this class will define all the methods and properties
specified by the interface.”

Common Programming Error 10.8
When a class implements an interface, leaving even a single interface method or
property undefined is an error. The class must define every method and property in the in-
terface. 10.8

Common Programming Error 10.9
In C#, an interface can be declared only as public; the declaration of an interface
as private or protected is an error. 10.9

Interfaces provide uniform sets of methods and properties for objects of disparate
classes. These methods and properties enable programs to process the objects of those dis-
parate classes polymorphically. For example, consider disparate objects that represent a
person, a tree, a car and a file. These objects have “nothing to do” with one another—a
person has a first name and last name; a tree has a trunk, a set of branches and a bunch of
leaves; a car has wheels, gears and several other mechanisms that enable the car to move;
and a file contains data. Because of the lack of commonality among these classes, modeling
them via an inheritance hierarchy with a common base class seems illogical. However,
these objects certainly have at least one common characteristic—an age. A person’s age is
represented by the number of years since that person was born; a tree’s age is represented
by the number of rings in its trunk; a car’s age is represented by its manufacture date; and
file’s age is represented by its creation date. We can use an interface that provides a method
or property that objects of these disparate classes can implement to return each object’s age.

In this example, we use interface IAge (Fig. 10.15) to return the age information for
classes Person (Fig. 10.16) and Tree (Fig. 10.17). The definition of interface IAge begins
at line 4 with public interface and ends at line 8 with a closing curly brace. Lines 6–7
specify read-only properties Age and Name, for which every class that implements interface
IAge must provide implementations. Declaring these properties as read-only is not
required—an interface can also provide methods, write-only properties and properties with
both get and set accessors. By containing these property declarations, interface IAge pro-
vides an opportunity for an object that implements IAge to return its age and name, respec-
tively. However, the classes that implement these methods are not “required” by either
interface IAge or C# to return an age and a name. The compiler requires only that classes
implementing interface IAge provide implementations for the interface’s properties.

Line 5 of Fig. 10.16 use C#’s inheritance notation (i.e., ClassName : InterfaceName)
to indicate that class Person implements interface IAge. In this example, class Person
implements only one interface. A class can implement any number of interfaces in addition
to inheriting from one class. To implement more than one interface, the class definition
must provide a comma-separated list of interface names after the semicolon. Class
Person has member variables yearBorn, firstName and lastName (lines 7–9), for
which the constructor (lines 12–22) sets values. Because class Person implements inter-
face IAge, class Person must implement properties Age and Name—defined on lines

Chapter 10 Object-Oriented Programming: Polymorphism 415

25–31 and lines 34–40, respectively. Property Age allows the client to obtain the person’s
age, and property Name returns a String containing firstName and lastName. Note
that property Age calculates the person’s age by subtracting yearBorn from the current
year (via property Year of property DateTime.Now, which returns the current date).
These properties satisfy the implementation requirements defined in interface IAge, so
class Person has fulfilled its “contract” with the compiler.

1 // Fig. 10.15: IAge.cs
2 // Interface IAge declares property for setting and getting age.
3
4 public interface IAge
5 {
6 int Age { get; }
7 string Name { get; }
8 }

Fig. 10.15Fig. 10.15Fig. 10.15Fig. 10.15 Interface for returning age of objects of disparate classes.

1 // Fig. 10.16: Person.cs
2 // Class Person has a birthday.
3 using System;
4
5 public class Person : IAge
6 {
7 private string firstName;
8 private string lastName;
9 private int yearBorn;

10
11 // constructor
12 public Person(string firstNameValue, string lastNameValue,
13 int yearBornValue)
14 {
15 firstName = firstNameValue;
16 lastName = lastNameValue;
17
18 if (yearBornValue > 0 && yearBornValue <= DateTime.Now.Year)
19 yearBorn = yearBornValue;
20 else
21 yearBorn = DateTime.Now.Year;
22 }
23
24 // property Age implementation of interface IAge
25 public int Age
26 {
27 get
28 {
29 return DateTime.Now.Year - yearBorn;
30 }
31 }
32

Fig. 10.16Fig. 10.16Fig. 10.16Fig. 10.16 Person class implements IAge interface. (Part 1 of 2.)

416 Object-Oriented Programming: Polymorphism Chapter 10

Class Tree (Fig. 10.17) also implements interface IAge. Class Tree has member
variables rings (line 7), which represents the number of rings inside the tree’s trunk—
this variable corresponds directly to the tree’s age. The Tree constructor (lines 10–14)
receives as an argument an int that specifies in which year the tree was planted. Class
Tree includes method AddRing (lines 17–20), which enables a program to increment the
number of rings in the tree. Because class Tree implements interface IAge, class Tree
must implement properties Age and Name—defined on lines 23–29 and lines 32–38,
respectively. Property Age returns the value of rings, and property Name returns
string “Tree.”

33 // property Name implementation of interface IAge
34 public string Name
35 {
36 get
37 {
38 return firstName + " " + lastName;
39 }
40 }
41
42 } // end class Person

1 // Fig. 10.17: Tree.cs
2 // Class Tree contains number of rings corresponding to its age.
3 using System;
4
5 public class Tree : IAge
6 {
7 private int rings; // number of rings in tree trunk
8
9 // constructor

10 public Tree(int yearPlanted)
11 {
12 // count number of rings in Tree
13 rings = DateTime.Now.Year - yearPlanted;
14 }
15
16 // increment rings
17 public void AddRing()
18 {
19 rings++;
20 }
21
22 // property Age implementation of interface IAge
23 public int Age
24 {
25 get
26 {

Fig. 10.17Fig. 10.17Fig. 10.17Fig. 10.17 Tree class implements IAge interface. (Part 1 of 2.)

Fig. 10.16Fig. 10.16Fig. 10.16Fig. 10.16 Person class implements IAge interface. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 417

Class InterfacesTest (Fig. 10.18) demonstrates polymorphism on the objects of
disparate classes Person and Tree. Line 9 instantiates object tree of class Tree, and
line 10 instantiates object person of class Person. Line 13 declares iAgeArray—an
array of two references to IAge objects. Line 16 and 19 assign tree and person to the
first and second reference in iAgeArray, respectively. Lines 22–23 invoke method
ToString on tree, then invoke its properties Age and Name to return age and name
information for object tree. Lines 26–27 invoke method ToString on person, then
invoke its properties Age and Name to return age and name information for object
person. Next, we manipulate these objects polymorphically through the iAgeArray of
references to IAge objects. Lines 30–34 define a foreach structure that uses properties
Age and Name to obtain age and name information for each IAge object in iAgeArray.
Note that a program also can invoke class Object’s public methods (e.g., ToString)
using any interface reference. This is possible because every object inherits directly or indi-
rectly from class Object. Therefore, every object is guaranteed to have the class
Object’s public methods.

Software Engineering Observation 10.11
In C#, an interface reference may invoke methods and properties that the interface declares
and the public methods of class Object. 10.11

Software Engineering Observation 10.12
In C#, an interface provides only those public services declared in the interface, whereas
an abstract class provides the public services defined in the abstract class and those mem-
bers inherited from the abstract class’s base class. 10.12

27 return rings;
28 }
29 }
30
31 // property Name implementation of interface IAge
32 public string Name
33 {
34 get
35 {
36 return "Tree";
37 }
38 }
39
40 } // end class Tree

Fig. 10.17Fig. 10.17Fig. 10.17Fig. 10.17 Tree class implements IAge interface. (Part 2 of 2.)

1 // Fig. 10.18: InterfacesTest.cs
2 // Demonstrating polymorphism with interfaces.
3 using System.Windows.Forms;
4
5 public class InterfacesTest
6 {

Fig. 10.18Fig. 10.18Fig. 10.18Fig. 10.18 Demonstrate polymorphism on objects of disparate classes. (Part 1 of 2.)

418 Object-Oriented Programming: Polymorphism Chapter 10

Our next example reexamines the Point–Circle–Cylinder hierarchy using an
interface, rather than using an abstract class, to describe the common methods and proper-
ties of the classes in the hierarchy. We now show how a class can implement an interface,
then act as a base class for derived classes to inherit the implementation. We create inter-
face IShape (Fig. 10.19), which specifies methods Area and Volume and property
Name (lines 8–10). Every class that implements interface IShape must provide imple-

7 public static void Main(string[] args)
8 {
9 Tree tree = new Tree(1978);

10 Person person = new Person("Bob", "Jones", 1971);
11
12 // create array of IAge references
13 IAge[] iAgeArray = new IAge[2];
14
15 // iAgeArray[0] refers to Tree object polymorphically
16 iAgeArray[0] = tree;
17
18 // iAgeArray[1] refers to Person object polymorphically
19 iAgeArray[1] = person;
20
21 // display tree information
22 string output = tree + ": " + tree.Name + "\nAge is " +
23 tree.Age + "\n\n";
24
25 // display person information
26 output += person + ": " + person.Name + "\nAge is: "
27 + person.Age + "\n\n";
28
29 // display name and age for each IAge object in iAgeArray
30 foreach (IAge ageReference in iAgeArray)
31 {
32 output += ageReference.Name + ": Age is " +
33 ageReference.Age + "\n";
34 }
35
36 MessageBox.Show(output, "Demonstrating Polymorphism");
37
38 } // end method Main
39
40 } // end class InterfacesTest

Fig. 10.18Fig. 10.18Fig. 10.18Fig. 10.18 Demonstrate polymorphism on objects of disparate classes. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 419

mentations for these two methods and this read-only property. Note that, even though the
methods in this example interface do not receive arguments, interface methods can receive
arguments (just as regular methods can).

Good Programming Practice 10.1
By convention, begin the name of each interface with “I.” 10.1

Because class Point3 (Fig. 10.20) implements interface IShape, class Point3
must implement all three IShape members. Lines 59–62 implement method Area, which
returns 0, because points have an area of zero. Lines 65–68 implement method Volume,
which also returns 0, because points have a volume of zero. Lines 71–77 implement read-
only property Name, which returns the class name as a string ("Point3").

When a class implements an interface, the class enters the same kind of is-a relation-
ship that inheritance establishes. In our example, class Point3 implements interface
IShape. Therefore, a Point3 object is an IShape, and objects of any class that inherits
from Point3 are also IShapes. For example, class Circle3 (Fig. 10.21) inherits from
class Point3; thus, a Circle3 is an IShape. Class Circle3 implements interface
IShape implicitly and inherits the IShape methods that class Point implemented.
Because circles do not have volume, class Circle3 does not override class Point3’s
Volume method, which returns zero. However, we do not want to use the class Point3
method Area or property Name for class Circle3. Class Circle3 should provide its
own implementation for these, because the area and name of a circle differ from those of a
point. Lines 52–55 override method Area to return the circle’s area, and lines 65–71 over-
ride property Name to return String "Circle3".

Class Cylinder3 (Fig. 10.22) inherits from class Circle3. Cylinder3 imple-
ments interface IShape implicitly, because Cylinder3 derives from Point3, which
implements interface IShape. Cylinder3 inherits method Area and property Name
from Circle3 and method Volume from Point3. However, Cylinder3 overrides
property Name and methods Area and Volume to perform Cylinder3-specific opera-
tions. Lines 40–43 override method Area to return the cylinder’s surface area, lines 46–49
override method Volume to return the cylinder’s volume and lines 59–65 override property
Name to return String "Cylinder3". Note that class Point3 marks these methods/
properties as virtual, enabling derived classes to override them.

1 // Fig. 10.19: IShape.cs
2 // Interface IShape for Point, Circle, Cylinder Hierarchy.
3
4 public interface IShape
5 {
6 // classes that implement IShape must implement these methods
7 // and this property
8 double Area();
9 double Volume();

10 string Name { get; }
11 }

Fig. 10.19Fig. 10.19Fig. 10.19Fig. 10.19 IShape interface provides methods Area and Volume and property
Name.

420 Object-Oriented Programming: Polymorphism Chapter 10

1 // Fig. 10.20: Point3.cs
2 // Point3 implements interface IShape and represents
3 // an x-y coordinate pair.
4 using System;
5
6 // Point3 implements IShape
7 public class Point3 : IShape
8 {
9 private int x, y; // Point3 coordinates

10
11 // default constructor
12 public Point3()
13 {
14 // implicit call to Object constructor occurs here
15 }
16
17 // constructor
18 public Point3(int xValue, int yValue)
19 {
20 X = xValue;
21 Y = yValue;
22 }
23
24 // property X
25 public int X
26 {
27 get
28 {
29 return x;
30 }
31
32 set
33 {
34 x = value;
35 }
36 }
37
38 // property Y
39 public int Y
40 {
41 get
42 {
43 return y;
44 }
45
46 set
47 {
48 y = value;
49 }
50 }
51

Fig. 10.20Fig. 10.20Fig. 10.20Fig. 10.20 Point3 class implements interface IShape. (Part 1 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 421

52 // return string representation of Point3 object
53 public override string ToString()
54 {
55 return "[" + X + ", " + Y + "]";
56 }
57
58 // implement interface IShape method Area
59 public virtual double Area()
60 {
61 return 0;
62 }
63
64 // implement interface IShape method Volume
65 public virtual double Volume()
66 {
67 return 0;
68 }
69
70 // implement property Name of IShape
71 public virtual string Name
72 {
73 get
74 {
75 return "Point3";
76 }
77 }
78
79 } // end class Point3

1 // Fig. 10.21: Circle3.cs
2 // Circle3 inherits from class Point3 and overrides key members.
3 using System;
4
5 // Circle3 inherits from class Point3
6 public class Circle3 : Point3
7 {
8 private double radius; // Circle3 radius
9

10 // default constructor
11 public Circle3()
12 {
13 // implicit call to Point3 constructor occurs here
14 }
15
16 // constructor
17 public Circle3(int xValue, int yValue, double radiusValue)
18 : base(xValue, yValue)
19 {
20 Radius = radiusValue;
21 }

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 Circle3 class inherits from class Point3. (Part 1 of 2.)

Fig. 10.20Fig. 10.20Fig. 10.20Fig. 10.20 Point3 class implements interface IShape. (Part 2 of 2.)

422 Object-Oriented Programming: Polymorphism Chapter 10

22

23 // property Radius
24 public double Radius
25 {
26 get
27 {
28 return radius;
29 }
30
31 set
32 {
33 // ensure non-negative Radius value
34 if (value >= 0)
35 radius = value;
36 }
37 }
38
39 // calculate Circle3 diameter
40 public double Diameter()
41 {
42 return Radius * 2;
43 }
44
45 // calculate Circle3 circumference
46 public double Circumference()
47 {
48 return Math.PI * Diameter();
49 }
50
51 // calculate Circle3 area
52 public override double Area()
53 {
54 return Math.PI * Math.Pow(Radius, 2);
55 }
56
57 // return string representation of Circle3 object
58 public override string ToString()
59 {
60 return "Center = " + base.ToString() +
61 "; Radius = " + Radius;
62 }
63
64 // override property Name from class Point3
65 public override string Name
66 {
67 get
68 {
69 return "Circle3";
70 }
71 }
72
73 } // end class Circle3

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 Circle3 class inherits from class Point3. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 423

1 // Fig. 10.22: Cylinder3.cs
2 // Cylinder3 inherits from class Circle2 and overrides key members.
3 using System;
4
5 // Cylinder3 inherits from class Circle3
6 public class Cylinder3 : Circle3
7 {
8 private double height; // Cylinder3 height
9

10 // default constructor
11 public Cylinder3()
12 {
13 // implicit call to Circle3 constructor occurs here
14 }
15
16 // constructor
17 public Cylinder3(int xValue, int yValue, double radiusValue,
18 double heightValue) : base(xValue, yValue, radiusValue)
19 {
20 Height = heightValue;
21 }
22
23 // property Height
24 public double Height
25 {
26 get
27 {
28 return height;
29 }
30
31 set
32 {
33 // ensure non-negative Height value
34 if (value >= 0)
35 height = value;
36 }
37 }
38
39 // calculate Cylinder3 area
40 public override double Area()
41 {
42 return 2 * base.Area() + base.Circumference() * Height;
43 }
44
45 // calculate Cylinder3 volume
46 public override double Volume()
47 {
48 return base.Area() * Height;
49 }
50
51 // return string representation of Cylinder3 object
52 public override string ToString()
53 {

Fig. 10.22Fig. 10.22Fig. 10.22Fig. 10.22 Cylinder3 class inherits from class Circle3. (Part 1 of 2.)

424 Object-Oriented Programming: Polymorphism Chapter 10

Class Interfaces2Test (Fig. 10.23) demonstrates our point-circle-cylinder hier-
archy that uses interfaces. Class Interfaces2Test has only two differences from the
example in Fig. 10.8, which tested the class hierarchy created from the abstract base
class Shape. In Fig. 10.23, line 17 declares arrayOfShapes as an array of IShape
interface references, rather than Shape base-class references.

54 return "Center = " + base.ToString() +
55 "; Height = " + Height;
56 }
57
58 // override property Name from class Circle3
59 public override string Name
60 {
61 get
62 {
63 return "Cylinder3";
64 }
65 }
66
67 } // end class Cylinder3

1 // Fig. 10.23: Interfaces2Test.cs
2 // Demonstrating polymorphism with interfaces in
3 // Point-Circle-Cylinder hierarchy.
4
5 using System.Windows.Forms;
6
7 public class Interfaces2Test
8 {
9 public static void Main(string[] args)

10 {
11 // instantiate Point3, Circle3 and Cylinder3 objects
12 Point3 point = new Point3(7, 11);
13 Circle3 circle = new Circle3(22, 8, 3.5);
14 Cylinder3 cylinder = new Cylinder3(10, 10, 3.3, 10);
15
16 // create array of IShape references
17 IShape[] arrayOfShapes = new IShape[3];
18
19 // arrayOfShapes[0] references Point3 object
20 arrayOfShapes[0] = point;
21
22 // arrayOfShapes[1] references Circle3 object
23 arrayOfShapes[1] = circle;
24
25 // arrayOfShapes[2] references Cylinder3 object
26 arrayOfShapes[2] = cylinder;
27

Fig. 10.23Fig. 10.23Fig. 10.23Fig. 10.23 Interfaces2Test uses interfaces to demonstrate polymorphism in
Point-Circle-Cylinder hierarchy (Part 1 of 2.).

Fig. 10.22Fig. 10.22Fig. 10.22Fig. 10.22 Cylinder3 class inherits from class Circle3. (Part 2 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 425

10.10 Delegates
In Chapter 6, we discussed how objects can pass member variables as arguments to meth-
ods. However, sometimes, it is beneficial for objects to pass methods as arguments to other
methods. For example, suppose that you wish to sort a series of values in ascending and
descending order. Rather than provide separate ascending and descending sorting methods
(one for each type of comparison), we could provide a single method that receives as an
argument a reference to the comparison method to use. To perform an ascending sort, we
could pass to the sorting method the reference to the ascending-sort-comparison method;
to perform a descending sort, we could pass to the sorting method the reference to the de-
scending-sort-comparison method. The sorting method then would use this reference to
sort the list—the sorting method would not need to know whether it is performing an as-
cending or descending sort.

C# does not allow the passing of method references directly as arguments to other
methods, but does provide delegates, which are classes that encapsulate sets of references to
methods. A delegate object that contains method references can be passed to another method.
Rather than send a method reference directly, an object can send the delegate instance, which
contains the reference of the method that we would like to send. The method that receives the
reference to the delegate then can invoke the methods the delegate contains.

28 string output = point.Name + ": " + point + "\n" +
29 circle.Name + ": " + circle + "\n" +
30 cylinder.Name + ": " + cylinder;
31
32 foreach (IShape shape in arrayOfShapes)
33 {
34 output += "\n\n" + shape.Name + ":\nArea = " +
35 shape.Area() + "\nVolume = " + shape.Volume();
36 }
37
38 MessageBox.Show(output, "Demonstrating Polymorphism");
39 }
40 }

Fig. 10.23Fig. 10.23Fig. 10.23Fig. 10.23 Interfaces2Test uses interfaces to demonstrate polymorphism in
Point-Circle-Cylinder hierarchy (Part 2 of 2.).

426 Object-Oriented Programming: Polymorphism Chapter 10

A delegate that contains a single method is known as a singlecast delegate and is cre-
ated or derived from class Delegate. Delegates that contain multiple methods are multi-
cast delegates and are created or derived from class MulticastDelegate. Both
delegate classes belong to namespace System.

To use a delegate, we first must declare one. The delegate’s declaration specifies a
method header (parameters and return value). Methods whose references will be contained
within a delegate object must have the same method header as that defined in the delegate
declaration. We then create methods that have this signature. The second step is to create a
delegate instance that contains a reference to that method. After we create the delegate
instance, we can invoke the method reference that it contains. We show this process in our
next example.

Class DelegateBubbleSort (Fig. 10.24), which is a modified version of the
bubble-sort example in Chapter 7, uses delegates to sort an integer array in ascending or
descending order. Lines 6–7 provide the declaration for delegate Comparator. To
declare a delegate (line 7), we declare a signature of a method—keyword delegate after
the member-access modifier (in this case, public), followed by the return type, the dele-
gate name and parameter list. Delegate Comparator defines a method signature for
methods that receive two int arguments and return a bool. Note that delegate Compar-
ator contains no body. As we soon demonstrate, our application (Fig. 10.25) implements
methods that adhere to delegate Comparator’s signature, then passes these methods (as
arguments of type Comparator) to method SortArray. The declaration of a delegate
does not define its intended role or implementation; our application uses this particular del-
egate when comparing two ints, but other applications might use it for different purposes.

1 // Fig. 10.24: DelegateBubbleSort.cs
2 // Demonstrating delegates for sorting numbers.
3
4 public class DelegateBubbleSort
5 {
6 public delegate bool Comparator(int element1,
7 int element2);
8
9 // sort array using Comparator delegate

10 public static void SortArray(int[] array,
11 Comparator Compare)
12 {
13 for (int pass = 0; pass < array.Length; pass++)
14
15 for (int i = 0; i < array.Length - 1; i++)
16
17 if (Compare(array[i], array [i + 1]))
18 Swap(ref array[i], ref array[i + 1]);
19 }
20
21 // swap two elements
22 private static void Swap(ref int firstElement,
23 ref int secondElement)
24 {

Fig. 10.24Fig. 10.24Fig. 10.24Fig. 10.24 Bubble sort using delegates. (Part 1 of 2.)

Chapter 10 Object-Oriented Programming: Polymorphism 427

Lines 10–19 define method SortArray, which takes an array and a reference to a
Comparator delegate object as arguments. Method SortArray modifies the array by
sorting its contents. Line 17 uses the delegate method to determine how to sort the array.
Line 17 invokes the method enclosed within the delegate object by treating the delegate ref-
erence as the method that the delegate object contains. C# invokes the enclosed method ref-
erence directly, passing it parameters array[i] and array[i + 1]. The
Comparator determines the sorting order for its two arguments. If the Comparator
returns true, the two elements are out of order, so line 18 invokes method Swap (lines
22–28) to swap the elements. If the Comparator returns false, the two elements are in
the correct order. To sort in ascending order, the Comparator returns true when the
first element being compared is greater than the second element being compared. Similarly,
to sort in descending order, the Comparator returns true when the first element being
compared is less than the second element being compared.

Class BubbleSortForm (Fig. 10.25) displays a Form with two text boxes and three
buttons. The first text box displays a list of unsorted numbers, and the second box displays
the same list of numbers after they are sorted. The Create Data button creates the list of
unsorted values. The Sort Ascending and Sort Descending buttons sort the array in
ascending and descending order, respectively. Methods SortAscending (lines 42–45)
and SortDescending (lines 60–63) each have a signature that corresponds with the sig-
nature defined by the Comparator delegate declaration (i.e., each receives two ints and
returns a bool). As we will see, the program passes to DelegateBubbleSort method
SortArray delegates containing references to methods SortAscending and Sort-
Descending, which will specify class DelegateBubbleSort’s sorting behavior.

25 int hold = firstElement;
26 firstElement = secondElement;
27 secondElement = hold;
28 }
29 }

1 // Fig. 10.25: BubbleSortForm.cs
2 // Demonstrates bubble sort using delegates to determine
3 // the sort order.
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9

10 public class BubbleSortForm : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.TextBox originalTextBox;
13 private System.Windows.Forms.TextBox sortedTextBox;
14 private System.Windows.Forms.Button createButton;
15 private System.Windows.Forms.Button ascendingButton;

Fig. 10.25Fig. 10.25Fig. 10.25Fig. 10.25 Bubble-sort Form application. (Part 1 of 3.)

Fig. 10.24Fig. 10.24Fig. 10.24Fig. 10.24 Bubble sort using delegates. (Part 2 of 2.)

428 Object-Oriented Programming: Polymorphism Chapter 10

16 private System.Windows.Forms.Button descendingButton;
17 private System.Windows.Forms.Label originalLabel;
18 private System.Windows.Forms.Label sortedLabel;
19
20 private int[] elementArray = new int[10];
21
22 // create randomly generated set of numbers to sort
23 private void createButton_Click(object sender,
24 System.EventArgs e)
25 {
26 // clear TextBoxes
27 originalTextBox.Clear();
28 sortedTextBox.Clear();
29
30 // create random-number generator
31 Random randomNumber = new Random();
32
33 // populate elementArray with random integers
34 for (int i = 0; i < elementArray.Length; i++)
35 {
36 elementArray[i] = randomNumber.Next(100);
37 originalTextBox.Text += elementArray[i] + "\r\n";
38 }
39 }
40
41 // delegate implementation for ascending sort
42 private bool SortAscending(int element1, int element2)
43 {
44 return element1 > element2;
45 }
46
47 // sort randomly generated numbers in ascending order
48 private void ascendingButton_Click(object sender,
49 System.EventArgs e)
50 {
51 // sort array, passing delegate for SortAscending
52 DelegateBubbleSort.SortArray(elementArray,
53 new DelegateBubbleSort.Comparator(
54 SortAscending));
55
56 DisplayResults();
57 }
58
59 // delegate implementation for descending sort
60 private bool SortDescending(int element1, int element2)
61 {
62 return element1 < element2;
63 }
64
65 // sort randomly generating numbers in descending order
66 private void descendingButton_Click(object sender,
67 System.EventArgs e)
68 {

Fig. 10.25Fig. 10.25Fig. 10.25Fig. 10.25 Bubble-sort Form application. (Part 2 of 3.)

Chapter 10 Object-Oriented Programming: Polymorphism 429

69 // sort array, passing delegate for SortDescending
70 DelegateBubbleSort.SortArray(elementArray,
71 new DelegateBubbleSort.Comparator(
72 SortDescending));
73
74 DisplayResults();
75 }
76
77 // display the sorted array in sortedTextBox
78 private void DisplayResults()
79 {
80 sortedTextBox.Clear();
81
82 foreach (int element in elementArray)
83 sortedTextBox.Text += element + "\r\n";
84 }
85
86 // main entry point for application
87 public static void Main(string[] args)
88 {
89 Application.Run(new BubbleSortForm());
90 }
91 }

Fig. 10.25Fig. 10.25Fig. 10.25Fig. 10.25 Bubble-sort Form application. (Part 3 of 3.)

430 Object-Oriented Programming: Polymorphism Chapter 10

Methods ascendingButton_Click (lines 48–57) and descending-
Button_Click (lines 66–75) are invoked when the user clicks the Sort Ascending
and Sort Descending buttons, respectively. Method ascendingButton_Click,
passes to DelegateBubbleSort method SortArray the unsorted elementArray
(line 52) and a reference to method SortAscending. The syntax on lines 53–54

new DelegateBubbleSort.Comparator(SortAscending)

creates a Comparator delegate that contains a reference to method SortAscending. In
method descendingButton_Click, lines 70–72 pass to method SortArray the un-
sorted array elementArray and a delegate reference to method SortDescending. We
continue to use delegates in Chapters 12–14, when we discuss event handling and multi-
threading.

10.11 Operator Overloading
Manipulations on class objects are accomplished by sending messages (in the form of method
calls) to the objects. This method-call notation is cumbersome for certain kinds of classes, es-
pecially mathematical classes. For these classes, it would be convenient to use C#’s rich set
of built-in operators to specify object manipulations. In this section, we show how to enable
C#’s operators to work with class objects—via a process called operator overloading.

Software Engineering Observation 10.13
Use operator overloading when it makes a program clearer than accomplishing the same op-
erations with explicit method calls. 10.13

Software Engineering Observation 10.14
Avoid excessive or inconsistent use of operator overloading, as this can make a program
cryptic and difficult to read. 10.14

C# enables the programmer to overload most operators to make them sensitive to the
context in which they are used. Some operators are overloaded frequently, especially the
assignment operator and various arithmetic operators, such as + and -. The job performed
by overloaded operators also can be performed by explicit method calls, but operator nota-
tion often is more natural. Figure 10.27 provides an example of using operator overloading
with a complex number class.

Class ComplexNumber (Fig. 10.26) overloads the plus (+), minus (-) and multipli-
cation (*) operators to enable programs to add, subtract and multiply instances of class
ComplexNumber using common mathematical notation. Lines 7–8 declare data members
for the real and imaginary parts of the complex number.

1 // Fig. 10.26: ComplexNumber.cs
2 // Class that overloads operators for adding, subtracting
3 // and multiplying complex numbers.
4
5 public class ComplexNumber
6 {

Fig. 10.26Fig. 10.26Fig. 10.26Fig. 10.26 Overloading operators for complex numbers. (Part 1 of 3.)

Chapter 10 Object-Oriented Programming: Polymorphism 431

7 private int real;
8 private int imaginary;
9

10 // default constructor
11 public ComplexNumber() {}
12
13 // constructor
14 public ComplexNumber(int a, int b)
15 {
16 Real = a;
17 Imaginary = b;
18 }
19
20 // return string representation of ComplexNumber
21 public override string ToString()
22 {
23 return "(" + real +
24 (imaginary < 0 ? " - " + (imaginary * -1) :
25 " + " + imaginary) + "i)";
26 }
27
28 // property Real
29 public int Real
30 {
31 get
32 {
33 return real;
34 }
35
36 set
37 {
38 real = value;
39 }
40
41 } // end property Real
42
43 // property Imaginary
44 public int Imaginary
45 {
46 get
47 {
48 return imaginary;
49 }
50
51 set
52 {
53 imaginary = value;
54 }
55
56 } // end property Imaginary
57

Fig. 10.26Fig. 10.26Fig. 10.26Fig. 10.26 Overloading operators for complex numbers. (Part 2 of 3.)

432 Object-Oriented Programming: Polymorphism Chapter 10

Lines 59–64 overload the plus operator (+) to perform addition of ComplexNum-
bers. Keyword operator followed by an operator indicates that a method overloads the

58 // overload the addition operator
59 public static ComplexNumber operator + (
60 ComplexNumber x, ComplexNumber y)
61 {
62 return new ComplexNumber(
63 x.Real + y.Real, x.Imaginary + y.Imaginary);
64 }
65
66 // provide alternative to overloaded + operator
67 // for addition
68 public static ComplexNumber Add(ComplexNumber x,
69 ComplexNumber y)
70 {
71 return x + y;
72 }
73
74 // overload the subtraction operator
75 public static ComplexNumber operator - (
76 ComplexNumber x, ComplexNumber y)
77 {
78 return new ComplexNumber(
79 x.Real - y.Real, x.Imaginary - y.Imaginary);
80 }
81
82 // provide alternative to overloaded - operator
83 // for subtraction
84 public static ComplexNumber Subtract(ComplexNumber x,
85 ComplexNumber y)
86 {
87 return x - y;
88 }
89
90 // overload the multiplication operator
91 public static ComplexNumber operator * (
92 ComplexNumber x, ComplexNumber y)
93 {
94 return new ComplexNumber(
95 x.Real * y.Real - x.Imaginary * y.Imaginary,
96 x.Real * y.Imaginary + y.Real * x.Imaginary);
97 }
98
99 // provide alternative to overloaded * operator
100 // for multiplication
101 public static ComplexNumber Multiply(ComplexNumber x,
102 ComplexNumber y)
103 {
104 return x * y;
105 }
106
107 } // end class ComplexNumber

Fig. 10.26Fig. 10.26Fig. 10.26Fig. 10.26 Overloading operators for complex numbers. (Part 3 of 3.)

Chapter 10 Object-Oriented Programming: Polymorphism 433

specified operator. Methods that overload binary operators must take two arguments. The
first argument is the left operand, and the second argument is the right operand. Class Com-
plexNumber’s overloaded plus operator takes two ComplexNumber references as
arguments and returns a ComplexNumber that represents the sum of the arguments. Note
that this method is marked public and static, which is required for overloaded oper-
ators. The body of the method (lines 62–63) performs the addition and returns the result as
a new ComplexNumber reference.

Software Engineering Observation 10.15
Overload operators to perform the same function or similar functions on class objects as the
operators perform on objects of built-in types. Avoid non-intuitive use of operators. 10.15

Software Engineering Observation 10.16
At least one argument of an operator overload method must be a reference to an object of the
class in which the operator is overloaded. This prevents programmers from changing how
operators work on built-in types. 10.16

Not all .NET languages support operator overloading. Therefore, to ensure that our
ComplexNumber class can be used in other .NET languages, we must provide an alterna-
tive method for performing addition of ComplexNumbers. Method Add (lines 68–72) pro-
vides this alternative means to add ComplexNumbers. Lines 75–105 provide overloaded
operators and alternative methods for subtracting and multiplying ComplexNumbers.

Class ComplexTest (Fig. 10.27) provides a user interface for adding, subtracting
and multiplying ComplexNumbers. Method firstButton_Click and method
secondButton_Click each read a ComplexNumber from textboxes real-
TextBox and imaginaryTextBox. Method addButton_Click (lines 56–59),
method subtractButton_Click (lines 62–66) and method multiply-
Button_Click (lines 69–73) use overloaded operators of class ComplexNumber to
perform addition, subtraction and multiplication.

1 // Fig 10.27: OperatorOverloading.cs
2 // An example that uses operator overloading
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class ComplexTest : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Label realLabel;
14 private System.Windows.Forms.Label imaginaryLabel;
15 private System.Windows.Forms.Label statusLabel;
16
17 private System.Windows.Forms.TextBox realTextBox;
18 private System.Windows.Forms.TextBox imaginaryTextBox;
19

Fig. 10.27Fig. 10.27Fig. 10.27Fig. 10.27 Using operator overloading. (Part 1 of 3.)

434 Object-Oriented Programming: Polymorphism Chapter 10

20 private System.Windows.Forms.Button firstButton;
21 private System.Windows.Forms.Button secondButton;
22 private System.Windows.Forms.Button addButton;
23 private System.Windows.Forms.Button subtractButton;
24 private System.Windows.Forms.Button multiplyButton;
25
26 private ComplexNumber x = new ComplexNumber();
27 private ComplexNumber y = new ComplexNumber();
28
29 [STAThread]
30 static void Main()
31 {
32 Application.Run(new ComplexTest());
33 }
34
35 private void firstButton_Click(
36 object sender, System.EventArgs e)
37 {
38 x.Real = Int32.Parse(realTextBox.Text);
39 x.Imaginary = Int32.Parse(imaginaryTextBox.Text);
40 realTextBox.Clear();
41 imaginaryTextBox.Clear();
42 statusLabel.Text = "First Complex Number is: " + x;
43 }
44
45 private void secondButton_Click(
46 object sender, System.EventArgs e)
47 {
48 y.Real = Int32.Parse(realTextBox.Text);
49 y.Imaginary = Int32.Parse(imaginaryTextBox.Text);
50 realTextBox.Clear();
51 imaginaryTextBox.Clear();
52 statusLabel.Text = "Second Complex Number is: " + y;
53 }
54
55 // add complex numbers
56 private void addButton_Click(object sender, System.EventArgs e)
57 {
58 statusLabel.Text = x + " + " + y + " = " + (x + y);
59 }
60
61 // subtract complex numbers
62 private void subtractButton_Click(
63 object sender, System.EventArgs e)
64 {
65 statusLabel.Text = x + " - " + y + " = " + (x - y);
66 }
67
68 // multiply complex numbers
69 private void multiplyButton_Click(
70 object sender, System.EventArgs e)
71 {

Fig. 10.27Fig. 10.27Fig. 10.27Fig. 10.27 Using operator overloading. (Part 2 of 3.)

Chapter 10 Object-Oriented Programming: Polymorphism 435

SUMMARY
• Polymorphism enables us to write programs in a general fashion to handle a wide variety of exist-

ing and future related classes.

• One means of processing objects of many different types is to use a switch structure to perform
an appropriate action on each object based on that object’s type.

• Polymorphic programming can eliminate the need for switch logic.

• When we override a base class’s method in a derived class, we hide the base class’s implementa-
tion of that method.

• With polymorphism, new types of objects not even envisioned when a system is created may be
added without modification to the system (other than the new class itself).

72 statusLabel.Text = x + " * " + y + " = " + (x * y);
73 }
74
75 } // end class ComplexTest

Fig. 10.27Fig. 10.27Fig. 10.27Fig. 10.27 Using operator overloading. (Part 3 of 3.)

436 Object-Oriented Programming: Polymorphism Chapter 10

• Polymorphism allows one method call to perform different actions, depending on the type of the ob-
ject receiving the call. The same message assumes “many forms”—hence, the term polymorphism.

• With polymorphism, the programmer can deal in generalities and let the executing program con-
cern itself with the specifics.

• Any class with an abstract method in it must, itself, be declared abstract.

• A program cannot instantiate objects of abstract classes, but can declare references to ab-
stract classes. Such references can manipulate polymorphically instances of the derived classes.

• A method that is not declared virtual cannot be overridden in a derived class.

• Methods that are declared static and or private are implicitly non-virtual.

• A sealed class cannot be a base class (i.e., a class cannot inherit from a sealed class).

• In C#, it is impossible to pass a method reference directly as an argument to another method. To
address this problem, C# allows the creation of delegates, which are classes that encapsulate a set
of references to methods.

• C# enables the programmer to overload most operators to make them sensitive to the context in
which they are used.

• Methods that overload binary operators must take two arguments. The first argument is the left
operand, and the second argument is the right operand.

TERMINOLOGY

SELF-REVIEW EXERCISES
10.1 Fill in the blanks in each of the following statements:

a) Treating a base-class object as a can cause errors.
b) Polymorphism helps eliminate unnecessary logic.
c) If a class contains one or more abstract methods, it is an class.
d) Classes from which objects can be instantiated are called classes.
e) Classes declared with keyword cannot be inherited.
f) An attempt to cast an object to one of its derived types can cause an .
g) Polymorphism involves using a base-class reference to manipulate .
h) Abstract classes are declared with the keyword.
i) Class members can be overridden only with the keyword.
j) are classes that encapsulate references to methods.

abstract base class “is-a” relationship
abstract class method reference
abstract method multicast delegate
abstract method object-oriented programming (OOP)
cast operator overloading
class declared sealed override keyword
class hierarchy polymorphic programming
concrete class polymorphism
delegate reference type
information hiding references to abstract base class
inheritance sealed class
inheritance hierarchy singlecast delegate
interface switch logic
InvalidCastException virtual method

Chapter 10 Object-Oriented Programming: Polymorphism 437

10.2 State whether each of the following is true or false. If false, explain why.
a) All methods in an abstract base class must be declared abstract.
b) Referring to a derived-class object with a base-class reference is dangerous.
c) A class with an abstract method must be declared abstract.
d) Methods that are declared abstract still must be implemented when they are declared.
e) Classes declared with the sealed keyword cannot be base classes.
f) Polymorphism allows programmers to manipulate derived classes with references to base

classes.
g) Polymorphic programming can eliminate the need for unnecessary switch logic.
h) Use keyword abstract to declare an abstract method.
i) The delegate’s declaration must specify its implementation.

ANSWERS TO SELF-REVIEW EXERCISES
10.1 a) derived-class object. b) switch. c) abstract. d) concrete. e) sealed.
f) InvalidCastException. g) derived-class objects. h) abstract. i) override.
j) Delegates

10.2 a) False. Not all methods in an abstract class must be declared abstract. b) False. Refer-
ring to a base-class object with a derived-class reference is dangerous. c) True. d) False. Methods that
are declared abstract do not need to be implemented, except in the derived, concrete class.
e) True. f) True. g) True. h) False. Use keyword abstract to declare an abstract class. i) False. The
delegate’s declaration specifies only a method signature (method name, parameters and return value).

EXERCISES
10.3 How is it that polymorphism enables you to program “in the general” rather than “in the spe-
cific?” Discuss the key advantages of programming “in the general.”

10.4 Discuss the problems of programming with switch logic. Explain why polymorphism can
be an effective alternative to using switch logic.

10.5 Distinguish between inheriting services and inheriting implementation. How do inheritance
hierarchies designed for inheriting services differ from those designed for inheriting implementation?

10.6 Modify the payroll system of Fig. 10.10–Fig. 10.14 to add Private instance variables
birthDate (use class Day from Fig 8.8) and departmentCode (an int) to class Employee.
Assume this payroll is processed once per month. Create an array of Employee references to store
the various employee objects. In a loop, calculate the payroll for each Employee (polymorphically)
and add a $100.00 bonus to the person’s payroll amount if this is the month in which the Employee’s
birthday occurs.

10.7 Implement the Shape hierarchy shown in Fig. 9.3. Each TwoDimensionalShape
should contain method Area to calculate the area of the two-dimensional shape. Each Three-
DimensionalShape should have methods Area and Volume to calculate the surface area and
volume of the three-dimensional shape, respectively. Create a program that uses an array of Shape
references to objects of each concrete class in the hierarchy. The program should output the string
representation of each object in the array. Also, in the loop that processes all the shapes in the array,
determine whether each shape is a TwoDimensionalShape or a ThreeDimensionalShape.
If a shape is a TwoDimensionalShape, display its Area. If a shape is a Three-
DimensionalShape, display its Area and Volume.

10.8 Reimplement the program of Exercise 10.7 such that classes TwoDimensionalShape
and ThreeDimensionalShape implement an IShape interface, rather than extending ab-
stract class Shape.

11
Exception Handling

Objectives
• To understand exceptions and error handling.
• To use try blocks to delimit code in which

exceptions may occur.
• To throw exceptions.
• To use catch blocks to specify exception handlers.
• To use the finally block to release resources.
• To understand the C# exception-class hierarchy.
• To create programmer-defined exceptions.
It is common sense to take a method and try it. If it fails,
admit it frankly and try another. But above all, try something.
Franklin Delano Roosevelt

O! throw away the worser part of it,
And live the purer with the other half.
William Shakespeare

If they’re running and they don’t look where they’re going
I have to come out from somewhere and catch them.
Jerome David Salinger

And oftentimes excusing of a fault
Doth make the fault the worse by the excuse.
William Shakespeare

I never forget a face, but in your case I’ll make an exception.
Groucho (Julius Henry) Marx

Chapter 11 Exception Handling 439

11.1 Introduction
In this chapter, we introduce exception handling. An exception is an indication of a problem
that occurs during a program’s execution. The name “exception” comes from the fact that
although a problem can occur, the problem occurs infrequently—if the “rule” is that a state-
ment normally executes correctly, then the “exception to the rule” is that a problem occurs.
Exception handling enables programmers to create applications that can resolve (or handle)
exceptions. In many cases, handling an exception allows a program to continue executing
as if no problem was encountered. A more severe problem may prevent a program from
continuing normal execution, instead requiring the program to notify the user of the prob-
lem, then terminate in a controlled manner. The features presented in this chapter enable
programmers to write clear, robust and more fault-tolerant programs.

The style and details of exception handling in C# are based in part on the work of
Andrew Koenig and Bjarne Stroustrup, as presented in their paper, “Exception Handling
for C++ (revised).”1 C#’s designers implemented an exception-handling mechanism sim-
ilar to that used in C++, with Koenig’s and Stroustrup’s work as a model.

This chapter begins with an overview of exception-handling concepts, then demonstrates
basic exception-handling techniques. The chapter continues with an overview of the excep-
tion-handling class hierarchy. Programs typically request and release resources (such as files
on disk) during program execution. Often, these resources are in limited supply or can be used
by only one program at a time. We demonstrate a part of the exception-handling mechanism
that enables a program to use a resource, then guarantees that the program releases the
resource for use by other programs. The chapter continues with an example that demonstrates
several properties of class System.Exception (the base class of all exception classes),
followed by an example that shows programmers how to create and use their own exception
classes. The chapter concludes with a practical application of exception handling in which a
program handles exceptions generated by arithmetic calculations that result in out-of-range
values for a particular data type—a condition known as arithmetic overflow.

Outline

11.1 Introduction
11.2 Exception Handling Overview

11.3 Example: DivideByZeroException

11.4 .NET Exception Hierarchy

11.5 finally Block

11.6 Exception Properties
11.7 Programmer-Defined Exception Classes

11.8 Handling Overflows with Operators checked and unchecked

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Koenig, A. and B. Stroustrup “Exception Handling for C++ (revised)”, Proceedings of the Usenix
C++ Conference, 149-176, San Francisco, April 1990.

440 Exception Handling Chapter 11

11.2 Exception Handling Overview
The logic of the program frequently tests conditions that determine how program execution
proceeds. Consider the following pseudocode:

Perform a task

If the preceding task did not execute correctly
Perform error processing

Perform next task

If the preceding task did not execute correctly
Perform error processing

…

In this pseudocode, we begin by performing a task. We then test whether that task executed
correctly. If not, we perform error processing. Otherwise we start the entire process again
and continue with the next task. Although this form of error handling logic works, inter-
mixing the logic of the program with the error-handling logic can make the program diffi-
cult to read, modify, maintain and debug—especially in large applications. In fact, if many
of the potential problems occur infrequently, intermixing program logic and error handling
can degrade the performance of the program, because the program must test extra condi-
tions to determine whether the next task can be performed.

Exception handling enables the programmer to remove error-handling code from the
“main line” of the program’s execution. This improves program clarity and enhances mod-
ifiability. Programmers can decide to handle whatever exceptions they choose—all types
of exceptions, all exceptions of a certain type or all exceptions of a group of related types.
Such flexibility reduces the likelihood that errors will be overlooked and thereby increases
a program’s robustness.

Testing and Debugging Tip 11.1
Exception handling helps improve a program’s fault tolerance. When it is easy to write error-
processing code, programmers are more likely to use it. 11.1

Software Engineering Observation 11.1
Although it is possible to do so, do not use exception for conventional flow of control. It is
difficult to keep track of a larger number of exception cases and programs with a large num-
ber of exception cases are hard to read and maintain. 11.1

Exception handling is designed to process synchronous errors—errors that occur
during the normal program flow of control. Common examples of these errors are out-of-
range array subscripts, arithmetic overflow (i.e., a value outside the representable range of
values), division by zero, invalid method parameters and running out of available memory.
Exception handling is not designed to process asynchronous events, such as disk I/O com-
pletions, network message arrivals, mouse clicks, keystrokes and the like.

Good Programming Practice 11.1
Avoid using exception handling for purposes other than error handling, because this can re-
duce program clarity. 11.1

Chapter 11 Exception Handling 441

With programming languages that do not support exception handling, programmers
often delay the writing of error-processing code and sometimes simply forget to include it.
This results in less robust software products. C# enables the programmer to deal with excep-
tion handling easily from the inception of a project. Still, the programmer must put consider-
able effort into incorporating an exception-handling strategy into software projects.

Software Engineering Observation 11.2
Try to incorporate the exception-handling strategy into a system from the inception of the de-
sign process. Adding effective exception handling after a system has been implemented can
be difficult. 11.2

Software Engineering Observation 11.3
In the past, programmers used many techniques to implement error-processing code. Excep-
tion handling provides a single, uniform technique for processing errors. This helps pro-
grammers working on large projects to understand each other’s error-processing code. 11.3

The exception-handling mechanism also is useful for processing problems that occur
when a program interacts with software elements, such as methods, constructors, assem-
blies and classes. Rather than internally handling problems that occur, such software ele-
ments often use exceptions to notify programs when problems occur. This enables
programmers to implement customized error handling for each application.

Common Programming Error 11.1
Aborting a program component could leave a resource—such as file stream or I/O device—
in a state in which other programs are unable to acquire the resource. This is known as a
“resource leak.” 11.1

Performance Tip 11.1
When no exceptions occur, exception-handling code incurs little or no performance penal-
ties. Thus, programs that implement exception handling operate more efficiently than pro-
grams that perform error handling throughout the program logic. 11.1

Performance Tip 11.2
Exception handling should be used only for problems that occur infrequently. As a "rule of
thumb," if a problem occurs at least 30% of the time when a particular statement executes,
the program should test for the error inline; otherwise, the overhead of exception handling
will cause the program to execute more slowly.2 11.2

Software Engineering Observation 11.4
Methods with common error conditions should return null (or another appropriate value)
rather than throwing exceptions. A program calling such a method simply can check the re-
turn value to determine success or failure of the method call.3 11.4

Complex applications normally consist of predefined software components (such as
those defined in the .NET Framework) and components specific to the application that use
the predefined components. When a predefined component encounters a problem, that
component needs a mechanism to communicate the problem to the application-specific

2. “Best Practices for Handling Exceptions [C#],” .NET Framework Developer's Guide, Visual Stu-
dio .NET Online Help.

3. “Best Practices for Handling Exceptions [C#].”

442 Exception Handling Chapter 11

component—the predefined component cannot know in advance how each application will
process a problem that occurs. Exception handling simplifies combining software compo-
nents and having them work together effectively by enabling predefined components to
communicate problems that occur to application-specific components, which can then pro-
cess the problems in an application-specific manner.

Exception handling is geared to situations in which the method that detects an error is
unable to handle it. Such a method throws an exception. There is no guarantee that there
will be an exception handler—code that executes when the program detects an exception—
to process that kind of exception. If there is, the exception will be caught and handled. The
result of an uncaught exception depends on whether the program executes in debug mode
or standard execution mode. In debug mode, when the program detects an uncaught excep-
tion, a dialog box appears that enables the programmer to view the problem in the debugger
or continue program execution by ignoring the problem that occurred. In standard execu-
tion mode, a Windows application presents a dialog that enables the user to continue or ter-
minate program execution, and a console application presents a dialog that enables the user
to open the program in the debugger or terminate program execution.

C# uses try blocks to enable exception handling. A try block consists of keyword
try followed by braces ({}) that define a block of code in which exceptions may occur.
The try block encloses statements that could cause exceptions. Immediately following the
try block are zero or more catch blocks (also called catch handlers). Each catch
handler specifies in parentheses an exception parameter that represents the type of excep-
tion the catch handler can handle. If an exception parameter includes an optional param-
eter name, the catch handler can use that parameter name to interact with a caught
exception object. Optionally, programmers can include a parameterless catch handler
that catches all exception types. After the last catch handler, an optional finally block
contains code that always executes, regardless of whether an exception occurs.

Common Programming Error 11.2
The parameterless catch handler must be the last catch handler following a particular
try block; otherwise a syntax error occurs. 11.2

When a method called in a program detects an exception or when the Common Lan-
guage Runtime detects a problem, the method or CLR throws an exception. The point in
the program at which an exception occurs is called the throw point—an important location
for debugging purposes (as we demonstrate in Section 11.6). Exceptions are objects of
classes that extend class Exception of namespace System. If an exception occurs in a
try block, the try block expires (i.e., terminates immediately) and program control trans-
fers to the first catch handler (if there is one) following the try block. C# is said to use
the termination model of exception handling, because the try block enclosing a thrown
exception expires immediately when that exception occurs.4 As with any other block of
code, when a try block terminates, local variables defined in the block go out of scope.
Next, the CLR searches for the first catch handler that can process the type of exception
that occurred. The CLR locates the matching catch by comparing the thrown exception’s
type to each catch’s exception-parameter type until the CLR finds a match. A match

4. Some languages use the resumption model of exception handling, in which, after the handling of
the exception, control returns to the point at which the exception was thrown and execution re-
sumes from that point.

Chapter 11 Exception Handling 443

occurs if the types are identical or if the thrown exception’s type is a derived class of the
exception-parameter type. When a catch handler finishes processing, local variables
defined within the catch handler (including the catch parameter) go out of scope. If a
match occurs, code contained within the matching catch handler is executed. All
remaining catch handlers that correspond to the try block are ignored and execution
resumes at the first line of code after the try/catch sequence.

If no exceptions occur in a try block, the CLR ignores the exception handlers for that
block. Program execution resumes with the next statement after the try/catch sequence.
If an exception that occurs in a try block has no matching catch handler, or if an excep-
tion occurs in a statement that is not in a try block, the method containing that statement
terminates immediately and the CLR attempts to locate an enclosing try block in a calling
method. This process is called stack unwinding (discussed in Section 11.6).

11.3 Example: DivideByZeroException
Let us consider a simple example of exception handling. The application in Fig. 11.1 uses
try and catch to specify a block of code that may throw exceptions and to handle those
exceptions if they occur. The application displays two TextBoxes in which the user can type
integers. When the user presses the Click To Divide button, the program invokes method
divideButton_Click (lines 46–84), which obtains the user’s input, converts the input
values to type int and divides the first number (numerator) by the second number (de-
nominator). Assuming that the user provides integers as input and does not specify 0 as
the denominator for the division, divideButton_Click displays the division result in
outputLabel. However, if the user inputs a non-integer value or supplies 0 as the denom-
inator, an exception occurs. This program demonstrates how to catch these exceptions.

1 // Fig 11.1: DivideByZeroTest.cs
2 // Basics of C# exception handling.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // class demonstrates how to handle exceptions from
12 // division by zero in integer arithmetic and from
13 // improper numeric formatting
14 public class DivideByZeroTest : System.Windows.Forms.Form
15 {
16 private System.Windows.Forms.Label numeratorLabel;
17 private System.Windows.Forms.TextBox numeratorTextBox;
18
19 private System.Windows.Forms.Label denominatorLabel;
20 private System.Windows.Forms.TextBox denominatorTextBox;
21
22 private System.Windows.Forms.Button divideButton;

Fig. 11.1Fig. 11.1Fig. 11.1Fig. 11.1 Exception handlers for FormatException and
DivideByZeroException. (Part 1 of 3.)

444 Exception Handling Chapter 11

23 private System.Windows.Forms.Label outputLabel;
24
25 // required designer variable
26 private System.ComponentModel.Container components = null;
27
28 // default constructor
29 public DivideByZeroTest()
30 {
31 // required for Windows Form Designer support
32 InitializeComponent();
33 }
34
35 // main entry point for the application
36 [STAThread]
37 static void Main()
38 {
39 Application.Run(new DivideByZeroTest());
40 }
41
42 // Visual Studio .NET generated code
43
44 // obtain integers input by user and divide numerator
45 // by denominator
46 private void divideButton_Click(
47 object sender, System.EventArgs e)
48 {
49 outputLabel.Text = "";
50
51 // retrieve user input and call Quotient
52 try
53 {
54 // Convert.ToInt32 generates FormatException if
55 // argument is not an integer
56 int numerator = Convert.ToInt32(numeratorTextBox.Text);
57 int denominator =
58 Convert.ToInt32(denominatorTextBox.Text);
59
60 // division generates DivideByZeroException if
61 // denominator is 0
62 int result = numerator / denominator;
63
64 outputLabel.Text = result.ToString();
65
66 } // end try
67
68 // process invalid number format
69 catch (FormatException)
70 {
71 MessageBox.Show("You must enter two integers",
72 "Invalid Number Format",
73 MessageBoxButtons.OK, MessageBoxIcon.Error);
74 }

Fig. 11.1Fig. 11.1Fig. 11.1Fig. 11.1 Exception handlers for FormatException and
DivideByZeroException. (Part 2 of 3.)

Chapter 11 Exception Handling 445

Before we discuss the program details, consider the sample output windows in
Fig. 11.1. The first window shows a successful calculation in which the user inputs the
numerator 100 and the denominator 7. Note that the result (14) is an integer, because
integer division always yields integer results. The next two windows show the result of
inputting a non-integer value—in this case, the user input "hello" in the second
TextBox. When the user presses Click To Divide, the program attempts to convert the
strings the user input into int values with method Convert.ToInt32. If the argu-
ment to Convert.ToInt32 is not a valid representation of an integer (in this case a valid
string representation of an integer), the method generates a FormatException
(namespace System). The program detects the exception and displays an error message
dialog, indicating that the user must enter two integers. The last two output windows dem-

75
76 // user attempted to divide by zero
77 catch (DivideByZeroException divideByZeroException)
78 {
79 MessageBox.Show(divideByZeroException.Message,
80 "Attempted to Divide by Zero",
81 MessageBoxButtons.OK, MessageBoxIcon.Error);
82 }
83
84 } // end method divideButton_Click
85
86 } // end class DivideByZeroTest

Fig. 11.1Fig. 11.1Fig. 11.1Fig. 11.1 Exception handlers for FormatException and
DivideByZeroException. (Part 3 of 3.)

446 Exception Handling Chapter 11

onstrate the result after an attempt to divide by zero. In integer arithmetic, the CLR auto-
matically tests for division by zero and generates a DivideByZeroException
(namespace System) if the denominator is zero. The program detects the exception and
displays an error-message dialog, indicating an attempt to divide by zero.5

Let us consider the user interactions and flow of control that yield the results shown in
the sample output windows. The user inputs values into the TextBoxes that represent the
numerator and denominator, then presses ClicktoDivide. At this point, the program invokes
method divideButton_Click (lines 46–84). Line 49 assigns the empty string to
outputLabel to clear any prior result, because the program is about to attempt a new cal-
culation. Lines 52–66 define a try block that encloses the code that can throw exceptions,
as well as the code that should not execute if an exception occurs. For example, the program
should not display a new result in outputLabel (line 64) unless the calculation (line 62)
completes successfully. Remember that the try block terminates immediately if an excep-
tion occurs, so the remaining code in the try block will not execute.

The two statements that read the integers from the TextBoxes (lines 56–58) each call
method Convert.ToInt32 to convert strings to int values. This method throws a
FormatException if it cannot convert its string argument to an integer. If lines 56–
58 properly convert the values (i.e., no exceptions occur), then line 62 divides the numer-
ator by the denominator and assigns the result to variable result. If the denomi-
nator is zero, line 62 causes the CLR to throw a DivideByZeroException. If line 62
does not cause an exception, then line 64 displays the result of the division. If no exceptions
occur in the try block, the program successfully completes the try block by reaching line
66 by ignoring the catch handlers at lines 69–74 and 77–82—the program execution con-
tinues with the first statement following the try/catch sequence. In this example, the
program reaches the end of event handler divideButton_Click, so the method termi-
nates, and the program awaits the next user interaction.

Immediately following the try block are two catch handlers (also called catch
handlers)—lines 69–74 define the exception handler for a FormatException and
lines 77–82 define the exception handler for the DivideByZeroException. Each
catch handler begins with keyword catch followed by an exception parameter in
parenthesis that specifies the type of exception handled by the catch handler. The
exception-handling code appears in the catch handler. In general, when an exception
occurs in a try block, a catch handler catches the exception and handles it. In
Fig. 11.1, the first catch handler specifies that it catches FormatExceptions
(thrown by method Convert.ToInt32) and the second catch handler specifies that
it catches DivideByZeroExceptions (thrown by the CLR). Only the matching
catch handler executes if an exception occurs. Both the exception handlers in this
example display an error-message dialog. When program control reaches the end of a
catch handler, the program considers the exception as having been handled, and pro-

5. The Common Language Runtime allows floating-point division by zero, which produces a posi-
tive or negative infinity result, depending on whether the numerator is positive or negative. Divid-
ing zero by zero is a special case that results in a value called “not a number.” Programs can test
for these results using constants for positive infinity (PositiveInfinity), negative infinity
(NegativeInfinity) and not a number (NaN) that are defined in structures Double (for
double calculations) and Single (for float calculations).

Chapter 11 Exception Handling 447

gram control continues with the first statement after the try/catch sequence (the end
of the method in this example).

In the second sample output, the user input hello as the denominator. When lines 57–
58 execute, Convert.ToInt32 cannot convert this string to an int, so Con-
vert.ToInt32 creates a FormatException object and throws it to indicate that the
method was unable to convert the string to an int. When an exception occurs, the try
block expires (terminates). Any local variables defined in the try block go out of scope;
therefore, those variables are not available to the exception handlers. Next, the CLR
attempts to locate a matching catch handler, starting with the catch at line 69. The pro-
gram compares the type of the thrown exception (FormatException) with the type in
parentheses following keyword catch (also FormatException). A match occurs, so
that exception handler executes and the program ignores all other exception handlers fol-
lowing the corresponding try block. Once the catch handler finishes processing, local
variables defined within the catch handler go out of scope. If a match did not occur, the
program compares the type of the thrown exception with the next catch handler in
sequence and repeats the process until a match is found.

Software Engineering Observation 11.5
Enclose in a try block a significant logical section of the program in which several state-
ments can throw exceptions, rather than using a separate try block for every statement that
throws an exception. However, for proper exception-handling granularity, each try block
should enclose a section of code small enough, that when an exception occurs, the specific
context is known and the catch handlers can process the exception properly. 11.5

Common Programming Error 11.3
Attempting to access a try block’s local variables in one of that try block’s associated
catch handlers is a syntax error. Before a corresponding catch handler can execute, the
try block expires, and its local variables go out of scope. 11.3

Common Programming Error 11.4
Specifying a comma-separated list of exception parameters in a catch handler is a syntax
error. Each catch can have only one exception parameter. 11.4

In the third sample output, the user input 0 as the denominator. When line 62 exe-
cutes, the CLR throws a DivideByZeroException object to indicate an attempt to
divide by zero. Once again, the try block terminates immediately upon encountering the
exception, and the program attempts to locate a matching catch handler, starting from
the catch handler at line 69. The program compares the type of the thrown exception
(DivideByZeroException) with the type in parentheses following keyword
catch (FormatException). In this case, there is no match, because they are not the
same exception types and because FormatException is not a base class of
DivideByZeroException. So, the program proceeds to line 77 and compares the
type of the thrown exception (DivideByZeroException) with the type in paren-
theses following keyword catch (DivideByZeroException). A match occurs, so
that exception handler executes. Line 79 in this handler uses property Message of class
Exception to display the error message to the user. If there were additional catch
handlers, the program would ignore them.

448 Exception Handling Chapter 11

11.4 .NET Exception Hierarchy
The exception-handling mechanism allows only objects of class Exception and its de-
rived classes to be thrown and caught6. This section overviews several of the .NET Frame-
work’s exception classes. In addition, we discuss how to determine whether a particular
method throws exceptions.

Class Exception of namespace System is the base class of the .NET Framework
exception hierarchy. Two of the most important derived classes of Exception are
ApplicationException and SystemException. ApplicationException
is a base class programmers can extend to create exception data types that are specific to
their applications. We discuss creating programmer-defined exception classes in
Section 11.7. Programs can recover from most ApplicationExceptions and con-
tinue execution.

The CLR can generate SystemExceptions at any point during the execution of the
program. Many of these exceptions can be avoided by coding properly. These are called
runtime exceptions and they derive from class SystemException. For example, if a
program attempts to access an out-of-range array subscript, the CLR throws an exception
of type IndexOutOfRangeException (a class derived from SystemException).
Similarly, a runtime exception occurs when a program uses an object reference to manipu-
late an object that does not yet exist (i.e., the reference has a null value). Attempting to
use such a null reference causes a NullReferenceException (another type of
SystemException). According to Microsoft’s “Best Practices for Handling Exceptions
[C#],”7 programs typically cannot recover from most exceptions the CLR throws. There-
fore, programs generally should not throw or catch SystemExceptions. [Note: For a
complete list of derived classes of Exception, look up “Exception class” in the
Index of the Visual Studio .NET online documentation.]

A benefit of using the exception-class hierarchy is that a catch handler can catch excep-
tions of a particular type or can use a base-class type to catch exceptions in a hierarchy of
related exception types. For example, a catch handler that specifies an exception parameter
of type Exception also can catch exceptions of all classes that extend Exception,
because Exception is the base class of all exception classes. This allows for polymorphic
processing of related exceptions. The benefit of the latter approach is that the exception han-
dler can use the exception parameter to manipulate the caught exception. If the exception han-
dler does not need access to the caught exception, the exception parameter may be omitted.
If no exception type is specified, the catch handler will catch all exceptions.

Using inheritance with exceptions enables an exception handler to catch related excep-
tions with a concise notation. An exception handler certainly could catch each derived-class
exception type individually, but catching the base-class exception type is more concise.
However, this makes sense only if the handling behavior is the same for a base class and
derived classes. otherwise, catch each derived-class exception individually.

6. Actually, it is possible to catch exceptions of types that are not derived from class Exception
using the parameterless catch handler. This is useful for handling exceptions from code written
in other languages that do not require all exception types to derive from class Exception in the
.NET framework.

7. “Best Practices for Handling Exceptions [C#],” .NET Framework Developer's Guide, Visual Stu-
dio .NET Online Help.

Chapter 11 Exception Handling 449

At this point, we know that there are many different exception types. We also know
that methods and the CLR can both throw exceptions. But, how do we determine that an
exception could occur in a program? For methods in the .NET Framework classes, we can
look at the detailed description of the methods in the online documentation. If a method
throws an exception, its description contains a section called “Exceptions” that specifies the
types of exceptions thrown by the method and briefly describes potential causes for the
exceptions. For example, look up “Convert.ToInt32 method” in the index of the
Visual Studio .NET online documentation. In the document that describes the method, click
the link “public static int ToInt32(string);.” In the document that appears,
the “Exceptions” section indicates that method Convert.ToInt32 throws three excep-
tion types—ArgumentException, FormatException and OverflowExcep-
tion—and describes the reason that each exception type occurs.

Software Engineering Observation 11.6
If a method is capable of throwing exceptions, statements that invoke that method should be
placed in try blocks and those exceptions should be caught and handled. 11.1

Determining when the CLR throws exceptions is more difficult. Typically, such
information appears in the C# Language Specification, which is located in the online doc-
umentation. To access the language specification, select Contents… from the Help
menu in Visual Studio. In the Contents window, expand Visual Studio .NET, Visual
Basic and Visual C#, Reference, Visual C# Language and C# Language
Specification.

The language specification defines the syntax of the language and specifies cases in
which exceptions are thrown. For example, in Fig. 11.1, we demonstrated that the CLR
throws a DivideByZeroException when a program attempts to divide by zero in
integer arithmetic. The language specification, Section 7.7.2 discusses the division operator
and its Exceptions. In this section, you will find the details of when a DivideBy-
ZeroException occurs.

11.5 finally Block
Programs frequently request and release resources dynamically (i.e., at execution time). For
example, a program that reads a file from disk first requests the opening of that file. If that
request succeeds, the program reads the contents of the file. Operating systems typically
prevent more than one program from manipulating a file at once. Therefore, when a pro-
gram finishes processing a file, the program normally closes the file (i.e., releases the re-
source). This enables other programs to use the file. Closing the file helps prevent the
resource leak, in which the file resource is unavailable to other programs because a pro-
gram using the file never closed it. Programs that obtain certain types of resources (such as
files) must return those resources explicitly to the system to avoid resource leaks.

In programming languages, like C and C++, in which the programmer is responsible
for dynamic memory management, the most common type of resource leak is a memory
leak. This happens when a program allocates memory (as we do with operator new in C#),
but does not deallocate the memory when the memory is no longer needed in the program.
In C#, this normally is not an issue, because the CLR performs "garbage collection" of
memory no longer needed by an executing program. However, other kinds of resource
leaks (such as the unclosed file mentioned previously) can occur in C#.

450 Exception Handling Chapter 11

Testing and Debugging Tip 11.2
The CLR does not completely eliminate memory leaks. The CLR will not garbage-collect an
object until the program has no more references to that object. Thus, memory leaks can occur
if programmers erroneously keep references to unwanted objects. 11.2

Most resources that require explicit release have potential exceptions associated with
the processing of the resource. For example, a program that processes a file might receive
IOExceptions during the processing. For this reason, file-processing code normally
appears in a try block. Regardless of whether a program successfully processes a file, the
program should close the file when the file is no longer needed. Suppose a program places
all resource-request and resource-release code in a try block. If no exceptions occur, the
try block executes normally and releases the resources after using them. However, if an
exception occurs, the try block may expire before the resource-release code can execute.
We could duplicate all resource-release code in the catch handlers, but this makes the
code more difficult to modify and maintain.

C#’s exception handling mechanism provides the finally block, which is guaran-
teed to execute if program control enters the corresponding try block. The finally
block executes regardless of whether that try block executes successfully or an exception
occurs. This guarantee makes the finally block an ideal location to place resource deal-
location code for resources acquired and manipulated in the corresponding try block. If
the try block executes successfully, the finally block executes immediately after the
try block terminates. If an exception occurs in the try block, the finally block exe-
cutes immediately after a catch handler completes exception handling. If the exception is
not caught by a catch handler associated with that try block or if a catch handler asso-
ciated with that try block throws an exception, the finally block executes, then the
exception is processed by the next enclosing try block (if there is one).

Testing and Debugging Tip 11.3
A finally block typically contains code to release resources acquired in the correspond-
ing try block; this makes the finally block an effective way to eliminate resource leaks. 11.3

Testing and Debugging Tip 11.4
The only reason a finally block will not execute if program control entered the corre-
sponding try block is that the application terminates before finally can execute. 11.4

Performance Tip 11.3
As a rule, resources should be released as soon as it is apparent that they are no longer need-
ed in a program, to make those resources immediately available for reuse, thus enhancing
resource utilization in the program. 11.3

If one or more catch handlers follow a try block, the finally block is optional.
If no catch handlers follow a try block, a finally block must appear immediately
after the try block. If any catch handlers follow a try block, the finally block
appears after the last catch. Only whitespace and comments can separate the blocks in a
try/catch/finally sequence.

Common Programming Error 11.5
Placing the finally block before a catch handler is a syntax errors. 11.5

Chapter 11 Exception Handling 451

The C# application in Fig. 11.2 demonstrates that the finally block always exe-
cutes, even if no exception occurs in the corresponding try block. The program consists
of method Main (lines 10–59) and four other static methods that Main invokes to dem-
onstrate finally—DoesNotThrowException (lines 62–85), ThrowExcep-
tionWithCatch (lines 88–114), ThrowExceptionWithoutCatch (lines 117–
138) and ThrowExceptionCatchRethrow (lines 141–173). [Note: We use static
methods in this example so that Main can invoke these methods directly without creating
any objects of class UsingExceptions. This enables us to concentrate on the
mechanics of try/catch/finally.]

Line 14 of Main invokes method DoesNotThrowException (lines 62–85). The
try block (lines 65–68) begins by outputting a message (line 67). The try block does not
throw any exceptions, so program control reaches the closing brace of the try block and
the catch handler (lines 71–74) and executes the finally block (lines 77–81) which
outputs a message. At this point, program control continues with the first statement after
the finally block (line 83), which outputs a message indicating that the end of the
method has been reached. Then, program control returns to Main.

Line 20 of Main invokes method ThrowExceptionWithCatch (lines 88–114),
which begins in its try block (lines 91–97) by outputting a message. Next, the try block
creates a new Exception object and uses a throw statement to throw the exception
object (lines 95–96). The string passed to the constructor becomes the exception
object’s error message. When a throw statement in a try block executes, the try block
expires immediately, and program control continues at the first catch (lines 100–103) fol-
lowing this try block. In this example, the type thrown (Exception) matches the type
specified in the catch, so line 102 outputs a message indicating the exception that
occurred. Then, the finally block (lines 106–110) executes and outputs a message. At
this point, program control continues with the first statement after the finally block (line
112), which outputs a message indicating that the end of the method has been reached, then
program control returns to Main. Note, that in line 102, we use the exception object’s
Message property to access the error message associated with the exception—(the mes-
sage passed to the Exception constructor). Section 11.6 discusses several properties of
class Exception.

Common Programming Error 11.6
The expression of a throw—an exception object—must be of either class Exception or
one of its derived classes. 11.6

Lines 27–30 of Main define a try block in which Main invokes method Throw-
ExceptionWithoutCatch (lines 117–138). The try block enables Main to catch any
exceptions thrown by ThrowExceptionWithoutCatch. The try block in lines 120–
126 of ThrowExceptionWithoutCatch begins by outputting a message. Next, the
try block throws an Exception (lines 124–125) and the try block expires immediately.
Normally, program control would continue at the first catch following the try block.
However, this try block does not have any corresponding catch handlers. Therefore, the
exception is not caught in method ThrowExceptionWithoutCatch. Normal program
control cannot continue until that exception is caught and processed. Thus, the CLR will ter-
minate ThrowExceptionWithoutCatch and program control will return to Main.
Before control returns to Main, the finally block (lines 129–133) executes and outputs a

452 Exception Handling Chapter 11

message. At this point, program control returns to Main—any statements appearing after the
finally block would not execute. In this example, because the exception thrown at lines
127–128 is not caught: Method ThrowExceptionWithoutCatch always terminates
after the finally block executes. In Main, the catch handler at lines 34–38 catches the
exception and displays a message indicating that the exception was caught in Main.

1 // Fig 11.2: UsingExceptions.cs
2 // Using finally blocks.
3
4 using System;
5
6 // demonstrating that finally always executes
7 class UsingExceptions
8 {
9 // entry point for application

10 static void Main(string[] args)
11 {
12 // Case 1: No exceptions occur in called method.
13 Console.WriteLine("Calling DoesNotThrowException");
14 DoesNotThrowException();
15
16 // Case 2: Exception occurs and is caught
17 // in called method.
18 Console.WriteLine("\nCalling ThrowExceptionWithCatch");
19 ThrowExceptionWithCatch();
20
21 // Case 3: Exception occurs, but not caught
22 // in called method, because no catch handlers.
23 Console.WriteLine(
24 "\nCalling ThrowExceptionWithoutCatch");
25
26 // call ThrowExceptionWithoutCatch
27 try
28 {
29 ThrowExceptionWithoutCatch();
30 }
31
32 // process exception returned from
33 // ThrowExceptionWithoutCatch
34 catch
35 {
36 Console.WriteLine("Caught exception from " +
37 "ThrowExceptionWithoutCatch in Main");
38 }
39
40 // Case 4: Exception occurs and is caught
41 // in called method, then rethrown to caller.
42 Console.WriteLine(
43 "\nCalling ThrowExceptionCatchRethrow");
44

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Demonstrating that finally blocks always execute regardless of
whether or not an exception occurs. (Part 1 of 4.)

Chapter 11 Exception Handling 453

45 // call ThrowExceptionCatchRethrow
46 try
47 {
48 ThrowExceptionCatchRethrow();
49 }
50
51 // process exception returned from
52 // ThrowExceptionCatchRethrow
53 catch
54 {
55 Console.WriteLine("Caught exception from " +
56 "ThrowExceptionCatchRethrow in Main");
57 }
58
59 } // end method Main
60
61 // no exceptions thrown
62 public static void DoesNotThrowException()
63 {
64 // try block does not throw any exceptions
65 try
66 {
67 Console.WriteLine("In DoesNotThrowException");
68 }
69
70 // this catch never executes
71 catch
72 {
73 Console.WriteLine("This catch never executes");
74 }
75
76 // finally executes because corresponding try executed
77 finally
78 {
79 Console.WriteLine(
80 "Finally executed in DoesNotThrowException");
81 }
82
83 Console.WriteLine("End of DoesNotThrowException");
84
85 } // end method DoesNotThrowException
86
87 // throws exception and catches it locally
88 public static void ThrowExceptionWithCatch()
89 {
90 // try block throws exception
91 try
92 {
93 Console.WriteLine("In ThrowExceptionWithCatch");
94

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Demonstrating that finally blocks always execute regardless of
whether or not an exception occurs. (Part 2 of 4.)

454 Exception Handling Chapter 11

95 throw new Exception(
96 "Exception in ThrowExceptionWithCatch");
97 }
98
99 // catch exception thrown in try block
100 catch (Exception error)
101 {
102 Console.WriteLine("Message: " + error.Message);
103 }
104
105 // finally executes because corresponding try executed
106 finally
107 {
108 Console.WriteLine(
109 "Finally executed in ThrowExceptionWithCatch");
110 }
111
112 Console.WriteLine("End of ThrowExceptionWithCatch");
113
114 } // end method ThrowExceptionWithCatch
115
116 // throws exception and does not catch it locally
117 public static void ThrowExceptionWithoutCatch()
118 {
119 // throw exception, but do not catch it
120 try
121 {
122 Console.WriteLine("In ThrowExceptionWithoutCatch");
123
124 throw new Exception(
125 "Exception in ThrowExceptionWithoutCatch");
126 }
127
128 // finally executes because corresponding try executed
129 finally
130 {
131 Console.WriteLine("Finally executed in " +
132 "ThrowExceptionWithoutCatch");
133 }
134
135 // unreachable code; would generate logic error
136 Console.WriteLine("This will never be printed");
137
138 } // end method ThrowExceptionWithoutCatch
139
140 // throws exception, catches it and rethrows it
141 public static void ThrowExceptionCatchRethrow()
142 {
143 // try block throws exception
144 try
145 {
146 Console.WriteLine("In ThrowExceptionCatchRethrow");

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Demonstrating that finally blocks always execute regardless of
whether or not an exception occurs. (Part 3 of 4.)

Chapter 11 Exception Handling 455

147
148 throw new Exception(
149 "Exception in ThrowExceptionCatchRethrow");
150 }
151
152 // catch any exception, place in object error
153 catch (Exception error)
154 {
155 Console.WriteLine("Message: " + error.Message);
156
157 // rethrow exception for further processing
158 throw error;
159
160 // unreachable code; would generate logic error
161 }
162
163 // finally executes because corresponding try executed
164 finally
165 {
166 Console.WriteLine("Finally executed in " +
167 "ThrowExceptionCatchRethrow");
168 }
169
170 // unreachable code; would generate logic error
171 Console.WriteLine("This will never be printed");
172
173 } // end method ThrowExceptionCatchRethrow
174
175 } // end class UsingExceptions

Calling DoesNotThrowException
In DoesNotThrowException
Finally executed in DoesNotThrowException
End of DoesNotThrowException

Calling ThrowExceptionWithCatch
In ThrowExceptionWithCatch
Message: Exception in ThrowExceptionWithCatch
Finally executed in ThrowExceptionWithCatch
End of ThrowExceptionWithCatch

Calling ThrowExceptionWithoutCatch
In ThrowExceptionWithoutCatch
Finally executed in ThrowExceptionWithoutCatch
Caught exception from ThrowExceptionWithoutCatch in Main

Calling ThrowExceptionCatchRethrow
In ThrowExceptionCatchRethrow
Message: Exception in ThrowExceptionCatchRethrow
Finally executed in ThrowExceptionCatchRethrow
Caught exception from ThrowExceptionCatchRethrow in Main

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Demonstrating that finally blocks always execute regardless of
whether or not an exception occurs. (Part 4 of 4.)

456 Exception Handling Chapter 11

Lines 46–49 of Main define a try block in which Main invokes method Throw-
ExceptionCatchRethrow (lines 141–173). The try block enables Main to catch
any exceptions thrown by ThrowExceptionCatchRethrow. The try block in lines
144–150 of ThrowExceptionCatchRethrow begins by outputting a message. Next,
the try block throws an Exception (lines 148–149). The try block expires immedi-
ately, and program control continues at the first catch (lines 153–161) following the try
block. In this example, the type thrown (Exception) matches the type specified in the
catch, so line 155 outputs a message indicating the exception that occurred. Line 158 uses
the throw statement to rethrow the exception. This indicates that the catch handler per-
formed partial processing (or no processing) of the exception and is now passing the excep-
tion back to the calling method (in this case Main) for further processing. Note that the
expression to the throw statement is the reference to the exception that was caught. When
rethrowing the original exception, you can also use the statement

throw;

with no expression. Section 11.6 discusses the throw statement with an expression. Such
a throw statement enables programmers to catch an exception, create an exception object,
then throw a different type of exception from the catch handler. Class library designers
often do this to customize the exception types thrown from methods in their class libraries
or to provide additional debugging information.

Software Engineering Observation 11.7
Before throwing an exception to a calling method, the method that throws the exception
should release any resources acquired within the method before the exception occurred.8 11.7

Software Engineering Observation 11.8
Whenever possible, a method should handle exceptions that are thrown in that method, rath-
er than passing the exceptions to another region of the program. 11.8

The exception handling in method ThrowExceptionCatchRethrow did not
complete, because the program cannot run code in the catch handler placed after the invo-
cation of the throw statement (line 158). Therefore, method Throw-
ExceptionCatchRethrow will terminate and return control to Main. Once again, the
finally block (lines 164–168) will execute and output a message before control returns
to Main. When control returns to Main, the catch handler at lines 53–57 catches the
exception and displays a message indicating that the exception was caught. Then the pro-
gram terminates.

Note that the point at which program control continues after the finally block exe-
cutes depends on the exception-handling state. If the try block successfully completes or if
a catch handler catches and handles an exception, control continues with the next statement
after the finally block. If an exception is not caught or if a catch handler rethrows an
exception, program control continues in the next enclosing try block. The enclosing try
may be in the calling method or one of its callers. Nesting a try/catch sequence in a try
block is also possible, in which case the outer try block’s catch handlers would process any
exceptions that were not caught in the inner try/catch sequence. If a try block has a cor-

8. “Best Practices for Handling Exceptions [C#].”

Chapter 11 Exception Handling 457

responding finally block, the finally block executes even if the try block terminates
due to a return statement; then the return occurs.

Common Programming Error 11.7
Throwing an exception from a finally can be dangerous. If an uncaught exception is
awaiting processing when the finally block executes and the finally block throws a
new exception that is not caught in the finally block, the first exception is lost, and the
new exception is the one passed to the next enclosing try block. 11.7

Testing and Debugging Tip 11.5
When placing code that can throw an exception in a finally block, always enclose that
code in a try/catch sequence that catches the appropriate exception types. This prevents
losing uncaught and rethrown exceptions that occur before the finally block executes. 11.5

Software Engineering Observation 11.9
C#’s exception-handling mechanism removes error-processing code from the main line of a
program to improve program clarity. Do not place try-catch-finally around every
statement that could throw an exception. Doing so makes programs difficult to read. Rather,
place one try block around a significant portion of your code. Follow this try block with
catch handlers that handle each of the possible exceptions and follow the catch handlers
with a single finally block. 11.9

11.6 Exception Properties
As we discussed in Section 11.4, exception data types derive from class Exception,
which has several properties. These properties frequently are used to formulate error mes-
sages for a caught exception. Two important properties are Message and StackTrace.
Property Message stores the error message associated with an Exception object. This
message may be a default message associated with the exception type or a customized mes-
sage passed to an exception object’s constructor when the exception object is constructed.
Property StackTrace contains a string that represents the method call stack. The
runtime environment keeps a list of method calls that have been made up to a given mo-
ment. The StackTrace string represents this sequential list of methods that had not
finished processing at the time the exception occurred. The exact location at which the ex-
ception occurs in the program is called the exception’s throw point.

Testing and Debugging Tip 11.6
A stack trace shows the complete method call stack at the time an exception occurred. This
lets the programmer view the series of method calls that led to the exception. Information in
the stack trace includes names of the methods on the call stack at the time of the exception,
names of the classes in which those methods are defined, names of the namespaces in which
those classes are defined and line numbers. The first line number in the stack trace indicates
the throw point. Subsequent line numbers indicate the locations from which each method in
the stack trace was called. 11.6

Another property used frequently by class library programmers is InnerException.
Typically, programmers use this property to “wrap” exception objects caught in their code,
then throw new exception types that are specific to their libraries. For example, a programmer
implementing an accounting system might have some account-number processing code in
which account numbers are input as strings but represented with integers in the code. As

458 Exception Handling Chapter 11

you know, a program can convert strings to int values with Convert.ToInt32,
which throws a FormatException when it encounters an invalid number format. When
an invalid account-number format occurs, the accounting-system programmer might wish
either to indicate an error message different from the default one supplied by FormatEx-
ception or to indicate a new exception type, such as InvalidAccountNumberFor-
matException. In these cases, the programmer would provide code to catch the
FormatException, then create an exception object in the catch handler, passing the
original exception as one of the constructor arguments. The original exception object
becomes the InnerException of the new exception object. When an
InvalidAccountNumberFormatException occurs in code that uses the accounting-
system library, the catch handler that catches the exception can view the original exception
via the property InnerException. Thus, the exception indicates that an invalid account
number was specified and that the particular problem was an invalid number format.

Our next example (Fig. 11.3) demonstrates properties Message, StackTrace and
InnerException and method ToString. In addition, this example demonstrates
stack unwinding—the process that attempts to locate an appropriate catch handler for an
uncaught exception. As we discuss this example, we keep track of the methods on the call
stack, so we can discuss property StackTrace and the stack-unwinding mechanism.

Program execution begins with the invocation of Main, which becomes the first
method on the method call stack. Line 16 of the try block in Main invokes Method1
(lines 43–46), which becomes the second method on the stack. If Method1 throws an
exception, the catch handler at lines 22–38 handle the exception and output information
about the exception that occurred. Line 45 of Method1 invokes Method2 (lines 49–52),
which becomes the third method on the stack. Then, line 51 of Method2 invokes
Method3 (defined at lines 55–70) which becomes the fourth method on the stack.

Testing and Debugging Tip 11.7
When reading a stack trace, start from the top of the stack trace and read the error message
first. Then, read the remainder of the stack trace, looking for the first line that indicates code
that you wrote in your program. Normally, this is the location that caused the exception. 11.7

1 // Fig 11.3: Properties.cs
2 // Stack unwinding and Exception class properties.
3
4 using System;
5
6 // demonstrates using the Message, StackTrace and
7 // InnerException properties
8 class Properties
9 {

10 static void Main(string[] args)
11 {
12 // call Method1, any Exception it generates will be
13 // caught in the catch handler that follows
14 try
15 {
16 Method1();
17 }

Fig. 11.3Fig. 11.3Fig. 11.3Fig. 11.3 Exception properties and stack unwinding. (Part 1 of 3.)

Chapter 11 Exception Handling 459

18
19 // Output string representation of Exception, then
20 // output values of InnerException, Message,
21 // and StackTrace properties
22 catch (Exception exception)
23 {
24 Console.WriteLine(
25 "exception.ToString(): \n{0}\n",
26 exception.ToString());
27
28 Console.WriteLine("exception.Message: \n{0}\n",
29 exception.Message);
30
31 Console.WriteLine("exception.StackTrace: \n{0}\n",
32 exception.StackTrace);
33
34 Console.WriteLine(
35 "exception.InnerException: \n{0}",
36 exception.InnerException);
37
38 } // end catch
39
40 } // end Main
41
42 // calls Method2
43 public static void Method1()
44 {
45 Method2();
46 }
47
48 // calls Method3
49 public static void Method2()
50 {
51 Method3();
52 }
53
54 // throws an Exception containing an InnerException
55 public static void Method3()
56 {
57 // attempt to convert non-integer string to int
58 try
59 {
60 Convert.ToInt32("Not an integer");
61 }
62
63 // catch FormatException and wrap it in new Exception
64 catch (FormatException error)
65 {
66 throw new Exception(
67 "Exception occurred in Method3", error);
68 }
69
70 } // end method Method3

Fig. 11.3Fig. 11.3Fig. 11.3Fig. 11.3 Exception properties and stack unwinding. (Part 2 of 3.)

460 Exception Handling Chapter 11

71
72 } // end class UsingExceptions

exception.ToString():
System.Exception: Exception occurred in Method3 --->
 System.FormatException: Input string was not in a correct format.
 at System.Number.ParseInt32(String s, NumberStyles style,
 NumberFormatInfo info)
 at System.Convert.ToInt32(String s)
 at Properties.Method3() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 60
 --- End of inner exception stack trace ---
 at Properties.Method3() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 66
 at Properties.Method2() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 51
 at Properties.Method1() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 45
 at Properties.Main(String[] args) in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 16

exception.Message:
Exception occurred in Method3

exception.StackTrace:
 at Properties.Method3() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 66
 at Properties.Method2() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 51
 at Properties.Method1() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 45
 at Properties.Main(String[] args) in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 16

exception.InnerException:
System.FormatException: Input string was not in a correct format.
 at System.Number.ParseInt32(String s, NumberStyles style,
 NumberFormatInfo info)
 at System.Convert.ToInt32(String s)
 at Properties.Method3() in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_8\
 properties\properties.cs:line 60

Fig. 11.3Fig. 11.3Fig. 11.3Fig. 11.3 Exception properties and stack unwinding. (Part 3 of 3.)

Chapter 11 Exception Handling 461

At this point, the method call stack for the program is

Method3
Method2
Method1
Main

with the last method called (Method3) at the top and the first method called (Main) at the
bottom. The try block (lines 58–61) in Method3 invokes method Convert.ToInt32
(line 60) and attempts to convert a string to an int. At this point, Convert.ToInt32
becomes the fifth and final method on the call stack.

The argument to Convert.ToInt32 is not in integer format, so line 60 throws a
FormatException that is caught at line 64 in Method3. The exception terminates the
call to Convert.ToInt32, so the method is removed from the method call stack. The
catch handler creates an Exception object, then throws it. The first argument to the
Exception constructor is the custom error message for our example, “Exception
occurred in Method3.” The second argument is the InnerException object—the
FormatException that was caught. Note that the StackTrace for this new exception
object will reflect the point at which the exception was thrown (line 66). Now, Method3
terminates, because the exception thrown in the catch handler is not caught in the method
body. Thus, control will be returned to the statement that invoked Method3 in the prior
method in the call stack (Method2). This removes or unwinds Method3 from the
method-call stack.

Good Programming Practice 11.2
When catching and rethrowing an exception, provide additional debugging information in
the rethrown exception. To do so, create an Exception object with more specific debug-
ging information and pass the original caught exception to the new exception object’s con-
structor to initialize the InnerException property.9 11.2

When control returns to line 51 in Method2, the CLLR determines that line 51 is not
in a try block. Therefore, the exception cannot be caught in Method2, and Method2 ter-
minates. This unwinds Method2 from the method-call stack and returns control to line 45
in Method1. Here again, line 45 is not in a try block, so the exception cannot be caught
in Method1. The method terminates and unwinds from the call stack, returning control to
line 16 in Main, which is in a try block. The try block in Main expires, and the catch
handler at lines (22–38) catches the exception. The catch handler uses method
ToString and properties Message, StackTrace and InnerException to pro-
duce the output. Note that stack unwinding continues until either a catch handler catches
the exception or the program terminates.

The first block of output (reformatted for readability) in Fig. 11.3 shows the excep-
tion’s string representation returned from method ToString. This begins with the
name of the exception class followed by the Message property value. The next eight
lines show the string representation of the InnerException object. The remainder
of that block of output shows the StackTrace for the exception thrown in Method3.
Note that the StackTrace represents the state of the method-call stack at the throw

9. “Best Practices for Handling Exceptions [C#],” .NET Framework Developer's Guide, Visual Stu-
dio .NET Online Help.

462 Exception Handling Chapter 11

point of the exception, not at the point where the exception eventually is caught. Each of
the StackTrace lines that begins with “at” represents a method on the call stack.
These lines indicate the method in which the exception occurred, the file in which that
method resides and the line number in the file. Also, note that the stack trace includes the
inner-exception stack trace.

Testing and Debugging Tip 11.8
When catching and rethrowing an exception, provide additional debugging information in
the rethrown exception. To do so, create an Exception object containing more specific de-
bugging information and then pass the original caught exception to the new exception ob-
ject’s constructor to initialize the InnerException property. 11.8

Method ToString of an exception returns a string containing the name of the
exception, the optional character string supplied when the exception was constructed,
the inner exception (if there is one) and a stack trace.

The next block of output (two lines) simply displays the Message property (Excep-
tion occurred in Method3) of the exception thrown in Method3.

The third block of output displays the StackTrace property of the exception thrown
in Method3. Note that the StackTrace property includes the stack trace starting from
line 66 in Method3, because that is the point at which the Exception object was created
and thrown. The stack trace always begins from the exception’s throw point.

Finally, the last block of output displays the ToString representation of the Inner-
Exception property, which includes the namespace and class names of that exception
object, its Message property and its StackTrace property.

11.7 Programmer-Defined Exception Classes
In many cases, programmers can use existing exception classes from the .NET Framework
to indicate exceptions that occur in their programs. However, in some cases, programmers
may wish to create exception types that are more specific to the problems that occur in their
programs. Programmer-defined exception classes should derive directly or indirectly from
class ApplicationException of namespace System.

Good Programming Practice 11.3
Associating each type of malfunction with an appropriately named exception class improves
program clarity. 11.3

Software Engineering Observation 11.10
Before creating programmer-defined exception classes, investigate the existing exception
classes in the .NET Framework to determine whether an appropriate exception type al-
ready exists. 11.10

Software Engineering Observation 11.11
Programmers should create exception classes only if they need to catch and handle the new
exceptions differently from other existing exception types. 11.3

Figure 11.5 and Fig. 11.5 demonstrate defining and using a programmer-defined
exception class. Class NegativeNumberException (Fig. 11.4) is a programmer-
defined exception class representing exceptions that occur when a program performs an
illegal operation on a negative number, such as the square root of a negative number.

Chapter 11 Exception Handling 463

According to Microsoft,10 programmer-defined exceptions should extend class
ApplicationException, should have a class name that ends with “Exception” and
should define three constructors—a default constructor, a constructor that receives a
string argument (the error message) and a constructor that receives a string argument
and an Exception argument (the error message and the inner-exception object).

NegativeNumberExceptions most likely occur during arithmetic operations, so
it seems logical to derive class NegativeNumberException from class
ArithmeticException. However, class ArithmeticException derives from
class SystemException—the category of exceptions thrown by the CLR.
ApplicationException specifically is the base class for exceptions thrown by a user
program, not by the CLR.

Class SquareRootTest (Fig. 11.5) demonstrates our programmer-defined
exception class. The application enables the user to input a numeric value, then invokes
method SquareRoot (lines 42–52) to calculate the square root of that value. For this

1 // Fig 11:4: NegativeNumberException.cs
2 // NegativeNumberException represents exceptions caused by illegal
3 // operations performed on negative numbers
4
5 using System;
6
7 // NegativeNumberException represents exceptions caused by
8 // illegal operations performed on negative numbers
9 class NegativeNumberException : ApplicationException

10 {
11 // default constructor
12 public NegativeNumberException()
13 : base("Illegal operation for a negative number")
14 {
15 }
16
17 // constructor for customizing error message
18 public NegativeNumberException(string message)
19 : base(message)
20 {
21 }
22
23 // constructor for customizing error message and
24 // specifying inner exception object
25 public NegativeNumberException(
26 string message, Exception inner)
27 : base(message, inner)
28 {
29 }
30
31 } // end class NegativeNumberException

Fig. 11.4Fig. 11.4Fig. 11.4Fig. 11.4 ApplicationException subclass thrown when a program performs
illegal operations on negative numbers.

10.“Best Practices for Handling Exceptions [C#],” .NET Framework Developer's Guide, Visual Stu-
dio .NET Online Help.

464 Exception Handling Chapter 11

purpose, SquareRoot invokes class Math’s Sqrt method, which receives a nonneg-
ative double value as its argument. If the argument is negative, method Sqrt normally
returns constant NaN from class Double. In this program, we would like to prevent the
user from calculating the square root of a negative number. If the numeric value received
from the user is negative, SquareRoot throws a NegativeNumberException
(lines 46–47). Otherwise, SquareRoot invokes class Math’s Sqrt method to com-
pute the square root.

When the user inputs a value and clicks the Square Root button, the program invokes
method squareRootButton_Click (lines 56–85). The try block (lines 62–68)
attempts to invoke SquareRoot with the value input by the user. If the user input is not
a valid number, a FormatException occurs, and the catch handler at lines 71–76 pro-
cesses the exception. If the user inputs a negative number, method SquareRoot throws
a NegativeNumberException (lines 46–47). The catch handler at lines 79–83
catches and handles that exception.

1 // Fig 11.5: SquareRootTest.cs
2 // Demonstrating a programmer-defined exception class.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // accepts input and computes the square root of that input
12 public class SquareRootTest : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Label inputLabel;
15 private System.Windows.Forms.TextBox inputTextBox;
16
17 private System.Windows.Forms.Button squareRootButton;
18
19 private System.Windows.Forms.Label outputLabel;
20
21 // Required designer variable.
22 private System.ComponentModel.Container components = null;
23
24 // default constructor
25 public SquareRootTest()
26 {
27 // Required for Windows Form Designer support
28 InitializeComponent();
29 }
30
31 // Visual Studio .NET generated code
32

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 SquareRootTest class thrown an exception if error occurs when
calculating the square root. (Part 1 of 3.)

Chapter 11 Exception Handling 465

33 // main entry point for the application
34 [STAThread]
35 static void Main()
36 {
37 Application.Run(new SquareRootTest());
38 }
39
40 // computes the square root of its parameter; throws
41 // NegativeNumberException if parameter is negative
42 public double SquareRoot(double operand)
43 {
44 // if negative operand, throw NegativeNumberException
45 if (operand < 0)
46 throw new NegativeNumberException(
47 "Square root of negative number not permitted");
48
49 // compute the square root
50 return Math.Sqrt(operand);
51
52 } // end class SquareRoot
53
54 // obtain user input, convert to double and calculate
55 // square root
56 private void squareRootButton_Click(
57 object sender, System.EventArgs e)
58 {
59 outputLabel.Text = "";
60
61 // catch any NegativeNumberExceptions thrown
62 try
63 {
64 double result =
65 SquareRoot(Double.Parse(inputTextBox.Text));
66
67 outputLabel.Text = result.ToString();
68 }
69
70 // process invalid number format
71 catch (FormatException notInteger)
72 {
73 MessageBox.Show(notInteger.Message,
74 "Invalid Operation", MessageBoxButtons.OK,
75 MessageBoxIcon.Error);
76 }
77
78 // display MessageBox if negative number input
79 catch (NegativeNumberException error)
80 {
81 MessageBox.Show(error.Message, "Invalid Operation",
82 MessageBoxButtons.OK, MessageBoxIcon.Error);
83 }
84

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 SquareRootTest class thrown an exception if error occurs when
calculating the square root. (Part 2 of 3.)

466 Exception Handling Chapter 11

11.8 Handling Overflows with Operators checked and
unchecked
In .NET, the primitive data types are stored in fixed-size structures. For instance, the
maximum value of an int is 2,147,483,647. In integer arithmetic, a value larger than
2,147,483,647 causes overflow—type int cannot represent such a number. Overflow
also can occur with other C# primitive types. Overflows often cause programs to produce
incorrect results.

C# provides operators checked and unchecked to specify whether integer arith-
metic occurs in a checked context or unchecked context. In a checked context, the CLR
throws an OverflowException (namespace System) if overflow occurs during eval-
uation of an arithmetic expression. In an unchecked context, the result is truncated if over-
flow occurs.

The operators ++, --, *, /, + and - (both unary and binary) may cause overflow when
used with integral data types (such as int and long). Also, explicit conversions between
integral data types can cause overflow. For example, converting the integer 1,000,000 from
int to short results in overflow, because a short can store a maximum value of 32,767.
Figure 11.6 demonstrates overflows occurring in both checked and unchecked contexts.

The program begins by defining int variables number1 and number2 (lines 11–
12) and assigning each variable the maximum value for an int—2,147,483,647 (defined
by Int32.MaxValue). Next, line 13 defines variable sum (initialized to 0) to store the
sum of number1 and number2. Then, lines 15–16 output the values of number1 and
number2.

Lines 19–25 define a try block in which line 24 adds number1 and number2 in a
checked context. The expression to evaluate in a checked context appears in parentheses fol-
lowing keyword checked. Variables number1 and number2 already contain the max-
imum value for an int, so adding these values causes an OverflowException. The
catch handler at lines 28–31 catches the exception and outputs its string representation.

85 } // end method squareRootButton_Click
86
87 } // end class SquareRootTest

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 SquareRootTest class thrown an exception if error occurs when
calculating the square root. (Part 3 of 3.)

Chapter 11 Exception Handling 467

Line 39 performs the same calculation in an unchecked context. The result of the cal-
culation should be 4,294,967,294. However, this value requires more memory than an int
can store, so operator unchecked truncates part of the value, resulting in -2 in the output.
As you can see, the result of the unchecked calculation is not the actual sum of the variables.

1 // Fig 11.6: Overflow.cs
2 // Demonstrating operators checked and unchecked.
3
4 using System;
5
6 // demonstrates using the checked and unchecked operators
7 class Overflow
8 {
9 static void Main(string[] args)

10 {
11 int number1 = Int32.MaxValue; // 2,147,483,647
12 int number2 = Int32.MaxValue; // 2,147,483,647
13 int sum = 0;
14
15 Console.WriteLine(
16 "number1: {0}\nnumber2: {1}", number1, number2);
17
18 // calculate sum of number1 and number2
19 try
20 {
21 Console.WriteLine(
22 "\nSum integers in checked context:");
23
24 sum = checked(number1 + number2);
25 }
26
27 // catch overflow exception
28 catch (OverflowException overflowException)
29 {
30 Console.WriteLine(overflowException.ToString());
31 }
32
33 Console.WriteLine(
34 "\nsum after checked operation: {0}", sum);
35
36 Console.WriteLine(
37 "\nSum integers in unchecked context:");
38
39 sum = unchecked(number1 + number2);
40
41 Console.WriteLine(
42 "sum after unchecked operation: {0}", sum);
43
44 } // end method Main
45
46 } // end class Overflow

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 Operators checked and unchecked and the handling of arithmetic
overflow. (Part 1 of 2.)

468 Exception Handling Chapter 11

By default, calculations occur in an unchecked context—a dangerous practice, unless
the calculations are preformed on constant expressions (such as literal integer values). Con-
stant expressions are evaluated in a checked context at compile time. Overflows in such
expressions results in compile time errors. It is possible to specify in a project’s properties
that the default context for evaluating non-constant expressions should be to check for
arithmetic overflow. In the properties for your project, you can set the checked context as
the default. To do so, first select your project in the Solution Explorer. Next, in the View
menu, select Property Pages. In the Property Pages dialog, click the Configuration
Properties folder. Under Code Generation, change the value of Check for Arith-
metic Overflow/Underflow to true.

Good Programming Practice 11.4
Use a checked context when performing calculations that can result in overflows. The pro-
grammer should define exception handlers that can process the overflow. 11.4

Software Engineering Observation 11.12
Keywords checked and unchecked can evaluate blocks of statements in checked or un-
checked contexts by following the appropriate keyword with a block of code in braces ({}). 11.12

In this chapter, we demonstrated how the exception-handling mechanism works and
discussed how to make applications more robust by writing exception handlers to process
potential problems. As programmers develop new applications, it is important to investi-
gate potential exceptions thrown by the methods your program invokes or by the CLR, then
implement appropriate exception-handling code to make those applications more robust.

SUMMARY
• An exception is an indication of a problem that occurs during a program’s execution.

• Exception handling enables programmers to create applications that can resolve exceptions, often
allowing a program to continue execution as if no problems were encountered.

• Exception handling enables programmers to write clear, robust and more fault-tolerant programs.

• Exception handling enables the programmer to remove error-handling code from the “main line”
of the program’s execution. This improves program clarity and enhances modifiability.

number1: 2147483647
number2: 2147483647

Sum integers in checked context:
System.OverflowException: Arithmetic operation resulted in an overflow.
 at Overflow.Overflow.Main(String[] args) in
 f:\books\2001\csphtp1\csphtp1_examples\ch11\fig11_09\
 overflow\overflow.cs:line 24

sum after checked operation: 0

Sum integers in unchecked context:
sum after unchecked operation: -2

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 Operators checked and unchecked and the handling of arithmetic
overflow. (Part 2 of 2.)

Chapter 11 Exception Handling 469

• Exception handling is designed to process synchronous errors, such as out-of-range array sub-
scripts, arithmetic overflow, division by zero, invalid method parameters and memory exhaustion.

• Exception handling is not designed to process asynchronous events, such as disk-I/O completions,
network-message arrivals, mouse clicks and keystrokes.

• When a method detects an error and is unable to handle it, the method throws an exception. There
is no guarantee that there will be an exception handler to process that kind of exception. If there
is, the exception will be caught and handled.

• In debug mode, when the program detects an uncaught exception, a dialog box appears that en-
ables the programmer to view the problem in the debugger or continue program execution by ig-
noring the problem that occurred.

• A try block consists of keyword try followed by braces ({}) that delimit a block of code in
which exceptions could occur.

• Immediately following the try block are zero or more catch handlers. Each catch specifies
in parentheses an exception parameter representing the exception type the catch can handle.

• If an exception parameter includes an optional parameter name, the catch handler can use that
parameter name to interact with a caught exception object.

• There can be one parameterless catch handler that catches all exception types.

• After the last catch handler, an optional finally block contains code that always executes,
regardless of whether an exception occurs.

• When a method called in a program or the CLR detects a problem, the method or CLR throws an
exception. The point in the program at which an exception occurs is called the throw point.

• Exceptions are objects of classes that inherit directly or indirectly from class Exception.

• C# uses the termination model of exception handling. If an exception occurs in a try block, the
block expires and program control transfers to the first catch handler following the try block.

• The CLR searches for the first catch handler that can process the type of exception that occurred.
The appropriate handler is the first one in which the thrown exception’s type matches, or is derived
from, the exception type specified by the catch handler’s exception parameter.

• If no exceptions occur in a try block, the CLR ignores the exception handlers for that block.

• If no exceptions occur or if an exception is caught and handled, the program resumes execution
with the next statement after the try/catch/finally sequence.

• If an exception occurs in a statement that is not in a try block, the method containing that state-
ment terminates immediately—a process called stack unwinding.

• When a try block terminates, local variables defined in the block go out of scope.

• If the argument to Convert.ToInt32 is not an integer, a FormatException occurs.

• In integer arithmetic, an attempt to divide by zero causes a DivideByZeroException.

• A try block encloses the code that could throw exceptions and the code that should not execute
if an exception occurs.

• Each catch handler begins with keyword catch followed by an optional exception parameter
that specifies the type of exception handled by the catch handler. The exception-handling code
appears in the body of the catch handler.

• Only the matching catch handler executes if an exception occurs. When program control reaches
the closing brace of a catch handler, the CLR considers the exception handled, and program con-
trol continues with the first statement after the try/catch sequence.

470 Exception Handling Chapter 11

• If a catch handler specifies an exception type and an exception parameter name, the exception
handler’s body can interact with the caught exception object. The exception parameter can be
omitted if the exception handler does not require access to the exception object’s properties.

• The exception-handling mechanism allows only objects of class Exception and its derived
classes to be thrown and caught. Class Exception of namespace System is the base class of
the .NET Framework exception hierarchy.

• ApplicationException is a base class programmers can extend to create new exception
data types that are specific to their applications. Programs can recover from most Applica-
tionExceptions and continue execution.

• The Common Language Runtime generates SystemExceptions. If a program attempts to ac-
cess an out-of-range array subscript, the CLR throws an IndexOutOfRangeException. At-
tempting to manipulate an object through a null reference causes a
NullReferenceException.

• Programs typically cannot recover from most exceptions thrown by the CLR. Therefore, programs
generally should not throw SystemExceptions nor attempt to catch.

• A catch handler can catch exceptions of a particular type or can use a base-class type to catch
exceptions in a hierarchy of related exception types. A catch handler that specifies an exception
parameter of type Exception can catch all exceptions, because Exception is the base class
of all exception classes.

• For methods in the .NET Framework classes, you should look at the detailed description of the
method in the online documentation to determine whether that method throws exceptions.

• Information on exceptions thrown by the CLR appears in the C# Language Specification, which
is located in the online documentation.

• Many computer operating systems prevent more than one program from manipulating a resource
at the same time. Therefore, when a program no longer needs a resource, the program normally
releases the resource to allow other programs to use the resource. This helps prevent resource
leaks, and helps ensure that resources are available when needed.

• In C and C++, the most common resource leaks are memory leaks that occur when a program al-
locates memory, but does not deallocate the memory when the memory is no longer needed in the
program. The Common Language Runtime performs garbage collection of memory no longer
needed by an executing program, thus avoiding such memory leaks.

• A program should release a resource when the resource is no longer needed. The finally block
is guaranteed to execute if program control enters the corresponding try block, regardless of
whether that try block executes successfully or an exception occurs. This guarantee makes the
finally block an ideal location to place resource-deallocation code for resources acquired and
manipulated in the corresponding try block.

• If one or more catch handlers follow a try block, the finally block is optional. If no catch
handlers follow a try block, a finally block must appear immediately after the try block. If
any catch handlers follow a try block, the finally block appears after the last catch.

• Only whitespace and comments can separate the blocks in a try/catch/finally sequence.

• A throw statement throws an exception object.

• A throw statement can be used in a catch handler to rethrow an exception. This indicates that
the catch handler performed partial processing of the exception and is now passing the exception
back to a calling method for further processing.

• Exception property Message stores the error message associated with an Exception ob-
ject. This message may be a default message associated with the exception type or a customized
message passed to an exception object’s constructor at the time a program creates the exception.

Chapter 11 Exception Handling 471

• Exception property StackTrace contains a string that represents the method-call stack at the
throw point of the exception.

• Exception property InnerException typically is used to “wrap” a caught exception object
in a new exception object, then throw the object of that new exception type.

• When an exception is uncaught in a method, the method terminates. This removes or unwinds the
method from the method-call stack.

• Programmer-defined exceptions should extend class ApplicationException, should have a
class name that ends with “Exception” and should define a default constructor, a constructor that
receives a string argument (the error message) and a constructor that receives a string argu-
ment and an Exception argument (the error message and the inner-exception object).

• Overflow occurs in integer arithmetic when the value of an expression is greater than the maxi-
mum value that can be stored in a particular integral data type.

• C# provides operators checked and unchecked to specify whether arithmetic occurs in a
checked context or an unchecked context. In a checked context, operator checked throws an
OverflowException if overflow occurs when evaluating an arithmetic expression. In an un-
checked context, operator unchecked truncates the result if overflow occurs (normally, a dan-
gerous thing to allow).

• The operators ++, --, *, /, + and - (both unary and binary) can cause overflow when used with
integral data types (such as int and long). Also, explicit conversions between integral data types
can cause overflow.

• The expression that is to be evaluated in a checked or unchecked context appears in parentheses
following keyword checked or unchecked, respectively. Also, entire blocks of code can exe-
cute in a checked or unchecked context by placing keyword checked or unchecked before the
opening left brace of the block.

• By default, calculations are performed in the unchecked context.

TERMINOLOGY
ApplicationException class finally block
arithmetic overflow FormatException class
asynchronous event Handling a divide-by-zero exception
C# Language Specification IndexOutOfRangeException class
call stack inheritance with exceptions
catch all exception types InnerException property of Exception
catch block (or handler) integral data types
checked context Koenig, Andrew
checked operator MaxValue constant of Int32
Common Language Runtime (CLR) memory leak
disk I/O completion Message
divide by zero Message property of class Exception
DivideByZeroException class Message property of Exception
DivideByZeroTest.cs method call stack
Double class NaN constant of class Double
eliminate resource leaks negative infinity
error-processing code network message arrival
exception NullReferenceException
Exception class out-of-range array subscript
exception handler overflow
fault-tolerant program OverflowException class

472 Exception Handling Chapter 11

SELF-REVIEW EXERCISES
11.1 Fill in the blanks in each of the following statements:

a) Exception handling deals with errors, but not errors.
b) A method an exception when that method detects that a problem occurred.
c) The block associated with a try block always executes.
d) Exception objects are derived from class .
e) The statement that throws an exception is called the of the exception.
f) A block encloses code that could throw an exception.
g) If the catch-all exception handler is declared before another exception handler, a

 occurs.
h) An uncaught exception in a method causes that method to from the method-

call stack.
i) Method Convert.ToInt32 can throw a exception if its argument is not

a valid integer value.
j) Runtime exceptions derive from class .
k) To force an exception to occur when arithmetic overflow occurs in integer arithmetic, use

operator .

11.2 State whether each of the following is true or false. If false, explain why.
a) Exceptions always are handled in the method that initially detects the exception.
b) Programmer-defined exception classes should extend class SystemException.
c) Accessing an out-of-bounds array subscript causes the CLR to throw an exception.
d) A finally block is optional after a try block.
e) If a finally block appears in a method, that finally block is guaranteed to execute.
f) Returning to the throw point of an exception using keyword return is possible.
g) Exceptions can be rethrown.
h) The checked operator causes a syntax error when integral arithmetic overflow occurs.
i) Property Message returns a string indicating the method from which the exception

was thrown.
j) Exceptions can be thrown only by methods explicitly called in a try block.

ANSWERS TO SELF-REVIEW EXERCISES
11.1 a) synchronous, asynchronous. b) throws. c) finally. d) Exception. e) throw point.
f) try. g) syntax error. h) unwind. i) FormatException. j) SystemException. k) checked.

polymorphic processing of related errors synchronous error
positive infinity SystemException class
release resource termination model of exception handling
resource leak throw an exception
result of an uncaught exception throw point
resumption model of exception handling throw statement
rethrow an exception ToInt32 method of Convert
robust application ToString
run-time exception try block
Sqrt method of Math try block expires
SquareRootTest.cs unchecked context
stack unwinding unchecked operator
StackTrace property of Exception programmer-defined exception classes
Stroustrup, Bjarne

Chapter 11 Exception Handling 473

11.2 a) False. Exceptions are handled by calling methods on the method-call stack. b) False. Pro-
grammer-defined exception classes should extend class ApplicationException. c) True.
d) False. The finally block is option only if there is at least one catch handler. If there are not
catch handlers, the finally block is required. e) False. The finally block will execute only
if program control entered the corresponding try block. f) False. Keyword return causes control
to return to the caller. g) True. h) False. The checked operator causes an exception when arith-
metic overflow occurs at execution time. i) False. Property Message returns a string representing
the error message. j) False. Exceptions can be thrown by any method, called from a try block or not.
Also, the CLR can throw exceptions.

EXERCISES
11.3 Use inheritance to create an exception base class and various exception-derived classes. Write
a program to demonstrate that the catch specifying the base class catches derived-class exceptions.

11.4 Write a C# program that demonstrates how various exceptions are caught with

catch (Exception exception)

11.5 Write a C# program that shows the importance of the order of exception handlers. Write two
programs: One with the correct order of catch handlers, and one with an incorrect order (i.e., place
the base class exception handler before the derived-class exception handlers). Show that if you at-
tempt to catch a base-class exception type before a derived-class exception type, the derived-class ex-
ceptions are not invoked (which potentially yield logical errors in routine). Explain why these errors
occur.

11.6 Exceptions can be used to indicate problems that occur when an object is being constructed.
Write a C# program that shows a constructor passing information about constructor failure to an ex-
ception handler that occurs after a try block. The exception thrown also should contain the argu-
ments sent to the constructor.

11.7 Write a C# program that demonstrates rethrowing an exception.

11.8 Write a C# program that shows that a method with its own try block does not have to
catch every possible exception that occurs within the try block. Some exceptions can slip through
to, and be handled in, other scopes.

12
Graphical User Interface

Concepts: Part 1

Objectives
• To understand the design principles of graphical user

interfaces.
• To understand, use and create events.
• To understand the namespaces containing graphical

user interface components and event-handling classes
and interfaces.

• To be able to create graphical user interfaces.
• To be able to create and manipulate buttons, labels,

lists, textboxes and panels.
• To be able to use mouse and keyboard events.
… the wisest prophets make sure of the event first.
Horace Walpole

...The user should feel in control of the computer; not the
other way around. This is achieved in applications that
embody three qualities: responsiveness, permissiveness, and
consistency.
Inside Macintosh, Volume 1
Apple Computer, Inc. 1985

All the better to see you with my dear.
The Big Bad Wolf to Little Red Riding Hood

Chapter 12 Graphical User Interface Concepts: Part 1 475

12.1 Introduction
A graphical user interface (GUI) allows users to interact with a program visually. A GUI
(pronounced “GOO-EE”) gives a program a distinctive “look” and “feel.” By providing
different applications with a consistent set of intuitive user-interface components, GUIs al-
low users to spend less time trying to remember which keystroke sequences perform what
functions and spend more time using the program in a productive manner.

Look-and-Feel Observation 12.1
Consistent user interfaces enable users to learn new applications faster. 12.1

As an example of a GUI, Fig. 12.1 contains an Internet Explorer window with some of
its GUI components labeled. In the window, there is a menu bar containing menus,
including File, Edit, View, Favorites, Tools and Help. Below the menu bar is a set of
buttons; each has a defined task in Internet Explorer. Below the buttons is a textbox, in
which the user can type the location of a World Wide Web site to visit. To the left of the
textbox is a label that indicates the textbox’s purpose. On the far right and bottom there are
scrollbars. Scrollbars are used when there is more information in a window than can be dis-
played at once. By moving the scrollbars back and forth, the user can view different por-
tions of the Web page. The menus, buttons, textboxes, labels and scrollbars are part of
Internet Explorer’s GUI. They form a user-friendly interface through which the user inter-
acts with the Internet Explorer Web browser.

GUIs are built from GUI components (sometimes called controls or widgets—short for
window gadgets). A GUI component is an object with which the user interacts via the
mouse or keyboard. Several common GUI components are listed in Fig. 12.2. In the sec-
tions that follow, we discuss each of these GUI components in detail. In the next chapter,
we discuss more advanced GUI components.

Outline

12.1 Introduction
12.2 Windows Forms
12.3 Event-Handling Model

12.3.1 Basic Event Handling
12.4 Control Properties and Layout

12.5 Labels, TextBoxes and Buttons

12.6 GroupBoxes and Panels

12.7 CheckBoxes and RadioButtons

12.8 PictureBoxes
12.9 Mouse Event Handling
12.10 Keyboard Event Handling

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

476 Graphical User Interface Concepts: Part 1 Chapter 12

12.2 Windows Forms
Windows Forms (also called WinForms) create GUIs for programs. A form is a graphical
element that appears on the desktop. A form can be a dialog, a window or an MDI window

Fig. 12.1 Sample Internet Explorer window with GUI components.

Control Description

Label An area in which icons or uneditable text can be displayed.

TextBox An area in which the user inputs data from the keyboard. The area
also can display information.

Button An area that triggers an event when clicked.

CheckBox A GUI control that is either selected or not selected.

ComboBox A drop-down list of items from which the user can make a selection,
by clicking an item in the list or by typing into the box, if permitted.

ListBox An area in which a list of items is displayed from which the user can
make a selection by clicking once on any element. Multiple elements
can be selected.

Panel A container in which components can be placed.

ScrollBar Allows the user to access a range of values that cannot normally fit in
its container.

Fig. 12.2 Some basic GUI components .

Menu Menu barButton Label Textbox Scrollbar

Chapter 12 Graphical User Interface Concepts: Part 1 477

(multiple document interface window, discussed in Chapter 13, GUI Components: Part 2).
A component is a class that implements the IComponent interface, which defines the be-
haviors that components must implement. A control, such as a button or label, is a compo-
nent with a graphical part. Controls are visible, whereas components, which lack graphical
parts, are not.

Figure 12.3 displays the Windows Forms controls and components contained in the
Visual Studio .NET Toolbox—the first two screens show the controls and the last screen
shows the components. When the user selects a component or control, the user then can add
that component or control to the form. Note that the Pointer (the icon at the top of the list)
is not a component; rather it represents the default mouse action. Highlighting it allows the
programmer to use the mouse cursor instead of adding an item. In this chapter and the next,
we discuss many of these controls.

When interacting with windows, we say that the active window has the focus. The
active window is the frontmost window and has a highlighted title bar. A window becomes
the active window when the user clicks somewhere inside it. When a window has focus, the
operating system directs user input from the keyboard and mouse to that application.

Fig. 12.3 Components and controls for Windows Forms.

478 Graphical User Interface Concepts: Part 1 Chapter 12

The form acts as a container for components and controls. Controls must be added to
the form using code. When we drag a control from the Toolbox onto the form, Visual
Studio .NET generates this code for us, which instantiates the control and sets the control’s
basic properties. We could write the code ourselves, but it is much easier to create and
modify controls using the Toolbox and Properties window, letting Visual Studio .NET
handle the details. We introduced such visual programming earlier in the book. In the next
several chapters, we build much richer GUIs through visual programming.

When the user interacts with a control by using the mouse or keyboard, events (dis-
cussed in Section 12.3) are generated, and event handlers process those events. Events typ-
ically cause something to happen in response. For example, clicking the OK button in a
MessageBox generates an event. An event handler in class MessageBox closes the
MessageBox in response to this event.

Each .NET Framework class (i.e., form, component and control) we present in this
chapter is in the System.Windows.Forms namespace. Class Form, the basic window
used by Windows applications, is fully qualified as System.Windows.Forms.Form.
Likewise, class Button is actually System.Windows.Forms.Button.

The general design process for creating Windows applications requires creating a Win-
dows Form, setting its properties, adding controls, setting their properties and imple-
menting the event handlers. Figure 12.4 lists common Form properties and events.

Form Properties and
Events Description / Delegate and Event Arguments

Common Properties

AcceptButton Which button will be clicked when Enter is pressed.

AutoScroll Whether scrollbars appear when needed (if data fill more than one
screen).

CancelButton Button that is clicked when the Escape key is pressed.

FormBorderStyle Border of the form (e.g., none, single, 3D, sizable).

Font Font of text displayed on the form, as well as the default font of con-
trols added to the form.

Text Text in the form’s title bar.

Common Methods

Close Closes form and releases all resources. A closed form cannot be
reopened.

Hide Hides form (does not release resources).

Show Displays a hidden form.

Common Events (Delegate EventHandler, event arguments EventArgs)

Load Occurs before a form is shown. Visual Studio .NET generates a
default event handler when the programmer double clicks on the form
in the designer.

Fig. 12.4 Common Form properties and events.

Chapter 12 Graphical User Interface Concepts: Part 1 479

Visual Studio .NET generates most GUI-related code when we create controls and
event handlers. Programmers can use Visual Studio .NET to perform most of these tasks
graphically, by dragging and dropping components onto the form and setting properties in
the Properties window. In visual programming, the IDE generally maintains GUI-related
code, and the programmer writes the event handlers.

12.3 Event-Handling Model
GUIs are event driven (i.e., they generate events when the program’s user interacts with the
GUI). Typical interactions include moving the mouse, clicking the mouse, clicking a but-
ton, typing in a textbox, selecting an item from a menu and closing a window. Event han-
dlers are methods that process events and perform tasks. For example, consider a form that
changes color when a button is clicked. When clicked, the button generates an event and
passes it to the event handler, and the event-handler code changes the form’s color.

Each control that can generate events has an associated delegate that defines the signa-
ture for that control’s event handlers. Recall from Chapter 10 that delegates are objects that
reference methods. Event delegates are multicast (class MulticastDelegate)—they
contain lists of method references. Each method must have the same signature (i.e., the
same list of parameters). In the event-handling model, delegates act as intermediaries
between objects that generate events and methods that handle those events (Fig. 12.5).

Software Engineering Observation 12.1
Delegates enable classes to specify methods that will not be named or implemented until the
class is instantiated. This is extremely helpful in creating event handlers. For instance, the
creator of the Form class does not need to name or define the method that will handle the
Click event. Using delegates, the class can specify when such an event handler would be
called. The programmers that create their own forms then can name and define this event
handler. As long as it has been registered with the proper delegate, the method will be
called at the proper time. 12.1

Once an event is raised, every method that the delegate references is called. Every
method in the delegate must have the same signature, because they are all passed the same
information.

Fig. 12.5 Event-handling model using delegates.

Object A raises event E Delegate for event E

Handler 1 for event E

Handler 2 for event E

Handler 3 for event E

calls calls

480 Graphical User Interface Concepts: Part 1 Chapter 12

12.3.1 Basic Event Handling
In most cases, we do not have to create our own events. Instead, we can handle the events
generated by .NET controls such as buttons and text boxes. These controls already have
delegates for every event they can raise. The programmer creates the event handler and reg-
isters it with the delegate—Visual Studio .NET helps with this task. In the following exam-
ple, we create a form that displays a message box when clicked. Afterwards, we will
analyze the event code that Visual Studio .NET generates.

First, create a new Windows application. To register and define an event handler, click
the Events icon (the yellow lightning bolt) in the form’s Properties window (Fig. 12.6).
This window allows the programmer to access, modify and create event handlers for a con-
trol. The left panel lists the events that the object can generate. The right panel lists the reg-
istered event handlers for the corresponding event; this list is initially empty. The drop-
down button indicates that multiple handlers can be registered for one event. A brief
description of the event appears on the bottom of the window.

In this example, the form will take some action when clicked. Double-click the Click
event in the Properties window to create an empty event handler in the program code.

private void FormName_Click(object sender, System.EventArgs e)
{

}

This is the method that will be called when the form is clicked. As a response, we will
have the form display a message box. To do this, insert the statement

MessageBox.Show("Form was pressed.");

Fig. 12.6 Events section of the Properties window.

Events icon
List of events

supported by
control

Current event
handler (none)Selected

event

Event
description

Chapter 12 Graphical User Interface Concepts: Part 1 481

into the event handler to get

private void FormName_Click(object sender, System.EventArgs e)
{
 MessageBox.Show("Form was pressed");
}

We can now compile and execute the program, which appears in Fig. 12.7. Whenever
the form is clicked, a message box appears.

We now discuss the details of the program. First, we create an event handler (lines 26–
29). Every event handler must have the signature that the corresponding event delegate
specifies. Event handlers are passed two object references. The first is a reference to the
object that raised the event (sender), and the second is a reference to an event arguments
object (e). Argument e is of type EventArgs. Class EventArgs is the base class for
objects that contain event information.

To create the event handler, we must find the delegate’s signature. When we double-
click an event name in the Properties window, Visual Studio .NET creates a method with
the proper signature. The naming convention is ControlName_EventName; in our case the
event handler is MyForm_Click. If we do not use the Properties window, we must look
up the event arguments class. Consult the documentation index under ControlName class
(i.e., Form class) and click the events section (Fig. 12.8). This displays a list of all the
events the class can generate. Click the name of an event to bring up its delegate, event
argument type and a description (Fig. 12.9).

1 // Fig. 12.7: SimpleEventExample.cs
2 // Using Visual Studio .NET to create event handlers.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // program that shows a simple event handler
12 public class MyForm : System.Windows.Forms.Form
13 {
14 private System.ComponentModel.Container components = null;
15
16 // Visual Studio .NET generated code
17
18 [STAThread]
19 static void Main()
20 {
21 Application.Run(new MyForm());
22 }
23

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 Simple event-handling example using visual programming. (Part 1 of 2.)

482 Graphical User Interface Concepts: Part 1 Chapter 12

24 // Visual Studio .NET creates an empty handler,
25 // we write definition: show message box when form clicked
26 private void MyForm_Click(object sender, System.EventArgs e)
27 {
28 MessageBox.Show("Form was pressed");
29 }
30
31 } // end class MyForm

Fig. 12.8 List of Form events.

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 Simple event-handling example using visual programming. (Part 2 of 2.)

Class name List of events

Chapter 12 Graphical User Interface Concepts: Part 1 483

The format of the event-handling method is, in general,

void ControlName_EventName(object sender, EventArgs e)
{

event-handling code
}

where the name of the event handler is by default the name of the control, followed by an
underscore (_) and the name of the event. Event handlers have return type void and take
two arguments—an object (usually sender) and an instance of an event argument
class. The differences between the various EventArgs classes are discussed in the fol-
lowing sections.

Good Programming Practice 12.1
Use the event-handler naming convention ControlName_EventName to keep methods orga-
nized. This tells a user which event a method handles, and for which control. Visual Studio
.NET uses this naming convention when creating event handlers from the Properties window. 12.1

After creating the event handler, we must register it with the delegate object, which
contains a list of event handlers to call. Registering an event handler with a delegate object
involves adding the event handler to the delegate’s invocation list. Controls have a delegate
reference for each of their events—the delegate reference has the same name as the event.
For example, if we are handling event EventName for object myControl, then the dele-
gate reference is myControl.EventName. Visual Studio .NET registers events for us
with code such as the following from method InitializeComponent:

this.Click += new System.EventHandler(this.MyForm_Click);

The left-hand side is the delegate reference MyForm.Click. (this refers to an
object of class MyForm.) The delegate reference is initially empty—we must assign to it

Fig. 12.9 Details of Click event.

Event argument classEvent delegate

Event name

484 Graphical User Interface Concepts: Part 1 Chapter 12

an object reference (the right-hand side). We must create a new delegate object for each
event handler. We create a new delegate object by writing

new System.EventHandler(methodName)

which returns a delegate object initialized with method methodName. The methodName is the
name of the event handler, in our case it is MyForm.MyForm_Click. The += operator
adds an EventHandler delegate to the current delegate’s invocation list. Since the del-
egate reference is initially empty, registering the first event handler creates a delegate ob-
ject. In general, to register an event handler, write

objectName.EventName += new System.EventHandler(
MyEventHandler);

We can add more event handlers using similar statements. Event multicasting is the
ability to have multiple handlers for one event. Each event handler is called when the event
occurs, but the order in which the event handlers are called is indeterminate. Use the -=
operator to remove the method from the delegate object.

Common Programming Error 12.1
Assuming that multiple event handlers registered for the same event are called in a particular
order can lead to logic errors. If the order is important, register the first event handler and
have it call the others in order, passing the sender and event arguments. 12.1

Software Engineering Observation 12.2
Events for prepackaged .NET components usually have consistent naming schemes. If the
event is named EventName, then its delegate is EventNameEventHandler, and the
event arguments class is EventNameEventArgs. However, events that use class Even-
tArgs use delegate EventHandler. 12.2

To review: The information needed to register an event is the EventArgs class (a
parameter for the event handler) and the EventHandler delegate (to register the event
handler). Visual Studio .NET can create this code for us, or we can type it in ourselves. If
Visual Studio .NET creates the code, the programmer does not have to deal with going
through all the steps, but the programmer also does not have complete control of everything
that is going on. For simple events and event handlers it is often easier to allow Visual
Studio .NET to generate this code. For more complicated solutions, registering your own
event handlers might be necessary. In the upcoming sections, we will indicate the Event-
Args class and the EventHandler delegate for each event we cover. To find more
information about a particular type of event, search the help documentation for ClassName
class and refer to the events subcategory.

12.4 Control Properties and Layout
This section overviews properties that are common to many controls. Controls derive from
class Control (namespace System.Windows.Forms). Figure 12.10 contains a list of
common properties and events for class Control. The Text property specifies the text
that appears on a control, which may vary depending on the context. For example, the text
of a Windows Form is its title bar, and the text of a button appears on its face. The Focus
method transfers the focus to a control. When the focus is on a control, it becomes the active

Chapter 12 Graphical User Interface Concepts: Part 1 485

control. When the Tab key is pressed, the TabIndex property determines the order in
which controls are given focus. The TabIndex property is automatically set by Visual
Studio .NET, but can be changed by the programmer. This is helpful for the user who enters
information in many different locations—the user can enter information and quickly select
the next control by pressing the Tab key. The Enabled property indicates whether the
control can be used. Programs can set property Enabled to false when an option is un-
available to the user. In most cases, the control’s text will appear gray (rather than black),
when a control is disabled. Without having to disable a control, the control can be hidden
from the user by setting the Visible property to false or by calling method Hide.
When a control’s Visible property is set to false, the control still exists, but it is not
shown on the form.

Class Control
Properties and
Methods Description

Common Properties

BackColor Background color of the control.

BackgroundImage Background image of the control.

Enabled Whether the control is enabled (i.e., if the user can interact with it). A
disabled control will still be displayed, but “grayed-out”—portions of
the control will become gray.

Focused Whether a control has focus. (The control that is currently being used
in some way.)

Font Font used to display control’s Text.

ForeColor Foreground color of the control. This is usually the color used to dis-
play the control’s Text property.

TabIndex Tab order of the control. When the Tab key is pressed, the focus is
moved to controls in increasing tab order. This order can be set by the
programmer.

TabStop If true, user can use the Tab key to select the control.

Text Text associated with the control. The location and appearance varies
with the type of control.

TextAlign The alignment of the text on the control. One of three horizontal posi-
tions (left, center or right) and one of three vertical positions (top,
middle or bottom).

Visible Whether the control is visible.

Common Methods

Focus Transfers the focus to the control.

Hide Hides the control (sets Visible to false).

Show Shows the control (sets Visible to true).

Fig. 12.10 Class Control properties and methods.

486 Graphical User Interface Concepts: Part 1 Chapter 12

Visual Studio .NET allows the programmer to anchor and dock controls, which help
to specify the layout of controls inside a container (such as a form). Anchoring allows con-
trols to stay a fixed distance from the sides of the container, even when the control is
resized. Docking allows controls to extend themselves along the sides of their containers.

A user may want a control to appear in a certain position (top, bottom, left or right) in
a form even when that form is resized. The user can specify this by anchoring the control
to a side (top, bottom, left or right). The control then maintains a fixed distance from the
side to its parent container. In most cases, the parent container is a form; however, other
controls can act as a parent container.

When parent containers are resized, all controls move. Unanchored controls move rela-
tive to their original position on the form, while anchored controls move so that they will be
the same distance from each side that they are anchored to. For example, in Fig. 12.11, the
topmost button is anchored to the top and left sides of the parent form. When the form is
resized, the anchored button moves so that it remains a constant distance from the top and left
sides of the form (its parent). The unanchored button changes position as the form is resized.

Create a simple Windows application that contains two controls. Anchor one control to
the right side by setting the Anchor property as shown in Fig. 12.12. Leave the other control
unanchored. Now, resize the form by dragging the right side farther to the right. Notice that
both controls move. The anchored control moves so that it is always the same distance to the
right wall. The unanchored control moves so that it is in the same place on the form, relative
to each side. This control will continue to be somewhat closer to whatever sides it was origi-
nally close to, but will still reposition itselft when the user resizes the application window.

Sometimes a programmer wants a control to span the entire side of the form, even when
the form is resized. This is useful when we want one control to remain prevalent on the form,
such as the status bar that might appear at the bottom of a program. Docking allows a control
to spread itself along an entire side (left, right, top or bottom) of its parent container. When
the parent is resized, the docked control resizes as well. In Fig. 12.13, a button is docked to
the top of the form. (It lays across the top portion.) When the form is resized, the button is
resized as well—the button always fills the entire top portion of the form. The Fill dock
option effectively docks the control to all sides of its parent, which causes it to fill its entire
parent. Windows Forms contain property DockPadding, which sets the distance from
docked controls to the edge of the form. The default value is zero, causing the controls to
attach to the edge of the form. The control layout properties are summarized in Fig. 12.14.

Fig. 12.11 Anchoring demonstration.

Before resizing After resizing

Constant distance to
left and top sides

Chapter 12 Graphical User Interface Concepts: Part 1 487

Fig. 12.12 Manipulating the Anchor property of a control.

Fig. 12.13 Docking demonstration.

Common Layout
Properties Description

Common Properties

Anchor Side of parent container at which to anchor control—values can be
combined, such as Top, Left.

Dock Side of parent container to dock control—values cannot be combined.

DockPadding (for
containers)

Sets the dock spacing for controls inside the container. Default is zero,
so controls appear flush against the side of the container.

Location Location of the upper left corner of the control, relative to its container.

Fig. 12.14 Class Control layout properties. (Part 1 of 2.)

Click down-arrow in
Anchor property to
display anchoring
window

Darkened bar indicates side to
which control is anchored

Before resizing After resizing

Control extends along
top portion of form

488 Graphical User Interface Concepts: Part 1 Chapter 12

The docking and anchoring options refer to the parent container, which may or may
not be the form. (We learn about other parent containers later this chapter.) The minimum
and maximum form sizes can be set using properties MinimumSize and MaximumSize,
respectively. Both properties use the Size structure, which has properties Height and
Width, specifying the size of the form. These properties allow the programmer to design
the GUI layout for a given size range. To set a form to a fixed size, set its minimum and
maximum size to the same value.

Look-and-Feel Observation 12.2
Allow Windows forms to be resized—this enables users with limited screen space or multiple
applications running at once to use the application more easily. Check that the GUI layout
appears consistent for all permissible form sizes. 12.2

12.5 Labels, TextBoxes and Buttons
Labels provide text instructions or information about the program. Labels are defined with
class Label, which derives from class Control. A Label displays read-only text, or
text that the user cannot modify. Once labels are created, programs rarely change their con-
tents. Figure 12.15 lists common Label properties.

A textbox (class TextBox) is an area in which text can be either input by the user from
the keyboard or displayed. A password textbox is a TextBox that hides what the user
entered. As the user types in characters, the password textbox displays only a certain char-
acter (usually *). Altering the PasswordChar property of a textbox makes it a password
textbox and sets the appropriate character to be displayed. Deleting the value of Pass-
wordChar in the Properties window sets the textbox back to a regular textbox.
Figure 12.16 lists the common properties and events of TextBoxes.

A button is a control that the user clicks to trigger a specific action. A program can use
several other types of buttons, such as checkboxes and radio buttons. All the button types
are derived from ButtonBase (namespace System.Windows.Forms), which
defines common button features. In this section, we concentrate on the class Button,
which is often used to initiate a command. The other button types are covered in subsequent
sections. The text on the face of a Button is called a button label. Figure 12.17 lists the
common properties and events of Buttons.

Size Size of the control. Takes a Size structure, which has properties
Height and Width.

MinimumSize,
MaximumSize (for
Windows Forms)

The minimum and maximum size of the form.

Common Layout
Properties Description

Fig. 12.14 Class Control layout properties. (Part 2 of 2.)

Chapter 12 Graphical User Interface Concepts: Part 1 489

Look-and-Feel Observation 12.3
Although Labels, TextBoxes and other controls can respond to mouse-button clicks,
Buttons naturally convey this meaning. Use Buttons (e.g., OK), rather than other types
of controls, to initiate user actions. 12.3

The program in Fig. 12.18 uses a TextBox, a Button and a Label. The user enters
text into a password box and clicks the Button. The text then appears in the Label. Nor-
mally, we would not display this text—the purpose of password textboxes is to hide the text
being entered by the user from anyone who may be looking over a person’s shoulder.

Label Properties Description / Delegate and Event Arguments

Common Properties

Font The font used by the text on the Label.

Text The text to appear on the Label.

TextAlign The alignment of the Label’s text on the control. One of three hori-
zontal positions (left, center or right) and one of three vertical
positions (top, middle or bottom).

Fig. 12.15 Label properties.

TextBox Properties
and Events Description / Delegate and Event Arguments

Common Properties

AcceptsReturn If true, pressing Enter creates a new line if textbox spans multiple
lines. If false, pressing Enter clicks the default button of the form.

Multiline If true, textbox can span multiple lines. Default is false.

PasswordChar Single character to display instead of typed text, making the Text-
Box a password box. If no character is specified, Textbox displays
the typed text.

ReadOnly If true, TextBox has a gray background and its text cannot be
edited. Default is false.

ScrollBars For multiline textboxes, indicates which scrollbars appear (none,
horizontal, vertical or both).

Text The text to be displayed in the text box.

Common Events (Delegate EventHandler, event arguments EventArgs)

TextChanged Raised when text changes in TextBox (the user added or deleted
characters). Default event when this control is double clicked in the
designer.

Fig. 12.16 TextBox properties and events.

490 Graphical User Interface Concepts: Part 1 Chapter 12

Button properties
and events Description / Delegate and Event Arguments

Common Properties

Text Text displayed on the Button face.

Common Events (Delegate EventHandler, event arguments EventArgs)

Click Raised when user clicks the control. Default event when this control
is double clicked in the designer.

Fig. 12.17 Button properties and events.

1 // Fig. 12.18: LabelTextBoxButtonTest.cs
2 // Using a Textbox, Label and Button to display
3 // the hidden text in a password box.
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11
12 // namespace contains our form to display hidden text
13 namespace LabelTextBoxButtonTest
14 {
15 /// <summary>
16 /// form that creates a password textbox and
17 /// a label to display textbox contents
18 /// </summary>
19 public class LabelTextBoxButtonTest :
20 System.Windows.Forms.Form
21 {
22 private System.Windows.Forms.Button displayPasswordButton;
23 private System.Windows.Forms.Label displayPasswordLabel;
24 private System.Windows.Forms.TextBox inputPasswordTextBox;
25
26 /// <summary>
27 /// Required designer variable.
28 /// </summary>
29 private System.ComponentModel.Container components = null;
30
31 // default contructor
32 public LabelTextBoxButtonTest()
33 {
34 InitializeComponent();
35 }
36

Fig. 12.18Fig. 12.18Fig. 12.18Fig. 12.18 Program to display hidden text in a password box. (Part 1 of 4.)

Chapter 12 Graphical User Interface Concepts: Part 1 491

37 /// <summary>
38 /// Clean up any resources being used.
39 /// </summary>
40 protected override void Dispose(bool disposing)
41 {
42 if (disposing)
43 {
44 if (components != null)
45 {
46 components.Dispose();
47 }
48 }
49
50 base.Dispose(disposing);
51 }
52
53 #region Windows Form Designer generated code
54 /// <summary>
55 /// Required method for Designer support - do not modify
56 /// the contents of this method with the code editor.
57 /// </summary>
58 private void InitializeComponent()
59 {
60 this.displayPasswordButton =
61 new System.Windows.Forms.Button();
62 this.inputPasswordTextBox =
63 new System.Windows.Forms.TextBox();
64 this.displayPasswordLabel =
65 new System.Windows.Forms.Label();
66 this.SuspendLayout();
67
68 //
69 // displayPasswordButton
70 //
71 this.displayPasswordButton.Location =
72 new System.Drawing.Point(96, 96);
73 this.displayPasswordButton.Name =
74 "displayPasswordButton";
75 this.displayPasswordButton.TabIndex = 1;
76 this.displayPasswordButton.Text = "Show Me";
77 this.displayPasswordButton.Click +=
78 new System.EventHandler(
79 this.displayPasswordButton_Click);
80
81 //
82 // inputPasswordTextBox
83 //
84 this.inputPasswordTextBox.Location =
85 new System.Drawing.Point(16, 16);
86 this.inputPasswordTextBox.Name =
87 "inputPasswordTextBox";
88 this.inputPasswordTextBox.PasswordChar = '*';

Fig. 12.18Fig. 12.18Fig. 12.18Fig. 12.18 Program to display hidden text in a password box. (Part 2 of 4.)

492 Graphical User Interface Concepts: Part 1 Chapter 12

89 this.inputPasswordTextBox.Size =
90 new System.Drawing.Size(264, 20);
91 this.inputPasswordTextBox.TabIndex = 0;
92 this.inputPasswordTextBox.Text = "";
93
94 //
95 // displayPasswordLabel
96 //
97 this.displayPasswordLabel.BorderStyle =
98 System.Windows.Forms.BorderStyle.Fixed3D;
99 this.displayPasswordLabel.Location =
100 new System.Drawing.Point(16, 48);
101 this.displayPasswordLabel.Name =
102 "displayPasswordLabel";
103 this.displayPasswordLabel.Size =
104 new System.Drawing.Size(264, 23);
105 this.displayPasswordLabel.TabIndex = 2;
106
107 //
108 // LabelTextBoxButtonTest
109 //
110 this.AutoScaleBaseSize =
111 new System.Drawing.Size(5, 13);
112 this.ClientSize =
113 new System.Drawing.Size(292, 133);
114 this.Controls.AddRange(
115 new System.Windows.Forms.Control[] {
116 this.displayPasswordLabel,
117 this.inputPasswordTextBox,
118 this.displayPasswordButton});
119 this.Name = "LabelTextBoxButtonTest";
120 this.Text = "LabelTextBoxButtonTest";
121 this.ResumeLayout(false);
122
123 } // end method InitializeComponent
124
125 // end collapsible region started on line 53
126 #endregion
127
128 /// <summary>
129 /// The main entry point for the application.
130 /// </summary>
131 [STAThread]
132 static void Main()
133 {
134 Application.Run(new LabelTextBoxButtonTest());
135 }
136
137 // display user input on label
138 protected void displayPasswordButton_Click(
139 object sender, System.EventArgs e)
140 {

Fig. 12.18Fig. 12.18Fig. 12.18Fig. 12.18 Program to display hidden text in a password box. (Part 3 of 4.)

Chapter 12 Graphical User Interface Concepts: Part 1 493

First, we create the GUI by dragging the components (a Button, a Label and a
TextBox) onto the form. Once the components are positioned, we change their names in
the Properties window (by setting the (Name) property) from the default values—
textBox1, label1, button1—to the more descriptive displayPasswordLabel,
inputPasswordTextBox and displayPasswordButton. Visual Studio .NET
creates the code and places it inside method InitializeComponent. Now that the
reader has an understanding of object-oriented programming, we can mention that the
(Name) property is not really a property, but a means of changing the variable name of the
object reference. For convenience, this value can be changed in the Properties window
of Visual Studio .NET. This value, however, is not actually manipulated by a property.

We then set displayPasswordLabel’s Text property to “Show Me” and clear
the Text of displayPasswordLabel and inputPasswordTextBox so that they
are initially blank when the program runs. The BorderStyle property of displayPass-
wordLabel is set to Fixed3D, to give our Label a three-dimensional appearance.
Notice that TextBoxes have their BorderStyle property set to Fixed3D by default. The
password character is set by assigning the asterisk character (*) to the PasswordChar
property. This property can take only one character.

Let us examine the code that Visual Studio .NET generates by right-clicking the design
and selecting View Code. This is important because not every change can be made in the
Properties window.

We have learned in previous chapters that Visual Studio .NET adds comments to our
code. These comments appear throughout the code, such as on lines 15–18. In future exam-
ples we remove some of these generated comments to make programs more concise and
readable (unless they illustrate a capability we have not yet covered).

Visual Studio .NET inserts declarations for the controls we add to the form (lines 22–
24), namely, the Label, TextBox and Button. The IDE manages these declarations for
us, making it easy to add and remove controls. Line 29 declares reference components—
an array to hold the components that we add. We are not using any components in this pro-
gram (only controls), and thus the reference is null.

141 // text has not changed
142 displayPasswordLabel.Text =
143 inputPasswordTextBox.Text;
144 }
145
146 } // end class LabelTextBoxButtonTest
147
148 } // end namespace LabelTextBoxButtonTest

Fig. 12.18Fig. 12.18Fig. 12.18Fig. 12.18 Program to display hidden text in a password box. (Part 4 of 4.)

494 Graphical User Interface Concepts: Part 1 Chapter 12

The constructor for our form is created for us—it calls method InitializeCom-
ponent. Method InitializeComponent creates the components and controls in the
form and sets their properties. The usual “to do” comments generated by Visual Studio
.NET have been removed, because there is no more code that needs to be added to the con-
structor. When they existed, they would have appeared as a reminder in the Task List
window. Method Dispose cleans up allocated resources, but is not called explicitly in our
programs.

Lines 53–126 contain a collapsible region that encloses our InitializeCompo-
nent method. Recall that the #region and #endregion preprocessor directives allow
the programmer to collapse code to a single line in Visual Studio .NET. This enables the
programmer to focus on certain portions of a program.

Method InitializeComponent (lines 58–123) sets the properties of the controls
added to the form (the TextBox, Label and Button). Lines 60–66 create new objects for
the controls we add (a Button, a TextBox and a Label). Lines 87–88 and 92 set the
Name, PasswordChar and Text properties for inputPasswordTextBox. The Tab-
Index property is initially set by Visual Studio .NET, but can be changed by the developer.

The comment on lines 54–57 advises us not to modify the contents of method Ini-
tializeComponent. We have altered it slightly for formatting purposes in this book,
but this is not recommended. We have done this only so that the reader is able to see the
important portions of the code. Visual Studio .NET examines this method to create the
design view of the code. If we change this method, Visual Studio .NET may not recognize
our modifications and show the design improperly. It is important to note that the design
view is based on the code, and not vice versa.

Testing and Debugging Tip 12.1
To keep the design view accurate, do not modify the code in method InitializeCompo-
nent. Make changes in the design window or property window. 12.1

The Click event is triggered when a control is clicked. We create the handler using
the procedure described in Section 12.3.1. We want to respond to the Click event dis-
playPasswordButton, so we double click it in the Events window. (Alternately, we
could simply have clicked on displayPasswordButton.) This creates an empty
event handler named displayPasswordButton_Click (line 138). Visual Studio
.NET also registers the event handler for us (line 77–79). It adds the event handler to the
Click event, using the EventHandler delegate. We must then implement the event
handler. Whenever displayPasswordButton is clicked, this method is called and
displays inputPasswordTextBox’s text on displayPasswordLabel. Even
though inputPasswordTextBox displays all asterisks, it still retains its input text in
its Text property. To show the text, we set displayPasswordLabel’s Text to
inputPasswordTextBox’s Text (line 142–143). The user must program this line
manually. When displayPasswordButton is clicked, the Click event is triggered,
and the event handler displayPasswordButton_Click runs (updating dis-
playPasswordLabel).

Visual Studio .NET generated most of the code in this program. It simplifies tasks such
as creating controls, setting their properties and registering event handlers. However, we
should be aware of how this is done—in several programs we may set properties ourselves,
using code.

Chapter 12 Graphical User Interface Concepts: Part 1 495

12.6 GroupBoxes and Panels
GroupBoxes and Panels arrange components on a GUI. For example, buttons related to a
particular task can be placed inside a GroupBox or Panel inside the Visual Studio .NET
form designer. All these buttons move together when the GroupBox or Panel is moved.

The main difference between the two classes is that GroupBoxes can display a cap-
tion, and Panels can have scrollbars. The scrollbars allow the user to view additional con-
trols inside the Panel by scrolling the visible area. GroupBoxes have thin borders by
default, but Panels can be set to have borders by changing their BorderStyle property.

Look-and-Feel Observation 12.4
Panels and GroupBoxes can contain other Panels and GroupBoxes. 12.4

Look-and-Feel Observation 12.5
Organize the GUI by anchoring and docking controls (of similar function) inside a Group-
Box or Panel. The GroupBox or Panel then can be anchored or docked inside a form.
This divides controls into functional “groups” that can be arranged easily. 12.5

To create a GroupBox, drag it from the toolbar and place it on a form. Create new
controls and place them inside the GroupBox, causing them to become part of this class.
These controls are added to the GroupBox’s Controls property. The GroupBox’s
Text property determines its caption. The following tables list the common properties of
GroupBoxes (Fig. 12.19) and Panels (Fig. 12.20).

GroupBox
Properties Description

Common Properties

Controls The controls that the GroupBox contains.

Text Text displayed on the top portion of the GroupBox (its caption).

Fig. 12.19 GroupBox properties.

Panel Properties Description

Common Properties

AutoScroll Whether scrollbars appear when the Panel is too small to hold its
controls. Default is false.

BorderStyle Border of the Panel (default None; other options are Fixed3D and
FixedSingle).

Controls The controls that the Panel contains.

Fig. 12.20 Panel properties.

496 Graphical User Interface Concepts: Part 1 Chapter 12

To create a Panel, drag it onto the form and add components to it. To enable the
scrollbars, set the Panel’s AutoScroll property to true. If the Panel is resized and
cannot hold its controls, scrollbars appear (Fig. 12.21). These scrollbars then can be used
to view all the components in the Panel (both when running and designing the form). This
allows the programmer to see the GUI exactly as it appears to the client.

Look-and-Feel Observation 12.6
Use Panels with scrollbars to avoid cluttering a GUI and to reduce the GUI’s size. 12.6

The program in Fig. 12.22 uses a GroupBox and a Panel to arrange buttons. These
buttons change the text on a Label.

The GroupBox (named mainGroupBox) has two buttons, hiButton (labeled Hi)
and byeButton (labeled Bye). The Panel (named mainPanel) has two buttons as
well, leftButton (labeled Far Left) and rightButton (labeled Far Right). The
mainPanel control also has its AutoScroll property set to True, allowing scrollbars
to appear if needed (i.e., if the contents of the Panel take up more space than the Panel
itself). The Label (named messageLabel) is initially blank.

The event handlers for the four buttons are located in lines 36–61. To create an empty
Click event handler, double click the button in design mode (instead of using the Events
window). We add a line in each handler to change the text of messageLabel.

Fig. 12.21 Creating a Panel with scrollbars.

1 // Fig. 12.22: GroupBoxPanelExample.cs
2 // Using GroupBoxes and Panels to hold buttons.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;

Fig. 12.22Fig. 12.22Fig. 12.22Fig. 12.22 Using GroupBoxes and Panels to arrange Buttons. (Part 1 of 3.)

Panel

Controls
inside panel

Panel
scrollbars

Chapter 12 Graphical User Interface Concepts: Part 1 497

7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 /// form to display a groupbox versus a panel
12 public class GroupBoxPanelExample : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Button hiButton;
15 private System.Windows.Forms.Button byeButton;
16 private System.Windows.Forms.Button leftButton;
17 private System.Windows.Forms.Button rightButton;
18
19 private System.Windows.Forms.GroupBox mainGroupBox;
20 private System.Windows.Forms.Label messageLabel;
21 private System.Windows.Forms.Panel mainPanel;
22
23 private System.ComponentModel.Container components = null;
24
25 // Visual Studio .NET-generated Dispose method
26
27 [STAThread]
28 static void Main()
29 {
30 Application.Run(new GroupBoxPanelExample());
31 }
32
33 // event handlers to change messageLabel
34
35 // event handler for hi button
36 private void hiButton_Click(
37 object sender, System.EventArgs e)
38 {
39 messageLabel.Text= "Hi pressed";
40 }
41
42 // event handler for bye button
43 private void byeButton_Click(
44 object sender, System.EventArgs e)
45 {
46 messageLabel.Text = "Bye pressed";
47 }
48
49 // event handler for far left button
50 private void leftButton_Click(
51 object sender, System.EventArgs e)
52 {
53 messageLabel.Text = "Far left pressed";
54 }
55
56 // event handler for far right button
57 private void rightButton_Click(
58 object sender, System.EventArgs e)
59 {

Fig. 12.22Fig. 12.22Fig. 12.22Fig. 12.22 Using GroupBoxes and Panels to arrange Buttons. (Part 2 of 3.)

498 Graphical User Interface Concepts: Part 1 Chapter 12

12.7 CheckBoxes and RadioButtons
Visual C# has two types of state buttons—CheckBox and RadioButton—that can be
in the on/off or true/false state. Classes CheckBox and RadioButton are derived from
class ButtonBase. A RadioButton is different from a CheckBox in that there are
normally several RadioButtons grouped together, and only one of the RadioButtons
in the group can be selected (true) at any time.

A checkbox is a small white square that can be blank or contain a checkmark. When a
checkbox is selected, a black checkmark appears in the box. There are no restrictions on
how checkboxes are used: Any number may be selected at a time. The text that appears
alongside a checkbox is referred to as the checkbox label. A list of common properties and
events of class Checkbox appears in Fig. 12.23.

60 messageLabel.Text = "Far right pressed";
61 }
62
63 } // end class GroupBoxPanelExample

CheckBox events
and properties Description / Delegate and Event Arguments

Common Properties

Checked Whether the CheckBox has been checked.

CheckState Whether the CheckBox is checked (contains a black checkmark) or
unchecked (blank). An enumeration with values Checked,
Unchecked or Indeterminate.

Text Text displayed to the right of the CheckBox (called the label).

Fig. 12.23 CheckBox properties and events.

Fig. 12.22Fig. 12.22Fig. 12.22Fig. 12.22 Using GroupBoxes and Panels to arrange Buttons. (Part 3 of 3.)

Chapter 12 Graphical User Interface Concepts: Part 1 499

The program in Fig. 12.24 allows the user to select a CheckBox to change the font
style of a Label. One CheckBox applies a bold style, the other an italic style. If both
checkboxes are selected, the style of the font is bold and italic. When the program initially
executes, neither CheckBox is checked.

The first CheckBox, named boldCheckBox, has its Text property set to Bold.
The other CheckBox is named italicCheckBox and is labeled Italic. The Label,
named outputLabel, is labeled Watch the font style change.

Common Events (Delegate EventHandler, event arguments EventArgs)

CheckedChanged Raised every time the CheckBox is either checked or unchecked.
Default event when this control is double clicked in the designer.

CheckState-
Changed

Raised when the CheckState property changes.

1 // Fig. 12.24: CheckBoxTest.cs
2 // Using CheckBoxes to toggle italic and bold styles.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 /// form contains checkboxes to allow
12 /// the user to modify sample text
13 public class CheckBoxTest : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.CheckBox boldCheckBox;
16 private System.Windows.Forms.CheckBox italicCheckBox;
17
18 private System.Windows.Forms.Label outputLabel;
19
20 private System.ComponentModel.Container components = null;
21
22 // Visual Studio .NET-generated Dispose method
23
24 /// The main entry point for the application.
25 [STAThread]
26 static void Main()
27 {
28 Application.Run(new CheckBoxTest());
29 }

Fig. 12.24Fig. 12.24Fig. 12.24Fig. 12.24 Using CheckBoxes to change font styles. (Part 1 of 2.)

CheckBox events
and properties Description / Delegate and Event Arguments

Fig. 12.23 CheckBox properties and events.

500 Graphical User Interface Concepts: Part 1 Chapter 12

After creating the components, we define their event handlers. Double clicking bold-
CheckBox creates and registers an empty CheckedChanged event handler. To under-
stand the code added to the event handler, we first discuss outputLabel’S Font property.

To change the font, the Font property must be set to a Font object. The Font con-
structor we use takes the font name, size and style. The first two arguments make use of
outputLabel’s Font object, namely, outputLabel.Font.Name and output-
Label.Font.Size (lines 37–38). The style is a member of the FontStyle enumera-
tion, which contains the font styles Regular, Bold, Italic, Strikeout and
Underline. (The Strikeout style displays text with a line through it, the Under-
line style displays text with a line below it.) A Font object’s Style property is set when
the Font object is created—the Style property itself is read-only.

30
31 // make text bold if not bold,
32 // if already bold make not bold
33 private void boldCheckBox_CheckedChanged(
34 object sender, System.EventArgs e)
35 {
36 outputLabel.Font =
37 new Font(outputLabel.Font.Name,
38 outputLabel.Font.Size,
39 outputLabel.Font.Style ^ FontStyle.Bold);
40 }
41
42 // make text italic if not italic,
43 // if already italic make not italic
44 private void italicCheckBox_CheckedChanged(
45 object sender, System.EventArgs e)
46 {
47 outputLabel.Font =
48 new Font(outputLabel.Font.Name,
49 outputLabel.Font.Size,
50 outputLabel.Font.Style ^ FontStyle.Italic);
51 }
52
53 } // end class CheckBoxTest

Fig. 12.24Fig. 12.24Fig. 12.24Fig. 12.24 Using CheckBoxes to change font styles. (Part 2 of 2.)

Chapter 12 Graphical User Interface Concepts: Part 1 501

Styles can be combined using bitwise operators, or operators that perform manipula-
tion on bits. Recall from Chapter 1 that all data are represented on the computer as a series
of 0’s and 1’s. Each 0 or 1 is called a bit. Actions are taken and data are modified using
these bit values. In this program, we need to set the font style so that the text will appear
bold if it was not bold originally, and vice versa. Notice that on line 60 we use the bitwise
XOR operator (^) to do this. Applying this operator to two bits does the following: If
exactly 1 one of the corresponding bits is 1, set the result to 1. By using the ^ operator as
we did on line 60, we are setting the bit values for bold in the same way. The operand on
the right (FontStyle.Bold) always has bit values set to bold. The operand on the left,
then (outputLabel.Font.Style) must not be bold for the resulting style to be bold.
(Remember for XOR, if one value is set to 1, the other must be 0, or the result will not be
1.) If outputLable.Font.Style is bold, then the resulting style will not be bold. This
operator also allows us to combine the styles. For instance, if the text were originally itali-
cized, it would now be italicized and bold, rather than just bold.

We could have explicitly tested for the current style and changed it according to what
we needed. For example, in the method boldCheckBox_CheckChanged we could
have tested for the regular style, made it bold, tested for the bold style, made it regular,
tested for the italic style, made it bold italic, or the italic bold style and made it italic. How-
ever, this method has a drawback—for every new style we add, we double the number of
combinations. To add a checkbox for underline, we would have to test for eight possible
styles. To add a checkbox for strikeout as well, we would have 16 tests in each event han-
dler. By using the bitwise XOR operator, we save ourselves from this trouble. Each new
style needs only a single statement in its event handler. In addition, styles can be removed
easily, removing their handler. If we tested for every condition, we would have to remove
the handler, and all the unnecessary test conditions in the other handlers.

Radio buttons (defined with class RadioButton) are similar to checkboxes, because
they also have two states—selected and not selected (also called deselected). However,
radio buttons normally appear as a group in which only one radio button can be selected at
a time. Selecting a different radio button in the group forces all other radio buttons in the
group to be deselected. Radio buttons represent a set of mutually exclusive options (i.e., a
set in which multiple options cannot be selected at the same time).

Look-and-Feel Observation 12.7
Use RadioButtons when the user should choose only one option in a group. 12.7

Look-and-Feel Observation 12.8
Use CheckBoxes when the user should be able to choose many options in a group. 12.8

All radio buttons added to a form become part of the same group. To create new
groups, radio buttons must be added to GroupBoxes or Panels. The common properties
and events of class RadioButton are listed in Fig. 12.25.

Software Engineering Observation 12.3
Forms, GroupBoxes, and Panels can act as logical groups for radio buttons. The radio
buttons within each group will be mutually exclusive to each other, but not to radio buttons
in different groups. 12.3

502 Graphical User Interface Concepts: Part 1 Chapter 12

The program in Fig. 12.26 uses radio buttons to select the options for a MessageBox.
Users select the attributes they want then press the display button, which causes the Mes-
sageBox to appear. A Label in the lower-left corner shows the result of the Mes-
sageBox (Yes, No, Cancel, etc.). The different MessageBox icon and button types
have been displayed in tables in Chapter 5, Control Structures: Part 2.

RadioButton
properties and events Description / Delegate and Event Arguments

Common Properties

Checked Whether the RadioButton is checked.

Text Text displayed to the right of the RadioButton (called the label).

Common Events (Delegate EventHandler, event arguments EventArgs)

Click Raised when user clicks the control.

CheckedChanged Raised every time the RadioButton is checked or unchecked.
Default event when this control is double clicked in the designer.

Fig. 12.25 RadioButton properties and events.

1 // Fig. 12.26: RadioButtonsTest.cs
2 // Using RadioButtons to set message window options.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 /// form contains several radio buttons--user chooses one
12 /// from each group to create a custom MessageBox
13 public class RadioButtonsTest : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.Label promptLabel;
16 private System.Windows.Forms.Label displayLabel;
17 private System.Windows.Forms.Button displayButton;
18
19 private System.Windows.Forms.RadioButton questionButton;
20 private System.Windows.Forms.RadioButton informationButton;
21 private System.Windows.Forms.RadioButton exclamationButton;
22 private System.Windows.Forms.RadioButton errorButton;
23 private System.Windows.Forms.RadioButton retryCancelButton;
24 private System.Windows.Forms.RadioButton yesNoButton;
25 private System.Windows.Forms.RadioButton yesNoCancelButton;
26 private System.Windows.Forms.RadioButton okCancelButton;
27 private System.Windows.Forms.RadioButton okButton;

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Using RadioButtons to set message-window options. (Part 1 of 5.)

Chapter 12 Graphical User Interface Concepts: Part 1 503

28 private System.Windows.Forms.RadioButton
29 abortRetryIgnoreButton;
30
31 private System.Windows.Forms.GroupBox groupBox2;
32 private System.Windows.Forms.GroupBox groupBox1;
33
34 private MessageBoxIcon iconType = MessageBoxIcon.Error;
35 private MessageBoxButtons buttonType =
36 MessageBoxButtons.OK;
37
38 /// The main entry point for the application.
39 [STAThread]
40 static void Main()
41 {
42 Application.Run(new RadioButtonsTest());
43 }
44
45 // change button based on option chosen by sender
46 private void buttonType_CheckedChanged(
47 object sender, System.EventArgs e)
48 {
49 if (sender == okButton) // display OK button
50 buttonType = MessageBoxButtons.OK;
51
52 // display OK and Cancel buttons
53 else if (sender == okCancelButton)
54 buttonType = MessageBoxButtons.OKCancel;
55
56 // display Abort, Retry and Ignore buttons
57 else if (sender == abortRetryIgnoreButton)
58 buttonType = MessageBoxButtons.AbortRetryIgnore;
59
60 // display Yes, No and Cancel buttons
61 else if (sender == yesNoCancelButton)
62 buttonType = MessageBoxButtons.YesNoCancel;
63
64 // display Yes and No buttons
65 else if (sender == yesNoButton)
66 buttonType = MessageBoxButtons.YesNo;
67
68 // only one option left--display
69 // Retry and Cancel buttons
70 else
71 buttonType = MessageBoxButtons.RetryCancel;
72
73 } // end method buttonType_CheckedChanged
74
75 // change icon based on option chosen by sender
76 private void iconType_CheckedChanged(
77 object sender, System.EventArgs e)
78 {
79 if (sender == errorButton) // display error icon
80 iconType = MessageBoxIcon.Error;

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Using RadioButtons to set message-window options. (Part 2 of 5.)

504 Graphical User Interface Concepts: Part 1 Chapter 12

81
82 // display exclamation point
83 else if (sender == exclamationButton)
84 iconType = MessageBoxIcon.Exclamation;
85
86 // display information icon
87 else if (sender == informationButton)
88 iconType = MessageBoxIcon.Information;
89
90 else // only one option left--display question mark
91 iconType = MessageBoxIcon.Question;
92
93 } // end method iconType_CheckedChanged
94
95 // display MessageBox and button user pressed
96 protected void displayButton_Click(
97 object sender, System.EventArgs e)
98 {
99 DialogResult result =
100 MessageBox.Show("This is Your Custom MessageBox.",
101 "Custom MessageBox", buttonType, iconType, 0, 0);
102
103 // check for dialog result and display it in label
104 switch (result)
105 {
106 case DialogResult.OK:
107 displayLabel.Text = "OK was pressed.";
108 break;
109
110 case DialogResult.Cancel:
111 displayLabel.Text = "Cancel was pressed.";
112 break;
113
114 case DialogResult.Abort:
115 displayLabel.Text = "Abort was pressed.";
116 break;
117
118 case DialogResult.Retry:
119 displayLabel.Text = "Retry was pressed.";
120 break;
121
122 case DialogResult.Ignore:
123 displayLabel.Text = "Ignore was pressed.";
124 break;
125
126 case DialogResult.Yes:
127 displayLabel.Text = "Yes was pressed.";
128 break;
129
130 case DialogResult.No:
131 displayLabel.Text = "No was pressed.";
132 break;
133

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Using RadioButtons to set message-window options. (Part 3 of 5.)

Chapter 12 Graphical User Interface Concepts: Part 1 505

134 } // end switch
135
136 } // end method displayButton_Click
137
138 } // end class RadioButtonsTest

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Using RadioButtons to set message-window options. (Part 4 of 5.)

Information Icon Type Question Icon Type

YesNoCancel Button TypeAbortRetryIgnore Button Type

Exclamation Icon Type Error Icon Type

OK Button TypeOKCancel Button Type

506 Graphical User Interface Concepts: Part 1 Chapter 12

To store the user’s choice of options, the objects iconType and buttonType are
created and initialized (lines 34–36). Object iconType is a MessageBoxIcon enumer-
ation that can have values Asterisk, Error, Exclamation, Hand, Information,
Question, Stop and Warning. In this example we use only Error, Exclamation,
Information and Question.

Object buttonType is a MessageBoxButton enumeration with values Abort-
RetryIgnore, OK, OKCancel, RetryCancel, YesNo and YesNoCancel. The
name indicates which buttons will appear in the MessageBox. In this example we use all
MessageBoxButton enumeration values.

Two GroupBoxes are created, one for each enumeration. Their captions are Button
Type and Icon. One label is the used to prompt the user (promptLabel), while the other
is used to display which button was pressed, once the custom MessageBox has been dis-
played (displayLabel). There is also a button (displayButton) that displays the
text Display. RadioButtons are created for the enumeration options, with their labels
set appropriately. The radio buttons are grouped, thus only one option can be selected from
each GroupBox.

For event handling, one event handler exists for all the radio buttons in groupBox1,
and another for all the radio buttons in groupBox2. Each radio button generates a
CheckedChanged event when clicked.

Remember, to set the event handler for an event, use the events section of the Prop-
erties window. Create a new CheckedChanged event handler for one of the radio but-
tons in buttonTypeGroupBox and rename it buttonType_CheckedChanged.
Then set the CheckedChanged event handlers for all the radio buttons in button-
TypeGroupBox to method buttonType_CheckedChanged. Create a second
CheckedChanged event handler for a radio button in iconTypeGroupBox and
rename it iconType_CheckedChanged. Finally, set the CheckedChanged event
handlers for the radio buttons in iconTypeGroupBox to method
iconType_CheckedChanged.

Both handlers compare the sender object with every radio button to determine which
button was selected. Depending on the radio button selected, either iconType or but-
tonType changes (lines 46–93).

The Click handler for displayButton (lines 96–136) creates a MessageBox
(lines 99–101). Some of the MessageBox options are set by iconType and button-
Type. The result of the message box is a DialogResult enumeration, with values
Abort, Cancel, Ignore, No, None, OK, Retry or Yes. The switch statement on
lines 104–134 tests for the result and sets displayLabel.Text appropriately.

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Using RadioButtons to set message-window options. (Part 5 of 5.)

RetryCancel Button TypeYesNo Button Type

Chapter 12 Graphical User Interface Concepts: Part 1 507

12.8 PictureBoxes
A picture box (class PictureBox) displays an image. The image, set by an object of class
Image, can be in a bitmap (.bmp), .gif, .jpg, icon or metafile format. (Images and mul-
timedia are discussed in Chapter 16, Graphics and Multimedia.) GIF (Graphics Interchange
Format) and JPEG (Joint Photographic Expert Group) files are widely used file formats.

The Image property sets the Image object to use, and the SizeMode property sets
how the image is displayed (Normal, StretchImage, AutoSize or CenterImage).
Figure 12.27 describes the important properties and events of class PictureBox.

The program in Fig. 12.28 uses PictureBox imagePictureBox to display one
of three bitmap images—image0, image1 or image2. They are located in the directory
images (as usual, located in the bin/debug directory of our project), where the execut-
able file is located. Whenever the imagePictureBox is clicked, the image changes. The
Label (named promptLabel) on the top of the form includes the instructions Click On
Picture Box to View Images.

PictureBox
properties and events Description / Delegate and Event Arguments

Common Properties

Image Image to display in the PictureBox.

SizeMode Enumeration that controls image sizing and positioning. Values Nor-
mal (default), StretchImage, AutoSize and CenterImage.
Normal puts image in top-left corner of PictureBox and Cen-
terImage puts image in middle. (Both cut off image if too large.)
StretchImage resizes image to fit in PictureBox. AutoSize
resizes PictureBox to hold image.

Common Events (Delegate EventHandler, event arguments EventArgs)

Click Raised when user clicks the control. Default event when this control
is double clicked in the designer.

Fig. 12.27 PictureBox properties and events.

1 // Fig. 12.28: PictureBoxTest.cs
2 // Using a PictureBox to display images.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.IO;
11

Fig. 12.28Fig. 12.28Fig. 12.28Fig. 12.28 Using a PictureBox to display images. (Part 1 of 2.)

508 Graphical User Interface Concepts: Part 1 Chapter 12

To respond to the user’s clicks, we must handle the Click event (lines 28–37). Inside
the event handler, we use an integer (imageNum) to store the image we want to display.
We then set the Image property of imagePictureBox to an Image. Class Image is
discussed in Chapter 16, Graphics and Multimedia, but here we overview method From-
File, which takes a string (the path to the image file) and creates an Image object.

To find the images, we use class Directory (namespace System.IO, specified on
line 10) method GetCurrentDirectory (line 35). This returns the current directory of
the executable file (usually bin\Debug) as a string. To access the images subdirec-
tory, we take the current directory and append “\\images” followed by “\\” and the file
name. We use a double slash because an escape sequence is needed to print a single slash.

12 /// form to display different images when clicked
13 public class PictureBoxTest : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.PictureBox imagePictureBox;
16 private System.Windows.Forms.Label promptLabel;
17
18 private int imageNum = -1;
19
20 /// The main entry point for the application.
21 [STAThread]
22 static void Main()
23 {
24 Application.Run(new PictureBoxTest());
25 }
26
27 // change image whenever PictureBox clicked
28 private void imagePictureBox_Click(
29 object sender, System.EventArgs e)
30 {
31 imageNum = (imageNum + 1) % 3; // imageNum from 0 to 2
32
33 // create Image object from file, display on PictureBox
34 imagePictureBox.Image = Image.FromFile(
35 Directory.GetCurrentDirectory() + "\\images\\image" +
36 imageNum + ".bmp");
37 }
38
39 } // end class PictureBoxTest

Fig. 12.28Fig. 12.28Fig. 12.28Fig. 12.28 Using a PictureBox to display images. (Part 2 of 2.)

Chapter 12 Graphical User Interface Concepts: Part 1 509

Alternatively, we could have used @ to avoid the escape character (i.e., @"\" will print a
single slash—the slash does not need to be escaped by another slash). We use imageNum to
append the proper number, so we can load either image0, image1 or image2. Integer
imageNum stays between 0 and 2, due to the modulus calculation (line 31). Finally, we
append ".bmp" to the filename. Thus, if we want to load image0, the string becomes “Cur-
rentDir\images\image0.bmp”, where CurrentDir is the directory of the executable.

12.9 Mouse Event Handling
This section explains how to handle mouse events, such as clicks, presses and moves. Mouse
events are generated when the mouse interacts with a control. They can be handled for any
GUI control that derives from class System.Windows.Forms.Control. Mouse event
information is passed using class MouseEventArgs, and the delegate to create the mouse
event handlers is MouseEventHandler. Each mouse event-handling method must take an
object and a MouseEventArgs object as arguments. The Click event, which we cov-
ered earlier, uses delegate EventHandler and event arguments EventArgs.

Class MouseEventArgs contains information about the mouse event, such as the x-
and y-coordinates of the mouse pointer, the mouse button pressed, the number of clicks and
the number of notches through which the mouse wheel turned. Note that the x- and y-coor-
dinates of the MouseEventArgs object are relative to the control that raised the event.
Point (0,0) is at the upper-left corner of the control. The various mouse events are described
in Fig. 12.29.

Mouse Events, Delegates and Event Arguments

Mouse Events (Delegate EventHandler, event arguments EventArgs)

MouseEnter Raised if the mouse cursor enters the area of the control.

MouseLeave Raised if the mouse cursor leaves the area of the control.

Mouse Events (Delegate MouseEventHandler, event arguments MouseEventArgs)

MouseDown Raised if the mouse button is pressed while its cursor is over the area
of the control.

MouseHover Raised if the mouse cursor hovers over the area of the control.

MouseMove Raised if the mouse cursor is moved while in the area of the control.

MouseUp Raised if the mouse button is released when the cursor is over the
area of the control.

Class MouseEventArgs Properties

Button Mouse button that was pressed (left, right, middle or none).

Clicks The number of times the mouse button was clicked.

X The x-coordinate of the event, relative to the control.

Y The y-coordinate of the event, relative to the control.

Fig. 12.29 Mouse events, delegates and event arguments.

510 Graphical User Interface Concepts: Part 1 Chapter 12

Figure 12.30 uses mouse events to draw on the form. Whenever the user drags the
mouse (i.e., moves the mouse while holding down a button), a line is drawn on the form.

1 // Fig 12.30: Painter.cs
2 // Using the mouse to draw on a form.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 /// creates a form as a drawing surface
12 public class Painter : System.Windows.Forms.Form
13 {
14 bool shouldPaint = false; // whether to paint
15
16 /// The main entry point for the application.
17 [STAThread]
18 static void Main()
19 {
20 Application.Run(new Painter());
21 }
22
23 // should paint after mouse button has been pressed
24 private void Painter_MouseDown(
25 object sender, System.Windows.Forms.MouseEventArgs e)
26 {
27 shouldPaint = true;
28 }
29
30 // stop painting when mouse button released
31 private void Painter_MouseUp(
32 object sender, System.Windows.Forms.MouseEventArgs e)
33 {
34 shouldPaint = false;
35 }
36
37 // draw circle whenever mouse button
38 // moves (and mouse is down)
39 protected void Painter_MouseMove(
40 object sender, System.Windows.Forms.MouseEventArgs e)
41 {
42 if (shouldPaint)
43 {
44 Graphics graphics = CreateGraphics();
45 graphics.FillEllipse(
46 new SolidBrush(Color.BlueViolet),
47 e.X, e.Y, 4, 4);
48 }
49
50 } // end Painter_MouseMove

Fig. 12.30Fig. 12.30Fig. 12.30Fig. 12.30 Using the mouse to draw on a form. (Part 1 of 2.)

Chapter 12 Graphical User Interface Concepts: Part 1 511

On line 14 the program creates variable shouldPaint, which determines whether
we should draw on the form. We want to draw only while the mouse button is pressed
down. In the event handler for event MouseDown, shouldPaint is set to true (line 27).
As soon as the mouse button is released the program stops drawing: shouldPaint is set
to false in the MouseUp event handler (line 34).

Whenever the mouse moves while the button is pressed down, the MouseMove event is
generated. The event will be generated repeatedly, at a rate set by the operating system. Inside
the Painter_MouseMove event handler (lines 39–48), the program draws only if
shouldPaint is true (indicating that the mouse button is down). Line 44 creates the
Graphics object for the form, which provides methods for drawing various shapes. Method
FillEllipse (lines 45–47) draws a circle at every point the mouse cursor moves over
(while the mouse button is pressed). The first parameter to method FillEllipse is a
SolidBrush object, which determines the color of the shape drawn. We create a new
SolidBrush object by passing the constructor a Color value. Structure Color contains
numerous predefined color constants—we selected Color.BlueViolet (line 46). The
SolidBrush fills an elliptical region, which lies inside a bounding rectangle. The bounding
rectangle is specified by the x- and y-coordinates of its upper-left corner, its height and its
width. These four parameters are the final four arguments to method FillEllipse. The x-
and y-coordinates are the location of the mouse event: They can be taken from the mouse
event arguments (e.X and e.Y). To draw a circle, we set the height and width of the
bounding rectangle equal—in this case, they are each 4 pixels.

12.10 Keyboard Event Handling
This section explains how to handle key events. Key events are generated when keys on the
keyboard are pressed and released. These events can be handled by any control that inherits
from System.Windows.Forms.Control. There are two types of key events. The first
is event KeyPress, which fires when a key representing an ASCII character is pressed (de-
termined by KeyPressEventArgs property KeyChar). ASCII is a 128-character set of
alphanumeric symbols. (The full listing can be found in Appendix B, ASCII Character Set.)

Using the KeyPress event, we cannot determine if modifier keys (such as Shift, Alt
and Control) were pressed. To determine such actions, handle the KeyUp or KeyDown
events, which form the second type of key event. Class KeyEventArgs contains infor-
mation about special modifier keys. The key’s Key enumeration value can be returned,
giving information about a wide range of non-ASCII keys. Modifier keys are often used in

51
52 } // end class Painter

Fig. 12.30Fig. 12.30Fig. 12.30Fig. 12.30 Using the mouse to draw on a form. (Part 2 of 2.)

512 Graphical User Interface Concepts: Part 1 Chapter 12

conjunction with the mouse to select or highlight information. The delegates for the two
classes are KeyPressEventHandler (event argument class KeyPressEventArgs)
and KeyEventHandler (event argument class KeyEventArgs). Figure 12.31 lists
important information about key events.

Figure 12.32 demonstrates using the key event handlers to display the key that was
pressed. The program’s form contains two Labels. It displays the key pressed on one
Label and modifier information on the other.

The two Labels (named charLabel and keyInfoLabel) are initially empty.
The KeyDown and KeyPress events convey different information; thus, the form (Key-
Demo) handles them both.

Keyboard Events, Delegates and Event Arguments

Key Events (Delegate KeyEventHandler, event arguments KeyEventArgs)

KeyDown Raised when key is initially pushed down.

KeyUp Raised when key is released.

Key Events (Delegate KeyPressEventHandler, event arguments KeyPressEventArgs)

KeyPress Raised when key is pressed. Occurs repeatedly while
key is held down, at a rate specified by the operating
system.

Class KeyPressEventArgs Properties

KeyChar Returns the ASCII character for the key pressed.

Handled Whether the KeyPress event was handled.

Class KeyEventArgs Properties

Alt Indicates whether the Alt key was pressed.

Control Indicates whether the Control key was pressed.

Shift Indicates whether the Shift key was pressed.

Handled Whether the event was handled.

KeyCode Returns the key code for the key, as a Keys enumera-
tion. This does not include modifier key information.
Used to test for a specific key.

KeyData Returns the key code as a Keys enumeration, com-
bined with modifier information. Used to determine
all information about the key pressed.

KeyValue Returns the key code as an int, rather than as a Keys
enumeration. Used to obtain a numeric representation
of the key pressed.

Modifiers Returns a Keys enumeration for any modifier keys
pressed (Alt, Control and Shift). Used to determine
modifier key information only.

Fig. 12.31 Keyboard events, delegates and event arguments.

Chapter 12 Graphical User Interface Concepts: Part 1 513

1 // Fig. 12.32: KeyDemo.cs
2 // Displaying information about the key the user pressed.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // form to display key press
12 // information--contains two labels
13 public class KeyDemo : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.Label charLabel;
16 private System.Windows.Forms.Label keyInfoLabel;
17
18 private System.ComponentModel.Container components = null;
19
20 /// The main entry point for the application.
21 [STAThread]
22 static void Main()
23 {
24 Application.Run(new KeyDemo());
25 }
26
27 // display the character pressed using key char
28 protected void KeyDemo_KeyPress(
29 object sender, System.Windows.Forms.KeyPressEventArgs e)
30 {
31 charLabel.Text = "Key pressed: " + e.KeyChar;
32 }
33
34 // display modifier keys, key code, key data and key value
35 private void KeyDemo_KeyDown(
36 object sender, System.Windows.Forms.KeyEventArgs e)
37 {
38 keyInfoLabel.Text =
39 "Alt: " + (e.Alt ? "Yes" : "No") + '\n' +
40 "Shift: " + (e.Shift ? "Yes" : "No") + '\n' +
41 "Ctrl: " + (e.Control ? "Yes" : "No") + '\n' +
42 "KeyCode: " + e.KeyCode + '\n' +
43 "KeyData: " + e.KeyData + '\n' +
44 "KeyValue: " + e.KeyValue;
45 }
46
47 // clear labels when key released
48 private void KeyDemo_KeyUp(
49 object sender, System.Windows.Forms.KeyEventArgs e)
50 {
51 keyInfoLabel.Text = "";
52 charLabel.Text = "";
53 }

Fig. 12.32Fig. 12.32Fig. 12.32Fig. 12.32 Demonstrating keyboard events (Part 1 of 2.).

514 Graphical User Interface Concepts: Part 1 Chapter 12

The KeyPress event handler (lines 28–32) accesses the KeyChar property of the
KeyPressEventArgs object. This returns the key pressed as a char and displays in
charLabel (line 31). If the key pressed was not an ASCII character, then the KeyPress
event will not fire and charLabel remains empty. ASCII is a common encoding format
for letters, numbers, punctuation marks and other characters. It does not support keys such
as the function keys (like F1) or the modifier keys (Alt, Control and Shift).

The KeyDown event handler (lines 35–45) displays more information, all from its
KeyEventArgs object. It tests for the Alt, Shift and Control keys (lines 39–41), using the
Alt, Shift and Control properties, each of which returns bool. It then displays the
KeyCode, KeyData and KeyValue properties.

The KeyCode property returns a Keys enumeration, which is converted to a string
using method ToString. The KeyCode property returns the key that was pressed, but
does not provide any information about modifier keys. Thus, both a capital and a lowercase
“a” are represented as the A key.

The KeyData property returns a Keys enumeration as well, but includes data about
modifier keys. Thus, if “A” is input, the KeyData shows that the A key and the Shift key
were pressed. Lastly, KeyValue returns the key code for the key that was pressed as an
integer. This integer is the Windows virtual key code, which provides an integer value for
a wide range of keys and for mouse buttons. The Windows virtual key code is useful when
testing for non-ASCII keys (such as F12).

The KeyUp event handler clears both labels when the key is released (lines 48–53). As
we can see from the output, non-ASCII keys are not displayed in the upper charLabel
because the KeyPress event was not generated. The KeyDown event is still raised, and
keyInfoLabel displays information about the key. The Keys enumeration can be used
to test for specific keys by comparing the key pressed to a specific KeyCode. The Visual
Studio. NET documentation has a complete list of the Keys enumerations.

Software Engineering Observation 12.4
To cause a control to react when a certain key is pressed (such as Enter), handle a key event
and test for the key pressed. To cause a button to be clicked when the Enter key is pressed on
a form, set the form’s AcceptButton property. 12.8

54
55 } // end class KeyDemo

Fig. 12.32Fig. 12.32Fig. 12.32Fig. 12.32 Demonstrating keyboard events (Part 2 of 2.).

Chapter 12 Graphical User Interface Concepts: Part 1 515

SUMMARY
• A graphical user interface (GUI) presents a pictorial interface to a program. A GUI (pronounced

“GOO-EE”) gives a program a distinctive “look” and “feel.”

• By providing different applications with a consistent set of intuitive user interface components,
GUIs allow the user to concentrate on using programs productively.

• GUIs are built from GUI components (sometimes called controls or widgets). A GUI control is a
visual object with which the user interacts via the mouse or keyboard.

• Windows Forms create GUIs. A form is a graphical element that appears on the desktop. A form
can be a dialog or a window.

• A component is a class that implements the IComponent interface.

• A control is a graphical component, such as a button. Components that are not visible usually are
referred to simply as components.

• The active window has the focus. It is the frontmost window and has a highlighted title bar.

• A form acts as a container for components.

• When the user interacts with a control, an event is generated. This event can trigger methods that
respond to the user’s actions.

• All forms, components and controls are classes.

• The general design process for creating Windows applications involves creating a Windows Form,
setting its properties, adding controls, setting their properties and configuring event handlers.

• GUIs are event driven. When a user interaction occurs, an event is generated. The event informa-
tion then is passed to event handlers.

• Events are based on the notion of delegates. Delegates act as an intermediate step between the ob-
ject creating (raising) the event and the method handling it.

• In many cases, the programmer will handle events generated by prepackaged controls. In this case,
all the programmer needs to do is create and register the event handler.

• Use the Events window to create and register event handlers.

• The information we need to register an event is the EventArgs class (to define the event handler)
and the EventHandler delegate (to register the event handler). Visual Studio .NET can usually
register the event for us.

• Labels (class Label) display read-only text instructions or information on a GUI.

• A TextBox is a single-line area in which text can be entered. A password text box displays only
a certain character (such as *) when text is input.

• A Button is a control that the user clicks to trigger a specific action. Buttons typically respond
to the Click event.

• GroupBoxes and Panels help arrange components on a GUI. The main difference between the
classes is that GroupBoxes can display text, and Panels can have scrollbars.

• Visual C# has two types of state buttons—CheckBoxes and RadioButtons—that have on/off
or true/false values.

• A checkbox is a small white square that can be blank or contain a checkmark.

• Use the bitwise XOR operator (^) to combine or negate a font style.

• Radio buttons (class RadioButton) have two states—selected and not selected. Radio buttons
appear as a group in which only one radio button can be selected at a time. To create new groups,
radio buttons must be added to GroupBoxes or Panels. Each GroupBox or Panel is a group.

• Radio buttons and checkboxes use the CheckChanged event.

516 Graphical User Interface Concepts: Part 1 Chapter 12

• Scrollbars are controls that allow the user to access a range of integer values. There are horizontal
HScrollBars and vertical VScrollBars. Whenever a scrollbar is changed, it raises a
Scroll event.

• A picture box (class PictureBox) displays an image (set by an object of class Image).

• Mouse events (clicks, presses and moves) can be handled for any GUI control that derives from
System.Windows.Forms.Control. Mouse events use class MouseEventArgs (Mou-
seEventHandler delegate) and EventArgs (EventHandler delegate).

• Class MouseEventArgs contains information about the x- and y-coordinates, the button used,
the number of clicks and the number of notches through which the mouse wheel turned.

• Key events are generated when keyboard’s keys are pressed and released. These events can be han-
dled by any control that inherits from System.Windows.Forms.Control.

• Event KeyPress can return a char for any ASCII character pressed. One cannot determine if
special modifier keys (such as Shift, Alt and Control) were pressed.

• Events KeyUp and KeyDown test for special modifier keys (using KeyEventArgs). The dele-
gates are KeyPressEventHandler (KeyPressEventArgs) and KeyEventHandler
(KeyEventArgs).

• Class KeyEventArgs has properties KeyCode, KeyData and KeyValue.

• Property KeyCode returns the key pressed, but does not give any information about modifier keys.

• The KeyData property includes data about modifier keys.

• The KeyValue property returns the key code for the key pressed as an integer.

TERMINOLOGY
active window event argument
Alt property event delegate
ASCII character event driven
background color event handler
button event-handling model
Button class event keyword
button label EventArgs class
checkbox Events window in Visual Studio .NET
CheckBox class focus
checkbox label Font property
CheckedChanged event font style
click a button form
Click event Form class
click a mouse button GetCurrentDirectory method
component graphical user interface (GUI)
container GroupBox
control GUI component
Control property handle event
delegate HScrollBar class
deselected Image property
drag and drop InitializeComponent method
#endregion input data from the keyboard
Enter key key code
Enter mouse event key data
event key event

Chapter 12 Graphical User Interface Concepts: Part 1 517

SELF-REVIEW EXERCISES
12.1 State whether each of the following is true or false. If false, explain why.

a) A GUI is a pictorial interface to a program.
b) Windows Forms commonly are used to create GUIs.
c) A control is a nonvisible component.
d) All forms, components and controls are classes.
e) Events are based on properties.
f) Class Label is used to provide pictorial instructions or information.
g) Button presses raise events.
h) Checkboxes in the same group are mutually exclusive.
i) Scrollbars allow the user to maximize or minimize a set of data.
j) All mouse events use the same event arguments class.
k) Visual Studio .NET can register an event and create an empty event handler.

key value password box
keyboard PasswordChar property
KeyDown event picture box
KeyEventArgs class PictureBox class
KeyPress event radio button
KeyPressEventArgs class radio-button group
KeyUp event RadioButton class
label raise an event
Label class read-only text
list #region tag
menu register an event handler
menu bar Scroll event
mouse scrollbar
mouse click scrollbar in panel
mouse event ScrollEventArgs class
mouse move selecting an item from a menu
mouse press Shift property
MouseDown event SizeMode property
MouseEventArgs class System.Windows.Forms namespace
MouseEventHandler delegate Text property
MouseHover event text box
MouseLeave event TextBox class
MouseMove event TextChanged event
MouseUp event trigger an event
MouseWheel event type in a textbox
moving the mouse uneditable text or icon
multicast virtual key code
multicast event visual programming
MulticastDelegate class VScrollBar class
mutual exclusion widget
Name property window gadget
NewValue property Windows Form
panel XOR
Panel class

518 Graphical User Interface Concepts: Part 1 Chapter 12

12.2 Fill in the blanks in each of the following statements:
a) The active window is said to have the .
b) The form acts as a for the components that are added.
c) GUIs are driven.
d) Every method that handles the same event must have the same .
e) The information required when registering an event handler is the class and

the .
f) A textbox displays only a single character (such as an asterisk) as the user

types.
g) Class and class help arrange components on a GUI and provide

logical group for radio buttons.
h) Typical mouse events include , and .
i) events are generated when a key on the keyboard is pressed or released.
j) The modifier keys are , and .
k) A event or delegate can call multiple methods.

ANSWERS TO SELF-REVIEW EXERCISES
12.1 a) True. b) True. c) False. A control is a visible component. d) True. e) False. Events are
based on delegates. f) False. Class Label is used to provide text instructions or information. g) True.
h) False. Radio buttons in the same group are mutually exclusive. i) False. Scrollbars allow the user
to view data that normally cannot fit in its container. j) False. Some mouse events use EventArgs,
while others use MouseEventArgs. k) True.

12.2 a) focus. b) container. c) event. d) signature. e) event arguments, delegate. f) password. g)
GroupBox, Panel. h) mouse clicks, mouse presses, mouse moves. i) Key. j) Shift, Control, Alt. k)
multicast.

EXERCISES
12.3 Extend the program in Fig. 12.24 to include a CheckBox for every font style option. [Hint:
Use XOR rather than testing for every bit explicitly.]

12.4 Create the GUI in Fig. 12.33. You do not have to provide any functionality.

12.5 Create the GUI in Fig. 12.34. You do not have to provide any functionality.

12.6 Extend the program of Fig. 12.30 to include options for changing the size and color of the
lines drawn. Create a GUI similar to the one in Fig. 12.35. [Hint: Have variables to keep track of the
currently selected size (int) and color (Color object). Set them using the event handlers for the ra-
dio buttons. For the color, use the various Color constants (such as Color.Blue). When respond-
ing to the mouse moves, simply use the size and color variables to determine the proper size and
color.]

12.7 Write a program that plays “guess the number” as follows: Your program chooses the num-
ber to be guessed by selecting an integer at random in the range 1–1000. The program then displays
the following text in a label:

I have a number between 1 and 1000—can you guess my number?
Please enter your first guess.

A TextBox should be used to input the guess. As each guess is input, the background color should
change to either red or blue. Red indicates that the user is getting “warmer,” and blue indicates that
the user is getting “colder.” A Label should display either “Too High” or “Too Low” to help the
user choose a number closer toward the correct answer. When the user obtains the correct answer,

Chapter 12 Graphical User Interface Concepts: Part 1 519

“Correct!” should be displayed. The background should become green and the TextBox used
for input should become uneditable. Provide a Button that allows the user to play the game again.
When the Button is clicked, generate a new random number, change the background to the default
color and generate the input TextBox to editable.

Fig. 12.33 GUI for Exercise 12.4.

Fig. 12.34 GUI for Exercise 12.5.

Fig. 12.35 GUI for Exercise 12.6.

13
Graphical User

Interfaces Concepts:
Part 2

Objectives
• To be able to create menus, window tabs and multiple-

document-interface (MDI) programs.
• To understand the use of the ListView and
TreeView controls for displaying information.

• To be able to use hyperlinks with the LinkLabel
control.

• To be able to display lists using ListBoxes and
ComboBoxes.

• To create custom controls.
I claim not to have controlled events, but confess plainly that
events have controlled me.
Abraham Lincoln

A good symbol is the best argument, and is a missionary to
persuade thousands.
Ralph Waldo Emerson

Capture its reality in paint!
Paul Cézanne

But, soft! what light through yonder window breaks?
It is the east, and Juliet is the sun!
William Shakespeare

An actor entering through the door, you’ve got nothing. But
if he enters through the window, you’ve got a situation.
Billy Wilder

Chapter 13 Graphical User Interfaces Concepts: Part 2 521

13.1 Introduction
This chapter continues our study of GUIs. We begin our discussion of more advanced top-
ics with a commonly used GUI component, the menu, which presents a user with several
logically organized options. The reader will learn how to develop menus with the tools pro-
vided by Visual Studio .NET. We introduce LinkLabels, powerful GUI components that
enable the user to click the mouse to be taken to one of several destinations.

We consider GUI components that encapsulate smaller GUI components. We demon-
strate how to manipulate a list of values via a ListBox and how to combine several check-
boxes in a CheckedListBox. We also create drop-down lists using ComboBoxes and
display data hierarchically with a TreeView control. We present two important GUI com-
ponents—tab controls and multiple-document-interface windows. These components enable
developers to create real-world programs with sophisticated graphical user interfaces.

Most of the GUI components used in this book are included with Visual Studio
.NET. We show how to design custom controls and add those controls to the ToolBox.
The techniques in this chapter form the groundwork for the creation of complex GUIs
and custom controls.

13.2 Menus
Menus are used to provide groups of related commands for Windows applications. Al-
though these commands depend on the program, some—such as Open and Save—are
common to many applications. Menus are an integral part of GUIs, because they make user
actions possible without unnecessary “cluttering” of GUIs.

Outline

13.1 Introduction
13.2 Menus

13.3 LinkLabels

13.4 ListBoxes and CheckedListBoxes

13.4.1 ListBoxes

13.4.2 CheckedListBoxes

13.5 ComboBoxes

13.6 TreeViews

13.7 ListViews
13.8 Tab Control
13.9 Multiple-Document-Interface (MDI) Windows
13.10 Visual Inheritance
13.11 User-Defined Controls

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

522 Graphical User Interfaces Concepts: Part 2 Chapter 13

In Fig. 13.1, an expanded menu lists various commands (called menu items), plus sub-
menus (menus within a menu). Notice that the top-level menus appear in the left portion of
the figure, whereas any submenus or menu items are displayed to the right. The menu that
contains a menu item is called that menu item’s parent menu. A menu item that contains a
submenu is considered to be the parent of that submenu.

All menu items can have Alt key shortcuts (also called access shortcuts or hot keys),
which are accessed by pressing Alt and the underlined letter (for example, Alt + F retrieves
the File menu). Menus that are not top-level menus can have shortcut keys as well (com-
binations of Ctrl, Shift, Alt, F1, F2, letter keys etc.). Some menu items display checkmarks,
usually indicating that multiple options on the menu can be selected at once.

To create a menu, open the Toolbox, and drag a MainMenu control onto the form.
This creates a menu bar on the top of the form and places a MainMenu icon underneath it.
To select the MainMenu, click the icon. This setup is known as the Visual Studio .NET
Menu Designer, which allows the user to create and edit menus. Menus are like other
controls; they have properties, which can be accessed through the Properties window or
the Menu Designer (Fig. 13.2), and events, which can be accessed through the Class
Name and Method Name drop-down menus.

Look-and-Feel Observation 13.1
Buttons also can have access shortcuts. Place the & symbol just before the character via
which we wish to create a shortcut. To click the button, the user then presses Alt and the un-
derlined character. 13.1

Fig. 13.1 Expanded and checked menus.

Checked menu item

Submenu

Separator
bar

Shortcut key

isabled
ommand

Menu

Chapter 13 Graphical User Interfaces Concepts: Part 2 523

To add entries to the menu, click the Type Here textbox and type the text that should
appear in the menu. Each entry in the menu is of type MenuItem from the System.Win-
dows.Forms namespace. The menu itself is of type MainMenu. After the programmer
presses the Enter key, the menu item is added. Then, more Type Here textboxes appear,
allowing us to add items underneath or to the side of the original menu item (Fig. 13.2). To
create an access shortcut, type an ampersand (&) in front of the character to be underlined.
For example, to create the File menu item, type &File. The actual ampersand character is
displayed by typing &&. To add other shortcut keys (such as Ctrl + F9), set the Shortcut
property of the MenuItem.

Programmers can remove a menu item by selecting it with the mouse and pressing the
Delete key. Separator bars are inserted by right-clicking the menu and selecting Insert
Separator or by typing “-” as the menu text.

Menu items generate a Click event when selected. To create an empty event handler,
enter code-view mode, double click on the MenuItem in design view. Menus can also dis-
play the names of open windows in multiple-document-interface (MDI) forms (see
Section 13.9). Menu properties and events are summarized in Fig. 13.3.

Look-and-Feel Observation 13.2
It is conventional to place an ellipsis (…) after a menu item that brings up a dialog (such as
Save As...). Menu items that produce an immediate action without prompting the user (such
as Save) should not have an ellipsis following their name. 13.2

Class MenuTest (Fig. 13.4) creates a simple menu on a form. The form has a top-
level File menu with menu items About (displays a message box) and Exit (terminates the

Fig. 13.2 Visual Studio .NET Menu Designer.

MainMenu icon

Menu Designer

Place & character
before letter to be
underlined Text boxes used to

add items to menu

524 Graphical User Interfaces Concepts: Part 2 Chapter 13

program).The menu also includes a Format menu, which changes the text on a label. The
Format menu has submenus Color and Font, which change the color and font of the text
on a label.

Look-and-Feel Observation 13.3
Using common Windows shortcuts (such as Ctrl+F for Find operations and Ctrl+S for Save
operations) decreases an application’s learning curve. 13.3

We begin by dragging the MainMenu from the ToolBox onto the form. We then
create our entire menu structure, using the Menu Designer. The File menu has items
About (aboutMenuItem, line 21) and Exit (exitMenuItem, line 22); the Format
menu (formatMenu, line 25) has two submenus. The first submenu, Color (color-
MenuItem, line 28), contains menu items Black (blackMenuItem, line 29), Blue
(blueMenuItem, line 30), Red (redMenuItem, line 31) and Green (greenMenu-
Item, line 32). The second submenu, Font (fontMenuItem, line 40), contains menu
items Times New Roman (timesMenuItem, line 35), Courier (courierMenu-
Item, line 36), Comic Sans (comicMenuItem, line 37), a separator bar (separa-
torMenuItem, line 42), Bold (boldMenuItem, line 38) and Italic
(italicMenuItem, line 39).

MainMenu and
MenuItem events
and properties Description / Delegate and Event Arguments

MainMenu Properties

MenuItems Lists the MenuItems that are contained in the MainMenu.

RightToLeft Causes text to display from right to left. Useful for languages that are
read from right to left.

MenuItem Properties

Checked Indicates whether a menu item is checked (according to property
RadioCheck). Default False, meaning that the menu item is not
checked.

Index Specifies an item’s position in its parent menu.

MenuItems Lists the submenu items for a particular menu item.

MergeOrder Sets the position of a menu item when its parent menu is merged with
another menu.

MergeType Takes a value of the MenuMerge enumeration. Specifies how a par-
ent menu merges with another menu. Possible values are Add, Mer-
geItems, Remove and Replace.

RadioCheck Indicates whether a selected menu item appears as a radio button
(black circle) or displays a checkmark. True creates radio button,
False displays checkmark; default False.

Shortcut Specifies the shortcut key for the menu item (e.g., Ctrl + F9 can be
equivalent to clicking a specific item).

Fig. 13.3 MainMenu and MenuItem properties and events. (Part 1 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 525

ShowShortcut Indicates whether a shortcut key is shown beside menu item text.
Default is True, which displays the shortcut key.

Text Specifies the text to appear in the menu item. To create an Alt access
shortcut, precede a character with & (e.g., &File for File).

Common Event (Delegate EventHandler, event arguments EventArgs)

Click Generated when item is clicked or shortcut key is used. Default when
double-clicked in designer.

1 // Fig 13.4: MenuTest.cs
2 // Using menus to change font colors and styles.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class MenuTest : System.Windows.Forms.Form
12 {
13 // display label
14 private System.Windows.Forms.Label displayLabel;
15
16 // main menu (contains file and format menu)
17 private System.Windows.Forms.MainMenu mainMenu;
18
19 // file menu
20 private System.Windows.Forms.MenuItem fileMenuItem;
21 private System.Windows.Forms.MenuItem aboutMenuItem;
22 private System.Windows.Forms.MenuItem exitMenuItem;
23
24 // format menu
25 private System.Windows.Forms.MenuItem formatMenuItem;
26
27 // color submenu
28 private System.Windows.Forms.MenuItem colorMenuItem;
29 private System.Windows.Forms.MenuItem blackMenuItem;
30 private System.Windows.Forms.MenuItem blueMenuItem;
31 private System.Windows.Forms.MenuItem redMenuItem;
32 private System.Windows.Forms.MenuItem greenMenuItem;
33
34 // font submenu
35 private System.Windows.Forms.MenuItem timesMenuItem;

Fig. 13.4 Menus for changing text font and color. (Part 1 of 5.)

MainMenu and
MenuItem events
and properties Description / Delegate and Event Arguments

Fig. 13.3 MainMenu and MenuItem properties and events. (Part 2 of 2.)

526 Graphical User Interfaces Concepts: Part 2 Chapter 13

36 private System.Windows.Forms.MenuItem courierMenuItem;
37 private System.Windows.Forms.MenuItem comicMenuItem;
38 private System.Windows.Forms.MenuItem boldMenuItem;
39 private System.Windows.Forms.MenuItem italicMenuItem;
40 private System.Windows.Forms.MenuItem fontMenuItem;
41
42 private System.Windows.Forms.MenuItem separatorMenuItem;
43
44 [STAThread]
45 static void Main()
46 {
47 Application.Run(new MenuTest());
48 }
49
50 // display MessageBox
51 private void aboutMenuItem_Click(
52 object sender, System.EventArgs e)
53 {
54 MessageBox.Show(
55 "This is an example\nof using menus.",
56 "About", MessageBoxButtons.OK,
57 MessageBoxIcon.Information);
58 }
59
60 // exit program
61 private void exitMenuItem_Click(
62 object sender, System.EventArgs e)
63 {
64 Application.Exit();
65 }
66
67 // reset color
68 private void ClearColor()
69 {
70 // clear all checkmarks
71 blackMenuItem.Checked = false;
72 blueMenuItem.Checked = false;
73 redMenuItem.Checked = false;
74 greenMenuItem.Checked = false;
75 }
76
77 // update menu state and color display black
78 private void blackMenuItem_Click(
79 object sender, System.EventArgs e)
80 {
81 // reset checkmarks for color menu items
82 ClearColor();
83
84 // set color to black
85 displayLabel.ForeColor = Color.Black;
86 blackMenuItem.Checked = true;
87 }
88

Fig. 13.4 Menus for changing text font and color. (Part 2 of 5.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 527

89 // update menu state and color display blue
90 private void blueMenuItem_Click(
91 object sender, System.EventArgs e)
92 {
93 // reset checkmarks for color menu items
94 ClearColor();
95
96 // set color to blue
97 displayLabel.ForeColor = Color.Blue;
98 blueMenuItem.Checked = true;
99 }
100
101 // update menu state and color display red
102 private void redMenuItem_Click(
103 object sender, System.EventArgs e)
104 {
105 // reset checkmarks for color menu items
106 ClearColor();
107
108 // set color to red
109 displayLabel.ForeColor = Color.Red;
110 redMenuItem.Checked = true;
111 }
112
113 // update menu state and color display green
114 private void greenMenuItem_Click(
115 object sender, System.EventArgs e)
116 {
117 // reset checkmarks for color menu items
118 ClearColor();
119
120 // set color to green
121 displayLabel.ForeColor = Color.Green;
122 greenMenuItem.Checked = true;
123 }
124
125 // reset font types
126 private void ClearFont()
127 {
128 // clear all checkmarks
129 timesMenuItem.Checked = false;
130 courierMenuItem.Checked = false;
131 comicMenuItem.Checked = false;
132 }
133
134 // update menu state and set font to Times
135 private void timesMenuItem_Click(
136 object sender, System.EventArgs e)
137 {
138 // reset checkmarks for font menu items
139 ClearFont();
140

Fig. 13.4 Menus for changing text font and color. (Part 3 of 5.)

528 Graphical User Interfaces Concepts: Part 2 Chapter 13

141 // set Times New Roman font
142 timesMenuItem.Checked = true;
143 displayLabel.Font = new Font(
144 "Times New Roman", 14, displayLabel.Font.Style);
145 }
146
147 // update menu state and set font to Courier
148 private void courierMenuItem_Click(
149 object sender, System.EventArgs e)
150 {
151 // reset checkmarks for font menu items
152 ClearFont();
153
154 // set Courier font
155 courierMenuItem.Checked = true;
156 displayLabel.Font = new Font(
157 "Courier New", 14, displayLabel.Font.Style);
158 }
159
160 // update menu state and set font to Comic Sans MS
161 private void comicMenuItem_Click(
162 object sender, System.EventArgs e)
163 {
164 // reset checkmarks for font menu items
165 ClearFont();
166
167 // set Comic Sans font
168 comicMenuItem.Checked = true;
169 displayLabel.Font = new Font(
170 "Comic Sans MS", 14, displayLabel.Font.Style);
171 }
172
173 // toggle checkmark and toggle bold style
174 private void boldMenuItem_Click(
175 object sender, System.EventArgs e)
176 {
177 // toggle checkmark
178 boldMenuItem.Checked = !boldMenuItem.Checked;
179
180 // use Xor to toggle bold, keep all other styles
181 displayLabel.Font = new Font(
182 displayLabel.Font.FontFamily, 14,
183 displayLabel.Font.Style ^ FontStyle.Bold);
184 }
185
186 // toggle checkmark and toggle italic style
187 private void italicMenuItem_Click(
188 object sender, System.EventArgs e)
189 {
190 // toggle checkmark
191 italicMenuItem.Checked = !italicMenuItem.Checked;
192

Fig. 13.4 Menus for changing text font and color. (Part 4 of 5.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 529

The About menu item in the File menu displays a MessageBox when clicked (lines
54–57). The Exit menu item closes the application through static method Exit of class
Application (line 64). Class Application contains static methods used to con-
trol program execution. Method Exit causes our application to quit.

We made the items in the Color submenu (Black, Blue, Red and Green) mutually
exclusive—the user can select only one at a time (we explain how we did this shortly). To
indicate this behavior to the user, we set the menu item’s RadioCheck properties to
True. This causes a radio button to appear (instead of a checkmark) when a user selects a
color-menu item.

Each Color menu item has its own event handler. The event handler for color Black
is blackMenuItem_Click (lines 78–87). The event handlers for colors Blue, Red and
Green are blueMenuItem_Click (lines 90–99), redMenuItem_Click (lines 102–
111) and greenMenuItem_Click (lines 114–123), respectively. Each Color menu

193 // use Xor to toggle bold, keep all other styles
194 displayLabel.Font = new Font(
195 displayLabel.Font.FontFamily, 14,
196 displayLabel.Font.Style ^ FontStyle.Italic);
197 }
198
199 } // end class MenuTest

Fig. 13.4 Menus for changing text font and color. (Part 5 of 5.)

530 Graphical User Interfaces Concepts: Part 2 Chapter 13

item must be mutually exclusive, so each event handler calls method ClearColor (lines
68–75) before setting its corresponding Checked property to True. Method
ClearColor sets the Checked property of each color MenuItem to False, effec-
tively preventing more than one menu item from being checked at a time.

Software Engineering Observation 13.1
The mutual exclusion of menu items is not enforced by the MainMenu, even when the Ra-
dioCheck property is True. We must program this behavior. 13.3

Look-and-Feel Observation 13.4
Set the RadioCheck property to reflect the desired behavior of menu items. Use radio buttons
(RadioCheck property set to True) to indicate mutually exclusive menu items. Use check
marks (RadioCheck property set to False) for menu items that have no logical restriction.13.4

The Font menu contains three menu items for font types (Courier, Times New
Roman and Comic Sans) and two menu items for font styles (Bold and Italic). We add
a separator bar between the font-type and font-style menu items to indicate the distinction:
Font types are mutually exclusive, but styles are not. This means that a Font object can
specify only one font face at a time, but can set multiple styles at once (e.g., a font can be
both bold and italic). We set the font-type menu items to display checks. As with the Color
menu, we also must enforce mutual exclusion in our event handlers.

Event handlers for font-type menu items TimesRoman, Courier and ComicSans
are timesMenuItem_Click (lines 135–145), courierMenuItem_Click (lines
148–158) and comicMenuItem_Click (lines 161–171), respectively. These event han-
dlers behave in a manner similar to that of the event handlers for the Color menu items. Each
event handler clears the Checked properties for all font-type menu items by calling method
ClearFont (lines 126–132), then sets the Checked property of the menu item that gener-
ated the event to True. This enforces the mutual exclusion of the font-type menu items.

The event handlers for the Bold and Italic menu items (lines 174–197) use the bitwise
Xor operator. For each font style, the exclusive or operator (^) changes the text to include
the style or, if that style is already applied, to remove it. The toggling behavior provided by
the Xor operator is explained in Chapter 12, Graphical User Interfaces: Part 1. As
explained in Chapter 12, this program’s event-handling structure allows us to add and
remove menu entries while making minimal structural changes to the code.

13.3 LinkLabels
The LinkLabel control displays links to other objects, such as files or Web pages
(Fig. 13.5). A LinkLabel appears as underlined text (colored blue by default). When the
mouse moves over the link, the pointer changes to a hand; this is similar to the behavior of
a hyperlink in a Web page. The link can change color to indicate whether the link is new,
visited or active. When clicked, the LinkLabel generates a LinkClicked event (see
Fig. 13.6). Class LinkLabel is derived from class Label and therefore inherits all of
class Label’s functionality.

Class LinkLabelTest (Fig. 13.7) uses three LinkLabels, to link to the C:\
drive, the Deitel Web page (www.deitel.com) and the Notepad application, respec-
tively. The Text properties of the LinkLabels driveLinkLabel (line 14), dei-
telLinkLabel (line 15) and notepadLinkLabel (line 16) are set to describe each
link’s purpose.

Chapter 13 Graphical User Interfaces Concepts: Part 2 531

Look-and-Feel Observation 13.5
Although other controls can perform actions similar to those of a LinkLabel (such as the
opening of a Web page), LinkLabels indicate that a link can be followed—a regular label
or button does not necessarily convey that idea. 13.5

The event handlers for the LinkLabel instances call static method Start of class
Process (namespace System.Diagnostics). This method allows us to execute other
programs from our application. Method Start can take as arguments either the file to open
(a String) or the name of the application to run and its command-line arguments (two
Strings). Method Start’s arguments can be in the same form as if they were provided for
input to the Run command in Windows. To open a file that has a file type that Windows rec-
ognizes, simply insert the file’s full path name. The Windows operating system should be able
to use the application associated with the given file’s extension to open the file.

Fig. 13.5 LinkLabel control in the design phase and in running program.

LinkLabel
properties and events Description / Delegate and Event Arguments

Common Properties

ActiveLinkColor Specifies the color of the active link when clicked. Default is red.

LinkArea Specifies which portion of text in the LinkLabel is treated as part
of the link.

LinkBehavior Specifies the link’s behavior, such as how the link appears when the
mouse is placed over it.

LinkColor Specifies the original color of all links before they have been visited.
Default is blue.

Links Lists the LinkLabel.Link objects, which are the links contained
in the LinkLabel.

LinkVisited If True, link appears as if it were visited (its color is changed to that
specified by property VisitedLinkColor). Default False.

Text Specifies the text to appear on the control.

UseMnemonic If True, & character in Text property acts as a shortcut (similar to
the Alt shortcut in menus).

VisitedLinkColor Specifies the color of visited links. Default is Color.Purple.

Fig. 13.6 LinkLabel properties and events. (Part 1 of 2.)

LinkLabel
on a form

Hand image displays when
mouse moves over LinkLabel

532 Graphical User Interfaces Concepts: Part 2 Chapter 13

The event handler for driveLinkLabel’s LinkClicked events browses the C:\
drive (lines 25–30). Line 28 sets the LinkVisited property to True, which changes the
link’s color from blue to purple (we can configure the LinkVisited colors through the
Properties window in the Visual Studio .NET IDE). The event handler then passes
"C:\" to method Start (line 29), which opens a Windows Explorer window.

The event handler for deitelLinkLabel’s LinkClicked events (lines 33–39)
opens the Web page www.deitel.com in Internet Explorer. We achieve this by passing
the string "IExplore" and the Web-page address (lines 37–38), which opens Internet
Explorer. Line 36 sets the LinkVisited property to True.

The event handler for notepadLinkLabel’s LinkClicked events opens the
specified Notepad application (lines 42–51). Line 46 sets the link to appear as a visited link.
Line 50 passes the argument "notepad" to method Start, which calls notepad.exe.
Note that, in line 50, the .exe extension is not required—Windows can determine whether
the argument given to method Start is an executable file.

Common Event (Delegate LinkLabelLinkClickedEventHandler, event
arguments LinkLabelLinkClickedEventArgs)

LinkClicked Generated when link is clicked. Default when control is double-
clicked in designer.

1 // Fig. 13.7: LinkLabelTest.cs
2 // Using LinkLabels to create hyperlinks.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class LinkLabelTest : System.Windows.Forms.Form
12 {
13 // linklabels to C: drive, www.deitel.com and Notepad
14 private System.Windows.Forms.LinkLabel driveLinkLabel;
15 private System.Windows.Forms.LinkLabel deitelLinkLabel;
16 private System.Windows.Forms.LinkLabel notepadLinkLabel;
17
18 [STAThread]
19 static void Main()
20 {
21 Application.Run(new LinkLabelTest());
22 }

Fig. 13.7 LinkLabels used to link to a folder, a Web page and an application.
(Part 1 of 3.)

LinkLabel
properties and events Description / Delegate and Event Arguments

Fig. 13.6 LinkLabel properties and events. (Part 2 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 533

23
24 // browse C:\ drive
25 private void driveLinkLabel_LinkClicked(object sender,
26 System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
27 {
28 driveLinkLabel.LinkVisited = true;
29 System.Diagnostics.Process.Start("C:\\");
30 }
31
32 // load www.deitel.com in Web broswer
33 private void deitelLinkLabel_LinkClicked(object sender,
34 System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
35 {
36 deitelLinkLabel.LinkVisited = true;
37 System.Diagnostics.Process.Start(
38 "IExplore", "http://www.deitel.com");
39 }
40
41 // run application Notepad
42 private void notepadLinkLabel_LinkClicked(
43 object sender,
44 System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
45 {
46 notepadLinkLabel.LinkVisited = true;
47
48 // program called as if in run
49 // menu and full path not needed
50 System.Diagnostics.Process.Start("notepad");
51 }
52
53 } // end class LinkLabelTest

Fig. 13.7 LinkLabels used to link to a folder, a Web page and an application.
(Part 2 of 3.)

534 Graphical User Interfaces Concepts: Part 2 Chapter 13

13.4 ListBoxes and CheckedListBoxes
The ListBox control allows the user to view and select from multiple items in a list.
ListBoxes are static GUI entities, which means that users cannot enter new items in the
list. The CheckedListBox control extends a ListBox by including check boxes next
to each item in the list. This allows users to place checks on multiple items at once, as is
possible in a CheckBox control (users also can select multiple items simultaneously from
a ListBox, but not by default). Figure 13.8 displays a sample ListBox and a sample
CheckedListBox. In both controls, scroll bars appear if the number of items is too large
to be displayed simultaneously in the component. Figure 13.9 lists common ListBox
properties, methods and events.

The SelectionMode property determines the number of items that can be selected.
This property has the possible values None, One, MultiSimple and MultiExtended
(from the SelectionMode enumeration)—the differences among these settings are
explained in Fig. 13.9. The SelectedIndexChanged event occurs when the user
selects a new item.

Fig. 13.7 LinkLabels used to link to a folder, a Web page and an application.
(Part 3 of 3.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 535

Fig. 13.8 ListBox and CheckedListBox on a form.

ListBox
properties, methods
and events Description / Delegate and Event Arguments

Common Properties

Items Lists the collection of items within the ListBox.

MultiColumn Indicates whether the ListBox can break a list into multiple col-
umns. Multiple columns are used to make vertical scroll bars unnec-
essary.

SelectedIndex Returns the index of the currently selected item. If the user selects
multiple items, this method arbitrarily returns one of the selected
indices; if no items have been selected, the method returns -1.

SelectedIndices Returns a collection of the indices of all currently selected items.

SelectedItem Returns a reference to the currently selected item (if multiple items
are selected, it returns the item with the lowest index number).

SelectedItems Returns a collection of the currently selected item(s).

SelectionMode Determines the number of items that can be selected and the means
through which multiple items can be selected. Values None, One,
MultiSimple (multiple selection allowed) and MultiExtended
(multiple selection allowed via a combination of arrow keys, mouse
clicks and Shift and Control buttons).

Sorted Indicates whether items appear in alphabetical order. True causes
alphabetization; default is False.

Fig. 13.9 ListBox properties, methods and events. (Part 1 of 2.)

CheckedListBox

ListBox

Scroll bars appear
if necessary

Selected items

Checked item

536 Graphical User Interfaces Concepts: Part 2 Chapter 13

Both the ListBox and CheckedListBox have properties Items, Selecte-
dItem and SelectedIndex. Property Items returns all the objects in the list as a
collection. Collections are a common way of exposing lists of Objects in the .NET
framework. Many .NET GUI components (e.g., ListBoxes) use collections to expose
lists of internal objects (e.g., items contained within a ListBox). We discuss collections
further in Chapter 23, Data Structures and Collections. Property SelectedItem
returns the currently selected item. If the user can select multiple items, use collection
SelectedItems to return all the selected items as a collection. Property Selecte-
dIndex returns the index of the selected item—if there could be more than one, use
property SelectedIndices. If no items are selected, property SelectedIndex
returns -1. Method GetSelected takes an index and returns True if the corre-
sponding item is selected.

To add items to the ListBox or the CheckedListBox we must add objects to its
Items collection. This can be accomplished by invoking method Add to add a String
to the ListBox’s or CheckedListBox’s Items collection. For example, we could
write

myListBox.Items.Add("myListItem")

to add String myListItem to ListBox myListBox. To add multiple objects, program-
mers can either use method Add multiple times or use method AddRange to add an array
of objects. Classes ListBox and CheckedListBox use each submitted object’s
ToString method to determine the label for the corresponding object’s entry in the list.
This allows developers to add different objects to a ListBox or a CheckedListBox
that later can be returned through properties SelectedItem and SelectedItems.

Alternatively, we can add items to ListBoxes and CheckedListBoxes visually
by examining the Items property in the Properties window. Clicking the ellipsis opens
the String Collection Editor, a text area in which we can type the items to add; each item
should appear on a separate line (Fig. 13.10). Visual Studio .NET then adds these Strings
to the Items collection inside method InitializeComponent.

Common Method

GetSelected Takes an index, and returns True if the corresponding item is
selected.

Common Event (Delegate EventHandler, event arguments EventArgs)

SelectedIndex-
Changed

Generated when selected index changes. Default when control is dou-
ble-clicked in designer.

ListBox
properties, methods
and events Description / Delegate and Event Arguments

Fig. 13.9 ListBox properties, methods and events. (Part 2 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 537

13.4.1 ListBoxes

Class ListBoxTest (Fig. 13.11) enables the user to add, remove and clear items from
ListBox displayListBox (line 14). Class ListBoxTest uses TextBox input-
TextBox (line 17) to allow the user to type in a new item. When the user clicks button
addButton (line 20), the new item appears in displayListBox. Similarly, if the user
selects an item and clicks removeButton (line 21), the item is deleted. Control clear-
Button (line 22) deletes all entries in displayListBox. The user terminates the ap-
plication by clicking button exitButton (line 23).

The addButton_Click event handler (lines 33–38) calls method Add of the Items
collection in the ListBox. This method takes a String as the item to add to display-
ListBox. In this case, the String used is the user-input text, or inputTextBox.Text
(line 36). After the item is added, txtInput.Text is cleared (line 37).

The removeButton_Click event handler (lines 41–48) calls method Remove of
the Items collection. Event handler removeButton_Click first uses property
SelectedIndex to check which index is selected. Unless SelectedIndex is -1 (line
45), the handler removes the item that corresponds to the selected index.

Fig. 13.10 String Collection Editor.

1 // Fig 13.11: ListBoxTest.cs
2 // Program to add, remove and clear list box items.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class ListBoxTest : System.Windows.Forms.Form
12 {
13 // contains user-input list of elements
14 private System.Windows.Forms.ListBox displayListBox;
15

Fig. 13.11 ListBox used in a program to add, remove and clear items. (Part 1 of 3.)

538 Graphical User Interfaces Concepts: Part 2 Chapter 13

16 // user input textbox
17 private System.Windows.Forms.TextBox inputTextBox;
18
19 // add, remove, clear and exit command buttons
20 private System.Windows.Forms.Button addButton;
21 private System.Windows.Forms.Button removeButton;
22 private System.Windows.Forms.Button clearButton;
23 private System.Windows.Forms.Button exitButton;
24
25 [STAThread]
26 static void Main()
27 {
28 Application.Run(new ListBoxTest());
29 }
30
31 // add new item (text from input box)
32 // and clear input box
33 private void addButton_Click(
34 object sender, System.EventArgs e)
35 {
36 displayListBox.Items.Add(inputTextBox.Text);
37 inputTextBox.Clear();
38 }
39
40 // remove item if one selected
41 private void removeButton_Click(
42 object sender, System.EventArgs e)
43 {
44 // remove only if item selected
45 if (displayListBox.SelectedIndex != -1)
46 displayListBox.Items.RemoveAt(
47 displayListBox.SelectedIndex);
48 }
49
50 // clear all items
51 private void clearButton_Click(
52 object sender, System.EventArgs e)
53 {
54 displayListBox.Items.Clear();
55 }
56
57 // exit application
58 private void exitButton_Click(
59 object sender, System.EventArgs e)
60 {
61 Application.Exit();
62 }
63
64 } // end class ListBoxTest

Fig. 13.11 ListBox used in a program to add, remove and clear items. (Part 2 of 3.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 539

The event handler for clearButton_Click (lines 51–55) calls method Clear of
the Items collection (line 54). This removes all the entries in displayListBox.
Finally, event handler exitButton_Click (lines 58–62) terminates the application,
using method Application.Exit (line 61).

13.4.2 CheckedListBoxes

The CheckedListBox control derives from class ListBox and includes a checkbox
next to each item in the list. As in ListBoxes, items can be added via methods Add and
AddRange or through the String Collection Editor. CheckedListBoxes imply that
multiple items can be selected, and the only possible values for the SelectionMode
property are SelectionMode.None and SelectionMode.One. Selection-
Mode.One allows multiple selection, because checkboxes imply that there are no logical
restrictions on the items—the user can select as many items as required. Thus, the only
choice is whether to give the user multiple selection or no selection at all. This keeps the
CheckedListBox’s behavior consistent with that of CheckBoxes. The programmer is
unable to set the last two SelectionMode values, MultiSimple and MultiEx-
tended, because the only logical selection modes are handled by None and One. Com-
mon properties and events of CheckedListBoxes appear in Fig. 13.12.

Fig. 13.11 ListBox used in a program to add, remove and clear items. (Part 3 of 3.)

540 Graphical User Interfaces Concepts: Part 2 Chapter 13

Common Programming Error 13.1
The IDE displays an error message if the programmer attempts to set the Selection-
Mode property to MultiSimple or MultiExtended in the Properties window of a
CheckedListBox; if this value is set by the programmer in the code, a runtime error
occurs. 13.1

Event ItemCheck is generated whenever a user checks or unchecks a
CheckedListBox item. Event argument properties CurrentValue and NewValue
return CheckState values for the current and the new state of the item, respectively. A
comparison of these values allows us to determine whether the CheckedListBox item
was checked or unchecked. The CheckedListBox control retains the Selecte-
dItems and SelectedIndices properties (it inherits them from class ListBox).
However, it also includes properties CheckedItems and CheckedIndices, which
return information about the checked items and indices.

In Fig. 13.13, class CheckedListBoxTest uses a CheckedListBox and a
ListBox to display a user’s selection of books. The CheckedListBox named
inputCheckedListBox (lines 14–15) allows the user to select multiple titles. In the
String Collection Editor, items were added for some Deitel books: C++, Java, VB,
Internet & WWW, Perl, Python, Wireless Internet and Advanced Java (the acronym HTP
stands for “How to Program”). The ListBox, named displayListBox (line 18), dis-
plays the user’s selection. In the screen shots accompanying this example, the
CheckedListBox appears to the left, the ListBox to the right.

CheckedListBox
properties, methods
and events Description / Delegate and Event Arguments

Common Properties (All the ListBox properties and events are inherited by
CheckedListBox.)

CheckedItems Lists the collection of items that are checked. This is distinct from the
selected items, which are highlighted (but not necessarily checked).
Note: There can be at most one selected item at any given time.

CheckedIndices Returns indices for the items that are checked. Not the same as the
selected indices.

SelectionMode Determines how many items can be checked. Only possible values are
One (allows multiple checks to be placed) or None (does not allow
any checks to be placed).

Common Method

GetItemChecked Takes an index, and returns True if corresponding item is checked.

Common Event (Delegate ItemCheckEventHandler, event arguments Item-
CheckEventArgs)

ItemCheck Generated when an item is checked or unchecked.

Fig. 13.12 CheckedListBox properties, methods and events. (Part 1 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 541

ItemCheckEventArgs Properties

CurrentValue Indicates whether current item is checked or unchecked. Possible val-
ues are Checked, Unchecked and Indeterminate.

Index Returns index of the item that changed.

NewValue Specifies the new state of item.

1 // Fig. 13.13: CheckedListBoxTest.cs
2 // Using the checked list boxes to add items to a list box
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class CheckedListBoxTest : System.Windows.Forms.Form
12 {
13 // list of available book titles
14 private System.Windows.Forms.CheckedListBox
15 inputCheckedListBox;
16
17 // user selection list
18 private System.Windows.Forms.ListBox displayListBox;
19
20 [STAThread]
21 static void Main()
22 {
23 Application.Run(new CheckedListBoxTest());
24 }
25
26 // item about to change,
27 // add or remove from displayListBox
28 private void inputCheckedListBox_ItemCheck(
29 object sender,
30 System.Windows.Forms.ItemCheckEventArgs e)
31 {
32 // obtain reference of selected item
33 string item =
34 inputCheckedListBox.SelectedItem.ToString();
35

Fig. 13.13 CheckedListBox and ListBox used in a program to display a user
selection. (Part 1 of 2.)

CheckedListBox
properties, methods
and events Description / Delegate and Event Arguments

Fig. 13.12 CheckedListBox properties, methods and events. (Part 2 of 2.)

542 Graphical User Interfaces Concepts: Part 2 Chapter 13

When the user checks or unchecks an item in CheckedListBox inputCh-
eckedListBox, the system generates an ItemCheck event. Event handler
inputCheckedListBox_ItemCheck (lines 28–43) handles the event. An if/else
control structure (lines 38–41) determines whether the user checked or unchecked an item
in the CheckedListBox. Line 38 uses the NewValue property to test for whether the
item is being checked (CheckState.Checked). If the user checks an item, line 39 adds
the checked entry to the ListBox displayListBox. If the user unchecks an item, line
41 removes the corresponding item from displayListBox.

13.5 ComboBoxes
The ComboBox control combines TextBox features with a drop-down list. A drop-down
list is a GUI component that contains a list from which values can be chosen. It usually ap-
pears as a text box with a down arrow to its right. By default, the user can enter text into
the text box or click the down arrow to display a list of predefined items. If a user chooses
an element from this list, that element is displayed in the text box. If the list contains more
elements than can be displayed in the drop-down list, a scrollbar appears. The maximum
number of items that a drop-down list can display at one time is set by property MaxDrop-
DownItems. Figure 13.14 shows a sample ComboBox in three different states.

36 // if item checked add to listbox
37 // otherwise remove from listbox
38 if (e.NewValue == CheckState.Checked)
39 displayListBox.Items.Add(item);
40 else
41 displayListBox.Items.Remove(item);
42
43 } // end method inputCheckedListBox_Click
44
45 } // end class CheckedListBox

Fig. 13.13 CheckedListBox and ListBox used in a program to display a user
selection. (Part 2 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 543

As with the ListBox control, the developer can add objects to collection Items pro-
grammatically, using methods Add and AddRange, or visually, with the String Collec-
tion Editor. Figure 13.15 lists common properties and events of class ComboBox.

Fig. 13.14 ComboBox demonstration.

ComboBox events
and properties Description / Delegate and Event Arguments

Common Properties

DropDownStyle Determines the type of combo box. Value Simple means that the
text portion is editable and the list portion is always visible. Value
DropDown (the default) means that the text portion is editable, but
the user must click an arrow button to see the list portion. Value
DropDownList means that the text portion is not editable and the
user must click the arrow button to see the list portion.

Items The collection of items in the ComboBox control.

MaxDropDownItems Specifies the maximum number of items (between 1 and 100) that
can display in the drop-down list. If the number of items exceeds the
maximum number of items to display, a scroll bar appears.

SelectedIndex Returns index of currently selected item. If there is no currently
selected item, -1 is returned.

SelectedItem Returns a reference to the currently selected item.

Sorted Specifies whether items in a list are alphabetized. If True, items
appear in alphabetical order. Default is False.

Common Event (Delegate EventHandler, event arguments EventArgs)

SelectedIndex-
Changed

Generated when the selected index changes (such as when a check
box has been checked or unchecked). Default when control is double-
clicked in designer.

Fig. 13.15 ComboBox properties and events.

Click the down arrow to
display items in drop-down list

Selecting an item from drop-
down list changes text in textbox

544 Graphical User Interfaces Concepts: Part 2 Chapter 13

Look-and-Feel Observation 13.6
Use a ComboBox to save space on a GUI. The disadvantage is that, unlike with a ListBox,
the user cannot see available items without scrolling. 13.6

Property DropDownStyle determines the type of ComboBox. Style Simple does
not display a drop-down arrow. Instead, a scrollbar appears next to the control, allowing the
user to select a choice from the list. The user can also type in a selection. Style DropDown
(the default) displays a drop-down list when the down arrow is clicked (or the down arrow
key is pressed). The user can type a new item into the ComboBox.

The last style is DropDownList, which displays a drop-down list but does not allow
the user to enter a new item. Drop-down lists save room, so a ComboBox should be used
when GUI space is limited.

The ComboBox control has properties Items (a collection), SelectedItem and
SelectedIndex, which are similar to the corresponding properties in ListBox. There
can be at most one selected item in a ComboBox (if zero, then SelectedIndex is -1).
When the selected item changes, event SelectedIndexChanged is generated.

Class ComboBoxTest (Fig. 13.16) allows users to select a shape to draw—an empty
or filled circle, ellipse, square or pie—by using a ComboBox. The combo box in this
example is uneditable, so the user cannot input a custom item.

Look-and-Feel Observation 13.7
Make lists (such as ComboBoxes) editable only if the program is designed to accept user-sub-
mitted elements. Otherwise, the user might enter a custom item and then be unable to use it. 13.7

After creating ComboBox imageComboBox (line 14), we make it uneditable by set-
ting its DropDownStyle to DropDownList in the Properties window. Next, we add
items Circle, Square, Ellipse, Pie, Filled Circle, Filled Square,
Filled Ellipse and Filled Pie to the Items collection. We added these items
using the String Collection Editor. Whenever the user selects an item from image-
ComboBox, the system generates a SelectedIndexChanged event. Event handler
imageComboBox_SelectedIndexChanged (lines 23–77) handles these events.
Lines 27–34 create a Graphics object, a Pen and a SolidBrush, with which the pro-
gram draws on the form. The Graphics object (line 22) allows a pen or brush to draw on
a component, using one of several Graphics methods. The Pen object is used by
methods drawEllipse, drawRectangle and drawPie (lines 43–56) to draw the
outlines of their corresponding shapes. The SolidBrush object is used by methods fil-
lEllipse, fillRectangle and fillPie (lines 59–72) to draw their corresponding
solid shapes. Line 37 colors the entire form White, using Graphics method Clear.
These methods are discussed in greater detail in Chapter 16, Graphics and Multimedia.

1 // Fig. 13.16: ComboBoxTest.cs
2 // Using ComboBox to select shape to draw
3
4 using System;
5 using System.Drawing;
6 using System.Collections;

Fig. 13.16 ComboBox used to draw a selected shape. (Part 1 of 3.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 545

7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class ComboBoxTest : System.Windows.Forms.Form
12 {
13 // contains shape list (circle, square, ellipse, pie)
14 private System.Windows.Forms.ComboBox imageComboBox;
15
16 [STAThread]
17 static void Main()
18 {
19 Application.Run(new ComboBoxTest());
20 }
21
22 // get selected index, draw shape
23 private void imageComboBox_SelectedIndexChanged(
24 object sender, System.EventArgs e)
25 {
26 // create graphics object, pen and brush
27 Graphics myGraphics = base.CreateGraphics();
28
29 // create Pen using color DarkRed
30 Pen myPen = new Pen(Color.DarkRed);
31
32 // create SolidBrush using color DarkRed
33 SolidBrush mySolidBrush =
34 new SolidBrush(Color.DarkRed);
35
36 // clear drawing area setting it to color White
37 myGraphics.Clear(Color.White);
38
39 // find index, draw proper shape
40 switch (imageComboBox.SelectedIndex)
41 {
42 case 0: // case circle is selected
43 myGraphics.DrawEllipse(
44 myPen, 50, 50, 150, 150);
45 break;
46 case 1: // case rectangle is selected
47 myGraphics.DrawRectangle(
48 myPen, 50, 50, 150, 150);
49 break;
50 case 2: // case ellipse is selected
51 myGraphics.DrawEllipse(
52 myPen, 50, 85, 150, 115);
53 break;
54 case 3: // case pie is selected
55 myGraphics.DrawPie(
56 myPen, 50, 50, 150, 150, 0, 45);
57 break;

Fig. 13.16 ComboBox used to draw a selected shape. (Part 2 of 3.)

546 Graphical User Interfaces Concepts: Part 2 Chapter 13

58 case 4: // case filled circle is selected
59 myGraphics.FillEllipse(
60 mySolidBrush, 50, 50, 150, 150);
61 break;
62 case 5: // case filled rectangle is selected
63 myGraphics.FillRectangle(
64 mySolidBrush, 50, 50, 150, 150);
65 break;
66 case 6: // case filled ellipse is selected
67 myGraphics.FillEllipse(
68 mySolidBrush, 50, 85, 150, 115);
69 break;
70 case 7: // case filled pie is selected
71 myGraphics.FillPie(
72 mySolidBrush, 50, 50, 150, 150, 0, 45);
73 break;
74
75 } // end switch
76
77 } // end method imageComboBox_SelectedIndexChanged
78
79 } // end class ComboBoxTest

Fig. 13.16 ComboBox used to draw a selected shape. (Part 3 of 3.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 547

The application draws a particular shape specified by the selected item’s index. The
switch structure (lines 40–75) uses imageComboBox.SelectedIndex to deter-
mine which item the user selected. Class Graphics method DrawEllipse (lines 43–
44) takes a Pen, the x- and y-coordinates of the center and the width and height of the
ellipse to draw. The origin of the coordinate system is in the upper left corner of the form;
the x-coordinate increases to the right, the y-coordinate increases downward. A circle is a
special case of an ellipse (the height and width are equal). Lines 43–44 draw a circle. Lines
51–52 draw an ellipse that has different values for height and width.

Class Graphics method DrawRectangle (lines 47–48) takes a Pen, the x- and
y-coordinates of the upper-left corner and the width and height of the rectangle to draw.
Method DrawPie (line 55–56) draws a pie as a portion of an ellipse. The ellipse is
bounded by a rectangle. Method DrawPie takes a Pen, the x- and y-coordinates of the
upper-left corner of the rectangle, its width and height, the start angle (in degrees) and
the sweep angle (in degrees) of the pie. Angles increase clockwise. The FillEllipse
(lines 59–60 and 67–68), FillRectange (lines 63–64) and FillPie (lines 71–72)
methods are similar to their unfilled counterparts, except that they take a SolidBrush
instead of a Pen. Some of the drawn shapes are illustrated in the screen shots at the
bottom of Fig. 13.16.

13.6 TreeViews
The TreeView control displays nodes hierarchically on a tree. Traditionally, nodes are
objects that contain values and can refer to other nodes. A parent node contains child nodes,
and the child nodes can be parents to other nodes. Two child nodes that have the same par-
ent node are considered sibling nodes. A tree is a collection of nodes, usually organized in
a hierarchical manner. The first parent node of a tree is the root node (a TreeView can
have multiple roots). For example, the file system of a computer can be represented as a
tree. The top-level directory (perhaps C:) would be the root, each subfolder of C: would
be a child node and each child folder could have its own children. TreeView controls are
useful for displaying hierarchal information, such as the file structure that we just men-
tioned. We cover nodes and trees in greater detail in Chapter 24, Data Structures.
Figure 13.17 displays a sample TreeView control on a form.

A parent node can be expanded or collapsed by clicking the plus or minus box to its
left. Nodes without children do not have an expand or collapse box.

The nodes displayed in a TreeView are instances of class TreeNode. Each
TreeNode has a Nodes collection (type TreeNodeCollection), which contains a
list of other TreeNodes—its children. The Parent property returns a reference to the
parent node (or null if the node is a root node). Figure 13.18 and Fig. 13.19 list the
common properties of TreeViews and TreeNodes and an event of TreeViews.

To add nodes to the TreeView visually, click the ellipsis by the Nodes property
in the Properties window. This opens the TreeNode Editor, which displays an empty
tree representing the TreeView (Fig. 13.20). There are buttons to create a root, to add
or delete a node.

To add nodes through code, we first must create a root node. Make a new TreeNode
object and pass it a String to display. Then, use method Add to add this new TreeNode
to the TreeView’s Nodes collection. Thus, to add a root node to TreeView myTree-
View, write

548 Graphical User Interfaces Concepts: Part 2 Chapter 13

myTreeView.Nodes.Add(New TreeNode(RootLabel))

where myTreeView is the TreeView to which we are adding nodes, and RootLabel is the
text to display in myTreeView. To add children to a root node, add new TreeNodes to its
Nodes collection. We select the appropriate root node from the TreeView by writing

myTreeView.Nodes(myIndex)

where myIndex is the root node’s index in myTreeView’s Nodes collection. We add nodes
to child nodes through the same process by which we added root nodes to myTreeView. To
add a child to the root node at index myIndex, write

myTreeView.Nodes(myIndex).Nodes.Add(New TreeNode(ChildLabel))

Fig. 13.17 TreeView displaying a sample tree.

TreeView
properties and events Description / Delegate and Event Arguments

Common Properties

CheckBoxes Indicates whether checkboxes appear next to nodes. True displays
checkboxes. Default is False.

ImageList Indicates the ImageList used to display icons by the nodes. An
ImageList is a collection that contains a number of Image
objects.

Nodes Lists the collection of TreeNodes in the control. Contains methods
Add (adds a TreeNode object), Clear (deletes the entire collec-
tion) and Remove (deletes a specific node). Removing a parent node
deletes all its children.

Fig. 13.18 TreeView properties and events. (Part 1 of 2.)

Click - to collapse node
and hide child nodes

Click + to expand node
and display child nodes

Root node

Child nodes

Chapter 13 Graphical User Interfaces Concepts: Part 2 549

SelectedNode Currently selected node.

Common Event (Delegate TreeViewEventHandler, event arguments Tree-
ViewEventArgs)

AfterSelect Generated after selected node changes. Default when double-clicked
in designer.

TreeNode properties
and methods Description / Delegate and Event Arguments

Common Properties

Checked Indicates whether the TreeNode is checked. (CheckBoxes
property must be set to True in parent TreeView.)

FirstNode Specifies the first node in the Nodes collection (i.e., first child in
tree).

FullPath Indicates the path of the node, starting at the root of the tree.

ImageIndex Specifies the index of the image to be shown when the node is
deselected.

LastNode Specifies the last node in the Nodes collection (i.e., last child in
tree).

NextNode Next sibling node.

Nodes The collection of TreeNodes contained in the current node (i.e.,
all the children of the current node). Contains methods Add (adds
a TreeNode object), Clear (deletes the entire collection) and
Remove (deletes a specific node). Removing a parent node deletes
all its children.

PrevNode Indicates the previous sibling node.

SelectedImageIndex Specifies the index of the image to use when the node is selected.

Text Specifies the text to display in the TreeView.

Common Methods

Collapse Collapses a node.

Expand Expands a node.

ExpandAll Expands all the children of a node.

GetNodeCount Returns the number of child nodes.

Fig. 13.19 TreeNode properties and methods.

TreeView
properties and events Description / Delegate and Event Arguments

Fig. 13.18 TreeView properties and events. (Part 2 of 2.)

550 Graphical User Interfaces Concepts: Part 2 Chapter 13

Class TreeViewDirectoryStructureTest (Fig. 13.21) uses a TreeView to
display the directory file structure on a computer. The root node is the C: drive, and each
subfolder of C: becomes a child. This layout is similar to that used in Windows
Explorer. Folders can be expanded or collapsed by clicking the plus or minus boxes that
appear to their left.

When TreeViewDirectoryStructureTest loads, the system generates a
Load event, which is handled by event handler TreeViewDirectoryStruc-
tureTest_Load (lines 64–72). Line 69 adds a root node (C:) to our TreeView, named
directoryTreeView. C: is the root folder for the entire directory structure. Lines 70–
71 call method PopulateTreeView (lines 25–61), which takes a directory (a String)
and a parent node. Method PopulateTreeView then creates child nodes corresponding
to the subdirectories of the directory that was passed to it.

Fig. 13.20 TreeNode Editor.

1 // Fig. 13.21: TreeViewDirectoryStructureTest.cs
2 // Using TreeView to display directory structure
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.IO;
11

Fig. 13.21 TreeView used to display directories. (Part 1 of 3.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 551

12 public class TreeViewDirectoryStructureTest
13 : System.Windows.Forms.Form
14 {
15 // contains view of c: drive directory structure
16 private System.Windows.Forms.TreeView directoryTreeView;
17
18 [STAThread]
19 static void Main()
20 {
21 Application.Run(
22 new TreeViewDirectoryStructureTest());
23 }
24
25 public void PopulateTreeView(
26 string directoryValue, TreeNode parentNode)
27 {
28 // populate current node with subdirectories
29 string[] directoryArray =
30 Directory.GetDirectories(directoryValue);
31
32 // populate current node with subdirectories
33 try
34 {
35 if (directoryArray.Length != 0)
36 {
37 // for every subdirectory, create new TreeNode,
38 // add as child of current node and recursively
39 // populate child nodes with subdirectories
40 foreach (string directory in directoryArray)
41 {
42 // create TreeNode for current directory
43 TreeNode myNode = new TreeNode(directory);
44
45 // add current directory node to parent node
46 parentNode.Nodes.Add(myNode);
47
48 // recursively populate every subdirectory
49 PopulateTreeView(directory, myNode);
50 }
51
52 } // end if
53 }
54
55 // catch exception
56 catch (UnauthorizedAccessException)
57 {
58 parentNode.Nodes.Add("Access denied");
59 }
60
61 } // end PopulateTreeView
62

Fig. 13.21 TreeView used to display directories. (Part 2 of 3.)

552 Graphical User Interfaces Concepts: Part 2 Chapter 13

Method PopulateTreeView (lines 25–61) obtains a list of subdirectories, using
method GetDirectories of class Directory (namespace System.IO) on lines
29–30. Method GetDirectories takes a String (the current directory) and returns an
array of Strings (the subdirectories). If a directory is not accessible for security reasons,
an UnauthorizedAccessException is thrown. Lines 56–59 catch this exception
and add a node containing “Access Denied” instead of displaying the subdirectories.

63 // called by system when form loads
64 private void TreeViewDirectoryStructureTest_Load(
65 object sender, System.EventArgs e)
66 {
67 // add c:\ drive to directoryTreeView and
68 // insert its subfolders
69 directoryTreeView.Nodes.Add("C:\\");
70 PopulateTreeView(
71 "C:\\", directoryTreeView.Nodes[0]);
72 }
73
74 } // end class TreeViewDirectoryStructure

Fig. 13.21 TreeView used to display directories. (Part 3 of 3.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 553

If there are accessible subdirectories, each String in the directoryArray is used
to create a new child node (line 43). We use method Add (line 46) to add each child node
to the parent. Then, method PopulateTreeView is called recursively on every subdi-
rectory (line 49) and eventually populates the entire directory structure. Our recursive algo-
rithm causes our program to have an initial delay when it loads—it must create a tree for
the entire C: drive. However, once the drive folder names are added to the appropriate
Nodes collection, they can be expanded and collapsed without delay. In the next section,
we present an alternative algorithm to solve this problem.

13.7 ListViews
The ListView control is similar to a ListBox, in that both display lists from which the
user can select one or more items (to see an example of a ListView, look ahead to the
output of Fig. 13.24). The important difference between the two classes is that a List-
View can display icons alongside the list items in a variety of ways (controlled by its Im-
ageList property). Property MultiSelect (a boolean) determines whether multiple
items can be selected. Checkboxes can be included by setting property CheckBoxes (a
boolean) to True, making the ListView’s appearance similar to that of a
CheckedListBox. The View property specifies the layout of the ListBox. Property
Activation determines the method by which the user selects a list item. The details of
these properties are explained in Fig. 13.22.

ListView allows us to define the images used as icons for ListView items. To dis-
play images, we must use an ImageList component. Create one by dragging it onto a
form from the ToolBox. Then, click the Images collection in the Properties window
to display the Image Collection Editor (Fig. 13.23). Here, developers can browse for
images that they wish to add to the ImageList, which contains an array of Images. Once
the images have been defined, set property SmallImageList of the ListView to the
new ImageList object. Property SmallImageList specifies the image list for the
small icons. Property LargeImageList sets the ImageList for large icons. Icons for
the ListView items are selected by setting the item’s ImageIndex property to the
appropriate array index.

ListView events
and properties Description / Delegate and Event Arguments

Common Properties

Activation Determines how the user activates an item. This property takes a
value in the ItemActivation enumeration. Possible values are
OneClick (single-click activation), TwoClick (double-click acti-
vation, item changes color when selected) and Standard (double-
click activation).

CheckBoxes Indicates whether items appear with checkboxes. True displays
checkboxes. Default is False.

LargeImageList Indicates the ImageList used when displaying large icons.

Fig. 13.22 ListView properties and events. (Part 1 of 2.)

554 Graphical User Interfaces Concepts: Part 2 Chapter 13

Class ListViewTest (Fig. 13.24) displays files and folders in a ListView, along
with small icons representing each file or folder. If a file or folder is inaccessible because
of permission settings, a message box appears. The program scans the contents of the direc-
tory as it browses, rather than indexing the entire drive at once.

Items Returns the collection of ListViewItems in the control.

MultiSelect Determines whether multiple selection is allowed. Default is True,
which enables multiple selection.

SelectedItems Lists the collection of currently selected items.

SmallImageList Specifies the ImageList used when displaying small icons.

View Determines appearance of ListViewItems. Values LargeIcon
(large icon displayed, items can be in multiple columns), Small-
Icon (small icon displayed), List (small icons displayed, items
appear in a single column) and Details (like List, but multiple
columns of information can be displayed per item).

Common Event (Delegate EventHandler, event arguments EventArgs)

ItemActivate Generated when an item in the ListView is activated. Does not
specify which item is activated.

Fig. 13.23 Image Collection Editor window for an ImageList component.

ListView events
and properties Description / Delegate and Event Arguments

Fig. 13.22 ListView properties and events. (Part 2 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 555

1 // Fig. 13.24: ListViewTest.cs
2 // Displaying directories and their contents in ListView.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.IO;
11
12 public class ListViewTest : System.Windows.Forms.Form
13 {
14 // display labels for current location
15 // in directory tree
16 private System.Windows.Forms.Label currentLabel;
17 private System.Windows.Forms.Label displayLabel;
18
19 // display contents of current directory
20 private System.Windows.Forms.ListView browserListView;
21
22 // specifies images for file icons and folder icons
23 private System.Windows.Forms.ImageList fileFolder;
24
25 // get current directory
26 string currentDirectory =
27 Directory.GetCurrentDirectory();
28
29 [STAThread]
30 static void Main()
31 {
32 Application.Run(new ListViewTest());
33 }
34
35 // browse directory user clicked or go up one level
36 private void browserListView_Click(
37 object sender, System.EventArgs e)
38 {
39 // ensure item selected
40 if (browserListView.SelectedItems.Count != 0)
41 {
42 // if first item selected, go up one level
43 if (browserListView.Items[0].Selected)
44 {
45 // create DirectoryInfo object for directory
46 DirectoryInfo directoryObject =
47 new DirectoryInfo(currentDirectory);
48
49 // if directory has parent, load it
50 if (directoryObject.Parent != null)
51 LoadFilesInDirectory(
52 directoryObject.Parent.FullName);
53 }

Fig. 13.24 ListView displaying files and folders. (Part 1 of 4.)

556 Graphical User Interfaces Concepts: Part 2 Chapter 13

54
55 // selected directory or file
56 else
57 {
58 // directory or file chosen
59 string chosen =
60 browserListView.SelectedItems[0].Text;
61
62 // if item selected is directory
63 if (Directory.Exists(currentDirectory +
64 "\\" + chosen))
65 {
66 // load subdirectory
67 // if in c:\, do not need '\',
68 // otherwise we do
69 if (currentDirectory == "C:\\")
70 LoadFilesInDirectory(
71 currentDirectory + chosen);
72 else
73 LoadFilesInDirectory(
74 currentDirectory + "\\" + chosen);
75 } //end if
76
77 } // end else
78
79 // update displayLabel
80 displayLabel.Text = currentDirectory;
81
82 } // end if
83
84 } // end method browserListView_Click
85
86 // display files/subdirectories of current directory
87 public void LoadFilesInDirectory(
88 string currentDirectoryValue)
89 {
90 // load directory information and display
91 try
92 {
93 // clear ListView and set first item
94 browserListView.Items.Clear();
95 browserListView.Items.Add("Go Up One Level");
96
97 // update current directory
98 currentDirectory = currentDirectoryValue;
99 DirectoryInfo newCurrentDirectory =
100 new DirectoryInfo(currentDirectory);
101
102 // put files and directories into arrays
103 DirectoryInfo[] directoryArray =
104 newCurrentDirectory.GetDirectories();
105

Fig. 13.24 ListView displaying files and folders. (Part 2 of 4.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 557

106 FileInfo[] fileArray =
107 newCurrentDirectory.GetFiles();
108
109 // add directory names to ListView
110 foreach (DirectoryInfo dir in directoryArray)
111 {
112 // add directory to ListView
113 ListViewItem newDirectoryItem =
114 browserListView.Items.Add(dir.Name);
115
116 // set directory image
117 newDirectoryItem.ImageIndex = 0;
118 }
119
120 // add file names to ListView
121 foreach (FileInfo file in fileArray)
122 {
123 // add file to ListView
124 ListViewItem newFileItem =
125 browserListView.Items.Add(file.Name);
126
127 newFileItem.ImageIndex = 1; // set file image
128 }
129 } // end try
130
131 // access denied
132 catch (UnauthorizedAccessException exception)
133 {
134 MessageBox.Show(
135 "Warning: Some fields may not be " +
136 "visible due to permission settings",
137 "Attention", 0, MessageBoxIcon.Warning);
138 }
139
140 } // end method LoadFilesInDirectory
141
142 // handle load event when Form displayed for first time
143 private void ListViewTest_Load(
144 object sender, System.EventArgs e)
145 {
146 // set image list
147 Image folderImage = Image.FromFile(
148 currentDirectory + "\\images\\folder.bmp");
149
150 Image fileImage = Image.FromFile(currentDirectory +
151 "\\images\\file.bmp");
152
153 fileFolder.Images.Add(folderImage);
154 fileFolder.Images.Add(fileImage);
155
156 // load current directory into browserListView
157 LoadFilesInDirectory(currentDirectory);
158 displayLabel.Text = currentDirectory;

Fig. 13.24 ListView displaying files and folders. (Part 3 of 4.)

558 Graphical User Interfaces Concepts: Part 2 Chapter 13

To display icons beside list items, we must create an ImageList for the ListView
browserListView (line 20). First, drag and drop an ImageList onto the form and
open the Image Collection Editor. Create two simple bitmap images—one for a folder

159
160 } // end method ListViewTest_Load
161
162 } // end class ListViewTest

Fig. 13.24 ListView displaying files and folders. (Part 4 of 4.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 559

(array index 0) and another for a file (array index 1). Then, set the object browserList-
View property SmallImageList to the new ImageList in the Properties window.
Developers can create such icons with any image software, such as Adobe® Photoshop™,
Jasc® Paint Shop Pro™, or Microsoft® Paint.

Method LoadFilesInDirectory (lines 87–140) is used to populate browser-
ListView with the directory passed to it (currentDirectoryValue). It clears
browserListView and adds the element "Go Up One Level". When the user clicks
this element, the program attempts to move up one level (we see how shortly). The method
then creates a DirectoryInfo object initialized with the string currentDirectory
(lines 99–100). If permission is not given to browse the directory, an exception is thrown
(caught on lines 132–138). Method LoadFilesInDirectory works differently from
method PopulateTreeView in the previous program (Fig. 13.21). Instead of loading
all the folders in the entire hard drive, method LoadFilesInDirectory loads only the
folders in the current directory.

Class DirectoryInfo (namespace System.IO) enables us to browse or manipu-
late the directory structure easily. Method GetDirectories (lines 103–104) returns an
array of DirectoryInfo objects containing the subdirectories of the current directory.
Similarly, method GetFiles (lines 106–107) returns an array of class FileInfo
objects containing the files in the current directory. Property Name (of both class Direc-
toryInfo and class FileInfo) contains only the directory or file name, such as temp
instead of C:\myfolder\temp. To access the full name, use property FullName.

Lines 110–118 and lines 121–128 iterate through the subdirectories and files of the
current directory and add them to browserListView. Lines 117 and 127 set the
ImageIndex properties of the newly created items. If an item is a directory, we set its
icon to a directory icon (index 0); if an item is a file, we set its icon to a file icon (index 1).

Method browserListView_Click (lines 36–84) responds when the user clicks
control browserListView. Line 40 checks on whether anything is selected. If a selec-
tion has been made, line 43 determines whether the user chose the first item in browser-
ListView. The first item in browserListView is always Go up one level; if it is
selected, the program attempts to go up a level. Lines 46–47 create a DirectoryInfo
object for the current directory. Line 50 tests property Parent to ensure that the user is
not at the root of the directory tree. Property Parent indicates the parent directory as a
DirectoryInfo object; if it does not exist, Parent returns the value null. If a parent
directory exists, then lines 51–52 pass the full name of the parent directory to method
LoadFilesInDirectory.

If the user did not select the first item in browserListView, lines 56–77 allow the
user to continue navigating through the directory structure. Lines 59–60 create String
chosen, which receives the text of the selected item (the first item in collection Select-
edItems). Lines 63–64 test whether the user has selected a valid directory (rather than a
file). The program combines variables currentDirectory and chosen (the new
directory), separated by a slash (\), and passes this value to class Directory’s method
Exists. Method Exists returns True if its String parameter is a directory. If this
occurs, the program passes the String to method LoadFilesInDirectory. The
C:\ directory already includes a slash, so a slash is not needed when combining cur-
rentDirectory and chosen (line 71). However, other directories must include the
slash (lines 73–74). Finally, displayLabel is updated with the new directory (line 80).

560 Graphical User Interfaces Concepts: Part 2 Chapter 13

This program loads quickly, because it indexes only the files in the current directory.
This means that, rather than having a large delay in the beginning, a small delay occurs
whenever a new directory is loaded. In addition, changes in the directory structure can be
shown by reloading a directory. The previous program (Fig. 13.21) needs to be restarted to
reflect any changes in the directory structure. This type of trade-off is typical in the soft-
ware world. When designing applications that run for long periods of time, developers
might choose a large initial delay to improve performance throughout the rest of the pro-
gram. However, when creating applications that run for only short periods of time, devel-
opers often prefer fast initial loading times and a small delay after each action.

13.8 Tab Control
The TabControl control creates tabbed windows, such as those we have seen in the Vi-
sual Studio .NET IDE (Fig. 13.25). This allows the programmer to design user interfaces
that fit a large number of controls or a large amount of data without using up valuable
screen “real estate.”

TabControls contain TabPage objects, which are similar to Panels and Group-
Boxes in that TabPages also can contain controls. The programmer first adds controls to
the TabPage objects, then adds the TabPages to the TabControl. Only one TabPage
is displayed at a time. Figure 13.26 depicts a sample TabControl.

Programmers can add TabControls visually by dragging and dropping them onto a
form in design mode. To add TabPages in the Visual Studio .NET designer, right-click
the TabControl, and select Add Tab (Fig. 13.27). Alternatively, click the TabPages
collection in the Properties window, and add tabs in the dialog that appears. To change a
tab label, set the Text property of the TabPage.

Fig. 13.25 Tabbed pages in Visual Studio .NET.

Tab Pages

Chapter 13 Graphical User Interfaces Concepts: Part 2 561

Note that clicking the tabs selects the TabControl—to select the TabPage, click
the control area underneath the tabs. The developer can add controls to the TabPage by
dragging and dropping items from the ToolBox. To view different TabPages, click the
appropriate tab (in either design or run mode). Common properties and events of TabCon-
trols are described in Fig. 13.28.

Fig. 13.26 TabControl with TabPages example.

Fig. 13.27 TabPages added to a TabControl.

TabControl properties
and events Description / Delegate and Event Arguments

Common Properties

ImageList Specifies images to be displayed on a tab.

ItemSize Specifies tab size.

MultiLine Indicates whether multiple rows of tabs can be displayed.

Fig. 13.28 TabControl properties and events. (Part 1 of 2.)

TabPage

Controls in TabPage

TabControl

562 Graphical User Interfaces Concepts: Part 2 Chapter 13

Each TabPage generates its own Click event when its tab is clicked. Remember,
events for controls can be handled by any event handler that is registered with the control’s
event delegate. This also applies to controls contained in a TabPage. For convenience,
Visual Studio .NET generates the empty event handlers for these controls in the class in
which we are currently working.

Class UsingTabs (Fig. 13.29) uses a TabControl to display various options
relating to the text on a label (Color, Size and Message). The last TabPage displays an
About message, which describes the use of TabControls.

The TabControl optionsTabControl (lines 18–19) and TabPages col-
orTabPage (line 22), sizeTabPage (line 30), messageTabPage (line 39) and
aboutTabPage (line 46) are created in the designer (as described previously). TabPage
colorTabPage contains three radio buttons—for colors black (blackRadioButton,
lines 26–27), red (redRadioButton, line 25) and green (greenRadioButton, lines
23–24). The CheckChanged event handler for each button updates the color of the text
in displayLabel (lines 59, 66 and 73). TabPage sizeTabPage has three radio but-
tons, corresponding to font sizes 12 (size12RadioButton, lines 35–36), 16
(size16RadioButton, lines 33–34) and 20 (size20RadioButton, lines 31–32),
which change the font size of displayLabel—lines 80–81, 88–89 and 96–97, respec-
tively. TabPage messageTabPage contains two radio buttons—for the messages
Hello! (helloRadioButton, lines 42–43) and Goodbye! (goodbyeRa-
dioButton, lines 40–41). The two radio buttons determine the text on displayLabel
(lines 104 and 111, respectively).

SelectedIndex Indicates index of TabPage that is currently selected.

SelectedTab Indicates the TabPage that is currently selected.

TabCount Returns the number of tabs.

TabPages Gets the collection of TabPages within our TabControl.

Common Event (Delegate EventHandler, event arguments EventArgs)

SelectedIndexChanged Generated when SelectedIndex changes (i.e., another
TabPage is selected).

1 // Fig. 13.29: UsingTabs.cs
2 // Using TabControl to display various font settings.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;

Fig. 13.29 TabControl used to display various font settings. (Part 1 of 4.)

TabControl properties
and events Description / Delegate and Event Arguments

Fig. 13.28 TabControl properties and events. (Part 2 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 563

9 using System.Data;
10
11 public class UsingTabs : System.Windows.Forms.Form
12 {
13 // output label reflects text changes
14 private System.Windows.Forms.Label displayLabel;
15
16 // table control containing table pages colorTabPage,
17 // sizeTabPage, messageTabPage and aboutTabPage
18 private System.Windows.Forms.TabControl
19 optionsTabControl;
20
21 // table page containing color options
22 private System.Windows.Forms.TabPage colorTabPage;
23 private System.Windows.Forms.RadioButton
24 greenRadioButton;
25 private System.Windows.Forms.RadioButton redRadioButton;
26 private System.Windows.Forms.RadioButton
27 blackRadioButton;
28
29 // table page containing font size options
30 private System.Windows.Forms.TabPage sizeTabPage;
31 private System.Windows.Forms.RadioButton
32 size20RadioButton;
33 private System.Windows.Forms.RadioButton
34 size16RadioButton;
35 private System.Windows.Forms.RadioButton
36 size12RadioButton;
37
38 // table page containing text display options
39 private System.Windows.Forms.TabPage messageTabPage;
40 private System.Windows.Forms.RadioButton
41 goodByeRadioButton;
42 private System.Windows.Forms.RadioButton
43 helloRadioButton;
44
45 // table page containing about message
46 private System.Windows.Forms.TabPage aboutTabPage;
47 private System.Windows.Forms.Label messageLabel;
48
49 [STAThread]
50 static void Main()
51 {
52 Application.Run(new UsingTabs());
53 }
54
55 // event handler for black color radio button
56 private void blackRadioButton_CheckedChanged(
57 object sender, System.EventArgs e)
58 {
59 displayLabel.ForeColor = Color.Black;
60 }
61

Fig. 13.29 TabControl used to display various font settings. (Part 2 of 4.)

564 Graphical User Interfaces Concepts: Part 2 Chapter 13

62 // event handler for red color radio button
63 private void redRadioButton_CheckedChanged(
64 object sender, System.EventArgs e)
65 {
66 displayLabel.ForeColor = Color.Red;
67 }
68
69 // event handler for green color radio button
70 private void greenRadioButton_CheckedChanged(
71 object sender, System.EventArgs e)
72 {
73 displayLabel.ForeColor = Color.Green;
74 }
75
76 // event handler for size 12 radio button
77 private void size12RadioButton_CheckedChanged(
78 object sender, System.EventArgs e)
79 {
80 displayLabel.Font =
81 new Font(displayLabel.Font.Name, 12);
82 }
83
84 // event handler for size 16 radio button
85 private void size16RadioButton_CheckedChanged(
86 object sender, System.EventArgs e)
87 {
88 displayLabel.Font =
89 new Font(displayLabel.Font.Name, 16);
90 }
91
92 // event handler for size 20 radio button
93 private void size20RadioButton_CheckedChanged(
94 object sender, System.EventArgs e)
95 {
96 displayLabel.Font =
97 new Font(displayLabel.Font.Name, 20);
98 }
99
100 // event handler for message "Hello!" radio button
101 private void helloRadioButton_CheckedChanged(
102 object sender, System.EventArgs e)
103 {
104 displayLabel.Text = "Hello!";
105 }
106
107 // event handler for message "Goodbye!" radio button
108 private void goodByeRadioButton_CheckedChanged(
109 object sender, System.EventArgs e)
110 {
111 displayLabel.Text = "Goodbye!";
112 }
113
114 } // end class UsingTabs

Fig. 13.29 TabControl used to display various font settings. (Part 3 of 4.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 565

Software Engineering Observation 13.2
A TabPage can act as a container for a single logical group of radio buttons and enforces
their mutual exclusivity. To place multiple radio-button groups inside a single TabPage,
programmers should group radio buttons within Panels or GroupBoxes contained within
the TabPage. 13.2

The last TabPage (aboutTabPage, line 46) contains a Label (messageLabel,
line 47) that describes the purpose of TabControls.

13.9 Multiple-Document-Interface (MDI) Windows
In previous chapters, we have built only single-document-interface (SDI) applications.
Such programs (including Notepad or Paint) support only one open window or document
at a time. SDI applications usually have contracted abilities—Paint and Notepad, for exam-
ple, have limited image- and text-editing features. To edit multiple documents, the user
must create additional instances of the SDI application.

Multiple document interface (MDI) programs (such as PaintShop Pro and Adobe Pho-
toshop) enable users to edit multiple documents at once. MDI programs also tend to be
more complex—PaintShop Pro and Photoshop have a greater number of image-editing fea-
tures than does Paint. Until now, we had not mentioned that the applications we created
were SDI applications. We define this here to emphasize the distinction between the two
types of programs.

Fig. 13.29 TabControl used to display various font settings. (Part 4 of 4.)

566 Graphical User Interfaces Concepts: Part 2 Chapter 13

The application window of an MDI program is called the parent window, and each
window inside the application is referred to as a child window. Although an MDI applica-
tion can have many child windows, each has only one parent window. Furthermore, a max-
imum of one child window can be active at once. Child windows cannot be parents
themselves and cannot be moved outside their parent. Otherwise, a child window behaves
like any other window (with regard to closing, minimizing, resizing etc.). A child window’s
functionality can be different from the functionality of other child windows of the parent.
For example, one child window might edit images, another might edit text and a third might
display network traffic graphically, but all could belong to the same MDI parent.
Figure 13.30 depicts a sample MDI application.

To create an MDI form, create a new Form and set its IsMDIContainer property
to True. The form changes appearance, as in Fig. 13.31.

Fig. 13.30 MDI parent window and MDI child windows.

Fig. 13.31 SDI and MDI forms.

MDI parent

MDI child

MDI child

Single Document Interface (SDI) Multiple Document Interface (MDI)

Chapter 13 Graphical User Interfaces Concepts: Part 2 567

Next, create a child form class to be added to the form. To do this, right-click the
project in the Solution Explorer, select Add Windows Form... and name the file. To
add the child form to the parent, we must create a new child form object; set its Mdi-
Parent property to the parent form, and call method Show. The code to create a child usu-
ally lies inside an event handler, which creates a new window in response to a user action.
Menu selections (such as File followed by a submenu option of New followed by a sub-
menu option of Window) are common methods of creating new child windows.

Form property MdiChildren is an array of child Form references. This is useful if
the parent window wants to check the status of all its children (such as to ensure that all are
saved before the parent closes). Property ActiveMdiChild returns a reference to the
active child window; it returns null if there are no active child windows. Other features
of MDI windows are described in Fig. 13.32.

Child windows can be minimized, maximized and closed independently of each other
and of the parent window. Figure 13.33 shows two images, one containing two minimized
child windows and a second containing a maximized child window. When the parent is
minimized or closed, the child windows are minimized or closed as well. Notice that the
title bar in the second image of Fig. 13.33 is Parent Window - [Child]. When a child
window is maximized, its title bar is inserted into the parent window’s title bar. When a
child window is minimized or maximized, its title bar displays a restore icon, which returns
the child window to its previous size (its size before it was minimized or maximized).

MDI Form events
and properties Description / Delegate and Event Arguments

Common MDI Child Properties

IsMdiChild Indicates whether the Form is an MDI child. If True, Form is an
MDI child (read-only property).

MdiParent Specifies the MDI parent Form of the child.

Common MDI Parent Properties

ActiveMdiChild Returns the Form that is the currently active MDI child (returns
null if no children are active).

IsMdiContainer Indicates whether a Form can be an MDI. If True, the Form can be
an MDI parent. Default is False.

MdiChildren Returns the MDI children as an array of Forms.

Common Method

LayoutMdi Determines the display of child forms on an MDI parent. Takes as a
parameter an MdiLayout enumeration with possible values
ArrangeIcons, Cascade, TileHorizontal and TileVer-
tical. Figure 13.35 depicts the effects of these values.

Common Event (Delegate EventHandler, event arguments EventArgs)

MdiChildActivate Generated when an MDI child is closed or activated.

Fig. 13.32 MDI parent and MDI child events and properties.

568 Graphical User Interfaces Concepts: Part 2 Chapter 13

The parent and child forms can have different menus, which are merged whenever a
child window is selected. To specify how the menus merge, programmers can set the Mer-
geOrder and the MergeType properties for each MenuItem (see Fig. 13.3). Mer-
geOrder determines the order in which MenuItems appear when two menus are merged.
MenuItems with a lower MergeOrder value will appear first. For example, if Menu1
has items File, Edit and Window (and their orders are 0, 10 and 20) and Menu2 has items
Format and View (and their orders are 7 and 15), then the merged menu contains menu
items File, Format, Edit, View and Window, in that order.

Each MenuItem instance has its own MergeOrder property. It is likely that, at
some point in an application, two MenuItems with the same MergeOrder value will
merge. Property MergeType resolves this conflict by following the order in which the two
menus are displayed.

The MergeType property takes a MenuMerge enumeration value and determines
which menu items will be displayed when two menus are merged. A menu item with value
Add is added to its parent’s menu as a new menu on the menu bar (the parent’s menu items
come first). If a child form’s menu item has value Replace, it attempts to take the place
of its parent form’s corresponding menu item during merging. A menu with value Mer-
geItems combines its items with that of its parent’s corresponding menu (if parent and
child menus originally occupy the same space, their submenus will be brought together as
one large menu). A child’s menu item with value Remove disappears when the menu is
merged with that of its parent.

Value MergeItems acts passively—if the parent’s menu has a MergeType that is
different from the child menu’s MergeType, the child’s menu setting determines the out-
come of the merge. When the child window is closed, the parent’s original menu is restored.

Good Programming Practice 13.1
When creating MDI applications, include a menu item with its MdiList property set to
True. This helps the user select a child window quickly, rather than having to search for it
in the parent window. 13.1

Fig. 13.33 Minimized and maximized child windows.

Parent window icons:
minimize, maximize and close

Maximized child window icons:
minimize, restore and close

Minimized child window icons:
restore, maximize and close

Parent title bar indicates
maximized child

Chapter 13 Graphical User Interfaces Concepts: Part 2 569

Software Engineering Observation 13.3
Set the parent’s menu items’ MergeType property to value MergeItems. This allows the
child window to add most menu items according to its own settings. Parent menu items that
must remain should have value Add, and those that must be removed should have value Re-
move. 13.3

C# provides a property that facilitates the tracking of which child windows are opened
in an MDI container. Property MdiList (a boolean) of class MenuItem determines
whether a MenuItem displays a list of open child windows. The list appears at the bottom
of the menu following a separator bar (first screen in Figure 13.34). When a new child
window is opened, an entry is added to the list. If nine or more child windows are open, the
list includes the option More Windows..., which allows the user to select a window from
a list, using a scrollbar. Multiple MenuItems can have their MdiList property set; each
displays a list of open child windows.

Fig. 13.34 MenuItem property MdiList example.

Separator bar

9 or more child
windows enables the
More Windows... option

Child windows list

570 Graphical User Interfaces Concepts: Part 2 Chapter 13

MDI containers allow developers to organize the placement of child windows. The
child windows in an MDI application can be arranged by calling method LayoutMdi of
the parent form. Method LayoutMdi takes a LayoutMdi enumeration, which can have
values ArrangeIcons, Cascade, TileHorizontal and TileVertical. Tiled
windows completely fill the parent and do not overlap; such windows can be arranged hor-
izontally (value TileHorizontal) or vertically (value TileVertical). Cascaded
windows (value Cascade) overlap—each is the same size and displays a visible title bar,
if possible. Value ArrangeIcons arranges the icons for any minimized child windows.
If minimized windows are scattered around the parent window, value ArrangeIcons
orders them neatly at the bottom-left corner of the parent window. Figure 13.35 illustrates
the values of the LayoutMdi enumeration.

Class UsingMDI (Fig. 13.36) demonstrates the use of MDI windows. Class
UsingMdi uses three instances of class Child (Fig. 13.37), each of which contains a
PictureBox and an image of a book cover. The parent MDI form contains a menu that
enables users to create and arrange child forms.

Fig. 13.35 LayoutMdi enumeration values.

ArrangeIcons Cascade

TileHorizontal TileVertical

Chapter 13 Graphical User Interfaces Concepts: Part 2 571

The MDI parent form (Fig. 13.36) contains two top-level menus. The first of these
menus, File (fileMenuItem, line 13), contains both an Exit item (exitMenuItem,
line 18) and a New submenu (newMenuItem, line 14) consisting of items for each child
window. The second menu, Format (formatMenuItem, line 19), provides options for
laying out the MDI children, plus a list of the active MDI children.

In the Properties window, we set the Form’s IsMdiContainer property to True,
making the Form an MDI parent. In addition, we set formatMenuItem property
MdiList to True. This enables formatMenuItem to list the active child MDI windows.

1 // Fig. 13.36: UsingMDI.cs
2 // Demonstrating use of MDI parent and child windows.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class UsingMDI : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.MainMenu mainMenu1;
13 private System.Windows.Forms.MenuItem fileMenuItem;
14 private System.Windows.Forms.MenuItem newMenuItem;
15 private System.Windows.Forms.MenuItem child1MenuItem;
16 private System.Windows.Forms.MenuItem child2MenuItem;
17 private System.Windows.Forms.MenuItem child3MenuItem;
18 private System.Windows.Forms.MenuItem exitMenuItem;
19 private System.Windows.Forms.MenuItem formatMenuItem;
20 private System.Windows.Forms.MenuItem cascadeMenuItem;
21 private System.Windows.Forms.MenuItem
22 tileHorizontalMenuItem;
23 private System.Windows.Forms.MenuItem
24 tileVerticalMenuItem;
25
26 [STAThread]
27 static void Main()
28 {
29 Application.Run(new UsingMDI());
30 }
31
32 // create Child 1 when menu clicked
33 private void child1MenuItem_Click(
34 object sender, System.EventArgs e)
35 {
36 // create new child
37 Child formChild = new Child("Child 1",
38 "\\images\\csharphtp1.jpg");
39 formChild.MdiParent = this; // set parent
40 formChild.Show(); // display child
41 }
42

Fig. 13.36 MDI parent-window class. (Part 1 of 3.)

572 Graphical User Interfaces Concepts: Part 2 Chapter 13

43 // create Child 2 when menu clicked
44 private void child2MenuItem_Click(
45 object sender, System.EventArgs e)
46 {
47 // create new child
48 Child formChild = new Child("Child 2",
49 "\\images\\vbnethtp2.jpg");
50 formChild.MdiParent = this; // set parent
51 formChild.Show(); // display child
52 }
53
54 // create Child 3 when menu clicked
55 private void child3MenuItem_Click(
56 object sender, System.EventArgs e)
57 {
58 // create new child
59 Child formChild = new Child("Child 3",
60 "\\images\\pythonhtp1.jpg");
61 formChild.MdiParent = this; // set parent
62 formChild.Show(); // display child
63 }
64
65 // exit application
66 private void exitMenuItem_Click(
67 object sender, System.EventArgs e)
68 {
69 Application.Exit();
70 }
71
72 // set cascade layout
73 private void cascadeMenuItem_Click(
74 object sender, System.EventArgs e)
75 {
76 this.LayoutMdi(MdiLayout.Cascade);
77 }
78
79 // set TileHorizontal layout
80 private void tileHorizontalMenuItem_Click(
81 object sender, System.EventArgs e)
82 {
83 this.LayoutMdi(MdiLayout.TileHorizontal);
84 }
85
86 // set TileVertical layout
87 private void tileVerticalMenuItem_Click(
88 object sender, System.EventArgs e)
89 {
90 this.LayoutMdi(MdiLayout.TileVertical);
91 }
92
93 } // end class UsingMDI

Fig. 13.36 MDI parent-window class. (Part 2 of 3.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 573

The Cascade menu item (cascadeMenuItem, line 20) has an event handler
(cascadeMenuItem_Click, lines 73–77) that arranges the child windows in a cas-
cading manner. The event handler calls method LayoutMdi with the argument Cascade
from the MdiLayout enumeration (line 76).

The Tile Horizontal menu item (tileHorizontalMenuItem, lines 21–22) has
an event handler (mnuitmTileHorizontal_Click, lines 80–84) that arranges the
child windows in a horizontal manner. The event handler calls method LayoutMdi with
the argument TileHorizontal from the MdiLayout enumeration (line 83).

Finally, the Tile Vertical menu item (mnuitmTileVertical, lines 23–24) has an
event handler (mnuitmTileVertical_Click, lines 87–91) that arranges the child

Fig. 13.36 MDI parent-window class. (Part 3 of 3.)

574 Graphical User Interfaces Concepts: Part 2 Chapter 13

windows in a vertical manner. The event handler calls method LayoutMdi with the argu-
ment TileVertical from the MdiLayout enumeration (line 90).

To define the child class for the MDI application, right-click the project in the Solu-
tion Explorer and select first Add and then Add Windows Form.... Name the new
class Child (Fig. 13.37).

Next, we add a PictureBox (picDisplay, line 11) to form Child. The con-
structor invokes method InitializeComponent (line 17) and initializes the form’s
title (line 19) and the image to display in the PictureBox (lines 22–23).

The parent MDI form (Fig. 13.36) creates new instances of class Child each time the
user selects a new child window from the File menu. The event handlers in lines 33–63
create new child forms that contain images of Deitel and Associates, Inc. book covers. Each
event handler creates a new instance of the child form, sets its MdiParent property to the
parent form and calls method Show to display the child.

13.10 Visual Inheritance
In Chapter 9, Object-Oriented Programming: Inheritance, we discuss how to create classes
by inheriting from other classes. In C#, we also can use inheritance to create Forms that
display a GUI, because Forms are classes that derive from class System.Win-
dows.Forms.Form. Visual inheritance allows us to create a new Form by inheriting
from another Form. The derived Form class contains the functionality of its Form base
class, including any base-class properties, methods, variables and controls. The derived
class also inherits all visual aspects—such as sizing, component layout, spacing between
GUI components, colors and fonts—from its base class.

Visual inheritance enables developers to achieve visual consistency across applica-
tions by reusing code. For example, a company could define a base form that contains a
product’s logo, a static background color, a predefined menu bar and other elements. Pro-
grammers then could use the base form throughout an application for purposes of unifor-
mity and product branding.

1 // Fig. 13.37: Child.cs
2 // Child window of MDI parent.
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.IO;
9

10 public class Child : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.PictureBox pictureBox;
13
14 public Child(string title, string fileName)
15 {
16 // Required for Windows Form Designer support
17 InitializeComponent();

Fig. 13.37 Child class for MDI demonstration. (Part 1 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 575

Class VisualInheritance (Fig. 13.38) is a form that we use as a base class for
demonstrating visual inheritance. The GUI contains two labels (one with text Bugs,
Bugs, Bugs and one with Copyright 2002, by Bug2Bug.com.) and one button (dis-
playing the text Learn More). When a user presses the Learn More button, method
learnMoreButton_Click (lines 22–29) is invoked. This method displays a message
box that provides some informative text.

18
19 Text = title; // set title text
20
21 // set image to display in pictureBox
22 pictureBox.Image = Image.FromFile(
23 Directory.GetCurrentDirectory() + fileName);
24 }
25 }

1 // Fig. 13.38: VisualInheritance.cs
2 // Base Form for use with visual inheritance
3 using System;
4 using System.Drawing;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Windows.Forms;
8 using System.Data;
9

10 public class VisualInheritance : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.Label bugsLabel;
13 private System.Windows.Forms.Button learnMoreButton;
14 private System.Windows.Forms.Label label1;
15
16 [STAThread]
17 static void Main()
18 {
19 Application.Run(new VisualInheritance());
20 }
21
22 private void learnMoreButton_Click(object sender,
23 System.EventArgs e)
24 {
25 MessageBox.Show(
26 "Bugs, Bugs, Bugs is a product of Bug2Bug.com",
27 "Learn More", MessageBoxButtons.OK,
28 MessageBoxIcon.Information);
29 }
30 }

Fig. 13.38 Class FrmInheritance, which inherits from class Form, contains a
button (Learn More). (Part 1 of 2.)

Fig. 13.37 Child class for MDI demonstration. (Part 2 of 2.)

576 Graphical User Interfaces Concepts: Part 2 Chapter 13

Before deriving a form from class VisualInheritance, we must package class
VisualInheritance in a .dll. Right click on the VisualInheritance project
in the Solution Explorer, and select Properties. In Common Properties > Gen-
eral, change the Output Type to Class Library. Then, build the project to produce a
.dll that contains the VisualInheritance class.

To create the derived form through visual inheritance, create an empty project. From
the Project menu, select Add Inherited Form.... This brings up the Add New Item
window. Select Inherited Form from the templates window. Clicking OK displays the
Inheritance Picker. The Inheritance Picker tool enables programmers to quickly
create a form that inherits from a specified form. Click Browse, and select the .dll file
for class VisualInheritance. The .dll file normally is located within the
bin\Debug directory of the VisualInheritance project directory. Click OK. The
Form Designer should now display the inherited form (Fig. 13.39).

Class VisualInheritanceTest (Fig. 13.40) derives from class VisualIn-
heritance. The GUI contains those components derived from class VisualInher-
itance, plus a button with text Learn The Program that we added in class
VisualInheritanceTest. When a user presses this button, method
learnProgramButton_Click (lines 15–22) is invoked. This method displays a
simple message box.

Figure 13.40 demonstrates that the components, their layouts and the functionality of
the base class VisualInheritance (Fig. 13.38) are inherited by VisualInherit-
anceTest. If a user clicks button Learn More, the base-class event handler
learnMoreButton_Click displays a MessageBox.

Fig. 13.38 Class FrmInheritance, which inherits from class Form, contains a
button (Learn More). (Part 2 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 577

Fig. 13.39 Visual Inheritance through the Form Designer.

1 // Fig. 13.40: VisualInheritanceTest.cs
2 // Derived Form using visual inheritance.
3 using System;
4 using System.Collections;
5 using System.ComponentModel;
6 using System.Drawing;
7 using System.Windows.Forms;
8
9 public class VisualInheritanceTest :

10 VisualInheritance.VisualInheritance
11 {
12 private System.Windows.Forms.Button learnProgramButton;
13
14 // invoke when user clicks Learn the Program Button
15 private void learnProgramButton_Click(object sender,
16 System.EventArgs e)
17 {
18 MessageBox.Show(
19 "This program was created by Deitel & Associates",
20 "Learn the Program", MessageBoxButtons.OK,
21 MessageBoxIcon.Information);
22 }
23
24 public static void Main(string[] args)
25 {
26 Application.Run(new VisualInheritanceTest());
27 }
28 }

Fig. 13.40 Class FrmVisualTest, which inherits from class
VisualForm.FrmInheritance, contains an additional button.
 (Part 1 of 2.)

578 Graphical User Interfaces Concepts: Part 2 Chapter 13

13.11 User-Defined Controls
The .NET Framework allows programmers to create custom controls that inherit from a va-
riety of classes. These custom controls appear in the user’s Toolbox and can be added to
Forms, Panels or GroupBoxes in the same way that we add Buttons, Labels, and
other predefined controls. The simplest way to create a custom control is to derive a class
from an existing Windows Forms control, such as a Label. This is useful if the program-
mer wants to include functionality of an existing control, rather than having to reimplement
the existing control in addition to including the desired new functionality. For example, we
can create a new type of label that behaves like a normal Label but has a different appear-
ance. We accomplish this by inheriting from class Label and overriding method On-
Paint.

Look-and-Feel Observation 13.8
To change the appearance of any control, override method OnPaint. 13.8

All controls contain method OnPaint, which the system calls when a component
must be redrawn (such as when the component is resized). Method OnPaint is passed a
PaintEventArgs object, which contains graphics information—property Graphics
is the graphics object used to draw, and property ClipRectangle defines the rectan-
gular boundary of the control. Whenever the system generates the Paint event, our con-
trol’s base class catches the event. Through polymorphism, our control’s OnPaint
method is called. Our base class’s OnPaint implementation is not called, so we must call

Fig. 13.40 Class FrmVisualTest, which inherits from class
VisualForm.FrmInheritance, contains an additional button.
 (Part 2 of 2.)

Derived class
cannot modify
these controls.

Derived class
can modify
this control.

Chapter 13 Graphical User Interfaces Concepts: Part 2 579

it explicitly from our OnPaint implementation before we execute our custom-paint code.
Alternatively, if we do not wish to let our base class paint itself, we should not call our base
class’s OnPaint method implementation.

To create a new control composed of existing controls, use class UserControl.
Controls added to a custom control are called constituent controls. For example, a pro-
grammer could create a UserControl composed of a button, a label and a text box, each
associated with some functionality (such as that the button sets the label’s text to that con-
tained in the text box). The UserControl acts as a container for the controls added to it.
The UserControl contains constituent controls, so it does not determine how these con-
stituent controls are displayed. Method OnPaint cannot be overridden in these custom
controls—their appearance can be modified only by handling each constituent control’s
Paint event. The Paint event handler is passed a PaintEventArgs object, which
can be used to draw graphics (lines, rectangles etc.) on the constituent controls.

Using another technique, a programmer can create a brand-new control by inheriting
from class Control. This class does not define any specific behavior; that task is left to
the programmer. Instead, class Control handles the items associated with all controls,
such as events and sizing handles. Method OnPaint should contain a call to the base
class’s OnPaint method, which calls the Paint event handlers. The programmer must
then add code for custom graphics inside the overridden OnPaint method. This technique
allows for the greatest flexibility, but also requires the most planning. All three approaches
are summarized in Fig. 13.41.

Custom Control Techniques
and PaintEventArgs
Properties Description

Inherit from Windows Forms
control

Add functionality to a preexisting control. If overriding
method OnPaint, call base class OnPaint. Can only add
to the original control appearance, not redesign it.

Create a UserControl Create a UserControl composed of multiple preexisting
controls (and combine their functionality). Cannot override
OnPaint methods of custom controls. Instead, add drawing
code to a Paint event handler. Can only add to the original
control appearance, not redesign it.

Inherit from class Control Define a brand-new control. Override OnPaint method,
call base class method OnPaint and include methods to
draw the control. Can customize control appearance and
functionality.

PaintEventArgs Properties Use this object inside method OnPaint or Paint to draw
on the control.

Graphics Indicates the graphics object of control. Used to draw on con-
trol.

ClipRectangle Specifies the rectangle indicating boundary of control.

Fig. 13.41 Custom control creation.

580 Graphical User Interfaces Concepts: Part 2 Chapter 13

We create a “clock” control in Fig. 13.42. This is a UserControl composed of a
label and a timer—whenever the timer generates an event, the label is updated to reflect the
current time.

Timers (namespace System.Windows.Forms) are invisible components that
reside on a form and generate Tick events at a set interval. This interval is set by the
Timer’s Interval property, which defines the number of milliseconds (thousandths of
a second) between events. By default, timers are disabled.

We create a Form that displays our custom control, ClockUserControl
(Fig. 13.42). Create a UserControl class for the project by selecting Project > Add
User Control.... This displays a dialog from which we can select the type of control to
add—user controls are already selected. We then name the file (and the class) Clock-
UserControl. This brings up our empty ClockUserControl as a grey rectangle.

We can treat this control like a Windows Form, so we can add controls (using the
ToolBox) and set properties (using the Properties window). However, instead of cre-
ating an application (notice there is no Main method in the Control class), we are simply
creating a new control composed of other controls. We add a Label (displayLabel,
line 15) and a Timer (clockTimer, line 14) to the UserControl. We set the Timer
interval to 100 milliseconds and update displayLabel’s text with each event (lines 18–
24). Note that clockTimer must be enabled by setting property Enabled to True in
the Properties window.

Structure DateTime (namespace System) contains member Now, which is the cur-
rent time. Method ToLongTimeString converts Now to a String that contains the
current hour, minute, and second (along with AM or PM). We use this to set display-
Label’s Text property on line 22.

Once created, our clock control appears as an item on the ToolBox. To use the con-
trol, we can simply drag it onto a Windows application in our project and run the Windows
application. The ClockUserControl object has a white background to make it stand
out in the form. Figure 13.42 shows the output of ClockExample, which is a simple form
that contains our ClockUserControl.

1 // Fig. 13.42: ClockUserControl.cs
2 // User-defined control with a timer and a label.
3
4 using System;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Drawing;
8 using System.Data;
9 using System.Windows.Forms;

10
11 public class ClockUserControl
12 : System.Windows.Forms.UserControl
13 {
14 private System.Windows.Forms.Timer clockTimer;
15 private System.Windows.Forms.Label displayLabel;
16

Fig. 13.42 Programmer-defined control that displays the current time. (Part 1 of 2.)

Chapter 13 Graphical User Interfaces Concepts: Part 2 581

The above steps are useful when we need to define a custom control for the project on
which we are working. Visual Studio .NET allows developers to share their custom con-
trols with other developers. To create a UserControl that can be exported to other solu-
tions, do the following:

1. Create a new Windows Control Library project.

2. Inside the project, add controls and functionality to the UserControl
(Fig. 13.43).

3. Build the project. Visual Studio .NET creates a .dll file for the UserControl
in the output directory. The file is not executable: Control classes do not have
a Main method. Select Project > Properties to find the output directory and
output file (Fig. 13.44).

4. Create a new Windows application.

5. Import the UserControl. In the new Windows application, right click the
ToolBox, and select Customize Toolbox.... In the dialog that appears, select
the .NET Framework Components tab. Browse for the .dll file, which is in
the output directory for the Windows control library project. Click the checkbox
next to the control, and click OK (Fig. 13.45).

6. The UserControl appears on the ToolBox and can be added to the form as if
it were any other control (Fig. 13.46).

Testing and Debugging Tip 13.1
Control classes do not have a Main method—they cannot be run by themselves. To test their
functionality, add them to a sample Windows application and run them there. 13.1

17 // update label at every tick
18 private void clockTimer_Tick(
19 object sender, System.EventArgs e)
20 {
21 // get current time (Now), convert to string
22 displayLabel.Text = DateTime.Now.ToLongTimeString();
23
24 } // end method clockTimer_Tick
25
26 } // end class ClockUserControl

Fig. 13.42 Programmer-defined control that displays the current time. (Part 2 of 2.)

582 Graphical User Interfaces Concepts: Part 2 Chapter 13

Fig. 13.43 Custom-control creation.

Fig. 13.44 Project properties dialog.

Fig. 13.45 Custom control added to the ToolBox.

Chapter 13 Graphical User Interfaces Concepts: Part 2 583

Many of today’s most successful commercial programs provide GUIs that are easy to
use and manipulate. Because of this demand for user-friendly GUIs, the ability to design
sophisticated GUIs is an essential programming skill. Fortunately, Visual Studio .NET pro-
vides an IDE that makes GUI development quick and easy. In the last two chapters, we have
presented the basic techniques required to add various GUI components to a program.The
next chapter will explore a more behind-the-scenes topic, multithreading. In many pro-
gramming languages, the programmer can create multiple threads, enabling several pro-
cesses to occur at once. By learning to create and manage multithreading in C#, readers will
begin their study of a more robust type of software.

SUMMARY
• Menus used to provide groups of related commands for Windows applications. Menus are an in-

tegral part of GUIs, because they enable user–application interaction without unnecessarily “clut-
tering” the GUI.

• Window’s top-level menus appear on the left of the screen—any submenus or menu items are in-
dented. All menu items can have Alt key shortcuts (also called access shortcuts or hot keys).

• Non-top-level menus can have shortcut keys (combinations of Ctrl, Shift, Alt, function keys F1,
F2, letter keys etc.).

• To create a menu, open the Toolbox, and drag a MainMenu control onto the form.

• To add entries to the menu, click the Type Here textbox, and type the text that should appear in
the menu. Remove a menu item by selecting it with the mouse and pressing the Delete key.

• Menus generate a Click event when selected.

• Use the Xor (exclusive OR) operator to toggle single bits, such as those representing the bold and
italic styles.

• The LinkLabel control is used to display links to other objects, such as files or Web pages. The
links can change color to reflect whether each link is new, visited or active.

Fig. 13.46 Custom control added to a Form.

New ToolBox icon Newly inserted control

584 Graphical User Interfaces Concepts: Part 2 Chapter 13

• When clicked, a LinkLabel generate a LinkClicked event.

• Method Start of class Process (namespace System.Diagnostics) can begin a new ap-
plication. This method requires either the file to open (a String) or the application to run and the
command-line arguments (two Strings).

• The ListBox control allows the user to view and select multiple items from a list.

• The CheckedListBox control extends a ListBox by accompanying each item in the list with
a checkbox. This allows multiple items to be selected with no logical restriction.

• The SelectionMode property determines how many items in a CheckedListBox can be
selected.

• The SelectedIndexChanged event occurs when the user selects a new item in a
CheckedListBox.

• CheckBox’s property Items returns all the objects in the list as a collection. Property Se-
lectedItem returns the currently selected item. SelectedIndex returns the index of the
selected item.

• Method GetSelected takes an index and returns True if the corresponding item is selected.

• Add items visually by examining the Items collection in the Properties window. Clicking the
ellipsis brings up the String Collection Editor, in which we can type the items to add.

• CheckedListBoxes imply that multiple items can be selected—the SelectionMode prop-
erty can only have values None or One. One allows multiple selection.

• Event ItemCheck is generated whenever a CheckedListBox item is about to change.

• The ComboBox control combines TextBox features with a drop-down list. The user can either
select an option from the list or type one in (if allowed by the programmer). If the number of ele-
ments exceeds the maximum that can be displayed in the drop-down list, a scrollbar appears.

• Property DropDownStyle determines the type of ComboBox.

• The ComboBox control has properties Items (a collection), SelectedItem and Selecte-
dIndex, which are similar to the corresponding properties in ListBox.

• When the selected item changes, event SelectedIndexChanged is generated.

• A Graphics object allows a pen or brush to draw on a component, via one of several Graphics
methods.

• The TreeView control can display nodes hierarchically on a tree.

• A node is an element that contains a value and references to other nodes.

• A parent node contains child nodes, and the child nodes can be parents themselves.

• A tree is a collection of nodes, usually organized in some manner. The first parent node of a tree
is often called the root node.

• Each node has a Nodes collection, which contains a list of the Node’s children.

• To add nodes to the TreeView visually, click the ellipsis by the Nodes property in the Proper-
ties window. This opens the TreeNode Editor, where there are buttons to create a root and to
add, delete and rename nodes.

• Method GetDirectories takes a String (the current directory) and returns an array of
Strings (the subdirectories).

• The ListView control is similar to a ListBox—it displays a list from which the user can select
one or more items. However, a ListView can display icons alongside the list items in a variety
of ways.

Chapter 13 Graphical User Interfaces Concepts: Part 2 585

• To display images, the programmer must use an ImageList component. Create one by dragging
it onto the form from the ToolBox. Click the Images collection in the Properties window to
display the Image Collection Editor.

• Class DirectoryInfo (namespace System.IO) allows us to browse or manipulate the direc-
tory structure easily. Method GetDirectories returns an array of DirectoryInfo objects
containing the subdirectories of the current directory. Method GetFiles returns an array of class
FileInfo objects containing the files in the current directory.

• The TabControl control creates tabbed windows. This allows the programmer to provide large
quantities of information while saving screen space.

• TabControls contain TabPage objects, which can contain controls.

• To add TabPages in the Visual Studio .NET designer, right-click the TabControl, and select
Add Tab.

• Each TabPage generates its own Click event when its tab is clicked. Events for controls inside
the TabPage are still handled by the form.

• Single-document-interface (SDI) applications can support only one open window or document
at a time. Multiple-document-interface (MDI) programs allows users to edit multiple documents
at a time.

• Each window inside an MDI application is called a child window, and the application window is
called the parent window.

• To create an MDI form, set the form’s IsMDIContainer property to True.

• The parent and child windows of an application can have different menus, which are merged (com-
bined) whenever a child window is selected.

• Class MenuItem property MdiList (a boolean) allows a menu item to contain a list of open
child windows.

• The child windows in an MDI application can be arranged by calling method LayoutMdi of the
parent form.

• The .NET Framework allows the programmer to create customized controls. The most basic way
to create a customized control is to derive a class from an existing Windows Forms control. If we
inherit from an existing Windows Forms control, we can add to its appearance, but not redesign it.
To create a new control composed of existing controls, use class UserControl. To create a new
control from the ground up, inherit from class Control.

• Timers are invisible components that reside on a form and generate Tick events at a set interval.

• We create a UserControl class for the project by selecting Project, then Add User Con-
trol.... We can treat this control like a Windows Form, meaning that we can add controls, using
the ToolBox, and set properties, using the Properties window.

• Structure DateTime (namespace System) contains member Now, which is the current time.

TERMINOLOGY
& (menu access shortcut) Add Tab menu item
access shortcut Add User Control... option in Visual Studio
Activation property of class ListView Add Windows Form... option in Visual Studio
ActiveLinkColor property of class adding controls to ToolBox

LinkLabel AfterSelect event of class TreeView
ActiveMdiChild property of class Form ArrangeIcons value in LayoutMdi
Add member of enumeration MenuMerge enumeration
Add method of class TreeNodeCollection boundary of a control

586 Graphical User Interfaces Concepts: Part 2 Chapter 13

Cascade value in LayoutMdi enumeration FullPath property of class TreeNode
CheckBoxes property of class ListView GetDirectories method of class
CheckBoxes property of class TreeView Directory
Checked property of class MenuItem GetDirectories method of class
Checked property of class TreeNode DirectoryInfo
CheckedIndices property of class GetFiles method of class DirectoryInfo

CheckedListBox GetItemChecked method of class
CheckedItems property of class CheckedListBox

CheckedListBox GetNodeCount method of class TreeNode
CheckedListBox class GetSelected method of class ListBox
child node Graphics class
child window Graphics property of class
child window maximized PaintEventArgs
child window minimized hot key
Clear method of class Image Collection Editor

TreeNodeCollection ImageIndex property of class
Click event of class MenuItem ListViewItem
ClipRectangle property of class ImageIndex property of class TreeNode

PaintEventArgs ImageList class
Collapse method of class TreeNode ImageList collection
collapsing a node ImageList property of class TabControl
ComboBox class ImageList property of class TreeView
control boundary Index event of class CheckedListBox
Control class Index property of class MenuItem
CurrentValue event of class inherit from a Windows Form control

CheckedListBox Insert Separator option
custom control Interval property of class Timer
custom control being adding to ToolBox IsMdiChild property of class Form
Customize Toolbox... option in Visual Studio IsMdiContainer property of class Form
DateTime structure ItemActivate event of class ListView
DirectoryInfo class ItemCheck event of class CheckedListBox
displaying files and folders in a ListView ItemCheckEventArgs event of class
draw on a control CheckedListBox
DrawEllipse method of class Graphics Items property of class ComboBox
DrawPie method of class Graphics Items property of class ListBox
DrawRectangle method of class Graphics Items property of class ListView
drop-down list ItemSize property of class TabControl
DropDown style for ComboBox LargeImageList property of class
DropDownList style for ComboBox ListView
DropDownStyle property of class ComboBox LastNode property of class TreeNode
events at an interval LayoutMdi enumeration
Exit method of class Application LayoutMdi method of class Form
Expand method of class TreeNode LinkArea property of class LinkLabel
ExpandAll method of class TreeNode LinkBehavior property of class LinkLabel
expanding a node LinkClicked event of class LinkLabel
FillEllipse method of class Graphics LinkColor property of class LinkLabel
FillPie method of class Graphics LinkLabel class
FillRectange method of class Graphics Links property of class LinkLabel
FirstNode property of class TreeNode LinkVisited property of class LinkLabel
FullName property ListBox class

Chapter 13 Graphical User Interfaces Concepts: Part 2 587

ListView class Process class
Main method project properties dialog
MainMenu class project, Windows control library
MaxDropDownItems property of class radio buttons, using with TabPage

ComboBox RadioCheck property of class MenuItem
MDI form Remove member of enumeration MenuMerge
MDI parent-window class Remove method of class
MDI title bar TreeNodeCollection
MdiChildActivate event of class Form Replace member of enumeration MenuMerge
MdiChildren property of class Form RightToLeft property of class MainMenu
MdiList property of class MenuItem root node
MdiParent property of class Form SelectedImageIndex property of class
menu TreeNode
menu-access shortcut SelectedIndex property of class ComboBox
Menu Designer in Visual Studio .NET SelectedIndex property of class ListBox
menu item SelectedIndex property of class
menu, expanded and checked TabControl
MenuItem class SelectedIndexChanged event of class
MenuItems property of class MainMenu ComboBox
MenuItems property of class MenuItem SelectedIndexChanged event of class
MenuMerge enumeration ListBox
MergeItems member of enumeration SelectedIndexChanged event of class

MenuMerge TabControl
MergeOrder property of class MenuItem SelectedIndices property of class
MergeType property of class MenuItem ListBox
More Windows... option in Visual Studio .NET SelectedItem property of class ComboBox
MultiColumn property of class ListBox SelectedItem property of class ListBox
MultiExtended value of SelectionMode SelectedItems property of class ListBox
MultiLine property of class TabControl SelectedItems property of class ListView
multiple-document interface (MDI) SelectedNode property of class TreeView
MultiSelect property of class ListView SelectedTab property of class TabControl
MultiSimple value of SelectionMode SelectionMode enumeration
Name property of class DirectoryInfo SelectionMode property of class
Name property of class FileInfo CheckedListBox
NewValue event of class CheckedListBox SelectionMode property of class ListBox
NextNode property of class TreeNode separator bar
Nodes property of class TreeNode separator, menu
Nodes property of class TreeView shortcut key
None value of SelectionMode Shortcut property of class MenuItem
Now property of structure DateTime Show method of class Form
One value of SelectionMode ShowShortcut property of class MenuItem
OnPaint method Simple style for ComboBox
opening a file in Windows single-document interface (SDI)
output directory SmallImageList property of class
PaintEventArgs class ListView
parent menu Solution Explorer in Visual Studio .NET
parent node Sorted property of class ComboBox
parent window Sorted property of class ListBox
PictureBox class Start method of class Process
PrevNode property of class TreeNode String Collection Editor in Visual Studio .NET

588 Graphical User Interfaces Concepts: Part 2 Chapter 13

SELF-REVIEW EXERCISES
13.1 State whether each of the following is true or false. If false, explain why.

a) Menus provide groups of related classes.
b) Menu items can display radio buttons, checkmarks and access shortcuts.
c) The ListBox control allows only single selection (like a radio button), whereas the

CheckedListBox allows multiple selection (like a check box).
d) The ComboBox control has a drop-down list.
e) Deleting a parent node in a TreeView control deletes its child nodes.
f) The user can select only one item in a ListView control.
g) A TabPage can act as a logical group for radio buttons.
h) In general, Multiple Document Interface (MDI) windows are used with simple applica-

tions.
i) An MDI child window can have MDI children.
j) MDI child windows cannot be maximized (enlarged) inside their parent.
k) There are two basic ways to create a customized control.

13.2 Fill in the blanks in each of the following statements:
a) Method of class Process can open files and Web pages, much as can the

Run menu in Windows.
b) If more elements appear in a ComboBox than can fit, a appears.
c) The top-level node in a TreeView is the node.
d) An ImageList is used to display icons in a .
e) The MergeOrder and MergeType properties determine how merge.
f) The property allows a menu to display a list of active child windows.
g) An important feature of the ListView control is the ability to display .
h) Class allows the programmer to combine several controls into a single, cus-

tom control.
i) The saves space by layering TabPages on top of each other.
j) The window layout option makes all windows the same size and layers them

so every title bar is visible (if possible).
k) are typically used to display hyperlinks to other objects, files or Web pages.

ANSWERS TO SELF-REVIEW EXERCISES
13.1 a) False. Menus provide groups of related commands. b) True. c) False. Both controls can
have single or multiple selection. d) True. e) True. f) False. The user can select one or more items.

submenu TileVertical value in LayoutMdi
TabControl class enumeration
TabControl, adding a TabPage ToolBox customization
TabCount property of class TabControl tree
TabPage class TreeNode class
TabPage, add to TabControl TreeNode Editor in VS .NET
TabPage, using radio buttons TreeView class
TabPages property of class TabControl UseMnemonic property of class LinkLabel
Text property of class LinkLabel user-defined control
Text property of class MenuItem UserControl class
Text property of class TreeNode View property of class ListView
Tick event of class Timer VisitedLinkColor property of class
TileHorizontal value in LayoutMdi LinkLabel

enumeration

Chapter 13 Graphical User Interfaces Concepts: Part 2 589

g) True. h) False. MDI windows tend to be used with complex applications. i) False. Only an MDI
parent window can have MDI children. An MDI parent window cannot be an MDI child. j) False.
MDI child windows cannot be moved outside their parent window. k) False. There are three methods:
1) Derive from an existing control, 2) use a UserControl or 3) derive from Control and create
a control from scratch.

13.2 a) Start. b) scrollbar. c) root. d) ListView. e) menus. f) MdiList. g) icons. h) User-
Control. i) TabControl. j) Cascade. k) LinkLabels.

EXERCISES
13.3 Write a program that displays the names of 15 states in a ComboBox. When an item is se-
lected from the ComboBox, remove it.

13.4 Modify your solution to Exercise 13.3 to add a ListBox. When the user selects an item
from the ComboBox, remove the item from the ComboBox, and add it to the ListBox. Your pro-
gram should check to ensure that the ComboBox contains at least one item. If it does not, print a mes-
sage in a message box, and terminate program execution.

13.5 Write a program that allows the user to enter strings in a TextBox. Each string input is add-
ed to a ListBox. As each string is added to the ListBox, ensure that the strings are in sorted order.
Any sorting method may be used.

13.6 Create a file browser (similar to Windows Explorer) based on the programs in Fig. 13.7,
Fig. 13.21 and Fig. 13.24. The file browser should have a TreeView, which allows the user to
browse directories. There should also be a ListView, which displays the contents (all subdirecto-
ries and files) of the directory being browsed. Double-clicking a file in the ListView should open
it, and double-clicking a directory in either the ListView or the TreeView should browse it. If a
file or directory cannot be accessed, because of its permission settings, notify the user.

13.7 Create an MDI text editor. Each child window should contain a multiline TextBox. The
MDI parent should have a Format menu, with submenus to control the size, font and color of the text
in the active child window. Each submenu should have at least three options. In addition, the parent
should have a File menu with menu items New (create a new child), Close (close the active child)
and Exit (exit the application). The parent should have a Window menu to display a list of the open
child windows and their layout options.

13.8 Create a UserControl called LoginPasswordUserControl. The LoginPass-
wordUserControl contains a Label (loginLabel) that displays String "Login:", a
TextBox (loginTextBox) where the user inputs a login name, a Label (passwordLabel)
that displays the String "Password:" and finally, a TextBox (passwordTextBox) where
a user inputs a password (don’t forget to set property PasswordChar to "*" in the TextBox’s
Properties window). LoginPasswordUserControl must provide public read-only properties
Login and Password that allow an application to retrieve the user input from loginTextBox
and passwordTextBox. The UserControl must be exported to an application that displays the
values input by the user in LoginPasswordUserControl.

14
Multithreading

Objectives
• To understand the notion of multithreading.
• To appreciate how multithreading can improve

program performance.
• To understand how to create, manage and destroy

threads.
• To understand the life cycle of a thread.
• To understand thread synchronization.
• To understand thread priorities and scheduling.
• To understand the role of a ThreadPool in efficient

multithreading.
The spider’s touch, how exquisitely fine!
Feels at each thread, and lives along the line.
Alexander Pope

A person with one watch knows what time it is; a person with
two watches is never sure.
Proverb

Learn to labor and to wait.
Henry Wadsworth Longfellow

The most general definition of beauty…Multeity in Unity.
Samuel Taylor Coleridge

Chapter 14 Multithreading 591

14.1 Introduction
It would be nice if we could perform one action at a time and perform it well, but that is
usually difficult to do. The human body performs a great variety of operations in parallel—
or, as we will say throughout this chapter, concurrently. Respiration, blood circulation and
digestion, for example, can occur concurrently. All the senses—sight, touch, smell, taste
and hearing—can occur at once. Computers, too, perform operations concurrently. It is
common for desktop personal computers to be compiling a program, sending a file to a
printer and receiving electronic mail messages over a network concurrently.

Ironically, most programming languages do not enable programmers to specify con-
current activities. Rather, programming languages generally provide only a simple set of
control structures that enable programmers to perform one action at a time, proceeding to
the next action after the previous one has finished. Historically, the type of concurrency that
computers perform today generally has been implemented as operating system “primitives”
available only to highly experienced “systems programmers.”

The Ada programming language, developed by the United States Department of
Defense, made concurrency primitives widely available to defense contractors building
military command-and-control systems. However, Ada has not been widely used in univer-
sities and commercial industry.

The .NET Framework Class Library makes concurrency primitives available to the
applications programmer. The programmer specifies that applications contain “threads of
execution,” each thread designating a portion of a program that may execute concurrently
with other threads—this capability is called multithreading. Multithreading is available to
all .NET programming languages, including C#, Visual Basic and Visual C++.

Software Engineering Observation 14.1
The .NET Framework Class Library includes multithreading capabilities in namespace
System.Threading. This encourages the use of multithreading among a larger part of
the applications-programming community. 14.1

We discuss many applications of concurrent programming. When programs download
large files, such as audio clips or video clips from the World Wide Web, users do not want
to wait until an entire clip downloads before starting the playback. To solve this problem,
we can put multiple threads to work—one thread downloads a clip, and another plays the

Outline

14.1 Introduction
14.2 Thread States: Life Cycle of a Thread
14.3 Thread Priorities and Thread Scheduling

14.4 Thread Synchronization and Class Monitor
14.5 Producer/Consumer Relationship without Thread Synchronization
14.6 Producer/Consumer Relationship with Thread Synchronization
14.7 Producer/Consumer Relationship: Circular Buffer

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

592 Multithreading Chapter 14

clip. These activities, or tasks, then may proceed concurrently. To avoid choppy playback,
we synchronize the threads so that the player thread does not begin until there is a sufficient
amount of the clip in memory to keep the player thread busy.

Another example of multithreading is C#’s automatic garbage collection. C and C++
place with the programmer the responsibility of reclaiming dynamically allocated memory.
C# provides a garbage-collector thread that reclaims dynamically allocated memory that
is no longer needed.

Performance Tip 14.1
One of the reasons for the popularity of C and C++ over the years was that their memory-
management techniques were more efficient than those of languages that used garbage col-
lectors. In fact, memory management in C# often is faster than in C or C++.1 14.1

Good Programming Practice 14.1
Set an object reference to null when the program no longer needs that object. This enables
the garbage collector to determine at the earliest possible moment that the object can be gar-
bage collected. If such an object has other references to it, that object cannot be collected. 14.1

Writing multithreaded programs can be tricky. Although the human mind can perform
functions concurrently, people find it difficult to jump between parallel “trains of thought.”
To see why multithreading can be difficult to program and understand, try the following
experiment: Open three books to page 1 and try reading the books concurrently. Read a few
words from the first book, then read a few words from the second book, then read a few
words from the third book, then loop back and read the next few words from the first book,
etc. After this experiment, you will appreciate the challenges of multithreading—switching
between books, reading briefly, remembering your place in each book, moving the book
you are reading closer so you can see it, pushing books you are not reading aside—and
amidst all this chaos, trying to comprehend the content of the books!

Performance Tip 14.2
A problem with single-threaded applications is that lengthy activities must complete before
other activities can begin. In a multithreaded application, threads can share a processor (or
set of processors), so that multiple tasks are performed in parallel. 14.2

14.2 Thread States: Life Cycle of a Thread
At any time, a thread is said to be in one of several thread states (illustrated in Fig. 14.12).
This section discusses these states and the transitions between states. Two classes critical
for multithreaded applications are Thread and Monitor (System.Threading
namespace). This section also discusses several methods of classes Thread and Moni-
tor that cause state transitions.

1. E. Schanzer, “Performance Considerations for Run-Time Technologies in the .NET Framework,”
August 2001 <http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dndotnet/html/dotnetperftechs.asp>.

2. As this book went to publication, Microsoft changed the names of the Started and Blocked thread
states to Running and WaitSleepJoin, respectively.

Chapter 14 Multithreading 593

A new thread begins its lifecyle in the Unstarted state. The thread remains in the
Unstarted state until the program calls Thread method Start, which places the thread
in the Started state (sometimes called the Ready or Runnable state) and immediately returns
control to the calling thread. Then the thread that invoked Start, the newly Started thread
and any other threads in the program execute concurrently.

The highest priority Started thread enters the Running state (i.e., begins executing)
when the operating system assigns a processor to the thread (Section 14.3 discusses thread
priorities). When a Started thread receives a processor for the first time and becomes a Run-
ning thread, the thread executes its ThreadStart delegate, which specifies the actions
the thread will perform during its lifecyle. When a program creates a new Thread, the pro-
gram specifies the Thread’s ThreadStart delegate as the argument to the Thread
constructor. The ThreadStart delegate must be a method that returns void and takes
no arguments.

A Running thread enters the Stopped (or Dead) state when its ThreadStart dele-
gate terminates. Note that a program can force a thread into the Stopped state by calling
Thread method Abort on the appropriate Thread object. Method Abort throws a
ThreadAbortException in the thread, normally causing the thread to terminate.
When a thread is in the Stopped state and there are no references to the thread object, the
garbage collector can remove the thread object from memory.

Fig. 14.1Fig. 14.1Fig. 14.1Fig. 14.1 Thread life cycle.

Started

Running

WaitSleepJoin Suspended Stopped Blocked

Unstarted

dispatch
(assign a
processor)

quantum
expiration

Start

I/O completion

Issue I/O requestSuspend
Wait

Interrupt
sleep interval expires

Resume

Sleep, Join

Pulse
PulseAll

complete

594 Multithreading Chapter 14

A thread enters the Blocked state when the thread issues an input/output request. The
operating system blocks the thread from executing until the operating system can complete
the I/O for which the thread is waiting. At that point, the thread returns to the Started state, so
it can resume execution. A Blocked thread cannot use a processor even if one is available.

There are three ways in which a Running thread enters the WaitSleepJoin state. If a
thread encounters code that it cannot execute yet (normally because a condition is not sat-
isfied), the thread can call Monitor method Wait to enter the WaitSleepJoin state. Once
in this state, a thread returns to the Started state when another thread invokes Monitor
method Pulse or PulseAll. Method Pulse moves the next waiting thread back to the
Started state. Method PulseAll moves all waiting threads back to the Started state.

A Running thread can call Thread method Sleep to enter the WaitSleepJoin state
for a period of milliseconds specified as the argument to Sleep. A sleeping thread returns
to the Started state when its designated sleep time expires. Sleeping threads cannot use a
processor, even if one is available.

Any thread that enters the WaitSleepJoin state by calling Monitor method Wait or
by calling Thread method Sleep also leaves the WaitSleepJoin state and returns to the
Started state if the sleeping or waiting Thread’s Interrupt method is called by another
thread in the program.

If a thread cannot continue executing (we will call this the dependent thread) unless
another thread terminates, the dependent thread calls the other thread’s Join method to
“join” the two threads. When two threads are “joined,” the dependent thread leaves the
WaitSleepJoin state when the other thread finishes execution (enters the Stopped state).

If a Running Thread’s Suspend method is called, the Running thread enters the Sus-
pended state. A Suspended thread returns to the Started state when another thread in the
program invokes the Suspended thread’s Resume method.

14.3 Thread Priorities and Thread Scheduling
Every thread has a priority in the range between ThreadPriority.Lowest to
ThreadPriority.Highest. These two values come from the ThreadPriority
enumeration (namespace System.Threading). The enumeration consists of the values
Lowest, BelowNormal, Normal, AboveNormal and Highest. By default, each
thread has priority Normal.

The Windows operating system supports a concept, called timeslicing, that enables
threads of equal priority to share a processor. Without timeslicing, each thread in a set of
equal-priority threads runs to completion (unless the thread leaves the Running state and
enters the WaitSleepJoin, Suspended or Blocked state) before the thread’s peers get a
chance to execute. With timeslicing, each thread receives a brief burst of processor time,
called a quantum, during which the thread can execute. At the completion of the quantum,
even if the thread has not finished executing, the processor is taken away from that thread
and given to the next thread of equal priority, if one is available.

The job of the thread scheduler is to keep the highest-priority thread running at all times
and, if there is more than one highest-priority thread, to ensure that all such threads execute
for a quantum in round-robin fashion. Figure 14.2 illustrates the multilevel priority queue for
threads. In Fig. 14.2, assuming a single-processor computer, threads A and B each execute for
a quantum in round-robin fashion until both threads complete execution. This means that A
gets a quantum of time to run. Then B gets a quantum. Then A gets another quantum. Then

Chapter 14 Multithreading 595

B gets another quantum. This continues until one thread completes. The processor then
devotes all its power to the thread that remains (unless another thread of that priority is
Started). Next, thread C runs to completion. Threads D, E and F each execute for a quantum
in round-robin fashion until they all complete execution. This process continues until all
threads run to completion. Note that, depending on the operating system, new higher-priority
threads could postpone—possibly indefinitely—the execution of lower-priority threads. Such
indefinite postponement often is referred to more colorfully as starvation.

A thread’s priority can be adjusted with the Priority property, which accepts
values from the ThreadPriority enumeration. If the argument is not one of the valid
thread-priority constants, an ArgumentException occurs.

A thread executes until it dies, becomes Blocked for input/output (or some other
reason), calls Sleep, calls Monitor method Wait or Join, is preempted by a thread of
higher priority or has its quantum expire. A thread with a higher priority than the Running
thread can become Started (and hence preempt the Running thread) if a sleeping thread
wakes up, if I/O completes for a thread that Blocked for that I/O, if either Pulse or
PulseAll is called on an object on which Wait was called, or if a thread to which the
high-priority thread was Joined completes.

Figure 14.3 demonstrates basic threading techniques, including the construction of a
Thread object and using the Thread class’s static method Sleep. The program cre-
ates three threads of execution, each with the default priority Normal. Each thread dis-
plays a message indicating that it is going to sleep for a random interval of from 0 to 5000
milliseconds, then goes to sleep. When each thread awakens, the thread displays its name,
indicates that it is done sleeping, terminates and enters the Stopped state. You will see that
method Main (i.e., the Main thread of execution) terminates before the application termi-
nates. The program consists of two classes—ThreadTester (lines 8–41), which creates
the three threads, and MessagePrinter (lines 44–73), which defines a Print method
containing the actions each thread will perform.

Objects of class MessagePrinter (lines 44–73) control the lifecycle of each of the
three threads class ThreadTester’s Main method creates. Class MessagePrinter
consists of instance variable sleepTime (line 46), static variable random (line 47),
a constructor (lines 50–54) and a Print method (lines 57–71). Variable sleepTime
stores a random integer value chosen when a new MessagePrinter object’s constructor
is called. Each thread controlled by a MessagePrinter object sleeps for the amount of
time specified by the corresponding MessagePrinter object’s sleepTime

The MessagePrinter constructor (lines 50–54) initializes sleepTime to a
random integer from 0 up to, but not including, 5001 (i.e., from 0 to 5000).

Method Print begins by obtaining a reference to the currently executing thread (line
60) via class Thread’s static property CurrentThread. The currently executing
thread is the one that invokes method Print. Next, lines 63–64 display a message indi-
cating the name of the currently executing thread and stating that the thread is going to sleep
for a certain number of milliseconds. Note that line 64 uses the currently executing thread’s
Name property to obtain the thread’s name (set in method Main when each thread is cre-
ated). Line 66 invokes static Thread method Sleep to place the thread into the Wait-
SleepJoin state. At this point, the thread loses the processor and the system allows another
thread to execute. When the thread awakens, it reenters the Started state again until the
system assigns a processor to the thread. When the MessagePrinter object enters the

596 Multithreading Chapter 14

Running state again, line 69 outputs the thread’s name in a message that indicates the thread
is done sleeping, and method Print terminates.

Class ThreadTester’s Main method (lines 10–39) creates three objects of class
MessagePrinter, at lines 14, 19 and 24, respectively. Lines 15–16, 20–21 and 25–26
create and initialize three Thread objects. Lines 17, 22 and 27 set each Thread’s Name
property, which we use for output purposes. Note that each Thread’s constructor
receives a ThreadStart delegate as an argument. Remember that a ThreadStart
delegate specifies the actions a thread performs during its lifecyle. Line 16 specifies that
the delegate for thread1 will be method Print of the object to which printer1
refers. When thread1 enters the Running state for the first time, thread1 will invoke
printer1’s Print method to perform the tasks specified in method Print’s body.
Thus, thread1 will print its name, display the amount of time for which it will go to
sleep, sleep for that amount of time, wake up and display a message indicating that the
thread is done sleeping. At that point method Print will terminate. A thread completes
its task when the method specified by a Thread’s ThreadStart delegate terminates,
placing the thread in the Stopped state. When thread2 and thread3 enter the Running
state for the first time, they invoke the Print methods of printer2 and printer3,
respectively. Threads thread2 and thread3 perform the same tasks as thread1 by
executing the Print methods of the objects to which printer2 and printer3 refer
(each of which has its own randomly chosen sleep time).

Fig. 14.2Fig. 14.2Fig. 14.2Fig. 14.2 Thread-priority scheduling.

1 // Fig. 14.3: ThreadTester.cs
2 // Multiple threads printing at different intervals.
3

Fig. 14.3Fig. 14.3Fig. 14.3Fig. 14.3 Threads sleeping and printing. (Part 1 of 3.)

Priority Highest

Priority AboveNormal

Priority Normal

Priority BelowNormal

Priority Lowest

Ready threads

A B

C

D E F

G

Chapter 14 Multithreading 597

4 using System;
5 using System.Threading;
6
7 // class ThreadTester demonstrates basic threading concepts
8 class ThreadTester
9 {

10 static void Main(string[] args)
11 {
12 // Create and name each thread. Use MessagePrinter's
13 // Print method as argument to ThreadStart delegate.
14 MessagePrinter printer1 = new MessagePrinter();
15 Thread thread1 =
16 new Thread (new ThreadStart(printer1.Print));
17 thread1.Name = "thread1";
18
19 MessagePrinter printer2 = new MessagePrinter();
20 Thread thread2 =
21 new Thread (new ThreadStart(printer2.Print));
22 thread2.Name = "thread2";
23
24 MessagePrinter printer3 = new MessagePrinter();
25 Thread thread3 =
26 new Thread (new ThreadStart(printer3.Print));
27 thread3.Name = "thread3";
28
29 Console.WriteLine("Starting threads");
30
31 // call each thread's Start method to place each
32 // thread in Started state
33 thread1.Start();
34 thread2.Start();
35 thread3.Start();
36
37 Console.WriteLine("Threads started\n");
38
39 } // end method Main
40
41 } // end class ThreadTester
42
43 // Print method of this class used to control threads
44 class MessagePrinter
45 {
46 private int sleepTime;
47 private static Random random = new Random();
48
49 // constructor to initialize a MessagePrinter object
50 public MessagePrinter()
51 {
52 // pick random sleep time between 0 and 5 seconds
53 sleepTime = random.Next(5001);
54 }
55

Fig. 14.3Fig. 14.3Fig. 14.3Fig. 14.3 Threads sleeping and printing. (Part 2 of 3.)

598 Multithreading Chapter 14

Testing and Debugging Tip 14.1
Naming threads helps in the debugging of a multithreaded program. Visual Studio .NET’s
debugger provides a Threads window that displays the name of each thread and enables
you to view the execution of any thread in the program. 14.1

Lines 33–35 invoke each Thread’s Start method to place the threads in the
Started state (sometimes called launching a thread). Method Start returns immediately
from each invocation, then line 37 outputs a message indicating that the threads were
started, and the Main thread of execution terminates. The program itself does not termi-

56 // method Print controls thread that prints messages
57 public void Print()
58 {
59 // obtain reference to currently executing thread
60 Thread current = Thread.CurrentThread;
61
62 // put thread to sleep for sleepTime amount of time
63 Console.WriteLine(
64 current.Name + " going to sleep for " + sleepTime);
65
66 Thread.Sleep (sleepTime);
67
68 // print thread name
69 Console.WriteLine(current.Name + " done sleeping");
70
71 } // end method Print
72
73 } // end class MessagePrinter

Starting threads
Threads started

thread1 going to sleep for 1977
thread2 going to sleep for 4513
thread3 going to sleep for 1261
thread3 done sleeping
thread1 done sleeping
thread2 done sleeping

Starting threads
Threads started

thread1 going to sleep for 1466
thread2 going to sleep for 4245
thread3 going to sleep for 1929
thread1 done sleeping
thread3 done sleeping
thread2 done sleeping

Fig. 14.3Fig. 14.3Fig. 14.3Fig. 14.3 Threads sleeping and printing. (Part 3 of 3.)

Chapter 14 Multithreading 599

nate, however, because there are still threads that are alive (i.e., the threads were Started
and have not reached the Stopped state yet). The program will not terminate until its last
thread dies. When the system assigns a processor to a thread, the thread enters the Run-
ning state and calls the method specified by the thread’s ThreadStart delegate. In this
program, each thread invokes method Print of the appropriate MessagePrinter
object to perform the tasks discussed previously.

Note that the sample outputs for this program show each thread and the thread’s
sleep time as the thread goes to sleep. The thread with the shortest sleep time normally
awakens first, then indicates that it is done sleeping and terminates. In Section 14.7, we
discuss multithreading issues that could prevent the thread with the shortest sleep time
from awakening first.

14.4 Thread Synchronization and Class Monitor
Often, multiple threads of execution manipulate shared data. If threads with access to
shared data simply read that data, then there is no need to prevent the data from being ac-
cessed by more than one thread at a time. However, when multiple threads share data and
that data is modified by one or more of those threads, then indeterminate results may occur.
If one thread is in the process of updating the data and another thread tries to update it too,
the data will reflect the update that occurs second. If the data is an array or other data struc-
ture in which the threads could update separate parts of the data concurrently, it is possible
that part of the data will reflect the information from one thread while another part of the
data will reflect information from a different thread. When this happens, the program has
difficulty determining when the data has been updated properly.

The problem can be solved by giving one thread at a time exclusive access to code that
manipulates the shared data. During that time, other threads desiring to manipulate the data
should be kept waiting. When the thread with exclusive access to the data completes its
manipulation of the data, one of the threads waiting to manipulate the data should be
allowed to proceed. In this fashion, each thread accessing the shared data excludes all other
threads from doing so simultaneously. This is called mutual exclusion or thread synchro-
nization.

C# uses the .NET Framework’s monitors3 to perform synchronization. Class Mon-
itor provides the methods for locking objects to implement synchronized access to shared
data. Locking an object means that only one thread can access that object at a time. When
a thread wishes to acquire exclusive control over an object, the thread invokes Monitor
method Enter to acquire the lock on that data object. Each object has a SyncBlock that
maintains the state of that object’s lock. Methods of class Monitor use the data in an
object’s SyncBlock to determine the state of the lock for that object. After acquiring the lock
for an object, a thread can manipulate that object’s data. While the object is locked, all other
threads attempting to acquire the lock on that object are blocked (i.e., they enter the Blocked
state) from acquiring the lock. When the thread that locked the shared object no longer
requires the lock, that thread invokes Monitor method Exit to release the lock. This
updates the SyncBlock of the shared object to indicate that the lock for the object is avail-

3. Hoare, C. A. R. Monitors: An Operating System Structuring Concept, Communications of the
ACM. Vol. 17, No. 10, October 1974: 549–557. Corrigendum, Communications of the ACM. Vol.
18, No. 2, February 1975: 95.

600 Multithreading Chapter 14

able again. At this point, if there is a thread that was previously blocked from acquiring the
lock on the shared object, that thread acquires the lock to begin its processing of the object.
If all threads with access to an object attempt to acquire the object’s lock before manipu-
lating the object, only one thread at a time will be allowed to manipulate the object. This
helps ensure the integrity of the data.

Common Programming Error 14.1
Make sure that all code that updates a shared object locks the object before doing so. Oth-
erwise a thread calling a method that does not lock the object can make the object unstable
even when another thread has acquired the lock for the object. 14.1

Common Programming Error 14.2
Deadlock occurs when a waiting thread (let us call this thread1) cannot proceed because it is
waiting for another thread (let us call this thread2) to proceed. Similarly, thread2 cannot pro-
ceed because it is waiting for thread1 to proceed. The two threads are waiting for each other;
therefore, the actions that would enable each thread to continue execution never occur. 14.2

C# provides another means of manipulating an object’s lock—keyword lock. Placing
lock before a block of code (designated with braces) as in

lock (objectReference)
{

// code that requires synchronization goes here
}

obtains the lock on the object to which the objectReference in parentheses refers. The
objectReference is the same reference that normally would be passed to Monitor methods
Enter, Exit, Pulse and PulseAll. When a lock block terminates for any reason,
C# releases the lock on the object to which the objectReference refers. We explain lock
further in Section 14.7.

If a thread determines that it cannot perform its task on a locked object, the thread
can call Monitor method Wait and pass as an argument the object on which the thread
will wait until the thread can perform its task. Calling method Monitor.Wait from a
thread releases the lock the thread has on the object Wait receives as an argument and
places that thread into the WaitSleepJoin state for that object. A thread in the WaitSleep-
Join state for an object leaves the WaitSleepJoin state when a separate thread invokes
Monitor method Pulse or PulseAll with the object as an argument. Method
Pulse transitions the object’s first waiting thread from the WaitSleepJoin state to the
Started state. Method PulseAll transitions all threads in the object’s WaitSleepJoin
state to the Started state. The transition to the Started state enables the thread (or threads)
to get ready to continue executing.

 There is a difference between threads waiting to acquire the lock for an object and
threads waiting in an object’s WaitSleepJoin state: The threads called Monitor method
Wait with the object as an argument. Threads that are waiting to acquire the lock enter the
Blocked state and wait there until the object’s lock becomes available. Then, one of the
blocked threads can acquire the object’s lock.

Monitor methods Enter, Exit, Wait, Pulse and PulseAll all take a refer-
ence to an object—usually the keyword this—as their argument.

Chapter 14 Multithreading 601

Common Programming Error 14.3
A thread in the WaitSleepJoin state cannot reenter the Started state to continue execution un-
til a separate thread invokes Monitor method Pulse or PulseAll with the appropriate
object as an argument. If this does not occur, the waiting thread will wait forever and so can
cause deadlock. 14.3

Testing and Debugging Tip 14.2
When multiple threads manipulate a shared object, using monitors, ensure that, if one thread
calls Monitor method Wait to enter the WaitSleepJoin state for the shared object, a sep-
arate thread eventually will call Monitor method Pulse to transition the thread waiting
on the shared object back to the Started state. If multiple threads may be waiting for the
shared object, a separate thread can call Monitor method PulseAll as a safeguard to
ensure that all waiting threads have another opportunity to perform their tasks. 14.2

Performance Tip 14.3
Synchronization to achieve correctness in multithreaded programs can make programs run
more slowly, as a result of monitor overhead and the frequent transitioning of threads among
the Running, WaitSleepJoin and Started states. There is not much to say, however, for highly
efficient, incorrect multithreaded programs! 14.3

14.5 Producer/Consumer Relationship without Thread
Synchronization
In a producer/consumer relationship, the producer portion of an application generates data
and the consumer portion of an application uses that data. In a multithreaded producer/con-
sumer relationship, a producer thread calls a produce method to generate data and place it
into a shared region of memory, called a buffer. A consumer thread calls a consume method
to read that data. If the producer waiting to put the next data into the buffer determines that
the consumer has not yet read the previous data from the buffer, the producer thread should
call Wait; otherwise, the consumer never sees the previous data and that data is lost to that
application. When the consumer thread reads the message, it should call Pulse to allow a
waiting producer to proceed. If a consumer thread finds the buffer empty or finds that the
previous data has already been read, the consumer should call Wait; otherwise, the con-
sumer might read “garbage” from the buffer or the consumer might process a previous data
item more than once—each of these possibilities results in a logic error in the application.
When the producer places the next data into the buffer, the producer should call Pulse to
allow the consumer thread to proceed.

Let us consider how logic errors can arise if we do not synchronize access among mul-
tiple threads manipulating shared data. Consider a producer/consumer relationship in
which a producer thread writes a sequence of numbers (we use 1–4) into a shared buffer—
a memory location shared between multiple threads. The consumer thread reads this data
from the shared buffer then displays the data. We display in the program’s output the values
that the producer writes (produces) and that the consumer reads (consumes). Figure 14.4
demonstrates a producer and a consumer accessing a single shared cell (int variable
buffer) of memory without any synchronization. Both the consumer and the producer
threads access this single cell: The producer thread writes to the cell; the consumer thread
reads from it. We would like each value the producer thread writes to the shared cell to be
consumed exactly once by the consumer thread. However, the threads in this example are

602 Multithreading Chapter 14

not synchronized. Therefore, data can be lost if the producer places new data into the slot
before the consumer consumes the previous data. Also, data can be incorrectly repeated if
the consumer consumes data again before the producer produces the next item. To show
these possibilities, the consumer thread in the following example keeps a total of all the
values it reads. The producer thread produces values from 1 to 4. If the consumer reads each
value produced once and only once, the total would be 10. However, if you execute this
program several times, you will see that the total is rarely, if ever, 10. Also, to emphasize
our point, the producer and consumer threads in the example each sleep for random inter-
vals of up to three seconds between performing their tasks. Thus, we do not know exactly
when the producer thread will attempt to write a new value, nor do we know when the con-
sumer thread will attempt to read a value.

The program consists of four classes—HoldIntegerUnsynchronized (lines 9–
34), Producer (lines 37–70), Consumer (73–106) and SharedCell (109–144).

1 // Fig. 14.4: Unsynchronized.cs
2 // Showing multiple threads modifying a shared object without
3 // synchronization.
4
5 using System;
6 using System.Threading;
7
8 // this class represents a single shared int
9 public class HoldIntegerUnsynchronized

10 {
11 // buffer shared by producer and consumer threads
12 private int buffer = -1;
13
14 // property Buffer
15 public int Buffer
16 {
17 get
18 {
19 Console.WriteLine(Thread.CurrentThread.Name +
20 " reads " + buffer);
21
22 return buffer;
23 }
24
25 set
26 {
27 Console.WriteLine(Thread.CurrentThread.Name +
28 " writes " + value);
29
30 buffer = value;
31 }
32
33 } // end property Buffer
34
35 } // end class HoldIntegerUnsynchronized

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 Producer and consumer threads accessing a shared object without
synchronization. (Part 1 of 4.)

Chapter 14 Multithreading 603

36
37 // class Producer's Produce method controls a thread that
38 // stores values from 1 to 4 in sharedLocation
39 class Producer
40 {
41 private HoldIntegerUnsynchronized sharedLocation;
42 private Random randomSleepTime;
43
44 // constructor
45 public Producer(
46 HoldIntegerUnsynchronized shared, Random random)
47 {
48 sharedLocation = shared;
49 randomSleepTime = random;
50 }
51
52 // store values 1-4 in object sharedLocation
53 public void Produce()
54 {
55 // sleep for random interval upto 3000 milliseconds
56 // then set sharedLocation's Buffer property
57 for (int count = 1; count <= 4; count++)
58 {
59 Thread.Sleep(randomSleepTime.Next(1, 3000));
60 sharedLocation.Buffer = count;
61 }
62
63 Console.WriteLine(Thread.CurrentThread.Name +
64 " done producing.\nTerminating " +
65 Thread.CurrentThread.Name + ".");
66
67 } // end method Produce
68
69 } // end class Producer
70
71 // class Consumer's Consume method controls a thread that
72 // loops four times and reads a value from sharedLocation
73 class Consumer
74 {
75 private HoldIntegerUnsynchronized sharedLocation;
76 private Random randomSleepTime;
77
78 // constructor
79 public Consumer(
80 HoldIntegerUnsynchronized shared, Random random)
81 {
82 sharedLocation = shared;
83 randomSleepTime = random;
84 }
85

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 Producer and consumer threads accessing a shared object without
synchronization. (Part 2 of 4.)

604 Multithreading Chapter 14

86 // read sharedLocation's value four times
87 public void Consume()
88 {
89 int sum = 0;
90
91 // sleep for random interval up to 3000 milliseconds
92 // then add sharedLocation's Buffer property value
93 // to sum
94 for (int count = 1; count <= 4; count++)
95 {
96 Thread.Sleep(randomSleepTime.Next(1, 3000));
97 sum += sharedLocation.Buffer;
98 }
99
100 Console.WriteLine(Thread.CurrentThread.Name +
101 " read values totaling: " + sum +
102 ".\nTerminating " + Thread.CurrentThread.Name + ".");
103
104 } // end method Consume
105
106 } // end class Consumer
107
108 // this class creates producer and consumer threads
109 class SharedCell
110 {
111 // create producer and consumer threads and start them
112 static void Main(string[] args)
113 {
114 // create shared object used by threads
115 HoldIntegerUnsynchronized holdInteger =
116 new HoldIntegerUnsynchronized();
117
118 // Random object used by each thread
119 Random random = new Random();
120
121 // create Producer and Consumer objects
122 Producer producer =
123 new Producer(holdInteger, random);
124
125 Consumer consumer =
126 new Consumer(holdInteger, random);
127
128 // create threads for producer and consumer and set
129 // delegates for each thread
130 Thread producerThread =
131 new Thread(new ThreadStart(producer.Produce));
132 producerThread.Name = "Producer";
133
134 Thread consumerThread =
135 new Thread(new ThreadStart(consumer.Consume));
136 consumerThread.Name = "Consumer";
137

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 Producer and consumer threads accessing a shared object without
synchronization. (Part 3 of 4.)

Chapter 14 Multithreading 605

138 // start each thread
139 producerThread.Start();
140 consumerThread.Start();
141
142 } // end method Main
143
144 } // end class SharedCell

Consumer reads -1
Producer writes 1
Consumer reads 1
Consumer reads 1
Consumer reads 1
Consumer read values totaling: 2.
Terminating Consumer.
Producer writes 2
Producer writes 3
Producer writes 4
Producer done producing.
Terminating Producer.

Producer writes 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer reads 4
Consumer read values totaling: 13.
Terminating Consumer.

Producer writes 1
Consumer reads 1
Producer writes 2
Consumer reads 2
Producer writes 3
Consumer reads 3
Producer writes 4
Producer done producing.
Terminating Producer.
Consumer reads 4
Consumer read values totaling: 10.
Terminating Consumer.

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 Producer and consumer threads accessing a shared object without
synchronization. (Part 4 of 4.)

606 Multithreading Chapter 14

Class HoldIntegerUnsynchronized (lines 9–35) consists of instance variable
buffer (line 12) and property Buffer (lines 15–33), which provides get and set
accessors. Property Buffer’s accessors do not synchronize access to instance variable
buffer. Note that each accessor uses class Thread’s static property Current-
Thread to obtain a reference to the currently executing thread, then uses that thread’s
property Name to obtain the thread’s name.

Class Producer (lines 39–69) consists of instance variable sharedLocation
(line 41), instance variable randomSleepTime (line 42), a constructor (lines 45–50) to
initialize the instance variables and a Produce method (lines 53–67). The constructor ini-
tializes instance variable sharedLocation to refer to the HoldInteger-
Unsynchronized object received from method Main as the argument shared. The
producer thread in this program executes the tasks specified in method Produce of class
class Producer. Method Produce contains a for structure (lines 57–61) that loops four
times. Each iteration of the loop first invokes Thread method Sleep to place producer
thread into the WaitSleepJoin state for a random time interval between 0 and 3 seconds.
When the thread awakens, line 61 assigns the value of control variable count to the
HoldIntegerUnsynchronized object’s Buffer property, which causes the set
accessor of HoldIntegerUnsynchronized to modify the buffer instance variable
of the HoldIntegerUnsynchronized object. When the loop completes, lines 63–65
display a line of text in the console window indicating that the thread finished producing
data and that the thread is terminating, then the Produce method terminates and so places
the producer thread in the Stopped state.

Class Consumer (73–106) consists of instance variable sharedLocation (line
75), instance variable randomSleepTime (line 76), a constructor (lines 79–84) to ini-
tialize the instance variables and a Consume method (lines 87–104). The constructor ini-
tializes sharedLocation to refer to the HoldIntegerUnsynchronized received
from Main as the argument shared. The consumer thread in this program performs the
tasks specified in class Consumer’s Consume method. The method contains a for struc-
ture (lines 94–98) that loops four times. Each iteration of the loop invokes Thread method
Sleep to put the consumer thread into the WaitSleepJoin state for a random time interval
between 0 and 3 seconds. Next, line 97 gets the value of the HoldIntegerUnsynchro-
nized object’s Buffer property and adds the value to the variable sum. When the loop
completes, lines 100–102 display a line in the console window indicating the sum of all
values read, then the Consume method terminates, which places the consumer thread in
the Stopped state.

Note: We use method Sleep in this example to emphasize the fact that, in multi-
threaded applications, it is unclear when each thread will perform its task and for how long
it will perform that task when it has the processor. Normally, these thread-scheduling issues
are the job of the computer’s operating system. In this program, our thread’s tasks are quite
simple—for the producer, loop four times and perform an assignment statement; for the
consumer, loop four times and add a value to variable sum. Without the Sleep method
call, and if the producer executes first, the producer would complete its task before the con-
sumer ever gets a chance to execute. If the consumer executes first, it would consume -1
four times, then terminate before the producer can produce the first real value.

Class SharedCell’s Main method (lines 112–142) instantiates a shared Hold-
IntegerUnsynchronized object (lines 115–116) and a Random object (line 119) for

Chapter 14 Multithreading 607

generating random sleep times and uses them as arguments to the constructors for the
objects of classes Producer (lines 122–123) and Consumer (lines 125–126). The
HoldIntegerUnsynchronized object contains the data that will be shared between
the producer and consumer threads. Lines 130–132 create and name producerThread.
The ThreadStart delegate for producerThread specifies that the thread will exe-
cute method Produce of object producer. Lines 134–136 create and name the con-
sumerThread. The ThreadStart delegate for the consumerThread specifies that
the thread will execute method Consume of object consumer. Finally, lines 139–140
place the two threads in the Started state by invoking each thread’s Start method, then
the Main thread terminates.

Ideally, we would like every value produced by the Producer object to be consumed
exactly once by the Consumer object. However, when we study the first output of
Fig. 14.4, we see that the consumer retrieved a value (-1) before the producer ever placed
a value in the shared buffer and that the value 1 was consumed three times. The consumer
finished executing before the producer had an opportunity to produce the values 2, 3 and 4.
Therefore, those three values were lost. In the second output, we see that the value 1 was
lost, because the values 1 and 2 were produced before the consumer thread could read the
value 1. Also, the value 4 was consumed twice. The last sample output demonstrates that it
is possible, with some luck, to get a proper output in which each value the producer pro-
duces is consumed once and only once by the consumer. This example clearly demonstrates
that access to shared data by concurrent threads must be controlled carefully; otherwise, a
program may produce incorrect results.

To solve the problems of lost data and data consumer more than once in the previous
example, we will (in Fig. 14.5) synchronize access of the concurrent producer and con-
sumer threads to the code that manipulates the shared data by using Monitor class
methods Enter, Wait, Pulse and Exit. When a thread uses synchronization to access
a shared object, the object is locked, so no other thread can acquire the lock for that shared
object at the same time.

14.6 Producer/Consumer Relationship with Thread
Synchronization
Figure 14.5 demonstrates a producer and a consumer accessing a shared cell of memory
with synchronization, so that the consumer consumes only after the producer produces a
value and the producer produces a new value only after the consumer consumes the previ-
ous value produced. Classes Producer (lines 90–123), Consumer (lines 126–162) and
SharedCell (lines 165–200) are identical to Fig. 14.4, except that they use the new class
HoldIntegerSynchronized in this example. [Note: In this example, we demonstrate
synchronization with class Monitor’s Enter and Exit methods. In the next example,
we demonstrate the same concepts via a lock block.]

1 // Fig. 14.5: Synchronized.cs
2 // Showing multiple threads modifying a shared object with
3 // synchronization.

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 1 of 8.)

608 Multithreading Chapter 14

4
5 using System;
6 using System.Threading;
7
8 // this class synchronizes access to an integer
9 public class HoldIntegerSynchronized

10 {
11 // buffer shared by producer and consumer threads
12 private int buffer = -1;
13
14 // occupiedBufferCount maintains count of occupied buffers
15 private int occupiedBufferCount = 0;
16
17 // property Buffer
18 public int Buffer
19 {
20 get
21 {
22 // obtain lock on this object
23 Monitor.Enter(this);
24
25 // if there is no data to read, place invoking
26 // thread in WaitSleepJoin state
27 if (occupiedBufferCount == 0)
28 {
29 Console.WriteLine(
30 Thread.CurrentThread.Name + " tries to read.");
31
32 DisplayState("Buffer empty. " +
33 Thread.CurrentThread.Name + " waits.");
34
35 Monitor.Wait(this);
36 }
37
38 // indicate that producer can store another value
39 // because a consumer just retrieved buffer value
40 --occupiedBufferCount;
41
42 DisplayState(
43 Thread.CurrentThread.Name + " reads " + buffer);
44
45 // tell waiting thread (if there is one) to
46 // become ready to execute (Started state)
47 Monitor.Pulse(this);
48
49 // Get copy of buffer before releasing lock.
50 // It is possible that the producer could be
51 // assigned the processor immediately after the
52 // monitor is released and before the return
53 // statement executes. In this case, the producer
54 // would assign a new value to buffer before the
55 // return statement returns the value to the

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 2 of 8.)

Chapter 14 Multithreading 609

56 // consumer. Thus, the consumer would receive the
57 // new value. Making a copy of buffer and
58 // returning the copy ensures that the
59 // consumer receives the proper value.
60 int bufferCopy = buffer;
61
62 // release lock on this object
63 Monitor.Exit(this);
64
65 return bufferCopy;
66
67 } // end get
68
69 set
70 {
71 // acquire lock for this object
72 Monitor.Enter(this);
73
74 // if there are no empty locations, place invoking
75 // thread in WaitSleepJoin state
76 if (occupiedBufferCount == 1)
77 {
78 Console.WriteLine(
79 Thread.CurrentThread.Name + " tries to write.");
80
81 DisplayState("Buffer full. " +
82 Thread.CurrentThread.Name + " waits.");
83
84 Monitor.Wait(this);
85 }
86
87 // set new buffer value
88 buffer = value;
89
90 // indicate producer cannot store another value
91 // until consumer retrieves current buffer value
92 ++occupiedBufferCount;
93
94 DisplayState(
95 Thread.CurrentThread.Name + " writes " + buffer);
96
97 // tell waiting thread (if there is one) to
98 // become ready to execute (Started state)
99 Monitor.Pulse(this);
100
101 // release lock on this object
102 Monitor.Exit(this);
103
104 } // end set
105
106 }
107

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 3 of 8.)

610 Multithreading Chapter 14

108 // display current operation and buffer state
109 public void DisplayState(string operation)
110 {
111 Console.WriteLine("{0,-35}{1,-9}{2}\n",
112 operation, buffer, occupiedBufferCount);
113 }
114
115 } // end class HoldIntegerSynchronized
116
117 // class Producer's Produce method controls a thread that
118 // stores values from 1 to 4 in sharedLocation
119 class Producer
120 {
121 private HoldIntegerSynchronized sharedLocation;
122 private Random randomSleepTime;
123
124 // constructor
125 public Producer(
126 HoldIntegerSynchronized shared, Random random)
127 {
128 sharedLocation = shared;
129 randomSleepTime = random;
130 }
131
132 // store values 1-4 in object sharedLocation
133 public void Produce()
134 {
135 // sleep for random interval up to 3000 milliseconds
136 // then set sharedLocation's Buffer property
137 for (int count = 1; count <= 4; count++)
138 {
139 Thread.Sleep(randomSleepTime.Next(1, 3000));
140 sharedLocation.Buffer = count;
141 }
142
143 Console.WriteLine(Thread.CurrentThread.Name +
144 " done producing.\nTerminating " +
145 Thread.CurrentThread.Name + ".\n");
146
147 } // end method Produce
148
149 } // end class Producer
150
151 // class Consumer's Consume method controls a thread that
152 // loops four times and reads a value from sharedLocation
153 class Consumer
154 {
155 private HoldIntegerSynchronized sharedLocation;
156 private Random randomSleepTime;
157

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 4 of 8.)

Chapter 14 Multithreading 611

158 // constructor
159 public Consumer(
160 HoldIntegerSynchronized shared, Random random)
161 {
162 sharedLocation = shared;
163 randomSleepTime = random;
164 }
165
166 // read sharedLocation's value four times
167 public void Consume()
168 {
169 int sum = 0;
170
171 // get current thread
172 Thread current = Thread.CurrentThread;
173
174 // sleep for random interval up to 3000 milliseconds
175 // then add sharedLocation's Buffer property value
176 // to sum
177 for (int count = 1; count <= 4; count++)
178 {
179 Thread.Sleep(randomSleepTime.Next(1, 3000));
180 sum += sharedLocation.Buffer;
181 }
182
183 Console.WriteLine(Thread.CurrentThread.Name +
184 " read values totaling: " + sum +
185 ".\nTerminating " + Thread.CurrentThread.Name + ".\n");
186
187 } // end method Consume
188
189 } // end class Consumer
190
191 // this class creates producer and consumer threads
192 class SharedCell
193 {
194 // create producer and consumer threads and start them
195 static void Main(string[] args)
196 {
197 // create shared object used by threads
198 HoldIntegerSynchronized holdInteger =
199 new HoldIntegerSynchronized();
200
201 // Random object used by each thread
202 Random random = new Random();
203
204 // create Producer and Consumer objects
205 Producer producer =
206 new Producer(holdInteger, random);
207
208 Consumer consumer =
209 new Consumer(holdInteger, random);

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 5 of 8.)

612 Multithreading Chapter 14

210
211 // output column heads and initial buffer state
212 Console.WriteLine("{0,-35}{1,-9}{2}\n",
213 "Operation", "Buffer", "Occupied Count");
214 holdInteger.DisplayState("Initial state");
215
216 // create threads for producer and consumer and set
217 // delegates for each thread
218 Thread producerThread =
219 new Thread(new ThreadStart(producer.Produce));
220 producerThread.Name = "Producer";
221
222 Thread consumerThread =
223 new Thread(new ThreadStart(consumer.Consume));
224 consumerThread.Name = "Consumer";
225
226 // start each thread
227 producerThread.Start();
228 consumerThread.Start();
229
230 } // end method Main
231
232 } // end class SharedCell

Operation Buffer Occupied C

Initial state -1 0

Producer writes 1 1 1

Consumer reads 1 1 0

Consumer tries to read.
Buffer empty. Consumer waits. 1 0

Producer writes 2 2 1

Consumer reads 2 2 0

Producer writes 3 3 1

Producer tries to write.
Buffer full. Producer waits. 3 1

Consumer reads 3 3 0

Producer writes 4 4 1

Producer done producing.
Terminating Producer.

 continued on next page

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 6 of 8.)

Chapter 14 Multithreading 613

 continued from previous page
Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

Operation Buffer Occupied Count

Initial state -1 0

Consumer tries to read.
Buffer empty. Consumer waits. -1 0

Producer writes 1 1 1

Consumer reads 1 1 0

Producer writes 2 2 1

Consumer reads 2 2 0

Producer writes 3 3 1

Producer tries to write.
Buffer full. Producer waits. 3 1

Consumer reads 3 3 0

Producer writes 4 4 1

Producer done producing.
Terminating Producer.

Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

Operation Buffer Occupied Count

Initial state -1 0

Producer writes 1 1 1

Consumer reads 1 1 0

Producer writes 2 2 1

 continued on next page

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 7 of 8.)

614 Multithreading Chapter 14

Class HoldIntegerSynchronized (lines 9–115) contains two instance vari-
ables—buffer (line 12) and occupiedBufferCount (line 15). Also, property
Buffer’s get (lines 20–67) and set (lines 69–106) accessors now use methods of class
Monitor to synchronize access to property Buffer. Thus, each object of class Hold-
IntegerSynchronized has a SyncBlock to maintain synchronization. Instance vari-
able occupiedBufferCount is known as a condition variable—property Buffer’s
accessors use this int in conditions to determine whether it is the producer’s turn to per-
form a task or the consumer’s turn to perform a task. If occupiedBufferCount is 0,
property Buffer’s set accessor can place a value into variable buffer, because the
variable currently does not contain information. However, this means that property
Buffer’s get accessor currently cannot read the value of buffer. If occupied-
BufferCount is 1, the Buffer property’s get accessor can read a value from variable
buffer, because the variable currently does contain information. In this case, property
Buffer’s set accessor currently cannot place a value into buffer.

As in Fig. 14.4, the producer thread performs the tasks specified in the producer
object’s Produce method. When line 140 sets the value of HoldIntegerSynchro-
nized property Buffer, the producer thread invokes the set accessor at lines 69–104.
Line 72 invokes Monitor method Enter to acquire the lock on the HoldInte-
gerSynchronized object. The if structure at lines 76–85 determines whether occu-
piedBufferCount is 1. If this condition is true, lines 78–79 output a message
indicating that the producer thread tries to write a value, and lines 81–82 invoke method
DisplayState (lines 109–113) to output another message indicating that the buffer is
full and that the producer thread waits. Line 84 invokes Monitor method Wait to place
the calling thread (i.e., the producer) in the WaitSleepJoin state for the HoldInte-
gerSynchronized object and releases the lock on the object. The WaitSleepJoin state
for an object is maintained by that object’s SyncBlock. Now another thread can invoke an
accessor method of the HoldIntegerSynchronized object’s Buffer property.

 continued from previous page

Consumer reads 2 2 0

Producer writes 3 3 1

Consumer reads 3 3 0

Producer writes 4 4 1

Producer done producing.
Terminating Producer.

Consumer reads 4 4 0

Consumer read values totaling: 10.
Terminating Consumer.

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 Producer and consumer threads accessing a shared object with
synchronization. (Part 8 of 8.)

Chapter 14 Multithreading 615

The producer thread remains in the WaitSleepJoin state until the thread is notified that
it may proceed—at which point the thread returns to the Started state and waits for the
system to assign a processor to the thread. When the thread returns to the Running state, the
thread implicitly reacquires the lock on the HoldIntegerSynchronized object and
the set accessor continues executing with the next statement after Wait. Line 88 assigns
value to buffer. Line 92 increments the occupiedBufferCount to indicate that
the shared buffer now contains a value (i.e., a consumer can read the value, and a producer
cannot yet put another value there). Lines 94–95 invoke method DisplayState to
output a line to the console window indicating that the producer is writing a new value into
the buffer. Line 99 invokes Monitor method Pulse with the HoldInteger-
Synchronized object as an argument. If there are any waiting threads in that object’s
SyncBlock, the first waiting thread enters the Started state, indicating that the thread can
now attempt its task again (as soon as the thread is assigned a processor). The Pulse
method returns immediately. Line 102 invokes Monitor method Exit to release the lock
on the HoldIntegerSynchronized object, and the set accessor returns to its caller.

Common Programming Error 14.4
Forgetting to release the lock on an object when that lock is no longer needed is a logic error.
This will prevent the threads in your program that require the lock from acquiring the lock
to proceed with their tasks. These threads will be forced to wait (unnecessarily, because the
lock is no longer needed). Such waiting can lead to deadlock and indefinite postponement. 14.4

The get and set accessors are implemented similarly. As in Fig. 14.4, the consumer
thread performs the tasks specified in the consumer object’s Consume method. The con-
sumer thread gets the value of the HoldIntegerSynchronized object’s Buffer
property (line 180) by invoking the get accessor at lines 20–67. Line 23 invokes Mon-
itor method Enter to acquire the lock on the HoldIntegerSynchronized object.

The if structure at lines 27–36 determines whether occupiedBufferCount is 0.
If this condition is true, lines 29–30 output a message indicating that the consumer thread
tries to read a value, and lines 32–33 invoke method DisplayState to output another
message indicating that the buffer is empty and that the consumer thread waits. Line 35
invokes Monitor method Wait to place the calling thread (i.e., the consumer) in the
WaitSleepJoin state for the HoldIntegerSynchronized object and releases the lock
on the object. Now another thread can invoke an accessor method of the HoldInte-
gerSynchronized object’s Buffer property.

The consumer thread object remains in the WaitSleepJoin state until the thread is noti-
fied that it may proceed—at which point the thread returns to the Started state and waits for
the system to assign a processor to the thread. When the thread reenters the Running state,
the thread implicitly reacquires the lock on the HoldIntegerSynchronized object,
and the get accessor continues executing with the next statement after Wait. Line 40 dec-
rements occupiedBufferCount to indicate that the shared buffer is now empty (i.e.,
a consumer cannot read the value, but a producer can place another value into the shared
buffer), lines 42–43 output a line to the console window indicating the value the consumer
is reading and line 47 invokes Monitor method Pulse with the Hold-
IntegerSynchronized object as an argument. If there are any waiting threads in that
object’s SyncBlock, the first waiting thread enters the Started state, indicating that the
thread can now attempt its task again (as soon as the thread is assigned a processor). The
Pulse method returns immediately. Line 60 gets a copy of buffer before releasing lock.

616 Multithreading Chapter 14

It is possible that the producer could be assigned the processor immediately after the lock
is released (line 63) and before the return statement executes (line 65). In this case, the
producer would assign a new value to buffer before the return statement returns the
value to the consumer. Thus, the consumer would receive the new value. Making a copy of
buffer and returning the copy ensures that the consumer receives the proper value. Line
63 invokes Monitor method Exit to release the lock on the HoldInteger-
Synchronized object and the get accessor returns bufferCopy to its caller.

Study the outputs in Fig. 14.5. Observe that every integer produced is consumed
exactly once—no values are lost, and no values are consumed more than once. This occurs
because the producer and consumer cannot perform tasks unless it is “their turn.” The pro-
ducer must go first; the consumer must wait if the producer has not produced, since the con-
sumer last consumed; and the producer must wait if the consumer has not yet consumed the
value the producer most recently produced. Execute this program several times to confirm
that every integer produced is consumed once.

In the first and second sample outputs, notice the lines indicating when the producer
and consumer must wait to perform their respective tasks. In the third sample output, notice
that the producer and consumer were able to perform their tasks without waiting.

14.7 Producer/Consumer Relationship: Circular Buffer
Figure 14.5 uses thread synchronization to guarantee that two threads manipulate data in a
shared buffer correctly. However, the application may not perform optimally. If the two
threads operate at different speeds, one of the threads will spend more (or most) of its time
waiting. For example, in Fig. 14.5 we shared a single integer between the two threads. If
the producer thread produces values faster than the consumer can consume those values,
then the producer thread waits for the consumer, because there are no other locations in
memory to place the next value. Similarly, if the consumer consumes faster than the pro-
ducer can produce values, the consumer waits until the producer places the next value into
the shared location in memory. Even when we have threads that operate at the same relative
speeds, over a period of time, those threads may become “out of sync,” causing one of the
threads to wait for the other. We cannot make assumptions about the relative speeds of
asynchronous concurrent threads. There are too many interactions that occur with the op-
erating system, the network, the user and other components, which can cause the threads to
operate a different speeds. When this happens, threads wait. When threads wait, programs
become less productive, user-interactive programs become less responsive and network ap-
plications suffer longer delays because the processor is not used efficiently.

To minimize the waiting for threads that share resources and operate at the same rel-
ative speeds, we can implement a circular buffer that provides extra buffers into which
the producer can place values and from which the consumer can retrieve those values.
Let us assume the buffer is implemented as an array. The producer and consumer work
from the beginning of the array. When either thread reaches the end of the array, it simply
returns to the first element of the array to perform its next task. If the producer tempo-
rarily produces values faster than the consumer can consume them, the producer can
write additional values into the extra buffers (if cells are available). This enables the pro-
ducer to perform its task even though the consumer is not ready to receive the current
value being produced. Similarly, if the consumer consumes faster than the producer pro-

Chapter 14 Multithreading 617

duces new values, the consumer can read additional values from the buffer (if there are
any). This enables the consumer to perform its task even though the producer is not ready
to produce additional values.

Note that the circular buffer would be inappropriate if the producer and consumer
operate at different speeds. If the consumer always executes faster than the producer, then
a buffer at one location is enough. Additional locations would waste memory. If the pro-
ducer always executes faster, a buffer with an infinite number of locations would be
requires to absorb the extra production.

The key to using a circular buffer is to define it with enough extra cells to handle the
anticipated “extra” production. If, over a period of time, we determine that the producer
often produces as many as three more values than the consumer can consume, we can
define a buffer of at least three cells to handle the extra production. We do not want the
buffer to be too small, because that would cause threads to wait more. On the other hand,
we do not want the buffer to be too large, because that would waste memory.

Performance Tip 14.4
Even when using a circular buffer, it is possible that a producer thread could fill the buffer,
which would force the producer thread to wait until a consumer consumes a value to free an
element in the buffer. Similarly, if the buffer is empty at any given time, the consumer thread
must wait until the producer produces another value. The key to using a circular buffer is
optimizing the buffer size to minimize the amount of thread-wait time. 14.4

Figure 14.6 demonstrates a producer and a consumer accessing a circular buffer (in
this case, a shared array of two cells) with synchronization. In this version of the producer/
consumer relationship, the consumer consumes a value only when the array is not empty
and the producer produces a value only when the array is not full. This program is imple-
mented as a Windows application that sends its output to a TextBox. Classes Producer
(lines 174–210) and Consumer (lines 213–252) perform the same tasks as in Fig. 14.4 and
Fig. 14.5, except that they output messages to the TextBox in the application window.
The statements that created and started the thread objects in the Main methods of class
SharedCell in Fig. 14.4 and Fig. 14.5 now appear in class CircularBuffer (lines
255–313), where the Load event handler (lines 278–311) performs the statements.

The most significant changes from Fig. 14.5 occur in class HoldInteger-
Synchronized, which now contains six instance variables. Array buffers is a three-
element integer array that represents the circular buffer. Variable occupiedBuffer-
Count is the condition variable that can be used to determine whether a producer can write
into the circular buffer (i.e., occupiedBufferCount is less than the number of ele-
ments in array buffers) and whether a consumer can read from the circular buffer (i.e.,
occupiedBufferCount is greater than 0). Variable readLocation indicates the
position from which the next value can be read by a consumer. Variable writeLoca-
tion indicates the next location in which a value can be placed by a producer. The pro-
gram displays output in outputTextBox (a TextBox control).

1 // Fig. 14.6: CircularBuffer.cs
2 // Implementing the producer/consumer relationship with a
3 // circular buffer.

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 1 of 9.)

618 Multithreading Chapter 14

4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.Threading;
12
13 // implement the shared integer with synchronization
14 public class HoldIntegerSynchronized
15 {
16 // each array element is a buffer
17 private int[] buffers = { -1, -1, -1 };
18
19 // occupiedBufferCount maintains count of occupied buffers
20 private int occupiedBufferCount = 0;
21
22 // variable that maintain read and write buffer locations
23 private int readLocation = 0, writeLocation = 0;
24
25 // GUI component to display output
26 private TextBox outputTextBox;
27
28 // constructor
29 public HoldIntegerSynchronized(TextBox output)
30 {
31 outputTextBox = output;
32 }
33
34 // property Buffer
35 public int Buffer
36 {
37 get
38 {
39 // lock this object while getting value
40 // from buffers array
41 lock (this)
42 {
43 // if there is no data to read, place invoking
44 // thread in WaitSleepJoin state
45 if (occupiedBufferCount == 0)
46 {
47 outputTextBox.Text += "\r\nAll buffers empty. " +
48 Thread.CurrentThread.Name + " waits.";
49 outputTextBox.ScrollToCaret();
50
51 Monitor.Wait(this);
52 }
53
54 // obtain value at current readLocation, then
55 // add string indicating consumed value to output
56 int readValue = buffers[readLocation];

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 2 of 9.)

Chapter 14 Multithreading 619

57
58 outputTextBox.Text += "\r\n" +
59 Thread.CurrentThread.Name + " reads " +
60 buffers[readLocation] + " ";
61
62 // just consumed a value, so decrement number of
63 // occupied buffers
64 --occupiedBufferCount;
65
66 // update readLocation for future read operation,
67 // then add current state to output
68 readLocation =
69 (readLocation + 1) % buffers.Length;
70 outputTextBox.Text += CreateStateOutput();
71 outputTextBox.ScrollToCaret();
72
73 // return waiting thread (if there is one)
74 // to Started state
75 Monitor.Pulse(this);
76
77 return readValue;
78
79 } // end lock
80
81 } // end accessor get
82
83 set
84 {
85 // lock this object while setting value
86 // in buffers array
87 lock (this)
88 {
89 // if there are no empty locations, place invoking
90 // thread in WaitSleepJoin state
91 if (occupiedBufferCount == buffers.Length)
92 {
93 outputTextBox.Text += "\r\nAll buffers full. " +
94 Thread.CurrentThread.Name + " waits.";
95 outputTextBox.ScrollToCaret();
96
97 Monitor.Wait(this);
98 }
99
100 // place value in writeLocation of buffers, then
101 // add string indicating produced value to output
102 buffers[writeLocation] = value;
103
104 outputTextBox.Text += "\r\n" +
105 Thread.CurrentThread.Name + " writes " +
106 buffers[writeLocation] + " ";
107

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 3 of 9.)

620 Multithreading Chapter 14

108 // just produced a value, so increment number of
109 // occupied buffers
110 ++occupiedBufferCount;
111
112 // update writeLocation for future write operation,
113 // then add current state to output
114 writeLocation =
115 (writeLocation + 1) % buffers.Length;
116 outputTextBox.Text += CreateStateOutput();
117 outputTextBox.ScrollToCaret();
118
119 // return waiting thread (if there is one)
120 // to Started state
121 Monitor.Pulse(this);
122
123 } // end lock
124
125 } // end accessor set
126
127 } // end property Buffer
128
129 // create state output
130 public string CreateStateOutput()
131 {
132 // display first line of state information
133 string output = "(buffers occupied: " +
134 occupiedBufferCount + ")\r\nbuffers: ";
135
136 for (int i = 0; i < buffers.Length; i++)
137 output += " " + buffers[i] + " ";
138
139 output += "\r\n";
140
141 // display second line of state information
142 output += " ";
143
144 for (int i = 0; i < buffers.Length; i++)
145 output += "---- ";
146
147 output += "\r\n";
148
149 // display third line of state information
150 output += " ";
151
152 // display readLocation (R) and writeLocation (W)
153 // indicators below appropriate buffer locations
154 for (int i = 0; i < buffers.Length; i++)
155
156 if (i == writeLocation &&
157 writeLocation == readLocation)
158 output += " WR ";
159 else if (i == writeLocation)
160 output += " W ";

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 4 of 9.)

Chapter 14 Multithreading 621

161 else if (i == readLocation)
162 output += " R ";
163 else
164 output += " ";
165
166 output += "\r\n";
167
168 return output;
169 }
170
171 } // end class HoldIntegerSynchronized
172
173 // produce the integers from 11 to 20 and place them in buffer
174 public class Producer
175 {
176 private HoldIntegerSynchronized sharedLocation;
177 private TextBox outputTextBox;
178 private Random randomSleepTime;
179
180 // constructor
181 public Producer(HoldIntegerSynchronized shared,
182 Random random, TextBox output)
183 {
184 sharedLocation = shared;
185 outputTextBox = output;
186 randomSleepTime = random;
187 }
188
189 // produce values from 11-20 and place them in
190 // sharedLocation's buffer
191 public void Produce()
192 {
193 // sleep for random interval up to 3000 milliseconds
194 // then set sharedLocation's Buffer property
195 for (int count = 11; count <= 20; count++)
196 {
197 Thread.Sleep(randomSleepTime.Next(1, 3000));
198 sharedLocation.Buffer = count;
199 }
200
201 string name = Thread.CurrentThread.Name;
202
203 outputTextBox.Text += "\r\n" + name +
204 " done producing.\r\n" + name + " terminated.\r\n";
205
206 outputTextBox.ScrollToCaret();
207
208 } // end method Produce
209
210 } // end class Producer
211

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 5 of 9.)

622 Multithreading Chapter 14

212 // consume the integers 1 to 10 from circular buffer
213 public class Consumer
214 {
215 private HoldIntegerSynchronized sharedLocation;
216 private TextBox outputTextBox;
217 private Random randomSleepTime;
218
219 // constructor
220 public Consumer(HoldIntegerSynchronized shared,
221 Random random, TextBox output)
222 {
223 sharedLocation = shared;
224 outputTextBox = output;
225 randomSleepTime = random;
226 }
227
228 // consume 10 integers from buffer
229 public void Consume()
230 {
231 int sum = 0;
232
233 // loop 10 times and sleep for random interval up to
234 // 3000 milliseconds then add sharedLocation's
235 // Buffer property value to sum
236 for (int count = 1; count <= 10; count++)
237 {
238 Thread.Sleep(randomSleepTime.Next(1, 3000));
239 sum += sharedLocation.Buffer;
240 }
241
242 string name = Thread.CurrentThread.Name;
243
244 outputTextBox.Text += "\r\nTotal " + name +
245 " consumed: " + sum + ".\r\n" + name +
246 " terminated.\r\n";
247
248 outputTextBox.ScrollToCaret();
249
250 } // end method Consume
251
252 } // end class Consumer
253
254 // set up the producer and consumer and start them
255 public class CircularBuffer : System.Windows.Forms.Form
256 {
257 private System.Windows.Forms.TextBox outputTextBox;
258
259 // required designer variable
260 private System.ComponentModel.Container components = null;
261

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 6 of 9.)

Chapter 14 Multithreading 623

262 // no-argument constructor
263 public CircularBuffer()
264 {
265 InitializeComponent();
266 }
267
268 // Visual Studio .NET GUI code appears here in source file
269
270 // main entry point for the application
271 [STAThread]
272 static void Main()
273 {
274 Application.Run(new CircularBuffer());
275 }
276
277 // Load event handler creates and starts threads
278 private void CircularBuffer_Load(
279 object sender, System.EventArgs e)
280 {
281 // create shared object
282 HoldIntegerSynchronized sharedLocation =
283 new HoldIntegerSynchronized(outputTextBox);
284
285 // display sharedLocation state before producer
286 // and consumer threads begin execution
287 outputTextBox.Text = sharedLocation.CreateStateOutput();
288
289 // Random object used by each thread
290 Random random = new Random();
291
292 // create Producer and Consumer objects
293 Producer producer =
294 new Producer(sharedLocation, random, outputTextBox);
295 Consumer consumer =
296 new Consumer(sharedLocation, random, outputTextBox);
297
298 // create and name threads
299 Thread producerThread =
300 new Thread(new ThreadStart(producer.Produce));
301 producerThread.Name = "Producer";
302
303 Thread consumerThread =
304 new Thread(new ThreadStart(consumer.Consume));
305 consumerThread.Name = "Consumer";
306
307 // start threads
308 producerThread.Start();
309 consumerThread.Start();
310
311 } // end CircularBuffer_Load method
312
313 } // end class CircularBuffer

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 7 of 9.)

624 Multithreading Chapter 14

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 8 of 9.)

Value placed in last buffer.
Next value will be deposited in
leftmost buffer.

Circular buffer effect—the
fourth value is deposited in the
leftmost buffer.

Value placed in last buffer.
Next value will be deposited in
leftmost buffer.

Circular buffer effect—the
seventh value is deposited in the
leftmost buffer.

Chapter 14 Multithreading 625

The set accessor (lines 83–125) of property Buffer performs the same tasks that it
did in Fig. 14.5, with a few modifications. Rather than using Monitor methods Enter
and Exit to acquire and release the lock on the HoldIntegerSynchronized object,
we use a block of code preceded by keyword lock to lock the HoldIntegerSynchro-
nized object. As program control enters the lock block, the currently executing thread
acquires the lock (assuming the lock is currently available) on the HoldInteger-
Synchronized object (i.e., this). When the lock block terminates, the thread
releases the lock automatically.

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 Producer and consumer threads accessing a circular buffer. (Part 9 of 9.)

Value placed in last buffer.
Next value will be deposited in
leftmost buffer.

Circular buffer effect—the tenth
value is deposited in the leftmost
buffer.

626 Multithreading Chapter 14

Common Programming Error 14.5
When using class Monitor’s Enter and Exit methods to manage an object’s lock, Exit
must be called explicitly to release the lock. If an exception occurs in a method before Exit
can be called and that exception is not caught, the method could terminate without calling
Exit. If so, the lock is not released. To avoid this error, place code that could throw excep-
tions in a try block, and place the call to Exit in the corresponding finally block to
ensure that the lock is released. 14.5

Software Engineering Observation 14.2
Using a lock block to manage the lock on a synchronized object eliminates the possibility
of forgetting to relinquish the lock with a call to Monitor method Exit. C# implicitly calls
Monitor method Exit when a lock block terminates for any reason. Thus, even if an ex-
ception occurs in the block, the lock will be released. 14.2

The if structure at lines 91–98 in the set accessor determines whether the producer
must wait (i.e., all buffers are full). If the producer thread must wait, lines 93–94 append
text to the outputTextBox indicating that the producer is waiting to perform its task and
line 97 invokes Monitor method Wait to place the producer thread in the WaitSleepJoin
state of the HoldIntegerSynchronized object. When execution continues at line
102 after the if structure, the value written by the producer is placed in the circular buffer
at location writeLocation. Next, lines 104–106 append a message containing the value
produced to the TextBox. Line 110 increments occupiedBufferCount, because
there is now at least one value in the buffer that the consumer can read. Then, lines 114–
115 update writeLocation for the next call to the set accessor of property Buffer.
The output continues at line 116 by invoking method CreateStateOutput (lines 130–
169), which outputs the number of occupied buffers, the contents of the buffers and the cur-
rent writeLocation and readLocation. Finally, line 121 invokes Monitor
method Pulse to indicate that a thread waiting on the HoldIntegerSynchronized
object (if there is a waiting thread) should transition to the Started state. Note that reaching
the closing right brace of the lock block at line 123 causes the thread to release the lock
on the HoldIntegerSynchronized object.

The get accessor (lines 37–81) of property Buffer also performs the same tasks in
this example that it did in Fig. 14.5, with a few minor modifications. The if structure at
lines 45–52 in the get accessor determines whether the consumer must wait (i.e., all
buffers are empty). If the consumer thread must wait, lines 47–48 append text to the out-
putTextBox indicating that the consumer is waiting to perform its task, and line 51
invokes Monitor method Wait to place the consumer thread in the WaitSleepJoin state
of the HoldIntegerSynchronized object. Once again, we use a lock block to
acquire and release the lock on the HoldIntegerSynchronized object, rather than
using Monitor methods Enter and Exit. When execution continues at line 56 after the
if structure, readValue is assigned the value at location readLocation in the cir-
cular buffer. Lines 58–60 appends the value consumed to the TextBox. Line 64 decre-
ments the occupiedBufferCount, because there is at least one open position in the
buffer in which the producer thread can place a value. Then, lines 68–69 update read-
Location for the next call to the get accessor of Buffer. Line 70 invokes method
CreateStateOutput to output the number of occupied buffers, the contents of the
buffers and the current writeLocation and readLocation. Finally, line 80 invokes
method Pulse to transition the next thread waiting for the HoldIntegerSynchro-

Chapter 14 Multithreading 627

nized object into the Started state, and line 82 returns the consumed value to the calling
method.

In Fig. 14.6, the outputs include the current occupiedBufferCount, the contents
of the buffers and the current writeLocation and readLocation. In the output, the
letters W and R represent the current writeLocation and readLocation, respec-
tively. Notice that, after the third value is placed in the third element of the buffer, the fourth
value is inserted at the beginning of the array. This provides the circular buffer effect.

SUMMARY
• Computers perform operations concurrently, such as compiling programs, printing files and re-

ceiving electronic mail messages over a network.

• Programming languages generally provide only a simple set of control structures that enable
programmers to perform one action at a time and proceed to the next action after the previous
one finishes.

• Historically, the concurrency that computers perform generally has been implemented as operat-
ing system “primitives” available only to highly experienced “systems programmers.”

• The .NET Framework Class Library makes concurrency primitives available to the applications
programmer. The programmer specifies that applications contain threads of execution, each thread
designating a portion of a program that may execute concurrently with other threads—this capa-
bility is called multithreading.

• A thread that was just created is in the Unstarted state. A thread is initialized using the Thread
class’s constructor which receives a ThreadStart delegate. This delegate specifies the method
that contains the tasks a thread will perform.

• A thread remains in the Unstarted state until the thread’s Start method is called; this causes the
thread to enter the Started state (also known as the Ready or Runnable state).

• A thread in the Started state enters the Running state when the system assigns a processor to the
thread. The system assigns the processor to the highest-priority Started thread.

• A thread enters the Stopped (or Dead) state when its ThreadStart delegate completes or ter-
minates. A thread is forced into the Stopped state when its Abort method is called (by itself or
by another thread).

• A Running thread enters the Blocked state when the thread issues an input/output request. A
Blocked thread becomes Started when the I/O it is waiting for completes. A Blocked thread cannot
use a processor, even if one is available.

• If a thread wants to go to sleep, it calls Thread method Sleep. A thread wakes up when the des-
ignated sleep interval expires.

• If a thread cannot continue executing (we will call this the dependent thread) unless another thread
terminates, the dependent thread calls the other thread’s Join method to “join” the two threads.
When two threads are “joined,” the dependent thread leaves the WaitSleepJoin state when the oth-
er thread finishes execution (enters the Stopped state).

• In thread synchronization, when a thread encounters code that it cannot yet run (e.g., a producer
cannot produce at the current time), the thread can call Monitor method Wait until certain ac-
tions occur that enable the thread to continue executing.

• Any thread in the WaitSleepJoin state can leave that state if another thread invokes Thread meth-
od Interrupt on the thread in the WaitSleepJoin state.

• If a thread called Monitor method Wait, a corresponding call to the Monitor method Pulse
or PulseAll by another thread in the program will transition the original thread from the Wait-
SleepJoin state to the Started state.

628 Multithreading Chapter 14

• If Thread method Suspend is called on a thread (by the thread itself or by another thread in the
program), the thread enters the Suspended state. A thread leaves the Suspended state when a sep-
arate thread invokes Thread method Resume on the suspended thread.

• Every C# thread has a priority of ThreadPriority.Lowest, ThreadPriority.Be-
lowNormal, ThreadPriority.Normal, ThreadPriority.AboveNormal or
ThreadPriority.Highest.

• The job of the thread scheduler is to keep the highest-priority thread running at all times and, if
there is more than one highest-priority thread, to ensure that all equally high-priority threads exe-
cute for a quantum at a time in round-robin fashion.

• A thread’s priority can be adjusted with the Priority property, which accepts an argument from
the ThreadPriority enumeration.

• A thread that updates shared data calls Monitor method Enter to acquire the lock on that data.
It updates the data and calls Monitor method Exit upon completion of the update. While that
data is locked, all other threads attempting to acquire the lock on that data must wait.

• If you place the lock keyword before a block of code the lock is acquired on the specified object
as program control enters the block; the lock is released when the block terminates for any reason.

• If a thread decides that it cannot continue execution, it can call Wait. This puts the thread into the
WaitSleepJoin state. When the thread can continue execution again, Pulse or PulseAll is
called to notify the thread to continue running.

• When the lock keyword is used, C# implicitly calls the Exit method whenever we leave the
scope of the block.

TERMINOLOGY
Abort method of class Thread indefinite postponement
AboveNormal constant in ThreadPriority input/output blocking
accessing shared data with synchronization Interrupt method of class Thread
acquire the lock for an object Join method of class Thread
automatic garbage collection life cycle of a thread
BelowNormal constant in ThreadPrioritylock keyword
Blocked state locking objects
Blocked thread Lowest constant in ThreadPriority
built-in multithreading memory leak
circular buffer Monitor class
concurrency multilevel priority queue
concurrent producer and consumer threads multithreading
concurrent programming Name property of class Thread
condition variable Normal constant in ThreadPriority
consumer Priority property of class Thread
Dead state priority scheduling
deadlock producer
Enter method of class Monitor producer/consumer relationship
Exit method of class Monitor Pulse method of class Monitor
garbage collection PulseAll method of class Monitor
garbage-collector thread quantum
Highest constant in ThreadPriority quantum expiration
Hoare, C. A. R. Ready state
I/O completion release a lock
I/O request Resume method of class Thread

Chapter 14 Multithreading 629

SELF-REVIEW EXERCISES

14.1 Fill in the blanks in each of the following statements:
a) Monitor methods and acquire and release the lock on an object.
b) Among a group of equal-priority threads, each thread receives a brief burst of time called

a , during which the thread has the processor and can perform its tasks.
c) C# provides a thread that reclaims dynamically allocated memory.
d) Four reasons a thread that is alive is not in the Started state are , ,

 and .
e) A thread enters the state when the method that controls the thread’s lifecycle

terminates.
f) A thread’s priority must be one of the ThreadPriority constants ,

, , and .
g) To wait for a designated number of milliseconds then resume execution, a thread should

call the method of class Thread.
h) Method of class Monitor transitions a thread in the WaitSleepJoin state to

the Started state.
i) A block automatically acquires the lock on an object as the program control

enters the block and releases the lock on that object when the block terminates execution.
j) Class Monitor provides methods that access to shared data.

14.2 State whether each of the following is true or false. If false, explain why.
a) A thread cannot execute if it is in the Stopped state.
b) In C#, a higher priority thread entering (or reentering) the Started state will preempt

threads of lower priority.
c) The code that a thread executes is defined in its Main method.
d) A thread in the WaitSleepJoin state always returns to the Started state when Monitor

method Pulse is called.
e) Method Sleep of class Thread does not consume processor time while a thread sleeps.
f) A blocked thread can be placed in the Started state by Monitor method Pulse.
g) Class Monitor’s Wait, Pulse and PulseAll methods can be used in any block of

code.
h) The programmer must place a call to Monitor method Exit in a lock block to relin-

quish the lock.
i) When Monitor class method Wait is called within a locked block, the lock for that

block is released and the thread that called Wait is placed in the WaitSleepJoin state.

Runnable state synchronized block of code
Running state System.Threading namespace
scheduling task
shared buffer Thread class
sleep interval expires thread of execution
Sleep method of class Thread thread-priority scheduling
sleeping thread thread state
Start method of class Thread ThreadAbortException
Started state ThreadPriority enumeration
starvation ThreadStart delegate
Stopped state Unstarted state
Suspend method of class Thread Wait method of class Monitor
SyncBlock WaitSleepJoin state

630 Multithreading Chapter 14

ANSWERS TO SELF-REVIEW EXERCISES
14.1 a) Enter, Exit. b) timeslice or quantum. c) garbage collector. d) waiting, sleeping, sus-
pended, blocked for input/output. e) Stopped. f) Lowest, BelowNormal, Normal, AboveNor-
mal, Highest. g) Sleep. h) Pulse. i) lock. j) synchronize.

14.2 a) True. b) True. c) False. The code that a thread executes is defined in the method specified
by the thread’s ThreadStart delegate. d) False. A thread may be in the WaitSleepJoin state for
several reasons. Calling Pulse moves a thread from the WaitSleepJoin state to the Started state only
if the thread entered the WaitSleepJoin state as the result of a call to Monitor method Pulse.
e) True. f) False. A thread is blocked by the operating system and returns to the Started state when
the operating system determines that the thread can continue executing (e.g., when an I/O request
completes or when a lock the thread attempted to acquire becomes available). g) False. Class Mon-
itor methods can be called only if the thread performing the call currently owns the lock on the ob-
ject each method receives as an argument. h) False. A lock block implicitly relinquishes the lock
when the thread completes execution of the lock block. i) True.

EXERCISES
14.3 =The code that manipulates the circular buffer in Fig. 14.6 will work with a buffer of two or
more elements. Try changing the buffer size to see how it affects the producer and consumer threads.
In particular, notice that the producer waits to produce less frequently as the buffer grows in size.

14.4 Write a program to demonstrate that, as a high-priority thread executes, it will delay the ex-
ecution of all lower-priority threads.

14.5 Write a program that demonstrates timeslicing among several equal-priority threads. Show
that a lower-priority thread’s execution is deferred by the timeslicing of the higher-priority threads.

14.6 Write a program that demonstrates a high-priority thread using Sleep to give lower-priority
threads a chance to run.

14.7 Two problems that can occur in languages like C# that allow threads to wait are deadlock, in
which one or more threads will wait forever for an event that cannot occur, and indefinite postpone-
ment, in which one or more threads will be delayed for some unpredictably long time but may even-
tually complete. Give an example of how each of these problems can occur in a multithreaded C#
program.

14.8 (Readers and Writers) This exercise asks you to develop a C# monitor to solve a famous
problem in concurrency control. This problem was first discussed and solved by P. J. Courtois, F.
Heymans and D. L. Parnas in their research paper, “Concurrent Control with Readers and Writers,”
Communications of the ACM, Vol. 14, No. 10, October 1971, pp. 667–668. The interested student
might also want to read C. A. R. Hoare’s seminal research paper on monitors, “Monitors: An Oper-
ating System Structuring Concept,” Communications of the ACM, Vol. 17, No. 10, October 1974, pp.
549–557. Corrigendum, Communications of the ACM, Vol. 18, No. 2, February 1975, p. 95. [The
readers and writers problem is discussed at length in Chapter 5 of the author’s book: Deitel, H. M.,
Operating Systems, Reading, MA: Addison-Wesley, 1990.]

With multithreading, many threads can access shared data; as we have seen, access to shared
data needs to be synchronized to avoid corrupting the data.

Consider an airline-reservation system in which many clients are attempting to book seats on
particular flights between particular cities. All the information about flights and seats is stored in a
common database in memory. The database consists of many entries, each representing a seat on a
particular flight for a particular day between particular cities. In a typical airline-reservation sce-
nario, the client will probe the database looking for the “optimal” flight to meet that client’s needs. A

Chapter 14 Multithreading 631

client may probe the database many times before trying to book a particular flight. A seat that was
available during this probing phase could easily be booked by someone else before the client has a
chance to book it after deciding on it. In that case, when the client attempts to make the reservation,
the client will discover that the data has changed and the flight is no longer available.

The client probing the database is called a reader. The client attempting to book the flight is
called a writer. Any number of readers can be probing shared data at once, but each writer needs
exclusive access to the shared data to prevent the data from being corrupted.

Write a multithreaded C# program that launches multiple reader threads and multiple writer
threads, each attempting to access a single reservation record. A writer thread has two possible trans-
actions, makeReservation and cancelReservation. A reader has one possible transaction,
queryReservation.

First, implement a version of your program that allows unsynchronized access to the reserva-
tion record. Show how the integrity of the database can be corrupted. Next, implement a version of
your program that uses C# monitor synchronization with Wait and Pulse to enforce a disciplined
protocol for readers and writers accessing the shared reservation data. In particular, your program
should allow multiple readers to access the shared data simultaneously when no writer is active—
but, if a writer is active, then no reader should be allowed to access the shared data.

Be careful. This problem has many subtleties. For example, what happens when there are sev-
eral active readers and a writer wants to write? If we allow a steady stream of readers to arrive and
share the data, they could indefinitely postpone the writer (who might become tired of waiting and
take his or her business elsewhere). To solve this problem, you might decide to favor writers over
readers. But here, too, there is a trap, because a steady stream of writers could then indefinitely post-
pone the waiting readers, and they, too, might choose to take their business elsewhere! Implement
your monitor with the following methods: startReading, which is called by any reader who
wants to begin accessing a reservation; stopReading, to be called by any reader who has finished
reading a reservation; startWriting, to be called by any writer who wants to make a reservation;
and stopWriting, to be called by any writer who has finished making a reservation.

15
Strings, Characters and

Regular Expressions

Objectives
• To be able to create and manipulate immutable

character string objects of class String.
• To be able to create and manipulate mutable character

string objects of class StringBuilder.
• To be able to use regular expressions in conjunction

with classes Regex and Match.
The chief defect of Henry King
Was chewing little bits of string.
Hilaire Belloc

Vigorous writing is concise. A sentence should contain no
unnecessary words, a paragraph no unnecessary sentences.
William Strunk, Jr.

I have made this letter longer than usual, because I lack the
time to make it short.
Blaise Pascal

The difference between the almost-right word & the right
word is really a large matter—it’s the difference between the
lightning bug and the lightning.
Mark Twain

Mum’s the word.
Miguel de Cervantes, Don Quixote de la Mancha

Chapter 15 Strings, Characters and Regular Expressions 633

15.1 Introduction
In this chapter, we introduce the Framework Class Library’s string and character process-
ing capabilities and demonstrate the use of regular expressions to search for patterns in text.
The techniques presented in this chapter can be employed to develop text editors, word pro-
cessors, page-layout software, computerized typesetting systems and other kinds of text-
processing software. Previous chapters have already presented several string-processing
capabilities. In this chapter, we expand on this information by detailing the capabilities of
class String and type char from the System namespace, class StringBuilder
from the System.Text namespace and classes Regex and Match from the Sys-
tem.Text.RegularExpressions namespace.

15.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of C# source code. Every program is com-
posed of characters that, when grouped together meaningfully, create a sequence that the
compiler interprets as a series of instructions that describe how to accomplish a task. In ad-

Outline

15.1 Introduction
15.2 Fundamentals of Characters and Strings

15.3 String Constructors

15.4 String Indexer, Length Property and CopyTo Method

15.5 Comparing Strings

15.6 String Method GetHashCode

15.7 Locating Characters and Substrings in Strings

15.8 Extracting Substrings from Strings

15.9 Concatenating Strings

15.10 Miscellaneous String Methods

15.11 Class StringBuilder

15.12 StringBuilder Indexer, Length and Capacity
Properties, and EnsureCapacity Method

15.13 StringBuilder Append and AppendFormat Methods

15.14 StringBuilder Insert, Remove and Replace Methods

15.15 Char Methods
15.16 Card Shuffling and Dealing Simulation

15.17 Regular Expressions and Class Regex

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

634 Strings, Characters and Regular Expressions Chapter 15

dition to normal characters, a program also can contain character constants. A character
constant is a character that is represented as an integer value, called a character code. For
example, the integer value 122 corresponds to the character constant 'z'. The integer val-
ue 10 corresponds to the new line character '\n'. Character constants are established ac-
cording to the Unicode character set, an international character set that contains many more
symbols and letters than does the ASCII character set (see Appendix F, ASCII character
set). To learn more about Unicode, see Appendix G, Unicode.

A string is a series of characters treated as a single unit. These characters can be upper-
case letters, lowercase letters, digits and various special characters, such as +, -, *, /, $
and others. A string is an object of class String in the System namespace.1 We write
string literals, or string constants (often called literal strings), as sequences of charac-
ters in double quotation marks, as follows:

"John Q. Doe"
"9999 Main Street"
"Waltham, Massachusetts"
"(201) 555-1212"

A declaration can assign a string literal to a string reference. The declaration

string color = "blue";

initializes string reference color to refer to the string literal object "blue".

Performance Tip 15.1
If there are multiple occurrences of the same string literal object in an application, a sin-
gle copy of the string literal object will be referenced from each location in the program
that uses that string literal. It is possible to share the object in this manner, because
string literal objects are implicitly constant. Such sharing conserves memory. 15.1

On occasion, a string will contain multiple backslash characters (this often occurs
in the name of a file). It is possible to exclude escape sequences and interpret all the char-
acters in a string literally, using the @ character. Backslashes within the double quota-
tion marks are not considered escape sequences, but rather regular backslash characters.
Often this simplifies programming and makes the code easier to read. For example, con-
sider the string “C:\MyFolder\MySubFolder\MyFile.txt” with the following
assignment:

string file = "C:\\MyFolder\\MySubFolder\\MyFile.txt";

Using the verbatim string syntax, the assignment can be altered to

string file = @"C:\MyFolder\MySubFolder\MyFile.txt";

This approach also has the advantage of allowing strings to span multiple lines by pre-
serving all newlines, spaces and tabs.

1. C# provides the string keyword as an alias for class String. In this book, we use String to
refer to the class String and string to refer to an object of class String.

Chapter 15 Strings, Characters and Regular Expressions 635

15.3 String Constructors
Class String provides eight constructors for initializing strings in various ways.
Figure 15.1 demonstrates the use of three of the constructors.

Lines 14–16 declare strings output, originalString, string1,
string2, string3 and string4. Lines 18–19 allocate the char array character-
Array, which contains nine characters. Line 22 assigns literal string "Welcome to
C# programming!" to string reference originalString. Line 23 sets string1
to reference the same string literal.

Line 24 assigns to string2 a new string, using the String constructor that takes
a character array as an argument. The new string contains a copy of the characters in
array characterArray.

1 // Fig. 15.1: StringConstructor.cs
2 // Demonstrating String class constructors.
3
4 using System;
5 using System.Windows.Forms;
6
7 // test several String class constructors
8 class StringConstructor
9 {

10 // The main entry point for the application.
11 [STAThread]
12 static void Main(string[] args)
13 {
14 string output;
15 string originalString, string1, string2,
16 string3, string4;
17
18 char[] characterArray =
19 { 'b', 'i', 'r', 't', 'h', ' ', 'd', 'a', 'y' };
20
21 // string initialization
22 originalString = "Welcome to C# programming!";
23 string1 = originalString;
24 string2 = new string(characterArray);
25 string3 = new string(characterArray, 6, 3);
26 string4 = new string('C', 5);
27
28 output = "string1 = " + "\"" + string1 + "\"\n" +
29 "string2 = " + "\"" + string2 + "\"\n" +
30 "string3 = " + "\"" + string3 + "\"\n" +
31 "string4 = " + "\"" + string4 + "\"\n";
32
33 MessageBox.Show(output, "String Class Constructors",
34 MessageBoxButtons.OK, MessageBoxIcon.Information);
35
36 } // end method Main
37
38 } // end class StringConstructor

Fig. 15.1Fig. 15.1Fig. 15.1Fig. 15.1 String constructors. (Part 1 of 2.)

636 Strings, Characters and Regular Expressions Chapter 15

Software Engineering Observation 15.1
In most cases, it is not necessary to make a copy of an existing string. All strings are
immutable—their character contents cannot be changed after they are created. Also, if there
are one or more references to a string (or any object for that matter), the object cannot
be reclaimed by the garbage collector. 15.1

Line 25 assigns to string3 a new string, using the String constructor that takes
a char array and two int arguments. The second argument specifies the starting index
position (the offset) from which characters in the array are copied. The third argument spec-
ifies the number of characters (the count) to be copied from the specified starting position
in the array. The new string contains a copy of the specified characters in the array. If
the specified offset or count indicates that the program should access an element outside
the bounds of the character array, an ArgumentOutOfRangeException is thrown.

Line 26 assigns to string4 a new string, using the String constructor that takes
as arguments a character and an int specifying the number of times to repeat that character
in the string.

15.4 String Indexer, Length Property and CopyTo
Method
The application in Fig. 15.2 presents the String indexer, which facilitates the retrieval of
any character in the string, and the String property Length, which returns the length
of the string. The String method CopyTo copies a specified number of characters
from a string into a char array.

In this example, we create an application that determines the length of a string,
reverses the order of the characters in the string and copies a series of characters from
the string into a character array.

Fig. 15.1Fig. 15.1Fig. 15.1Fig. 15.1 String constructors. (Part 2 of 2.)

1 // Fig. 15.2: StringMethods.cs
2 // Using the indexer, property Length and method CopyTo
3 // of class String.
4
5 using System;
6 using System.Windows.Forms;
7

Fig. 15.2Fig. 15.2Fig. 15.2Fig. 15.2 String indexer, Length properties and CopyTo method. (Part 1 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 637

Line 27 uses String property Length to determine the number of characters in
string string1. Like arrays, strings always know their own size.

8 // creates string objects and displays results of using
9 // indexer and methods Length and CopyTo

10 class StringMethods
11 {
12 // The main entry point for the application.
13 [STAThread]
14 static void Main(string[] args)
15 {
16 string string1, output;
17 char[] characterArray;
18
19 string1 = "hello there";
20 characterArray = new char[5];
21
22 // output string
23 output =
24 "string1: \"" + string1 + "\"";
25
26 // test Length property
27 output += "\nLength of string1: " + string1.Length;
28
29 // loop through character in string1 and display
30 // reversed
31 output += "\nThe string reversed is: ";
32
33 for (int i = string1.Length - 1; i >= 0; i--)
34 output += string1[i];
35
36 // copy characters from string1 into characterArray
37 string1.CopyTo(0, characterArray, 0, 5);
38 output += "\nThe character array is: ";
39
40 for (int i = 0 ; i < characterArray.Length; i++)
41 output += characterArray[i];
42
43 MessageBox.Show(output, "Demonstrating the string " +
44 "Indexer, Length Property and CopyTo method",
45 MessageBoxButtons.OK, MessageBoxIcon.Information);
46
47 } // end method Main
48
49 } // end class StringMethods

Fig. 15.2Fig. 15.2Fig. 15.2Fig. 15.2 String indexer, Length properties and CopyTo method. (Part 2 of 2.)

638 Strings, Characters and Regular Expressions Chapter 15

Lines 33–34 append to output the characters of the string string1 in reverse
order. The string indexer returns the character at a specific position in the string. The
string indexer treats a string as an array of chars. The indexer receives an integer
argument as the position number and returns the character at that position. As with arrays,
the first element of a string is considered to be at position 0.

Common Programming Error 15.1
Attempting to access a character that is outside the bounds of a string (i.e., an index less
than 0 or an index greater than or equal to the string’s length) results in an Index-
OutOfRangeException. 15.1

Line 37 uses String method CopyTo to copy the characters of a string
(string1) into a character array (characterArray). The first argument given to
method CopyTo is the index from which the method begins copying characters in the
string. The second argument is the character array into which the characters are copied.
The third argument is the index specifying the location at which the method places the
copied characters in the character array. The last argument is the number of characters that
the method will copy from the string. Lines 40–41 append the char array contents to
string output one character at a time.

15.5 Comparing Strings
The next two examples demonstrate the various methods that C# provides for comparing
strings. To understand how one string can be “greater than” or “less than” another
string, consider the process of alphabetizing a series of last names. The reader would,
no doubt, place "Jones" before "Smith", because the first letter of "Jones" comes
before the first letter of "Smith" in the alphabet. The alphabet is more than just a set of
26 letters—it is an ordered list of characters in which each letter occurs in a specific posi-
tion. For example, Z is more than just a letter of the alphabet; Z is specifically the twenty-
sixth letter of the alphabet.

Computers can order characters alphabetically because the characters are represented
internally as Unicode numeric codes. When comparing two strings, C# simply com-
pares the numeric codes of the characters in the strings.

Class String provides several ways to compare strings. The application in
Fig. 15.3 demonstrates the use of method Equals, method CompareTo and the equality
operator (==).

The condition in the if structure (line 27) uses instance method Equals to com-
pare string1 and literal string "hello" to determine whether they are equal.
Method Equals (inherited by String from class Object) tests any two objects for
equality (i.e., checks whether the objects contain identical contents). The method returns
true if the objects are equal and false otherwise. In this instance, the preceding con-
dition returns true, because string1 references string literal object "hello".
Method Equals uses a lexicographical comparison—the integer Unicode values that
represent each character in each string are compared. Method Equals compares the
numeric Unicode values that represent the characters in each string. A comparison of
the string "hello" with the string "HELLO" would return false, because the
numeric representations of lowercase letters are different from the numeric representa-
tions of corresponding uppercase letters.

Chapter 15 Strings, Characters and Regular Expressions 639

The condition in the second if structure (line 33) uses the equality operator (==) to
compare string string1 with the literal string "hello" for equality. In C#, the
equality operator also uses a lexicographical comparison to compare two strings. Thus,
the condition in the if structure evaluates to true, because the values of string1 and
"hello" are equal. To compare the references of two strings, we must explicitly cast
the strings to type object and use the equality operator (==).

1 // Fig. 15.3: StringCompare.cs
2 // Comparing strings.
3
4 using System;
5 using System.Windows.Forms;
6
7 // compare a number of strings
8 class StringCompare
9 {

10 // The main entry point for the application.
11 [STAThread]
12 static void Main(string[] args)
13 {
14 string string1 = "hello";
15 string string2 = "good bye";
16 string string3 = "Happy Birthday";
17 string string4 = "happy birthday";
18 string output;
19
20 // output values of four strings
21 output = "string1 = \"" + string1 + "\"" +
22 "\nstring2 = \"" + string2 + "\"" +
23 "\nstring3 = \"" + string3 + "\"" +
24 "\nstring4 = \"" + string4 + "\"\n\n";
25
26 // test for equality using Equals method
27 if (string1.Equals("hello"))
28 output += "string1 equals \"hello\"\n";
29 else
30 output += "string1 does not equal \"hello\"\n";
31
32 // test for equality with ==
33 if (string1 == "hello")
34 output += "string1 equals \"hello\"\n";
35 else
36 output += "string1 does not equal \"hello\"\n";
37
38 // test for equality comparing case
39 if (String.Equals(string3, string4))
40 output += "string3 equals string4\n";
41 else
42 output += "string3 does not equal string4\n";
43

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 String test to determine equality. (Part 1 of 2.)

640 Strings, Characters and Regular Expressions Chapter 15

We present the test for string equality between string3 and string4 (line 39)
to illustrate that comparisons are indeed case sensitive. Here, static method Equals
(as opposed to the instance method in line 27) is used to compare the values of two
strings. "Happy Birthday" does not equal "happy birthday", so the condition
of the if structure fails, and the message "string3 does not equal string4" is
added to the output message (line 42).

Lines 46–54 use the String method CompareTo to compare strings. Method
CompareTo returns 0 if the strings are equal, a -1 if the string that invokes Com-
pareTo is less than the string that is passed as an argument and a 1 if the string that
invokes CompareTo is greater than the string that is passed as an argument. Method
CompareTo uses a lexicographical comparison.

Notice that CompareTo considers string3 to be larger than string4. The only
difference between these two strings is that string3 contains two uppercase letters.
This example illustrates that an uppercase letter has a higher value in the Unicode character
set than its corresponding lowercase letter.

44 // test CompareTo
45 output += "\nstring1.CompareTo(string2) is " +
46 string1.CompareTo(string2) + "\n" +
47 "string2.CompareTo(string1) is " +
48 string2.CompareTo(string1) + "\n" +
49 "string1.CompareTo(string1) is " +
50 string1.CompareTo(string1) + "\n" +
51 "string3.CompareTo(string4) is " +
52 string3.CompareTo(string4) + "\n" +
53 "string4.CompareTo(string3) is " +
54 string4.CompareTo(string3) + "\n\n";
55
56 MessageBox.Show(output, "Demonstrating string " +
57 "comparisons", MessageBoxButtons.OK,
58 MessageBoxIcon.Information);
59
60 } // end method Main
61
62 } // end class StringCompare

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 String test to determine equality. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 641

The application in Fig. 15.4 shows how to test whether a string instance begins or
ends with a given string. Method StartsWith determines whether a string
instance starts with the string text passed to it as an argument. Method EndsWith
determines whether a string instance ends with the string text passed to it as an argu-
ment. Application StringStartEnd’s Main method defines an array of strings
(called strings), which contains "started", "starting", "ended" and
"ending". The remainder of method Main tests the elements of the array to determine
whether they start or end with a particular set of characters.

Line 21 uses method StartsWith, which takes a string argument. The condition
in the if structure determines whether the string at index i of the array starts with the
characters "st". If so, the method returns true and appends strings[i] to string
output for display purposes.

Line 30 uses method EndsWith, which also takes a string argument. The condi-
tion in the if structure determines whether the string at index i of the array ends with
the characters "ed". If so, the method returns true, and strings[i] is appended to
string output for display purposes.

1 // Fig. 15.4: StringStartEnd.cs
2 // Demonstrating StartsWith and EndsWith methods.
3
4 using System;
5 using System.Windows.Forms;
6
7 // testing StartsWith and EndsWith
8 class StringStartEnd
9 {

10 // The main entry point for the application.
11 [STAThread]
12 static void Main(string[] args)
13 {
14 string[] strings =
15 { "started", "starting", "ended", "ending" };
16 string output = "";
17
18 //test every string to see if it starts with "st"
19 for (int i = 0; i < strings.Length; i++)
20
21 if (strings[i].StartsWith("st"))
22 output += "\"" + strings[i] + "\"" +
23 " starts with \"st\"\n";
24
25 output += "\n";
26
27 // test every string to see if it ends with "ed"
28 for (int i = 0; i < strings.Length; i ++)
29
30 if (strings[i].EndsWith("ed"))
31 output += "\"" + strings[i] + "\"" +
32 " ends with \"ed\"\n";
33

Fig. 15.4Fig. 15.4Fig. 15.4Fig. 15.4 StartsWith and EndsWith methods. (Part 1 of 2.)

642 Strings, Characters and Regular Expressions Chapter 15

.

15.6 String Method GetHashCode
Often, it is necessary to store strings and other data types in a manner that enables the
information to be found quickly. One of the best ways to make information easily acces-
sible is to store it in a hash table. A hash table stores an object by performing a special
calculation on that object, which produces a hash code. The object then is stored at a lo-
cation in the hash table determined by the calculated hash code. When a program needs
to retrieve the information, the same calculation is performed, generating the same hash
code. Any object can be stored in a hash table. Class Object defines method GetH-
ashCode to perform the hash-code calculation. Although all classes inherit this method
from class Object, it is recommended that they override Object’s default implemen-
tation. Class String overrides method GetHashCode to provide a good hash-
code distribution based on the contents of the string. We will discuss hashing in detail
in Chapter 24, Data Structures.

The example in Fig. 15.5 demonstrates the application of the GetHashCode
method to two strings ("hello" and "Hello"). Here, the hash-code value for each
string is different. However, strings that are not identical can have the same hash-
code value.

34 MessageBox.Show(output, "Demonstrating StartsWith and " +
35 "EndsWith methods", MessageBoxButtons.OK,
36 MessageBoxIcon.Information);
37
38 } // end method Main
39
40 } // end class StringStartEnd

1 // Fig. 15.5: StringHashCode.cs
2 // Demonstrating method GetHashCode of class String.
3
4 using System;
5 using System.Windows.Forms;
6

Fig. 15.5Fig. 15.5Fig. 15.5Fig. 15.5 GetHashCode method demonstration. (Part 1 of 2.)

Fig. 15.4Fig. 15.4Fig. 15.4Fig. 15.4 StartsWith and EndsWith methods. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 643

15.7 Locating Characters and Substrings in Strings
In many applications, it is necessary to search for a character or set of characters in a
string. For example, a programmer creating a word processor would want to provide ca-
pabilities for searching through documents. The application in Fig. 15.6 demonstrates some
of the many versions of String methods IndexOf, IndexOfAny, LastIndexOf
and LastIndexOfAny, which search for a specified character or substring in a string.
We perform all searches in this example on the string letters (initialized with "ab-
cdefghijklmabcdefghijklm") located in method Main of class StringIn-
dexMethods.

7 // testing the GetHashCode method
8 class StringHashCode
9 {

10 // The main entry point for the application.
11 [STAThread]
12 static void Main(string[] args)
13 {
14
15 string string1 = "hello";
16 string string2 = "Hello";
17 string output;
18
19 output = "The hash code for \"" + string1 +
20 "\" is " + string1.GetHashCode() + "\n";
21
22 output += "The hash code for \"" + string2 +
23 "\" is " + string2.GetHashCode() + "\n";
24
25 MessageBox.Show(output, "Demonstrating String " +
26 "method GetHashCode", MessageBoxButtons.OK,
27 MessageBoxIcon.Information);
28
29 } // end method Main
30
31 } // end class StringHashCode

1 // Fig. 15.6: StringIndexMethods.cs
2 // Using String searching methods.
3

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Searching for characters and substrings in strings. (Part 1 of 3.)

Fig. 15.5Fig. 15.5Fig. 15.5Fig. 15.5 GetHashCode method demonstration. (Part 2 of 2.)

644 Strings, Characters and Regular Expressions Chapter 15

4 using System;
5 using System.Windows.Forms;
6
7 // testing indexing capabilities of strings
8 class StringIndexMethods
9 {

10 // The main entry point for the application.
11 [STAThread]
12 static void Main(string[] args)
13 {
14 string letters = "abcdefghijklmabcdefghijklm";
15 string output = "";
16 char[] searchLetters = { 'c', 'a', '$' };
17
18 // test IndexOf to locate a character in a string
19 output += "'c' is located at index " +
20 letters.IndexOf('c');
21
22 output += "\n'a' is located at index " +
23 letters.IndexOf('a', 1);
24
25 output += "\n'$' is located at index " +
26 letters.IndexOf('$', 3, 5);
27
28 // test LastIndexOf to find a character in a string
29 output += "\n\nLast 'c' is located at " +
30 "index " + letters.LastIndexOf('c');
31
32 output += "\nLast 'a' is located at index " +
33 letters.LastIndexOf('a', 25);
34
35 output += "\nLast '$' is located at index " +
36 letters.LastIndexOf('$', 15, 5);
37
38 // test IndexOf to locate a substring in a string
39 output += "\n\n\"def\" is located at" +
40 " index " + letters.IndexOf("def");
41
42 output += "\n\"def\" is located at index " +
43 letters.IndexOf("def", 7);
44
45 output += "\n\"hello\" is located at index " +
46 letters.IndexOf("hello", 5, 15);
47
48 // test LastIndexOf to find a substring in a string
49 output += "\n\nLast \"def\" is located at index " +
50 letters.LastIndexOf("def");
51
52 output += "\nLast \"def\" is located at " +
53 letters.LastIndexOf("def", 25);
54
55 output += "\nLast \"hello\" is located at index " +
56 letters.LastIndexOf("hello", 20, 15);

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Searching for characters and substrings in strings. (Part 2 of 3.)

Chapter 15 Strings, Characters and Regular Expressions 645

57
58 // test IndexOfAny to find first occurrence of character
59 // in array
60 output += "\n\nFirst occurrence of 'c', 'a', '$' is " +
61 "located at " + letters.IndexOfAny(searchLetters);
62
63 output += "\nFirst occurrence of 'c, 'a' or '$' is " +
64 "located at " + letters.IndexOfAny(searchLetters, 7);
65
66 output += "\nFirst occurrence of 'c', 'a' or '$' is " +
67 "located at " + letters.IndexOfAny(searchLetters, 20, 5);
68
69 // test LastIndexOfAny to find last occurrence of character
70 // in array
71 output += "\n\nLast occurrence of 'c', 'a' or '$' is " +
72 "located at " + letters.LastIndexOfAny(searchLetters);
73
74 output += "\nLast occurrence of 'c', 'a' or '$' is " +
75 "located at " + letters.LastIndexOfAny(searchLetters, 1);
76
77 output += "\nLast occurrence of 'c', 'a' or '$' is " +
78 "located at " + letters.LastIndexOfAny(
79 searchLetters, 25, 5);
80
81 MessageBox.Show(output,
82 "Demonstrating class index methods",
83 MessageBoxButtons.OK, MessageBoxIcon.Information);
84
85 } // end method Main
86
87 } // end class StringIndexMethods

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Searching for characters and substrings in strings. (Part 3 of 3.)

646 Strings, Characters and Regular Expressions Chapter 15

Lines 20, 23 and 26 use method IndexOf to locate the first occurrence of a character
or substring in a string. If IndexOf finds a character, IndexOf returns the index of
the specified character in the string; otherwise, IndexOf returns –1. The expression
on line 23 uses a version of method IndexOf that takes two arguments—the character to
search for and the starting index at which the search of the string should begin. The
method does not examine any characters that occur prior to the starting index (in this case
1). The expression in line 26 uses another version of method IndexOf that takes three
arguments—the character to search for, the index at which to start searching and the
number of characters to search.

Lines 30, 33 and 36 use method LastIndexOf to locate the last occurrence of a char-
acter in a string. Method LastIndexOf performs the search from the end of the
string toward the beginning of the string. If method LastIndexOf finds the char-
acter, LastIndexOf returns the index of the specified character in the string; otherwise,
LastIndexOf returns –1. There are three versions of LastIndexOf that search for char-
acters in a string. The expression in line 30 uses the version of method LastIndexOf
that takes as an argument the character for which to search. The expression in line 33 uses the
version of method LastIndexOf that takes two arguments—the character for which to
search and the highest index from which to begin searching backward for the character. The
expression in line 36 uses a third version of method LastIndexOf that takes three argu-
ments—the character for which to search, the starting index from which to start searching
backward and the number of characters (the portion of the string) to search.

Lines 40–56 use versions of IndexOf and LastIndexOf that take a string
instead of a character as the first argument. These versions of the methods perform identi-
cally to those described above except that they search for sequences of characters (or sub-
strings) that are specified by their string arguments.

Lines 61–79 use methods IndexOfAny and LastIndexOfAny, which take an
array of characters as the first argument. These versions of the methods also perform iden-
tically to those described above except that they return the index of the first occurrence of
any of the characters in the character array argument.

Common Programming Error 15.2
In the overloaded methods LastIndexOf and LastIndexOfAny that take three param-
eters, the second argument must always be bigger than or equal to the third argument. This
might seem counterintuitive, but remember that the search moves from the end of the string
toward the start of the string. 15.2

15.8 Extracting Substrings from Strings
Class String provides two Substring methods, which are used to create a new
string by copying part of an existing string. Each method returns a new string.
The application in Fig. 15.7 demonstrates the use of both methods.

1 // Fig. 15.7: SubString.cs
2 // Demonstrating the String Substring method.
3

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 Substrings generated from strings. (Part 1 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 647

The statement in line 19 uses the Substring method that takes one int argument.
The argument specifies the starting index from which the method copies characters in the
original string. The substring returned contains a copy of the characters from the starting
index to the end of the string. If the index specified in the argument is outside the bounds
of the string, the program throws an ArgumentOutOfRangeException.

The second version of method Substring (line 23) takes two int arguments. The
first argument specifies the starting index from which the method copies characters from the
original string. The second argument specifies the length of the substring to be copied. The
substring returned contains a copy of the specified characters from the original string.

15.9 Concatenating Strings
The + operator (discussed in Chapter 3, Introduction to C# Programming) is not the only
way to perform string concatenation. The static method Concat of class String
(Fig. 15.8) concatenates two strings and returns a new string containing the com-

4 using System;
5 using System.Windows.Forms;
6
7 // creating substrings
8 class SubString
9 {

10 // The main entry point for the application.
11 [STAThread]
12 static void Main(string[] args)
13 {
14 string letters = "abcdefghijklmabcdefghijklm";
15 string output = "";
16
17 // invoke Substring method and pass it one parameter
18 output += "Substring from index 20 to end is \"" +
19 letters.Substring(20) + "\"\n";
20
21 // invoke Substring method and pass it two parameters
22 output += "Substring from index 0 to 6 is \"" +
23 letters.Substring(0, 6) + "\"";
24
25 MessageBox.Show(output,
26 "Demonstrating String method Substring",
27 MessageBoxButtons.OK, MessageBoxIcon.Information);
28
29 } // end method Main
30
31 } // end class SubString

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 Substrings generated from strings. (Part 2 of 2.)

648 Strings, Characters and Regular Expressions Chapter 15

bined characters from both original strings. Line 23 appends the characters from
string2 to the end of string1, using method Concat. The statement on line 23 does
not modify the original strings.

15.10 Miscellaneous String Methods
Class String provides several methods that return modified copies of strings. The ap-
plication in Fig. 15.9 demonstrates the use of these methods, which include String meth-
ods Replace, ToLower, ToUpper, Trim and ToString.

1 // Fig. 15.8: SubConcatination.cs
2 // Demonstrating String class Concat method.
3
4 using System;
5 using System.Windows.Forms;
6
7 // concatenates strings using String method Concat
8 class StringConcatenation
9 {

10 // The main entry point for the application.
11 [STAThread]
12 static void Main(string[] args)
13 {
14 string string1 = "Happy ";
15 string string2 = "Birthday";
16 string output;
17
18 output = "string1 = \"" + string1 + "\"\n" +
19 "string2 = \"" + string2 + "\"";
20
21 output +=
22 "\n\nResult of String.Concat(string1, string2) = " +
23 String.Concat(string1, string2);
24
25 output += "\nstring1 after concatenation = " + string1;
26
27 MessageBox.Show(output,
28 "Demonstrating String method Concat",
29 MessageBoxButtons.OK, MessageBoxIcon.Information);
30
31 } // end method Main
32
33 } // end class StringConcatenation

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Concat static method.

Chapter 15 Strings, Characters and Regular Expressions 649

Line 27 uses String method Replace to return a new string, replacing every
occurrence in string1 of character 'e' with character 'E'. Method Replace takes
two arguments—a string for which to search and another string with which to replace
all matching occurrences of the first argument. The original string remains unchanged.
If there are no occurrences of the first argument in the string, the method returns the
original string.

String method ToUpper generates a new string (line 31) that replaces any low-
ercase letters in string1 with their uppercase equivalent. The method returns a new
string containing the converted string; the original string remains unchanged. If
there are no characters to convert to uppercase, the method returns the original string.
Line 32 uses String method ToLower to return a new string in which any uppercase
letters in string1 are replaced by their lowercase equivalents. The original string is
unchanged. As with ToUpper, if there are no characters to convert to lowercase, method
ToLower returns the original string.

1 // Fig. 15.9: StringMiscellaneous2.cs
2 // Demonstrating String methods Replace, ToLower, ToUpper, Trim
3 // and ToString.
4
5 using System;
6 using System.Windows.Forms;
7
8 // creates strings using methods Replace, ToLower, ToUpper, Trim
9 class StringMethods2

10 {
11 // The main entry point for the application.
12 [STAThread]
13 static void Main(string[] args)
14 {
15 string string1 = "cheers!";
16 string string2 = "GOOD BYE ";
17 string string3 = " spaces ";
18 string output;
19
20 output = "string1 = \"" + string1 + "\"\n" +
21 "string2 = \"" + string2 + "\"\n" +
22 "string3 = \"" + string3 + "\"";
23
24 // call method Replace
25 output +=
26 "\n\nReplacing \"e\" with \"E\" in string1: \"" +
27 string1.Replace('e', 'E') + "\"";
28
29 // call ToLower and ToUpper
30 output += "\n\nstring1.ToUpper() = \"" +
31 string1.ToUpper() + "\"\nstring2.ToLower() = \"" +
32 string2.ToLower() + "\"";
33

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 String methods Replace, ToLower, ToUpper, Trim and
ToString. (Part 1 of 2.)

650 Strings, Characters and Regular Expressions Chapter 15

Line 36 uses String method Trim to remove all whitespace characters that appear
at the beginning and end of a string. Without otherwise altering the original string,
the method returns a new string that contains the string, but omits leading or trailing
whitespace characters. Another version of method Trim takes a character array and returns
a string that does not contain the characters in the array argument.

Line 39 uses class String’s method ToString to show that the various other
methods employed in this application have not modified string1. Why is the
ToString method provided for class String? In C#, all objects are derived from class
Object, which defines virtual method ToString. Thus, method ToString can be
called to obtain a string representation of any object. If a class that inherits from
Object (such as String) does not override method ToString, the class uses the
default version from class Object, which returns a string consisting of the object’s
class name. Classes usually override method ToString to express the contents of an
object as text. Class String overrides method ToString so that, instead of returning
the class name, it simply returns the string.

15.11 Class StringBuilder
The String class provides many capabilities for processing strings. However a
string’s contents can never change. Operations that seem to concatenate strings are in

34 // call Trim method
35 output += "\n\nstring3 after trim = \"" +
36 string3.Trim() + "\"";
37
38 // call ToString method
39 output += "\n\nstring1 = \"" + string1.ToString() + "\"";
40
41 MessageBox.Show(output,
42 "Demonstrating various string methods",
43 MessageBoxButtons.OK, MessageBoxIcon.Information);
44
45 } // end method Main
46
47 } // end class StringMethods2

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 String methods Replace, ToLower, ToUpper, Trim and
ToString. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 651

fact assigning string references to newly created strings (e.g., the += operator creates
a new string and assigns the initial string reference to the newly created string).

The next several sections discuss the features of class StringBuilder (namespace
System.Text), used to create and manipulate dynamic string information—i.e., mutable
strings. Every StringBuilder can store a certain number of characters that is specified
by its capacity. Exceeding the capacity of a StringBuilder causes the capacity to
expand to accommodate the additional characters. As we will see, members of class
StringBuilder, such as methods Append and AppendFormat, can be used for con-
catenation like the operators + and += for class String.

Software Engineering Observation 15.2
Objects of class String are constant strings, whereas object of class StringBuilder are
mutable strings. C# can perform certain optimizations involving strings (such as the sharing
of one string among multiple references), because it knows these objects will not change. 15.2

Performance Tip 15.2
When given the choice between using a string to represent a string and using a String-
Builder object to represent that string, always use a string if the contents of the object
will not change. When appropriate, using strings instead of StringBuilder objects
improves performance. 15.2

Class StringBuilder provides six overloaded constructors. Class String-
BuilderConstructor (Fig. 15.10) demonstrates the use of three of these overloaded
constructors.

1 // Fig. 15.10: StringBuilderConstructor.cs
2 // Demonstrating StringBuilder class constructors.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Text;
7
8 // creates three StringBuilder with three constructors
9 class StringBuilderConstructor

10 {
11 // The main entry point for the application.
12 [STAThread]
13 static void Main(string[] args)
14 {
15 StringBuilder buffer1, buffer2, buffer3;
16 string output;
17
18 buffer1 = new StringBuilder();
19 buffer2 = new StringBuilder(10);
20 buffer3 = new StringBuilder("hello");
21
22 output = "buffer1 = \"" + buffer1.ToString() + "\"\n";
23
24 output += "buffer2 = \"" + buffer2.ToString() + "\"\n";
25

Fig. 15.10Fig. 15.10Fig. 15.10Fig. 15.10 StringBuilder class constructors. (Part 1 of 2.)

652 Strings, Characters and Regular Expressions Chapter 15

Line 18 employs the no-argument StringBuilder constructor to create a
StringBuilder that contains no characters and has a default initial capacity of 16 char-
acters. Line 19 uses the StringBuilder constructor that takes an int argument to
create a StringBuilder that contains no characters and has the initial capacity speci-
fied in the int argument (i.e., 10). Line 20 uses the StringBuilder constructor that
takes a string argument to create a StringBuilder containing the characters of the
string argument. The initial capacity is the smallest power of two greater than the
number of characters in the string passed as an argument.

Lines 22–26 use StringBuilder method ToString to obtain a string repre-
sentation of the StringBuilders’ contents. This method returns the String-
Builders’ underlying string.

15.12 StringBuilder Indexer, Length and Capacity
Properties, and EnsureCapacity Method
Class StringBuilder provides the Length and Capacity properties to return the
number of characters currently in a StringBuilder and the number of characters that
a StringBuilder can store without allocating more memory, respectively. These prop-
erties also can increase or decrease the length or the capacity of the StringBuilder.

Method EnsureCapacity allows programmers to guarantee that a String-
Builder has a capacity that reduces the number of times the capacity must be increased.
Method EnsureCapacity doubles the StringBuilder instance’s current capacity.
If this doubled value is greater than the value that the programmer wishes to ensure, it
becomes the new capacity. Otherwise, EnsureCapacity alters the capacity to make it
one more than the requested number. For example, if the current capacity is 17 and we wish
to make it 40, 17 multiplied by 2 is not greater than 40, so the call will result in a new
capacity of 41. If the current capacity is 23 and we wish to make it 40, 23 will be multiplied
by 2 to result in a new capacity of 46. Both 41 and 46 are greater than 40, and so a capacity
of 40 is indeed ensured by method EnsureCapacity. The program in Fig. 15.11 dem-
onstrates the use of these methods and properties.

26 output += "buffer3 = \"" + buffer3.ToString() + "\"\n";
27
28 MessageBox.Show(output,
29 "Demonstrating StringBuilder class constructors",
30 MessageBoxButtons.OK, MessageBoxIcon.Information);
31
32 } // end method Main
33
34 } // end class StringBuilderConstructor

Fig. 15.10Fig. 15.10Fig. 15.10Fig. 15.10 StringBuilder class constructors. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 653

The program contains one StringBuilder, called buffer. Lines 15–16 of the
program use the StringBuilder constructor that takes a string argument to instan-
tiate the StringBuilder and initialize its value to "Hello, how are you?". Lines
19–21 append to output the content, length and capacity of the StringBuilder. In
the output window, notice that the capacity of the StringBuilder is initially 32.
Remember, the StringBuilder constructor that takes a string argument creates a
StringBuilder object with an initial capacity that is the smallest power of two greater
than the number of characters in the string passed as an argument.

Line 24 expands the capacity of the StringBuilder to a minimum of 75 charac-
ters. The current capacity (32) multiplied by two is less than 75, so method Ensure-
Capacity increases the capacity to one greater than 75 (i.e., 76). If new characters are
added to a StringBuilder so that its length exceeds its capacity, the capacity grows
to accommodate the additional characters in the same manner as if method EnsureCa-
pacity had been called.

1 // Fig. 15.11: StringBuilderFeatures.cs
2 // Demonstrating some features of class StringBuilder.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Text;
7
8 // uses some of class StringBuilder’s methods
9 class StringBuilderFeatures

10 {
11 // The main entry point for the application.
12 [STAThread]
13 static void Main(string[] args)
14 {
15 StringBuilder buffer =
16 new StringBuilder("Hello, how are you?");
17
18 // use Length and Capacity properties
19 string output = "buffer = " + buffer.ToString() +
20 "\nLength = " + buffer.Length +
21 "\nCapacity = " + buffer.Capacity;
22
23 // use EnsureCapacity method
24 buffer.EnsureCapacity(75);
25
26 output += "\n\nNew capacity = " +
27 buffer.Capacity;
28
29 // truncate StringBuilder by setting Length property
30 buffer.Length = 10;
31
32 output += "\n\nNew length = " +
33 buffer.Length + "\nbuffer = ";
34

Fig. 15.11Fig. 15.11Fig. 15.11Fig. 15.11 StringBuilder size manipulation. (Part 1 of 2.)

654 Strings, Characters and Regular Expressions Chapter 15

Line 30 uses Length’s Set accessor to set the length of the StringBuilder to
10. If the specified length is less than the current number of characters in the String-
Builder, the contents of StringBuilder are truncated to the specified length (i.e., the
program discards all characters in the StringBuilder that occur after the specified
length). If the specified length is greater than the number of characters currently in the
StringBuilder, null characters (characters with the numeric representation 0 that
signal the end of a string) are appended to the StringBuilder until the total number
of characters in the StringBuilder is equal to the specified length.

Common Programming Error 15.3
Assigning null to a string reference can lead to logic errors. The keyword null is a
null reference, not a string. Do not confuse null with the empty string, "" (the string
that is of length 0 and contains no characters). 15.3

15.13 StringBuilder Append and AppendFormat
Methods
Class StringBuilder provides 19 overloaded Append methods that allow various
data-type values to be added to the end of a StringBuilder. C# provides versions for
each of the primitive data types and for character arrays, Strings and Objects. (Re-
member that method ToString produces a string representation of any Object.)
Each of the methods takes an argument, converts it to a string and appends it to the
StringBuilder. Figure 15.12 demonstrates the use of several Append methods.

Lines 29–47 use 10 different overloaded Append methods to attach the objects cre-
ated in lines 15–26 to the end of the StringBuilder. Append behaves similarly to the
+ operator which is used with strings. Just as + seems to append objects to a string,
method Append can append data types to a StringBuilder’s underlying string.

35 // use StringBuilder indexer
36 for (int i = 0; i < buffer.Length; i++)
37 output += buffer[i];
38
39 MessageBox.Show(output, "StringBuilder features",
40 MessageBoxButtons.OK, MessageBoxIcon.Information);
41
42 } // end method Main
43
44 } // end class StringBuilderFeatures

Fig. 15.11Fig. 15.11Fig. 15.11Fig. 15.11 StringBuilder size manipulation. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 655

Class StringBuilder also provides method AppendFormat, which converts a
string to a specified format and then appends it to the StringBuilder. The example
in Fig. 15.13 demonstrates the use of this method.

1 // Fig. 15.12: StringBuilderAppend.cs
2 // Demonstrating StringBuilder Append methods.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Text;
7
8 // testing the Append method
9 class StringBuilderAppend

10 {
11 // The main entry point for the application.
12 [STAThread]
13 static void Main(string[] args)
14 {
15 object objectValue = "hello";
16 string stringValue = "good bye";
17 char[] characterArray = { 'a', 'b', 'c', 'd',
18 'e', 'f' };
19
20 bool booleanValue = true;
21 char characterValue = 'Z';
22 int integerValue = 7;
23 long longValue = 1000000;
24 float floatValue = 2.5F;
25 double doubleValue = 33.333;
26 StringBuilder buffer = new StringBuilder();
27
28 // use method Append to append values to buffer
29 buffer.Append(objectValue);
30 buffer.Append(" ");
31 buffer.Append(stringValue);
32 buffer.Append(" ");
33 buffer.Append(characterArray);
34 buffer.Append(" ");
35 buffer.Append(characterArray, 0, 3);
36 buffer.Append(" ");
37 buffer.Append(booleanValue);
38 buffer.Append(" ");
39 buffer.Append(characterValue);
40 buffer.Append(" ");
41 buffer.Append(integerValue);
42 buffer.Append(" ");
43 buffer.Append(longValue);
44 buffer.Append(" ");
45 buffer.Append(floatValue);
46 buffer.Append(" ");
47 buffer.Append(doubleValue);
48

Fig. 15.12Fig. 15.12Fig. 15.12Fig. 15.12 Append methods of StringBuilder. (Part 1 of 2.)

656 Strings, Characters and Regular Expressions Chapter 15

49 MessageBox.Show("buffer = " + buffer.ToString(),
50 "Demonstrating StringBuilder append method",
51 MessageBoxButtons.OK, MessageBoxIcon.Information);
52
53 } // end method Main
54
55 } // end class StringBuilderAppend

1 // Fig. 15.13: StringBuilderAppendFormat.cs
2 // Demonstrating method AppendFormat.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Text;
7
8 // use the AppendFormat method
9 class StringBuilderAppendFormat

10 {
11 // The main entry point for the application.
12 [STAThread]
13 static void Main(string[] args)
14 {
15 StringBuilder buffer = new StringBuilder();
16 string string1, string2;
17
18 // formatted string
19 string1 = "This {0} costs: {1:C}.\n";
20
21 // string1 argument array
22 object[] objectArray = new object[2];
23
24 objectArray[0] = "car";
25 objectArray[1] = 1234.56;
26
27 // append to buffer formatted string with argument
28 buffer.AppendFormat(string1, objectArray);
29
30 // formatted string
31 string2 = "Number:{0:d3}.\n" +
32 "Number right aligned with spaces:{0, 4}.\n" +
33 "Number left aligned with spaces:{0, -4}.";
34

Fig. 15.13Fig. 15.13Fig. 15.13Fig. 15.13 StringBuilder’s AppendFormat method. (Part 1 of 2.)

Fig. 15.12Fig. 15.12Fig. 15.12Fig. 15.12 Append methods of StringBuilder. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 657

Line 19 creates a string that contains formatting information. The information
enclosed within the braces determines how to format a specific piece of information. For-
mats have the form {X[,Y][:FormatString]}, where X is the number of the argu-
ment to be formatted, counting from zero. Y is an optional argument, which can be positive
or negative, indicating how many characters should be in the result of formatting. If the
resulting string is less than the number Y, the string will be padded with spaces to
make up for the difference. A positive integer aligns the string to the right; a negative
integer aligns it to the left. The optional FormatString applies a particular format to the
argument: Currency, decimal or scientific, among others. In this case, “{0}” means the
first argument will be printed out. “{1:C}” specifies that the second argument will be for-
matted as a currency value.

Line 28 shows a version of AppendFormat, which takes two parameters—a
string specifying the format and an array of objects to serve as the arguments to the
format string. The argument referred to by “{0}” is in the object array at index 0, and
so on.

Lines 31–33 define another string used for formatting. The first format “{0:D3}”
specifies that the first argument will be formatted as a three-digit decimal, meaning any
number that has fewer than three digits will have leading zeros placed in front to make up
the difference. The next format, “{0, 4}” specifies that the formatted string should
have four characters and should be right aligned. The third format, “{0, -4}” specifies
that the strings should be aligned to the left. For more formatting options, please refer
to the documentation.

Line 36 uses a version of AppendFormat that takes two parameters: A string
containing a format and an object to which the format is applied. In this case, the object is
the number 5. The output of Fig. 15.13 displays the result of applying these two version of
AppendFormat with their respective arguments.

35 // append to buffer formatted string with argument
36 buffer.AppendFormat(string2, 5);
37
38 // display formatted strings
39 MessageBox.Show(buffer.ToString(), "Using AppendFormat",
40 MessageBoxButtons.OK, MessageBoxIcon.Information);
41
42 } // end method Main
43
44 } // end class StringBuilderAppendFormat

Fig. 15.13Fig. 15.13Fig. 15.13Fig. 15.13 StringBuilder’s AppendFormat method. (Part 2 of 2.)

658 Strings, Characters and Regular Expressions Chapter 15

15.14 StringBuilder Insert, Remove and Replace
Methods
Class StringBuilder provides 18 overloaded Insert methods to allow various data-
type values to be inserted at any position in a StringBuilder. The class provides ver-
sions for each of the primitive data types and for character arrays, Strings and Objects.
(Remember that method ToString produces a string representation of any Object.)
Each method takes its second argument, converts it to a string and inserts the string
into the StringBuilder in front of the index specified by the first argument. The index
specified by the first argument must be greater than or equal to 0 and less than the length
of the StringBuilder; otherwise, the program throws an ArgumentOutOfRange-
Exception.

Class StringBuilder also provides method Remove for deleting any portion of a
StringBuilder. Method Remove takes two arguments—the index at which to begin
deletion and the number of characters to delete. The sum of the starting subscript and the
number of characters to be deleted must always be less than the length of the String-
Builder; otherwise, the program throws an ArgumentOutOfRangeException.
The Insert and Remove methods are demonstrated in Fig. 15.14.

1 // Fig. 15.14: StringBuilderInsertRemove.cs
2 // Demonstrating methods Insert and Remove of the
3 // StringBuilder class.
4
5 using System;
6 using System.Windows.Forms;
7 using System.Text;
8
9 // test the Insert and Remove methods

10 class StringBuilderInsertRemove
11 {
12 // The main entry point for the application.
13 [STAThread]
14 static void Main(string[] args)
15 {
16 object objectValue = "hello";
17 string stringValue = "good bye";
18 char[] characterArray = { 'a', 'b', 'c',
19 'd', 'e', 'f' };
20
21 bool booleanValue = true;
22 char characterValue = 'K';
23 int integerValue = 7;
24 long longValue = 10000000;
25 float floatValue = 2.5F;
26 double doubleValue = 33.333;
27 StringBuilder buffer = new StringBuilder();
28 string output;
29
30 // insert values into buffer
31 buffer.Insert(0, objectValue);

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 StringBuilder text insertion and removal. (Part 1 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 659

Another useful method included with StringBuilder is Replace. Replace
searches for a specified string or character and substitutes another string or character
in its place. Figure 15.15 demonstrates this method.

32 buffer.Insert(0, " ");
33 buffer.Insert(0, stringValue);
34 buffer.Insert(0, " ");
35 buffer.Insert(0, characterArray);
36 buffer.Insert(0, " ");
37 buffer.Insert(0, booleanValue);
38 buffer.Insert(0, " ");
39 buffer.Insert(0, characterValue);
40 buffer.Insert(0, " ");
41 buffer.Insert(0, integerValue);
42 buffer.Insert(0, " ");
43 buffer.Insert(0, longValue);
44 buffer.Insert(0, " ");
45 buffer.Insert(0, floatValue);
46 buffer.Insert(0, " ");
47 buffer.Insert(0, doubleValue);
48 buffer.Insert(0, " ");
49
50 output = "buffer after inserts: \n" +
51 buffer.ToString() + "\n\n";
52
53 buffer.Remove(10, 1); // delete 2 in 2.5
54 buffer.Remove(2, 4); // delete .333 in 33.333
55
56 output += "buffer after Removes:\n" +
57 buffer.ToString();
58
59 MessageBox.Show(output, "Demonstrating StringBuilder " +
60 "Insert and Remove methods", MessageBoxButtons.OK,
61 MessageBoxIcon.Information);
62
63 } // end method Main
64
65 } // end class StringBuilderInsertRemove

1 // Fig. 15.15: StringBuilderReplace.cs
2 // Demonstrating method Replace.
3

Fig. 15.15Fig. 15.15Fig. 15.15Fig. 15.15 StringBuilder text replacement. (Part 1 of 2.)

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 StringBuilder text insertion and removal. (Part 2 of 2.)

660 Strings, Characters and Regular Expressions Chapter 15

Line 24 uses method Replace to replace all instances of the string "Jane" with
the string "Greg" in builder1. Another overload of this method takes two charac-
ters as parameters and replaces each occurrence of the first with one of the second. Line 25
uses an overload of Replace that takes four parameters, the first two of which are char-
acters and the second two of which are ints. The method replaces all instances of the first
character with the second, beginning at the index specified by the first int and continuing
for a count specified by the second. Thus, in this case, Replace looks through only five
characters starting with the character at index 0. As the outputs illustrates, this version of

4 using System;
5 using System.Windows.Forms;
6 using System.Text;
7
8 // testing the Replace method
9 class StringBuilderReplace

10 {
11 // The main entry point for the application.
12 [STAThread]
13 static void Main(string[] args)
14 {
15 StringBuilder builder1 =
16 new StringBuilder("Happy Birthday Jane");
17
18 StringBuilder builder2 =
19 new StringBuilder("good bye greg");
20
21 string output = "Before replacements:\n" +
22 builder1.ToString() + "\n" + builder2.ToString();
23
24 builder1.Replace("Jane", "Greg");
25 builder2.Replace('g', 'G', 0, 5);
26
27 output += "\n\nAfter replacements:\n" +
28 builder1.ToString() + "\n" + builder2.ToString();
29
30 MessageBox.Show(output,
31 "Using StringBuilder method Replace",
32 MessageBoxButtons.OK, MessageBoxIcon.Information);
33
34 } // end method Main
35
36 } // end class StringBuilderReplace

Fig. 15.15Fig. 15.15Fig. 15.15Fig. 15.15 StringBuilder text replacement. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 661

Replace replaces g with G in the word "good", but not in "greg". This is because the
gs in "greg" do not fall in the range indicated by the int arguments (i.e., between
indexes 0 and 4).

15.15 Char Methods
C# provides a data type, called a structure, that is similar to a class. Although structures and
classes are comparable in many ways, structures are a value type. Like classes, structures in-
clude methods and properties. Both use the same modifiers (such as public, private and
protected) and access members via the member access operator (.). However, classes are
created by using the keyword class, but structures are created using the keyword struct.

Many of the primitive data types that we have used in this book are actually aliases for
different structures. For instance, an int is defined by structure System.Int32, a Long
by System.Int64, and so on. These structures are derived from class ValueType,
which in turn is derived from class Object. In this section, we present structure Char,
which is the structure for characters.

Most Char methods are static, take at least one character argument and perform
either a test or a manipulation on the character. We present several of these methods in the
next example. Figure 15.16 demonstrates static methods that test characters to deter-
mine whether they are of a specific character type and static methods that perform case
conversions on characters.

This Windows application contains a prompt, a TextBox into which the user can input
a character, a button that the user can press after entering a character and a second TextBox
that displays the output of our analysis. When the user clicks the Analyze Character button,
event handler analyzeButton_Click (lines 32–37) is invoked. This method converts
the entered data from a string to a Char, using method Convert.ToChar (line 35). On
line 36, we call method BuildOutput, which is defined in lines 40–72.

Line 45 uses Char method IsDigit to determine whether character input-
Character is defined as a digit. If so, the method returns true; otherwise, it returns
false.

Line 48 uses Char method IsLetter to determine whether character inputCh-
aracter is a letter. If so, the method returns true; otherwise, it returns false. Line 51
uses Char method IsLetterOrDigit to determine whether character inputChar-
acter is a letter or a digit. If so, the method returns true; otherwise, it returns false.

1 // Fig. 15.16: CharMethods.cs
2 // Demonstrates static character testing methods
3 // from Char structure
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;

Fig. 15.16Fig. 15.16Fig. 15.16Fig. 15.16 Char’s static character-testing methods and case-conversion
methods. (Part 1 of 3.)

662 Strings, Characters and Regular Expressions Chapter 15

11
12 // Form displays information about specific characters.
13 public class StaticCharMethods : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.Label enterLabel;
16 private System.Windows.Forms.TextBox inputTextBox;
17 private System.Windows.Forms.Button analyzeButton;
18 private System.Windows.Forms.TextBox outputTextBox;
19
20 private System.ComponentModel.Container components = null;
21
22 // The main entry point for the application.
23 [STAThread]
24 static void Main()
25 {
26 Application.Run(new StaticCharMethods());
27 }
28
29 // Visual Studio .NET generated code
30
31 // handle analyzeButton_Click
32 private void analyzeButton_Click(
33 object sender, System.EventArgs e)
34 {
35 char character = Convert.ToChar(inputTextBox.Text);
36 BuildOutput(character);
37 }
38
39 // display character information in outputTextBox
40 private void BuildOutput(char inputCharacter)
41 {
42 string output;
43
44 output = "is digit: " +
45 Char.IsDigit(inputCharacter) + "\r\n";
46
47 output += "is letter: " +
48 Char.IsLetter(inputCharacter) + "\r\n";
49
50 output += "is letter or digit: " +
51 Char.IsLetterOrDigit(inputCharacter) + "\r\n";
52
53 output += "is lower case: " +
54 Char.IsLower(inputCharacter) + "\r\n";
55
56 output += "is upper case: " +
57 Char.IsUpper(inputCharacter) + "\r\n";
58
59 output += "to upper case: " +
60 Char.ToUpper(inputCharacter) + "\r\n";
61

Fig. 15.16Fig. 15.16Fig. 15.16Fig. 15.16 Char’s static character-testing methods and case-conversion
methods. (Part 2 of 3.)

Chapter 15 Strings, Characters and Regular Expressions 663

Line 54 uses Char method IsLower to determine whether character inputChar-
acter is a lowercase letter. If so, the method returns true; otherwise, it returns false.
Line 57 uses Char method IsUpper to determine whether character inputChar-
acter is an uppercase letter. If so, the method returns true; otherwise, it returns false.
Line 60 uses Char method ToUpper to convert the character inputCharacter to its
uppercase equivalent. The method returns the converted character if the character has an
uppercase equivalent; otherwise, the method returns its original argument. Line 63 uses
Char method ToLower to convert the character inputCharacter to its lowercase
equivalent. The method returns the converted character if the character has a lowercase
equivalent; otherwise, the method returns its original argument.

Line 66 uses Char method IsPunctuation to determine whether character
inputCharacter is a punctuation mark. If so, the method returns true; otherwise, it
returns false. Line 68 uses Char method IsSymbol to determine whether character
inputCharacter is a symbol. If so, the method returns true; otherwise it returns
false.

Structure type Char also contains other methods not shown in this example. Many of
the static methods are similar; for instance, IsWhiteSpace is used to determine
whether a certain character is a whitespace character (e.g., newline, tab or space). The
structure also contains several public instance methods; many of these, such as methods

62 output += "to lower case: " +
63 Char.ToLower(inputCharacter) + "\r\n";
64
65 output += "is punctuation: " +
66 Char.IsPunctuation(inputCharacter) + "\r\n";
67
68 output += "is symbol: " + Char.IsSymbol(inputCharacter);
69
70 outputTextBox.Text = output;
71
72 } // end method BuildOutput
73
74 } // end class StaticCharMethods

Fig. 15.16Fig. 15.16Fig. 15.16Fig. 15.16 Char’s static character-testing methods and case-conversion
methods. (Part 3 of 3.)

664 Strings, Characters and Regular Expressions Chapter 15

ToString and Equals, are methods that we have seen before in other classes. This
group includes method CompareTo, which is used to compare two character values with
one another.

15.16 Card Shuffling and Dealing Simulation
In this section, we use random-number generation to develop a program that simulates the
shuffling and dealing of cards. Once created, this program can be implemented in programs
that imitate specific card games. We include several exercises at the end of this chapter that
require card shuffling and dealing capabilities.

Class Card (Fig. 15.17) contains two string instance variables—face and
suit—that store references to the face name and suit name of a specific card. The con-
structor for the class receives two strings that it uses to initialize face and suit.
Method ToString (lines 20–24) creates a string consisting of the face of the card
and the suit of the card.

We develop application DeckForm (Fig. 15.18), which creates a deck of 52 playing
cards, using Card objects. Users can deal each card by clicking the Deal Card button.
Each dealt card is displayed in a Label. Users can also shuffle the deck at any time by
clicking the Shuffle Cards button.

Method DeckForm_Load (lines 35–53 of Fig. 15.18) uses the for structure (lines
50–51) to fill the deck array with Cards. Note that each Card is instantiated and initial-
ized with two strings—one from the faces array (strings "Ace" through
"King") and one from the suits array ("Hearts", "Diamonds", "Clubs" or
"Spades"). The calculation i % 13 always results in a value from 0 to 12 (the thirteen
subscripts of the faces array), and the calculation i % 4 always results in a value from 0
to 3 (the four subscripts in the suits array). The initialized deck array contains the cards
with faces ace through king for each suit.

1 // Fig. 15.17: Card.cs
2 // Stores suit and face information on each card.
3
4 using System;
5
6 // the representation of a card
7 public class Card
8 {
9 private string face;

10 private string suit;
11
12 public Card(string faceValue,
13 string suitValue)
14 {
15 face = faceValue;
16 suit = suitValue;
17
18 } // end constructor
19

Fig. 15.17Fig. 15.17Fig. 15.17Fig. 15.17 Card class. (Part 1 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 665

20 public override string ToString()
21 {
22 return face + " of " + suit;
23
24 } // end method ToString
25
26 } // end class Card

1 // Fig. 15.18: DeckOfCards.cs
2 // Simulating card drawing and shuffling.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // provides the functionality for the form
12 public class DeckForm : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Button dealButton;
15 private System.Windows.Forms.Button shuffleButton;
16
17 private System.Windows.Forms.Label displayLabel;
18 private System.Windows.Forms.Label statusLabel;
19
20 private System.ComponentModel.Container components = null;
21
22 private Card[] deck = new Card[52];
23 private int currentCard;
24
25 // main entry point for application
26 [STAThread]
27 static void Main()
28 {
29 Application.Run(new deckForm());
30 }
31
32 // Visual Studio .NET generated code
33
34 // handles form at load time
35 private void DeckForm_Load(
36 object sender, System.EventArgs e)
37 {
38 string[] faces = { "Ace", "Deuce", "Three", "Four",
39 "Five", "Six", "Seven", "Eight",
40 "Nine", "Ten", "Jack", "Queen",
41 "King" };

Fig. 15.18Fig. 15.18Fig. 15.18Fig. 15.18 Card dealing and shuffling simulation. (Part 1 of 4.)

Fig. 15.17Fig. 15.17Fig. 15.17Fig. 15.17 Card class. (Part 2 of 2.)

666 Strings, Characters and Regular Expressions Chapter 15

42
43 string[] suits = { "Hearts", "Diamonds", "Clubs",
44 "Spades" };
45
46 // no cards have been drawn
47 currentCard = -1;
48
49 // initialize deck
50 for (int i = 0; i < deck.Length; i++)
51 deck[i] = new Card(faces[i % 13], suits[i % 4]);
52
53 } // end method deckForm_Load
54
55 // handles dealButton Click
56 private void dealButton_Click(
57 object sender, System.EventArgs e)
58 {
59 Card dealt = DealCard();
60
61 // if dealt card is null, then no cards left
62 // player must shuffle cards
63 if (dealt != null)
64 {
65 displayLabel.Text = dealt.ToString();
66 statusLabel.Text = "Card #: " + currentCard;
67 }
68 else
69 {
70 displayLabel.Text = "NO MORE CARDS TO DEAL";
71 statusLabel.Text = "Shuffle cards to continue";
72 }
73 }
74
75 // shuffle cards
76 private void Shuffle()
77 {
78 Random randomNumber = new Random();
79 Card temporaryValue;
80
81 currentCard = -1;
82
83 // swap each card with random card
84 for (int i = 0; i < deck.Length; i++)
85 {
86 int j = randomNumber.Next(52);
87
88 // swap cards
89 temporaryValue = deck[i];
90 deck[i] = deck[j];
91 deck[j] = temporaryValue;
92 }
93

Fig. 15.18Fig. 15.18Fig. 15.18Fig. 15.18 Card dealing and shuffling simulation. (Part 2 of 4.)

Chapter 15 Strings, Characters and Regular Expressions 667

94 dealButton.Enabled = true;
95
96 } // end method Shuffle
97
98 private Card DealCard()
99 {
100 // if there is a card to deal then deal it
101 // otherwise signal that cards need to be shuffled by
102 // disabling dealButton and returning null
103 if (currentCard + 1 < deck.Length)
104 {
105 currentCard++;
106 return deck[currentCard];
107 }
108 else
109 {
110 dealButton.Enabled = false;
111 return null;
112 }
113
114 } // end method DealCard
115
116 // handles shuffleButton Click
117 private void shuffleButton_Click(
118 object sender, System.EventArgs e)
119 {
120 displayLabel.Text = "SHUFFLING...";
121 Shuffle();
122 displayLabel.Text = "DECK IS SHUFFLED";
123
124 } // end method shuffleButton_Click
125
126 } // end class deckForm

Fig. 15.18Fig. 15.18Fig. 15.18Fig. 15.18 Card dealing and shuffling simulation. (Part 3 of 4.)

668 Strings, Characters and Regular Expressions Chapter 15

When users click the Deal Card button, event handler dealButton_Click (lines
56–73) invokes method DealCard (defined in lines 98–114) to get the next card in the
deck array. If the deck is not empty, the method returns a Card object reference; other-
wise, it returns null. If the reference is not null, lines 65–66 display the Card in dis-
playLabel and display the card number in the statusLabel.

If DealCard returns a null reference, the string "NO MORE CARDS TO DEAL"
is displayed in displayLabel, and the string "Shuffle cards to continue"
is displayed in statusLabel.

When users click the Shuffle Cards button, its event-handling method
shuffleButton_Click (lines 117–124) invokes method Shuffle (defined on lines
76–96) to shuffle the cards. The method loops through all 52 cards (array subscripts 0–51).
For each card, the method randomly picks a number between 0 and 51. Then the current
Card object and the randomly selected Card object are swapped in the array. To shuffle
the cards, method Shuffle makes a total of only 52 swaps during a single pass of the
entire array. When the shuffling is complete, displayLabel displays the string
"DECK IS SHUFFLED".

15.17 Regular Expressions and Class Regex
Regular expressions are specially formatted strings used to find patterns in text and can
be useful during information validation, to ensure that data is in a particular format. For ex-
ample, a ZIP code must consist of five digits, and a last name must start with a capital letter.
One application of regular expressions is to facilitate the construction of a compiler. Often,
a large and complex regular expression is used to validate the syntax of a program. If the
program code does not match the regular expression, the compiler knows that there is a syn-
tax error within the code.

Fig. 15.18Fig. 15.18Fig. 15.18Fig. 15.18 Card dealing and shuffling simulation. (Part 4 of 4.)

Chapter 15 Strings, Characters and Regular Expressions 669

The .NET Framework provides several classes to help developers recognize and
manipulate regular expressions. Class Regex (System.Text.RegularExpres-
sions namespace) represents an immutable regular expression. It contains static methods
that allow use of the Regex class without explicitly instantiating objects of that class. Class
Match represents the results of a regular expression matching operation.

Class Regex provides method Match, which returns an object of class Match that
represents a single regular expression match. Regex also provides method Matches,
which finds all matches of a regular expression in an arbitrary string and returns a
MatchCollection object—i.e., a set of Matches.

Common Programming Error 15.4
When using regular expressions, do not confuse class Match with the method Match, which
belongs to class Regex. 15.4

Common Programming Error 15.5
Visual Studio does not add System.Text.RegularExpressions to the list of
namespaces imported in the project properties, so a programmer must import it manually
with the statement using System.Text.RegularExpressions. 15.5

The table in Fig. 15.19 specifies some character classes that can be used with regular
expressions. A character class is an escape sequence that represents a group of characters.

A word character is any alphanumeric character or underscore. A whitespace char-
acter is a space, a tab, a carriage return, a newline or a form feed. A digit is any numeric
character. Regular expressions are not limited to these character classes, however. The
expressions employ various operators and other forms of notation to search for complex
patterns. We discuss several of these techniques in the context of the next example.

Figure 15.20 presents a simple example that employs regular expressions. This pro-
gram takes birthdays and tries to match them to a regular expression. The expression
matches only birthdays that do not occur in April and that belong to people whose names
begin with "J".

Character Matches Character Matches

\d any digit \D any non-digit

\w any word character \W any non-word character

\s any whitespace \S any non-whitespace

Fig. 15.19 Character classes.

1 // Fig. 15.20: RegexMatches.cs
2 // Demonstrating Class Regex.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Text.RegularExpressions;
7

Fig. 15.20Fig. 15.20Fig. 15.20Fig. 15.20 Regular expressions checking birthdays. (Part 1 of 2.)

670 Strings, Characters and Regular Expressions Chapter 15

Line 19 creates an instance of class Regex and defines the regular expression pattern
for which Regex will search. The first character in the regular expression, "J", is treated
as a literal character. This means that any string matching this regular expression is
required to start with "J".

In a regular expression, the dot character "." matches any single character except a
newline character. However, when the dot character is followed by an asterisk, as in the
expression ".*", it matches any number of unspecified characters. In general, when the
operator "*" is applied to any expression, the expression will match zero or more occur-
rences of the expression. By contrast, the application of the operator "+" to an expression
causes the expression to match one or more occurrences of that expression. For example,
both "A*" and "A+" will match "A", but only "A*" will match an empty string.

As indicated in Fig. 15.19, "\d" matches any numeric digit. To specify sets of charac-
ters other than those that have a character class, characters can be listed in square brackets,
[]. For example, the pattern "[aeiou]" can be used to match any vowel. Ranges of char-

8 // test out regular expressions
9 class RegexMatches

10 {
11 // The main entry point for the application.
12 [STAThread]
13 static void Main(string[] args)
14 {
15 string output = "";
16
17 // create regular expression
18 Regex expression =
19 new Regex(@"J.*\d[0-35-9]-\d\d-\d\d");
20
21 string string1 = "Jane's Birthday is 05-12-75\n" +
22 "Dave's Birthday is 11-04-68\n" +
23 "John's Birthday is 04-28-73\n" +
24 "Joe's Birthday is 12-17-77";
25
26 // match regular expression to string and
27 // print out all matches
28 foreach (Match myMatch in expression.Matches(string1))
29 output += myMatch.ToString() + "\n";
30
31 MessageBox.Show(output, "Using class Regex",
32 MessageBoxButtons.OK, MessageBoxIcon.Information);
33
34 } // end method Main
35
36 } // end class RegexMatches

Fig. 15.20Fig. 15.20Fig. 15.20Fig. 15.20 Regular expressions checking birthdays. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 671

acters can be represented by placing a dash (-) between two characters. In the example, "[0-
35-9]" matches only digits in the ranges specified by the pattern. In this case, the pattern
matches any digit between 0 and 3 or between 5 and 9; therefore, it matches any digit except
4. If the first character in the brackets is the "^", the expression accepts any character other
than those indicated. However, it is important to note that "[^4]" is not the same as "[0-
35-9]"; the former matches any nondigit, in addition to the digits other than 4.

Although the "–" character indicates a range when it is enclosed in square brackets,
instances of the "-" character outside grouping expressions are treated as literal characters.
Thus, the regular expression in line 19 searches for a string that starts with the letter
"J", followed by any number of characters, followed by a two-digit number (of which the
second digit cannot be 4), followed by a dash, another two-digit number, a dash and another
two-digit number.

Lines 28–29 use a foreach loop to iterate through each Match obtained from
expression.Matches, which used string1 as an argument. The output in
Fig. 15.20 indicates the two matches that were found in string1. Notice that both
matches conform to the pattern specified by the regular expression.

The asterisk (*) and plus (+) in the previous example are called quantifiers.
Figure 15.21 lists various quantifiers and their uses.

We have already discussed how the asterisk (*) and plus (+) work. The question mark
(?) matches zero or one occurrences of the expression that it quantifies. A set of braces con-
taining one number ({n}) matches exactly n occurrences of the expression it quantifies.
We demonstrate this quantifier in the next example. Including a comma after the number
enclosed in braces matches at least n occurrences of the quantified expression. The set of
braces containing two numbers ({n,m}), matches between n and m occurrences of the
expression that it qualifies. All of the quantifiers are greedy. This means that they will
match as many occurrences as they can as long as the match is successful. However, if any
of these quantifiers is followed by a question mark (?), the quantifier becomes lazy. It then
will match as few occurrences as possible as long as the match is successful.

The Windows application in Fig. 15.22 presents a more involved example that vali-
dates user input via regular expressions.

When a user clicks the OK button, the program checks to make sure that none of the
fields is empty (lines 49–52). If one or more fields are empty, the program signals the user
that all fields must be filled before the program can validate the input information (lines
55–56). Line 59 calls instance method Focus of class TextBox. Method Focus places
the cursor within the TextBox that made the call. The program then exits the event han-
dler (line 61). If there are no empty fields, the user input is validated. The Last Name is
validated first (lines 65–74). If it passes the test (i.e., if the Success property of the
Match instance is true), control moves on to validate the First Name (lines 77–86).
This process continues until all TextBoxes are validated or until a test fails (Success is
false) and the program sends an appropriate error message. If all fields contain valid
information, success is signaled, and the program quits.

In the previous example, we searched for substrings that matched a regular expression.
In this example, we want to check whether an entire string conforms to a regular expres-
sion. For example, we want to accept "Smith" as a last name, but not "9@Smith#". We
achieve this effect by beginning each regular expression with a "^" character and ending
it with a "$" character. The "^" and "$" characters match the positions at the beginning

672 Strings, Characters and Regular Expressions Chapter 15

and end of a string, respectively. This forces the regular expression to evaluate the entire
string and not return a match if a substring matches successfully.

In this program, we use the static version of Regex method Match, which takes
an additional parameter specifying the regular expression that we are trying to match. The
expression in line 66 uses the square bracket and range notation to match an uppercase first
letter, followed by letters of any case—a-z matches any lowercase letter, and A-Z
matches any uppercase letter. The * quantifier signifies that the second range of characters
may occur zero or more times in the string. Thus, this expression matches any string
consisting of one uppercase letter, followed by zero or more additional letters.

The notation \s matches a single whitespace character (lines 90, 102 and 114). The
expression \d{5}, used in the Zip (zip code) field, matches any five digits (line 125). In
general, an expression with a positive integer x in the curly braces will match any x digits.
(Notice the importance of the "^" and "$" characters to prevent zip codes with extra digits
from being validated.)

Quantifier Matches

* Matches zero or more occurrences of the pattern.

+ Matches one or more occurrences of the pattern.

? Matches zero or one occurrences of the pattern.

{n} Matches exactly n occurrences.

{n,} Matches at least n occurrences.

{n,m} Matches between n and m (inclusive) occurrences.

Fig. 15.21 Quantifiers used regular expressions.

1 // Fig. 15.22: Validate.cs
2 // Validate user information using regular expressions.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.Text.RegularExpressions;
11
12 // use regular expressions to validate strings
13 public class ValidateForm : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.Label phoneLabel;
16 private System.Windows.Forms.Label zipLabel;
17 private System.Windows.Forms.Label stateLabel;
18 private System.Windows.Forms.Label cityLabel;
19 private System.Windows.Forms.Label addressLabel;

Fig. 15.22Fig. 15.22Fig. 15.22Fig. 15.22 Validating user information using regular expressions. (Part 1 of 5.)

Chapter 15 Strings, Characters and Regular Expressions 673

20 private System.Windows.Forms.Label firstLabel;
21 private System.Windows.Forms.Label lastLabel;
22
23 private System.Windows.Forms.Button okButton;
24
25 private System.Windows.Forms.TextBox phoneTextBox;
26 private System.Windows.Forms.TextBox zipTextBox;
27 private System.Windows.Forms.TextBox stateTextBox;
28 private System.Windows.Forms.TextBox cityTextBox;
29 private System.Windows.Forms.TextBox addressTextBox;
30 private System.Windows.Forms.TextBox firstTextBox;
31 private System.Windows.Forms.TextBox lastTextBox;
32
33 private System.ComponentModel.Container components = null;
34
35 // The main entry point for the application.
36 [STAThread]
37 static void Main()
38 {
39 Application.Run(new validateForm());
40 }
41
42 // Visual Studio .NET generated code
43
44 // handles okButton Click event
45 private void okButton_Click(
46 object sender, System.EventArgs e)
47 {
48 // ensures no textboxes are empty
49 if (lastTextBox.Text == "" || firstTextBox.Text == "" ||
50 addressTextBox.Text == "" || cityTextBox.Text == "" ||
51 stateTextBox.Text == "" || zipTextBox.Text == "" ||
52 phoneTextBox.Text == "")
53 {
54 // display popup box
55 MessageBox.Show("Please fill in all fields", "Error",
56 MessageBoxButtons.OK, MessageBoxIcon.Error);
57
58 // set focus to lastTextBox
59 lastTextBox.Focus();
60
61 return;
62 }
63
64 // if last name format invalid show message
65 if (!Regex.Match(lastTextBox.Text,
66 @"^[A-Z][a-zA-Z]*$").Success)
67 {
68 // last name was incorrect
69 MessageBox.Show("Invalid Last Name", "Message",
70 MessageBoxButtons.OK, MessageBoxIcon.Error);
71 lastTextBox.Focus();
72

Fig. 15.22Fig. 15.22Fig. 15.22Fig. 15.22 Validating user information using regular expressions. (Part 2 of 5.)

674 Strings, Characters and Regular Expressions Chapter 15

73 return;
74 }
75
76 // if first name format invalid show message
77 if (!Regex.Match(firstTextBox.Text,
78 @"^[A-Z][a-zA-Z]*$").Success)
79 {
80 // first name was incorrect
81 MessageBox.Show("Invalid First Name", "Message",
82 MessageBoxButtons.OK, MessageBoxIcon.Error);
83 firstTextBox.Focus();
84
85 return;
86 }
87
88 // if address format invalid show message
89 if (!Regex.Match(addressTextBox.Text,
90 @"^[0-9]+\s+([a-zA-Z]+|[a-zA-Z]+\s[a-zA-Z]+)$").Success)
91 {
92 // address was incorrect
93 MessageBox.Show("Invalid Address", "Message",
94 MessageBoxButtons.OK, MessageBoxIcon.Error);
95 addressTextBox.Focus();
96
97 return;
98 }
99
100 // if city format invalid show message
101 if (!Regex.Match(cityTextBox.Text,
102 @"^([a-zA-Z]+|[a-zA-Z]+\s[a-zA-Z]+)$").Success)
103 {
104 // city was incorrect
105 MessageBox.Show("Invalid City", "Message",
106 MessageBoxButtons.OK, MessageBoxIcon.Error);
107 cityTextBox.Focus();
108
109 return;
110 }
111
112 // if state format invalid show message
113 if (!Regex.Match(stateTextBox.Text,
114 @"^([a-zA-Z]+|[a-zA-Z]+\s[a-zA-Z]+)$").Success)
115 {
116 // state was incorrect
117 MessageBox.Show("Invalid State", "Message",
118 MessageBoxButtons.OK, MessageBoxIcon.Error);
119 stateTextBox.Focus();
120
121 return;
122 }
123

Fig. 15.22Fig. 15.22Fig. 15.22Fig. 15.22 Validating user information using regular expressions. (Part 3 of 5.)

Chapter 15 Strings, Characters and Regular Expressions 675

124 // if zip code format invalid show message
125 if (!Regex.Match(zipTextBox.Text, @"^\d{5}$").Success)
126 {
127 // zip was incorrect
128 MessageBox.Show("Invalid Zip Code", "Message",
129 MessageBoxButtons.OK, MessageBoxIcon.Error);
130 zipTextBox.Focus();
131
132 return;
133 }
134
135 // if phone number format invalid show message
136 if (!Regex.Match(phoneTextBox.Text,
137 @"^[1-9]\d{2}-[1-9]\d{2}-\d{4}$").Success)
138 {
139 // phone number was incorrect
140 MessageBox.Show("Invalid Phone Number", "Message",
141 MessageBoxButtons.OK, MessageBoxIcon.Error);
142 phoneTextBox.Focus();
143
144 return;
145 }
146
147 // information is valid, signal user and exit application
148 this.Hide();
149 MessageBox.Show("Thank You!", "Information Correct",
150 MessageBoxButtons.OK, MessageBoxIcon.Information);
151
152 Application.Exit();
153
154 } // end method okButton_Click
155
156 } // end class ValidateForm

Fig. 15.22Fig. 15.22Fig. 15.22Fig. 15.22 Validating user information using regular expressions. (Part 4 of 5.)

676 Strings, Characters and Regular Expressions Chapter 15

The character “|” matches the expression to its left or to its right. For example,
Hi (John|Jane) matches both Hi John and Hi Jane. Note the use of parentheses to
group parts of the regular expression. Quantifiers may be applied to patterns enclosed in
parentheses to create more complex regular expressions.

The Last Name and First Name fields both accept strings of any length, that begin
with an uppercase letter. The Address field matches a number of at least one digit, followed
by a space and then either one or more letters or else one or more letters followed by a space
and another series of one or more letters (line 90). Therefore, "10 Broadway" and "10
Main Street" are both valid addresses. The City (line 102) and State (line 114) fields
match any word of at least one character or, alternatively, any two words of at least one char-

Fig. 15.22Fig. 15.22Fig. 15.22Fig. 15.22 Validating user information using regular expressions. (Part 5 of 5.)

Chapter 15 Strings, Characters and Regular Expressions 677

acter if the words are separated by a single space. This means both Waltham and West
Newton would match. As previously stated, the Zip code must be a five-digit number (line
125). The Phone number must be of the form xxx-yyy-yyyy, where the xs represent the
area code and ys the number (line 137). The first x and the first y cannot be zero.

Sometimes it is useful to replace parts of a string with another, or split a string
according to a regular expression. For this purpose, the Regex class provides static and
instance versions of methods Replace and Split, which are demonstrated in Fig. 15.23.

1 // Fig. 15.23: RegexSubstitution.cs
2 // Using Regex method Replace.
3
4 using System;
5 using System.Text.RegularExpressions;
6 using System.Windows.Forms;
7
8 // Summary description for RegexSubstitution.
9 public class RegexSubstitution1

10 {
11
12 // The main entry point for the application.
13 static void Main(string[] args)
14 {
15 string testString1 =
16 "This sentence ends in 5 stars *****";
17
18 string testString2 = "1, 2, 3, 4, 5, 6, 7, 8";
19 Regex testRegex1 = new Regex("stars");
20 Regex testRegex2 = new Regex(@"\d");
21 string[] results;
22 string output = "Original String 1\t\t\t" + testString1;
23
24 testString1 = Regex.Replace(testString1, @"*", "^");
25
26 output += "\n^ substituted for *\t\t\t" + testString1;
27
28 testString1 = testRegex1.Replace(testString1, "carets");
29
30 output += "\n\"carets\" substituted for \"stars\"\t" +
31 testString1;
32
33 output += "\nEvery word replaced by \"word\"\t" +
34 Regex.Replace(testString1, @"\w+", "word");
35
36 output += "\n\nOriginal String 2\t\t\t" + testString2;
37
38 output += "\nFirst 3 digits replaced by \"digit\"\t" +
39 testRegex2.Replace(testString2, "digit", 3);
40
41 output += "\nString split at commas\t\t[";
42
43 results = Regex.Split(testString2, @",\s*");
44

Fig. 15.23Fig. 15.23Fig. 15.23Fig. 15.23 Regex methods Replace and Split. (Part 1 of 2.)

678 Strings, Characters and Regular Expressions Chapter 15

Method Replace replaces text in a string with new text wherever the original
string matches a regular expression. We present two versions of this method in
Fig. 15.23. The first version (line 24) is static and takes three parameters—the string
to modify, the string containing the regular expression to match and the replacement
string. Here, Replace replaces every instance of "*" in testString1 with "^".
Notice that the regular expression (@"*") precedes character * with a backslash, \. Nor-
mally, * is a quantifier indicating that a regular expression should match any number of
occurrences of a preceding pattern. However, in line 24, we want to find all occurrences of
the literal character *; to do this, we must escape character * with character \. By escaping
a special regular expression character with a \, we inform the regular-expression matching
engine to find the actual character, as opposed to what it represents in a regular expression.
The second version of method Replace (line 28) is an instance method that uses the reg-
ular expression passed to the constructor for testRegex1 (line 19) to perform the
replacement operation. In this case, every match for the regular expression "stars" in
testString1 is replaced with "carets".

Line 20 instantiates testRegex2 with argument @"\d". The call to instance
method Replace in line 39 takes three arguments—a string to modify, a string con-
taining the replacement text and an int specifying the number of replacements to make.
In other words, this version of Replace replaces the first three instances of a digit ("\d")
in testString2 with the text "digit" (line 39).

Method Split divides a string into several substrings. The original string is
broken in any location that matches a specified regular expression. Method Split returns
an array containing the substrings between matches for the regular expression. In line 43,
we use the static version of method Split to separate a string of comma-separated

45 foreach (string resultString in results)
46 {
47 output += "\"" + resultString + "\", ";
48 }
49
50 output = output.Substring(0, output.Length - 2) + "]";
51
52 MessageBox.Show(output,
53 "Substitution using regular expressions");
54
55 } // end method Main
56
57 } // end class RegexSubstitution

Fig. 15.23Fig. 15.23Fig. 15.23Fig. 15.23 Regex methods Replace and Split. (Part 2 of 2.)

Chapter 15 Strings, Characters and Regular Expressions 679

integers. The first argument is the string to split; the second argument is the regular
expression. In this case, we use the regular expression @",\s*" to separate the substrings
wherever a comma occurs. By matching any whitespace characters, we eliminate extra
spaces from the resulting substrings.

SUMMARY
• Characters are the fundamental building blocks of C# program code. Every program is composed

of a sequence of characters that is interpreted by the compiler as a series of instructions used to
accomplish a task.

• A string is a series of characters treated as a single unit. A string may include letters, digits
and various special characters, such as +, -, *, /, $ and others.

• All characters correspond to numeric codes. When the computer compares two strings, it actu-
ally compares the numeric codes of the characters in the strings.

• Method Equals uses a lexicographical comparison, meaning that if a certain string has a high-
er value than another string, it would be found later in a dictionary. Method Equals compares
the integer Unicode values that represent each character in each string.

• Method CompareTo returns 0 if the strings are equal, a negative number if the string that
invokes CompareTo is less than the string passed as an argument, a positive number if the
string that invokes CompareTo is greater than the string passed as an argument. Method
CompareTo uses a lexicographical comparison.

• A hash table stores information, using a special calculation on the object to be stored that produces
a hash code. The hash code is used to choose the location in the table at which to store the object.

• Class Object defines method GetHashCode to perform the hash-code calculation. This meth-
od is inherited by all subclasses of Object. Method GetHashCode is overridden by String
to provide a good hash-code distribution based on the contents of the string.

• Class String provides two Substring methods to enable a new string to be created by
copying part of an existing string.

• String method IndexOf locates the first occurrence of a character or a substring in a string.
Method LastIndexOf locates the last occurrence of a character or a substring in a string.

• String method StartsWith determines whether a string starts with the characters speci-
fied as an argument. String method EndsWith determines whether a string ends with the
characters specified as an argument.

• The static method Concat of class String concatenates two strings and returns a new
string containing the characters from both original strings.

• Methods Replace, ToUpper, ToLower, Trim and Remove are provided for more advanced
string manipulation.

• The String class provides many capabilities for processing strings. However, once a
string is created, its contents can never change. Class StringBuilder is available for cre-
ating and manipulating dynamic strings, i.e., strings that can change.

• Class StringBuilder provides Length and Capacity properties to return the number of
characters currently in a StringBuilder and the number of characters that can be stored in a
StringBuilder without allocating more memory, respectively. These properties also can be
used to increase or decrease the length or the capacity of the StringBuilder.

680 Strings, Characters and Regular Expressions Chapter 15

• Method EnsureCapacity allows programmers to guarantee that a StringBuilder has a
minimum capacity. Method EnsureCapacity attempts to double the capacity. If this value is
greater than the value that the programmer wishes to ensure, this will be the new capacity. Other-
wise, EnsureCapacity alters the capacity to make it one more than the requested number.

• Class StringBuilder provides 19 overloaded Append methods to allow various data-type
values to be added to the end of a StringBuilder. Versions are provided for each of the prim-
itive data types and for character arrays, Strings and Objects.

• The braces in a format string specify how to format a specific piece of information. Formats
have the form {X[,Y][:FormatString]}, where X is the number of the argument to be for-
matted, counting from zero. Y is an optional argument, which can be positive or negative. Y indi-
cates how many characters should be in the result of formatting; if the resulting string is less
than this number, it will be padded with spaces to make up for the difference. A positive integer
means the string will be right aligned; a negative one means it will be left aligned. The optional
FormatString indicates what kind of formatting should be applied to the argument: Currency,
decimal, or scientific, among others.

• Class StringBuilder provides 19 overloaded Insert methods to allow various data-type
values to be inserted at any position in a StringBuilder. Versions are provided for each of the
primitive data types and for character arrays, Strings and Objects.

• Class StringBuilder also provides method Remove for deleting any portion of a String-
Builder.

• Another useful method included with StringBuilder is Replace. Replace searches for a
specified string or character and substitutes another in its place.

• C# provides structs, program building blocks similar to classes.

• Structures are in many ways similar to classes, the largest difference between them being that
structures encapsulate value types, whereas classes encapsulate reference types.

• Many of the primitive data types that we have been using are actually aliases for different structures.
These structures are derived from class ValueType, which in turn is derived from class Object.

• Char is a structure that represents characters.

• Method Char.Parse converts data into a character.

• Method Char.IsDigit determines whether a character is a defined Unicode digit.

• Method Char.IsLetter determines whether a character is a letter.

• Method Char.IsLetterOrDigit determines whether a character is a letter or a digit.

• Method Char.IsLower determines whether a character is a lowercase letter.

• Method Char.IsUpper determines whether a character is an uppercase letter.

• Method Char.ToUpper converts a character to its uppercase equivalent.

• Method Char.ToLower converts a character to its lowercase equivalent.

• Method Char.IsPunctuation determines whether a character is a punctuation mark.

• Method Char.IsSymbol determines whether a character is a symbol.

• Method Char.IsWhiteSpace determines whether a character is a whitespace character.

• Char method CompareTo compares two character values.

• Regular expressions find patterns in text.

• The .NET Framework provides class Regex to aid developers in recognizing and manipulating
regular expressions. Regex provides method Match, which returns an object of class Match.
This object represents a single match in a regular expression. Regex also provides the method

Chapter 15 Strings, Characters and Regular Expressions 681

Matches, which finds all matches of a regular expression in an arbitrary string and returns a
MatchCollection—a set of Matches.

• Both classes Regex and Match are in namespace System.Text.RegularExpressions.

• In general, applying the quantifier * to any expression will match zero or more occurrences of that
expression, and applying the quantifier + will match one or more occurrences of that expression.

• The pattern "[0-35-9]" is a regular expression that matches one in a range of characters. This
string will match any digit 0-3 and 5-9, so it will match any digit except 4.

• The character “|” matches the expression to its left or to its right. For example,
"Hi (John|Jane)" matches both "Hi John" and "Hi Jane".

• Method Replace replaces those substrings in a string that match a certain regular expression
with a specified string.

TERMINOLOGY
+ operator IsLetterOrDigit method of structure Char
+= concatenation operator IsLower method of structure Char
== comparison operator IsPunctuation method of structure Char
alphabetizing IsSymbol method of structure Char
Append method of class StringBuilder IsUpper method of structure Char
AppendFormat method of class IsWhiteSpace method of structure Char

StringBuilder LastIndexOf method of class String
ArgumentOutOfRangeException LastIndexOfAny method of class String
Capacity property of class StringBuilder lazy quantifier
char array Length property of class String
Char structure Length property of class StringBuilder
Chars property of class String lexicographical comparison
character literal strings
character class Match class
CompareTo method of class String MatchCollection class
CompareTo method of structure Char page-layout software
Concat method of class String Parse method of structure Char
CopyTo method of class String quantifier
Enabled property of class Control random-number generation
EndsWith method of class String Regex class
EnsureCapacity method of class Remove method of class StringBuilder

StringBuilder Replace method of class Regex
Equals method of class String Replace method of class String
format string Replace method of class StringBuilder
garbage collector special characters
GetHashCode Split method of class Regex
greedy quantifier StartsWith method of class String
hash code String class
hash table string literal
immutable String string reference
IndexOf method of class String StringBuilder class
IndexOfAny method of class String struct
IsDigit method of structure Char Substring method of class String
IsLetter method of structure Char Success property of class Match

682 Strings, Characters and Regular Expressions Chapter 15

SELF-REVIEW EXERCISES
15.1 State whether each of the following is true or false. If false, explain why.

a) When strings are compared with ==, the result is true if the strings contain the
same values.

b) A string can be modified after it is created.
c) Class String has no ToString method.
d) StringBuilder method EnsureCapacity sets the StringBuilder instance’s

capacity to the argument’s value.
e) The method Equals and the equality operator work the same for strings.
f) Method Trim removes all whitespace at the beginning and the end of a string.
g) A regular expression matches a string to a pattern.
h) It is always better to use strings rather than StringBuilders because strings

containing the same value will reference the same object in memory.
i) Class String method ToUpper capitalizes just the first letter of the string.
j) The expression \d in a regular expression denotes all letters.

15.2 Fill in the blanks in each of the following statements:
a) To concatenate strings, use the operator or class method

.
b) Method Compare of class String uses a comparison of strings.
c) Class Regex is located in namespace .
d) StringBuilder method first formats the specified string, then con-

catenates it to the end of the StringBuilder.
e) If the arguments to a Substring method call are out of range, an excep-

tion is thrown.
f) Regex method changes all occurrences of a pattern in a string to a spec-

ified string.
g) Method is inherited by every object and calculates its hash code.
h) A C in a format string means to output the number as .
i) Regular expression quantifier matches zero or more occurrences of an ex-

pression.
j) Regular expression operator inside square brackets will not match any of the

characters in that set of brackets.

ANSWERS TO SELF-REVIEW EXERCISES
15.1 a) True. b) False. strings are immutable and cannot be modified after they are created.
StringBuilder objects can be modified after they are created. c) False. Class String inherits a
ToString method from class Object. d) True. e) True. f) True. g) True. h) False. String-
Builder should be used if the string is to be modified. i) False. Class String method ToUp-
per capitalizes all letters in the string. j) False. The expression \d denotes all decimals in a
regular expression.

System namespace ToUpper method of class String
System.Text namespace ToUpper method of structure Char
System.Text.RegularExpressions trailing whitespace characters

namespace Trim method of class String
text editor Unicode character set
ToLower method of class String ValueType class
ToLower method of structure Char whitespace characters
ToString method of class String word character
ToString method of class StringBuilder

Chapter 15 Strings, Characters and Regular Expressions 683

15.2 a) +, StringBuilder, Append. b) lexicographical. c) System.Text.RegularEx-
pressions. d) AppendFormat e) ArgumentOutOfRangeException. f) Replace.
g) GetHashCode. h) currency. i) *. j) ^.

EXERCISES
15.3 Modify the program in Fig. 15.18 so that the card-dealing method deals a five-card poker
hand. Then write the following additional methods:

a) Determine if the hand contains a pair.
b) Determine if the hand contains two pairs.
c) Determine if the hand contains three of a kind (e.g., three jacks).
d) Determine if the hand contains four of a kind (e.g., four aces).
e) Determine if the hand contains a flush (i.e., all five cards of the same suit).
f) Determine if the hand contains a straight (i.e., five cards of consecutive face values).
g) Determine if the hand contains a full house (i.e., two cards of one face value and three

cards of another face value).

15.4 Use the methods developed in Exercise 15.3 to write a program that deals two five-card
poker hands, evaluates each hand and determines which is the better hand.

15.5 Write an application that uses String method CompareTo to compare two strings in-
put by the user. Output whether the first string is less than, equal to or greater than the second.

15.6 Write an application that uses random-number generation to create sentences. Use four arrays
of strings, called article, noun, verb and preposition. Create a sentence by selecting a
word at random from each array in the following order: article, noun, verb, preposition,
article and noun. As each word is picked, concatenate it to the previous words in the sentence.
The words should be separated by spaces. When the final sentence is output, it should start with a
capital letter and end with a period. The program should generate 20 sentences and output them to a
text area.

The arrays should be filled as follows: The article array should contain the articles
"the", "a", "one", "some" and "any"; the noun array should contain the nouns "boy",
"girl", "dog", "town" and "car"; the verb array should contain the past-tense verbs
"drove", "jumped", "ran", "walked" and "skipped"; the preposition array should
contain the prepositions "to", "from", "over", "under" and "on".

After the preceding program is written, modify the program to produce a short story consist-
ing of several of these sentences. (How about the possibility of a random term-paper writer!)

15.7 (Pig Latin) Write an application that encodes English language phrases into pig Latin. Pig
Latin is a form of coded language often used for amusement. Many variations exist in the methods
used to form pig Latin phrases. For simplicity, use the following algorithm:

To translate each English word into a pig Latin word, place the first letter of the English word
at the end of the word and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the
word “the” becomes “hetay” and the word “computer” becomes “omputercay.” Blanks be-
tween words remain as blanks. Assume the following: The English phrase consists of words separated
by blanks, there are no punctuation marks and all words have two or more letters. Enable the user to
input a sentence. Use techniques discussed in this chapter to divide the sentence into separate words.
Method GetPigLatin should translate a single word into pig Latin. Keep a running display of all
the converted sentences in a text area.

15.8 Write a program that reads a five-letter word from the user and produces all possible three-
letter words that can be derived from the letters of the five-letter word. For example, the three-letter
words produced from the word “bathe” include the commonly used words “ate,” “bat,” “bet,” “tab,”
“hat,” “the” and “tea.”

16
Graphics and
Multimedia

Objectives
• To understand graphics contexts and graphics objects.
• To be able to manipulate colors and fonts.
• To understand and be able to use GDI+ Graphics

methods to draw lines, rectangles, strings and
images.

• To be able to use class Image to manipulate and
display images.

• To be able to draw complex shapes from simple
shapes with class GraphicsPath.

• To be able to use Windows Media Player and
Microsoft Agent in a C# application.

One picture is worth ten thousand words.
Chinese proverb

Treat nature in terms of the cylinder, the sphere, the cone, all
in perspective.
Paul Cezanne

Nothing ever becomes real till it is experienced—even a
proverb is no proverb to you till your life has illustrated it.
John Keats

A picture shows me at a glance what it takes dozens of pages
of a book to expound.
Ivan Sergeyevich

Chapter 16 Graphics and Multimedia 685

16.1 Introduction
In this chapter, we overview C#’s tools for drawing two-dimensional shapes and for con-
trolling colors and fonts. C# supports graphics that enable programmers to enhance their
Windows applications visually. The FCL contains many sophisticated drawing capabilities
as part of namespace System.Drawing and the other namespaces that make up the
.NET resource GDI+. GDI+, an extension of the Graphical Device Interface, is an applica-
tion programming interface (API) that provides classes for creating two-dimensional vector
graphics (a way of describing graphics so that they may be easily manipulated with high-
performance techniques), manipulating fonts and inserting images. GDI+ expands GDI by
simplifying the programming model and introducing several new features, such as graphics
paths, extended image file format support and alpha blending. Using the GDI+ API, pro-
grammers can create images without worrying about the platform-specific details of their
graphics hardware.

We begin with an introduction to the .NET framework’s drawing capabilities. We then
present more powerful drawing capabilities, such as changing the styles of lines used to
draw shapes and controlling the colors and patterns of filled shapes.

Figure 16.1 depicts a portion of the System.Drawing class hierarchy, which
includes several of the basic graphics classes and structures covered in this chapter. The
most commonly used components of GDI+ reside in the System.Drawing and
System.Drawing.Drawing2D namespaces.

Class Graphics contains methods used for drawing strings, lines, rectangles and
other shapes on a Control. The drawing methods of class Graphics usually require a
Pen or Brush object to render a specified shape. The Pen draws shape outlines; the
Brush draws solid objects.

Outline

16.1 Introduction
16.2 Graphics Contexts and Graphics Objects
16.3 Color Control
16.4 Font Control
16.5 Drawing Lines, Rectangles and Ovals
16.6 Drawing Arcs
16.7 Drawing Polygons and Polyli]nes
16.8 Advanced Graphics Capabilities
16.9 Introduction to Multimedia
16.10 Loading, Displaying and Scaling Images
16.11 Animating a Series of Images
16.12 Windows Media Player
16.13 Microsoft Agent

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

686 Graphics and Multimedia Chapter 16

Structure Color contains numerous static properties, which set the colors of var-
ious graphical components, plus methods that allow users to create new colors. Class Font
contains properties that define unique fonts. Class FontFamily contains methods for
obtaining font information.

To begin drawing in C#, we first must understand GDI+’s coordinate system
(Fig. 16.2), a scheme for identifying every point on the screen. By default, the upper-left
corner of a GUI component (such as a Panel or a Form) has the coordinates (0, 0). A
coordinate pair has both an x-coordinate (the horizontal coordinate) and a y-coordinate
(the vertical coordinate). The x-coordinate is the horizontal distance (to the right) from the
upper-left corner. The y-coordinate is the vertical distance (downward) from the upper-left
corner. The x-axis defines every horizontal coordinate, and the y-axis defines every vertical
coordinate. Programmers position text and shapes on the screen by specifying their (x,y)
coordinates. Coordinate units are measured in pixels (“picture elements”), which are the
smallest units of resolution on a display monitor.

The System.Drawing namespace provides structures Rectangle and Point.
The Rectangle structure defines rectangular shapes and dimensions. The Point struc-
ture represents the x-y coordinates of a point on a two-dimensional plane.

Fig. 16.1Fig. 16.1Fig. 16.1Fig. 16.1 System.Drawing namespace’s classes and structures.

System.Drawing

Font

FontFamily

Graphics

Icon

Pen

Region

SolidBrush

TextureBrush

Image

Brush

HatchBrush

LinearGradientBrush

PathGradientBrush

SolidBrush

TextureBrush

class

Structure

Color

Point

Rectangle

Size

Key

class

structure

Chapter 16 Graphics and Multimedia 687

Portability Tip 16.1
Different display monitors have different resolutions, so the density of pixels on such monitors
will vary. This might cause the sizes of graphics to appear different on different monitors. 16.1

In the remainder of this chapter, we explore techniques for manipulating images and
creating smooth animations. We also discuss class Image, which can store and manip-
ulate images from various file formats. Later, we explain how to combine the graphical
rendering capabilities covered in the early sections of the chapter with those for image
manipulation.

16.2 Graphics Contexts and Graphics Objects
A C# graphics context represents a drawing surface that enables drawing on the screen. A
Graphics object manages a graphics context by controlling how information is drawn.
Graphics objects contain methods for drawing, font manipulation, color manipulation
and other graphics-related actions. Every Windows application that derives from class
System.Windows.Forms.Form inherits an virtual OnPaint event handler
where most graphics operations are performed. The arguments to the OnPaint method in-
clude a PaintEventArgs object from which we can obtain a Graphics object for the
control. We must obtain the Graphics object on each call to the method, because the
properties of the graphics context that the graphics object represents could change. The
OnPaint method triggers the Control’s Paint event.

When displaying graphical information on a Form’s client area, programmers can
override the OnPaint method to retrieve a Graphics object from argument Paint-
EventArgs or to create a new Graphics object associated with the appropriate surface.
We demonstrate these techniques of drawing in C# later in the chapter.

To override the inherited OnPaint method, use the following method definition:

protected override void OnPaint(PaintEventArgs e)

Next, extract the incoming Graphics object from the PaintEventArgs argument:

Graphics graphicsObject = e.Graphics;

Fig. 16.2Fig. 16.2Fig. 16.2Fig. 16.2 GDI+ coordinate system. Units are measured in pixels.

x-axis

y-axis

(x, y)

+x

+y

(0, 0)

688 Graphics and Multimedia Chapter 16

Variable graphicsObject now is available to draw shapes and strings on the form.
Calling the OnPaint method raises the Paint event. Instead of overriding the

OnPaint method, programmers can add an event handler for the Paint event. Visual
Studio .NET generates the Paint event handler in this form:

protected void MyEventHandler_Paint(
object sender, PaintEventArgs e)

Programmers seldom call the OnPaint method directly, because the drawing of
graphics is an event-driven process. An event—such as the covering, uncovering or resizing
of a window—calls the OnPaint method of that form. Similarly, when any control (such as
a TextBox or Label) is displayed, the program calls that control’s Paint method.

 If programmers need to cause method OnPaint to run explicitly, they should not call
method OnPaint. Rather, they can call the Invalidate method (inherited from Con-
trol). This method refreshes a control’s client area and implicitly repaints all graphical
components. C# contains several overloaded Invalidate methods that allow program-
mers to update portions of the client area.

Performance Tip 16.1
 Calling the Invalidate method to refresh the Control often is inefficient. Instead, call
Invalidate with a Rectangle parameter to refresh only the area designated by the
rectangle. This improves program performance. 16.1

Controls, such as Labels and Buttons, do not have their own graphics contexts, but
one can be created. To draw on a control, first create its graphics object by invoking the
CreateGraphics method:

Graphics graphicsObject = controlName.CreateGraphics();

where graphicsObject represents an instance of class Graphics and controlName is any
control. Now, a programmer can use the methods provided in class Graphics to draw on
the control.

16.3 Color Control
Colors can enhance a program’s appearance and help convey meaning. For example, a red
traffic light indicates stop, yellow indicates caution and green indicates go.

Structure Color defines methods and constants used to manipulate colors. Because it
is a lightweight object that performs only a handful of operations and stores static fields,
Color is implemented as a structure, rather than as a class.

Every color can be created from a combination of alpha, red, green and blue compo-
nents. Together, these components are called ARGB values. All four ARGB components
are bytes that represent integer values in the range from 0 to 255. The alpha value deter-
mines the opacity of the color. For example, the alpha value 0 results in a transparent color,
the value 255 in an opaque color. Alpha values between 0 and 255 result in a weighted
blending effect of the color’s RGB value with that of any background color, causing a semi-
transparent effect. The first number in the RGB value defines the amount of red in the color,
the second defines the amount of green and the third defines the amount of blue. The larger
the value, the greater the amount of that particular color. C# enables programmers to choose

Chapter 16 Graphics and Multimedia 689

from almost 17 million colors. If a particular computer cannot display all these colors, it
will display the color closest to the one specified. Figure 16.3 summarizes some predefined
Color constants, and Fig. 16.4 describes several Color methods and properties.

The table in Fig. 16.4 describes two FromArgb method calls. One takes three int argu-
ments, and one takes four int arguments (all argument values must be between 0 and 255).
Both take int arguments specifying the amount of red, green and blue. The overloaded ver-
sion takes four arguments and allows the user to specify alpha; the three-argument version
defaults the alpha to 255. Both methods return a Color object representing the specified
values. Color properties A, R, G and B return bytes that represent int values from 0 to
255, corresponding to the amounts of alpha, red, green and blue, respectively.

Programmers draw shapes and strings with Brushes and Pens. A Pen, which
functions similarly to an ordinary pen, is used to draw lines. Most drawing methods require
a Pen object. The overloaded Pen constructors allow programmers to specify the colors
and widths of the lines that they wish to draw. The System.Drawing namespace also
provides a Pens collection containing predefined Pens.

Constants in structure
Color (all are
public static) RGB value

Constants in structure
Color (all are
public static) RGB value

Orange 255, 200, 0 White 255, 255, 255

Pink 255, 175, 175 Gray 128, 128, 128

Cyan 0, 255, 255 DarkGray 64, 64, 64

Magenta 255, 0, 255 Red 255, 0, 0

Yellow 255, 255, 0 Green 0, 255, 0

Black 0, 0, 0 Blue 0, 0, 255

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 Color structure static constants and their RGB values.

Structure Color
methods and
properties Description

Common Methods

static FromArgb Creates a color based on red, green and blue values expressed as ints
from 0 to 255. Overloaded version allows specification of alpha, red,
green and blue values.

static FromName Creates a color from a name, passed as a string.

Common Properties

A byte between 0 and 255, representing the alpha component.

R byte between 0 and 255, representing the red component.

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 Color structure members (Part 1 of 2.).

690 Graphics and Multimedia Chapter 16

All classes derived from abstract class Brush define objects that color the interiors of
graphical shapes (for example, the SolidBrush constructor takes a Color object—the
color to draw). In most Fill methods, Brushes fill a space with a color, pattern or image.
Figure 16.5 summarizes various Brushes and their functions.

The application in Fig. 16.6 demonstrates several of the methods and properties
described in Fig. 16.4. It displays two overlapping rectangles, allowing the user to experi-
ment with color values and color names.

G byte between 0 and 255, representing the green component.

B byte between 0 and 255, representing the blue component.

Class Description

HatchBrush Uses a rectangular brush to fill a region with a pattern. The pattern is
defined by a member of the HatchStyle enumeration, a fore-
ground color (with which the pattern is drawn) and a background
color.

LinearGradient-
Brush

Fills a region with a gradual blend of one color into another. Linear
gradients are defined along a line. They can be specified by the two
colors, the angle of the gradient and either the width of a rectangle or
two points.

SolidBrush Fills a region with one color. Defined by a Color object.

TextureBrush Fills a region by repeating a specified Image across the surface.

Fig. 16.5Fig. 16.5Fig. 16.5Fig. 16.5 Classes that derive from class Brush.

1 // Fig 16.6: ShowColors.cs
2 // Using different colors in C#.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Color value and alpha demonstration. (Part 1 of 3.)

Structure Color
methods and
properties Description

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 Color structure members (Part 2 of 2.).

Chapter 16 Graphics and Multimedia 691

11 // allows users to change colors using the name of
12 // the color or argb values
13 class ShowColors : System.Windows.Forms.Form
14 {
15 private System.ComponentModel.Container components = null;
16
17 // color for back rectangle
18 private Color behindColor = Color.Wheat;
19 private System.Windows.Forms.GroupBox nameGroup;
20 private System.Windows.Forms.GroupBox colorValueGroup;
21 private System.Windows.Forms.TextBox colorNameTextBox;
22 private System.Windows.Forms.TextBox alphaTextBox;
23 private System.Windows.Forms.TextBox redTextBox;
24 private System.Windows.Forms.TextBox greenTextBox;
25 private System.Windows.Forms.TextBox blueTextBox;
26 private System.Windows.Forms.Button colorValueButton;
27 private System.Windows.Forms.Button colorNameButton;
28
29 // color for front rectangle
30 private Color frontColor =
31 Color.FromArgb(100, 0 , 0, 255);
32
33 [STAThread]
34 static void Main()
35 {
36 Application.Run(new ShowColors());
37 }
38
39 // Visual Studio .NET generated code
40
41 // override Form OnPaint method
42 protected override void OnPaint(PaintEventArgs e)
43 {
44 Graphics graphicsObject = e.Graphics; // get graphics
45
46 // create text brush
47 SolidBrush textBrush = new SolidBrush(Color.Black);
48
49 // create solid brush
50 SolidBrush brush = new SolidBrush(Color.White);
51
52 // draw white background
53 graphicsObject.FillRectangle(brush, 4, 4, 275, 180);
54
55 // display name of behindColor
56 graphicsObject.DrawString(behindColor.Name, this.Font,
57 textBrush, 40, 5);
58
59 // set brush color and display back rectangle
60 brush.Color = behindColor;
61
62 graphicsObject.FillRectangle(brush, 45, 20, 150, 120);
63

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Color value and alpha demonstration. (Part 2 of 3.)

692 Graphics and Multimedia Chapter 16

64 // display Argb values of front color
65 graphicsObject.DrawString("Alpha: " + frontColor.A +
66 " Red: " + frontColor.R + " Green: " + frontColor.G
67 + " Blue: " + frontColor.B, this.Font, textBrush,
68 55, 165);
69
70 // set brush color and display front rectangle
71 brush.Color = frontColor;
72
73 graphicsObject.FillRectangle(brush, 65, 35, 170, 130);
74
75 } // end method OnPaint
76
77 // handle colorValueButton click event
78 private void colorValueButton_Click(
79 object sender, System.EventArgs e)
80 {
81 // obtain new front color from text boxes
82 frontColor = Color.FromArgb(Convert.ToInt32(
83 alphaTextBox.Text),
84 Convert.ToInt32(redTextBox.Text),
85 Convert.ToInt32(greenTextBox.Text),
86 Convert.ToInt32(blueTextBox.Text));
87
88 Invalidate(); // refresh Form
89 }
90
91 // handle colorNameButton click event
92 private void colorNameButton_Click(
93 object sender, System.EventArgs e)
94 {
95 // set behindColor to color specified in text box
96 behindColor = Color.FromName(colorNameTextBox.Text);
97
98 Invalidate(); // refresh Form
99 }
100
101 } // end class ShowColors

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Color value and alpha demonstration. (Part 3 of 3.)

Chapter 16 Graphics and Multimedia 693

When the application begins its execution, it calls class ShowColors’s OnPaint
method to paint the window. Line 44 gets a reference to PaintEventArgs e’s
Graphics object and assigns it to Graphics object graphicsObject. Lines 47–50
create a black and a white SolidBrush for drawing on the form. Class SolidBrush
derives from abstract base class Brush; programmers can draw solid shapes with the
SolidBrush.

Graphics method FillRectangle draws a solid white rectangle with the Brush
supplied as a parameter (line 53). It takes as parameters a brush, the x- and y-coordinates of
a point and the width and height of the rectangle to draw. The point represents the upper-
left corner of the rectangle. Lines 56–57 display the string Name property of the
Brush’s Color property with the Graphics DrawString method. The programmer
has access to several overloaded DrawString methods; the version demonstrated in lines
56–57 takes a string to display, the display Font, a Brush and the x- and y-coordinates
of the location for the string’s first character.

Lines 60–62 assign the Color behindColor value to the Brush’s Color prop-
erty and display a rectangle. Lines 65–68 extract and display the ARGB values of Color
frontColor and then display a filled rectangle that overlaps the first.

Button event handler colorValueButton_Click (lines 78–89) uses Color
method FromArgb to construct a new Color object from the ARGB values that a user
specifies via text boxes. It then assigns the newly created Color to frontColor.
Button event handler colorNameButton_Click (lines 92–99) uses the Color
method FromName to create a new Color object from the colorName that a user enters
in a text box. This Color is assigned to behindColor.

If the user assigns an alpha value between 0 and 255 for the frontColor, the effects
of alpha blending are apparent. In the screenshot output, the red back rectangle blends with
the blue front rectangle to create purple where the two overlap.

Software Engineering Observation 16.1
No methods in class Color enable programmers to change the characteristics of the current
color. To use a different color, create a new Color object. 16.1

The predefined GUI component ColorDialog is a dialog box that allows users to
select from a palette of available colors. It also offers the option of creating custom colors.
The program in Fig. 16.7 demonstrates the use of such a dialog. When a user selects a color
and presses OK, the application retrieves the user’s selection via the ColorDialog’s
Color property.

The GUI for this application contains two Buttons. The top one, background-
ColorButton, allows the user to change the form and button background colors. The
bottom one, textColorButton, allows the user to change the button text colors.

1 //Fig. 16.7: ShowColorsComplex.cs
2 // Change the background and text colors of a form.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;

Fig. 16.7Fig. 16.7Fig. 16.7Fig. 16.7 ColorDialog used to change background and text color. (Part 1 of 3.)

694 Graphics and Multimedia Chapter 16

7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // allows users to change colors using a ColorDialog
12 public class ShowColorsComplex : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Button backgroundColorButton;
15 private System.Windows.Forms.Button textColorButton;
16
17 private System.ComponentModel.Container components = null;
18
19 [STAThread]
20 static void Main()
21 {
22 Application.Run(new ShowColorsComplex());
23 }
24
25 // Visual Studio .NET generated code
26
27 // change text color
28 private void textColorButton_Click(
29 object sender, System.EventArgs e)
30 {
31 // create ColorDialog object
32 ColorDialog colorChooser = new ColorDialog();
33 DialogResult result;
34
35 // get chosen color
36 result = colorChooser.ShowDialog();
37
38 if (result == DialogResult.Cancel)
39 return;
40
41 // assign forecolor to result of dialog
42 backgroundColorButton.ForeColor = colorChooser.Color;
43 textColorButton.ForeColor = colorChooser.Color;
44
45 } // end method textColorButton_Click
46
47 // change background color
48 private void backgroundColorButton_Click(
49 object sender, System.EventArgs e)
50 {
51 // create ColorDialog object
52 ColorDialog colorChooser = new ColorDialog();
53 DialogResult result;
54
55 // show ColorDialog and get result
56 colorChooser.FullOpen = true;
57 result = colorChooser.ShowDialog();
58

Fig. 16.7Fig. 16.7Fig. 16.7Fig. 16.7 ColorDialog used to change background and text color. (Part 2 of 3.)

Chapter 16 Graphics and Multimedia 695

Lines 28–45 define the event handler that is called when the user clicks Button tex-
tColorButton. The event handler creates a new ColorDialog named color-
Chooser and invokes its ShowDialog method, which displays the window. Property
Color of colorChooser stores users’ selections. Lines 42–43 set the text color of both
buttons to the selected color.

Lines 48–65 define the event handler for button backgroundColorButton. The
method modifies the background color of the form by setting BackColor equal to the
dialog’s Color property. The method creates a new ColorDialog and sets the dialog’s
FullOpen property to true. The dialog now displays all available colors, as shown in
the screen capture in Fig. 16.7. The regular color display does not show the right-hand por-
tion of the screen.

Users are not restricted to the ColorDialog’s 48 colors. To create a custom color,
users can click anywhere in the ColorDialog’s large rectangle—this displays the var-
ious color shades. Adjust the slider, hue and other features to refine the color. When fin-
ished, click the Add to Custom Colors button, which adds the custom color to a square
in the custom colors section of the dialog. Clicking OK sets the Color property of the

59 if (result == DialogResult.Cancel)
60 return;
61
62 // set background color
63 this.BackColor = colorChooser.Color;
64
65 } // end method backgroundColorButton_Click
66
67 } // end class ShowColorsComplex

Fig. 16.7Fig. 16.7Fig. 16.7Fig. 16.7 ColorDialog used to change background and text color. (Part 3 of 3.)

696 Graphics and Multimedia Chapter 16

ColorDialog to that color. Selecting a color and pressing the dialog’s OK button causes
the application’s background color to change.

16.4 Font Control
This section introduces methods and constants that are related to font control. Once a Font
has been created, its properties cannot be modified. If programmers require a different
Font, they must create a new Font object—there are many overloaded versions of the
Font constructor for creating custom Fonts. Some properties of class Font are summa-
rized in Fig. 16.8.

Note that the Size property returns the font size as measured in design units, whereas
SizeInPoints returns the font size as measured in points (the more common measure-
ment). When we say that the Size property measures the size of the font in design units,
we mean that the font size can be specified in a variety of ways, such as inches or millime-
ters. Some versions of the Font constructor accept a GraphicsUnit argument—an enu-
meration that allows users to specify the unit of measurement employed to describe the font
size. Members of the GraphicsUnit enumeration include Point (1/72 inch), Dis-
play (1/75 inch), Document (1/300 inch), Millimeter, Inch and Pixel. If this
argument is provided, the Size property contains the size of the font as measured in the
specified design unit, and the SizeInPoints property converts the size of the font into
points. For example, if we create a Font having size 1 and specify that Graphic-
sUnit.Inch be used to measure the font, the Size property will be 1, and the SizeIn-
Points property will be 72. If we employ a constructor that does not accept a member of
the GraphicsUnit, the default measurement for the font size is Graphic-
sUnit.Point (thus, the Size and SizeInPoints properties will be equal).

Property Description

Bold Tests a font for a bold font style. Returns true if the font is bold.

FontFamily Represents the FontFamily of the Font (a grouping structure to
organize fonts and define their similar properties).

Height Represents the height of the font.

Italic Tests a font for an italic font style. Returns true if the font is italic.

Name Represents the font’s name as a string.

Size Returns a float value indicating the current font size measured in
design units (design units are any specified units of measurement for
the font).

SizeInPoints Returns a float value indicating the current font size measured in
points.

Strikeout Tests a font for a strikeout font style. Returns true if the font is in
strikeout format.

Underline Tests a font for a underline font style. Returns true if the font is
underlined.

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 Font class read-only properties.

Chapter 16 Graphics and Multimedia 697

Class Font has a number of constructors. Most require a font name, which is a
string representing a font currently supported by the system. Common fonts include
Microsoft SansSerif and Serif. Constructors also usually require the font size as an argu-
ment. Lastly, Font constructors usually require a font style, specified by the FontStyle
enumeration: Bold, Italic, Regular, Strikeout, Underline. Font styles can be
combined via the ‘|’ operator (for example, FontStyle.Italic | Font-
Style.Bold, makes a font both italic and bold).

Graphics method DrawString sets the current drawing font—the font in which
the text displays—to its Font argument.

Common Programming Error 16.1
Specifying a font that is not available on a system is a logic error. If this occurs, C# will sub-
stitute that system’s default font. 16.1

The program in Fig. 16.9 displays text in four different fonts, each of a different size.
The program uses the Font constructor to initialize Font objects (lines 32–47). Each call
to the Font constructor passes a font name (e.g., Arial, Times New Roman, Courier New
or Tahoma) as a string, a font size (a float) and a FontStyle object (style).
Graphics method DrawString sets the font and draws the text at the specified loca-
tion. Note that line 29 creates a DarkBlue SolidBrush object (brush), causing all
strings drawn with that brush to appear in DarkBlue.

Software Engineering Observation 16.2
There is no way to change the properties of a Font object—to use a different font, program-
mers must create a new Font object. 16.2

1 // Fig 16.9: UsingFonts.cs
2 // Demonstrating various font settings.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // demonstrate font constructors and properties
12 public class UsingFonts : System.Windows.Forms.Form
13 {
14 private System.ComponentModel.Container components = null;
15
16 [STAThread]
17 static void Main()
18 {
19 Application.Run(new UsingFonts());
20 }
21
22 // Visual Studio .NET generated code
23

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Fonts and FontStyles. (Part 1 of 2.)

698 Graphics and Multimedia Chapter 16

Programmers can define precise information about a font’s metrics (or properties),
such as height, descent (the amount that characters dip below the baseline), ascent (the
amount that characters rise above the baseline) and leading (the difference between the

24 // demonstrate various font and style settings
25 protected override void OnPaint(
26 PaintEventArgs paintEvent)
27 {
28 Graphics graphicsObject = paintEvent.Graphics;
29 SolidBrush brush = new SolidBrush(Color.DarkBlue);
30
31 // arial, 12 pt bold
32 FontStyle style = FontStyle.Bold;
33 Font arial =
34 new Font(new FontFamily("Arial"), 12, style);
35
36 // times new roman, 12 pt regular
37 style = FontStyle.Regular;
38 Font timesNewRoman =
39 new Font("Times New Roman", 12, style);
40
41 // courier new, 16 pt bold and italic
42 style = FontStyle.Bold | FontStyle.Italic;
43 Font courierNew = new Font("Courier New", 16, style);
44
45 // tahoma, 18 pt strikeout
46 style = FontStyle.Strikeout;
47 Font tahoma = new Font("Tahoma", 18, style);
48
49 graphicsObject.DrawString(arial.Name +
50 " 12 point bold.", arial, brush, 10, 10);
51
52 graphicsObject.DrawString(timesNewRoman.Name +
53 " 12 point plain.", timesNewRoman, brush, 10, 30);
54
55 graphicsObject.DrawString(courierNew.Name +
56 " 16 point bold and italic.", courierNew,
57 brush, 10, 54);
58
59 graphicsObject.DrawString(tahoma.Name +
60 " 18 point strikeout.", tahoma, brush, 10, 75);
61
62 } // end method OnPaint
63
64 } // end class UsingFonts

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Fonts and FontStyles. (Part 2 of 2.)

Chapter 16 Graphics and Multimedia 699

ascent of one line and the decent of the previous line). Figure 16.10 illustrates these prop-
erties.

Class FontFamily defines characteristics common to a group of related fonts. Class
FontFamily provides several methods used to determine the font metrics that are shared
by members of a particular family. These methods are summarized in Fig. 16.11.

The program shown in Fig. 16.12 calls method ToString to display the metrics of
two fonts. Line 32 creates Font arial and sets it to 12-point Arial font. Line 33 uses
class Font property FontFamily to obtain object arial’s FontFamily object. Lines
38–39 call ToString to output the string representation of the font. Lines 41–55 then
use methods of class FontFamily to return integers specifying the ascent, descent, height
and leading of the font. Lines 58–77 repeat this process for font sansSerif, a Font
object derived from the MS Sans Serif FontFamily.

Fig. 16.10Fig. 16.10Fig. 16.10Fig. 16.10 An illustration of font metrics.

Method Description

GetCellAscent Returns an int representing the ascent of a font as measured in
design units.

GetCellDescent Returns an int representing the descent of a font as measured in
design units.

GetEmHeight Returns an int representing the height of a font as measured in
design points.

GetLineSpacing Returns an int representing the distance between two consecutive
lines of text as measured in design units.

Fig. 16.11Fig. 16.11Fig. 16.11Fig. 16.11 FontFamily methods that return font-metric information.

1 // Fig 16.12: UsingFontMetrics.cs
2 // Displaying font metric information.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 FontFamily class used to obtain font-metric information. (Part 1 of 3.)

leading

ascent

baseline
descent

height xy1Õ

700 Graphics and Multimedia Chapter 16

8 using System.Windows.Forms;
9 using System.Data;

10
11 // displays font information
12 public class UsingFontMetrics : System.Windows.Forms.Form
13 {
14 private System.ComponentModel.Container components = null;
15
16 [STAThread]
17 static void Main()
18 {
19 Application.Run(new UsingFontMetrics());
20 }
21
22 // Visual Studio .NET generated code
23
24 // displays font information
25 protected override void OnPaint(
26 PaintEventArgs paintEvent)
27 {
28 Graphics graphicsObject = paintEvent.Graphics;
29 SolidBrush brush = new SolidBrush(Color.DarkBlue);
30
31 // Arial font metrics
32 Font arial = new Font("Arial", 12);
33 FontFamily family = arial.FontFamily;
34 Font sanSerif = new Font("Microsoft Sans Serif",
35 14, FontStyle.Italic);
36
37 // display Arial font metrics
38 graphicsObject.DrawString("Current Font: " +
39 arial.ToString(), arial, brush, 10, 10);
40
41 graphicsObject.DrawString("Ascent: " +
42 family.GetCellAscent(FontStyle.Regular), arial,
43 brush, 10, 30);
44
45 graphicsObject.DrawString("Descent: " +
46 family.GetCellDescent(FontStyle.Regular), arial,
47 brush, 10, 50);
48
49 graphicsObject.DrawString("Height: " +
50 family.GetEmHeight(FontStyle.Regular), arial,
51 brush, 10, 70);
52
53 graphicsObject.DrawString("Leading: " +
54 family.GetLineSpacing(FontStyle.Regular), arial,
55 brush, 10, 90);
56
57 // display Sans Serif font metrics
58 family = sanSerif.FontFamily;
59

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 FontFamily class used to obtain font-metric information. (Part 2 of 3.)

Chapter 16 Graphics and Multimedia 701

16.5 Drawing Lines, Rectangles and Ovals
This section presents a variety of Graphics methods for drawing lines, rectangles and
ovals. Each of the drawing methods has several overloaded versions. When employing
methods that draw shape outlines, we use versions that take a Pen and four ints; when
employing methods that draw solid shapes, we use versions that take a Brush and four
ints. In both instances, the first two int arguments represent the coordinates of the up-
per-left corner of the shape or its enclosing area, and the last two ints indicate the shape’s
width and height. Figure 16.13 summarizes the Graphics methods and their parameters.

The application in Fig. 16.14 draws lines, rectangles and ellipses. In this application,
we also demonstrate methods that draw filled and unfilled shapes.

Methods DrawRectangle and FillRectangle (lines 33 and 42) draw rectan-
gles on the screen. For each method, the first argument specifies the drawing object to use.
The DrawRectangle method uses a Pen object, whereas the FillRectangle
method uses a Brush object (in this case, an instance of SolidBrush—a class that
derives from Brush). The next two arguments specify the coordinates of the upper-left

60 graphicsObject.DrawString("Current Font: " +
61 sanSerif.ToString(), sanSerif, brush, 10, 130);
62
63 graphicsObject.DrawString("Ascent: " +
64 family.GetCellAscent(FontStyle.Regular), sanSerif,
65 brush, 10, 150);
66
67 graphicsObject.DrawString("Descent: " +
68 family.GetCellDescent(FontStyle.Regular), sanSerif,
69 brush, 10, 170);
70
71 graphicsObject.DrawString("Height: " +
72 family.GetEmHeight(FontStyle.Regular), sanSerif,
73 brush, 10, 190);
74
75 graphicsObject.DrawString("Leading: " +
76 family.GetLineSpacing(FontStyle.Regular), sanSerif,
77 brush, 10, 210);
78
79 } // end method OnPaint
80
81 } // end class UsingFontMetrics

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 FontFamily class used to obtain font-metric information. (Part 3 of 3.)

702 Graphics and Multimedia Chapter 16

corner of the bounding rectangle, which represents the area in which the rectangle will be
drawn. The fourth and fifth arguments specify the rectangle’s width and height. Method
DrawLine (lines 36–39) takes a Pen and two pairs of ints, specifying the start and end-
point of the line. The method then draws a line, using the Pen object passed to it.

Methods DrawEllipse and FillEllipse each provide overloaded versions that
take five arguments. In both methods, the first argument specifies the drawing object to use.
The next two arguments specify the upper-left coordinates of the bounding rectangle rep-
resenting the area in which the ellipse will be drawn. The last two arguments specify the
bounding rectangle’s width and height, respectively. Figure 16.15 depicts an ellipse
bounded by a rectangle. The ellipse touches the midpoint of each of the four sides of the
bounding rectangle. The bounding rectangle is not displayed on the screen.
.

Graphics Drawing Methods and Descriptions.

Note: Many of these methods are overloaded—consult the documentation for a full listing.

DrawLine(Pen p, int x1, int y1, int x2, int y2)
Draws a line from (x1, y1) to (x2, y2). The Pen determines the color, style and width of the
line.

DrawRectangle(Pen p, int x, int y, int width, int height)
Draws a rectangle of the specified width and height. The top-left corner of the rectangle is at point
(x, y). The Pen determines the color, style, and border width of the rectangle.

FillRectangle(Brush b, int x, int y, int width, int height)
Draws a solid rectangle of the specified width and height. The top-left corner of the rectangle is at
point (x, y). The Brush determines the fill pattern inside the rectangle.

DrawEllipse(Pen p, int x, int y, int width, int height)
Draws an ellipse inside a rectangle. The width and height of the rectangle are as specified, and its
top-left corner is at point (x, y). The Pen determines the color, style and border width of the
ellipse.

FillEllipse(Brush b, int x, int y, int width, int height)
Draws a filled ellipse inside a rectangle. The width and height of the rectangle are as specified,
and its top-left corner is at point (x, y). The Brush determines the pattern inside the ellipse.

Fig. 16.13Fig. 16.13Fig. 16.13Fig. 16.13 Graphics methods that draw lines, rectangles and ovals.

1 // Fig. 16.14: LinesRectanglesOvals.cs
2 // Demonstrating lines, rectangles and ovals.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Demonstration of methods that draw lines, rectangles and ellipses.
 (Part 1 of 3.)

Chapter 16 Graphics and Multimedia 703

8 using System.Windows.Forms;
9 using System.Data;

10
11 // draws shapes on the Form
12 public class LinesRectanglesOvals : System.Windows.Forms.Form
13 {
14 private System.ComponentModel.Container components = null;
15
16 [STAThread]
17 static void Main()
18 {
19 Application.Run(new LinesRectanglesOvals());
20 }
21
22 // Visual Studio .NET generated code
23
24 protected override void OnPaint(
25 PaintEventArgs paintEvent)
26 {
27 // get graphics object
28 Graphics g = paintEvent.Graphics;
29 SolidBrush brush = new SolidBrush(Color.Blue);
30 Pen pen = new Pen(Color.AliceBlue);
31
32 // create filled rectangle
33 g.FillRectangle(brush, 90, 30, 150, 90);
34
35 // draw lines to connect rectangles
36 g.DrawLine(pen, 90, 30, 110, 40);
37 g.DrawLine(pen, 90, 120, 110, 130);
38 g.DrawLine(pen, 240, 30, 260, 40);
39 g.DrawLine(pen, 240, 120, 260, 130);
40
41 // draw top rectangle
42 g.DrawRectangle(pen, 110, 40, 150, 90);
43
44 // set brush to red
45 brush.Color = Color.Red;
46
47 // draw base Ellipse
48 g.FillEllipse(brush, 280, 75, 100, 50);
49
50 // draw connecting lines
51 g.DrawLine(pen, 380, 55, 380, 100);
52 g.DrawLine(pen, 280, 55, 280, 100);
53
54 // draw Ellipse outline
55 g.DrawEllipse(pen, 280, 30, 100, 50);
56
57 } // end method OnPaint
58
59 } // end class LinesRectanglesOvals

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Demonstration of methods that draw lines, rectangles and ellipses.
 (Part 2 of 3.)

704 Graphics and Multimedia Chapter 16

16.6 Drawing Arcs
Arcs are portions of ellipses and are measured in degrees, beginning at a starting angle and
continuing for a specified number of degrees called the arc angle. An arc is said to sweep
(traverse) its arc angle, beginning from its starting angle. Arcs that sweep in a clockwise
direction are measured in positive degrees, whereas arcs that sweep in a counterclockwise
direction are measured in negative degrees. Figure 16.16 depicts two arcs. Note that the left
portion of the figure sweeps downward from zero degrees to approximately 110 degrees.
Similarly, the arc in the right portion of the figure sweeps upward from zero degrees to ap-
proximately –110 degrees.

Notice the dashed boxes around the arcs in Fig. 16.16. We draw each arc as part of an
oval (the rest of which is not visible). When drawing an oval, we specify the oval’s dimen-
sions in the form of a bounding rectangle that encloses the oval. The boxes in Fig. 16.16
correspond to these bounding rectangles. The Graphics methods used to draw arcs—
DrawArc, DrawPie and FillPie—are summarized in Fig. 16.17.

The program in Fig. 16.18 draws six images (three arcs and three filled pie slices) to
demonstrate the arc methods listed in Fig. 16.17. To illustrate the bounding rectangles that
determine the sizes and locations of the arcs, the arcs are displayed inside red rectangles
that have the same x-coordinates, y-coordinates and width and height arguments as those
that define the bounding rectangles for the arcs.

Lines 28–35 create the objects that we need to draw various arcs: Graphics objects,
Rectangles, SolidBrushes and Pens. Lines 38–39 then draw a rectangle and an arc
inside the rectangle. The arc sweeps 360 degrees, forming a circle. Line 42 changes the

Fig. 16.15Fig. 16.15Fig. 16.15Fig. 16.15 Ellipse bounded by a rectangle.

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Demonstration of methods that draw lines, rectangles and ellipses.
 (Part 3 of 3.)

height

width

(x, y)

Chapter 16 Graphics and Multimedia 705

location of the Rectangle by setting its Location property to a new Point. The
Point constructor takes the x- and y-coordinates of the new point. The Location prop-
erty determines the upper-left corner of the Rectangle. After drawing the rectangle, the
program draws an arc that starts at 0 degrees and sweeps 110 degrees. Because angles in
C# increase in a clockwise direction, the arc sweeps downward.

Fig. 16.16Fig. 16.16Fig. 16.16Fig. 16.16 Positive and negative arc angles.

Graphics Methods And Descriptions

Note: Many of these methods are overloaded—consult the documentation for a complete listing.

DrawArc(Pen p, int x, int y, int width, int height,
int startAngle, int sweepAngle)

Draws an arc of an ellipse, beginning from angle startAngle (in degrees) and sweeping
sweepAngle degrees. The ellipse is defined by a bounding rectangle of width w, height h and
upper-left corner (x,y). The Pen determines the color, border width and style of the arc.

DrawPie(Pen p, int x, int y, int width, int height,
int startAngle, int sweepAngle)

Draws a pie section of an ellipse, beginning from angle startAngle (in degrees) and sweeping
sweepAngle degrees. The ellipse is defined by a bounding rectangle of width w, height h and
upper-left corner (x,y). The Pen determines the color, border width and style of the arc.

FillPie(Brush b, int x, int y, int width, int height,
int startAngle, int sweepAngle)

Functions similarly to DrawPie, except draws a solid arc (i.e., a sector). The Brush determines
the fill pattern for the solid arc.

Fig. 16.17Fig. 16.17Fig. 16.17Fig. 16.17 Graphics methods for drawing arcs.

1 // Fig. 16.18: DrawArcs.cs
2 // Drawing various arcs on a form.

Fig. 16.18Fig. 16.18Fig. 16.18Fig. 16.18 Arc-method demonstration. (Part 1 of 3.)

Positive angles

270°

90°

0°180°

270°

90°

0°180°

Negative angles

706 Graphics and Multimedia Chapter 16

3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // draws various arcs
12 public class DrawArcs : System.Windows.Forms.Form
13 {
14 private System.ComponentModel.Container components = null;
15
16 [STAThread]
17 static void Main()
18 {
19 Application.Run(new DrawArcs());
20 }
21
22 // Visual Studio .NET generated code
23
24 private void DrawArcs_Paint(
25 object sender, System.Windows.Forms.PaintEventArgs e)
26 {
27 // get graphics object
28 Graphics graphicsObject = e.Graphics;
29 Rectangle rectangle1 =
30 new Rectangle(15, 35, 80, 80);
31 SolidBrush brush1 =
32 new SolidBrush(Color.Firebrick);
33 Pen pen1 = new Pen(brush1, 1);
34 SolidBrush brush2 = new SolidBrush(Color.DarkBlue);
35 Pen pen2 = new Pen(brush2, 1);
36
37 // start at 0 and sweep 360 degrees
38 graphicsObject.DrawRectangle(pen1, rectangle1);
39 graphicsObject.DrawArc(pen2, rectangle1, 0, 360);
40
41 // start at 0 and sweep 110 degrees
42 rectangle1.Location = new Point(100, 35);
43 graphicsObject.DrawRectangle(pen1, rectangle1);
44 graphicsObject.DrawArc(pen2, rectangle1, 0, 110);
45
46 // start at 0 and sweep -270 degrees
47 rectangle1.Location = new Point(185, 35);
48 graphicsObject.DrawRectangle(pen1, rectangle1);
49 graphicsObject.DrawArc(pen2, rectangle1, 0, -270);
50
51 // start at 0 and sweep 360 degrees
52 rectangle1.Location = new Point(15, 120);
53 rectangle1.Size = new Size(80, 40);
54 graphicsObject.DrawRectangle(pen1, rectangle1);
55 graphicsObject.FillPie(brush2, rectangle1, 0, 360);

Fig. 16.18Fig. 16.18Fig. 16.18Fig. 16.18 Arc-method demonstration. (Part 2 of 3.)

Chapter 16 Graphics and Multimedia 707

Lines 47–49 perform similar functions, except that the specified arc sweeps -270
degrees. The Size property of a Rectangle determines the arc’s height and width. Line
53 sets the Size property to a new Size object, which changes the size of the rectangle.

The remainder of the program is similar to the portions described above, except that a
SolidBrush is used with method FillPie. The resulting arcs, which are filled, can be
seen in the bottom half of the screenshot Fig. 16.18.

16.7 Drawing Polygons and Polyli]nes
Polygons are multisided shapes. There are several Graphics methods used to draw poly-
gons: DrawLines draws a series of connected points, DrawPolygon draws a closed
polygon and FillPolygon draws a solid polygon. These methods are described in
Fig. 16.19. The program in Fig. 16.20 allows users to draw polygons and connected lines
via the methods listed in Fig. 16.19.

To allow the user to specify a variable number of points, line 26 declares ArrayList
points as a container for our Point objects. Lines 29–31 declare the Pen and Brush
used to color our shapes. The MouseDown event handler (lines 42–49) for Panel draw-
Panel stores mouse-click locations in the points ArrayList. It then calls method
Invalidate of drawPanel to ensure that the panel refreshes to accommodate the new
point. Method drawPanel_Paint (lines 51–82) handles the Panel’s Paint event. It

56
57 // start at 270 and sweep -90 degrees
58 rectangle1.Location = new Point(100, 120);
59 graphicsObject.DrawRectangle(pen1, rectangle1);
60 graphicsObject.FillPie(
61 brush2, rectangle1, 270, -90);
62
63 // start at 0 and sweep -270 degrees
64 rectangle1.Location = new Point(185, 120);
65 graphicsObject.DrawRectangle(pen1, rectangle1);
66 graphicsObject.FillPie(
67 brush2, rectangle1, 0, -270);
68
69 } // end method DrawArcs_Paint
70
71 } // end class DrawArcs

Fig. 16.18Fig. 16.18Fig. 16.18Fig. 16.18 Arc-method demonstration. (Part 3 of 3.)

708 Graphics and Multimedia Chapter 16

obtains the panel’s Graphics object (line 55) and, if the ArrayList points contains
two or more Points, displays the polygon with the method that the user selected via the
GUI radio buttons (lines 58–80). In lines 61–63, we extract an Array from the Array-
List via method ToArray. Method ToArray can take a single argument to determine
the type of the returned array; we obtain the type from the first element in the ArrayList.

Method Description

DrawLines Draws a series of connected lines. The coordinates of each point are speci-
fied in an array of Points. If the last point is different from the first point,
the figure is not closed.

DrawPolygon Draws a polygon. The coordinates of each point are specified in an array of
Point objects. This method draws a closed polygon, even if the last point
is different from the first point.

FillPolygon Draws a solid polygon. The coordinates of each point are specified in an
array of Points. This method draws a closed polygon, even if the last
point is different from the first point.

Fig. 16.19Fig. 16.19Fig. 16.19Fig. 16.19 Graphics methods for drawing polygons.

1 // Fig. 16.20: DrawPolygons.cs
2 // Demonstrating polygons.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class PolygonForm : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Button colorButton;
14 private System.Windows.Forms.Button clearButton;
15 private System.Windows.Forms.GroupBox typeGroup;
16 private System.Windows.Forms.RadioButton
17 filledPolygonOption;
18 private System.Windows.Forms.RadioButton lineOption;
19 private System.Windows.Forms.RadioButton polygonOption;
20 private System.Windows.Forms.Panel drawPanel;
21
22 private
23 System.ComponentModel.Container components = null;
24
25 // contains list of polygon vertices
26 private ArrayList points = new ArrayList();
27

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Polygon-drawing demonstration. (Part 1 of 4.)

Chapter 16 Graphics and Multimedia 709

28 // initialize default pen and brush
29 Pen pen = new Pen(Color.DarkBlue);
30
31 SolidBrush brush = new SolidBrush(Color.DarkBlue);
32
33 [STAThread]
34 static void Main()
35 {
36 Application.Run(new PolygonForm());
37 }
38
39 // Visual Studio .NET generated code
40
41 // draw panel mouse down event handler
42 private void drawPanel_MouseDown(
43 object sender, System.Windows.Forms.MouseEventArgs e)
44 {
45 // add mouse position to vertex list
46 points.Add(new Point(e.X, e.Y));
47 drawPanel.Invalidate(); // refresh panel
48
49 } // end method drawPanel_MouseDown
50
51 private void drawPanel_Paint(
52 object sender, System.Windows.Forms.PaintEventArgs e)
53 {
54 // get graphics object for panel
55 Graphics graphicsObject = e.Graphics;
56
57 // if arraylist has 2 or more points, display shape
58 if (points.Count > 1)
59 {
60 // get array for use in drawing functions
61 Point[] pointArray =
62 (Point[])points.ToArray(
63 points[0].GetType());
64
65 if (polygonOption.Checked)
66
67 // draw polygon
68 graphicsObject.DrawPolygon(pen, pointArray);
69
70 else if (lineOption.Checked)
71
72 // draw lines
73 graphicsObject.DrawLines(pen, pointArray);
74
75 else if (filledPolygonOption.Checked)
76
77 // draw filled
78 graphicsObject.FillPolygon(
79 brush, pointArray);
80 }

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Polygon-drawing demonstration. (Part 2 of 4.)

710 Graphics and Multimedia Chapter 16

81
82 } // end method drawPanel_Paint
83
84 // handle clearButton click event
85 private void clearButton_Click(
86 object sender, System.EventArgs e)
87 {
88 points = new ArrayList(); // remove points
89
90 drawPanel.Invalidate(); // refresh panel
91
92 } // end method clearButton_Click
93
94 // handle polygon radio button CheckedChanged event
95 private void polygonOption_CheckedChanged(
96 object sender, System.EventArgs e)
97 {
98 drawPanel.Invalidate(); // refresh panel
99
100 } // end method polygonOption_CheckedChanged
101
102 // handle line radio button CheckedChanged event
103 private void lineOption_CheckedChanged(
104 object sender, System.EventArgs e)
105 {
106 drawPanel.Invalidate(); // refresh panel
107
108 } // end method lineOption_CheckedChanged
109
110 // handle filled polygon radio button
111 // CheckedChanged event
112 private void filledPolygonOption_CheckedChanged(
113 object sender, System.EventArgs e)
114 {
115 drawPanel.Invalidate(); // refresh panel
116
117 } // end method filledPolygonOption_CheckedChanged
118
119 // handle colorButton click event
120 private void colorButton_Click(
121 object sender, System.EventArgs e)
122 {
123 // create new color dialog
124 ColorDialog dialogColor = new ColorDialog();
125
126 // show dialog and obtain result
127 DialogResult result = dialogColor.ShowDialog();
128
129 // return if user cancels
130 if (result == DialogResult.Cancel)
131 return;
132
133 pen.Color = dialogColor.Color; // set pen to color

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Polygon-drawing demonstration. (Part 3 of 4.)

Chapter 16 Graphics and Multimedia 711

Method clearButton_Click (lines 85–92) handles the Clear button’s click
event, creates an empty ArrayList (causing the old list to be erased) and refreshes the
display. Lines 95–117 define the event handlers for the radio buttons’ CheckedChanged
event. Each method refreshes Panel drawPanel to ensure that the panel display reflects
the selected drawing type. Event method colorButton_Click (120–137) allows the
user to select a new drawing color with a ColorDialog, using the same technique dem-
onstrated in Fig. 16.7.

16.8 Advanced Graphics Capabilities
C# offers many additional graphics capabilities. The Brush hierarchy, for example, also
includes HatchBrush, LinearGradientBrush, PathGradientBrush and
TextureBrush.

134 brush.Color = dialogColor.Color; // set brush
135 drawPanel.Invalidate(); // refresh panel;
136
137 } // end method colorButton_Click
138
139 } // end class PolygonForm

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Polygon-drawing demonstration. (Part 4 of 4.)

712 Graphics and Multimedia Chapter 16

The program in Fig. 16.21 demonstrates several graphics features, such as dashed
lines, thick lines and the ability to fill shapes with patterns. These represent just a few of
the additional capabilities of the System.Drawing namespace.

1 // Fig. 16.21: DrawShapes.cs
2 // Drawing various shapes on a form.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.Drawing.Drawing2D;
11
12 // draws shapes with different brushes
13 public class DrawShapesForm : System.Windows.Forms.Form
14 {
15 private System.ComponentModel.Container components = null;
16
17 [STAThread]
18 static void Main()
19 {
20 Application.Run(new DrawShapesForm());
21 }
22
23 // Visual Studio .NET generated code
24
25 // draw various shapes on form
26 private void DrawShapesForm_Paint(
27 object sender, System.Windows.Forms.PaintEventArgs e)
28 {
29 // references to object we will use
30 Graphics graphicsObject = e.Graphics;
31
32 // ellipse rectangle and gradient brush
33 Rectangle drawArea1 =
34 new Rectangle(5, 35, 30, 100);
35 LinearGradientBrush linearBrush =
36 new LinearGradientBrush(drawArea1, Color.Blue,
37 Color.Yellow, LinearGradientMode.ForwardDiagonal);
38
39 // pen and location for red outline rectangle
40 Pen thickRedPen = new Pen(Color.Red, 10);
41 Rectangle drawArea2 = new Rectangle(80, 30, 65, 100);
42
43 // bitmap texture
44 Bitmap textureBitmap = new Bitmap(10, 10);
45
46 // get bitmap graphics
47 Graphics graphicsObject2 =
48 Graphics.FromImage(textureBitmap);

Fig. 16.21Fig. 16.21Fig. 16.21Fig. 16.21 Shapes drawn on a form. (Part 1 of 3.)

Chapter 16 Graphics and Multimedia 713

49
50 // brush and pen used throughout program
51 SolidBrush solidColorBrush =
52 new SolidBrush(Color.Red);
53 Pen coloredPen = new Pen(solidColorBrush);
54
55 // draw ellipse filled with a blue-yellow gradient
56 graphicsObject.FillEllipse(
57 linearBrush, 5, 30, 65, 100);
58
59 // draw thick rectangle outline in red
60 graphicsObject.DrawRectangle(thickRedPen, drawArea2);
61
62 // fill textureBitmap with yellow
63 solidColorBrush.Color = Color.Yellow;
64 graphicsObject2.FillRectangle(
65 solidColorBrush, 0, 0, 10, 10);
66
67 // draw small black rectangle in textureBitmap
68 coloredPen.Color = Color.Black;
69 graphicsObject2.DrawRectangle(
70 coloredPen, 1, 1, 6, 6);
71
72 // draw small blue rectangle in textureBitmpa
73 solidColorBrush.Color = Color.Blue;
74 graphicsObject2.FillRectangle(
75 solidColorBrush, 1, 1, 3, 3);
76
77 // draw small red square in textureBitmap
78 solidColorBrush.Color = Color.Red;
79 graphicsObject2.FillRectangle(
80 solidColorBrush, 4, 4, 3, 3);
81
82 // create textured brush and
83 // display textured rectangle
84 TextureBrush texturedBrush =
85 new TextureBrush(textureBitmap);
86 graphicsObject.FillRectangle(
87 texturedBrush, 155, 30, 75, 100);
88
89 // draw pie-shaped arc in white
90 coloredPen.Color = Color.White;
91 coloredPen.Width = 6;
92 graphicsObject.DrawPie(
93 coloredPen, 240, 30, 75, 100, 0, 270);
94
95 // draw lines in green and yellow
96 coloredPen.Color = Color.Green;
97 coloredPen.Width = 5;
98 graphicsObject.DrawLine(
99 coloredPen, 395, 30, 320, 150);
100

Fig. 16.21Fig. 16.21Fig. 16.21Fig. 16.21 Shapes drawn on a form. (Part 2 of 3.)

714 Graphics and Multimedia Chapter 16

Lines 26–108 define the Paint event handler for our form. Lines 35–37 create Lin-
earGradientBrush object linearBrush, which resides in the
System.Drawing.Drawing2D namespace. A LinearGradientBrush enables
users to draw with a color gradient. The LinearGradientBrush used in this example
takes four arguments: A Rectangle, two Colors and a member of enumeration Lin-
earGradientMode. In C#, all linear gradients are defined along a line that determines
the gradient endpoint. This line can be specified either by starting and ending points or by
the diagonal of a rectangle. The first argument, Rectangle drawArea1, specifies the
defining line for LinearGradientBrush linearBrush. This Rectangle argu-
ment represents the endpoints of the linear gradient—the upper-left corner is the starting
point, and the bottom-right corner is the ending point. The second and third arguments
specify the colors that the gradient will use. In this case, the color of the ellipse will grad-
ually change from Color.Blue to Color.Yellow. The last argument, a type from the
enumeration LinearGradientMode, specifies the linear gradient’s direction. In our
case, we use LinearGradientMode.ForwardDiagonal, which creates a gradient
from the upper-left to the lower-right corner. We then use Graphics method FillEl-
lipse in lines 56–57 to draw an ellipse with linearBrush; the color gradually changes
from blue to yellow, as described above.

In line 40, we create a Pen object thickRedPen. We pass to thickRedPen’s con-
structor Color.Red and int argument 10, indicating that we want thickRedPen to
draw red lines that are 10 pixels wide.

Line 44 creates a new Bitmap image, which initially is empty. Class Bitmap can
produce images in color and gray scale; this particular Bitmap is 10 pixels wide and 10
pixels tall. Method FromImage (line 47–48) is a static member of class Graphics
and retrieves the Graphics object associated with an Image, which may be used to draw
on an image. Lines 63–80 draw on the Bitmap a pattern consisting of black, blue, red and

101 // draw a rounded, dashed yellow line
102 coloredPen.Color = Color.Yellow;
103 coloredPen.DashCap = (DashCap)LineCap.Round;
104 coloredPen.DashStyle = DashStyle.Dash;
105 graphicsObject.DrawLine(
106 coloredPen, 320, 30, 395, 150);
107
108 } // end method DrawShapesForm_Paint
109
110 } // end class DrawShapesForm

Fig. 16.21Fig. 16.21Fig. 16.21Fig. 16.21 Shapes drawn on a form. (Part 3 of 3.)

Chapter 16 Graphics and Multimedia 715

yellow rectangles and lines. A TextureBrush is a brush that fills the interior of a shape
with an image, rather than a solid color. In line 86–87, TextureBrush object tex-
tureBrush fills a rectangle with our Bitmap. The TextureBrush constructor ver-
sion that we use takes as an argument an image that defines its texture.

Next, we draw a pie-shaped arc with a thick white line. Lines 90–91 set col-
oredPen’s color to White and modify its width to be six pixels. We then draw the pie on
the form by specifying the Pen the x-coordinate, y-coordinate, length and width of the
bounding rectangle and the start angle and sweep angle.

Finally, lines 103–104 make use of System.Drawing.Drawing2D enumerations
DashCap and DashStyle to draw a diagonal dashed line. Line 103 sets the DashCap
property of coloredPen (not to be confused with the DashCap enumeration) to a
member of the DashCap enumeration. The DashCap enumeration specifies the styles for
the start and end of a dashed line. In this case, we want both ends of the dashed line to be
rounded, so we use DashCap.Round. Line 104 sets the DashStyle property of col-
oredPen (not to be confused with the DashStyle enumeration) to Dash-
Style.Dash, indicating that we want our line to consist entirely of dashes.

Our next example demonstrates the use of a general path. A general path is a shape
constructed from straight lines and complex curves. An object of class GraphicsPath
(System.Drawing.Drawing2D namespace) represents a general path. The Graph-
icsPath class provides functionality that enables the creation of complex shapes from
vector-based primitive graphics objects. A GraphicsPath object consists of figures
defined by simple shapes. The start point of each vector-graphics object (such as a line or
arc) that is added to the path is connected by a straight line to the end point of the previous
object. When called, the CloseFigure method attaches the final vector-graphic object
endpoint to the initial starting point for the current figure by a straight line, then starts a new
figure. Method StartFigure begins a new figure within the path without closing the
previous figure.

The program of Fig. 16.22 draws general paths in the shape of five-pointed stars. Line
45 sets the origin of the Graphics object. The arguments to method TranslateT-
ransform indicate that the origin should be translated to the coordinates (150, 150). Lines
36–39 define two int arrays, representing the x- and y-coordinates of the points in the star,
and line 42 defines GraphicsPath object star. A for loop then creates lines to con-
nect the points of the star and adds these lines to star. We use GraphicsPath method
AddLine to append a line to the shape. The arguments of AddLine specify the coordi-
nates for the line’s endpoints; each new call to AddLine adds a line from the previous
point to the current point. Line 38 uses GraphicsPath method CloseFigure to com-
plete the shape.

1 // Fig. 16.22: DrawStarsForm.cs
2 // Using paths to draw stars on the form.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 Paths used to draw stars on a form. (Part 1 of 3.)

716 Graphics and Multimedia Chapter 16

8 using System.Windows.Forms;
9 using System.Data;

10 using System.Drawing.Drawing2D;
11
12 // draws randomly colored stars
13 public class DrawStarsForm : System.Windows.Forms.Form
14 {
15 private
16 System.ComponentModel.Container components = null;
17
18 [STAThread]
19 static void Main()
20 {
21 Application.Run(new DrawStarsForm());
22 }
23
24 // Visual Studio .NET generated code
25
26 // create path and draw stars along it
27 private void DrawStarsForm_Paint(
28 object sender, System.Windows.Forms.PaintEventArgs e)
29 {
30 Graphics graphicsObject = e.Graphics;
31 Random random = new Random();
32 SolidBrush brush =
33 new SolidBrush(Color.DarkMagenta);
34
35 // x and y points of the path
36 int[] xPoints =
37 { 55, 67, 109, 73, 83, 55, 27, 37, 1, 43 };
38 int[] yPoints =
39 { 0, 36, 36, 54, 96, 72, 96, 54, 36, 36 };
40
41 // create graphics path for star;
42 GraphicsPath star = new GraphicsPath();
43
44 // translate the origin to (150, 150)
45 graphicsObject.TranslateTransform(150, 150);
46
47 // create star from series of points
48 for (int i = 0; i <= 8; i += 2)
49 star.AddLine(xPoints[i], yPoints[i],
50 xPoints[i + 1], yPoints[i + 1]);
51
52 // close the shape
53 star.CloseFigure();
54
55 // rotate the origin and draw stars in random colors
56 for (int i = 1; i <= 18; i++)
57 {
58 graphicsObject.RotateTransform(20);
59

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 Paths used to draw stars on a form. (Part 2 of 3.)

Chapter 16 Graphics and Multimedia 717

The for structure in lines 56–65 draws the star 18 times, rotating it around the
origin. Line 58 uses Graphics method RotateTransform to move to the next posi-
tion on the form; the argument specifies the rotation angle in degrees. Graphics method
FillPath (line 64) then draws a filled version of the star with the Brush created on
lines 60–62. The application determines the SolidBrush’s color randomly, using
Random method Next.

16.9 Introduction to Multimedia
C# offers many convenient ways to include images and animations in programs. People
who entered the computing field decades ago used computers primarily to perform arith-
metic calculations. As the discipline evolves, we are beginning to realize the importance of
computers’ data-manipulation capabilities. We are seeing a wide variety of exciting new
three-dimensional applications. Multimedia programming is an entertaining and innovative
field, but one that presents many challenges

Multimedia applications demand extraordinary computing power. Until recently,
affordable computers with this amount of power were not available. However, today’s

60 brush.Color = Color.FromArgb(
61 random.Next(200, 255), random.Next(255),
62 random.Next(255), random.Next(255));
63
64 graphicsObject.FillPath(brush, star);
65 }
66
67 } // end method DrawStarsForm_Paint
68
69 } // end class DrawStarsForm

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 Paths used to draw stars on a form. (Part 3 of 3.)

718 Graphics and Multimedia Chapter 16

ultrafast processors are making multimedia-based applications commonplace. As the
market for multimedia explodes, users are purchasing the faster processors, larger memo-
ries and wider communications bandwidths needed to support multimedia applications.
This benefits the computer and communications industries, which provide the hardware,
software and services fueling the multimedia revolution.

In the remaining sections of this chapter, we introduce the use and manipulation of
images and other multimedia features and capabilities. Section 16.10 discusses how to
load, display and scale images; Section 16.11 demonstrates image animation;
Section 16.12 presents the video capabilities of the Windows Media Player control; and
Section 16.13 explores Microsoft Agent technology.

16.10 Loading, Displaying and Scaling Images
C#’s multimedia capabilities include graphics, images, animations and video. Previous sec-
tions demonstrated C#’s vector-graphics capabilities; this section concentrates on image
manipulation. The Windows form that we create in Fig. 16.23 demonstrates the loading of
an Image (System.Drawing namespace). The application allows users to enter a de-
sired height and width for the Image, which then is displayed in the specified size.

Lines 23–24 declare Image reference image. The static Image method From-
File then retrieves an image stored on disk and assigns it to image (line 24). Line 31 uses
Form method CreateGraphics to create a Graphics object associated with the
Form; we use this object to draw on the Form. Method CreateGraphics is inherited
from class Control; all Windows controls, such as Buttons and Panels, also provide
this method. When users click Set, the width and height parameters are validated to ensure
that they are not too large. If the parameters are valid, line 59 calls Graphics method
Clear to paint the entire Form in the current background color. Lines 62–63 call
Graphics method DrawImage with the following parameters: the image to draw, the x-
coordinate of the upper-left corner, the y-coordinate of the upper-left corner, the width of
the image and the height of the image. If the width and height do not correspond to the
image’s original dimensions, the image is scaled to fit the new specifications.

1 // Fig. 16.23: DisplayLogoForm.cs
2 // Displaying and resizing an image.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // displays an image and allows the user to resize it
12 public class DisplayLogoForm : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Button setButton;
15 private System.Windows.Forms.TextBox heightTextBox;
16 private System.Windows.Forms.Label heightLabel;

Fig. 16.23Fig. 16.23Fig. 16.23Fig. 16.23 Image resizing. (Part 1 of 3.)

Chapter 16 Graphics and Multimedia 719

17 private System.Windows.Forms.TextBox widthTextBox;
18 private System.Windows.Forms.Label widthLabel;
19
20 private
21 System.ComponentModel.Container components = null;
22
23 private
24 Image image = Image.FromFile("images/Logo.gif");
25 private Graphics graphicsObject;
26
27 public DisplayLogoForm()
28 {
29 InitializeComponent();
30
31 graphicsObject = this.CreateGraphics();
32 }
33
34 [STAThread]
35 static void Main()
36 {
37 Application.Run(new DisplayLogoForm());
38 }
39
40 // Visual Studio .NET generated code
41
42 private void setButton_Click(
43 object sender, System.EventArgs e)
44 {
45 // get user input
46 int width = Convert.ToInt32(widthTextBox.Text);
47 int height = Convert.ToInt32(heightTextBox.Text);
48
49 // if dimensions specified are too large
50 // display problem
51 if (width > 375 || height > 225)
52 {
53 MessageBox.Show("Height or Width too large");
54
55 return;
56 }
57
58 // clear Windows Form
59 graphicsObject.Clear(this.BackColor);
60
61 // draw image
62 graphicsObject.DrawImage(
63 image, 5, 5, width, height);
64
65 } // end method setButton_Click
66
67 } // end class DisplayLogoForm

Fig. 16.23Fig. 16.23Fig. 16.23Fig. 16.23 Image resizing. (Part 2 of 3.)

720 Graphics and Multimedia Chapter 16

16.11 Animating a Series of Images
The next example animates a series of images stored in an array. The application uses the
same techniques to load and display Images as those illustrated in Fig. 16.23. The images
were created with Adobe Photoshop.

The animation in Fig. 16.24 uses a PictureBox, which contains the images that we
animate. We use a Timer to cycle through the images, causing a new image to display
every 50 milliseconds. Variable count keeps track of the current image number and
increases by one every time we display a new image. The array includes 30 images (num-
bered 0–29); when the application reaches image 29, it returns to image 0. The 30 images
were prepared in advance and placed in the images folder inside the bin/Debug direc-
tory of the project.

1 // Fig. 16.24: LogoAnimator.cs
2 // Program that animates a series of images.
3

Fig. 16.24Fig. 16.24Fig. 16.24Fig. 16.24 Animation of a series of images. (Part 1 of 3.)

Fig. 16.23Fig. 16.23Fig. 16.23Fig. 16.23 Image resizing. (Part 3 of 3.)

Chapter 16 Graphics and Multimedia 721

4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // animates a series of 30 images
12 public class LogoAnimator : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.PictureBox logoPictureBox;
15 private System.Windows.Forms.Timer Timer;
16 private System.ComponentModel.IContainer components;
17
18 private ArrayList images = new ArrayList();
19 private int count = -1;
20
21 public LogoAnimator()
22 {
23 InitializeComponent();
24
25 for (int i = 0; i < 30; i++)
26 images.Add(Image.FromFile("images/deitel" + i +
27 ".gif"));
28
29 // load first image
30 logoPictureBox.Image = (Image) images[0];
31
32 // set PictureBox to be the same size as Image
33 logoPictureBox.Size = logoPictureBox.Image.Size;
34
35 } // end constructor
36
37 [STAThread]
38 static void Main()
39 {
40 Application.Run(new LogoAnimator());
41 }
42
43 // Visual Studio .NET generated code
44
45 private void Timer_Tick(
46 object sender, System.EventArgs e)
47 {
48 // increment counter
49 count = (count + 1) % 30;
50
51 // load next image
52 logoPictureBox.Image = (Image)images[count];
53
54 } // end method Timer_Tick
55
56 } // end class LogoAnimator

Fig. 16.24Fig. 16.24Fig. 16.24Fig. 16.24 Animation of a series of images. (Part 2 of 3.)

722 Graphics and Multimedia Chapter 16

Lines 25–27 load each of 30 images and place them in an ArrayList. ArrayList
method Add allows us to add objects to the ArrayList; we use this method in lines 26–
27 to add each Image. Line 30 places the first image in the PictureBox, using the
ArrayList indexer. Line 33 modifies the size of the PictureBox so that it is equal to
the size of the Image it is displaying. The event handler for timer’s Tick event (line
45–54) then displays the next image from the ArrayList.

Performance Tip 16.2
It is more efficient to load an animation’s frames as one image than to load each image sep-
arately. (A painting program, such as Adobe Photoshop®, Jasc® or Paint Shop Pro™, can
be used to combine the animation’s frames into one image.) If the images are being loaded
separately from the Web, each loaded image requires a separate connection to the site on
which the images are stored; this process can result in poor performance. 16.2

Performance Tip 16.3
Loading animation frames can cause program delays, because the program waits for all
frames to load before displaying them. 16.3

The following chess example demonstrates the capabilities of GDI+ as they pertain to a
chess-game application. These include techniques for two-dimensional collision detection,
the selection of single frames from a multi-frame image and regional invalidation (refreshing
only the required parts of the screen) to increase performance. Two-dimensional collision
detection is the detection of an overlap between two shapes. In the next example, we demon-
strate the simplest form of collision detection, which determines whether a point (the mouse-
click location) is contained within a rectangle (a chess-piece image).

Class ChessPiece (Fig. 16.25) is a container class for the individual chess pieces.
Lines 11–19 define a public enumeration of constants that identify each chess-piece type.
The constants also serve to identify the location of each piece in the chess-piece image file.
Rectangle object targetRectangle (lines 25–26) identifies the image location on
the chess board. The x and y properties of the rectangle are assigned in the ChessPiece
constructor, and all chess-piece images have height and width 75.

The ChessPiece constructor (lines 29–40) requires that the calling class define a
chess-piece type, its x and y location and the Bitmap containing all chess-piece images.
Rather than loading the chess-piece image within the class, we allow the calling class to
pass the image. This avoids the image-loading overhead for each piece. It also increases the
flexibility of the class by allowing the user to change images; for example, in this case, we
use the class for both black and white chess-piece images. Lines 37–39 extract a subimage
that contains only the current piece’s bitmap data. Our chess-piece images are defined in a

Fig. 16.24Fig. 16.24Fig. 16.24Fig. 16.24 Animation of a series of images. (Part 3 of 3.)

Chapter 16 Graphics and Multimedia 723

specific manner: One image contains six chess-piece images, each defined within a 75-
pixel block, resulting in a total image size of 450-by-75. We obtain a single image via
Bitmap’s Clone method, which allows us to specify a rectangle image location and the
desired pixel format. The location is a 75-by-75 pixel block with its upper-left corner x
equal to 75 * type and the corresponding y equal to 0. For the pixel format, we specify
constant DontCare, causing the format to remain unchanged.

Method Draw (lines 43–46) causes the ChessPiece to draw pieceImage in
targetRectangle on the passed Graphics object. Method GetBounds returns
the object targetRectangle for use in collision detection, and SetLocation allows
the calling class to specify a new piece location.

1 // Fig. 16.25 : ChessPiece.cs
2 // Storage class for chess piece attributes.
3
4 using System;
5 using System.Drawing;
6
7 // represents a chess piece
8 public class ChessPiece
9 {

10 // define chess-piece type constants
11 public enum Types
12 {
13 KING,
14 QUEEN,
15 BISHOP,
16 KNIGHT,
17 ROOK,
18 PAWN
19 }
20
21 private int currentType; // this object's type
22 private Bitmap pieceImage; // this object's image
23
24 // default display location
25 private Rectangle targetRectangle =
26 new Rectangle(0, 0, 75, 75);
27
28 // construct piece
29 public ChessPiece(int type, int xLocation,
30 int yLocation, Bitmap sourceImage)
31 {
32 currentType = type; // set current type
33 targetRectangle.X = xLocation; // set current x location
34 targetRectangle.Y = yLocation; // set current y location
35
36 // obtain pieceImage from section of sourceImage
37 pieceImage = sourceImage.Clone(
38 new Rectangle(type * 75, 0, 75, 75),
39 System.Drawing.Imaging.PixelFormat.DontCare);
40 }

Fig. 16.25Fig. 16.25Fig. 16.25Fig. 16.25 Container class for chess pieces. (Part 1 of 2.)

724 Graphics and Multimedia Chapter 16

Class ChessGame (Fig. 16.26) defines the game and graphics code for our chess game.
Lines 23–33 define class-scope variables the program requires. ArrayList chessTile
(line 23) stores the board tile images. It contains four images: Two light tiles and two dark
tiles (to increase board variety). ArrayList chessPieces (line 26) stores all active
ChessPiece objects and int selectedIndex (line 29) identifies the index in chess-
Pieces of the currently selected piece. The board (line 30) is an 8-by-8, two-dimensional
int array corresponding to the squares of a chess board. Each board element is an integer
from 0 to 3 that corresponds to an index in chessTile and is used to specify the chess-
board-square image. const int TILESIZE (line 33) defines the size of each tile in pixels.

The chess game GUI consists of Form ChessGame, the area in which we draw the
tiles; Panel pieceBox, the window in which we draw the pieces (note that pieceBox
background color is set to "transparent"); and a Menu that allows the user to begin a
new game. Although the pieces and tiles could have been drawn on the same form, doing
so would decrease performance. We would be forced to refresh the board as well as the
pieces every time we refreshed the control.

The ChessGame Load event (lines 44–56) loads each tile image into chessTile. It
then calls method ResetBoard to refresh the Form and begin the game. Method Reset-
Board (lines 59–169) assigns chessPieces to a new ArrayList, loading images for
both the black and the white chess-piece sets, and creates Bitmap selected to define the
currently selected Bitmap set. Lines 82–167 loop through 64 positions on the chess board,
setting the tile color and piece for each tile. Lines 86–87 cause the currently selected image
to switch to the blackPieces after the fifth row. If the row counter is on the first or last
row, lines 94–134 add a new piece to chessPieces. The type of the piece is based on the
current column we are initializing. Pieces in chess are positioned in the following order, from

41
42 // draw chess piece
43 public void Draw(Graphics graphicsObject)
44 {
45 graphicsObject.DrawImage(pieceImage, targetRectangle);
46 }
47
48 // obtain this piece's location rectangle
49 public Rectangle GetBounds()
50 {
51 return targetRectangle;
52 } // end method GetBounds
53
54 // set this piece's location
55 public void SetLocation(int xLocation, int yLocation)
56 {
57 targetRectangle.X = xLocation;
58 targetRectangle.Y = yLocation;
59
60 } // end method SetLocation
61
62 } // end class ChessPiece

Fig. 16.25Fig. 16.25Fig. 16.25Fig. 16.25 Container class for chess pieces. (Part 2 of 2.)

Chapter 16 Graphics and Multimedia 725

left to right: Rook, knight, bishop, queen, king, bishop, knight and rook. Lines 137–146 add
a new pawn at the current location if the current row is second or seventh.

A chess board is defined by alternating light and dark tiles across a row in a pattern
where the color that starts each row is equal to the color of the last tile of the previous row.
Lines 151–162 assign the current board-tile color as an index in the board array. Based
on the alternating value of bool variable light and the results of the random operation
on line 149, 0 and 1 are light tiles, whereas 2 and 3 are dark tiles. Line 166 inverts the value
of light at the end of each row to maintain the staggered effect of a chess board.

1 // Fig. 16.26: ChessGame.cs
2 // Chess Game graphics code.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // allows 2 players to play chess
12 public class ChessGame : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.PictureBox pieceBox;
15 private System.Windows.Forms.MainMenu GameMenu;
16 private System.Windows.Forms.MenuItem gameItem;
17 private System.Windows.Forms.MenuItem newGameItem;
18
19 private
20 System.ComponentModel.Container components = null;
21
22 // ArrayList for board tile images
23 ArrayList chessTile = new ArrayList();
24
25 // ArrayList for chess pieces
26 ArrayList chessPieces = new ArrayList();
27
28 // define index for selected piece
29 int selectedIndex = -1;
30 int[,] board = new int[8, 8]; // board array
31
32 // define chess tile size in pixels
33 private const int TILESIZE = 75;
34
35 [STAThread]
36 static void Main()
37 {
38 Application.Run(new ChessGame());
39 }
40
41 // Visual Studio .NET generated code
42

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 1 of 8.)

726 Graphics and Multimedia Chapter 16

43 // load tile bitmaps and reset game
44 private void ChessGame_Load(
45 object sender, System.EventArgs e)
46 {
47 // load chess board tiles
48 chessTile.Add(Bitmap.FromFile("lightTile1.png"));
49 chessTile.Add(Bitmap.FromFile("lightTile2.png"));
50 chessTile.Add(Bitmap.FromFile("darkTile1.png"));
51 chessTile.Add(Bitmap.FromFile("darkTile2.png"));
52
53 ResetBoard(); // initialize board
54 Invalidate(); // refresh form
55
56 } // end method ChessGame_Load
57
58 // initialize pieces to start and rebuild board
59 private void ResetBoard()
60 {
61 int current = -1;
62 ChessPiece piece;
63 Random random = new Random();
64 bool light = false;
65 int type;
66
67 // ensure empty arraylist
68 chessPieces = new ArrayList();
69
70 // load whitepieces image
71 Bitmap whitePieces =
72 (Bitmap)Image.FromFile("whitePieces.png");
73
74 // load blackpieces image
75 Bitmap blackPieces =
76 (Bitmap)Image.FromFile("blackPieces.png");
77
78 // set whitepieces drawn first
79 Bitmap selected = whitePieces;
80
81 // traverse board rows in outer loop
82 for (int row = 0;
83 row <= board.GetUpperBound(0); row++)
84 {
85 // if at bottom rows, set to black pieces images
86 if (row > 5)
87 selected = blackPieces;
88
89 // traverse board columns in inner loop
90 for (int column = 0;
91 column <= board.GetUpperBound(1); column++)
92 {
93 // if first or last row, organize pieces
94 if (row == 0 || row == 7)
95 {

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 2 of 8.)

Chapter 16 Graphics and Multimedia 727

96 switch(column)
97 {
98 case 0:
99 case 7: // set current piece to rook
100 current =
101 (int)ChessPiece.Types.ROOK;
102 break;
103
104 case 1:
105 case 6: // set current piece to knight
106 current =
107 (int)ChessPiece.Types.KNIGHT;
108 break;
109
110 case 2:
111 case 5: // set current piece to bishop
112 current =
113 (int)ChessPiece.Types.BISHOP;
114 break;
115
116 case 3: // set current piece to king
117 current =
118 (int)ChessPiece.Types.KING;
119 break;
120
121 case 4: // set current piece to queen
122 current =
123 (int)ChessPiece.Types.QUEEN;
124 break;
125 }
126
127 // create current piece at start position
128 piece = new ChessPiece(current,
129 column * TILESIZE, row * TILESIZE,
130 selected);
131
132 // add piece to arraylist
133 chessPieces.Add(piece);
134 }
135
136 // if second or seventh row, organize pawns
137 if (row == 1 || row == 6)
138 {
139 piece = new ChessPiece(
140 (int)ChessPiece.Types.PAWN,
141 column * TILESIZE, row * TILESIZE,
142 selected);
143
144 // add piece to arraylist
145 chessPieces.Add(piece);
146 }
147

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 3 of 8.)

728 Graphics and Multimedia Chapter 16

148 // determine board piece type
149 type = random.Next(0, 2);
150
151 if (light)
152 {
153 // set light tile
154 board[row, column] = type;
155 light = false;
156 }
157 else
158 {
159 // set dark tile
160 board[row, column] = type + 2;
161 light = true;
162 }
163 }
164
165 // account for new row tile color switch
166 light = !light;
167 }
168
169 } // end method ResetBoard
170
171 // display board in form OnPaint event
172 private void ChessGame_Paint(
173 object sender, System.Windows.Forms.PaintEventArgs e)
174 {
175 // obtain graphics object
176 Graphics graphicsObject = e.Graphics;
177
178 for (int row = 0;
179 row <= board.GetUpperBound(0); row++)
180 {
181 for (int column = 0;
182 column <= board.GetUpperBound(1); column++)
183 {
184 // draw image specified in board array
185 graphicsObject.DrawImage(
186 (Image)chessTile[board[row, column]],
187 new Point(TILESIZE * column,
188 TILESIZE * row));
189 }
190 }
191
192 } // end method ChessGame_Paint
193
194 // return index of piece that intersects point
195 // optionally exclude a value
196 private int CheckBounds(Point point, int exclude)
197 {
198 Rectangle rectangle; // current bounding rectangle
199

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 4 of 8.)

Chapter 16 Graphics and Multimedia 729

200 for (int i = 0; i < chessPieces.Count; i++)
201 {
202 // get piece rectangle
203 rectangle = GetPiece(i).GetBounds();
204
205 // check if rectangle contains point
206 if (rectangle.Contains(point) && i != exclude)
207 return i;
208 }
209
210 return -1;
211
212 } // end method CheckBounds
213
214 // handle pieceBox paint event
215 private void pieceBox_Paint(
216 object sender, System.Windows.Forms.PaintEventArgs e)
217 {
218 // draw all pieces
219 for (int i = 0; i < chessPieces.Count; i++)
220 GetPiece(i).Draw(e.Graphics);
221
222 } // end method pieceBox_Paint
223
224 private void pieceBox_MouseDown(
225 object sender, System.Windows.Forms.MouseEventArgs e)
226 {
227 // determine selected piece
228 selectedIndex =
229 CheckBounds(new Point(e.X, e.Y), -1);
230
231 } // end method pieceBox_MouseDown
232
233 // if piece is selected, move it
234 private void pieceBox_MouseMove(
235 object sender, System.Windows.Forms.MouseEventArgs e)
236 {
237 if (selectedIndex > -1)
238 {
239 Rectangle region = new Rectangle(
240 e.X - TILESIZE * 2, e.Y - TILESIZE * 2,
241 TILESIZE * 4, TILESIZE * 4);
242
243 // set piece center to mouse
244 GetPiece(selectedIndex).SetLocation(
245 e.X - TILESIZE / 2, e.Y - TILESIZE / 2);
246
247 // refresh immediate are
248 pieceBox.Invalidate(region);
249 }
250
251 } // end method pieceBox_MouseMove

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 5 of 8.)

730 Graphics and Multimedia Chapter 16

252
253 // on mouse up deselect piece and remove taken piece
254 private void pieceBox_MouseUp(
255 object sender, System.Windows.Forms.MouseEventArgs e)
256 {
257 int remove = -1;
258
259 //if chess piece was selected
260 if (selectedIndex > -1)
261 {
262 Point current = new Point(e.X, e.Y);
263 Point newPoint = new Point(
264 current.X - (current.X % TILESIZE),
265 current.Y - (current.Y % TILESIZE));
266
267 // check bounds with point, exclude selected piece
268 remove = CheckBounds(current, selectedIndex);
269
270 // snap piece into center of closest square
271 GetPiece(selectedIndex).SetLocation(newPoint.X,
272 newPoint.Y);
273
274 // deselect piece
275 selectedIndex = -1;
276
277 // remove taken piece
278 if (remove > -1)
279 chessPieces.RemoveAt(remove);
280 }
281
282 // refresh pieceBox to ensure artifact removal
283 pieceBox.Invalidate();
284
285 } // end method pieceBox_MouseUp
286
287 // helper function to convert
288 // ArrayList object to ChessPiece
289 private ChessPiece GetPiece(int i)
290 {
291 return (ChessPiece)chessPieces[i];
292 } // end method GetPiece
293
294 // handle NewGame menu option click
295 private void newGameItem_Click(
296 object sender, System.EventArgs e)
297 {
298 ResetBoard(); // reinitialize board
299 Invalidate(); // refresh form
300
301 } // end method newGameItem_Click
302
303 } // end class ChessGame

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 6 of 8.)

Chapter 16 Graphics and Multimedia 731

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 7 of 8.)

732 Graphics and Multimedia Chapter 16

Method ChessGame_Paint (lines 172–192) handles this class Form’s Paint
event and draws the tiles according to their values in the board array. Method
pieceBox_Paint, which handles the pieceBox Panel paint event, iterates
through each element of the chessPiece ArrayList and calls its Draw method.

The MouseDown event handler (lines 224–231) calls method CheckBounds with
the location of the user’s click to determine whether the user selected a piece. Check-
Bounds returns an integer locating a collision from a given point.

The MouseMove event handler (lines 234–251) moves the currently selected piece
with the mouse. Lines 244–245 set the selected piece location to the mouse-cursor position,
adjusting the location by up to half a tile to center the image on the mouse. Lines 239–241
define and refresh a region of the Panel that spans two tiles in every direction from the
mouse. As mentioned earlier in the chapter, the Invalidate method is slow. This means
that the MouseMove event handler might be called again several times before the Inval-
idate method completes. If a user working on a slow computer moves the mouse quickly,
the application could leave behind artifacts. An artifact is any unintended visual abnor-
mality in a graphical program. By causing the program to refresh a two-square rectangle,
which should suffice in most cases, we achieve a significant performance enhancement
over an entire component refresh during each MouseMove event.

Lines 254–285 define the MouseUp event handler. If a piece has been selected, lines
260–280 determine the index in chessPieces of any piece collision, remove the col-
lided piece, snap (align) the current piece into a valid location and deselect the piece. We
check for piece collisions to allow the chess piece to “take” other chess pieces. Line 268

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Chess-game code. (Part 8 of 8.)

Chapter 16 Graphics and Multimedia 733

checks whether any piece (excluding the currently selected piece) is beneath the current
mouse location. If a collision is detected, the returned piece index is assigned to int
remove. Lines 271–272 determine the closest valid chess tile and “snap” the selected
piece to that location. If remove contains a positive value, line 279 removes the object at
that index from the chessPieces ArrayList. Finally, the entire Panel is Inval-
idated in line 283 to display the new piece location and remove any artifacts created
during the move.

Method CheckBounds (lines 196–212) is a collision-detection helper method; it iter-
ates through the chessPieces ArrayList and returns the index of any piece rectangle
containing the point value passed to the method (the mouse location, in this example).
Method CheckBounds optionally can exclude a single piece index (to ignore the selected
index in the MouseUp event handler, in this example).

Lines 289–292 define helper function GetPiece, which simplifies the conversion
from objects in the ArrayList chessPieces to ChessPiece types. Method
newGameItem_Click handles the NewGame menu item click event, calls Refresh-
Board to reset the game and Invalidates the entire form.

16.12 Windows Media Player
The Windows Media Player control enables an application to play video and sound in many
multimedia formats. These include MPEG (Motion Pictures Experts Group) audio and video,
AVI (audio-video interleave) video, WAV (Windows wave-file format) audio and MIDI
(Musical Instrument Digital Interface) audio. Users can find preexisting audio and video on
the Internet, or they can create their own files, using available sound and graphics packages.

The application in Fig. 16.27 demonstrates the Windows Media Player control, which
enables users to play multimedia files. To use the Windows Media Player control, program-
mers must add the control to the Toolbox. This is accomplished by first selecting Cus-
tomize Toolbox from the Tool menu to display the Customize Toolbox dialog box.
In the dialog box, scroll down and select the option Windows Media Player. Then, click
the OK button to dismiss the dialog box. The icon for the Windows Media Player control
now should appear at the bottom of the Toolbox.

1 // Fig 16.27: MediaPlayerTest.cs
2 // Demonstrates the Windows Media Player control
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // allows users to play media files using a
12 // Windows Media Player control
13 public class MediaPlayer : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.MainMenu applicationMenu;

Fig. 16.27Fig. 16.27Fig. 16.27Fig. 16.27 Windows Media Player demonstration. (Part 1 of 3.)

734 Graphics and Multimedia Chapter 16

16 private System.Windows.Forms.MenuItem fileItem;
17 private System.Windows.Forms.MenuItem openItem;
18 private System.Windows.Forms.MenuItem exitItem;
19 private System.Windows.Forms.MenuItem aboutItem;
20 private System.Windows.Forms.MenuItem aboutMessageItem;
21 private System.Windows.Forms.OpenFileDialog
22 openMediaFileDialog;
23 private AxMediaPlayer.AxMediaPlayer player;
24
25 private
26 System.ComponentModel.Container components = null;
27
28 [STAThread]
29 static void Main()
30 {
31 Application.Run(new MediaPlayer());
32 }
33
34 // Visual Studio .NET generated code
35
36 // open new media file in Windows Media Player
37 private void openItem_Click(
38 object sender, System.EventArgs e)
39 {
40 openMediaFileDialog.ShowDialog();
41
42 player.FileName = openMediaFileDialog.FileName;
43
44 // adjust the size of the Media Player control and
45 // the Form according to the size of the image
46 player.Size = new Size(player.ImageSourceWidth,
47 player.ImageSourceHeight);
48
49 this.Size = new Size(player.Size.Width + 20,
50 player.Size.Height + 60);
51
52 } // end method openItem_Click
53
54 private void exitItem_Click(
55 object sender, System.EventArgs e)
56 {
57 Application.Exit();
58
59 } // end method exitItem_Click
60
61 private void aboutMessageItem_Click(
62 object sender, System.EventArgs e)
63 {
64 player.AboutBox();
65
66 } // end method aboutMessageItem_Click
67
68 } // end class MediaPlayer

Fig. 16.27Fig. 16.27Fig. 16.27Fig. 16.27 Windows Media Player demonstration. (Part 2 of 3.)

Chapter 16 Graphics and Multimedia 735

The Windows Media Player control provides several buttons that allow the user to
play the current file, pause, stop, play the previous file, rewind, forward and play the next
file. The control also includes a volume control and trackbars to select a specific position
in the media file.

The application provides a MainMenu, which includes File and About menus. The
File menu contains the Open and Exit menu items; the About menu contains the About
Windows Media Player menu item.

When a user chooses Open from the File menu, event handler openItem_Click
(lines 37–52) executes. An OpenFileDialog box displays (line 40), allowing the user
to select a file. The program then sets the FileName property of the player (the Windows
Media Player control object of type AxMediaPlayer) to the name of the file chosen by
the user. The FileName property specifies the file that Windows Media Player currently
is using. Lines 46–50 adjust the size of player and the application to reflect the size of
the media contained in the file.

The event handler that executes when the user selects Exit from the File menu (lines
54–59) simply calls Application.Exit to terminate the application. The event han-

Fig. 16.27Fig. 16.27Fig. 16.27Fig. 16.27 Windows Media Player demonstration. (Part 3 of 3.)

736 Graphics and Multimedia Chapter 16

dler that executes when the user chooses About Windows Media Player from the
About menu (lines 61–66) calls the AboutBox method of the player. AboutBox simply
displays a preset message box containing information about Windows Media Player.

16.13 Microsoft Agent
Microsoft Agent is a technology used to add interactive animated characters to Windows
applications or Web pages. Interactivity is the key function of Microsoft Agent technology:
Microsoft Agent characters can speak and respond to user input via speech recognition and
synthesis. Microsoft employs its Agent technology in applications such as Word, Excel and
PowerPoint. Agents in these programs aid users in finding answers to questions and in un-
derstanding how the applications function.

The Microsoft Agent control provides programmers with access to four predefined
characters—Genie (a genie), Merlin (a wizard), Peedy (a parrot) and Robby (a robot).
Each character has a unique set of animations that programmers can use in their applica-
tions to illustrate different points and functions. For instance, the Peedy character-anima-
tion set includes different flying animations, which the programmer might use to move
Peedy on the screen. Microsoft provides basic information on Agent technology at its
Web site,

www.microsoft.com/msagent

Microsoft Agent technology enables users to interact with applications and Web pages
through speech, the most natural form of human communication. When the user speaks into
a microphone, the control uses a speech recognition engine, an application that translates
vocal sound input from a microphone into language that the computer understands. The
Microsoft Agent control also uses a text-to-speech engine, which generates characters’
spoken responses. A text-to-speech engine is an application that translates typed words into
audio sound that users hear through headphones or speakers connected to a computer.
Microsoft provides speech recognition and text-to-speech engines for several languages at
its Web site,

www.microsoft.com/products/msagent/downloads.htm

Programmers can even create their own animated characters with the help of the
Microsoft Agent Character Editor and the Microsoft Linguistic Sound Editing Tool. These
products are available free for download from

www.microsoft.com/products/msagent/devdownloads.htm

This section introduces the basic capabilities of the Microsoft Agent control. For com-
plete details on downloading this control, visit

www.microsoft.com/products/msagent/downloads.htm

The following example, Peedy’s Pizza Palace, was developed by Microsoft to illus-
trate the capabilities of the Microsoft Agent control. Peedy’s Pizza Palace is an online pizza
shop where users can place their orders via voice input. The Peedy character interacts with
users by helping them choose toppings and then calculating the totals for their orders.

Chapter 16 Graphics and Multimedia 737

 Readers can view this example at

agent.microsoft.com/agent2/sdk/samples/html/peedypza.htm

To run this example, students must download the Peedy character file, a text-to-speech
engine and a speech-recognition engine. When the page loads, the browser prompts for
these downloads. Follow the directions provided by Microsoft to complete installation.

When the window opens, Peedy introduces himself (Fig. 16.28), and the words he
speaks appear in a cartoon bubble above his head. Notice that Peedy’s animations corre-
spond to the words he speaks.

Programmers can synchronize character animations with speech output to illustrate a
point or to convey a character’s mood. For instance, Fig. 16.29 depicts Peedy’s Pleased
animation. The Peedy character-animation set includes eighty-five different animations,
each of which is unique to the Peedy character.

Look-and-Feel Observation 16.1
Agent characters remain on top of all active windows while a Microsoft Agent application is
running. Their motions are not limited to within the boundaries of the browser or application
window. 16.1

Peedy also responds to input from the keyboard and mouse. Figure 16.30 shows what
happens when a user clicks Peedy with the mouse pointer. Peedy jumps up, ruffles his
feathers and exclaims, “Hey that tickles!” or, “Be careful with that pointer!” Users can relo-
cate Peedy on the screen by clicking and dragging him with the mouse. However, even
when the user moves Peedy to a different part of the screen, he continues to perform his
preset animations and location changes.

Fig. 16.28Fig. 16.28Fig. 16.28Fig. 16.28 Peedy introducing himself when the window opens.

Bubble contains
text equivalent
to words Peedy
speaks

738 Graphics and Multimedia Chapter 16

Many location changes involve animations. For instance, Peedy can hop from one
screen location to another, or he can fly (Fig. 16.31).

Fig. 16.29Fig. 16.29Fig. 16.29Fig. 16.29 Peedy’s Pleased animation.

Fig. 16.30Fig. 16.30Fig. 16.30Fig. 16.30 Peedy’s reaction when he is clicked.

Pointer clicking
Peedy

Chapter 16 Graphics and Multimedia 739

Once Peedy completes the ordering instructions, a text box appears beneath him indi-
cating that he is listening for a voice command (Fig. 16.32). A user can enter the type of
pizza to order either by speaking the style name into a microphone or by clicking the radio
button corresponding to their choice.

If a user chooses speech input, a box appears below Peedy displaying the words that
Peedy “heard” (i.e., the words translated to the program by the speech-recognition engine).
Once he recognizes the user input, Peedy gives the user a description of the selected pizza.
Figure 16.33 shows what happens when the user chooses Seattle as the pizza style.

Peedy then asks the user to choose additional toppings. Again, the user can either speak
or use the mouse to make a selection. Check boxes corresponding to toppings that come
with the selected pizza style are checked for the user. Figure 16.34 shows what happens
when a user chooses anchovies as an additional topping. Peedy makes a wisecrack about
the user’s choice.

The user can submit the order either by pressing the Place My Order button or by
speaking “Place order” into the microphone. Peedy recounts the order while writing down
the order items on his notepad (Fig. 16.35). He then calculates the figures on his calculator
and reports the total to the user (Fig. 16.36).

The following example (Fig. 16.37) demonstrates how to build a simple application
with the Microsoft Agent control. This application contains two drop-down lists from
which the user can choose an Agent character and a character animation. When the user
chooses from these lists, the chosen character appears and performs the chosen animation.
The application uses speech recognition and synthesis to control the character animations
and speech: Users can tell the character which animation to perform by pressing the Scroll
Lock key and then speaking the animation name into a microphone.

Fig. 16.31Fig. 16.31Fig. 16.31Fig. 16.31 Peedy flying animation.

740 Graphics and Multimedia Chapter 16

Fig. 16.32Fig. 16.32Fig. 16.32Fig. 16.32 Peedy waiting for speech input.

Fig. 16.33Fig. 16.33Fig. 16.33Fig. 16.33 Peedy repeating the user’s request for Seattle-style pizza.

Text box
indicates that

Peedy is waiting
for user input

Radio buttons
corresponding

to different
pizza styles

Text box
indicates

recognized
speech

Chapter 16 Graphics and Multimedia 741

Fig. 16.34Fig. 16.34Fig. 16.34Fig. 16.34 Peedy repeating the user’s request for anchovies as an additional
topping.

Fig. 16.35Fig. 16.35Fig. 16.35Fig. 16.35 Peedy recounting the order.

742 Graphics and Multimedia Chapter 16

The example also allows the user to switch to a new character by speaking its name
and also creates a custom command, MoveToMouse. In addition, the characters also speak
any text that a user enters into the text box. Before running this example, readers first must
download and install the control, speech-recognition engine, text-to-speech engine and
character definitions from the Microsoft Agent Web site listed previously.

To use the Microsoft Agent control, the programmer first must add it to the Toolbox.
Begin by selecting Customize Toolbox from the Tools menu to display the Cus-
tomize Toolbox dialog. In the dialog, scroll down and select the option Microsoft
Agent Control 2.0. When this option is selected properly, a small check mark appears in
the box to the left of the option. Then, click OK to dismiss the dialog. The icon for the
Microsoft Agent control now should appear at the bottom of the Toolbox.

In addition to the Microsoft Agent object mainAgent (of type AxAgent) that man-
ages all the characters, we also need an object (of type IAgentCtlCharacter) to rep-
resent the current character. We create this object, named speaker, in line 30.

Fig. 16.36Fig. 16.36Fig. 16.36Fig. 16.36 Peedy calculating the total.

1 // Fig. 16.28: Agent.cs
2 // Demonstrates microsoft agent
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 Microsoft Agent demonstration. (Part 1 of 7.)

Chapter 16 Graphics and Multimedia 743

10 using System.IO;
11
12 public class Agent : System.Windows.Forms.Form
13 {
14 // options
15 private System.Windows.Forms.ComboBox actionsCombo;
16 private System.Windows.Forms.ComboBox characterCombo;
17
18 private System.Windows.Forms.Button speakButton;
19 private System.Windows.Forms.GroupBox characterGroup;
20 private AxAgentObjects.AxAgent mainAgent;
21
22 // input
23 private System.Windows.Forms.TextBox speechTextBox;
24 private System.Windows.Forms.TextBox locationTextBox;
25
26 private
27 System.ComponentModel.Container components = null;
28
29 // current agent object
30 private AgentObjects.IAgentCtlCharacter speaker;
31
32 [STAThread]
33 static void Main()
34 {
35 Application.Run(new Agent());
36 }
37
38 // Visual Studio .NET generated code
39
40 // KeyDown event handler for locationTextBox
41 private void locationTextBox_KeyDown(
42 object sender, System.Windows.Forms.KeyEventArgs e)
43 {
44 if (e.KeyCode == Keys.Enter)
45 {
46 // set character location to text box value
47 string location = locationTextBox.Text;
48
49 // initialize the characters
50 try
51 {
52 // load characters into agent object
53 mainAgent.Characters.Load("Genie",
54 location + "Genie.acs");
55
56 mainAgent.Characters.Load("Merlin",
57 location + "Merlin.acs");
58
59 mainAgent.Characters.Load("Peedy",
60 location + "Peedy.acs");
61

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 Microsoft Agent demonstration. (Part 2 of 7.)

744 Graphics and Multimedia Chapter 16

62 mainAgent.Characters.Load("Robby",
63 location + "Robby.acs");
64
65 // disable TextBox for entering the location
66 // and enable other controls
67 locationTextBox.Enabled = false;
68 speechTextBox.Enabled = true;
69 speakButton.Enabled = true;
70 characterCombo.Enabled = true;
71 actionsCombo.Enabled = true;
72
73 // set current character to Genie and show him
74 speaker = mainAgent.Characters["Genie"];
75
76 // obtain an animation name list
77 GetAnimationNames();
78 speaker.Show(0);
79 }
80 catch(FileNotFoundException)
81 {
82 MessageBox.Show("Invalid character location",
83 "Error", MessageBoxButtons.OK,
84 MessageBoxIcon.Error);
85 }
86 }
87
88 } // end method locationTextBox_KeyDown
89
90 private void speakButton_Click(
91 object sender, System.EventArgs e)
92 {
93 // if textbox is empty, have the character ask
94 // user to type the words into textbox, otherwise
95 // have character say the words in textbox
96 if (speechTextBox.Text == "")
97 speaker.Speak(
98 "Please, type the words you want me to speak",
99 "");
100 else
101 speaker.Speak(speechTextBox.Text, "");
102
103 } // end method speakButton_Click
104
105 // click event for agent
106 private void mainAgent_ClickEvent(object sender,
107 AxAgentObjects._AgentEvents_ClickEvent e)
108 {
109 speaker.Play("Confused");
110 speaker.Speak("Why are you poking me?", "");
111 speaker.Play("RestPose");
112
113 } // end method mainAgent_ClickEvent
114

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 Microsoft Agent demonstration. (Part 3 of 7.)

Chapter 16 Graphics and Multimedia 745

115 // combobox changed event, switch active agent
116 private void characterCombo_SelectedIndexChanged(
117 object sender, System.EventArgs e)
118 {
119 ChangeCharacter(characterCombo.Text);
120
121 } // end method characterCombo_SelectedIndexChanged
122
123 private void ChangeCharacter(string name)
124 {
125 speaker.Hide(0);
126 speaker = mainAgent.Characters[name];
127
128 // regenerate animation name list
129 GetAnimationNames();
130 speaker.Show(0);
131
132 } // end method ChangeCharacter
133
134 // get animation names and store in arraylist
135 private void GetAnimationNames()
136 {
137 // ensure thread safety
138 lock(this)
139 {
140
141 // get animation names
142 IEnumerator enumerator =
143 mainAgent.Characters[
144 speaker.Name].AnimationNames.GetEnumerator();
145
146 string voiceString;
147
148 // clear actionsCombo
149 actionsCombo.Items.Clear();
150 speaker.Commands.RemoveAll();
151
152 // copy enumeration to ArrayList
153 while (enumerator.MoveNext())
154 {
155 //remove underscores in speech string
156 voiceString = (string)enumerator.Current;
157 voiceString =
158 voiceString.Replace("_", "underscore");
159
160 actionsCombo.Items.Add(enumerator.Current);
161
162 // add all animations as voice enabled commands
163 speaker.Commands.Add(
164 (string)enumerator.Current,
165 enumerator.Current,
166 voiceString, true, false);
167 }

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 Microsoft Agent demonstration. (Part 4 of 7.)

746 Graphics and Multimedia Chapter 16

168
169 // add custom command
170 speaker.Commands.Add(
171 "MoveToMouse", "MoveToMouse",
172 "MoveToMouse", true, true);
173 }
174
175 } // end method GetAnimationNames
176
177 // user selects new action
178 private void actionsCombo_SelectedIndexChanged(
179 object sender, System.EventArgs e)
180 {
181 speaker.StopAll("Play");
182 speaker.Play(actionsCombo.Text);
183 speaker.Play("RestPose");
184
185 } // end method actionsCombo_SelectedIndexChanged
186
187 // handles agent commands
188 private void mainAgent_Command(object sender,
189 AxAgentObjects._AgentEvents_CommandEvent e)
190 {
191 // get userInput property
192 AgentObjects.IAgentCtlUserInput command =
193 (AgentObjects.IAgentCtlUserInput)e.userInput;
194
195 // change character if user speaks character name
196 if (command.Voice == "Peedy" ||
197 command.Voice == "Robby" ||
198 command.Voice == "Merlin" ||
199 command.Voice == "Genie")
200 {
201 ChangeCharacter(command.Voice);
202
203 return;
204 }
205
206 // send agent to mouse
207 if (command.Voice == "MoveToMouse")
208 {
209 speaker.MoveTo(
210 Convert.ToInt16(Cursor.Position.X - 60),
211 Convert.ToInt16(Cursor.Position.Y - 60), 5);
212 return;
213 }
214
215 // play new animation
216 speaker.StopAll("Play");
217 speaker.Play(command.Name);
218
219 } // end method mainAgent_Command
220 } // end class Agent

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 Microsoft Agent demonstration. (Part 5 of 7.)

Chapter 16 Graphics and Multimedia 747

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 Microsoft Agent demonstration. (Part 6 of 7.)

Drop-down list from which
users can choose
character animation

Writing animation

Genie performing
Writing animation

Merlin responding to
user spoken animation
command.

Text box indicating words
the speech recognition
engine translated to the
application

Peedy repeating
words input by user.
Peedy’s speech can
be heard through
computer audio
output.

Text input

748 Graphics and Multimedia Chapter 16

When the program begins, the only enabled control is the locationTextBox. This
text box contains the default location for the character files, but the user can change this
location if the files are located elsewhere on the user’s computer. Once the user presses
Enter in the TextBox, event handler locationTextBox_KeyDown (lines 41–88)
executes. Lines 53–63 load the character descriptions for the predefined animated charac-
ters. If the specified location of the characters is incorrect, or if any character is missing, a
FileNotFoundException is thrown.

Lines 67–71 disable locationTextBox and enable the rest of the controls. Lines
74–78 set Genie as the default character, obtain all animation names via method GetAn-
imationNames and then call IAgentCtlCharacter method Show to display the
character. We access characters through property Characters of mainAgent, which
contains all characters that have been loaded. We use the indexer of the Characters
property to specify the name of the character that we wish to load (Genie).

When a user clicks the character (i.e., pokes it with the mouse), event handler
mainAgent_ClickEvent (lines 106–113) executes. First, speaker method Play
plays an animation. This method accepts as an argument a string representing one of the
predefined animations for the character (a list of animations for each character is available
at the Microsoft Agent Web site; each character provides over 70 animations). In our
example, the argument to Play is "Confused"—this animation is defined for all four
characters, each of which expresses this emotion in a unique way. The character then
speaks, "Why are you poking me?" via a call to method Speak. Finally, the Rest-
Pose animation is played, which returns the character to its neutral, resting pose.

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 Microsoft Agent demonstration. (Part 7 of 7.)

Robby responding to
user clicking him with
the mouse pointer.

The commands
pop-up window

Chapter 16 Graphics and Multimedia 749

The list of valid commands for a character is contained in property Commands of the
IAgentCtlCharacter object (speaker, in this example). The commands for an Agent
character can be viewed in the Commands pop-up window, which displays when the user
right-clicks an Agent character (the last screenshot in Fig. 16.37). Method Add of property
Commands adds a new command to the command list. Method Add takes three string
arguments and two bool arguments. The first string argument identifies the name of the
command, which we use to identify the command programmatically. The second string
defines the command name as it appears in the Commands pop-up window. The third
string defines the voice input that triggers the command. The first bool specifies whether
the command is active, and the second bool indicates whether the command is visible in the
Commands pop-up window. A command is triggered when the user selects the command
from the Commands pop-up window or speaks the voice input into a microphone. Com-
mand logic is handled in the Command event of the AxAgent control (mainAgent, in this
example). In addition, Agent defines several global commands that have predefined functions
(for example, speaking a character name causes that character to appear).

 Method GetAnimationNames (lines 135–175) fills the actionsCombo Com-
boBox with the current character’s animation listing and defines the valid commands that
can be used with the character. The method contains a lock block to prevent errors
resulting from rapid character changes. The method obtains the current character’s anima-
tions as an enumerator (142–144), then clears the existing items in the ComboBox and
character’s Commands property. Lines 153–167 iterate through all items in the animation-
name enumerator. For each animation, in line 156, we assign the animation name to
string voiceString. Lines 157–158 remove any underscore characters (_) and
replaces them with the string "underscore"; this changes the string so that a user
can pronounce and employ it as a command activator. The Add method (lines 163–166) of
the Commands property adds a new command to the current character. The Add method
adds all animations as commands by providing the following arguments: The animation
name as the new command’s name and caption, and voiceString for the voice activa-
tion string. The method’s bool arguments enable the command, but make it unavail-
able in the Commands pop-up window. Thus, the command can be activated only by
voice input. Lines 170–172 create a new command, named MoveToMouse, which is vis-
ible in the Commands pop-up window.

After the GetAnimationNames method has been called, the user can select a value
from the actionsCombo ComboBox. Event handler actionsCombo.Selected-
IndexChanged stops any current animation and then displays the animation that the user
selected from the ComboBox.

The user also can type text into the TextBox and click Speak. This causes event han-
dler speakButton_Click (line 90–103) to call speaker’s method Speak, supplying
as an argument the text in speechTextBox. If the user clicks Speak without providing
text, the character speaks, "Please, type the words you want me to speak".

At any point in the program, the user can choose to display a different character from
the ComboBox. When this happens, the SelectedIndexChanged event handler for
characterCombo (lines 116–121) executes. The event handler calls method Change-
Character (lines 123–132) with the text in the characterCombo ComboBox as an
argument. Method ChangeCharacter calls the Hide method of speaker (line 125)
to remove the current character from view. Line 126 assigns the newly selected character

750 Graphics and Multimedia Chapter 16

to speaker, line 129 generates the character’s animation names and commands, and line
130 displays the character via a call to method Show.

Each time a user presses the Scroll Lock key and speaks into a microphone or selects
a command from the Commands pop-up window, event handler main-
Agent_Command is called. This method is passed an argument of type AxAgent-
Objects._AgentEvents_CommandEvent, which contains a single property,
userInput. The userInput property returns an Object that can be converted to type
AgentObjects.IAgentCtlUserInput. The userInput object is assigned to a
IAgentCtlUserInput object command, which is used to identify the command and
then take appropriate action. Lines 196–204 use method ChangeCharacter to change
the current Agent character if the user speaks a character name. Microsoft Agent always
will show a character when a user speaks its name; however, by controlling the character
change, we can ensure that only one Agent character is displayed at a time. Lines 207–213
move the character to the current mouse location if the user invokes the MoveToMouse
command. The Agent method MoveTo takes x- and y-coordinate arguments and moves the
character to the specified screen position, applying appropriate movement animations. For
all other commands, we Play the command name as an animation on line 217.

In this chapter, we explored various graphics capabilities of GDI+, including pens,
brushes and images, and some multimedia capabilities of the .NET Framework Class Library.
In the next chapter, we cover the reading, writing and accessing of sequential- and random-
access files. We also explore several types of streams included in Visual Studio .NET.

SUMMARY
• A coordinate system is used to identify every possible point on the screen.

• The upper-left corner of a GUI component has coordinates (0, 0). A coordinate pair is composed
of an x-coordinate (the horizontal coordinate) and a y-coordinate (the vertical coordinate).

• Coordinate units are measured in pixels. A pixel is the smallest unit of resolution on a display mon-
itor.

• A graphics context represents a drawing surface on the screen. A Graphics object provides ac-
cess to the graphics context of a control.

• An instance of the Pen class is used to draw lines.

• An instance of one of the classes that derive from abstract class Brush is used to draw solid
shapes.

• The Point structure can be used to represent a point in a two-dimensional plane.

• Graphics objects contain methods for drawing, font manipulation, color manipulation and other
graphics-related actions.

• Method OnPaint normally is called in response to an event, such as the uncovering of a window.
This method, in turn, triggers a Paint event.

• Structure Color defines constants for manipulating colors in a C# program.

• Color properties R, G and B return int values from 0 to 255, representing the amounts of red,
green and blue, respectively, that exist in a Color. The larger the value, the greater the amount
of that particular color.

• C# provides class ColorDialog to display a dialog that allows users to select colors.

• Component property BackColor (one of the many Component properties that can be called
on most GUI components) changes the component’s background color.

Chapter 16 Graphics and Multimedia 751

• Class Font’s constructors all take at least three arguments—the font name, the font size and the
font style. The font name is any font currently supported by the system. The font style is a member
of the FontStyle enumeration.

• Class FontMetrics defines several methods for obtaining font metrics.

• Class Font provides the Bold, Italic, Strikeout and Underline properties, which re-
turn true if the font is bold, italic, strikeout or underlined, respectively.

• Class Font provides the Name property, which returns a string representing the name of the
font.

• Class Font provides the Size and SizeInPoints properties, which return the size of the font
in design units and points, respectively.

• The FontFamily class provides information about such font metrics as the family’s spacing and
height.

• The FontFamily class provides the GetCellAscent, GetCellDescent, GetEmHeight
and GetLineSpacing methods, which return the ascent of a font, the descent of a font, the
font’s height in points and the distance between two consecutive lines of text, respectively.

• Class Graphics provides methods DrawLine, DrawRectangle, DrawEllipse,
DrawArc, DrawLines, DrawPolygon and DrawPie, which draw lines and shape outlines.

• Class Graphics provides methods FillRectangle, FillEllipse, FillPolygon and
FillPie, which draw solid shapes.

• Classes HatchBrush, LinearGradientBrush, PathGradientBrush and Texture-
Brush all derive from class Brush and represent shape-filling styles.

• Graphics method FromImage retrieves the Graphics object associated with the image file
that is its argument.

• The DashStyle and DashCap enumerations define the style of dashes and their ends, respec-
tively.

• Class GraphicsPath represents a shape constructed from straight lines and curves.

• GraphicsPath method AddLine appends a line to the shape that is encapsulated by the object.

• GraphicsPath method CloseFigure completes the shape that is represented by the
GraphicsPath object.

• Class Image is used to manipulate images.

• Class Image provides method FromFile to retrieve an image stored on disk and load it into an
instance of class Image.

• Graphics method Clear paints the entire Control with the color that the programmer pro-
vides as an argument.

• Graphics method DrawImage draws the specified Image on the Control.

• Using Visual Studio .NET and C#, programmers can create applications that use components such
as Windows Media Player and Microsoft Agent.

• The Windows Media Player allows programmers to create applications that can play multimedia
files.

• Microsoft Agent is a technology that allows programmers to include interactive animated charac-
ters in their applications.

TERMINOLOGY
A property of structure Color Add method of class ArrayList
AboutBox method of class AxMediaPlayer AddLine method of class GraphicsPath

752 Graphics and Multimedia Chapter 16

animated characters Display member of enumeration
animating a series of images GraphicsUnit
animation display monitor
arc angle Document member of enumeration
arc method GraphicsUnit
ARGB values DrawArc method of class Graphics
ArrayList class DrawEllipse method of class Graphics
ascent of a font DrawLine method of class Graphics
audio-video interleave (AVI) DrawLines method of class Graphics
AxAgent class DrawPie method of class Graphics
AxMediaPlayer class DrawPolygon method of class Graphics
B property of structure Color DrawRectangle method of class Graphics
bandwidth DrawString method of class Graphics
Bitmap class event-driven process
Black static property of structure Color FileName property of class AxMediaPlayer
Blue static property of structure Color Fill method of class Graphics
Bold member of enumeration FontStyle fill a shape with color
Bold property of class Font FillEllipse method of class Graphics
bounding rectangle for an oval fill shape
Brush class FillPie method of class Graphics
Characters property of class AxAgent FillPolygon method of class Graphics
closed polygon FillRectangle method of class Graphics
CloseFigure method of class FillRectangles method of class Graphics

GraphicsPath five-pointed star
color constants font
color manipulation font ascent
Color methods and properties Font class
Color property of class ColorDialog font control
Color structure font descent
ColorDialog class font height
complex curve font leading
connected lines font manipulation
coordinate system font metrics
coordinates (0, 0) font name
curve font size
customizing the Toolbox font style
Cyan static property of structure Color FontFamily class
DarkBlue static property of structure FontFamily property of class Font

Color FontStyle enumeration
DarkGray static property of structure ForwardDiagonal member of enumeration

Color LinearGradientMode
Dash member of enumeration DashStyle FromArgb method of structure Color
DashCap enumeration FromImage method of class Graphics
DashCap property of class Pen FromName method
dashed lines G property of structure Color
DashStyle enumeration GDI+
DashStyle property of class Pen general path
default font Genie Microsoft Agent character
degree GetCellAscent method of class
descent of a font FontFamily

Chapter 16 Graphics and Multimedia 753

GetCellDescent method of class pixel
FontFamily Pixel member of enumeration

GetEmHeight method of class FontFamily GraphicsUnit
GetLineSpacing method of class Play method of interface

FontFamily IAgentCtlCharacter
graphics Point member of enumeration
Graphics class GraphicsUnit
graphics context Point structure
GraphicsPath class positive and negative arc angles
GraphicsUnit R property of structure Color
Gray static property of structure Color rectangle
Green static property of structure Color Rectangle structure
HatchBrush class Red static property of structure Color
HatchStyle enumeration Regular member of enumeration FontStyle
Height property of class Font resolution
horizontal coordinate RGB values
IAgentCtlCharacter interface Robby the Robot Microsoft Agent character
Inch member of enumeration GraphicsUnit RotateTransform method of class
interactive animated character Graphics
Invalidate method of class Control Round member of enumeration DashCap
Italic member of enumeration FontStyle sector
Italic property of class Font Show method of interface
line IAgentCtlCharacter
LinearGradientBrush class Size property of class Font
LinearGradientMode enumeration style of a font
Magenta static property of structure Color SizeInPoints property of class Font
Merlin Microsoft Agent character solid arc
Microsoft Agent solid polygon
Microsoft Agent Character Editor solid rectangle
Microsoft Linguistic Sound-Editing Tool SolidBrush class
Microsoft Sans Serif font starting angle
Microsoft Serif font straight line
MIDI Strikeout member of enumeration
Millimeter member of enumeration FontStyle

GraphicsUnit Strikeout property of class Font
Motion Pictures Experts Group (MPEG) sweep
multimedia sweep counterclockwise
Musical Instrument Digital Interface (MIDI) System.Drawing namespace
Name property of class Font System.Drawing.Drawing2D namespace
Name property of structure Color TextureBrush class
negative arc angles thick line
OnPaint method of class Control thin line
Orange static property of structure Color three-dimensional application
PaintEventArgs class Tick event of class Timer
Panel class Timer class
PathGradientBrush class TranslateTransform method of class
pattern Graphics
Peedy Microsoft Agent character two-dimensional shape
Pen class Underline member of enumeration
Pink static property of structure Color FontStyle

754 Graphics and Multimedia Chapter 16

SELF-REVIEW EXERCISES
16.1 State whether each of the following is true or false. If false, explain why.

a) A Font object’s size can be changed by setting its Size property.
b) In the C# coordinate system, x-values increase from left to right.
c) Method FillPolygon draws a solid polygon with a specified Brush.
d) Method DrawArc allows negative angles.
e) Font property Size returns the size of the current font in centimeters.
f) Pixel coordinate (0, 0) is located at the exact center of the monitor.
g) A HatchBrush is used to draw lines.
h) A Color is defined by its alpha, red, green and violet content.
i) Every Control has an associated Graphics object.
j) Method OnPaint is inherited by every Form.

16.2 Fill in the blanks in each of the following statements:
a) Class is used to draw lines of various colors and thicknesses.
b) Classes and define the fill for a shape in such a way that the fill

gradually changes from one color to another.
c) The method of class Graphics draws a line between two points.
d) ARGB is short for , , and .
e) Font sizes usually are measured in units called .
f) Class fills a shape using a pattern drawn in a Bitmap.
g) allows an application to play multimedia files.
h) Class defines a path consisting of lines and curves.
i) C#’s drawing capabilities are part of the namespaces and .
j) Method loads an image from a disk into an Image object.

ANSWERS TO SELF-REVIEW EXERCISES
16.1 a) False. Size is a read-only property. b) True. c) True. d) True. e) False. It returns the size
of the current Font in design units. f) False. The coordinate (0,0) corresponds to the upper-left corner
of a GUI component on which drawing occurs. g) False. A Pen is used to draw lines, a HatchBrush
fills a shape with a hatch pattern. h) False. A color is defined by its alpha, red, green and blue content.
i) True. j) True.

16.2 a) Pen. b) LinearGradientBrush, PathGradientBrush. c) DrawLine. d) al-
pha, red, green, blue. e) points. f) TextureBrush. g) Windows Media Player h) GraphicsPath
i) System.Drawing, System.Drawing.Drawing2D. j) FromFile.

EXERCISES
16.3 Write a program that draws eight concentric circles. The circles should be separated from one
another by 10 pixels. Use the DrawArc method.

16.4 Write a program that draws 100 lines with random lengths, positions, thicknesses and colors.

Underline property of class Font x-axis
upper-left corner of a GUI component x-coordinate
vertical coordinate y-axis
WAV y-coordinate
White static property of structure Color yellow
Windows Media Player Yellow static property of structure Color
Windows wave file format (WAV)

Chapter 16 Graphics and Multimedia 755

16.5 Write a program that draws a tetrahedron (a pyramid). Use class GraphicsPath and meth-
od DrawPath.

16.6 Write a program that allows the user to draw “free-hand” images with the mouse in a Pic-
tureBox. Allow the user to change the drawing color and width of the pen. Provide a button that
allows the user to clear the PictureBox.

16.7 Write a program that repeatedly flashes an image on the screen. Do this by interspersing the
image with a plain background-color image.

16.8 If you want to emphasize an image, you might place a row of simulated light bulbs around
the image. Write a program by which an image is emphasized this way. You can let the light bulbs
flash in unison or you can let them fire on and off in sequence, one after another.

16.9 (Eight Queens) A puzzler for chess buffs is the Eight Queens problem. Simply stated: Is it
possible to place eight queens on an empty chessboard so that no queen is “attacking” any other (i.e.,
so that no two queens are in the same row, in the same column or along the same diagonal)?

Create a GUI that allows the user to drag-and-drop each queen on the board. Use the graphical
features of Fig. 16.26. Provide eight queen images to the right of the board (Fig. 16.38), which the
user can drag-and-drop onto the board. When a queen is dropped on the board, its corresponding
image to the right should not be visible. If a queen is in conflict with another queen when placed on
the board, display a message box and remove that queen from the board.

Fig. 16.38Fig. 16.38Fig. 16.38Fig. 16.38 GUI for Eight Queens exercise.

17
Files and Streams

Objectives
• To be able to create, read, write and update files.
• To understand the C# streams class hierarchy.
• To be able to use classes File and Directory.
• To be able to use the FileStream and
BinaryFormatter classes to read objects from,
and write objects to, files.

• To become familiar with sequential-access and
random-access file processing.

I can only assume that a “Do Not File” document is filed in
a “Do Not File” file.
Senator Frank Church
Senate Intelligence Subcommittee Hearing, 1975

Consciousness … does not appear to itself chopped up in
bits. … A “river” or a “stream” are the metaphors by which
it is most naturally described.
William James

I read part of it all the way through.
Samuel Goldwyn

Chapter 17 Files and Streams 757

17.1 Introduction
Variables and arrays offer only temporary storage of data—the data are lost when an object
is garbage collected or when the program terminates. By contrast, files are used for long-term
storage of large amounts of data and can retain data even after the program that created the
data terminates. Data maintained in files often are called persistent data. Computers can store
files on secondary storage devices, such as magnetic disks, optical disks and magnetic tapes.
In this chapter, we explain how to create, update and process data files in C# programs. We
consider both “sequential-access” files and “random-access” files, indicating the kinds of ap-
plications for which each is best suited. We have two goals in this chapter: To introduce the
sequential-access and random-access file-processing paradigms and to provide the reader
with sufficient stream-processing capabilities to support the networking features that we in-
troduce in Chapter 22, Networking: Streams-Based Sockets and Datagrams.

File processing is one of a programming language’s most important capabilities,
because it enables a language to support commercial applications that typically process
massive amounts of persistent data. This chapter discusses C#’s powerful and abundant
file-processing and stream-input/output features.

17.2 Data Hierarchy
Ultimately, all data items processed by a computer are reduced to combinations of zeros
and ones. This is because it is simple and economical to build electronic devices that can
assume two stable states—0 represents one state, and 1 represents the other. It is remark-
able that the impressive functions performed by computers involve only the most funda-
mental manipulations of 0s and 1s.

The smallest data items that computers support are called bits (short for “binary
digit”—a digit that can assume one of two values). Each data item, or bit, can assume either
the value 0 or the value 1. Computer circuitry performs various simple bit manipulations,

Outline

17.1 Introduction
17.2 Data Hierarchy
17.3 Files and Streams

17.4 Classes File and Directory
17.5 Creating a Sequential-Access File
17.6 Reading Data from a Sequential-Access File
17.7 Random-Access Files
17.8 Creating a Random-Access File
17.9 Writing Data Randomly to a Random-Access File
17.10 Reading Data Sequentially from a Random-Access File
17.11 Case Study: A Transaction-Processing Program

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

758 Files and Streams Chapter 17

such as examining the value of a bit, setting the value of a bit and reversing a bit (from 1
to 0 or from 0 to 1).

Programming with data in the low-level form of bits is cumbersome. It is preferable to
program with data in forms such as decimal digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9), letters
(i.e., A through Z and a through z) and special symbols (i.e., $, @, %, &, *, (,), -, +, ", :, ?,
/ and many others). Digits, letters and special symbols are referred to as characters. The set
of all characters used to write programs and represent data items on a particular computer
is called that computer’s character set. Because computers can process only 1s and 0s,
every character in a computer’s character set is represented as a pattern of 1s and 0s. Bytes
are composed of eight bits (characters in C# are Unicode characters, which are composed
of 2 bytes). Programmers create programs and data items with characters; computers
manipulate and process these characters as patterns of bits.

In the same way that characters are composed of bits, fields are composed of charac-
ters. A field is a group of characters that conveys some meaning. For example, a field con-
sisting of uppercase and lowercase letters can represent a person’s name.

The various kinds of data items processed by computers form a data hierarchy
(Fig. 17.1) in which data items become larger and more complex in structure as we progress
from bits, to characters, to fields and up to larger data structures.

Typically, a record is composed of several fields. In a payroll system, for example, a
record for a particular employee might include the following fields:

1. Employee identification number

2. Name

3. Address

4. Hourly pay rate

5. Number of exemptions claimed

6. Year-to-date earnings

7. Amount of taxes withheld

Thus, a record is a group of related fields. In the preceding example, each field is asso-
ciated with the same employee. A file is a group of related records.1 A company’s payroll
file normally contains one record for each employee. Thus, a payroll file for a small com-
pany might contain only 22 records, whereas a payroll file for a large company might con-
tain 100,000 records. It is not unusual for a company to have many files, some containing
millions, billions or even trillions of bits of information.

To facilitate the retrieval of specific records from a file, at least one field in each record
is chosen as a unique record key. A record key identifies a record as belonging to a partic-
ular person or entity and distinguishes that record from all other records. In the payroll
record described previously, the employee identification number normally would be
chosen as the record key.

1. More generally, a file can contain arbitrary data in arbitrary formats. In some operating systems,
a file is viewed as nothing more than a collection of bytes. In such an operating system, any orga-
nization of the bytes in a file (such as organizing the data into records) is a view created by the
applications programmer.

Chapter 17 Files and Streams 759

There are many ways of organizing records in a file. The most common type of orga-
nization is called a sequential file, in which records typically are stored in order by the
record-key field. In a payroll file, records usually are placed in order by employee-identi-
fication numbers. The first employee record in the file contains the lowest employee-iden-
tification number, and subsequent records contain increasingly higher employee-
identification numbers.

Most businesses use many different files to store data. For example, a company might
have payroll files, accounts receivable files (listing money due from clients), accounts pay-
able files (listing money due to suppliers), inventory files (listing facts about all the items
handled by the business) and many other types of files. Sometimes, a group of related files
is called a database. A collection of programs designed to create and manage databases is
called a database management system (DBMS). We discuss databases in detail in Chapter
19, Databases, SQL and ADO.NET.

17.3 Files and Streams
C# views each file as a sequential stream of bytes (Fig. 17.2). Each file ends either with an
end-of-file marker or at a specific byte number that is recorded in a system-maintained ad-
ministrative data structure. When a file is opened, C# creates an object, then associates a
stream with that object. The runtime environment creates three stream objects upon pro-
gram execution, which are accessible via properties Console.Out, Console.In and
Console.Error, respectively. These objects facilitate communication between a pro-
gram and a particular file or device. Property Console.In returns the standard input

Fig. 17.1Fig. 17.1Fig. 17.1Fig. 17.1 Data hierarchy.

Sally

Tom

Judy

Iris

Randy

Black

Blue

Green

Orange

Red

Judy Green

J u d y Field

01001010 Byte (ASCII character J)

1 Bit

Record

File

760 Files and Streams Chapter 17

stream object, which enables a program to input data from the keyboard. Property Con-
sole.Out returns the standard output stream object, which enables a program to output
data to the screen. Property Console.Error returns the standard error stream object,
which enables a program to output error messages to the screen. We have been using Con-
sole.Out and Console.In in our console applications—Console methods Write
and WriteLine use Console.Out to perform output, and methods Read and Read-
Line use Console.In to perform input.

To perform file processing in C#, namespace System.IO must be referenced. This
namespace includes definitions for stream classes such as StreamReader (for text input
from a file), StreamWriter (for text output to a file) and FileStream (for both input
from and output to a file). Files are opened by creating objects of these stream classes,
which inherit from abstract classes TextReader, TextWriter and Stream,
respectively. Actually, Console.In and Console.Out are properties of class Tex-
tReader and TextWriter, respectively.

C# provides class BinaryFormatter, which is used in conjunction with a Stream
object to perform input and output of objects. Serialization involves converting an object
into a format that can be written to a file without losing any of that object’s data. Deserial-
ization consists of reading this format from a file and reconstructing the original object
from it. A BinaryFormatter can serialize objects to, and deserialize objects from, a
specified Stream.

Class System.IO.Stream provides functionality for representing streams as
bytes. This class is abstract, so objects of this class cannot be instantiated. Classes
FileStream, MemoryStream and BufferedStream (all from namespace
System.IO) inherit from class Stream. Later in the chapter, we use FileStream to
read data to, and write data from, sequential-access and random-access files. Class Mem-
oryStream enables the transferal of data directly to and from memory—this type of
transfer is much faster than are other types of data transfer (e.g., to and from disk). Class
BufferedStream uses buffering to transfer data to or from a stream. Buffering is an
I/O-performance-enhancement technique in which each output operation is directed to a
region in memory called a buffer that is large enough to hold the data from many output
operations. Then, actual transfer to the output device is performed in one large physical
output operation each time the buffer fills. The output operations directed to the output
buffer in memory often are called logical output operations.

C# offers many classes for performing input and output. In this chapter, we use several
key stream classes to implement a variety of file-processing programs that create, manipu-
late and destroy sequential-access files and random-access files. In Chapter 22, Net-
working: Streams-Based Sockets and Datagrams, we use stream classes extensively to
implement networking applications.

Fig. 17.2Fig. 17.2Fig. 17.2Fig. 17.2 C#’s view of an n-byte file.

0 1 2 3 4 5 6 7 8 9 n-1...

... end-of-file marker

Chapter 17 Files and Streams 761

17.4 Classes File and Directory
Information on computers is stored in files, which are organized in directories. Class File
is provided for manipulating files, and class Directory is provided for manipulating di-
rectories. Class File cannot write to or read from files directly; we discuss methods for
reading and writing files in subsequent sections.

Note that the \ separator character separates directories and files in a path. On UNIX
systems, the separator character is /. C# actually processes both characters as identical in
a path name. This means that, if we specified the path c:\C_Sharp/README, which
uses one of each separator character, C# still would process the file properly.

Figure 17.3 lists some methods contained in class File for manipulating and deter-
mining information about particular files. Class File contains only static methods—
you cannot instantiate objects of type File. We use several of these methods in the
example of Fig. 17.5.

Class Directory provides capabilities for manipulating directories. Figure 17.4 lists
some methods that can be used for directory manipulation. We employ several of these
methods in the example of Fig. 17.5

The DirectoryInfo object returned by method CreateDirectory contains
information about a directory. Much of the information contained in this class also can be
accessed via the methods of class Directory.

static Method Description

AppendText Returns a StreamWriter that appends to an existing file or cre-
ates a file if one does not exist.

Copy Copies a file to a new file.

Create Creates a file and returns its associated FileStream.

CreateText Creates a text file and returns its associated StreamWriter.

Delete Deletes the specified file.

GetCreationTime Returns a DateTime object representing the time that the file was
created.

GetLastAccessTime Returns a DateTime object representing the time that the file was
last accessed.

GetLastWriteTime Returns a DateTime object representing the time that the file was
last modified.

Move Moves the specified file to a specified location.

Open Returns a FileStream associated with the specified file and
equipped with the specified read/write permissions.

OpenRead Returns a read-only FileStream associated with the specified file.

OpenText Returns a StreamReader associated with the specified file.

OpenWrite Returns a read/write FileStream associated with the specified
file.

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 File class methods (partial list).

762 Files and Streams Chapter 17

.

Class FileTestForm (Fig. 17.5) uses methods described in Fig. 17.3 and Fig. 17.4
to access file and directory information. This class contains TextBox inputTextBox
(line 18), which enables the user to input a file or directory name. For each key that the user
presses in the text box, the program calls method inputTextBox_KeyDown (lines 31–
93). If the user presses the Enter key (line 35), this method displays either file or directory
contents, depending on the text the user input in the TextBox. (Note that, if the user does
not press the Enter key, this method returns without displaying any content.) Line 43 uses
method Exists of class File to determine whether the user-specified text is a name of
an existing file. If the user specifies an existing file, line 47 invokes private method
GetInformation (lines 96–115), which calls methods GetCreationTime (line
103), GetLastWriteTime (line 107) and GetLastAccessTime (line 111) of class
File to access file information. When method GetInformation returns, line 53
instantiates a StreamReader for reading text from the file. The StreamReader con-
structor takes as an argument a string containing the name of the file to open. Line 54
calls method ReadToEnd of the StreamReader to read the file content from the file,
then displays the content.

static Method Description

CreateDirectory Creates a directory and returns its associated Directory-
Info.

Delete Deletes the specified directory.

Exists Returns true if the specified directory exists; otherwise, it
returns false.

GetLastWriteTime Returns a DateTime object representing the time that the
directory was last modified.

GetDirectories Returns a string array representing the names of the subdirec-
tories in the specified directory.

GetFiles Returns a string array representing the names of the files in
the specified directory.

GetCreationTime Returns a DateTime object representing the time that the
directory was created.

GetLastAccessTime Returns a DateTime object representing the time that the
directory was last accessed.

GetLastWriteTime Returns a DateTime object representing the time that items
were last written to the directory.

Move Moves the specified directory to a specified location.

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 Directory class methods (partial list).

1 // Fig 17.5: FileTest.cs
2 // Using classes File and Directory.
3

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Testing classes File and Directory. (Part 1 of 4.)

Chapter 17 Files and Streams 763

4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.IO;
11
12 // displays contents of files and directories
13 public class FileTestForm : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.Label directionsLabel;
16
17 private System.Windows.Forms.TextBox outputTextBox;
18 private System.Windows.Forms.TextBox inputTextBox;
19
20 private System.ComponentModel.Container components = null;
21
22 [STAThread]
23 static void Main()
24 {
25 Application.Run(new FileTestForm());
26 }
27
28 // Visual Studio .NET generated code
29
30 // invoked when user presses key
31 private void inputTextBox_KeyDown(
32 object sender, System.Windows.Forms.KeyEventArgs e)
33 {
34 // determine whether user pressed Enter key
35 if (e.KeyCode == Keys.Enter)
36 {
37 string fileName; // name of file or directory
38
39 // get user-specified file or directory
40 fileName = inputTextBox.Text;
41
42 // determine whether fileName is a file
43 if (File.Exists(fileName))
44 {
45 // get file's creation date,
46 // modification date, etc.
47 outputTextBox.Text = GetInformation(fileName);
48
49 // display file contents through StreamReader
50 try
51 {
52 // obtain reader and file contents
53 StreamReader stream = new StreamReader(fileName);
54 outputTextBox.Text += stream.ReadToEnd();
55 }

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Testing classes File and Directory. (Part 2 of 4.)

764 Files and Streams Chapter 17

56 // handle exception if StreamReader is unavailable
57 catch(IOException)
58 {
59 MessageBox.Show("File Error", "File Error",
60 MessageBoxButtons.OK, MessageBoxIcon.Error);
61 }
62 }
63
64 // determine whether fileName is a directory
65 else if (Directory.Exists(fileName))
66 {
67 // array for directories
68 string[] directoryList;
69
70 // get directory's creation date,
71 // modification date, etc.
72 outputTextBox.Text = GetInformation(fileName);
73
74 // obtain file/directory list of specified directory
75 directoryList = Directory.GetDirectories(fileName);
76
77 outputTextBox.Text +=
78 "\r\n\r\nDirectory contents:\r\n";
79
80 // output directoryList contents
81 for (int i = 0; i < directoryList.Length; i++)
82 outputTextBox.Text += directoryList[i] + "\r\n";
83 }
84 else
85 {
86 // notify user that neither file nor directory exists
87 MessageBox.Show(inputTextBox.Text +
88 " does not exist", "File Error",
89 MessageBoxButtons.OK, MessageBoxIcon.Error);
90 }
91 } // end if
92
93 } // end method inputTextBox_KeyDown
94
95 // get information on file or directory
96 private string GetInformation(string fileName)
97 {
98 // output that file or directory exists
99 string information = fileName + " exists\r\n\r\n";
100
101 // output when file or directory was created
102 information += "Created: " +
103 File.GetCreationTime(fileName) + "\r\n";
104
105 // output when file or directory was last modified
106 information += "Last modified: " +
107 File.GetLastWriteTime(fileName) + "\r\n";
108

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Testing classes File and Directory. (Part 3 of 4.)

Chapter 17 Files and Streams 765

If line 43 determines that the user-specified text is not a file, line 65 determines
whether it is a directory using method Exists of class Directory. If the user specified
an existing directory, line 72 invokes method GetInformation to access the directory
information. Line 75 calls method GetDirectories of class Directory to obtain a
string array containing the names of subdirectories in the specified directory. Lines 81–
82 display each element in the string array. Note that, if line 65 determines that the user-
specified text is neither a file nor a directory, lines 87–89 notify the user (via a Mes-
sageBox) that the file or directory does not exist.

We now consider another example that uses C#’s file- and directory-manipulation
capabilities. Class FileSearchForm (Fig. 17.6) uses classes File and Directory in
conjunction with classes for performing regular expressions to report the number of files of

109 // output when file or directory was last accessed
110 information += "Last accessed: " +
111 File.GetLastAccessTime(fileName) + "\r\n" + "\r\n";
112
113 return information;
114
115 } // end method GetInformation
116
117 } // end class FileTestForm

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Testing classes File and Directory. (Part 4 of 4.)

766 Files and Streams Chapter 17

each file type that exist in the specified directory path. The program also serves as a “clean-
up” utility—when the program encounters a file that has the .bak extension (i.e., a backup
file), the program displays a MessageBox asking whether that file should be removed,
then responds appropriately to the user’s input.

When the user presses the Enter key or clicks the Search Directory button, the pro-
gram invokes method searchButton_Click (lines 52–92), which searches recur-
sively through the directory path that the user provides. If the user inputs text in the
TextBox, line 59 calls method Exists of class Directory to determine whether that
text indicates a valid directory. If the user specifies an invalid directory, lines 70–71 notify
the user of the error.

If the user specifies a valid directory, line 80 passes the directory name as an argument
to private method SearchDirectory (lines 95–185). This method locates files that
match the regular expression defined in lines 103–104, which matches any sequence of
numbers or letters followed by a period and one or more letters. Notice the substring of
format (?<extension>regular-expression) in the argument to the Regex constructor
(line 104). All strings with the substring regular-expression are tagged with the name
extension. In this program, we assign to the variable extension any string
matching one or more characters.

Lines 115–116 call method GetDirectories of class Directory to retrieve the
names of all subdirectories that belong to the current directory. Line 119 calls method
GetFiles of class Directory to store in string array fileArray the names of
files in the current directory. The foreach loop in lines 122–170 searches for all files with
extension bak; it then calls SearchDirectory recursively for each subdirectory in the
current directory. Lines 125–126 eliminate the directory path, so the program can test only
the file name when using the regular expression. Line 129 uses method Match of the
Regex object to match the regular expression with the file name, then returns the result to
object matchResult of type Match. If the match is successful, lines 133–134 use
method Result of object matchResult to store the extension string from object
matchResult in fileExtension (the string that will contain the current file’s
extension). If the match is unsuccessful, line 136 sets fileExtension to hold a value
of "[no extension]".

1 // Fig 17.6: FileSearch.cs
2 // Using regular expressions to determine file types.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.IO;
11 using System.Text.RegularExpressions;
12 using System.Collections.Specialized;
13

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Regular expression used to determine file types. (Part 1 of 5.)

Chapter 17 Files and Streams 767

14 public class FileSearchForm : System.Windows.Forms.Form
15 {
16 private System.Windows.Forms.Label directionsLabel;
17 private System.Windows.Forms.Label directoryLabel;
18
19 private System.Windows.Forms.Button searchButton;
20
21 private System.Windows.Forms.TextBox outputTextBox;
22 private System.Windows.Forms.TextBox inputTextBox;
23
24 private System.ComponentModel.Container components = null;
25
26 string currentDirectory = Directory.GetCurrentDirectory();
27 string[] directoryList; // subdirectories
28 string[] fileArray;
29
30 // store extensions found and number found
31 NameValueCollection found = new NameValueCollection();
32
33 [STAThread]
34 static void Main()
35 {
36 Application.Run(new FileSearchForm());
37 }
38
39 // Visual Studio .NET generated code
40
41 // invoked when user types in text box
42 private void inputTextBox_KeyDown(
43 object sender, System.Windows.Forms.KeyEventArgs e)
44 {
45 // determine whether user pressed Enter
46 if (e.KeyCode == Keys.Enter)
47 searchButton_Click(sender, e);
48
49 } // end method inputTextBox_KeyDown
50
51 // invoked when user clicks "Search Directory" button
52 private void searchButton_Click(
53 object sender, System.EventArgs e)
54 {
55 // check for user input; default is current directory
56 if (inputTextBox.Text != "")
57 {
58 // verify that user input is valid directory name
59 if (Directory.Exists(inputTextBox.Text))
60 {
61 currentDirectory = inputTextBox.Text;
62
63 // reset input text box and update display
64 directoryLabel.Text = "Current Directory:" +
65 "\r\n" + currentDirectory;
66 }

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Regular expression used to determine file types. (Part 2 of 5.)

768 Files and Streams Chapter 17

67 else
68 {
69 // show error if user does not specify valid directory
70 MessageBox.Show("Invalid Directory", "Error",
71 MessageBoxButtons.OK, MessageBoxIcon.Error);
72 }
73 }
74
75 // clear text boxes
76 inputTextBox.Clear();
77 outputTextBox.Clear();
78
79 // search directory
80 SearchDirectory(currentDirectory);
81
82 // summarize and print results
83 foreach (string current in found)
84 {
85 outputTextBox.Text += "* Found " +
86 found[current] + " " + current + " files.\r\n";
87 }
88
89 // clear output for new search
90 found.Clear();
91
92 } // end method searchButton_Click
93
94 // search directory using regular expression
95 private void SearchDirectory(string currentDirectory)
96 {
97 // search directory
98 try
99 {
100 string fileName = "";
101
102 // regular expression for extensions matching pattern
103 Regex regularExpression = new Regex(
104 "[a-zA-Z0-9]+\\.(?<extension>\\w+)");
105
106 // stores regular-expression-match result
107 Match matchResult;
108
109 string fileExtension; // holds file extensions
110
111 // number of files with given extension in directory
112 int extensionCount;
113
114 // get directories
115 directoryList =
116 Directory.GetDirectories(currentDirectory);
117
118 // get list of files in current directory
119 fileArray = Directory.GetFiles(currentDirectory);

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Regular expression used to determine file types. (Part 3 of 5.)

Chapter 17 Files and Streams 769

120
121 // iterate through list of files
122 foreach (string myFile in fileArray)
123 {
124 // remove directory path from file name
125 fileName = myFile.Substring(
126 myFile.LastIndexOf("\\") + 1);
127
128 // obtain result for regular-expression search
129 matchResult = regularExpression.Match(fileName);
130
131 // check for match
132 if (matchResult.Success)
133 fileExtension =
134 matchResult.Result("${extension}");
135 else
136 fileExtension = "[no extension]";
137
138 // store value from container
139 if (found[fileExtension] == null)
140 found.Add(fileExtension, "1");
141 else
142 {
143 extensionCount = Int32.Parse(
144 found[fileExtension]) + 1;
145
146 found[fileExtension] = extensionCount.ToString();
147 }
148
149 // search for backup(.bak) files
150 if (fileExtension == "bak")
151 {
152 // prompt user to delete (.bak) file
153 DialogResult result =
154 MessageBox.Show("Found backup file " +
155 fileName + ". Delete?", "Delete Backup",
156 MessageBoxButtons.YesNo,
157 MessageBoxIcon.Question);
158
159 // delete file if user clicked 'yes'
160 if (result == DialogResult.Yes)
161 {
162 File.Delete(myFile);
163
164 extensionCount =
165 Int32.Parse(found["bak"]) - 1;
166
167 found["bak"] = extensionCount.ToString();
168 }
169 }
170 }
171

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Regular expression used to determine file types. (Part 4 of 5.)

770 Files and Streams Chapter 17

Class FileSearchForm uses an instance of class NameValueCollection
(declared in line 31) to store each file-extension type and the number of files for each type.
A NameValueCollection contains a collection of key/value pairs, each of which is a
string, and provides method Add to add a key/value pair. The indexer for this pair can
index according to the order that the items were added or according to the entry key. Line

172 // recursive call to search files in subdirectory
173 foreach (string myDirectory in directoryList)
174 SearchDirectory(myDirectory);
175 }
176
177 // handle exception if files have unauthorized access
178 catch(UnauthorizedAccessException)
179 {
180 MessageBox.Show("Some files may not be visible" +
181 " due to permission settings", "Warning",
182 MessageBoxButtons.OK, MessageBoxIcon.Information);
183 }
184
185 } // end method SearchDirectory
186
187 } // end class FileSearchForm

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Regular expression used to determine file types. (Part 5 of 5.)

Chapter 17 Files and Streams 771

139 uses NameValueCollection found to determine whether this is the first occur-
rence of the file extension. If so, line 140 adds that extension to found as a key with the
value 1. If the extension is in found already, lines 143–144 increment the value associated
with the extension in found to indicate another occurrence of that file extension.

Line 150 determines whether fileExtension equals “bak”—i.e., whether the file
is a backup file. If so, lines 153–157 prompt the user to indicate whether the file should be
removed; if the user clicks Yes (line 160), lines 162–167 delete the file and decrement the
value for the “bak” file type in found.

Lines 173–174 call method SearchDirectory for each subdirectory. Using recur-
sion, we ensure that the program performs the same logic for finding bak files on each sub-
directory. After each subdirectory has been checked for bak files, method
SearchDirectory completes, and lines 83–87 display the results.

17.5 Creating a Sequential-Access File
C# imposes no structure on files. Thus, concepts like that of a “record” do not exist in C#
files. This means that the programmer must structure files to meet the requirements of ap-
plications. In this example, we use text and special characters to organize our own concept
of a “record.”

The following examples demonstrate file processing in a bank-account maintenance
application. These programs have similar user interfaces, so we created class BankUI-
Form (Fig. 17.7) to encapsulate a base-class GUI (see the screen capture in Fig. 17.7).
Class BankUIForm contains four Labels (lines 15, 18, 21 and 24) and four TextBoxes
(lines 16, 19, 22 and 25). Methods ClearTextBoxes (lines 49–64), SetTextBox-
Values (lines 67–91) and GetTextBoxValues (lines 94–110) clear, set the values of,
and get the values of the text in the TextBoxes, respectively.

To reuse class BankUIForm, we compile the GUI into a DLL library by creating a
project of type Windows Control Library (the DLL we create is called BankLi-
brary). This library, as well as all the code in this book, can be found on the CD accom-
panying the book and at our Web site, www.deitel.com. However, students might need
to change the reference to this library, as it most likely resides in a different location on their
systems.

Figure 17.8 contains class Record that Fig. 17.9, Fig. 17.11 and Fig. 17.12 use for
reading records from, and writing records to, a file sequentially. This class also belongs to
the BankLibrary DLL, so it is located in the same project as is class BankUIForm.

The Serializable attribute (line 6) indicates to the compiler that objects of class
Record can be serialized, or represented as sets of bytes—we can read and write these
bytes to our streams. Objects that we wish to write to or read from a stream must include
this attribute in their class definitions.

Class Record contains private data members account, firstName, last-
Name and balance (lines 9–12), which collectively represent all information necessary
to store record data. The default constructor (lines 15–17) sets these members to their
default (i.e., empty) values, and the overloaded constructor (lines 20–28) sets these mem-
bers to specified parameter values. Class Record also provides properties Account
(lines 31–43), FirstName (lines 46–58), LastName (lines 61–73) and Balance (lines
76–88) for accessing the account number, first name, last name and balance of each cus-
tomer, respectively.

772 Files and Streams Chapter 17

1 // Fig 17.7: BankUI.cs
2 // A reusable windows form for the examples in this chapter.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class BankUIForm : System.Windows.Forms.Form
12 {
13 private System.ComponentModel.Container components = null;
14
15 public System.Windows.Forms.Label accountLabel;
16 public System.Windows.Forms.TextBox accountTextBox;
17
18 public System.Windows.Forms.Label firstNameLabel;
19 public System.Windows.Forms.TextBox firstNameTextBox;
20
21 public System.Windows.Forms.Label lastNameLabel;
22 public System.Windows.Forms.TextBox lastNameTextBox;
23
24 public System.Windows.Forms.Label balanceLabel;
25 public System.Windows.Forms.TextBox balanceTextBox;
26
27 // number of TextBoxes on Form'
28 protected int TextBoxCount = 4;
29
30 // enumeration constants specify TextBox indices
31 public enum TextBoxIndices
32 {
33 ACCOUNT,
34 FIRST,
35 LAST,
36 BALANCE
37
38 } // end enum
39
40 [STAThread]
41 static void Main()
42 {
43 Application.Run(new BankUIForm());
44 }
45
46 // Visual Studio .NET generated code
47
48 // clear all TextBoxes
49 public void ClearTextBoxes()
50 {
51 // iterate through every Control on form
52 for (int i = 0; i < Controls.Count; i++)
53 {

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Base class for GUIs in our file-processing applications. (Part 1 of 3.)

Chapter 17 Files and Streams 773

54 Control myControl = Controls[i]; // get control
55
56 // determine whether Control is TextBox
57 if (myControl is TextBox)
58 {
59 // clear Text property (set to empty strng)
60 myControl.Text = "";
61 }
62 }
63
64 } // end method ClearTextBoxes
65
66 // set text box values to string array values
67 public void SetTextBoxValues(string[] values)
68 {
69 // determine whether string array has correct length
70 if (values.Length != TextBoxCount)
71 {
72 // throw exception if not correct length
73 throw(new ArgumentException("There must be " +
74 (TextBoxCount + 1) + " strings in the array"));
75 }
76
77 // set array values if array has correct length
78 else
79 {
80 // set array values to text box values
81 accountTextBox.Text =
82 values[(int)TextBoxIndices.ACCOUNT];
83 firstNameTextBox.Text =
84 values[(int)TextBoxIndices.FIRST];
85 lastNameTextBox.Text =
86 values[(int)TextBoxIndices.LAST];
87 balanceTextBox.Text =
88 values[(int)TextBoxIndices.BALANCE];
89 }
90
91 } // end method SetTextBoxValues
92
93 // return text box values as string array
94 public string[] GetTextBoxValues()
95 {
96 string[] values = new string[TextBoxCount];
97
98 // copy text box fields to string array
99 values[(int)TextBoxIndices.ACCOUNT] =
100 accountTextBox.Text;
101 values[(int)TextBoxIndices.FIRST] =
102 firstNameTextBox.Text;
103 values[(int)TextBoxIndices.LAST] =
104 lastNameTextBox.Text;
105 values[(int)TextBoxIndices.BALANCE] =
106 balanceTextBox.Text;

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Base class for GUIs in our file-processing applications. (Part 2 of 3.)

774 Files and Streams Chapter 17

107
108 return values;
109
110 } // end method GetTextBoxValues
111
112 } // end class BankUIForm

1 // Fig. 17.8: Record.cs
2 // Serializable class that represents a data record.
3
4 using System;
5
6 [Serializable]
7 public class Record
8 {
9 private int account;

10 private string firstName;
11 private string lastName;
12 private double balance;
13
14 // default constructor sets members to default values
15 public Record() : this(0, "", "", 0.0)
16 {
17 }
18
19 // overloaded constructor sets members to parameter values
20 public Record(int accountValue, string firstNameValue,
21 string lastNameValue, double balanceValue)
22 {
23 Account = accountValue;
24 FirstName = firstNameValue;
25 LastName = lastNameValue;
26 Balance = balanceValue;
27
28 } // end constructor
29

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Record for sequential-access file-processing applications. (Part 1 of 3.)

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Base class for GUIs in our file-processing applications. (Part 3 of 3.)

Chapter 17 Files and Streams 775

30 // property Account
31 public int Account
32 {
33 get
34 {
35 return account;
36 }
37
38 set
39 {
40 account = value;
41 }
42
43 } // end property Account
44
45 // property FirstName
46 public string FirstName
47 {
48 get
49 {
50 return firstName;
51 }
52
53 set
54 {
55 firstName = value;
56 }
57
58 } // end property FirstName
59
60 // property LastName
61 public string LastName
62 {
63 get
64 {
65 return lastName;
66 }
67
68 set
69 {
70 lastName = value;
71 }
72
73 } // end property LastName
74
75 // property Balance
76 public double Balance
77 {
78 get
79 {
80 return balance;
81 }
82

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Record for sequential-access file-processing applications. (Part 2 of 3.)

776 Files and Streams Chapter 17

Class CreateFileForm (Fig. 17.9) uses instances of class Record to create a
sequential-access file that might be used in an accounts receivable system—i.e., a program
that organizes data regarding money owed by a company’s credit clients. For each client,
the program obtains an account number and the client’s first name, last name and balance
(i.e., the amount of money that the client owes to the company for previously received
goods or services). The data obtained for each client constitutes a record for that client. In
this application, the account number represents the record key—files are created and main-
tained in account-number order. This program assumes that the user enters records in
account-number order. However, a comprehensive accounts receivable system would pro-
vide a sorting capability. The user could enter the records in any order, and the records then
could be sorted and written to the file in order. (Note that all outputs in this chapter should
be read row by row, from left to right in each row.)

Figure 17.9 contains the code for class CreateFileForm, which either creates or
opens a file (depending on whether one exists), then allows the user to write bank informa-
tion to that file. Line 16 imports the BankLibrary namespace; this namespace contains
class BankUIForm, from which class CreateFileForm inherits (line 18). Because of
this inheritance relationship, the CreateFileForm GUI is similar to that of class
BankUIForm (shown in the Fig. 17.9 output), except that the inherited class contains but-
tons Save As, Enter and Exit.

When the user clicks the Save As button, the program invokes method
saveButton_Click (lines 41–85). Line 45 instantiates an object of class SaveFile-
Dialog, which belongs to the System.Windows.Forms namespace. Objects of this
class are used for selecting files (see the second screen in Fig. 17.9). Line 46 calls method
ShowDialog of the SaveFileDialog object to display the SaveFileDialog.
When displayed, a SaveFileDialog prevents the user from interacting with any other
window in the program until the user closes the SaveFileDialog by clicking either
Save or Cancel. Dialogs that behave in this fashion are called modal dialogs. The user
selects the appropriate drive, directory and file name, then clicks Save. Method ShowD-
ialog returns an integer specifying which button (Save or Cancel) the user clicked to
close the dialog. In this example, the Form property DialogResult receives this
integer. Line 53 tests whether the user clicked Cancel by comparing the value returned by
property DialogResult to constant DialogResult.Cancel. If the values are
equal, method saveButton_Click returns (line 54). If the values are unequal (i.e., the
user clicked Save, instead of clicking Cancel), line 57 uses property FileName of class
SaveFileDialog to obtain the user-selected file.

83 set
84 {
85 balance = value;
86 }
87
88 } // end property Balance
89
90 } // end class Record

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Record for sequential-access file-processing applications. (Part 3 of 3.)

Chapter 17 Files and Streams 777

1 // Fig 17.9: CreateSequentialAccessFile.cs
2 // Creating a sequential-access file.
3
4 // C# namespaces
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.IO;
12 using System.Runtime.Serialization.Formatters.Binary;
13 using System.Runtime.Serialization;
14
15 // Deitel namespace
16 using BankLibrary;
17
18 public class CreateFileForm : BankUIForm
19 {
20 private System.Windows.Forms.Button saveButton;
21 private System.Windows.Forms.Button enterButton;
22 private System.Windows.Forms.Button exitButton;
23
24 private System.ComponentModel.Container components = null;
25
26 // serializes Record in binary format
27 private BinaryFormatter formatter = new BinaryFormatter();
28
29 // stream through which serializable data is written to file
30 private FileStream output;
31
32 [STAThread]
33 static void Main()
34 {
35 Application.Run(new CreateFileForm());
36 }
37
38 // Visual Studio .NET generated code
39
40 // invoked when user clicks Save button
41 private void saveButton_Click(
42 object sender, System.EventArgs e)
43 {
44 // create dialog box enabling user to save file
45 SaveFileDialog fileChooser = new SaveFileDialog();
46 DialogResult result = fileChooser.ShowDialog();
47 string fileName; // name of file to save data
48
49 // allow user to create file
50 fileChooser.CheckFileExists = false;
51

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Create and write to a sequential-access file. (Part 1 of 5.)

778 Files and Streams Chapter 17

52 // exit event handler if user clicked "Cancel"
53 if (result == DialogResult.Cancel)
54 return;
55
56 // get specified file name
57 fileName = fileChooser.FileName;
58
59 // show error if user specified invalid file
60 if (fileName == "" || fileName == null)
61 MessageBox.Show("Invalid File Name", "Error",
62 MessageBoxButtons.OK, MessageBoxIcon.Error);
63 else
64 {
65 // save file via FileStream if user specified valid file
66 try
67 {
68 // open file with write access
69 output = new FileStream(fileName,
70 FileMode.OpenOrCreate, FileAccess.Write);
71
72 // disable Save button and enable Enter button
73 saveButton.Enabled = false;
74 enterButton.Enabled = true;
75 }
76
77 // handle exception if file does not exist
78 catch (FileNotFoundException)
79 {
80 // notify user if file does not exist
81 MessageBox.Show("File Does Not Exist", "Error",
82 MessageBoxButtons.OK, MessageBoxIcon.Error);
83 }
84 }
85 } // end method saveButton_Click
86
87 // invoke when user clicks Enter button
88 private void enterButton_Click(
89 object sender, System.EventArgs e)
90 {
91 // store TextBox values string array
92 string[] values = GetTextBoxValues();
93
94 // Record containing TextBox values to serialize
95 Record record = new Record();
96
97 // determine whether TextBox account field is empty
98 if (values[(int)TextBoxIndices.ACCOUNT] != "")
99 {
100 // store TextBox values in Record and serialize Record
101 try
102 {

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Create and write to a sequential-access file. (Part 2 of 5.)

Chapter 17 Files and Streams 779

103 // get account number value from TextBox
104 int accountNumber = Int32.Parse(
105 values[(int)TextBoxIndices.ACCOUNT]);
106
107 // determine whether accountNumber is valid
108 if (accountNumber > 0)
109 {
110 // store TextBox fields in Record
111 record.Account = accountNumber;
112 record.FirstName =
113 values[(int)TextBoxIndices.FIRST];
114 record.LastName =
115 values[(int)TextBoxIndices.LAST];
116 record.Balance = Double.Parse(values[
117 (int)TextBoxIndices.BALANCE]);
118
119 // write Record to FileStream (serialize object)
120 formatter.Serialize(output, record);
121 }
122 else
123 {
124 // notify user if invalid account number
125 MessageBox.Show("Invalid Account Number", "Error",
126 MessageBoxButtons.OK, MessageBoxIcon.Error);
127 }
128 }
129
130 // notify user if error occurs in serialization
131 catch(SerializationException)
132 {
133 MessageBox.Show("Error Writing to File", "Error",
134 MessageBoxButtons.OK, MessageBoxIcon.Error);
135 }
136
137 // notify user if error occurs regarding parameter format
138 catch(FormatException)
139 {
140 MessageBox.Show("Invalid Format", "Error",
141 MessageBoxButtons.OK, MessageBoxIcon.Error);
142 }
143 }
144
145 ClearTextBoxes(); // clear TextBox values
146
147 } // end method enterButton_Click
148
149 // invoked when user clicks Exit button
150 private void exitButton_Click(
151 object sender, System.EventArgs e)
152 {
153 // determine whether file exists
154 if (output != null)
155 {

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Create and write to a sequential-access file. (Part 3 of 5.)

780 Files and Streams Chapter 17

156 // close file
157 try
158 {
159 output.Close();
160 }
161
162 // notify user of error closing file
163 catch(IOException)
164 {
165 MessageBox.Show("Cannot close file", "Error",
166 MessageBoxButtons.OK, MessageBoxIcon.Error);
167 }
168 }
169
170 Application.Exit();
171
172 } // end method exitButton_Click
173
174 } // end class CreateFileForm

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Create and write to a sequential-access file. (Part 4 of 5.)

BankUI graphical
user interface

Files and directories

SaveFileDialog

Chapter 17 Files and Streams 781

As we stated previously in this chapter, we can open files to perform text manipulation
by creating objects of classes FileStream. In this example, we want the file to be opened
for output, so lines 69–70 instantiate a FileStream object. The FileStream con-
structor that we use receives three arguments—a string containing the name of the file
to be opened, a constant describing how to open the file and a constant describing the file
permissions. Line 70 passes constant FileMode.OpenOrCreate to the FileStream
constructor as the constructor’s second argument. This constant indicates that the
FileStream object should open the file if the file exists or create the file if the file does
not exist. C# offers other FileMode constants describing how to open files; we introduce

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Create and write to a sequential-access file. (Part 5 of 5.)

782 Files and Streams Chapter 17

these constants as we use them in examples. Line 70 passes constant FileAc-
cess.Write to the FileStream constructor as the constructor’s third argument. This
constant ensures that the program can perform write-only operations on the FileStream
object. C# provides two other constants for this parameter—FileAccess.Read for
read-only access and FileAccess.ReadWrite for both read and write access.

Good Programming Practice 17.1
When opening files, use the FileAccess enumeration to control user access to these files. 17.1

After the user types information in each TextBox, the user clicks the Enter button,
which calls method enterButton_Click (lines 88–147) to save data from the
TextBox in the user-specified file. If the user entered a valid account number (i.e., an
integer greater than zero), lines 112–118 store the TextBox values in an object of type
Record. If the user entered invalid data in one of the TextBoxes (such as entering non-
numeric characters in the Balance field), the program throws a FormatException.
The catch block in lines 138–142 handles such an exception by notifying the user (via a
MessageBox) of the improper format. If the user entered valid data, line 120 writes the
record to the file by invoking method Serialize of the BinaryFormatter object
(instantiated in line 27). Class BinaryFormatter uses methods Serialize and
Deserialize to write and read objects into streams, respectively. Method Serialize
writes the object’s representation to a file. Method Deserialize reads this representa-
tion from a file and reconstructs the original object. Both methods throw a Serializa-
tionException if an error occurs during serialization or deserialization (errors result
when the methods attempt to access streams or records that do not exist). Both methods
Serialize and Deserialize require a Stream object (e.g., the FileStream) as
a parameter so that the BinaryFormatter can access the correct file; the Binary-
Formatter must receive an instance of a class that derives from class Stream, because
Stream is abstract. Class BinaryFormatter belongs to the System.Run-
time.Serialization.Formatters.Binary namespace.

Common Programming Error 17.1
Failure to open a file before attempting to reference it in a program is a logic error. 17.1

When the user clicks the Exit button, the program invokes method
exitButton_Click (lines 150–172) to exit the application. Line 159 closes the
FileStream if one has been opened, and line 170 exits the program.

Performance Tip 17.1
Close each file explicitly when the program no longer needs to reference the file. This can
reduce resource usage in programs that continue executing long after they finish using a spe-
cific file. The practice of explicitly closing files also improves program clarity. 17.1

Performance Tip 17.2
Releasing resources explicitly when they are no longer needed makes them immediately
available for reuse by the program, thus improving resource utilization. 17.2

In the sample execution for the program in Fig. 17.9, we entered information for five
accounts (Fig. 17.10). The program does not depict how the data records are rendered in

Chapter 17 Files and Streams 783

the file. To verify that the file has been created successfully, in the next section, we create
a program to read and display the file.

17.6 Reading Data from a Sequential-Access File
Data are stored in files so that they can be retrieved for processing when they are needed.
The previous section demonstrated how to create a file for use in sequential-access appli-
cations. In this section, we discuss how to read (or retrieve) data sequentially from a file.
.

Class ReadSequentialAccessFileForm (Fig. 17.11) reads records from the
file created by the program in Fig. 17.9, then displays the contents of each record. Much of
the code in this example is similar to that of Fig. 17.9, so we discuss only the unique aspects
of the application.

When the user clicks the Open File button, the program calls method open-
Button_Click (lines 40–70). Line 44 instantiates an object of class OpenFile-
Dialog, and line 45 calls the object’s ShowDialog method to display the Open dialog
(see the second screenshot in Fig. 17.11). The behavior and GUI for the two dialog types
are the same (except that Save is replaced by Open). If the user inputs a valid file name,
lines 63–64 create a FileStream object and assign it to reference input. We pass con-
stant FileMode.Open as the second argument to the FileStream constructor. This
constant indicates that the FileStream should open the file if the file exists or should
throw a FileNotFoundException if the file does not exist. (In this example, the
FileStream constructor will not throw a FileNotFoundException, because the
OpenFileDialog requires the user to enter a name of a file that exists.) In the last
example (Fig. 17.9), we wrote text to the file using a FileStream object with write-only
access. In this example, (Fig. 17.11), we specify read-only access to the file by passing con-
stant FileAccess.Read as the third argument to the FileStream constructor.

Testing and Debugging Tip 17.1
Open a file with the FileAccess.Read file-open mode if the contents of the file should
not be modified. This prevents unintentional modification of the file’s contents. 17.1

When the user clicks the Next Record button, the program calls method
nextButton_Click (lines 73–113), which reads the next record from the user-speci-
fied file. (The user must click Next Record after opening the file to view the first record.)
Lines 80–81 call method Deserialize of the BinaryFormatter object to read the
next record. Method Deserialize reads the data and casts the result to a Record—this

Account Number First Name Last Name Balance

100 Nancy Brown -25.54

200 Stacey Dunn 314.33

300 Doug Barker 0.00

400 Dave Smith 258.34

500 Sam Stone 34.98

Fig. 17.10Fig. 17.10Fig. 17.10Fig. 17.10 Sample data for the program of Fig. 17.9.

784 Files and Streams Chapter 17

cast is necessary, because Deserialize returns a reference of type Object. Lines 84–
91 then display the Record values in the TextBoxes. When method Deserialize
attempts to deserialize a record that does not exist in the file (i.e., the program has displayed
all file records), the method throws a SerializationException. The catch block
(lines 95–111) that handles this exception closes the FileStream object (line 98) and
notifies the user that there are no more records (lines 109–110).

1 // Fig. 17.11: ReadSequentialAccessFile.cs
2 // Reading a sequential-access file.
3
4 // C# namespaces
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.IO;
12 using System.Runtime.Serialization.Formatters.Binary;
13 using System.Runtime.Serialization;
14
15 // Deitel namespaces
16 using BankLibrary;
17
18 public class ReadSequentialAccessFileForm : BankUIForm
19 {
20 System.Windows.Forms.Button openButton;
21 System.Windows.Forms.Button nextButton;
22
23 private System.ComponentModel.Container components = null;
24
25 // stream through which serializable data are read from file
26 private FileStream input;
27
28 // object for deserializing Record in binary format
29 private BinaryFormatter reader = new BinaryFormatter();
30
31 [STAThread]
32 static void Main()
33 {
34 Application.Run(new ReadSequentialAccessFileForm());
35 }
36
37 // Visual Studio .NET generated code
38
39 // invoked when user clicks Open button
40 private void openButton_Click(
41 object sender, System.EventArgs e)
42 {
43 // create dialog box enabling user to open file
44 OpenFileDialog fileChooser = new OpenFileDialog();
45 DialogResult result = fileChooser.ShowDialog();

Fig. 17.11Fig. 17.11Fig. 17.11Fig. 17.11 Reading sequential-access files. (Part 1 of 4.)

Chapter 17 Files and Streams 785

46 string fileName; // name of file containing data
47
48 // exit event handler if user clicked Cancel
49 if (result == DialogResult.Cancel)
50 return;
51
52 // get specified file name
53 fileName = fileChooser.FileName;
54 ClearTextBoxes();
55
56 // show error if user specified invalid file
57 if (fileName == "" || fileName == null)
58 MessageBox.Show("Invalid File Name", "Error",
59 MessageBoxButtons.OK, MessageBoxIcon.Error);
60 else
61 {
62 // create FileStream to obtain read access to file
63 input = new FileStream(fileName, FileMode.Open,
64 FileAccess.Read);
65
66 // enable next record button
67 nextButton.Enabled = true;
68 }
69
70 } // end method openButton_Click
71
72 // invoked when user clicks Next button
73 private void nextButton_Click(
74 object sender, System.EventArgs e)
75 {
76 // deserialize Record and store data in TextBoxes
77 try
78 {
79 // get next Record available in file
80 Record record =
81 (Record)reader.Deserialize(input);
82
83 // store Record values in temporary string array
84 string[] values = new string[] {
85 record.Account.ToString(),
86 record.FirstName.ToString(),
87 record.LastName.ToString(),
88 record.Balance.ToString() };
89
90 // copy string array values to TextBox values
91 SetTextBoxValues(values);
92 }
93
94 // handle exception when no Records in file
95 catch(SerializationException)
96 {\
97 // close FileStream if no Records in file
98 input.Close();

Fig. 17.11Fig. 17.11Fig. 17.11Fig. 17.11 Reading sequential-access files. (Part 2 of 4.)

786 Files and Streams Chapter 17

99
100 // enable Open Record button
101 openButton.Enabled = true;
102
103 // disable Next Record button
104 nextButton.Enabled = false;
105
106 ClearTextBoxes();
107
108 // notify user if no Records in file
109 MessageBox.Show("No more records in file", "",
110 MessageBoxButtons.OK, MessageBoxIcon.Information);
111 }
112
113 } // end method nextButton_Click
114
115 } // end class ReadSequentialAccessFileForm

Fig. 17.11Fig. 17.11Fig. 17.11Fig. 17.11 Reading sequential-access files. (Part 3 of 4.)

Chapter 17 Files and Streams 787

To retrieve data sequentially from a file, programs normally start from the beginning
of the file, reading data consecutively until the desired data are found. It sometimes is nec-
essary to process a file sequentially several times (from the beginning of the file) during the
execution of a program. A FileStream object can reposition its file-position pointer
(which contains the byte number of the next byte to be read from or written to the file) to
any position in the file—we show this feature when we introduce random-access file-pro-
cessing applications. When a FileStream object is opened, its file-position pointer is set
to zero (i.e., the beginning of the file)

Fig. 17.11Fig. 17.11Fig. 17.11Fig. 17.11 Reading sequential-access files. (Part 4 of 4.)

788 Files and Streams Chapter 17

Performance Tip 17.3
It is time-consuming to close and reopen a file for the purpose of moving the file-position
pointer to the file’s beginning. Doing so frequently could slow program performance. 17.3

We now present a more substantial program that builds on the concepts employed in
Fig. 17.11. Class creditInquiryForm (Fig. 17.12) is a credit-inquiry program that
enables a credit manager to display account information for those customers with credit
balances (i.e., customers to whom the company owes money), zero balances (i.e., cus-
tomers who do not owe the company money) and debit balances (i.e., customers who owe
the company money for previously received goods and services). Note that line 21 declares
a RichTextBox that will display the account information. RichTextBoxes provide
more functionality than do regular TextBoxes—for example, RichTextBoxes offer
method Find for searching individual strings and method LoadFile for displaying file
contents. Class RichTextBox does not inherit from class TextBox; rather, both classes
inherit directly from abstract class System.Windows.Forms.TextBoxBase.
We use a RichTextBox in this example, because a RichTextBox displays multiple
lines of text by default, whereas a regular TextBox displays only one. Alternatively, we
could have specified that a TextBox object display multiple lines of text by setting its
Multiline property to true

The program in Fig. 17.12 displays buttons that enable a credit manager to obtain
credit information. The Open File button opens a file for gathering data. The Credit Bal-
ances button displays a list of accounts that have credit balances, the Debit Balances
button displays a list of accounts that have debit balances, and the Zero Balances button
displays a list of accounts that have zero balances. The Done button exits the application.

When the user clicks the Open File button, the program calls method
openButton_Click (lines 49–76). Line 53 instantiates an object of class OpenFile-
Dialog, and line 54 calls the object’s ShowDialog method to display the Open dialog,
in which the user inputs the name of the file to open. .

When the user clicks Credit Balances, Debit Balances or Zero Balances, the
program invokes method get_Click (lines 80–142). Line 83 casts the sender param-
eter, which is a reference to the object that sent the event, to a Button object. Line 86
extracts the Button object’s text, which the program uses to determine which GUI
Button the user clicked. Lines 96–97 create a FileStream object with read-only file
access and assign it to reference input. Lines 102–125 define a while loop that uses
private method ShouldDisplay (lines 145–170) to determine whether to display
each record in the file. The while loop obtains each record by calling method Deseri-
alize of the FileStream object repeatedly (line 105). When the file-position pointer
reaches the end of file, method Deserialize throws a SerializationException,
which the catch block in lines 136–140 handles: Line 139 calls the Close method of
FileStream to close the file, and method get_Click returns.

1 // Fig. 17.12: CreditInquiry.cs
2 // Read a file sequentially and display contents based on
3 // account type specified by user (credit, debit or zero balances).
4

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 Credit-inquiry program. (Part 1 of 7.)

Chapter 17 Files and Streams 789

5 // C# namespaces
6 using System;
7 using System.Drawing;
8 using System.Collections;
9 using System.ComponentModel;

10 using System.Windows.Forms;
11 using System.Data;
12 using System.IO;
13 using System.Runtime.Serialization.Formatters.Binary;
14 using System.Runtime.Serialization;
15
16 // Deitel namespaces
17 using BankLibrary;
18
19 public class CreditInquiryForm : System.Windows.Forms.Form
20 {
21 private System.Windows.Forms.RichTextBox displayTextBox;
22
23 private System.Windows.Forms.Button doneButton;
24 private System.Windows.Forms.Button zeroButton;
25 private System.Windows.Forms.Button debitButton;
26 private System.Windows.Forms.Button creditButton;
27 private System.Windows.Forms.Button openButton;
28
29 private System.ComponentModel.Container components = null;
30
31 // stream through which serializable data are read from file
32 private FileStream input;
33
34 // object for deserializing Record in binary format
35 BinaryFormatter reader = new BinaryFormatter();
36
37 // name of file that stores credit, debit and zero balances
38 private string fileName;
39
40 [STAThread]
41 static void Main()
42 {
43 Application.Run(new CreditInquiryForm());
44 }
45
46 // Visual Studio .NET generated code
47
48 // invoked when user clicks Open File button
49 private void openButton_Click(
50 object sender, System.EventArgs e)
51 {
52 // create dialog box enabling user to open file
53 OpenFileDialog fileChooser = new OpenFileDialog();
54 DialogResult result = fileChooser.ShowDialog();
55

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 Credit-inquiry program. (Part 2 of 7.)

790 Files and Streams Chapter 17

56 // exit event handler if user clicked Cancel
57 if (result == DialogResult.Cancel)
58 return;
59
60 // get name from user
61 fileName = fileChooser.FileName;
62
63 // show error if user specified invalid file
64 if (fileName == "" || fileName == null)
65 MessageBox.Show("Invalid File Name", "Error",
66 MessageBoxButtons.OK, MessageBoxIcon.Error);
67 else
68 {
69 // enable all GUI buttons, except for Open file button
70 openButton.Enabled = false;
71 creditButton.Enabled = true;
72 debitButton.Enabled = true;
73 zeroButton.Enabled = true;
74 }
75
76 } // end method openButton_Click
77
78 // invoked when user clicks credit balances,
79 // debit balances or zero balances button
80 private void get_Click(object sender, System.EventArgs e)
81 {
82 // convert sender explicitly to object of type button
83 Button senderButton = (Button)sender;
84
85 // get text from clicked Button, which stores account type
86 string accountType = senderButton.Text;
87
88 // read and display file information
89 try
90 {
91 // close file from previous operation
92 if (input != null)
93 input.Close();
94
95 // create FileStream to obtain read access to file
96 input = new FileStream(fileName, FileMode.Open,
97 FileAccess.Read);
98
99 displayTextBox.Text = "The accounts are:\r\n";
100
101 // traverse file until end of file
102 while (true)
103 {
104 // get next Record available in file
105 Record record = (Record)reader.Deserialize(input);
106
107 // store record's last field in balance
108 Double balance = record.Balance;

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 Credit-inquiry program. (Part 3 of 7.)

Chapter 17 Files and Streams 791

109
110 // determine whether to display balance
111 if (ShouldDisplay(balance, accountType))
112 {
113 // display record
114 string output = record.Account + "\t" +
115 record.FirstName + "\t" + record.LastName +
116 new string(' ', 6) + "\t";
117
118 // display balance with correct monetary format
119 output += String.Format(
120 "{0:F}", balance) + "\r\n";
121
122 // copy output to screen
123 displayTextBox.Text += output;
124 }
125 }
126 }
127
128 // handle exception when file cannot be closed
129 catch(IOException)
130 {
131 MessageBox.Show("Cannot Close File", "Error",
132 MessageBoxButtons.OK, MessageBoxIcon.Error);
133 }
134
135 // handle exception when no more records
136 catch(SerializationException)
137 {
138 // close FileStream if no Records in file
139 input.Close();
140 }
141
142 } // end method get_Click
143
144 // determine whether to display given record
145 private bool ShouldDisplay(double balance, string accountType)
146 {
147 if (balance > 0)
148 {
149 // display credit balances
150 if (accountType == "Credit Balances")
151 return true;
152 }
153
154 else if (balance < 0)
155 {
156 // display debit balances
157 if (accountType == "Debit Balances")
158 return true;
159 }
160

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 Credit-inquiry program. (Part 4 of 7.)

792 Files and Streams Chapter 17

161 else // balance == 0
162 {
163 // display zero balances
164 if (accountType == "Zero Balances")
165 return true;
166 }
167
168 return false;
169
170 } // end method ShouldDisplay
171
172 // invoked when user clicks Done button
173 private void doneButton_Click(
174 object sender, System.EventArgs e)
175 {
176 // determine whether file exists
177 if (input != null)
178 {
179 // close file
180 try
181 {
182 input.Close();
183 }
184
185 // handle exception if FileStream does not exist
186 catch(IOException)
187 {
188 // notify user of error closing file
189 MessageBox.Show("Cannot close file", "Error",
190 MessageBoxButtons.OK, MessageBoxIcon.Error);
191 }
192 }
193
194 Application.Exit();
195
196 } // end method doneButton_Click
197
198 } // end class CreditInquiryForm

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 Credit-inquiry program. (Part 5 of 7.)

Chapter 17 Files and Streams 793

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 Credit-inquiry program. (Part 6 of 7.)

794 Files and Streams Chapter 17

17.7 Random-Access Files
So far, we have explained how to create sequential-access files and how to search through
such files to locate particular information. However, sequential-access files are inappropri-
ate for so-called “instant-access” applications, in which a particular record of information
must be located immediately. Popular instant-access applications include airline-reserva-
tion systems, banking systems, point-of-sale systems, automated-teller machines and other
kinds of transaction-processing systems requiring rapid access to specific data. The bank
at which an individual has an account might have hundreds of thousands or even millions
of other customers; however, when that individual uses an automated teller machine, the
appropriate account is checked for sufficient funds in seconds. This type of instant access
is made possible by random-access files. Individual records of a random-access file can be
accessed directly (and quickly), without searching through potentially large numbers of
other records, as is necessary with sequential-access files. Random-access files sometimes
are called direct-access files.

As we discussed earlier in this chapter, C# does not impose structure on files, so
applications that use random-access files must implement the random-access capability.
There are a variety of techniques for creating random-access files. Perhaps the simplest
involves requiring that all records in a file be of a uniform, fixed length. The use of fixed-
length records enables a program to calculate (as a function of the record size and the
record key) the exact location of any record in relation to the beginning of the file. We
soon demonstrate how this facilitates immediate access to specific records, even in large
files.

Figure 17.13 illustrates the organization of a random-access file composed of fixed-
length records (each record in this figure is 100 bytes long). Students can consider a
random-access file as analogous to a railroad train with many cars, some of which are
empty and some of which contain contents.

Data can be inserted into a random-access file without destroying other data in the file.
In addition, previously stored data can be updated or deleted without rewriting the entire
file. In the following sections, we explain how to create a random-access file, write data to
that file, read data both sequentially and randomly, update data and delete data that is no
longer needed.

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 Credit-inquiry program. (Part 7 of 7.)

Chapter 17 Files and Streams 795

Figure 17.14 contains class RandomAccessRecord, which is used in the random-
access file-processing applications in this chapter. This class also belongs to the Bank-
Library DLL—i.e., it is part of the project that contains classes BankUIForm and
Record. (When adding class RandomAccessRecord to the project containing
BankUIForm and Record, remember to rebuild the project.)

Like class Record (Fig. 17.8), class RandomAccessRecord contains private
data members (lines 20–23) for storing record information, two constructors for setting
these members to default and parameter-specified values, respectively, and properties for
accessing these members. However, class RandomAccessRecord does not contain
attribute [Serializable] before its class definition. We do not serialize this class,
because C# does not provide a means to obtain an object’s size at runtime. This means that,
if we serialize the class, we cannot guarantee a fixed-length record size.

Instead of serializing the class, we fix the length of the private data members, then
write those data as a byte stream to the file. To fix this length, the set accessors of prop-
erties FirstName (lines 58–91) and LastName (lines 94–127) ensure that members
firstName and lastName are char arrays of exactly 15 elements. Each set accessor
receives as an argument a string representing the first name and last name, respectively.
If the string parameter contains fewer than 15 characters, the property’s set accessor
copies the string’s values to the char array, then populates the remainder with spaces.
If the string parameter contains more than 15 characters, the set accessor stores only
the first 15 characters of the string parameter into the char array.

Fig. 17.13Fig. 17.13Fig. 17.13Fig. 17.13 Random-access file with fixed-length records.

1 // Fig. 17.14: RandomAccessRecord.cs
2 // Data-record class for random-access applications.
3
4 using System;
5
6 public class RandomAccessRecord
7 {
8 // length of firstName and lastName
9 private const int CHAR_ARRAY_LENGTH = 15;

10
11 private const int SIZE_OF_CHAR = 2;
12 private const int SIZE_OF_INT32 = 4;
13 private const int SIZE_OF_DOUBLE = 8;

Fig. 17.14Fig. 17.14Fig. 17.14Fig. 17.14 Record for random-access file-processing applications. (Part 1 of 4.)

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

byte offsets
0 100 200 300 400 500

796 Files and Streams Chapter 17

14
15 // length of record
16 public const int SIZE = SIZE_OF_INT32 +
17 2 * (SIZE_OF_CHAR * CHAR_ARRAY_LENGTH) + SIZE_OF_DOUBLE;
18
19 // record data
20 private int account;
21 private char[] firstName = new char[CHAR_ARRAY_LENGTH];
22 private char[] lastName = new char[CHAR_ARRAY_LENGTH];
23 private double balance;
24
25 // default constructor sets members to default values
26 public RandomAccessRecord() : this(0, "", "", 0.0)
27 {
28 }
29
30 // overloaded counstructor sets members to parameter values
31 public RandomAccessRecord(int accountValue,
32 string firstNameValue, string lastNameValue,
33 double balanceValue)
34 {
35 Account = accountValue;
36 FirstName = firstNameValue;
37 LastName = lastNameValue;
38 Balance = balanceValue;
39
40 } // end constructor
41
42 // property Account
43 public int Account
44 {
45 get
46 {
47 return account;
48 }
49
50 set
51 {
52 account = value;
53 }
54
55 } // end property Account
56
57 // property FirstName
58 public string FirstName
59 {
60 get
61 {
62 return new string(firstName);
63 }
64

Fig. 17.14Fig. 17.14Fig. 17.14Fig. 17.14 Record for random-access file-processing applications. (Part 2 of 4.)

Chapter 17 Files and Streams 797

65 set
66 {
67 // determine length of string parameter
68 int stringSize = value.Length;
69
70 // firstName string representation
71 string firstNameString = value;
72
73 // append spaces to string parameter if too short
74 if (CHAR_ARRAY_LENGTH >= stringSize)
75 {
76 firstNameString = value +
77 new string(' ', CHAR_ARRAY_LENGTH - stringSize);
78 }
79 else
80 {
81 // remove characters from string parameter if too long
82 firstNameString =
83 value.Substring(0, CHAR_ARRAY_LENGTH);
84 }
85
86 // convert string parameter to char array
87 firstName = firstNameString.ToCharArray();
88
89 } // end set
90
91 } // end property FirstName
92
93 // property LastName
94 public string LastName
95 {
96 get
97 {
98 return new string(lastName);
99 }
100
101 set
102 {
103 // determine length of string parameter
104 int stringSize = value.Length;
105
106 // lastName string representation
107 string lastNameString = value;
108
109 // append spaces to string parameter if too short
110 if (CHAR_ARRAY_LENGTH >= stringSize)
111 {
112 lastNameString = value +
113 new string(' ', CHAR_ARRAY_LENGTH - stringSize);
114 }

Fig. 17.14Fig. 17.14Fig. 17.14Fig. 17.14 Record for random-access file-processing applications. (Part 3 of 4.)

798 Files and Streams Chapter 17

Lines 16–17 declare const SIZE, which specifies the record’s length. Each record con-
tains account (4-byte int), firstName and lastName (two 15-element char arrays,
where each char occupies two bytes, resulting in a total of 60 bytes) and balance (8-byte
double). In this example, each record (i.e., the four private data members that our pro-
grams will read to and write from files) occupies 72 bytes (4 bytes + 60 bytes + 8 bytes).

17.8 Creating a Random-Access File
Consider the following problem statement for a credit-processing application:

Create a transaction-processing program capable of storing a maximum of 100 fixed-length
records for a company that can have a maximum of 100 customers. Each record consists of
an account number (which acts as the record key), a last name, a first name and a balance.
The program can update an account, create an account and delete an account.

The next several sections introduce the techniques necessary to create this credit-pro-
cessing program. We now discuss the program used to create the random-access file that
the programs of Fig. 17.16 and Fig. 17.17 and the transaction-processing application use to
manipulate data. Class CreateRandomAccessFile (Fig. 17.15) creates a random-
access file.

115 else
116 {
117 // remove characters from string parameter if too long
118 lastNameString =
119 value.Substring(0, CHAR_ARRAY_LENGTH);
120 }
121
122 // convert string parameter to char array
123 lastName = lastNameString.ToCharArray();
124
125 } // end set
126
127 } // end property LastName
128
129 // property Balance
130 public double Balance
131 {
132 get
133 {
134 return balance;
135 }
136
137 set
138 {
139 balance = value;
140 }
141
142 } // end property Balance
143
144 } // end class RandomAccessRecord

Fig. 17.14Fig. 17.14Fig. 17.14Fig. 17.14 Record for random-access file-processing applications. (Part 4 of 4.)

Chapter 17 Files and Streams 799

1 // Fig. 17.15: CreateRandomAccessFile.cs
2 // Creating a random file.
3
4 // C# namespaces
5 using System;
6 using System.IO;
7 using System.Windows.Forms;
8
9 // Deitel namespaces

10 using BankLibrary;
11
12 class CreateRandomAccessFile
13 {
14 // number of records to write to disk
15 private const int NUMBER_OF_RECORDS = 100;
16
17 [STAThread]
18 static void Main(string[] args)
19 {
20 // create random file, then save to disk
21 CreateRandomAccessFile file = new CreateRandomAccessFile();
22 file.SaveFile();
23
24 } // end method Main
25
26 // write records to disk
27 private void SaveFile()
28 {
29 // record for writing to disk
30 RandomAccessRecord blankRecord = new RandomAccessRecord();
31
32 // stream through which serializable data are written to file
33 FileStream fileOutput = null;
34
35 // stream for writing bytes to file
36 BinaryWriter binaryOutput = null;
37
38 // create dialog box enabling user to save file
39 SaveFileDialog fileChooser = new SaveFileDialog();
40 DialogResult result = fileChooser.ShowDialog();
41
42 // get file name from user
43 string fileName = fileChooser.FileName;
44
45 // exit event handler if user clicked Cancel
46 if (result == DialogResult.Cancel)
47 return;
48
49 // show error if user specified invalid file
50 if (fileName == "" || fileName == null)
51 MessageBox.Show("Invalid File Name", "Error",
52 MessageBoxButtons.OK, MessageBoxIcon.Error);

Fig. 17.15Fig. 17.15Fig. 17.15Fig. 17.15 Creating files for random-access file-processing applications. (Part 1 of 3.)

800 Files and Streams Chapter 17

53 else
54 {
55 // write records to file
56 try
57 {
58 // create FileStream to hold records
59 fileOutput = new FileStream(fileName,
60 FileMode.Create, FileAccess.Write);
61
62 // set length of file
63 fileOutput.SetLength(RandomAccessRecord.SIZE *
64 NUMBER_OF_RECORDS);
65
66 // create object for writing bytes to file
67 binaryOutput = new BinaryWriter(fileOutput);
68
69 // write empty records to file
70 for (int i = 0; i < NUMBER_OF_RECORDS; i++)
71 {
72 // set file position pointer in file
73 fileOutput.Position = i * RandomAccessRecord.SIZE;
74
75 // write blank record to file
76 binaryOutput.Write(blankRecord.Account);
77 binaryOutput.Write(blankRecord.FirstName);
78 binaryOutput.Write(blankRecord.LastName);
79 binaryOutput.Write(blankRecord.Balance);
80 }
81
82 // notify user of success
83 MessageBox.Show("File Created", "Success",
84 MessageBoxButtons.OK, MessageBoxIcon.Information);
85 }
86
87 // handle exception if error occurs during writing
88 catch(IOException)
89 {
90 // notify user of error
91 MessageBox.Show("Cannot write to file", "Error",
92 MessageBoxButtons.OK, MessageBoxIcon.Error);
93 }
94 }
95
96 // close FileStream
97 if (fileOutput == null)
98 fileOutput.Close();
99
100 // close BinaryWriter
101 if (binaryOutput == null)
102 binaryOutput.Close();
103
104 } // end method SaveFile
105 } // end class CreateRandomAccessFile

Fig. 17.15Fig. 17.15Fig. 17.15Fig. 17.15 Creating files for random-access file-processing applications. (Part 2 of 3.)

Chapter 17 Files and Streams 801

Method Main (lines 18–24) starts the application, which creates a random-access file
by calling user-defined method SaveFile (lines 27–104). Method SaveFile populates
a file with 100 copies of the default (i.e., empty) values for private data members
account, firstName, lastName and balance of class RandomAccessRecord.
Lines 39–40 create and display the SaveFileDialog, which enables a user to specify
the file to which the program writes data. Using this file, lines 59–60 instantiate the
FileStream. Note that line 60 passes constant FileMode.Create, which either cre-
ates the specified file, if the file does not exist, or overwrites the specified file if it does
exist. Lines 63–64 sets the FileStream’s length, which is equal to the size of an indi-
vidual RandomAccessRecord (obtained through constant RandomAccess-
Record.SIZE) multiplied by the number of records we want to copy (obtained through
constant NUMBER_OF_RECORDS in line 15, which we set to value 100).

We now require a means to write bytes to a file. Class BinaryWriter of namespace
System.IO provides methods for writing bytes to streams. The BinaryWriter con-
structor takes as an argument a reference to an instance of class System.IO.Stream,
through which the BinaryWriter can write bytes. Class FileStream provides
methods for writing streams to files and inherits from class Stream, so we can pass the
FileStream object as an argument to the BinaryWriter constructor (line 67). Now,
we can use the BinaryWriter to write bytes directly to the file.

Lines 70–80 populate the file with 100 copies of the empty record values (i.e., default
values for private data members of class RandomAccessRecord). Line 73 changes
the file-position pointer to specify the location in the file at which to write the next empty
record. Now that we are working with a random-access file, we must set the file-pointer
explicitly, using the FileStream object’s Position property. This property receives

Fig. 17.15Fig. 17.15Fig. 17.15Fig. 17.15 Creating files for random-access file-processing applications. (Part 3 of 3.)

802 Files and Streams Chapter 17

as an argument a long value describing where to position the pointer relative to the begin-
ning of the file—in this example, we set the pointer so that it advances a number of bytes
that is equal to the record size (obtained by RandomAccessRecord.SIZE). Lines 76–
79 call method Write of the BinaryWriter object to write the data. Method Write is
an overloaded method that receives as an argument any primitive data type, then writes that
type to a stream of bytes. After the for loop exits, lines 97–102 close the FileStream
and BinaryWriter objects.

17.9 Writing Data Randomly to a Random-Access File
Now that we have created a random-access file, we use class WriteRandomAccess-
FileForm (Fig. 17.16) to write data to that file. When a user clicks the Open File button,
the program invokes method openButton_Click (lines 41–84), which displays the
OpenFileDialog for specifying the file in which to serialize data (lines 45–46); the pro-
gram then uses the specified file to create a FileStream object with write-only access
(lines 65–66). Line 69 uses the FileStream reference to instantiate an object of class
BinaryWriter, enabling the program to write bytes to files. We used the same approach
when working with class CreateRandomAccessFile (Fig. 17.15).

The user enters values in the TextBoxes for the account number, first name, last name
and balance. When the user clicks the Enter button, the program invokes method
enterButton_Click (lines 87–139), which writes the data in the TextBoxes to the
file. Line 91 calls method GetTextBoxValues (provided by base class BankUIForm)
to retrieve the data. Lines 104–105 determine whether the Account Number TextBox
holds valid information (i.e., the account number is in the 1–100 range).

1 // Fig 17.16: WriteRandomAccessFile.cs
2 // Write data to a random-access file.
3
4 // C# namespaces
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.IO;
12
13 // Deitel namespaces
14 using BankLibrary;
15
16 public class WriteRandomAccessFileForm : BankUIForm
17 {
18 private System.Windows.Forms.Button openButton;
19 private System.Windows.Forms.Button enterButton;
20
21 private System.ComponentModel.Container components = null;
22

Fig. 17.16Fig. 17.16Fig. 17.16Fig. 17.16 Writing records to random-access files. (Part 1 of 5.)

Chapter 17 Files and Streams 803

23 // number of RandomAccessRecords to write to disk
24 private const int NUMBER_OF_RECORDS = 100;
25
26 // stream through which data are written to file
27 private FileStream fileOutput;
28
29 // stream for writing bytes to file
30 private BinaryWriter binaryOutput;
31
32 [STAThread]
33 static void Main()
34 {
35 Application.Run(new WriteRandomAccessFileForm());
36 }
37
38 // Visual Studio .NET generated code
39
40 // invoked when user clicks Open button
41 private void openButton_Click(
42 object sender, System.EventArgs e)
43 {
44 // create dialog box enabling user to open file
45 OpenFileDialog fileChooser = new OpenFileDialog();
46 DialogResult result = fileChooser.ShowDialog();
47
48 // get file name from user
49 string fileName = fileChooser.FileName;
50
51 // exit event handler if user clicked Cancel
52 if (result == DialogResult.Cancel)
53 return;
54
55 // show error if user specified invalid file
56 if (fileName == "" || fileName == null)
57 MessageBox.Show("Invalid File Name", "Error",
58 MessageBoxButtons.OK, MessageBoxIcon.Error);
59 else
60 {
61 // open file if file already exists
62 try
63 {
64 // create FileStream to hold records
65 fileOutput = new FileStream(fileName,
66 FileMode.Open, FileAccess.Write);
67
68 // create object for writing bytes to file
69 binaryOutput = new BinaryWriter(fileOutput);
70
71 // disable Open button and enable Enter button
72 openButton.Enabled = false;
73 enterButton.Enabled = true;
74 }
75

Fig. 17.16Fig. 17.16Fig. 17.16Fig. 17.16 Writing records to random-access files. (Part 2 of 5.)

804 Files and Streams Chapter 17

76 // notify user if file does not exist
77 catch(IOException)
78 {
79 MessageBox.Show("File Does Not Exits", "Error",
80 MessageBoxButtons.OK, MessageBoxIcon.Error);
81 }
82 }
83
84 } // end method openButton_Click
85
86 // invoked when user clicks Enter button
87 private void enterButton_Click(
88 object sender, System.EventArgs e)
89 {
90 // TextBox values string array
91 string[] values = GetTextBoxValues();
92
93 // determine whether TextBox account field is empty
94 if (values[(int)TextBoxIndices.ACCOUNT] != "")
95 {
96 // write record to file at appropriate position
97 try
98 {
99 // get account number value from TextBox
100 int accountNumber = Int32.Parse(
101 values[(int)TextBoxIndices.ACCOUNT]);
102
103 // determine whether accountNumber is valid
104 if (accountNumber > 0 &&
105 accountNumber <= NUMBER_OF_RECORDS)
106 {
107 // move file position pointer
108 fileOutput.Seek((accountNumber - 1) *
109 RandomAccessRecord.SIZE, SeekOrigin.Begin);
110
111 // write data to file
112 binaryOutput.Write(accountNumber);
113 binaryOutput.Write(
114 values[(int)TextBoxIndices.FIRST]);
115 binaryOutput.Write(
116 values[(int)TextBoxIndices.LAST]);
117 binaryOutput.Write(Double.Parse(values[
118 (int)TextBoxIndices.BALANCE]));
119 }
120 else
121 {
122 // notify user if invalid account number
123 MessageBox.Show("Invalid Account Number", "Error",
124 MessageBoxButtons.OK, MessageBoxIcon.Error);
125 }
126 }
127

Fig. 17.16Fig. 17.16Fig. 17.16Fig. 17.16 Writing records to random-access files. (Part 3 of 5.)

Chapter 17 Files and Streams 805

128 // handle number-format exception
129 catch(FormatException)
130 {
131 // notify user if error occurs when formatting numbers
132 MessageBox.Show("Invalid Balance", "Error",
133 MessageBoxButtons.OK, MessageBoxIcon.Error);
134 }
135 }
136
137 ClearTextBoxes(); // clear text box values
138
139 } // end method enterButton_Click
140
141 } // end class WriteRandomAccessFileForm

Fig. 17.16Fig. 17.16Fig. 17.16Fig. 17.16 Writing records to random-access files. (Part 4 of 5.)

806 Files and Streams Chapter 17

Class WriteRandomAccessFileForm must determine the location in the
FileStream at which to insert the data from the TextBoxes. Lines 108–109 use method
Seek of the FileStream object to locate an exact point in the file. In this case, method
Seek sets the position of the file-position pointer for the FileStream object to the byte
location calculated by (accountNumber - 1) * RandomAccessRecord.SIZE.
Because the account numbers range from 1 to 100, we subtract 1 from the account number
when calculating the byte location of the record. For example, our use of method Seek sets
the first record’s file-position pointer to byte 0 of the file (the file’s beginning). The second
argument to method Seek is a member of the enumeration SeekOrigin and specifies
the location at which the method should begin seeking. We use const SeekOr-
igin.Begin, because we want the method to seek in relation to the beginning of the file.

Fig. 17.16Fig. 17.16Fig. 17.16Fig. 17.16 Writing records to random-access files. (Part 5 of 5.)

Chapter 17 Files and Streams 807

After the program determines the file location at which to place the record, lines 112–118
write the record to the file using the BinaryWriter (discussed in the previous section).

17.10 Reading Data Sequentially from a Random-Access File
In the previous sections, we created a random-access file and wrote data to that file. Here,
we develop a program (Fig. 17.17) that opens the file, reads records from it and displays
only the records that contain data (i.e., those records in which the account number is not
zero). This program also provides an additional benefit. Students should attempt to deter-
mine what it is—we will reveal it at the end of this section.

When the user clicks the Open File button, class ReadRandomAccessFileForm
invokes method openButton_Click (lines 41–75), which displays the OpenFile-
Dialog for specifying the file from which to read data. Lines 62–63 instantiate a
FileStream object that opens a file with read-only access. Line 66 creates an instance
of class BinaryReader, which reads bytes from a stream. We pass the FileStream
object as an argument to the BinaryReader constructor, thus enabling the Bina-
ryReader to read bytes from the file.

1 // Fig 17.17: ReadRandomAccessFile.cs
2 // Reads and displays random-access file contents.
3
4 // C# namespaces
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.IO;
12
13 // Deitel namespaces
14 using BankLibrary;
15
16 public class ReadRandomAccessFileForm : BankUIForm
17 {
18 private System.Windows.Forms.Button openButton;
19 private System.Windows.Forms.Button nextButton;
20
21 private System.ComponentModel.Container components = null;
22
23 // stream through which data are read from file
24 private FileStream fileInput;
25
26 // stream for reading bytes from file
27 private BinaryReader binaryInput;
28
29 // index of current record to be displayed
30 private int currentRecordIndex;
31

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 Reading records from random-access files sequentially. (Part 1 of 5.)

808 Files and Streams Chapter 17

32 [STAThread]
33 static void Main()
34 {
35 Application.Run(new ReadRandomAccessFileForm());
36 }
37
38 // Visual Studio .NET generated code
39
40 // invoked when user clicks Open button
41 private void openButton_Click(
42 object sender, System.EventArgs e)
43 {
44 // create dialog box enabling user to open file
45 OpenFileDialog fileChooser = new OpenFileDialog();
46 DialogResult result = fileChooser.ShowDialog();
47
48 // get file name from user
49 string fileName = fileChooser.FileName;
50
51 // exit eventhandler if user clicked Cancel
52 if (result == DialogResult.Cancel)
53 return;
54
55 // show error if user specified invalid file
56 if (fileName == "" || fileName == null)
57 MessageBox.Show("Invalid File Name", "Error",
58 MessageBoxButtons.OK, MessageBoxIcon.Error);
59 else
60 {
61 // create FileStream to obtain read access to file
62 fileInput = new FileStream(fileName,
63 FileMode.Open, FileAccess.Read);
64
65 // use FileStream for BinaryWriter to read bytes from file
66 binaryInput = new BinaryReader(fileInput);
67
68 openButton.Enabled = false; // disable Open button
69 nextButton.Enabled = true; // enable Next button
70
71 currentRecordIndex = 0;
72 ClearTextBoxes();
73 }
74
75 } // end method openButton_Click
76
77 // invoked when user clicks Next button
78 private void nextButton_Click(
79 object sender, System.EventArgs e)
80 {
81 // record to store file data
82 RandomAccessRecord record = new RandomAccessRecord();
83

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 Reading records from random-access files sequentially. (Part 2 of 5.)

Chapter 17 Files and Streams 809

84 // read record and store data in TextBoxes
85 try
86 {
87 string[] values; // for storing TextBox values
88
89 // get next record available in file
90 while(record.Account == 0)
91 {
92 // set file position pointer to next record in file
93 fileInput.Seek(
94 currentRecordIndex * RandomAccessRecord.SIZE, 0);
95
96 currentRecordIndex += 1;
97
98 // read data from record
99 record.Account = binaryInput.ReadInt32();
100 record.FirstName = binaryInput.ReadString();
101 record.LastName = binaryInput.ReadString();
102 record.Balance = binaryInput.ReadDouble();
103 }
104
105 // store record values in temporary string array
106 values = new string[] {
107 record.Account.ToString(),
108 record.FirstName,
109 record.LastName,
110 record.Balance.ToString() };
111
112 // copy string array values to TextBox values
113 SetTextBoxValues(values);
114 }
115
116 // handle exception when no records in file
117 catch(IOException)
118 {
119 // close streams if no records in file
120 fileInput.Close();
121 binaryInput.Close();
122
123 openButton.Enabled = true; // enable Open button
124 nextButton.Enabled = false; // disable Next button
125 ClearTextBoxes();
126
127 // notify user if no records in file
128 MessageBox.Show("No more records in file", "",
129 MessageBoxButtons.OK, MessageBoxIcon.Information);
130 }
131
132 } // end method nextButton_Click
133
134 } // end class ReadRandomAccessFileForm

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 Reading records from random-access files sequentially. (Part 3 of 5.)

810 Files and Streams Chapter 17

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 Reading records from random-access files sequentially. (Part 4 of 5.)

Chapter 17 Files and Streams 811

When the user clicks the Next button, the program calls method nextButton_Click
(lines 78–132), which reads the next record from the file. Line 82 instantiates a RandomAc-
cessRecord for storing the record data from the file. Lines 90–114 define a while loop
that reads from the file until it reaches a record that has a non-zero account number (0 is the
initial value for the account number). Lines 93–94 call method Seek of the FileStream
object, which moves the file-position pointer to the appropriate place in the file where the
record must be read. To accomplish this, method Seek uses int currentRe-
cordIndex, which stores the number of records that have been read. Lines 99–102 use the
BinaryReader object to store the file data in the RandomAccessRecord object. Recall
that class BinaryWriter provides overloaded Write methods for writing data. However,
class BinaryReader does not provide overloaded Read methods to read data. This means
that we must use method ReadInt32 to read an int, method ReadString to read a
string and method ReadDouble to read a double. Note that the order of these method
invocations must correspond to the order in which the BinaryWriter object wrote each
data type. When the BinaryReader reads a valid account number (i.e., a non-zero value),
the loop terminates, and lines 106–113 display the record values in the TextBoxes. When
the program has displayed all records, method Seek throws an IOException (because
method Seek tries to position the file-position pointer to a location that is beyond the end-of-
file marker). The catch block (lines 117–130) handles this exception by closing the
FileStream and BinaryReader objects (lines 120–121) and notifying the user that no
more records exist (lines 128–129).

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 Reading records from random-access files sequentially. (Part 5 of 5.)

812 Files and Streams Chapter 17

What about that additional benefit we promised? If students examine the GUI as the
program executes, they will notice that the program displays the records in ascending order
by account number! This is a simple consequence of using our direct-access techniques to
store these records in the file. Sorting with direct-access techniques is much faster than
sorting with the bubble sort presented in Chapter 7, Arrays. We achieve this improved
speed by making the file large enough to hold every possible record that a user might create.
Of course, this means that the file could be sparsely occupied most of the time, resulting in
a waste of storage. Here is yet another example of the space/time trade-off: By using large
amounts of space, we are able to develop a faster sorting algorithm.

17.11 Case Study: A Transaction-Processing Program
We now develop a substantial transaction-processing program (Fig. 17.18–Fig. 17.23) us-
ing a random-access file to achieve “instant-access” processing. The program maintains a
bank’s account information. Users of this program can add new accounts, update existing
accounts and delete accounts that are no longer needed. First, we discuss the transaction-
processing behavior (i.e., the class that enables the addition, updating and removal of ac-
counts). We then discuss the GUI, which contains windows that display the account infor-
mation and enable the user to invoke the application’s transaction-processing behavior.

Transaction-Processing Behavior
In this case study, we create class Transaction (Fig. 17.18), which acts as a proxy to
handle all transaction processing. Rather than providing the transaction-processing behav-
ior themselves, the objects in this application use an instance of Transaction to provide
the necessary functionality. By using a proxy, we can encapsulate transaction-processing
behavior in only one class, enabling various other classes in our application to reuse this
behavior. Furthermore, if we decide to modify this behavior, we modify only the proxy
(i.e., class Transaction), instead of having to modify the behavior of each class that
uses the proxy.

Class Transaction contains methods OpenFile, GetRecord and Add-
Record. Method OpenFile (lines 27–74) uses constant FileMode.OpenOrCreate
(line 33) to create a FileStream object from either an existing file or one not yet created.
Lines 36–39 use this FileStream to create BinaryReader and BinaryWriter
objects for reading and writing bytes to the file, respectively. If the file is new, lines 42–64
populate the FileStream object with empty records. Students might recall that we used
these techniques in Section 17.8.

1 // Fig. 17.18: Transaction.cs
2 // Handles record transactions.
3
4 // C# namespaces
5 using System;
6 using System.IO;
7 using System.Windows.Forms;
8

Fig. 17.18Fig. 17.18Fig. 17.18Fig. 17.18 Record-transaction class for the transaction-processor case study.
 (Part 1 of 4.)

Chapter 17 Files and Streams 813

9 // Deitel namespaces
10 using BankLibrary;
11
12 public class Transaction
13 {
14 // number of records to write to disk
15 private const int NUMBER_OF_RECORDS = 100;
16
17 // stream through which data move to and from file
18 private FileStream file;
19
20 // stream for reading bytes from file
21 private BinaryReader binaryInput;
22
23 // stream for writing bytes to file
24 private BinaryWriter binaryOutput;
25
26 // create/open file containing empty records
27 public void OpenFile(string fileName)
28 {
29 // write empty records to file
30 try
31 {
32 // create FileStream from new file or existing file
33 file = new FileStream(fileName, FileMode.OpenOrCreate);
34
35 // use FileStream for BinaryWriter to read bytes from file
36 binaryInput = new BinaryReader(file);
37
38 // use FileStream for BinaryWriter to write bytes to file
39 binaryOutput = new BinaryWriter(file);
40
41 // determine whether file has just been created
42 if (file.Length == 0)
43 {
44 // record to be written to file
45 RandomAccessRecord blankRecord =
46 new RandomAccessRecord();
47
48 // new record can hold NUMBER_OF_RECORDS records
49 file.SetLength(RandomAccessRecord.SIZE *
50 NUMBER_OF_RECORDS);
51
52 // write blank records to file
53 for (int i = 0; i < NUMBER_OF_RECORDS; i++)
54 {
55 // move file-position pointer to next position
56 file.Position = i * RandomAccessRecord.SIZE;
57
58 // write blank record to file
59 binaryOutput.Write(blankRecord.Account);
60 binaryOutput.Write(blankRecord.FirstName);

Fig. 17.18Fig. 17.18Fig. 17.18Fig. 17.18 Record-transaction class for the transaction-processor case study.
 (Part 2 of 4.)

814 Files and Streams Chapter 17

61 binaryOutput.Write(blankRecord.LastName);
62 binaryOutput.Write(blankRecord.Balance);
63 }
64 }
65 }
66
67 // notify user of error during writing of blank records
68 catch(IOException)
69 {
70 MessageBox.Show("Cannot create file", "Error",
71 MessageBoxButtons.OK, MessageBoxIcon.Error);
72 }
73
74 } // end method OpenFile
75
76 // retrieve record depending on whether account is valid
77 public RandomAccessRecord GetRecord(string accountValue)
78 {
79 // store file data associated with account in record
80 try
81 {
82 // record to store file data
83 RandomAccessRecord record = new RandomAccessRecord();
84
85 // get value from TextBox's account field
86 int accountNumber = Int32.Parse(accountValue);
87
88 // if account is invalid, do not read data
89 if (accountNumber < 1 ||
90 accountNumber > NUMBER_OF_RECORDS)
91 {
92 // set record's account field with account number
93 record.Account = accountNumber;
94 }
95
96 // get data from file if account is valid
97 else
98 {
99 // locate position in file where record exists
100 file.Seek((accountNumber - 1) *
101 RandomAccessRecord.SIZE, 0);
102
103 // read data from record
104 record.Account = binaryInput.ReadInt32();
105 record.FirstName = binaryInput.ReadString();
106 record.LastName = binaryInput.ReadString();
107 record.Balance = binaryInput.ReadDouble();
108 }
109
110 return record;
111 }
112

Fig. 17.18Fig. 17.18Fig. 17.18Fig. 17.18 Record-transaction class for the transaction-processor case study.
 (Part 3 of 4.)

Chapter 17 Files and Streams 815

Method GetRecord (lines 77–122) returns the record associated with the account-
number parameter. Line 83 instantiates a RandomAccessRecord object that will store
the file data. If the account parameter is valid, lines 100–101 call method Seek of the
FileStream object, which uses the parameter to determine the position of the specified
record in the file. Lines 104–107 then call methods ReadInt32, ReadString and
ReadDouble of the BinaryReader object to store the file data in the Random-

113 // notify user of error during reading
114 catch(IOException)
115 {
116 MessageBox.Show("Cannot read file", "Error",
117 MessageBoxButtons.OK, MessageBoxIcon.Error);
118 }
119
120 return null;
121
122 } // end method GetRecord;
123
124 // add record to file at position determined by accountNumber
125 public bool AddRecord(
126 RandomAccessRecord record, int accountNumber)
127 {
128 // write record to file
129 try
130 {
131 // move file position pointer to appropriate position
132 file.Seek((accountNumber - 1) *
133 RandomAccessRecord.SIZE, 0);
134
135 // write data to file
136 binaryOutput.Write(record.Account);
137 binaryOutput.Write(record.FirstName);
138 binaryOutput.Write(record.LastName);
139 binaryOutput.Write(record.Balance);
140 }
141
142 // notify user if error occurs during writing
143 catch(IOException)
144 {
145 MessageBox.Show("Error Writing To File", "Error",
146 MessageBoxButtons.OK, MessageBoxIcon.Error);
147
148 return false; // failure
149 }
150
151 return true; // success
152
153 } // end method AddRecord
154
155 } // end class Transaction

Fig. 17.18Fig. 17.18Fig. 17.18Fig. 17.18 Record-transaction class for the transaction-processor case study.
 (Part 4 of 4.)

816 Files and Streams Chapter 17

AccessRecord object. Line 110 returns the RandomAccessRecord object. We used
these techniques in Section 17.10.

Method AddRecord (lines 125–153) inserts a record into the file. Lines 132–133 call
method Seek of the FileStream object, which uses the account-number parameter to
locate the position at which to insert the record in the file. Lines 136–139 call the overloaded
Write methods of the BinaryWriter object to write the RandomAccessRecord
object’s data to the file. We used these techniques in Section 17.9. Note that, if an error occurs
when adding the record (i.e., either the FileStream or the BinaryWriter throws an
IOException), lines 145–146 notify the user of the error and return false (failure).

Transaction-Processor GUI
The GUI for this program uses a multiple-document interface. Class Transaction-
ProcessorForm (Fig. 17.19) is the parent window, and contains corresponding child
windows StartDialogForm (Fig. 17.20), NewDialogForm (Fig. 17.22), Update-
DialogForm (Fig. 17.21) and DeleteDialogForm (Fig. 17.23). StartDialog-
Form allows the user to open a file containing account information and provides access to
the NewDialogForm, UpdateDialogForm and DeleteDialogForm internal
frames. These frames allow users to update, create and delete records, respectively.

Initially, TransactionProcessorForm displays the StartDialogForm
object; this window provides the user with various options. It contains four buttons, which
enable the user to create or open a file, create a record, update an existing record or delete
an existing record.

1 // Fig. 17.19: TransactionProcessor.cs
2 // MDI parent for transaction-processor application.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class TransactionProcessorForm
12 : System.Windows.Forms.Form
13 {
14 private System.ComponentModel.Container components = null;
15 private System.Windows.Forms.MdiClient MdiClient1;
16
17 // reference to StartDialog
18 private StartDialogForm startDialog;
19
20 // constructor
21 public TransactionProcessorForm()
22 {
23 // required for Windows Form Designer support
24 InitializeComponent();
25

Fig. 17.19Fig. 17.19Fig. 17.19Fig. 17.19 TransactionProcessorForm class runs the transaction-processor
application. (Part 1 of 2.)

Chapter 17 Files and Streams 817

Before the user can modify records, the user must either create or open a file. When
the user clicks the New/Open File button, the program calls method open-
Button_Click (lines 42–100), which opens a file that the application uses for modi-
fying records. Lines 46–62 display the OpenFileDialog for specifying the file from
which to read data, then use this file to create the FileStream object. Note that line 52
sets property CheckFileExists of the OpenFileDialog object to false—this
enables the user to create a file if the specified file does not exist. If this property were
true (its default value), the dialog would notify the user that the specified file does not
exist, thus preventing the user from creating a file.

26 startDialog = new StartDialogForm();
27 startDialog.MdiParent = this;
28 startDialog.Show();
29 }
30
31 [STAThread]
32 static void Main()
33 {
34 Application.Run(new TransactionProcessorForm());
35 }
36
37 // Visual Studio .NET generated code
38
39 } // end class TransactionProcessorForm

1 // Fig. 17.20: StartDialog.cs
2 // Initial dialog box displayed to user. Provides buttons for
3 // creating/opening file and for adding, updating and removing
4 // records from file.
5
6 // C# namespaces
7 using System;
8 using System.Drawing;
9 using System.Collections;

10 using System.ComponentModel;
11 using System.Windows.Forms;
12
13 // Deitel namespaces
14 using BankLibrary;
15
16 public delegate void MyDelegate();
17
18 public class StartDialogForm : System.Windows.Forms.Form
19 {
20 private System.Windows.Forms.Button updateButton;
21 private System.Windows.Forms.Button newButton;

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 StartDialogForm class enables users to access dialog boxes
associated with various transactions. (Part 1 of 4.)

Fig. 17.19Fig. 17.19Fig. 17.19Fig. 17.19 TransactionProcessorForm class runs the transaction-processor
application. (Part 2 of 2.)

818 Files and Streams Chapter 17

22 private System.Windows.Forms.Button deleteButton;
23 private System.Windows.Forms.Button openButton;
24
25 private System.ComponentModel.Container components = null;
26
27 // reference to dialog box for adding record
28 private NewDialogForm newDialog;
29
30 // reference to dialog box for updating record
31 private UpdateDialogForm updateDialog;
32
33 // reference to dialog box for removing record
34 private DeleteDialogForm deleteDialog;
35
36 // reference to object that handles transactions
37 private Transaction transactionProxy;
38
39 // Visual Studio .NET generated code
40
41 // invoked when user clicks New/Open File button
42 private void openButton_Click(
43 object sender, System.EventArgs e)
44 {
45 // create dialog box enabling user to create or open file
46 OpenFileDialog fileChooser = new OpenFileDialog();
47 DialogResult result;
48 string fileName;
49
50 // enable user to create file if file does not exist
51 fileChooser.Title = "Create File / Open File";
52 fileChooser.CheckFileExists = false;
53
54 // show dialog box to user
55 result = fileChooser.ShowDialog();
56
57 // exit event handler if user clicked Cancel
58 if (result == DialogResult.Cancel)
59 return;
60
61 // get file name from user
62 fileName = fileChooser.FileName;
63
64 // show error if user specified invalid file
65 if (fileName == "" || fileName == null)
66 MessageBox.Show("Invalid File Name", "Error",
67 MessageBoxButtons.OK, MessageBoxIcon.Error);
68
69 // open or create file if user specified valid file
70 else
71 {
72 // create Transaction with specified file
73 transactionProxy = new Transaction();

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 StartDialogForm class enables users to access dialog boxes
associated with various transactions. (Part 2 of 4.)

Chapter 17 Files and Streams 819

74 transactionProxy.OpenFile(fileName);
75
76 // enable GUI buttons except for New/Open File button
77 newButton.Enabled = true;
78 updateButton.Enabled = true;
79 deleteButton.Enabled = true;
80 openButton.Enabled = false;
81
82 // instantiate dialog box for creating records
83 newDialog = new NewDialogForm(transactionProxy,
84 new MyDelegate(ShowStartDialog));
85
86 // instantiate dialog box for updating records
87 updateDialog = new UpdateDialogForm(transactionProxy,
88 new MyDelegate(ShowStartDialog));
89
90 // instantiate dialog box for removing records
91 deleteDialog = new DeleteDialogForm(transactionProxy,
92 new MyDelegate(ShowStartDialog));
93
94 // set StartDialog as MdiParent for dialog boxes
95 newDialog.MdiParent = this.MdiParent;
96 updateDialog.MdiParent = this.MdiParent;
97 deleteDialog.MdiParent = this.MdiParent;
98 }
99
100 } // end method openButton_Click
101
102 // invoked when user clicks New Record button
103 private void newButton_Click(
104 object sender, System.EventArgs e)
105 {
106 Hide(); // hide StartDialog
107 newDialog.Show(); // show NewDialog
108
109 } // end method newButton_Click
110
111 private void updateButton_Click(
112 object sender, System.EventArgs e)
113 {
114 Hide(); // hide StartDialog
115 updateDialog.Show(); // show UpdateDialog
116
117 } // end method updateButton_Click
118
119 private void deleteButton_Click(
120 object sender, System.EventArgs e)
121 {
122 Hide(); // hide StartDialog
123 deleteDialog.Show(); // show DeleteDialog
124
125 } // end method deleteButton_Click

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 StartDialogForm class enables users to access dialog boxes
associated with various transactions. (Part 3 of 4.)

820 Files and Streams Chapter 17

126
127 protected void ShowStartDialog()
128 {
129 Show();
130 }
131
132 } // end class StartDialogForm

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 StartDialogForm class enables users to access dialog boxes
associated with various transactions. (Part 4 of 4.)

Chapter 17 Files and Streams 821

If the user specifies a file name, line 73 instantiates an object of class Transaction
(Fig. 17.18), which acts as the proxy for creating, reading records from and writing records
to random-access files. Line 74 calls Transaction’s method OpenFile, which either
creates or opens the specified file, depending on whether the file exists.

Class StartDialogForm also creates internal windows that enable the user to
create, update and delete records. We do not use the default constructor created by Visual
Studio .NET for these classes; instead, we use an overloaded constructor that takes as argu-
ments the Transaction object and a delegate object that references method Show-
StartDialog (lines 127–130). Each child window uses the second delegate parameter
to display the StartDialogForm GUI when the user closes a child window. Lines 83–
92 instantiate objects of classes UpdateDialogForm, NewDialogForm and
DeleteDialogForm, which serve as the child windows.

When the user clicks the New Record button in the Start Dialog, the program
invokes method newButton_Click of class StartDialogForm (Fig. 17.20, lines
103–109), which displays the NewDialogForm internal frame (Fig. 17.22). Class New-
DialogForm enables the user to create records in the file that StartDialogForm
opened (or created). Line 25 of Fig. 17.22 defines MyDelegate as a delegate to a method
that does not return a value and has no parameters; method ShowStartDialog of class
StartDialogForm (Fig. 17.20, lines 127–130) conforms to these requirements. Class
NewDialogForm receives a MyDelegate object, which references this method as a
parameter—therefore, NewDialogForm can invoke this method to display the start
window when the user exits the NewDialogForm. Classes UpdateDialogForm and
DeleteDialogForm also receive MyDelegate references as arguments, enabling
them to display StartDialogForm after completing their tasks.

After the user enters data in the TextBoxes and clicks the Save Record button, the
program invokes method saveButton_Click (lines 51–66) to write the record to disk.
Lines 54–56 call method GetRecord of the Transaction object, which should return an
empty RandomAccessRecord. If method GetRecord returns a RandomAccess-
Record that contains data, the user is attempting to overwrite that RandomAccess-
Record with a new one. Line 60 calls private method InsertRecord (lines 69–116).
If the RandomAccessRecord is empty, method InsertRecord calls method
AddRecord of the Transaction object (lines 100–101), which adds the newly created
RandomAccessRecord to the file. If the user is attempting to overwrite an existing record,
lines 81–83 notify the user that the record already exists and return from the method.

When the user clicks the Update Record button in the Start Dialog, the program
invokes method updateButton_Click of class StartDialogForm (Fig. 17.20,
lines 111–117), which displays the UpdateDialogForm internal frame (Fig. 17.21).
Class UpdateDialogForm enables the user to update existing records in the file.

To update a record, the user must enter the account number associated with that record.
When the user presses Enter, UpdateDialogForm calls method accountText-
Box_KeyDown (lines 45–84) to display the record contents. This method calls method
GetRecord of the Transaction object (lines 52–54) to retrieve the specified Ran-
domAccessRecord. If the record is not empty, lines 64–72 populate the TextBoxes
with the RandomAccessRecord values.

The Transaction TextBox initially contains the string Charge or Payment. The
user should select this text, type the transaction amount (a positive value for a charge or a

822 Files and Streams Chapter 17

negative value for a payment), then press Enter. The program calls method
transactionTextBox_KeyDown (lines 87–132) to add the user-specified transaction
amount to the current balance.

1 // Fig. 17.22: UpdateDialog.cs
2 // Enables user to update records in file.
3
4 // C# namespaces
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10
11 // Deitel namespaces
12 using BankLibrary;
13
14 public class UpdateDialogForm : BankUIForm
15 {
16 private System.Windows.Forms.Label transactionLabel;
17 private System.Windows.Forms.TextBox transactionTextBox;
18
19 private System.Windows.Forms.Button saveButton;
20 private System.Windows.Forms.Button cancelButton;
21
22 private System.ComponentModel.Container components = null;
23
24 // reference to object that handles transactions
25 private Transaction transactionProxy;
26
27 // delegate for method that displays previous window
28 private MyDelegate showPreviousWindow;
29
30 // initialize components and set members to parameter values
31 public UpdateDialogForm(
32 Transaction transactionProxyValue,
33 MyDelegate delegateValue)
34 {
35 InitializeComponent();
36 showPreviousWindow = delegateValue;
37
38 // instantiate object that handles transactions
39 transactionProxy = transactionProxyValue;
40 }
41
42 // Visual Studio .NET generated code
43
44 // invoked when user enters text in account TextBox
45 private void accountTextBox_KeyDown(
46 object sender, System.Windows.Forms.KeyEventArgs e)
47 {

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 UpdateDialogForm class enables users to update records in
transaction-processor case study. (Part 1 of 5.)

Chapter 17 Files and Streams 823

48 // determine whether user pressed Enter key
49 if (e.KeyCode == Keys.Enter)
50 {
51 // retrieve record associated with account from file
52 RandomAccessRecord record =
53 transactionProxy.GetRecord(GetTextBoxValues()
54 [(int)TextBoxIndices.ACCOUNT]);
55
56 // return if record does not exist
57 if (record == null)
58 return;
59
60 // determine whether record is empty
61 if (record.Account != 0)
62 {
63 // store record values in string array
64 string[] values = {
65 record.Account.ToString(),
66 record.FirstName.ToString(),
67 record.LastName.ToString(),
68 record.Balance.ToString() };
69
70 // copy string array value to TextBox values
71 SetTextBoxValues(values);
72 transactionTextBox.Text = "[Charge or Payment]";
73
74 }
75 else
76 {
77 // notify user if record does not exist
78 MessageBox.Show(
79 "Record Does Not Exist", "Error",
80 MessageBoxButtons.OK, MessageBoxIcon.Error);
81 }
82 }
83
84 } // end method accountTextBox_KeyDown
85
86 // invoked when user enters text in transaction TextBox
87 private void transactionTextBox_KeyDown(
88 object sender, System.Windows.Forms.KeyEventArgs e)
89 {
90 // determine whether user pressed Enter key
91 if (e.KeyCode == Keys.Enter)
92 {
93 // calculate balance using transaction TextBox value
94 try
95 {
96 // retrieve record associated with account from file
97 RandomAccessRecord record =
98 transactionProxy.GetRecord(GetTextBoxValues()
99 [(int)TextBoxIndices.ACCOUNT]);

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 UpdateDialogForm class enables users to update records in
transaction-processor case study. (Part 2 of 5.)

824 Files and Streams Chapter 17

100
101 // get transaction TextBox value
102 double transactionValue =
103 Double.Parse(transactionTextBox.Text);
104
105 // calculate new balance (old balance + transaction)
106 double newBalance =
107 record.Balance + transactionValue;
108
109 // store record values in string array
110 string[] values = {
111 record.Account.ToString(),
112 record.FirstName.ToString(),
113 record.LastName.ToString(),
114 newBalance.ToString() };
115
116 // copy string array value to TextBox values
117 SetTextBoxValues(values);
118
119 // clear transaction TextBox
120 transactionTextBox.Text = "";
121 }
122
123 // notify user if error occurs in parameter mismatch
124 catch(FormatException)
125 {
126 MessageBox.Show(
127 "Invalid Transaction", "Error",
128 MessageBoxButtons.OK, MessageBoxIcon.Error);
129 }
130 }
131
132 } // end method transactionTextBox_KeyDown
133
134 // invoked when user clicks Save button
135 private void saveButton_Click(
136 object sender, System.EventArgs e)
137 {
138 RandomAccessRecord record =
139 transactionProxy.GetRecord(GetTextBoxValues()
140 [(int)TextBoxIndices.ACCOUNT]);
141
142 // if record exists, update in file
143 if (record != null)
144 UpdateRecord(record);
145
146 Hide();
147 ClearTextBoxes();
148 showPreviousWindow();
149
150 } // end method saveButton_Click
151

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 UpdateDialogForm class enables users to update records in
transaction-processor case study. (Part 3 of 5.)

Chapter 17 Files and Streams 825

152 // invoked when user clicks Cancel button
153 private void cancelButton_Click(
154 object sender, System.EventArgs e)
155 {
156 Hide();
157 ClearTextBoxes();
158 showPreviousWindow();
159
160 } // end method cancelButton_Click
161
162 // update record in file at position specified by accountNumber
163 public void UpdateRecord(RandomAccessRecord record)
164 {
165 // store TextBox values in record and write record to file
166 try
167 {
168 int accountNumber = record.Account;
169 string[] values = GetTextBoxValues();
170
171 // store values in record
172 record.Account = accountNumber;
173 record.FirstName =
174 values[(int)TextBoxIndices.FIRST];
175 record.LastName =
176 values[(int)TextBoxIndices.LAST];
177 record.Balance =
178 Double.Parse(
179 values[(int)TextBoxIndices.BALANCE]);
180
181 // add record to file
182 if (transactionProxy.AddRecord(
183 record, accountNumber) == false)
184
185 return; // if error
186 }
187
188 // notify user if error occurs in parameter mismatch
189 catch(FormatException)
190 {
191 MessageBox.Show("Invalid Balance", "Error",
192 MessageBoxButtons.OK, MessageBoxIcon.Error);
193
194 return;
195 }
196
197 MessageBox.Show("Record Updated", "Success",
198 MessageBoxButtons.OK,
199 MessageBoxIcon.Information);
200
201 } // end method UpdateRecord
202
203 } // end class UpdateDialogForm

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 UpdateDialogForm class enables users to update records in
transaction-processor case study. (Part 4 of 5.)

826 Files and Streams Chapter 17

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 UpdateDialogForm class enables users to update records in
transaction-processor case study. (Part 5 of 5.)

Chapter 17 Files and Streams 827

The user clicks the Save Changes button to write the altered contents of the Text-
Boxes to the file. (Note that pressing Save Changes does not update the Balance
field—the user must press Enter to update this field before pressing Save Changes.)
When the user clicks Save Changes, the program invokes method
saveButton_Click (lines 135–150), which calls private method UpdateRecord
(lines 163–201). This method calls method AddRecord of the Transaction object
(lines 182–183) to store the TextBox values in a RandomAccessRecord and over-
write the existing file record with the RandomAccessRecord containing the new data.

When the user clicks the Delete Record button of the Start Dialog, the program
invokes method deleteButton_Click of class StartDialogForm (Fig. 17.20,
lines 119–125), which displays the DeleteDialogForm internal frame (Fig. 17.23).
Class DeleteDialogForm enables the user to remove existing records from the file. To
remove a record, the user must enter the account number associated with that record. When
the user clicks the Delete Record button (now, from the DeleteDialogForm internal
frame), DeleteDialogForm calls method deleteButton_Click (lines 44–57).
This method calls method DeleteRecord (lines 69–102), which ensures that the record
to be deleted exists, then calls method AddRecord of the Transaction object (lines
87–88) to overwrite the file record with an empty one.

In this chapter, we demonstrated how to read data from files and write data to files via
both sequential-access and random-access file-processing techniques. Using class Bina-
ryFormatter, we serialized and deserialized objects to and from streams; we then
employed FileStream, BinaryWriter and BinaryReader to transfer the objects’
byte representation to and from files. In Chapter 18, we discuss the Extensible Markup Lan-
guage (XML), a widely supported technology for describing data. Using XML, we can
describe any type of data, such as mathematical formulas, music and financial reports.

1 // Fig. 17.21: NewDialog.cs
2 // Enables user to insert new record into file.
3
4 // C# namespaces
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10
11 // Deitel namespaces
12 using BankLibrary;
13
14 public class NewDialogForm : BankUIForm
15 {
16 private System.Windows.Forms.Button saveButton;
17 private System.Windows.Forms.Button cancelButton;

Fig. 17.22Fig. 17.22Fig. 17.22Fig. 17.22 NewDialogForm class enables users to create records in transaction-
processor case study. (Part 1 of 4.)

828 Files and Streams Chapter 17

18
19 private System.ComponentModel.Container components = null;
20
21 // reference to object that handles transactions
22 private Transaction transactionProxy;
23
24 // delegate for method that displays previous window
25 public MyDelegate showPreviousWindow;
26
27 // constructor
28 public NewDialogForm(Transaction transactionProxyValue,
29 MyDelegate delegateValue)
30 {
31 InitializeComponent();
32 showPreviousWindow = delegateValue;
33
34 // instantiate object that handles transactions
35 transactionProxy = transactionProxyValue;
36 }
37
38 // Visual Studio .NET generated code
39
40 // invoked when user clicks Cancel button
41 private void cancelButton_Click(
42 object sender, System.EventArgs e)
43 {
44 Hide();
45 ClearTextBoxes();
46 showPreviousWindow();
47
48 } // end method cancelButton_Click
49
50 // invoked when user clicks Save As button
51 private void saveButton_Click(
52 object sender, System.EventArgs e)
53 {
54 RandomAccessRecord record =
55 transactionProxy.GetRecord(GetTextBoxValues()
56 [(int)TextBoxIndices.ACCOUNT]);
57
58 // if record exists, add it to file
59 if (record != null)
60 InsertRecord(record);
61
62 Hide();
63 ClearTextBoxes();
64 showPreviousWindow();
65
66 } // end method saveButton_Click
67

Fig. 17.22Fig. 17.22Fig. 17.22Fig. 17.22 NewDialogForm class enables users to create records in transaction-
processor case study. (Part 2 of 4.)

Chapter 17 Files and Streams 829

68 // insert record in file at position specified by accountNumber
69 private void InsertRecord(RandomAccessRecord record)
70 {
71 //store TextBox values in string array
72 string[] textBoxValues = GetTextBoxValues();
73
74 // store TextBox account field
75 int accountNumber = Int32.Parse(
76 textBoxValues[(int)TextBoxIndices.ACCOUNT]);
77
78 // notify user and return if record account is not empty
79 if (record.Account != 0)
80 {
81 MessageBox.Show(
82 "Record Already Exists or Invalid Number", "Error",
83 MessageBoxButtons.OK, MessageBoxIcon.Error);
84
85 return;
86 }
87
88 // store values in record
89 record.Account = accountNumber;
90 record.FirstName =
91 textBoxValues[(int)TextBoxIndices.FIRST];
92 record.LastName =
93 textBoxValues[(int)TextBoxIndices.LAST];
94 record.Balance = Double.Parse(
95 textBoxValues[(int)TextBoxIndices.BALANCE]);
96
97 // add record to file
98 try
99 {
100 if (transactionProxy.AddRecord(
101 record, accountNumber) == false)
102
103 return; // if error
104 }
105
106 // notify user if error occurs in parameter mismatch
107 catch(FormatException)
108 {
109 MessageBox.Show("Invalid Balance", "Error",
110 MessageBoxButtons.OK, MessageBoxIcon.Error);
111 }
112
113 MessageBox.Show("Record Created", "Success",
114 MessageBoxButtons.OK, MessageBoxIcon.Information);
115
116 } // end method InsertRecord
117
118 } // end class NewDialogForm

Fig. 17.22Fig. 17.22Fig. 17.22Fig. 17.22 NewDialogForm class enables users to create records in transaction-
processor case study. (Part 3 of 4.)

830 Files and Streams Chapter 17

1 // Fig. 17.23: DeleteDialog.cs
2 // Enables user to delete records in file.
3
4 // C# namespaces
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10
11 // Deitel namespaces
12 using BankLibrary;
13
14 public class DeleteDialogForm : System.Windows.Forms.Form
15 {
16 private System.Windows.Forms.Label accountLabel;
17 private System.Windows.Forms.TextBox accountTextBox;
18
19 private System.Windows.Forms.Button deleteButton;
20 private System.Windows.Forms.Button cancelButton;
21
22 private System.ComponentModel.Container components = null;
23
24 // reference to object that handles transactions
25 private Transaction transactionProxy;

Fig. 17.23Fig. 17.23Fig. 17.23Fig. 17.23 DeleteDialogForm class enables users to remove records from files in
transaction-processor case study. (Part 1 of 3.)

Fig. 17.22Fig. 17.22Fig. 17.22Fig. 17.22 NewDialogForm class enables users to create records in transaction-
processor case study. (Part 4 of 4.)

Chapter 17 Files and Streams 831

26
27 // delegate for method that displays previous window
28 private MyDelegate showPreviousWindow;
29
30 // initialize components and set members to parameter values
31 public DeleteDialogForm(Transaction transactionProxyValue,
32 MyDelegate delegateValue)
33 {
34 InitializeComponent();
35 showPreviousWindow = delegateValue;
36
37 // instantiate object that handles transactions
38 transactionProxy = transactionProxyValue;
39 }
40
41 // Visual Studio .NET generated code
42
43 // invoked when user clicks Delete Record button
44 private void deleteButton_Click(
45 object sender, System.EventArgs e)
46 {
47 RandomAccessRecord record =
48 transactionProxy.GetRecord(accountTextBox.Text);
49
50 // if record exists, delete it in file
51 if (record != null)
52 DeleteRecord(record);
53
54 this.Hide();
55 showPreviousWindow();
56
57 } // end method deleteButton_Click
58
59 // invoked when user clicks Cancel button
60 private void cancelButton_Click(
61 object sender, System.EventArgs e)
62 {
63 this.Hide();
64 showPreviousWindow();
65
66 } // end method cancelButton_Click
67
68 // delete record in file at position specified by accountNumber
69 public void DeleteRecord(RandomAccessRecord record)
70 {
71 int accountNumber = record.Account;
72
73 // display error message if record does not exist
74 if (record.Account == 0)
75 {
76 MessageBox.Show("Record Does Not Exist", "Error",
77 MessageBoxButtons.OK, MessageBoxIcon.Error);

Fig. 17.23Fig. 17.23Fig. 17.23Fig. 17.23 DeleteDialogForm class enables users to remove records from files in
transaction-processor case study. (Part 2 of 3.)

832 Files and Streams Chapter 17

SUMMARY
• All data items processed by a computer ultimately are reduced to combinations of zeros and ones.

• The smallest data items that computers support are called bits and can assume either the value 0
or the value 1.

• Digits, letters and special symbols are referred to as characters. The set of all characters used to
write programs and represent data items on a particular computer is called that computer’s char-

78 accountTextBox.Clear();
79
80 return;
81 }
82
83 // create blank record
84 record = new RandomAccessRecord();
85
86 // write over file record with empty record
87 if (transactionProxy.AddRecord(
88 record, accountNumber) == true)
89
90 // notify user of successful deletion
91 MessageBox.Show("Record Deleted", "Success",
92 MessageBoxButtons.OK, MessageBoxIcon.Information);
93 else
94
95 // notify user of failure
96 MessageBox.Show(
97 "Record could not be deleted", "Error",
98 MessageBoxButtons.OK, MessageBoxIcon.Error);
99
100 accountTextBox.Clear();
101
102 } // end method DeleteRecord
103
104 } // end class DeleteDialogForm

Fig. 17.23Fig. 17.23Fig. 17.23Fig. 17.23 DeleteDialogForm class enables users to remove records from files in
transaction-processor case study. (Part 3 of 3.)

Chapter 17 Files and Streams 833

acter set. Every character in a computer’s character set is represented as a pattern of 1s and 0s
(characters in C# are Unicode characters, which are composed of 2 bytes).

• At least one field in a record is chosen as a record key, which identifies that record as belonging
to a particular person or entity and distinguishes that record from all other records in the file.

• A file is a group of related records.

• Files are used for long-term retention of large amounts of data and can store those data even after
the program that created the data terminates.

• Data maintained in files often are called persistent data.

• Class File enables programs to obtain information about a file.

• Class Directory enables programs to obtain information about a directory.

• Class FileStream provides method Seek for repositioning the file-position pointer (the byte
number of the next byte in the file to be read or written) to any position in the file.

• The most common type of file organization is the sequential file, in which records typically are
stored in order by the record-key field.

• When a file is opened, an object is created, and a stream is associated with the object.

• C# imposes no structure on files. This means that concepts like that of a “record” do not exist in C#.
The programmer must structure each file appropriately to meet the requirements of an application.

• A collection of programs designed to create and manage databases is called a database manage-
ment system (DBMS).

• C# views each file as a sequential stream of bytes.

• Each file ends in some machine-dependent form of end-of-file marker.

• Objects of classes OpenFileDialog and SaveFileDialog are used for selecting files to
open and save, respectively. Method ShowDialog of these classes displays that dialog.

• When displayed, both an OpenFileDialog and a SaveFileDialog prevent the user from
interacting with any other program window until the dialog is closed. Dialogs that behave in this
fashion are called modal dialogs.

• Streams provide communication channels between files and programs.

• To perform file processing in C#, the namespace System.IO must be referenced. This
namespace includes definitions for stream classes such as StreamReader, StreamWriter
and FileStream. Files are opened by instantiating objects of these classes.

• To retrieve data sequentially from a file, programs normally start from the beginning of the file,
reading all data consecutively until the desired data are found.

• With a sequential-access file, each successive input/output request reads or writes the next consec-
utive set of data in the file.

• Instant data access is possible with random-access files. A program can access individual records
of a random-access file directly (and quickly) without searching through other records. Random-
access files sometimes are called direct-access files.

• With a random-access file, each successive input/output request can be directed to any part of the
file, which can be any distance from the part of the file referenced in the previous request.

• Programmers can use members of the FileAccess enumeration to control users’ access to files.

• Only classes with the Serializable attribute can be serialized to and deserialized from files.

• There are a variety of techniques for creating random-access files. Perhaps the simplest involves
requiring that all records in a file be of the same fixed length.

834 Files and Streams Chapter 17

• The use of fixed-length records makes it easy for a program to calculate (as a function of the record
size and the record key) the exact location of any record in relation to the beginning of the file

• Data can be inserted into a random-access file without destroying other data in the file. Users can
also update or delete previously stored data without rewriting the entire file.

• BinaryFormatter uses methods Serialize and Deserialize to write and to read ob-
jects, respectively. Method Serialize writes the object’s representation to a stream. Method
Deserialize reads this representation from a stream and reconstructs the original object.

• Methods Serialize and Deserialize each require a Stream object as a parameter, en-
abling the BinaryFormatter to access the correct file.

• Class BinaryReader and BinaryWriter provide methods for reading and writing bytes to
streams, respectively. The BinaryReader and BinaryWriter constructors receive as argu-
ments references to instances of class System.IO.Stream.

• Class FileStream inherits from class Stream, so we can pass the FileStream object as an
argument to either the BinaryReader or BinaryWriter constructor to create an object that
can transfer bytes directly to or from a file.

• Random-access file-processing programs rarely write a single field to a file. Normally, they write
one object at a time.

• Sorting with direct-access techniques is fast. This speed is achieved by making the file large
enough to hold every possible record that might be created. Of course, this means that the file
could be sparsely occupied most of the time, possibly wasting memory.

TERMINOLOGY
binary digit (bit) end-of-file marker
BinaryFormatter class Error property of class Console
BinaryReader class escape sequence
BinaryWriter class Exists method of class Directory
BufferedStream class field
bit manipulation file
character File class
character set file-processing programs
Close method of class StreamReader FileAccess enumeration
closing a file file-position pointer
Console class FileStream class
Copy method of class File fixed-length records
Create method of class File GetCreationTime method of class
CreateDirectory method of class Directory

Directory GetCreationTime method of class File
CreateText method of class File GetDirectories method of class
data hierarchy Directory
database GetFiles method of class Directory
database management system (DBMS) GetLastAccessTime method of class
Delete method of class Directory Directory
Delete method of class File GetLastAccessTime method of class File
Deserialize method of class GetLastWriteTime method of class

BinaryFormatter Directory
direct-access files GetLastWriteTime method of class File
Directory class In property of class Console
DirectoryInfo class ”instant-access” application

Chapter 17 Files and Streams 835

SELF-REVIEW EXERCISES
17.1 State whether each of the following is true or false. If false, explain why.

a) Creating instances of classes File and Directory is impossible.
b) Typically, a sequential file stores records in order by the record-key field.
c) Class StreamReader inherits from class Stream.
d) Any class can be serialized to a file.
e) Searching a random-access file sequentially to find a specific record is unnecessary.
f) Method Seek of class FileStream always seeks relative to the beginning of a file.
g) C# provides class Record to store records for random-access file-processing applications.
h) Banking systems, point-of-sale systems and automated-teller machines are types of

transaction-processing systems.
i) Classes StreamReader and StreamWriter are used with sequential-access files.
j) Instantiating objects of type Stream is impossible.

17.2 Fill in the blanks in each of the following statements:
a) Ultimately, all data items processed by a computer are reduced to combinations of

 and .
b) The smallest data item a computer can process is called a .
c) A is a group of related records.
d) Digits, letters and special symbols are collectively referred to as .

IOException Serializable attribute
MemoryStream class SerializationException
modal dialog Serialize method of class
Move method of class Directory BinaryFormatter
Move method of class File ShowDialog method of class
Open method of class File OpenFileDialog
OpenFileDialog class ShowDialog method of class
OpenRead method of class File SaveFileDialog
OpenText method of class File standard error-stream object
OpenWrite method of class File standard input-stream object
Out property of class Console standard output-stream object
pattern of 1s and 0s Stream class
persistent data stream of bytes
random-access file stream processing
Read method of class Console StreamReader class
ReadDouble method of class BinaryReaderStreamWriter class
ReadInt32 method of class BinaryReader System.IO namespace
ReadLine method of class Console System.Runtime.Serialization.
ReadLine method of class StreamReader Formatters.Binary namespace
ReadString method of class BinaryReaderTextReader class
record TextWriter class
record key transaction-processing system
regular expression Windows Control Library project
SaveFileDialog class Write method of class BinaryWriter
secondary storage devices Write method of class Console
Seek method of class FileStream Write method of class StreamWriter
SeekOrigin enumeration WriteLine method of class Console
separation character WriteLine method of class StreamWriter
sequential-access file

836 Files and Streams Chapter 17

e) A group of related files is called a .
f) StreamReader method reads a line of text from a file.
g) StreamWriter method writes a line of text to a file.
h) Method Serialize of class BinaryFormatter takes a(n) and a(n)

 as arguments.
i) The namespace contains most of C#’s file-processing classes.
j) The namespace contains the BinaryFormatter class.

ANSWERS TO SELF-REVIEW EXERCISES
17.1 a) True. b) True. c) False. StreamReader inherits from TextReader. d) False. Only
classes with the Serializable attribute can be serialized. e) True. f) False. It seeks relative to the
SeekOrigin enumeration member that is passed as one of the arguments. g) False. C# imposes no
structure on a file, so the concept of a “record” does not exist. h.) True. i) True. j) True.

17.2 a) 1s, 0s. b) bit. c) file. d) characters. e) database. f) ReadLine. g) WriteLine.
h) Stream, Object. i) System.IO. j) System.Runtime.Serialization.Format-
ters.Binary.

EXERCISES
17.3 Create a program that stores student grades in a text file. The file should contain the name,
ID number, class taken and grade of every student. Allow the user to load a grade file and display its
contents in a read-only textbox. The entries should be displayed as follows:

LastName, FirstName: ID# Class Grade

We list some sample data below:

Jones, Bob: 1 "Introduction to Computer Science" "A-"

Johnson, Sarah: 2 "Data Structures" "B+"

Smith, Sam: 3 "Data Structures" "C"

17.4 Modify the previous program to use objects of a class that can be serialized to and deserial-
ized from a file. Ensure fixed-length records by fixing the lengths of the fields LastName, First-
Name, Class and Grade.

17.5 Extend classes StreamReader and StreamWriter. Make the class that derives from
StreamReader have methods ReadInteger, ReadBoolean and ReadString. Make the
class that derives from StreamWriter have methods WriteInteger, WriteBoolean and
WriteString. Think about how to design the writing methods so that the reading methods will be
able to read what was written. Design WriteInteger and WriteBoolean to write strings of
uniform size, so that ReadInteger and ReadBoolean can read those values accurately. Make
sure ReadString and WriteString use the same character(s) to separate strings.

17.6 Create a program that combines the ideas of Fig. 17.9 and Fig. 17.11 to allow a user to write
records to and read records from a file. Add an extra field of type bool to the record to indicate
whether the account has overdraft protection.

17.7 In commercial data processing, it is common to have several files in each application system.
In an accounts receivable system, for example, there is generally a master file containing detailed in-
formation about each customer, such as the customer’s name, address, telephone number, outstanding
balance, credit limit, discount terms, contract arrangements and possibly a condensed history of re-
cent purchases and cash payments.

As transactions occur (i.e., sales are made and cash payments arrive in the mail), they are en-
tered into a file. At the end of each business period (i.e., a month for some companies, a week for

Chapter 17 Files and Streams 837

others and a day in some cases), the file of transactions (trans.dat) is applied to the master file
(oldmast.dat), thus updating each account’s record of purchases and payments. During an updat-
ing run, the master file is rewritten as a new file (newmast.dat), which then is used at the end of
the next business period to begin the updating process again.

File-matching programs must deal with certain problems that do not exist in single-file pro-
grams. For example, a match does not always occur. A customer on the master file might not have
made any purchases or cash payments in the current business period, and, therefore, no record for this
customer will appear on the transaction file. Similarly, a customer who did make some purchases or
cash payments might have just moved to the community, and the company might not have had a
chance to create a master record for this customer.

When a match occurs (i.e., records with the same account number appear on both the master
file and the transaction file), add the dollar amount on the transaction file to the current balance on
the master file and write the newmast.dat record. (Assume that purchases are indicated by positive
amounts on the transaction file and that payments are indicated by negative amounts.) When there is
a master record for a particular account, but no corresponding transaction record, merely write the
master record to newmast.dat. When there is a transaction record, but no corresponding master
record, print the message “Unmatched transaction record for account number...”
(fill in the account number from the transaction record).

17.8 You are the owner of a hardware store and need to keep an inventory of the different tools
you sell, how many of each are currently in stock and the cost of each. Write a program that initializes
the random-access file hardware.dat to 100 empty records, lets you input data relating to each
tool, enables you to list all your tools, lets you delete a record for a tool that you no longer have and
lets you update any information in the file. The tool identification number should be the record num-
ber. Use the information in Fig. 17.24 to start your file.

Record # Tool name Quantity Price

3 Electric sander 18 35.99

19 Hammer 128 10.00

26 Jig saw 16 14.25

39 Lawn mower 10 79.50

56 Power saw 8 89.99

76 Screwdriver 236 4.99

81 Sledge hammer 32 19.75

88 Wrench 65 6.48

Fig. 17.24Fig. 17.24Fig. 17.24Fig. 17.24 Inventory of a hardware store.

18
Extensible Markup
Language (XML)

Objectives
• To be able to mark up data, using XML.
• To understand the concept of an XML namespace.
• To understand the relationship between DTDs,

Schemas and XML.
• To be able to create Schemas.
• To be able to create and use simple XSLT documents.
• To be able to transform XML documents into

XHTML, using class XslTransform.
• To become familiar with BizTalk™.
Knowing trees, I understand the meaning of patience.
Knowing grass, I can appreciate persistence.
Hal Borland

Like everything metaphysical, the harmony between thought
and reality is to be found in the grammar of the language.
Ludwig Wittgenstein
I played with an idea and grew willful, tossed it into the air;
transformed it; let it escape and recaptured it; made it
iridescent with fancy, and winged it with paradox.
Oscar Wilde

Chapter 18 Extensible Markup Language (XML) 839

18.1 Introduction
The Extensible Markup Language (XML) was developed in 1996 by the World Wide Web
Consortium’s (W3C’s) XML Working Group. XML is a portable, widely supported, open
technology (i.e., non-proprietary technology) for describing data. XML is becoming the
standard for storing data that is exchanged between applications. Using XML, document
authors can describe any type of data, including mathematical formulas, software-configu-
ration instructions, music, recipes and financial reports. XML documents are readable by
both humans and machines.

The .NET Framework uses XML extensively. The Framework Class Library (FCL)
provides an extensive set of XML-related classes. Much of Visual Studio’s internal imple-
mentation also employs XML. In this chapter, we introduce XML, XML-related technolo-
gies and key classes for creating and manipulating XML documents.

18.2 XML Documents
In this section, we present our first XML document, which describes an article (Fig. 18.1).
[Note: The line numbers shown are not part of the XML document.]

Outline

18.1 Introduction
18.2 XML Documents
18.3 XML Namespaces
18.4 Document Object Model (DOM)
18.5 Document Type Definitions (DTDs), Schemas and Validation

18.5.1 Document Type Definitions
18.5.2 Microsoft XML Schemas
18.5.3 W3C XML Schema
18.5.4 Schema Validation in C#

18.6 Extensible Stylesheet Language and XslTransform
18.7 Microsoft BizTalk™
18.8 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.1: article.xml -->
4 <!-- Article structured with XML -->
5
6 <article>
7
8 <title>Simple XML</title>

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XML used to mark up an article. (Part 1 of 2.)

.

840 Extensible Markup Language (XML) Chapter 18

This document begins with an optional XML declaration (line 1), which identifies the
document as an XML document. The version information parameter specifies the ver-
sion of XML that is used in the document. XML comments (lines 3–4), which begin with
<!-- and end with -->, can be placed almost anywhere in an XML document. As in a C#
program, comments are used in XML for documentation purposes.

Common Programming Error 18.1
The placement of any characters, including whitespace, before the XML declaration is a syn-
tax error. 18.1

Portability Tip 18.1
Although the XML declaration is optional, documents should include the declaration to iden-
tify the version of XML used. Otherwise, in the future, a document that lacks an XML decla-
ration might be assumed to conform to the latest version of XML, and errors could result. 18.1

In XML, data are marked up using tags, which are names enclosed in angle brackets
(<>). Tags are used in pairs to delimit character data (e.g., Simple XML in line 8). A tag that
begins markup (i.e., XML data) is called a start tag, whereas a tag that terminates markup is
called an end tag. Examples of start tags are <article> and <title> (lines 6 and 8,
respectively). End tags differ from start tags in that they contain a forward slash (/) character
immediately after the < character. Examples of end tags are </title> and </article>
(lines 8 and 23, respectively). XML documents can contain any number of tags.

Common Programming Error 18.2
Failure to provide a corresponding end tag for a start tag is a syntax error. 18.2

Individual units of markup (i.e., everything included between a start tag and its corre-
sponding end tag) are called elements. An XML document includes one element (called a
root element) that contains every other element. The root element must be the first element
after the XML declaration. In Fig. 18.1, article (line 6) is the root element. Elements
are nested within each other to form hierarchies—with the root element at the top of the

9
10 <date>December 6, 2001</date>
11
12 <author>
13 <firstName>John</firstName>
14 <lastName>Doe</lastName>
15 </author>
16
17 <summary>XML is pretty easy.</summary>
18
19 <content>In this chapter, we present a wide variety of examples
20 that use XML.
21 </content>
22
23 </article>

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XML used to mark up an article. (Part 2 of 2.)

Chapter 18 Extensible Markup Language (XML) 841

hierarchy. This allows document authors to create explicit relationships between data. For
example, elements title, date, author, summary and content are nested within
article. Elements firstName and lastName are nested within author.

Common Programming Error 18.3
Attempting to create more than one root element in an XML document is a syntax error. 18.3

Element title (line 8) contains the title of the article, Simple XML, as character
data. Similarly, date (line 10), summary (line 17) and content (lines 19–21) contain
as character data the date, summary and content, respectively. XML element names can be
of any length and may contain letters, digits, underscores, hyphens and periods—they must
begin with a letter or an underscore.

Common Programming Error 18.4
XML is case sensitive. The use of the wrong case for an XML element name is a syntax error. 18.4

By itself, this document is simply a text file named article.xml. Although it is not
required, most XML documents end in the file extension .xml. The processing of XML
documents requires a program called an XML parser also called XML processors. Parsers
are responsible for checking an XML document’s syntax and making the XML document’s
data available to applications. Often, XML parsers are built into applications such as Visual
Studio or available for download over the Internet. Popular parsers include Microsoft’s
msxml, the Apache Software Foundation’s Xerces and IBM’s XML4J. In this chapter, we
use msxml.

When the user loads article.xml into Internet Explorer (IE)1, msxml parses the
document and passes the parsed data to IE. IE then uses a built-in style sheet to format the
data. Notice that the resulting format of the data (Fig. 18.2) is similar to the format of the
XML document shown in Fig. 18.1. As we soon demonstrate, style sheets play an important
and powerful role in the transformation of XML data into formats suitable for display.

Notice the minus (–) and plus (+) signs in Fig. 18.2. Although these are not part of the
XML document, IE places them next to all container elements (i.e., elements that contain
other elements). Container elements also are called parent elements. A minus sign indicates
that the parent element’s child elements (i.e., nested elements) are being displayed. When
clicked, a minus sign becomes a plus sign (which collapses the container element and hides
all children). Conversely, clicking a plus sign expands the container element and changes
the plus sign to a minus sign. This behavior is similar to the viewing of the directory struc-
ture on a Windows system using Windows Explorer. In fact, a directory structure often is
modeled as a series of tree structures, in which each drive letter (e.g., C:, etc.) represents
the root of a tree. Each folder is a node in the tree. Parsers often place XML data into trees
to facilitate efficient manipulation, as discussed in Section 18.4.

Common Programming Error 18.5
Nesting XML tags improperly is a syntax error. For example, <x><y>hello</x></y> is
a error, because the </y> tag must precede the </x> tag. 18.5

1. IE 5 and higher.

842 Extensible Markup Language (XML) Chapter 18

We now present a second XML document (Fig. 18.3), which marks up a business letter.
This document contains significantly more data than did the previous XML document.

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 article.xml displayed by Internet Explorer.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.3: letter.xml -->
4 <!-- Business letter formatted with XML -->
5
6 <letter>
7 <contact type = "from">
8 <name>Jane Doe</name>
9 <address1>Box 12345</address1>

10 <address2>15 Any Ave.</address2>
11 <city>Othertown</city>
12 <state>Otherstate</state>

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 XML to mark up a business letter. (Part 1 of 2.)

Plus sign

Minus sign

Chapter 18 Extensible Markup Language (XML) 843

Root element letter (lines 6–45) contains the child elements contact (lines 7–16
and 18–27), salutation, paragraph (lines 31–36 and 38–40), closing and sig-
nature. In addition to being placed between tags, data also can be placed in attributes,
which are name-value pairs in start tags. Elements can have any number of attributes in
their start tags. The first contact element (lines 7–16) has attribute type with attribute
value "from", which indicates that this contact element marks up information about
the letter’s sender. The second contact element (lines 18–27) has attribute type with
value "to", which indicates that this contact element marks up information about the
letter’s recipient. Like element names, attribute names are case sensitive, can be any length;
may contain letters, digits, underscores, hyphens and periods; and must begin with either a
letter or underscore character. A contact element stores a contact’s name, address and
phone number. Element salutation (line 29) marks up the letter’s salutation. Lines 31–
40 mark up the letter’s body with paragraph elements. Elements closing (line 42) and
signature (line 44) mark up the closing sentence and the signature of the letter’s author,
respectively.

13 <zip>67890</zip>
14 <phone>555-4321</phone>
15 <flag gender = "F" />
16 </contact>
17
18 <contact type = "to">
19 <name>John Doe</name>
20 <address1>123 Main St.</address1>
21 <address2></address2>
22 <city>Anytown</city>
23 <state>Anystate</state>
24 <zip>12345</zip>
25 <phone>555-1234</phone>
26 <flag gender = "M" />
27 </contact>
28
29 <salutation>Dear Sir:</salutation>
30
31 <paragraph>It is our privilege to inform you about our new
32 database managed with <technology>XML</technology>. This
33 new system allows you to reduce the load on
34 your inventory list server by having the client machine
35 perform the work of sorting and filtering the data.
36 </paragraph>
37
38 <paragraph>Please visit our Web site for availability
39 and pricing.
40 </paragraph>
41
42 <closing>Sincerely</closing>
43
44 <signature>Ms. Doe</signature>
45 </letter>

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 XML to mark up a business letter. (Part 2 of 2.)

844 Extensible Markup Language (XML) Chapter 18

Common Programming Error 18.6
Failure to enclose attribute values in either double ("") or single ('') quotes is a syntax er-
ror. 18.6

Common Programming Error 18.7
Attempting to provide two attributes with the same name for an element is a syntax error. 18.7

In line 15, we introduce empty element flag, which indicates the gender of the con-
tact. Empty elements do not contain character data (i.e., they do not contain text between
the start and end tags). Such elements are closed either by placing a slash at the end of the
element (as shown in line 15) or by explicitly writing a closing tag, as in

<flag gender = "F"></flag>

18.3 XML Namespaces
Object-oriented programming languages, such as C# and Visual Basic .NET, provide mas-
sive class libraries that group their features into namespaces. These namespaces prevent
naming collisions between programmer-defined identifiers and identifiers in class libraries.
For example, we might use class Book to represent information on one of our publications;
however, a stamp collector might use class Book to represent a book of stamps. A naming
collision would occur if we use these two classes in the same assembly, without using
namespaces to differentiate them.

Like C#, XML also provides namespaces, which provide a means of uniquely identi-
fying XML elements. In addition, XML-based languages—called vocabularies, such as
XML Schema (Section 18.5), Extensible Stylesheet Language (Section 18.6) and BizTalk
(Section 18.7)—often use namespaces to identify their elements.

Elements are differentiated via namespace prefixes, which identify the namespace to
which an element belongs. For example,

<deitel:book>C# How to Program</deitel:book>

qualifies element book with namespace prefix deitel. This indicates that element book
is part of namespace deitel. Document authors can use any name for a namespace prefix
except the reserved namespace prefix xml.

Common Programming Error 18.8
Attempting to create a namespace prefix named xml in any mixture of case is a syntax error. 18.8

The mark up in Fig. 18.4 demonstrates the use of namespaces. This XML document
contains two file elements that are differentiated using namespaces.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.4: namespace.xml -->
4 <!-- Demonstrating namespaces -->

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 XML namespaces demonstration. (Part 1 of 2.)

Chapter 18 Extensible Markup Language (XML) 845

Software Engineering Observation 18.1
A programmer has the option of qualifying an attribute with a namespace prefix. However,
it is not required, because attributes always are associated with elements. 18.1

Lines 6–7 use attribute xmlns to create two namespace prefixes: text and image.
Each namespace prefix is bound to a series of characters called a uniform resource identi-
fier (URI) that uniquely identifies the namespace. Document authors create their own
namespace prefixes and URIs.

To ensure that namespaces are unique, document authors must provide unique URIs.
Here, we use the text urn:deitel:textInfo and urn:deitel:imageInfo as
URIs. A common practice is to use Universal Resource Locators (URLs) for URIs, because
the domain names (such as, www.deitel.com) used in URLs are guaranteed to be
unique. For example, lines 6–7 could have been written as

<text:directory xmlns:text =
 "http://www.deitel.com/xmlns-text"
 xmlns:image = "http://www.deitel.com/xmlns-image">

5
6 <text:directory xmlns:text = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <text:file filename = "book.xml">

10 <text:description>A book list</text:description>
11 </text:file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100" />
16 </image:file>
17
18 </text:directory>

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 XML namespaces demonstration. (Part 2 of 2.)

846 Extensible Markup Language (XML) Chapter 18

In this example, we use URLs related to the Deitel & Associates, Inc, domain name to iden-
tify namespaces. The parser never visits these URLs—they simply represent a series of
characters used to differentiate names. The URLs need not refer to actual Web pages or be
formed properly.

Lines 9–11 use the namespace prefix text to qualify elements file and descrip-
tion as belonging to the namespace "urn:deitel:textInfo". Notice that the
namespace prefix text is applied to the end tags as well. Lines 13–16 apply namespace
prefix image to elements file, description and size.

To eliminate the need to precede each element with a namespace prefix, document
authors can specify a default namespace. Figure 18.5 demonstrates the creation and use of
default namespaces.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.5: defaultnamespace.xml -->
4 <!-- Using default namespaces -->
5
6 <directory xmlns = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <file filename = "book.xml">

10 <description>A book list</description>
11 </file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100" />
16 </image:file>
17
18 </directory>

Fig. 18.5Fig. 18.5Fig. 18.5Fig. 18.5 Default namespaces demonstration.

Chapter 18 Extensible Markup Language (XML) 847

Line 6 declares a default namespace using attribute xmlns with a URI as its value.
Once we define this default namespace, child elements belonging to the namespace need
not be qualified by a namespace prefix. Element file (line 9–11) is in the namespace
urn:deitel:textInfo. Compare this to Fig. 18.4, where we prefixed file and
description with text (lines 9–11).

The default namespace applies to the directory element and all elements that are
not qualified with a namespace prefix. However, we can use a namespace prefix to specify
a different namespace for particular elements. For example, the file element in line 13 is
prefixed with image to indicate that it is in the namespace urn:deitel:imageInfo,
rather than the default namespace.

18.4 Document Object Model (DOM)
Although XML documents are text files, retrieving data from them via sequential-file ac-
cess techniques is neither practical nor efficient, especially in situations where data must be
added or deleted dynamically.

Upon successful parsing of documents, some XML parsers store document data as tree
structures in memory. Figure 18.6 illustrates the tree structure for the document
article.xml discussed in Fig. 18.1. This hierarchical tree structure is called a Docu-
ment Object Model (DOM) tree, and an XML parser that creates this type of structure is
known as a DOM parser. The DOM tree represents each component of the XML document
(e.g., article, date, firstName, etc.) as a node in the tree. Nodes (such as, author)
that contain other nodes (called child nodes) are called parent nodes. Nodes that have the
same parent (such as, firstName and lastName) are called sibling nodes. A node’s
descendant nodes include that node’s children, its children’s children and so on. Similarly,
a node’s ancestor nodes include that node’s parent, its parent’s parent and so on. Every
DOM tree has a single root node that contains all other nodes in the document, such as com-
ments, elements, etc.

Classes for creating, reading and manipulating XML documents are located in the C#
namespace System.Xml. This namespace also contains additional namespaces that con-
tain other XML-related operations.

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 Tree structure for Fig. 18.1.

article

title

author

summary

contents

lastName

firstName

date

848 Extensible Markup Language (XML) Chapter 18

In this section, we present several examples that use DOM trees. Our first example, the
program in Fig. 18.7, loads the XML document presented in Fig. 18.1 and displays its data
in a text box. This example uses class XmlNodeReader which is derived from Xml-
Reader, which iterates through each node in the XML document. Class XmlReader is
an abstract class that defines the interface for reading XML documents.

1 // Fig. 18.7: XmlReaderTest.cs
2 // Reading an XML document.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7
8 public class XmlReaderTest : System.Windows.Forms.Form
9 {

10 private System.Windows.Forms.TextBox outputTextBox;
11 private System.ComponentModel.Container components = null;
12
13 public XmlReaderTest()
14 {
15 InitializeComponent();
16
17 // reference to "XML document"
18 XmlDocument document = new XmlDocument();
19 document.Load("..\\..\\article.xml");
20
21 // create XmlNodeReader for document
22 XmlNodeReader reader = new XmlNodeReader(document);
23
24 // show form before outputTextBox is populated
25 this.Show();
26
27 // tree depth is -1, no indentation
28 int depth = -1;
29
30 // display each node's content
31 while (reader.Read())
32 {
33 switch (reader.NodeType)
34 {
35 // if Element, display its name
36 case XmlNodeType.Element:
37
38 // increase tab depth
39 depth++;
40 TabOutput(depth);
41 outputTextBox.Text += "<" + reader.Name + ">" +
42 "\r\n";
43

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 XmlNodeReader used to iterate through an XML document. (Part 1 of 3.)

Chapter 18 Extensible Markup Language (XML) 849

44 // if empty element, decrease depth
45 if (reader.IsEmptyElement)
46 depth--;
47
48 break;
49
50 // if Comment, display it
51 case XmlNodeType.Comment:
52 TabOutput(depth);
53 outputTextBox.Text +=
54 "<!--" + reader.Value + "-->\r\n";
55 break;
56
57 // if Text, display it
58 case XmlNodeType.Text:
59 TabOutput(depth);
60 outputTextBox.Text += "\t" + reader.Value +
61 "\r\n";
62 break;
63
64 // if XML declaration, display it
65 case XmlNodeType.XmlDeclaration:
66 TabOutput(depth);
67 outputTextBox.Text += "<?" + reader.Name + " "
68 + reader.Value + " ?>\r\n";
69 break;
70
71 // if EndElement, display it and decrement depth
72 case XmlNodeType.EndElement:
73 TabOutput(depth);
74 outputTextBox.Text += "</" + reader.Name
75 + ">\r\n";
76 depth--;
77 break;
78 } // end switch statement
79 } // end while loop
80 } // End XmlReaderTest constructor
81
82 // insert tabs
83 private void TabOutput(int number)
84 {
85 for (int i = 0; i < number; i++)
86 outputTextBox.Text += "\t";
87 } // end TabOutput
88
89 // Windows Form Designer generated code
90
91 [STAThread]
92 static void Main()
93 {
94 Application.Run(new XmlReaderTest());
95 } // end Main
96 } // end XmlReaderTest

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 XmlNodeReader used to iterate through an XML document. (Part 2 of 3.)

850 Extensible Markup Language (XML) Chapter 18

Line 6 includes the System.Xml namespace, which contains the XML classes used
in this example. Line 18 creates a reference to an XmlDocument object that conceptually
represents an empty XML document. The XML document article.xml is parsed and
loaded into this XmlDocument object when method Load is invoked in line 19. Once an
XML document is loaded into an XmlDocument, its data can be read and manipulated
programmatically. In this example, we read each node in the XmlDocument, which is the
DOM tree. In successive examples, we demonstrate how to manipulate node values.

In line 22, we create an XmlNodeReader and assign it to reference reader, which
enables us to read one node at a time from the XmlDocument. Method Read of Xml-
Reader reads one node from the DOM tree. Placing this statement in the while loop (lines
31–78) makes reader Read all the document nodes. The switch statement (lines 33–77)
processes each node. Either the Name property (line 41), which contains the node’s name, or
the Value property (line 53), which contains the node’s data, is formatted and concatenated
to the string assigned to the text box Text property. The NodeType property contains
the node type (specifying whether the node is an element, comment, text, etc.). Notice that
each case specifies a node type, using XmlNodeType enumeration constants.

Notice that the displayed output emphasizes the structure of the XML document. Vari-
able depth (line 28) sets the number of tab characters used to indent each element. The
depth is incremented each time an Element type is encountered and is decremented each
time an EndElement or empty element is encountered. We use a similar technique in the
next example to emphasize the tree structure of the XML document in the display.

Notice that our line breaks use the character sequence "\r\n", which denotes a car-
riage return followed by a line feed. This is the standard line break for Windows-based
applications and controls.

The C# program in Fig. 18.8 demonstrates how to manipulate DOM trees programmat-
ically. This program loads letter.xml (Fig. 18.3) into the DOM tree and then creates a

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 XmlNodeReader used to iterate through an XML document. (Part 3 of 3.)

Chapter 18 Extensible Markup Language (XML) 851

second DOM tree that duplicates the DOM tree containing letter.xml’s contents. The
GUI for this application contains a text box, a TreeView control and three buttons—
Build, Print and Reset. When clicked, Build copies letter.xml and displays the doc-
ument’s tree structure in the TreeView control, Print displays the XML element values
and names in a text box and Reset clears the TreeView control and text box content.

Lines 20 and 23 create references to XmlDocuments source and copy. Line 32
assigns a new XmlDocument object to reference source. Line 33 then invokes method
Load to parse and load letter.xml. We discuss reference copy shortly.

Unfortunately, XmlDocuments do not provide any features for displaying their content
graphically. In this example, we display the document’s contents via a TreeView control.
We use objects of class TreeNode to represent each node in the tree. Class TreeView and
class TreeNode are part of the System.Windows.Forms namespace. TreeNodes are
added to the TreeView to emphasize the structure of the XML document.

1 // Fig. 18.8: XmlDom.cs
2 // Demonstrates DOM tree manipulation.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7 using System.IO;
8 using System.CodeDom.Compiler; // contains TempFileCollection
9

10 // Class XmlDom demonstrates the DOM
11 public class XmlDom : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.Button buildButton;
14 private System.Windows.Forms.Button printButton;
15 private System.Windows.Forms.TreeView xmlTreeView;
16 private System.Windows.Forms.TextBox consoleTextBox;
17 private System.Windows.Forms.Button resetButton;
18 private System.ComponentModel.Container components = null;
19
20 private XmlDocument source; // reference to "XML document"
21
22 // reference copy of source's "XML document"
23 private XmlDocument copy;
24
25 private TreeNode tree; // TreeNode reference
26
27 public XmlDom()
28 {
29 InitializeComponent();
30
31 // create XmlDocument and load letter.xml
32 source = new XmlDocument();
33 source.Load("..\\..\\letter.xml");
34
35 // initialize references to null
36 copy = null;

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 DOM structure of an XML document illustrated by a class. (Part 1 of 6.)

852 Extensible Markup Language (XML) Chapter 18

37 tree = null;
38 } // end XmlDom
39
40 [STAThread]
41 static void Main()
42 {
43 Application.Run(new XmlDom());
44 }
45
46 // event handler for buildButton click event
47 private void buildButton_Click(object sender,
48 System.EventArgs e)
49 {
50 // determine if copy has been built already
51 if (copy != null)
52 return; // document already exists
53
54 // instantiate XmlDocument and TreeNode
55 copy = new XmlDocument();
56 tree = new TreeNode();
57
58 // add root node name to TreeNode and add
59 // TreeNode to TreeView control
60 tree.Text = source.Name; // assigns #root
61 xmlTreeView.Nodes.Add(tree);
62
63 // build node and tree hierarchy
64 BuildTree(source, copy, tree);
65
66 printButton.Enabled = true;
67 resetButton.Enabled = true;
68 } // end buildButton_Click
69
70 // event handler for printButton click event
71 private void printButton_Click(object sender,
72 System.EventArgs e)
73 {
74 // exit if copy does not reference an XmlDocument
75 if (copy == null)
76 return;
77
78 // create temporary XML file
79 TempFileCollection file = new TempFileCollection();
80
81 // create file that is deleted at program termination
82 file.AddExtension("xml", false);
83 string[] filename = new string[1];
84 file.CopyTo(filename, 0);
85
86 // write XML data to disk
87 XmlTextWriter writer = new XmlTextWriter(filename[0],
88 System.Text.Encoding.UTF8);
89 copy.WriteTo(writer);

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 DOM structure of an XML document illustrated by a class. (Part 2 of 6.)

Chapter 18 Extensible Markup Language (XML) 853

90 writer.Close();
91
92 // parse and load temporary XML document
93 XmlTextReader reader = new XmlTextReader(filename[0]);
94
95 // read, format and display data
96 while(reader.Read())
97 {
98 if (reader.NodeType == XmlNodeType.EndElement)
99 consoleTextBox.Text += "/";
100
101 if (reader.Name != String.Empty)
102 consoleTextBox.Text += reader.Name + "\r\n";
103
104 if (reader.Value != String.Empty)
105 consoleTextBox.Text += "\t" + reader.Value +
106 "\r\n";
107 } // end while
108
109 reader.Close();
110 } // end printButton_Click
111
112 // handle resetButton click event
113 private void resetButton_Click(object sender,
114 System.EventArgs e)
115 {
116 // remove TreeView nodes
117 if (tree != null)
118 xmlTreeView.Nodes.Remove(tree);
119
120 xmlTreeView.Refresh(); // force TreeView update
121
122 // delete XmlDocument and tree
123 copy = null;
124 tree = null;
125
126 consoleTextBox.Text = ""; // clear text box
127
128 printButton.Enabled = false;
129 resetButton.Enabled = false;
130
131 } // end resetButton_Click
132
133 // construct DOM tree
134 private void BuildTree(XmlNode xmlSourceNode,
135 XmlNode document, TreeNode treeNode)
136 {
137 // create XmlNodeReader to access XML document
138 XmlNodeReader nodeReader = new XmlNodeReader(
139 xmlSourceNode);
140
141 // represents current node in DOM tree
142 XmlNode currentNode = null;

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 DOM structure of an XML document illustrated by a class. (Part 3 of 6.)

854 Extensible Markup Language (XML) Chapter 18

143
144 // treeNode to add to existing tree
145 TreeNode newNode = new TreeNode();
146
147 // references modified node type for CreateNode
148 XmlNodeType modifiedNodeType;
149
150 while (nodeReader.Read())
151 {
152 // get current node type
153 modifiedNodeType = nodeReader.NodeType;
154
155 // check for EndElement, store as Element
156 if (modifiedNodeType == XmlNodeType.EndElement)
157 modifiedNodeType = XmlNodeType.Element;
158
159 // create node copy
160 currentNode = copy.CreateNode(modifiedNodeType,
161 nodeReader.Name, nodeReader.NamespaceURI);
162
163 // build tree based on node type
164 switch (nodeReader.NodeType)
165 {
166 // if Text node, add its value to tree
167 case XmlNodeType.Text:
168 newNode.Text = nodeReader.Value;
169 treeNode.Nodes.Add(newNode);
170
171 // append Text node value to currentNode data
172 ((XmlText) currentNode).AppendData(
173 nodeReader.Value);
174 document.AppendChild(currentNode);
175 break;
176
177 // if EndElement, move up tree
178 case XmlNodeType.EndElement:
179 document = document.ParentNode;
180 treeNode = treeNode.Parent;
181 break;
182
183 // if new element, add name and traverse tree
184 case XmlNodeType.Element:
185
186 // determine if element contains content
187 if (!nodeReader.IsEmptyElement)
188 {
189 // assign node text, add newNode as child
190 newNode.Text = nodeReader.Name;
191 treeNode.Nodes.Add(newNode);
192
193 // set treeNode to last child
194 treeNode = newNode;
195

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 DOM structure of an XML document illustrated by a class. (Part 4 of 6.)

Chapter 18 Extensible Markup Language (XML) 855

196 document.AppendChild(currentNode);
197 document = document.LastChild;
198 }
199 else // do not traverse empty elements
200 {
201 // assign NodeType string to newNode
202 newNode.Text =
203 nodeReader.NodeType.ToString();
204
205 treeNode.Nodes.Add(newNode);
206 document.AppendChild(currentNode);
207 }
208
209 break;
210
211 // all other types, display node type
212 default:
213 newNode.Text = nodeReader.NodeType.ToString();
214 treeNode.Nodes.Add(newNode);
215 document.AppendChild(currentNode);
216 break;
217 } // end switch
218
219 newNode = new TreeNode();
220 } // end while
221
222 // update the TreeView control
223 xmlTreeView.ExpandAll();
224 xmlTreeView.Refresh();
225
226 } // end BuildTree
227 } // end XmlDom

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 DOM structure of an XML document illustrated by a class. (Part 5 of 6.)

856 Extensible Markup Language (XML) Chapter 18

When clicked, button Build triggers event handler buildButton_Click (lines 47–
68), which copies letter.xml dynamically. The new XmlDocument and TreeNodes
(i.e., the nodes used for graphical representation in the TreeView) are created in lines 55–
56. Line 60 retrieves the Name of the node referenced by source (i.e., #root, which rep-
resents the document root) and assigns it to tree’s Text property. This TreeNode then is
inserted into the TreeView control’s node list. Method Add is called to add each new
TreeNode to the TreeView’s Nodes collection. Line 64 calls method BuildTree to
copy the XMLDocument referenced by source and to update the TreeView.

Method BuildTree (line 134–226) receives an XmlNode representing the source
node, an empty XmlNode and a treeNode to place in the DOM tree. Parameter
treeNode references the current location in the tree (i.e., the TreeNode most recently
added to the TreeView control). Lines 138–139 instantiate a new XmlNodeReader for
iterating through the DOM tree. Lines 142–145 declare XmlNode and TreeNode refer-
ences that indicate the next nodes added to document (i.e., the DOM tree referenced by
copy) and treeNode. Lines 150–220 iterate through each node in the tree.

Lines 153–161 create a node containing a copy of the current nodeReader node.
Method CreateNode of XmlDocument takes a NodeType, a Name and a Namespa-
ceURI as arguments. The NodeType cannot be an EndElement. If the NodeType is
of an EndElement type, lines 156–157 assign modifiedNodeType type Element.

The switch statement in lines 164–217 determines the node type, creates and adds
nodes to the TreeView and updates the DOM tree.When a text node is encountered, the
new TreeNode’s newNode’s Text property is assigned the current node’s value. This
TreeNode is added to the TreeView control. In lines 172–174, we downcast
currentNode to XmlText and append the node’s value. The currentNode then is
appended to the document. Lines 171–174 match an EndElement node type. This
case moves up the tree, because the end of an element has been encountered. The
ParentNode and Parent properties retrieve the document’s and treeNode’s par-
ents, respectively.

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 DOM structure of an XML document illustrated by a class. (Part 6 of 6.)

Chapter 18 Extensible Markup Language (XML) 857

Line 177 matches Element node types. Each nonempty Element NodeType (line
180) increases the depth of the tree; thus, we assign the current nodeReader Name to the
newNode’s Text property and add the newNode to the treeNode node list. Lines 187–
190 reorder the nodes in the node list to ensure that newNode is the last TreeNode in the
node list. XmlNode currentNode is appended to document as the last child, and
document is set to its LastChild, which is the child we just added. If it is an empty
element (line 192), we assign to the newNode’s Text property the string representa-
tion of the NodeType. Next, the newNode is added to the treeNode node list. Line 199
appends the currentNode to the document. The default case assigns the string rep-
resentation of the node type to the NewNode Text property, adds the newNode to the
TreeNode node list and appends the currentNode to the document.

After building the DOM trees, the TreeNode node list displays in the TreeView con-
trol. Clicking the nodes (i.e., the + or - boxes) in the TreeView either expands or collapses
them. Clicking Print invokes event handler printButton_Click (line 71). Lines 79–84
create a temporary file for storing the XML. Line 87 creates an XmlTextWriter for
streaming the XML data to disk. Method WriteTo is called to write the XML representation
to the XmlTextWriter stream (line 89). Line 93 creates an XmlTextReader to read
from the file. The while loop (line 96–107) reads each node in the DOM tree and writes tag
names and character data to the text box. If it is an end element, a slash is concatenated. If the
node has a Name or Value, that name or value is concatenated to the textbox text.

The Reset button’s event handler, resetButton_Click, deletes both dynami-
cally generated trees and updates the TreeView control’s display. Reference copy is
assigned null (to allow its tree to be garbage collected in line 123), and the TreeNode
node list reference tree is assigned null.

Although XmlReader includes methods for reading and modifying node values, it is
not the most efficient means of locating data in a DOM tree. The .NET framework provides
class XPathNavigator in the System.Xml.XPath namespace for iterating through
node lists that match search criteria, which are written as an XPath expression. XPath
(XML Path Language) provides a syntax for locating specific nodes in XML documents
effectively and efficiently. XPath is a string-based language of expressions used by XML
and many of its related technologies (such as, XSLT, discussed in Section 18.6).

Figure 18.9 demonstrates how to navigate through an XML document with an
XPathNavigator. Like Fig. 18.8, this program uses a TreeView control and
TreeNode objects to display the XML document’s structure. However, instead of dis-
playing the entire DOM tree, the TreeNode node list is updated each time the XPath-
Navigator is positioned to a new node. Nodes are added to and deleted from the
TreeView to reflect the XPathNavigator’s location in the DOM tree. The XML doc-
ument sports.xml that we use in this example is presented in Figure 18.10.

This program loads XML document sports.xml into an XPathDocument object
by passing the document’s file name to the XPathDocument constructor (line 36).
Method CreateNavigator (line 39) creates and returns an XPathNavigator refer-
ence to the XPathDocument’s tree structure.

The navigation methods of XPathNavigator used in Fig. 18.9 are MoveTo-
FirstChild (line 66), MoveToParent (line 94), MoveToNext (line 122) and
MoveToPrevious (line 151). Each method performs the action that its name implies.
Method MoveToFirstChild moves to the first child of the node referenced by the

858 Extensible Markup Language (XML) Chapter 18

XPathNavigator, MoveToParent moves to the parent node of the node referenced
by the XPathNavigator, MoveToNext moves to the next sibling of the node refer-
enced by the XPathNavigator and MoveToPrevious moves to the previous sibling
of the node referenced by the XPathNavigator. Each method returns a bool indicating
whether the move was successful. In this example, we display a warning in a
MessageBox whenever a move operation fails. Furthermore, each of these methods is
called in the event handler of the button that matches its name (e.g., button First Child
triggers firstChildButton_Click, which calls MoveToFirstChild).

Whenever we move forward via the XPathNavigator, as with MoveToFirst-
Child and MoveToNext, nodes are added to the TreeNode node list. Method Deter-
mineType is a private method (defined in lines 208–229) that determines whether to
assign the Node’s Name property or Value property to the TreeNode (lines 218 and
225). Whenever MoveToParent is called, all children of the parent node are removed
from the display. Similarly, a call to MoveToPrevious removes the current sibling node.
Note that the nodes are removed only from the TreeView, not from the tree representation
of the document.

The other event handler corresponds to button Select (line 173–174). Method
Select (line 182) takes search criteria in the form of either an XPathExpression or
a string that represents an XPath expression and returns as an XPathNodeIterator
object any nodes that match the search criteria. The XPath expressions provided by this
program’s combo box are summarized in Fig. 18.11.

Method DisplayIterator (defined in lines 195–204) appends the node values
from the given XPathNodeIterator to the selectTreeViewer text box. Note that
we call the string method Trim to remove unnecessary whitespace. Method
MoveNext (line 200) advances to the next node, which can be accessed via property Cur-
rent (line 202).

1 // Fig. 18.9: PathNavigator.cs
2 // Demonstrates Class XPathNavigator.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml.XPath; // contains XPathNavigator
7
8 public class PathNavigator : System.Windows.Forms.Form
9 {

10 private System.Windows.Forms.Button firstChildButton;
11 private System.Windows.Forms.Button parentButton;
12 private System.Windows.Forms.Button nextButton;
13 private System.Windows.Forms.Button previousButton;
14 private System.Windows.Forms.Button selectButton;
15 private System.Windows.Forms.TreeView pathTreeViewer;
16 private System.Windows.Forms.ComboBox selectComboBox;
17 private System.ComponentModel.Container components = null;
18 private System.Windows.Forms.TextBox selectTreeViewer;
19 private System.Windows.Forms.GroupBox navigateBox;
20 private System.Windows.Forms.GroupBox locateBox;
21

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 XPathNavigator class used to navigate selected nodes. (Part 1 of 7.)

Chapter 18 Extensible Markup Language (XML) 859

22 // navigator to traverse document
23 private XPathNavigator xpath;
24
25 // references document for use by XPathNavigator
26 private XPathDocument document;
27
28 // references TreeNode list used by TreeView control
29 private TreeNode tree;
30
31 public PathNavigator()
32 {
33 InitializeComponent();
34
35 // load XML document
36 document = new XPathDocument("..\\..\\sports.xml");
37
38 // create navigator
39 xpath = document.CreateNavigator();
40
41 // create root node for TreeNodes
42 tree = new TreeNode();
43
44 tree.Text = xpath.NodeType.ToString(); // #root
45 pathTreeViewer.Nodes.Add(tree); // add tree
46
47 // update TreeView control
48 pathTreeViewer.ExpandAll();
49 pathTreeViewer.Refresh();
50 pathTreeViewer.SelectedNode = tree; // highlight root
51 } // end constructor
52
53 [STAThread]
54 static void Main()
55 {
56 Application.Run(new PathNavigator());
57 }
58
59 // traverse to first child
60 private void firstChildButton_Click(object sender,
61 System.EventArgs e)
62 {
63 TreeNode newTreeNode;
64
65 // move to first child
66 if (xpath.MoveToFirstChild())
67 {
68 newTreeNode = new TreeNode(); // create new node
69
70 // set node's Text property to either
71 // navigator's name or value
72 DetermineType(newTreeNode, xpath);
73

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 XPathNavigator class used to navigate selected nodes. (Part 2 of 7.)

860 Extensible Markup Language (XML) Chapter 18

74 // add node to TreeNode node list
75 tree.Nodes.Add(newTreeNode);
76 tree = newTreeNode; // assign tree newTreeNode
77
78 // update TreeView control
79 pathTreeViewer.ExpandAll();
80 pathTreeViewer.Refresh();
81 pathTreeViewer.SelectedNode = tree;
82 }
83 else // node has no children
84 MessageBox.Show("Current Node has no children.",
85 "", MessageBoxButtons.OK,
86 MessageBoxIcon.Information);
87 }
88
89 // traverse to node's parent on parentButton click event
90 private void parentButton_Click(object sender,
91 System.EventArgs e)
92 {
93 // move to parent
94 if (xpath.MoveToParent())
95 {
96 tree = tree.Parent;
97
98 // get number of child nodes, not including subtrees
99 int count = tree.GetNodeCount(false);
100
101 // remove all children
102 tree.Nodes.Clear();
103
104 // update TreeView control
105 pathTreeViewer.ExpandAll();
106 pathTreeViewer.Refresh();
107 pathTreeViewer.SelectedNode = tree;
108 }
109 else // if node has no parent (root node)
110 MessageBox.Show("Current node has no parent.", "",
111 MessageBoxButtons.OK,
112 MessageBoxIcon.Information);
113 }
114
115 // find next sibling on nextButton click event
116 private void nextButton_Click(object sender,
117 System.EventArgs e)
118 {
119 TreeNode newTreeNode = null, newNode = null;
120
121 // move to next sibling
122 if (xpath.MoveToNext())
123 {
124 newTreeNode = tree.Parent; // get parent node
125
126 newNode = new TreeNode(); // create new node

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 XPathNavigator class used to navigate selected nodes. (Part 3 of 7.)

Chapter 18 Extensible Markup Language (XML) 861

127 DetermineType(newNode, xpath);
128 newTreeNode.Nodes.Add(newNode);
129
130 // set current position for display
131 tree = newNode;
132
133 // update TreeView control
134 pathTreeViewer.ExpandAll();
135 pathTreeViewer.Refresh();
136 pathTreeViewer.SelectedNode = tree;
137 }
138 else // node has no additional siblings
139 MessageBox.Show("Current node is last sibling.",
140 "", MessageBoxButtons.OK,
141 MessageBoxIcon.Information);
142 } // end nextButton_Click
143
144 // get previous sibling on previousButton click
145 private void previousButton_Click(object sender,
146 System.EventArgs e)
147 {
148 TreeNode parentTreeNode = null;
149
150 // move to previous sibling
151 if (xpath.MoveToPrevious())
152 {
153 parentTreeNode = tree.Parent; // get parent node
154
155 // delete current node
156 parentTreeNode.Nodes.Remove(tree);
157
158 // move to previous node
159 tree = parentTreeNode.LastNode;
160
161 // update TreeView control
162 pathTreeViewer.ExpandAll();
163 pathTreeViewer.Refresh();
164 pathTreeViewer.SelectedNode = tree;
165 }
166 else // if current node has no previous siblings
167 MessageBox.Show("Current node is first sibling.",
168 "", MessageBoxButtons.OK,
169 MessageBoxIcon.Information);
170 } // end previousButton_Click
171
172 // process selectButton click event
173 private void selectButton_Click(object sender,
174 System.EventArgs e)
175 {
176 XPathNodeIterator iterator; // enables node iteration
177

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 XPathNavigator class used to navigate selected nodes. (Part 4 of 7.)

862 Extensible Markup Language (XML) Chapter 18

178 // get specified node from ComboBox
179 try
180 {
181 iterator = xpath.Select(selectComboBox.Text);
182 DisplayIterator(iterator); // print selection
183 }
184
185 // catch invalid expressions
186 catch (System.ArgumentException argumentException)
187 {
188 MessageBox.Show(argumentException.Message,
189 "Error", MessageBoxButtons.OK,
190 MessageBoxIcon.Error);
191 }
192 } // end selectButton_Click
193
194 // print values for XPathNodeIterator
195 private void DisplayIterator(XPathNodeIterator iterator)
196 {
197 selectTreeViewer.Text = "";
198
199 // prints selected node's values
200 while (iterator.MoveNext())
201 selectTreeViewer.Text +=
202 iterator.Current.Value.Trim()
203 + "\r\n";
204 } // end DisplayIterator
205
206 // determine if TreeNode should display current node
207 // name or value
208 private void DetermineType(TreeNode node,
209 XPathNavigator xPath)
210 {
211 // determine NodeType
212 switch (xPath.NodeType)
213 {
214 // if Element, get its name
215 case XPathNodeType.Element:
216
217 // get current node name, and remove whitespace
218 node.Text = xPath.Name.Trim();
219 break;
220
221 // obtain node values
222 default:
223
224 // get current node value and remove whitespace
225 node.Text = xPath.Value.Trim();
226 break;
227
228 } // end switch
229 } // end DetermineType
230 } // end PathNavigator

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 XPathNavigator class used to navigate selected nodes. (Part 5 of 7.)

Chapter 18 Extensible Markup Language (XML) 863

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 XPathNavigator class used to navigate selected nodes. (Part 6 of 7.)

864 Extensible Markup Language (XML) Chapter 18

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.10: sports.xml -->
4 <!-- Sports Database -->
5
6 <sports>
7
8 <game id = "783">
9 <name>Cricket</name>

10
11 <paragraph>
12 More popular among commonwealth nations.
13 </paragraph>
14 </game>
15
16 <game id = "239">
17 <name>Baseball</name>
18
19 <paragraph>
20 More popular in America.
21 </paragraph>
22 </game>
23
24 <game id = "418">
25 <name>Soccer(Futbol)</name>
26 <paragraph>Most popular sport in the world</paragraph>
27 </game>
28 </sports>

Fig. 18.10Fig. 18.10Fig. 18.10Fig. 18.10 XML document that describes various sports.

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 XPathNavigator class used to navigate selected nodes. (Part 7 of 7.)

Chapter 18 Extensible Markup Language (XML) 865

18.5 Document Type Definitions (DTDs), Schemas and
Validation
XML documents can reference optional documents that specify how the XML documents
should be structured. These optional documents are called Document Type Definitions
(DTDs) and Schemas. When a DTD or Schema document is provided, some parsers (called
validating parsers) can read the DTD or Schema and check the XML document’s structure
against it. If the XML document conforms to the DTD or Schema, then the XML document
is valid. Parsers that cannot check for document conformity against the DTD or Schema are
called non-validating parsers. If an XML parser (validating or non-validating) is able to
process an XML document (that does not reference a DTD or Schema), the XML document
is considered to be well formed (i.e., it is syntactically correct). By definition, a valid XML
document is also a well-formed XML document. If a document is not well formed, parsing
halts, and the parser issues an error.

Software Engineering Observation 18.2
DTD and Schema documents are essential components for XML documents used in business-
to-business (B2B) transactions and mission-critical systems. These documents help ensure
that XML documents are valid. 18.2

Software Engineering Observation 18.3
Because XML document content can be structured in many different ways, an application
cannot determine whether the document data it receives is complete, missing data or ordered
properly. DTDs and Schemas solve this problem by providing an extensible means of de-
scribing a document’s contents. An application can use a DTD or Schema document to per-
form a validity check on the document’s contents. 18.3

Expression Description

/sports Matches the sports node that is child node of the
document root node. This node contains the root ele-
ment.

/sports/game/name Matches all name nodes that are child nodes of game.
The game node must be a child of sports and
sports must be a root element node.

/sports/game/paragraph Matches all paragraph nodes that are child nodes of
game. The game node must be a child of sports,
and sports must be a root element node.

/sports/game[name='Cricket'] Matches all game nodes that contain a child element
name whose value is Cricket. The game node must
be a child of sports, and sports must be a root
element node.

Fig. 18.11Fig. 18.11Fig. 18.11Fig. 18.11 XPath expressions and descriptions.

866 Extensible Markup Language (XML) Chapter 18

18.5.1 Document Type Definitions
Document type definitions (DTDs) provide a means for type checking XML documents and
thus verifying their validity (confirming that elements contain the proper attributes, elements
are in the proper sequence, etc.). DTDs use EBNF (Extended Backus-Naur Form) grammar
to describe an XML document’s content. XML parsers need additional functionality to read
EBNF grammar, because it is not XML syntax. Although DTDs are optional, they are recom-
mended to ensure document conformity. The DTD in Fig. 18.12 defines the set of rules (i.e.,
the grammar) for structuring the business letter document contained in Fig. 18.13.

Portability Tip 18.2
DTDs can ensure consistency among XML documents generated by different programs. 18.2

Line 4 uses the ELEMENT element type declaration to define rules for element
letter. In this case, letter contains one or more contact elements, one saluta-
tion element, one or more paragraph elements, one closing element and one sig-
nature element, in that sequence. The plus sign (+) occurrence indicator specifies that
an element must occur one or more times. Other indicators include the asterisk (*), which
indicates an optional element that can occur any number of times, and the question mark
(?), which indicates an optional element that can occur at most once. If an occurrence indi-
cator is omitted, exactly one occurrence is expected.

The contact element definition (line 7) specifies that it contains the name,
address1, address2, city, state, zip, phone and flag elements—in that order.
Exactly one occurrence of each is expected.

1 <!-- Fig. 18.12: letter.dtd -->
2 <!-- DTD document for letter.xml -->
3
4 <!ELEMENT letter (contact+, salutation, paragraph+,
5 closing, signature)>
6
7 <!ELEMENT contact (name, address1, address2, city, state,
8 zip, phone, flag)>
9 <!ATTLIST contact type CDATA #IMPLIED>

10
11 <!ELEMENT name (#PCDATA)>
12 <!ELEMENT address1 (#PCDATA)>
13 <!ELEMENT address2 (#PCDATA)>
14 <!ELEMENT city (#PCDATA)>
15 <!ELEMENT state (#PCDATA)>
16 <!ELEMENT zip (#PCDATA)>
17 <!ELEMENT phone (#PCDATA)>
18 <!ELEMENT flag EMPTY>
19 <!ATTLIST flag gender (M | F) "M">
20
21 <!ELEMENT salutation (#PCDATA)>
22 <!ELEMENT closing (#PCDATA)>
23 <!ELEMENT paragraph (#PCDATA)>
24 <!ELEMENT signature (#PCDATA)>

Fig. 18.12Fig. 18.12Fig. 18.12Fig. 18.12 Document Type Definition (DTD) for a business letter.

Chapter 18 Extensible Markup Language (XML) 867

Line 9 uses the ATTLIST element type declaration to define an attribute (i.e., type)
for the contact element. Keyword #IMPLIED specifies that, if the parser finds a con-
tact element without a type attribute, the application can provide a value or ignore the
missing attribute. The absence of a type attribute cannot invalidate the document. Other
types of default values include #REQUIRED and #FIXED. Keyword #REQUIRED speci-
fies that the attribute must be present in the document and the keyword #FIXED specifies
that the attribute (if present) must always be assigned a specific value. For example,

<!ATTLIST address zip #FIXED "01757">

indicates that the value 01757 must be used for attribute zip; otherwise, the document is
invalid. If the attribute is not present, then the parser, by default, uses the fixed value that is
specified in the ATTLIST declaration. Flag CDATA specifies that attribute type contains a
String that is not processed by the parser, but instead is passed to the application as is.

Software Engineering Observation 18.4
DTD syntax does not provide any mechanism for describing an element’s (or attribute’s)
data type. 18.4

Flag #PCDATA (line 11) specifies that the element can store parsed character data
(i.e., text). Parsed character data cannot contain markup. The characters less than (<) and
ampersand (&) must be replaced by their entities (i.e., < and &). However, the
ampersand character can be inserted when used with entities. See Appendix L (on CD) for
a list of pre-defined entities.

Line 18 defines an empty element named flag. Keyword EMPTY specifies that the ele-
ment cannot contain character data. Empty elements commonly are used for their attributes.

Common Programming Error 18.9
Any element, attribute or relationship not explicitly defined by a DTD results in an invalid
document. 18.9

Many XML documents explicitly reference a DTD. Figure 18.13 is an XML document
that conforms to letter.dtd (Fig. 18.12).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.13: letter2.xml -->
4 <!-- Business letter formatted with XML -->
5
6 <!DOCTYPE letter SYSTEM "letter.dtd">
7
8 <letter>
9 <contact type = "from">

10 <name>Jane Doe</name>
11 <address1>Box 12345</address1>
12 <address2>15 Any Ave.</address2>
13 <city>Othertown</city>
14 <state>Otherstate</state>
15 <zip>67890</zip>
16 <phone>555-4321</phone>

Fig. 18.13Fig. 18.13Fig. 18.13Fig. 18.13 XML document referencing its associated DTD. (Part 1 of 2.)

868 Extensible Markup Language (XML) Chapter 18

This XML document is similar to that in Fig. 18.3. Line 6 references a DTD file. This
markup contains three pieces: The name of the root element (letter in line 8) to which
the DTD is applied, the keyword SYSTEM (which in this case denotes an external DTD—
a DTD defined in a separate file) and the DTD’s name and location (i.e., letter.dtd in
the current directory). Though almost any file extension can be used, DTD documents typ-
ically end with the .dtd extension.

Various tools (many of which are free) check document conformity against DTDs and
Schemas (discussed momentarily). The output in Fig. 18.14 shows the results of the vali-
dation of letter2.xml using Microsoft’s XML Validator. Visit www.w3.org/XML/
Schema.html for a list of validating tools. Microsoft XML Validator is available free for
download from

msdn.microsoft.com/downloads/samples/Internet/xml/
xml_validator/sample.asp

Microsoft XML Validator can validate XML documents against DTDs locally or by
uploading the documents to the XML Validator Web site. Here, letter2.xml and
letter.dtd are placed in folder C:\XML\. This XML document (letter2.xml) is
well formed and conforms to letter.dtd.

17 <flag gender = "F" />
18 </contact>
19
20 <contact type = "to">
21 <name>John Doe</name>
22 <address1>123 Main St.</address1>
23 <address2></address2>
24 <city>Anytown</city>
25 <state>Anystate</state>
26 <zip>12345</zip>
27 <phone>555-1234</phone>
28 <flag gender = "M" />
29 </contact>
30
31 <salutation>Dear Sir:</salutation>
32
33 <paragraph>It is our privilege to inform you about our new
34 database managed with XML. This new system
35 allows you to reduce the load on your inventory list
36 server by having the client machine perform the work of
37 sorting and filtering the data.
38 </paragraph>
39
40 <paragraph>Please visit our Web site for availability
41 and pricing.
42 </paragraph>
43 <closing>Sincerely</closing>
44 <signature>Ms. Doe</signature>
45 </letter>

Fig. 18.13Fig. 18.13Fig. 18.13Fig. 18.13 XML document referencing its associated DTD. (Part 2 of 2.)

Chapter 18 Extensible Markup Language (XML) 869

XML documents that fail validation are still well-formed documents. When a docu-
ment fails to conform to a DTD or Schema, Microsoft XML Validator displays an error
message. For example, the DTD in Fig. 18.12 indicates that the contacts element must
contain child element name. If the document omits this child element, the document is well
formed, but not valid. In such a scenario, Microsoft XML Validator displays the error mes-
sage shown in Fig. 18.15.

C# programs can use msxml to validate XML documents against DTDs. For informa-
tion on how to accomplish this, visit:

msdn.microsoft.com/library/default.asp?url=/library/en-us/
cpguidnf/html/cpconvalidationagainstdtdwithxmlvalidatin-
greader.asp

Schemas are the preferred means of defining structures for XML documents in .NET.
Although, several types of Schemas exist, the two most popular are Microsoft Schema and
W3C Schema. We begin our discussion of Schemas in the next section.

18.5.2 Microsoft XML Schemas2

In this section, we introduce an alternative to DTDs—called Schemas—for defining an
XML document’s structure. Many developers in the XML community feel that DTDs are

Fig. 18.14Fig. 18.14Fig. 18.14Fig. 18.14 XML Validator validates an XML document against a DTD.

2. W3C Schema, which we discuss in Section 18.5.3, is emerging as the industry standard for de-
scribing an XML document’s structure. Within the next two years, we expect most developers will
be using W3C Schema.

870 Extensible Markup Language (XML) Chapter 18

not flexible enough to meet today’s programming needs. For example, DTDs cannot be ma-
nipulated (e.g., searched, programmatically modified, etc.) in the same manner that XML
documents can, because DTDs are not XML documents. Furthermore, DTDs do not pro-
vide features for describing an element’s (or attribute’s) data type.

Unlike DTDs, Schemas do not use Extended Backus-Naur Form (EBNF) grammar.
Instead, Schemas are XML documents that can be manipulated (e.g., elements can be added
or removed, etc.) like any other XML document. As with DTDs, Schemas require vali-
dating parsers.

In this section, we focus on Microsoft’s XML Schema vocabulary. Figure 18.16 pre-
sents an XML document that conforms to the Microsoft Schema document shown in
Fig. 18.17. By convention, Microsoft XML Schema documents use the file extension
.xdr, which is short for XML-Data Reduced. Line 6 (Fig. 18.16) references the Schema
document book.xdr.

Fig. 18.15Fig. 18.15Fig. 18.15Fig. 18.15 XML Validator displaying an error message.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.16: bookxdr.xml -->
4 <!-- XML file that marks up book data -->
5
6 <books xmlns = "x-schema:book.xdr">
7 <book>
8 <title>C# How to Program</title>
9 </book>

10
11 <book>
12 <title>Java How to Program, 4/e</title>
13 </book>
14
15 <book>
16 <title>Visual Basic .NET How to Program</title>
17 </book>
18
19 <book>
20 <title>Advanced Java 2 Platform How to Program</title>
21 </book>

Fig. 18.16Fig. 18.16Fig. 18.16Fig. 18.16 XML document that conforms to a Microsoft Schema document. (Part 1 of 2.)

Chapter 18 Extensible Markup Language (XML) 871

Software Engineering Observation 18.5
Schemas are XML documents that conform to DTDs, which define the structure of a Schema.
These DTDs, which are bundled with the parser, are used to validate the Schemas that au-
thors create. 18.5

Software Engineering Observation 18.6
Many organizations and individuals are creating DTDs and Schemas for a broad range of
categories (e.g., financial transactions, medical prescriptions, etc.). Often, these collec-
tions—called repositories—are available free for download from the Web.3 18.6

In line 6, root element Schema begins the Schema markup. Microsoft Schemas use the
namespace URI "urn:schemas-microsoft-com:data". Line 7 uses element
ElementType to define element title. Attribute content specifies that this element
contains parsed character data (i.e., text only). Element title is not permitted to contain
child elements. Setting the model attribute to "closed" specifies that a conforming XML
document can contain only elements defined in this Schema. Line 10 defines element book;
this element’s content is “elements only” (i.e., eltOnly). This means that the element
cannot contain mixed content (i.e., text and other elements). Within the ElementType ele-
ment named book, the element element indicates that title is a child element of
book. Attributes minOccurs and maxOccurs are set to "1", indicating that a book ele-

22
23 <book>
24 <title>Python How to Program</title>
25 </book>
26 </books>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.17: book.xdr -->
4 <!-- Schema document to which book.xml conforms -->
5
6 <Schema xmlns = "urn:schemas-microsoft-com:xml-data">
7 <ElementType name = "title" content = "textOnly"
8 model = "closed" />
9

10 <ElementType name = "book" content = "eltOnly" model = "closed">
11 <element type = "title" minOccurs = "1" maxOccurs = "1" />
12 </ElementType>
13
14 <ElementType name = "books" content = "eltOnly" model = "closed">
15 <element type = "book" minOccurs = "0" maxOccurs = "*" />
16 </ElementType>
17 </Schema>

Fig. 18.17Fig. 18.17Fig. 18.17Fig. 18.17 Microsoft Schema file that contains structure to which bookxdr.xml
conforms.

Fig. 18.16Fig. 18.16Fig. 18.16Fig. 18.16 XML document that conforms to a Microsoft Schema document. (Part 2 of 2.)

3. See, for example, opengis.net/schema.htm.

872 Extensible Markup Language (XML) Chapter 18

ment must contain exactly one title element. The asterisk (*) in line 15 indicates that the
Schema permits any number of book elements in element books. We discuss how to vali-
date bookxdr.xml against book.xdr in Section 18.5.4.

18.5.3 W3C XML Schema4

In this section, we focus on W3C XML Schema5—the schema that the W3C created. XML
Schema is a Recommendation (i.e., a stable release suitable for use in industry).
Figure 18.18 shows a Schema-valid XML document named bookxsd.xml and
Fig. 18.19 shows the W3C XML Schema document (book.xsd) that defines the structure
for bookxsd.xml. Although Schema authors can use virtually any filename extension,
W3C XML Schemas typically use the .xsd extension. We discuss how to validate
bookxsd.xml against book.xsd in the next section.

4. We provide a detailed treatment of W3C Schema in XML How to Program, 2/e.
5. For the latest on W3C XML Schema, visit www.w3.org/XML/Schema.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.18: bookxsd.xml -->
4 <!-- Document that conforms to W3C XML Schema -->
5
6 <deitel:books xmlns:deitel = "http://www.deitel.com/booklist">
7 <book>
8 <title>e-Business and e-Commerce How to Program</title>
9 </book>

10 <book>
11 <title>Python How to Program</title>
12 </book>
13 </deitel:books>

Fig. 18.18Fig. 18.18Fig. 18.18Fig. 18.18 XML document that conforms to W3C XML Schema.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.19: book.xsd -->
4 <!-- Simple W3C XML Schema document -->
5
6 <xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
7 xmlns:deitel = "http://www.deitel.com/booklist"
8 targetNamespace = "http://www.deitel.com/booklist">
9

10 <xsd:element name = "books" type = "deitel:BooksType"/>
11
12 <xsd:complexType name = "BooksType">
13 <xsd:sequence>
14 <xsd:element name = "book" type = "deitel:BookType"
15 minOccurs = "1" maxOccurs = "unbounded"/>
16 </xsd:sequence>
17 </xsd:complexType>

Fig. 18.19Fig. 18.19Fig. 18.19Fig. 18.19 XSD Schema document to which bookxsd.xml conforms.

Chapter 18 Extensible Markup Language (XML) 873

W3C XML Schema use the namespace URI http://www.w3.org/2001/
XMLSchema and often use namespace prefix xsd (line 6 in Fig. 18.19). Root element
schema contains elements that define the XML document’s structure. Line 7 binds the
URI http://www.deitel.com/booklist to namespace prefix deitel. Line 8
specifies the targetNamespace, which is the namespace for elements and attributes
that this schema defines.

In W3C XML Schema, element element (line 10) defines an element. Attributes
name and type specify the element’s name and data type, respectively. In this case, the
name of the element is books and the data type is deitel:BooksType. Any element
(e.g., books) that contains attributes or child elements must define a complex type, which
defines each attribute and child element. Type deitel:BooksType (lines 12–17) is an
example of a complex type. We prefix BooksType with deitel, because this is a com-
plex type that we have created, not an existing W3C XML Schema complex type.

Lines 12–17 use element complexType to define an element type that has a child
element named book. Because book contains a child element, its type must be a complex
type (e.g., BookType). Attribute minOccurs specifies that books must contain a min-
imum of one book element. Attribute maxOccurs, with value unbounded (line 14)
specifies that books may have any number of book child elements. Element sequence
specifies the order of elements in the complex type.

Lines 19–23 define the complexType BookType. Line 21 defines element title
with type xsd:string. When an element has a simple type such as xsd:string, it
is prohibited from containing attributes and child elements. W3C XML Schema provides a
large number of data types such as xsd:date for dates, xsd:int for integers,
xsd:double for floating-point numbers and xsd:time for time.

Good Programming Practice 18.1
By convention, W3C XML Schema authors use namespace prefix xsd when referring to the
URI http://www.w3.org/2001/XMLSchema. 18.1

18.5.4 Schema Validation in C#
In this section, we present a C# application (Fig. 18.20) that uses classes from the .NET
Framework Class Library to validate the XML documents presented in the last two sections
against their respective Schemas. We use an instance of XmlValidatingReader to
perform the validation.

Line 17 creates an XmlSchemaCollection reference named schemas. Line 28
calls method Add to add an XmlSchema object to the Schema collection. Method Add is
passed a name that identifies the Schema (i.e., "book") and the name of the Schema file

18
19 <xsd:complexType name = "BookType">
20 <xsd:sequence>
21 <xsd:element name = "title" type = "xsd:string"/>
22 </xsd:sequence>
23 </xsd:complexType>
24
25 </xsd:schema>

Fig. 18.19Fig. 18.19Fig. 18.19Fig. 18.19 XSD Schema document to which bookxsd.xml conforms.

874 Extensible Markup Language (XML) Chapter 18

(i.e., "book.xdr"). Line 29 calls method Add to add a W3C XML Schema. The first
argument specifies the namespace URI (i.e., line 18 in Fig. 18.19) and the second argument
indentifies the schema file (i.e., "book.xsd"). This is the Schema that is used to validate
bookxsd.xml.

1 // Fig. 18.20: ValidationTest.cs
2 // Validating XML documents against Schemas.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7 using System.Xml.Schema; // contains Schema classes
8
9 // determines XML document Schema validity

10 public class ValidationTest : System.Windows.Forms.Form
11 {
12 private System.Windows.Forms.ComboBox filesComboBox;
13 private System.Windows.Forms.Button validateButton;
14 private System.Windows.Forms.Label consoleLabel;
15 private System.ComponentModel.Container components = null;
16
17 private XmlSchemaCollection schemas; // Schemas
18 private bool valid; // validation result
19
20 public ValidationTest()
21 {
22 InitializeComponent();
23
24 valid = true; // assume document is valid
25
26 // get Schema(s) for validation
27 schemas = new XmlSchemaCollection();
28 schemas.Add("book", "book.xdr");
29 schemas.Add("http://www.deitel.com/booklist", "book.xsd");
30 } // end constructor
31
32 // Visual Studio .NET generated code
33
34 [STAThread]
35 static void Main()
36 {
37 Application.Run(new ValidationTest());
38 } // end Main
39
40 // handle validateButton click event
41 private void validateButton_Click(object sender,
42 System.EventArgs e)
43 {
44 // get XML document
45 XmlTextReader reader =
46 new XmlTextReader(filesComboBox.Text);
47

Fig. 18.20Fig. 18.20Fig. 18.20Fig. 18.20 Schema-validation example. (Part 1 of 2.)

Chapter 18 Extensible Markup Language (XML) 875

Lines 45–46 create an XmlReader for the file that the user selected from file-
sComboBox. The XML document to be validated against a Schema contained in the
XmlSchemaCollection must be passed to the XmlValidatingReader con-
structor (lines 49–50).

48 // get validator
49 XmlValidatingReader validator =
50 new XmlValidatingReader(reader);
51
52 // assign Schema(s)
53 validator.Schemas.Add(schemas);
54
55 // set validation type
56 validator.ValidationType = ValidationType.Auto;
57
58 // register event handler for validation error(s)
59 validator.ValidationEventHandler +=
60 new ValidationEventHandler(ValidationError);
61
62 // validate document node-by-node
63 while (validator.Read()) ; // empty body
64
65 // check validation result
66 if (valid)
67 consoleLabel.Text = "Document is valid";
68
69 valid = true; // reset variable
70
71 // close reader stream
72 validator.Close();
73 } // end validateButton_Click
74
75 // event handler for validation error
76 private void ValidationError(object sender,
77 ValidationEventArgs arguments)
78 {
79 consoleLabel.Text = arguments.Message;
80 valid = false; // validation failed
81 } // end ValidationError
82 } // end ValidationTest

Fig. 18.20Fig. 18.20Fig. 18.20Fig. 18.20 Schema-validation example. (Part 2 of 2.)

876 Extensible Markup Language (XML) Chapter 18

 Line 53 Adds the Schema collection referenced by Schemas to the Schemas prop-
erty. This property sets the Schema used to validate the document. The ValidationType
property (line 56) is set to the ValidationType enumeration constant for Automatically
identifying the Schema’s type (i.e., XDR or XSD). Lines 59–60 register method Valida-
tionError with ValidationEventHandler. Method ValidationError (lines
76–81) is called if the document is invalid or an error occurs, such as if the document cannot
be found. Failure to register a method with ValidationEventHandler causes an
exception to be thrown when the document is missing or invalid.

Validation is performed node-by-node by calling the method Read (line 63). Each call
to Read validates the next node in the document. The loop terminates either when all nodes
have been validated successfully or a node fails validation. When validated against their
respective Schemas, the XML documents in Fig. 18.16 and Fig. 18.18 validate successfully.

Figure 18.21 and Fig. 18.22 list two XML documents that fail to conform to book.xdr
and book.xsd, respectively. In Fig. 18.21, the extra title element in book (lines 19–22)
invalidate the document. In Fig. 18.22, the extra title element in book (lines 7–10) inval-
idates the document. Although both documents are invalid, they are well formed.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.22: bookxsdfail.xml -->
4 <!-- Document that does not conforms to W3C Schema -->
5
6 <deitel:books xmlns:deitel = "http://www.deitel.com/booklist">
7 <book>
8 <title>e-Business and e-Commerce How to Program</title>
9 <title>C# How to Program</title>

10 </book>
11 <book>
12 <title>Python How to Program</title>
13 </book>
14 </deitel:books>

Fig. 18.21Fig. 18.21Fig. 18.21Fig. 18.21 XML document that does not conform to the XSD schema of Fig. 18.19.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.22: bookxdrfail.xml -->
4 <!-- XML file that does not conform to Schema book.xdr -->
5

Fig. 18.22Fig. 18.22Fig. 18.22Fig. 18.22 XML file that does not conform to the Schema in Fig. 18.17. (Part 1 of 2.)

Chapter 18 Extensible Markup Language (XML) 877

18.6 Extensible Stylesheet Language and XslTransform
Extensible Stylesheet Language (XSL) is an XML vocabulary for formatting XML data. In
this section, we discuss the portion of XSL—called XSL Transformations (XSLT)—that
creates formatted text-based documents from XML documents. This process is called a
transformation and involves two tree structures: The source tree, which is the XML docu-
ment being transformed, and the result tree, which is the result (i.e., any text-based format
such as XHTML) of the transformation.6 The source tree is not modified when a transfor-
mation occurs.

To perform transformations, an XSLT processor is required. Popular XSLT processors
include Microsoft’s msxml and the Apache Software Foundation’s Xalan. The XML doc-
ument, shown in Fig. 18.23, is transformed by msxml into an XHTML document
(Fig. 18.24).

6 <books xmlns = "x-schema:book.xdr">
7 <book>
8 <title>XML How to Program</title>
9 </book>

10
11 <book>
12 <title>Java How to Program, 4/e</title>
13 </book>
14
15 <book>
16 <title>Visual Basic .NET How to Program</title>
17 </book>
18
19 <book>
20 <title>C++ How to Program, 3/e</title>
21 <title>Python How to Program</title>
22 </book>
23
24 <book>
25 <title>C# How to Program</title>
26 </book>
27 </books>

6. Extensible Hypertext Markup Language (XHTML) is the W3C technical recommendation that replaces
HTML for marking up content for the Web. For more information on XHTML, see the XHTML Appendices
K and L on the CD and visit www.w3.org.

Fig. 18.22Fig. 18.22Fig. 18.22Fig. 18.22 XML file that does not conform to the Schema in Fig. 18.17. (Part 2 of 2.)

878 Extensible Markup Language (XML) Chapter 18

Line 6 is a processing instruction (PI), which contains application-specific informa-
tion that is embedded into the XML document. In this particular case, the processing
instruction is specific to IE and specifies the location of an XSLT document with which to
transform the XML document. The characters <? and ?> delimit a processing instruction,
which consists of a PI target (e.g., xml:stylesheet) and PI value (e.g., type =
"text/xsl" href = "sorting.xsl"). The portion of this particular PI value that
follows href specifies the name and location of the style sheet to apply—in this case,
sorting.xsl, which is located in the same directory as this XML document.

Fig. 18.24 presents the XSLT document (sorting.xsl) that transforms
sorting.xml (Fig. 18.23) to XHTML.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.23: sorting.xml -->
4 <!-- XML document containing book information -->
5
6 <?xml:stylesheet type = "text/xsl" href = "sorting.xsl"?>
7
8 <book isbn = "999-99999-9-X">
9 <title>Deitel's XML Primer</title>

10
11 <author>
12 <firstName>Paul</firstName>
13 <lastName>Deitel</lastName>
14 </author>
15
16 <chapters>
17 <frontMatter>
18 <preface pages = "2" />
19 <contents pages = "5" />
20 <illustrations pages = "4" />
21 </frontMatter>
22
23 <chapter number = "3" pages = "44">
24 Advanced XML</chapter>
25
26 <chapter number = "2" pages = "35">
27 Intermediate XML</chapter>
28
29 <appendix number = "B" pages = "26">
30 Parsers and Tools</appendix>
31
32 <appendix number = "A" pages = "7">
33 Entities</appendix>
34
35 <chapter number = "1" pages = "28">
36 XML Fundamentals</chapter>
37 </chapters>
38
39 <media type = "CD" />
40 </book>

Fig. 18.23Fig. 18.23Fig. 18.23Fig. 18.23 XML document containing book information.

Chapter 18 Extensible Markup Language (XML) 879

Performance Tip 18.1
Using Internet Explorer on the client to process XSLT documents conserves server resources
by using the client’s processing power (instead of having the server process XSLT documents
for multiple clients). 18.1

Line 1 of Fig. 18.23 contains the XML declaration. Recall that an XSL document is an
XML document. Line 6 is the xsl:stylesheet root element. Attribute version
specifies the version of XSLT to which this document conforms. Namespace prefix xsl is
defined and is bound to the XSLT URI defined by the W3C. When processed, lines 11–13
write the document type declaration to the result tree. Attribute method is assigned
"xml", which indicates that XML is being output to the result tree. Attribute omit-xml-
declaration is assigned "no", which outputs an XML declaration to the result tree.
Attribute doctype-system and doctype-public write the Doctype DTD infor-
mation to the result tree.

XSLT documents contain one or more xsl:template elements that specify which
information is output to the result tree. The template on line 16 matches the source tree’s
document root. When the document root is encountered, this template is applied, and any
text marked up by this element that is not in the namespace referenced by xsl is output to
the result tree. Line 18 calls for all the templates that match children of the document
root to be applied. Line 23 specifies a template that matches element book.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 18.24: sorting.xsl -->
4 <!-- Transformation of book information into XHTML -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <!-- write XML declaration and DOCTYPE DTD information -->

10 <xsl:output method = "xml" omit-xml-declaration = "no"
11 doctype-system =
12 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
13 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
14
15 <!-- match document root -->
16 <xsl:template match = "/">
17 <html xmlns = "http://www.w3.org/1999/xhtml">
18 <xsl:apply-templates/>
19 </html>
20 </xsl:template>
21
22 <!-- match book -->
23 <xsl:template match = "book">
24 <head>
25 <title>ISBN <xsl:value-of select = "@isbn" /> -
26 <xsl:value-of select = "title" /></title>
27 </head>

Fig. 18.24Fig. 18.24Fig. 18.24Fig. 18.24 XSL document that transforms sorting.xml (Fig. 18.23) into XHTML. (Part
1 of 3.)

880 Extensible Markup Language (XML) Chapter 18

28
29 <body>
30 <h1 style = "color: blue">
31 <xsl:value-of select = "title"/></h1>
32
33 <h2 style = "color: blue">by <xsl:value-of
34 select = "author/lastName" />,
35 <xsl:value-of select = "author/firstName" /></h2>
36
37 <table style =
38 "border-style: groove; background-color: wheat">
39
40 <xsl:for-each select = "chapters/frontMatter/*">
41 <tr>
42 <td style = "text-align: right">
43 <xsl:value-of select = "name()" />
44 </td>
45
46 <td>
47 (<xsl:value-of select = "@pages" /> pages)
48 </td>
49 </tr>
50 </xsl:for-each>
51
52 <xsl:for-each select = "chapters/chapter">
53 <xsl:sort select = "@number" data-type = "number"
54 order = "ascending" />
55 <tr>
56 <td style = "text-align: right">
57 Chapter <xsl:value-of select = "@number" />
58 </td>
59
60 <td>
61 (<xsl:value-of select = "@pages" /> pages)
62 </td>
63 </tr>
64 </xsl:for-each>
65
66 <xsl:for-each select = "chapters/appendix">
67 <xsl:sort select = "@number" data-type = "text"
68 order = "ascending" />
69 <tr>
70 <td style = "text-align: right">
71 Appendix <xsl:value-of select = "@number" />
72 </td>
73
74 <td>
75 (<xsl:value-of select = "@pages" /> pages)
76 </td>
77 </tr>
78 </xsl:for-each>
79 </table>

Fig. 18.24Fig. 18.24Fig. 18.24Fig. 18.24 XSL document that transforms sorting.xml (Fig. 18.23) into XHTML. (Part
2 of 3.)

Chapter 18 Extensible Markup Language (XML) 881

Lines 25–26 create the title for the XHTML document. We use the ISBN of the book
from attribute isbn and the contents of element title to create the title string ISBN
999-99999-9-X - Deitel’s XML Primer. Element xsl:value-of selects the book
element’s isbn attribute.

Lines 33–35 create a header element that contains the book’s author. Because the con-
text node (i.e., the current node being processed) is book, the XPath expression author/
lastName selects the author’s last name, and the expression author/firstName
selects the author’s first name.

Line 40 selects each element (indicated by an asterisk) that is a child of element
frontMatter. Line 43 calls node-set function name to retrieve the current node’s ele-
ment name (e.g., preface). The current node is the context node specified in the
xsl:for-each (line 40).

Lines 53–54 sort chapters by number in ascending order. Attribute select selects
the value of context node chapter’s attribute number. Attribute data-type with

80
81
<p style = "color: blue">Pages:
82 <xsl:variable name = "pagecount"
83 select = "sum(chapters//*/@pages)" />
84 <xsl:value-of select = "$pagecount" />
85
Media Type:
86 <xsl:value-of select = "media/@type" /></p>
87 </body>
88 </xsl:template>
89
90 </xsl:stylesheet>

Fig. 18.24Fig. 18.24Fig. 18.24Fig. 18.24 XSL document that transforms sorting.xml (Fig. 18.23) into XHTML. (Part
3 of 3.)

882 Extensible Markup Language (XML) Chapter 18

value "number", specifies a numeric sort and attribute order specifies "ascending"
order. Attribute data-type also can, be assigned the value "text" (line 67) and
attribute order also may be assigned the value "descending".

Lines 82–83 use an XSL variable to store the value of the book’s page count and output
it to the result tree. Attribute name specifies the variable’s name, and attribute select
assigns it a value. Function sum totals the values for all page attribute values. The two
slashes between chapters and * indicate that all descendent nodes of chapters are
searched for elements that contain an attribute named pages.

The System.Xml.Xsl namespace provides classes for applying XSLT style sheets
to XML documents. Specifically, an object of class XslTransform performs the trans-
formation.

Figure 18.25 applies a style sheet (sports.xsl) to sports.xml (Fig. 18.10). The
transformation result is written to a text box and to a file. We also show the transformation
results rendered in IE.

Line 20 declares XslTransform reference transformer. An object of this type
is necessary to transform the XML data to another format. In line 29, the XML document
is parsed and loaded into memory with a call to method Load. Method CreateNavi-
gator is called in line 32 to create an XPathNavigator object, which is used to navi-
gate the XML document during the transformation. A call to method Load of class
XslTransform (line 36) parses and loads the style sheet that this application uses. The
argument that is passed contains the name and location of the style sheet.

Event handler transformButton_Click calls method Transform of class
XslTransform to apply the style sheet (sports.xsl) to sports.xml (line 53).
This method takes three arguments: An XPathNavigator (created from
sports.xml’s XmlDocument), an instance of class XsltArgumentList, which is
a list of string parameters that can be applied to a style sheet—null, in this case and
an instance of a derived class of TextWriter (in this example, an instance of class
StringWriter). The results of the transformation are stored in the StringWriter
object referenced by output. Lines 59–62 write the transformation results to disk. The
third screen shot depicts the created XHTML document when it is rendered in IE.

1 // Fig. 18.25: TransformTest.cs
2 // Applying a style sheet to an XML document.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Xml;
7 using System.Xml.XPath; // contains XPath classes
8 using System.Xml.Xsl; // contains style sheet classes
9 using System.IO; // contains stream classes

10
11 // transforms XML document to XHTML
12 public class TransformTest : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.TextBox consoleTextBox;
15 private System.Windows.Forms.Button transformButton;
16 private System.ComponentModel.Container components = null;

Fig. 18.25Fig. 18.25Fig. 18.25Fig. 18.25 XSL style sheet applied to an XML document. (Part 1 of 3.)

Chapter 18 Extensible Markup Language (XML) 883

17
18 private XmlDocument document; // Xml document root
19 private XPathNavigator navigator; // navigate document
20 private XslTransform transformer; // transform document
21 private StringWriter output; // display document
22
23 public TransformTest()
24 {
25 InitializeComponent();
26
27 // load XML data
28 document = new XmlDocument();
29 document.Load("..\\..\\sports.xml");
30
31 // create navigator
32 navigator = document.CreateNavigator();
33
34 // load style sheet
35 transformer = new XslTransform();
36 transformer.Load("..\\..\\sports.xsl");
37 } // end constructor
38
39 // Windows Form Designer generated code
40
41 [STAThread]
42 static void Main()
43 {
44 Application.Run(new TransformTest());
45 } // end Main
46
47 // transformButton click event
48 private void transformButton_Click(object sender,
49 System.EventArgs e)
50 {
51 // transform XML data
52 output = new StringWriter();
53 transformer.Transform(navigator, null, output);
54
55 // display transformation in text box
56 consoleTextBox.Text = output.ToString();
57
58 // write transformation result to disk
59 FileStream stream = new FileStream("..\\..\\sports.html",
60 FileMode.Create);
61 StreamWriter writer = new StreamWriter(stream);
62 writer.Write(output.ToString());
63
64 // close streams
65 writer.Close();
66 output.Close();
67 } // end transformButton_Click
68 } // end TransformTest

Fig. 18.25Fig. 18.25Fig. 18.25Fig. 18.25 XSL style sheet applied to an XML document. (Part 2 of 3.)

884 Extensible Markup Language (XML) Chapter 18

18.7 Microsoft BizTalk™
Increasingly, organizations are using the Internet to exchange critical data between busi-
ness partners and their own business divisions. However, transferring data between orga-
nizations can become difficult, because companies often use different platforms,
applications and data specifications that complicate data transfer. For example, consider a
business that supplies raw materials to a variety of industries. If the supplier cannot receive
all orders electronically because their customers use different computing platforms, an em-
ployee must input order data manually. If the supplier receives hundreds of orders a day,
typing mistakes are likely, resulting in incorrect inventories or wrong order fulfillments,
thereby jeorpardizing the business by losing customers.

The supplier has several options—either continue to have data entered manually, pur-
chase the same software packages as the ones their customers use or encourage customers
to adopt the applications used by the supply company. In a growing economy, a business
would have to purchase and maintain disparate software packages, spend money for more
employees to process data or force their business partners to standardize their own organi-
zational software programs. To facilitate the flow of information between businesses,
Microsoft developed BizTalk (“business talk”), an XML-based technology that helps to
manage and facilitate business transactions.

Fig. 18.25Fig. 18.25Fig. 18.25Fig. 18.25 XSL style sheet applied to an XML document. (Part 3 of 3.)

Chapter 18 Extensible Markup Language (XML) 885

BizTalk creates an environment in which data marked up as XML is used to exchange
business-specific information, regardless of platform or programming applications. This
section overviews BizTalk and presents a code example to illustrate the business-specific
information included in the markup.

BizTalk consists of three parts: The BizTalk Server, the BizTalk Framework and the Biz-
Talk Schema Library. The BizTalk Server (BTS) parses and translates all inbound and out-
bound messages (or documents) that are sent to and from a business, using Internet standards
such as HTTP. The BizTalk Framework is a Schema for structuring those messages. The
Framework offers a specific set of core tags. Businesses can download the Framework to use
in their organizations and can submit new schemas to the BizTalk organization, at
www.biztalk.org. Once the BizTalk organization verifies and validates the submis-
sions, the Schemas become BizTalk Framework Schemas. The BizTalk Schema Library is a
collection of Framework Schemas. Figure 18.26 summarizes BizTalk terminology.

Fig. 18.27 is an example BizTalk message for a product offer from a clothing com-
pany. The message Schema for this example was developed by Microsoft to facilitate
online purchases by a retailer from a wholesaler. We use this Schema for a fictitious com-
pany, named ExComp.

BizTalk Description

Framework A specification that defines a format for messages.

Schema library A repository of Framework XML Schemas.

Server An application that assists vendors in converting their messages to BizTalk for-
mat. For more information, visit www.microsoft.com/biztalkserver

JumpStart Kit A set of tools for developing BizTalk applications.

Fig. 18.26Fig. 18.26Fig. 18.26Fig. 18.26 BizTalk terminology.

1 <?xml version = "1.0"?>
2 <BizTalk xmlns =
3 "urn:schemas-biztalk-org:BizTalk/biztalk-0.81.xml">
4
5 <!-- Fig. 18.27: ìbiztalkmarkup.xml -->
6 <!-- Example of standard BizTalk markup -->
7
8 <Route>
9 <From locationID = "8888888" locationType = "DUNS"

10 handle = "23" />
11
12 <To locationID = "454545445" locationType = "DUNS"
13 handle = "45" />
14 </Route>
15

Fig. 18.27Fig. 18.27Fig. 18.27Fig. 18.27 BizTalk markup using an offer Schema. (Part 1 of 3.)

886 Extensible Markup Language (XML) Chapter 18

16 <Body>
17 <Offers xmlns =
18 "x-schema:http://schemas.biztalk.org/eshop_msn_com/
t7ntoqnq.xml">
19 <Offer>
20 <Model>12-a-3411d</Model>
21 <Manufacturer>ExComp, Inc.</Manufacturer>
22 <ManufacturerModel>DCS-48403</ManufacturerModel>
23
24 <MerchantCategory>
25 Clothes | Sports wear
26 </MerchantCategory>
27
28 <MSNClassId></MSNClassId>
29
30 <StartDate>2001-06-05 T13:12:00</StartDate>
31 <EndDate>2001-12-05T13:12:00</EndDate>
32
33 <RegularPrice>89.99</RegularPrice>
34 <CurrentPrice>25.99</CurrentPrice>
35 <DisplayPrice value = "3" />
36 <InStock value = "15" />
37
38 <ReferenceImageURL>
39 http://www.Example.com/clothes/index.jpg
40 </ReferenceImageURL>
41
42 <OfferName>Clearance sale</OfferName>
43
44 <OfferDescription>
45 This is a clearance sale
46 </OfferDescription>
47
48 <PromotionalText>Free Shipping</PromotionalText>
49
50 <Comments>
51 Clothes that you would love to wear.
52 </Comments>
53
54 <IconType value = "BuyNow" />
55
56 <ActionURL>
57 http://www.example.com/action.htm
58 </ActionURL>
59
60 <AgeGroup1 value = "Infant" />
61 <AgeGroup2 value = "Adult" />
62
63 <Occasion1 value = "Birthday" />
64 <Occasion2 value = "Anniversary" />
65 <Occasion3 value = "Christmas" />
66
67 </Offer>

Fig. 18.27Fig. 18.27Fig. 18.27Fig. 18.27 BizTalk markup using an offer Schema. (Part 2 of 3.)

Chapter 18 Extensible Markup Language (XML) 887

All Biztalk documents have the root element BizTalk (line 2). Line 3 defines a default
namespace for the BizTalk framework elements. Element Route (lines 8–14) contains the
routing information, which is mandatory for all BizTalk documents. Element Route also
contains elements To and From (lines 9–12), which indicate the document’s destination and
source, respectively. This makes it easier for the receiving application to communicate with
the sender. Attribute locationType specifies the type of business that sends or receives
the information, and attribute locationID specifies a business identity (the unique identi-
fier for a business). These attributes facilitate source and destination organization. Attribute
handle provides information to routing applications that handle the document.

Element Body (lines 16–69) contains the actual message, whose Schema is defined by
the businesses themselves. Lines 17–18 specify the default namespace for element
Offers (lines 17–68), which is contained in element Body (note that line 18 wraps—if
we split this line, Internet Explorer cannot locate the namespace). Each offer is marked up
using an Offer element (lines 19–67) that contains elements describing the offer. Note
that the tags all are business-related elements, and easily understood. For additional infor-
mation on BizTalk, visit www.biztalk.com.

In this chapter, we studied the Extensible Markup Language and several of its related
technologies. In Chapter 19, we begin our discussion of databases, which are crucial to the
development of multi-tier Web-based applications.

18.8 Internet and World Wide Web Resources
www.w3.org/xml
The W3C (World Wide Web Consortium) facilitates the development of common protocols to ensure
interoperability on the Web. Their XML page includes information about upcoming events, publica-
tions, software and discussion groups. Visit this site to read about the latest developments in XML.

www.xml.org
xml.org is a reference for XML, DTDs, schemas and namespaces.

www.w3.org/style/XSL
This W3C page provides information on XSL, including topics such as XSL development, learning
XSL, XSL-enabled tools, XSL specification, FAQs and XSL history.

www.w3.org/TR
This is the W3C technical reports and publications page. It contains links to working drafts, proposed
recommendations and other resources.

www.xmlbooks.com
This site provides a list of XML books recommended by Charles Goldfarb, one of the original design-
ers of GML (General Markup Language), from which SGML was derived.

www.xml-zone.com
The Development Exchange XML Zone is a complete resource for XML information. This site in-
cludes a FAQ, news, articles and links to other XML sites and newsgroups.

68 </Offers>
69 </Body>
70 </BizTalk>

Fig. 18.27Fig. 18.27Fig. 18.27Fig. 18.27 BizTalk markup using an offer Schema. (Part 3 of 3.)

888 Extensible Markup Language (XML) Chapter 18

wdvl.internet.com/Authoring/Languages/XML
Web Developer's Virtual Library XML site includes tutorials, a FAQ, the latest news and extensive
links to XML sites and software downloads.

www.xml.com
XML.com provides the latest news and information about XML, conference listings, links to XML
Web resources organized by topic, tools and other resources.

msdn.microsoft.com/xml/default.asp
The MSDN Online XML Development Center features articles on XML, Ask the Experts chat ses-
sions, samples and demos, newsgroups and other helpful information.

msdn.microsoft.com/downloads/samples/Internet/xml/xml_validator/
sample.asp
The microsoft XML validator, which can be downloaded from this site, can validate both online and
offline documents.

www.oasis-open.org/cover/xml.html
The SGML/XML Web Page is an extensive resource that includes links to several FAQs, online re-
sources, industry initiatives, demos, conferences and tutorials.

www.gca.org/whats_xml/default.htm
The GCA site offers an XML glossary, list of books, brief descriptions of the draft standards for XML
and links to online drafts.

www-106.ibm.com/developerworks/xml
The IBM XML Zone site is a great resource for developers. It provides news, tools, a library, case
studies and information about events and standards.

developer.netscape.com/tech/xml/index.html
The XML and Metadata Developer Central site has demos, technical notes and news articles related
to XML.

www.projectcool.com/developer/xmlz
The Project Cool Developer Zone site includes several tutorials covering introductory through ad-
vanced XML topics.

www.ucc.ie/xml
This site is a detailed XML FAQ. Developers can check out responses to some popular questions, or
submit their own questions through the site.

SUMMARY
• XML is a widely supported, open technology (i.e., non-proprietary technology) for data exchange.

XML is quickly becoming the standard by which applications maintain data.

• XML is highly portable. Any text editor that supports ASCII or Unicode characters can render or
display XML documents. Because XML elements describe the data they contain, they are both hu-
man and machine readable.

• XML permits document authors to create custom markup for virtually any type of information. This
extensibility enables document authors to create entirely new markup languages that describe specif-
ic types of data, including mathematical formulas, chemical molecular structures, music, recipes, etc.

• The processing of XML documents—which programs typically store in files whose names end
with the .xml extension—requires a program called an XML parser. A parser is responsible for
identifying components of XML documents then for storing those components in a data structure
for manipulation.

Chapter 18 Extensible Markup Language (XML) 889

• An XML document can reference another optional document that defines the XML document’s
structure. Two types of optional structure-defining documents are Document Type Definitions
(DTDs) and Schemas.

• An XML document begins with an optional XML declaration, which identifies the document as
an XML document. The version information parameter specifies the version of XML syntax
that is used in the document.

• XML comments begin with <!-- and end with -->. Data is marked up with tags whose names
are enclosed in angle brackets (<>). Tags are used in pairs to delimit markup. A tag that begins
markup is called a start tag, and a tag that terminates markup is called an end tag. End tags differ
from start tags in that they contain a forward slash (/) character.

• Individual units of markup are called elements, which are the most fundamental XML building
blocks. XML documents contain one element, called a root element, that contains every other el-
ement in the document. Elements are embedded or nested within each other to form hierarchies,
with the root element at the top of the hierarchy.

• XML element names can be of any length and can contain letters, digits, underscores, hyphens and
periods. However, they must begin with either a letter or an underscore.

• When a user loads an XML document into Internet Explorer (IE), msxml parses the document and
passes the parsed data to IE. IE then uses a style sheet to format the data.

• IE displays minus (–) and plus (+) signs next to all container elements (i.e., elements that contain
other elements). A minus sign indicates that all child elements (i.e., nested elements) are being dis-
played. When clicked, a minus sign becomes a plus sign (which collapses the container element
and hides all children), and vice versa.

• In addition to being placed between tags, data also can be placed in attributes, which are name–
value pairs in start tags. Elements can have any number of attributes.

• Because XML allows document authors to create their own tags, naming collisions (i.e., two dif-
ferent elements that have the same name) can occur. As in C#, XML namespaces provide a means
for document authors to prevent collisions. Namespace prefixes are prepended to elements to spec-
ify the namespace to which the element belongs.

• Each namespace prefix is bound to a uniform resource identifier (URI) that uniquely identifies the
namespace. A URI is a series of characters that differentiate names. Document authors create their
own namespace prefixes. Virtually any name can be used as a namespace prefix except the re-
served namespace prefix xml.

• To eliminate the need to place a namespace prefix in each element, document authors can specify
a default namespace for an element and its children.

• When an XML parser successfully parses a document, the parser stores a tree structure containing
the document’s data in memory. This hierarchical tree structure is called a Document Object
Model (DOM) tree. The DOM tree represents each component of the XML document as a node
in the tree. Nodes that contain other nodes (called child nodes) are called parent nodes. Nodes
that have the same parent are called sibling nodes. A node’s descendant nodes include that node’s
children, its children’s children and so on. A node’s ancestor nodes include that node’s parent, its
parent’s parent and so on. The DOM tree has a single root node that contains all other nodes in
the document.

• Namespace System.Xml, contains classes for creating, reading and manipulating XML docu-
ments.

• XmlReader-derived class XmlNodeReader iterates through each node in the XML document.

• Class XmlReader is an abstract class that defines the interface for reading XML documents.

890 Extensible Markup Language (XML) Chapter 18

• An XmlDocument object conceptually represents an empty XML document.

• The XML documents are parsed and loaded into an XmlDocument object when method Load
is invoked. Once an XML document is loaded into an XmlDocument, its data can be read and
manipulated programmatically.

• An XmlNodeReader allows us to read one node at a time from an XmlDocument.

• Method Read of XmlReader reads one node from the DOM tree.

• The Name property contains the node’s name, the Value property contains the node’s data and
the NodeType property contains the node type (i.e., element, comment, text etc.).

• Line breaks use the character sequence "\r\n", which denotes a carriage return followed by a
line feed. This is the standard line break for Windows-based applications and controls.

• Method CreateNode of XmlDocument takes a NodeType, a Name and a NamespaceURI
as arguments.

• An XmlTextWriter streams XML data to disk. Method WriteTo writes an XML representa-
tion to an XmlTextWriter stream.

• An XmlTextReader reads XML data from a file.

• Class XPathNavigator in the System.Xml.XPath namespace can iterate through node
lists that match search criteria, written as an XPath expression.

• XPath (XML Path Language) provides a syntax for locating specific nodes in XML documents
effectively and efficiently. XPath is a string-based language of expressions used by XML and
many of its related technologies.

• Navigation methods of XPathNavigator are MoveToFirstChild, MoveToParent,
MoveToNext and MoveToPrevious. Each method performs the action that its name implies:
Method MoveToFirstChild moves to the first child of the node referenced by the XPath-
Navigator, MoveToParent moves to the parent node of the node referenced by the XPath-
Navigator, MoveToNext moves to the next sibling of the node referenced by the
XPathNavigator and MoveToPrevious moves to the previous sibling of the node refer-
enced by the XPathNavigator.

• Whereas XML contains only data, XSLT is capable of converting XML into any text based doc-
ument. XSLT documents typically have the extension .xsl.

• When transforming an XML document via XSLT, two tree structures are involved: The source
tree, which is the XML document being transformed, and the result tree, which is the result (e.g.,
XHTML) of the transformation.

• XSLT specifies the use of element value-of to retrieve an attribute’s value. The symbol @ spec-
ifies an attribute node.

• The node-set function name retrieves the current node’s element name.

• Attribute select selects the value of context node’s attribute.

• XML documents can be transformed programmatically through C#. The System.Xml.Xsl
namespace facilities the application of XSLT style sheets to XML documents.

• Class XsltArgumentList is a list of string parameters that can be applied to a style sheet.

• BizTalk consists of three parts: The BizTalk Server, the BizTalk Framework and the BizTalk
Schema Library.

• The BizTalk Server (BTS) parses and translates all inbound and outbound messages (or docu-
ments) going to and from a business.

• The BizTalk Framework is a Schema for structuring those messages.

Chapter 18 Extensible Markup Language (XML) 891

• The BizTalk Schema Library is a collection of different Framework Schemas. Businesses can de-
sign their own Schema or choose one from the BizTalk Schema Library.

• All Biztalk documents have the root element BizTalk.

TERMINOLOGY
@ character minOccurs attribute
\r\n MoveToFirstChild property
Add method MoveToNext property
ancestor node MoveToParent property
asterisk (*) occurrence indicator MoveToPrevious property
ATTLIST MoveToRoot property
attribute msxml parser
attribute node name attribute
attribute value name node-set function
BizTalk Framework Name property
BizTalk Schema Library namespace prefix
BizTalk Server (BTS) node
CDATA character data Nodes collection
child element node-set function
child node NodeType property
container element nonvalidating XML parser
context node occurrence indicator
CreateNavigator method omit-xml-declaration attribute
CreateNode method order attribute
Current property parent node
data-type attribute Parent property
default namespace ParentNode property
descendant node parsed character data
doctype-public attribute parser
doctype-system attribute #PCDATA flag
document root PI (processing instruction)
Document Type Definition (DTD) PI target
DOM (Document Object Model) PI value
EBNF (Extended Backus-Naur Form) grammar plus-sign (+) occurrence indicator
ELEMENT element type declaration processing instruction
empty element question-mark (?) occurrence indicator
EMPTY keyword Read Method
end tag recursive descent
Extensible Stylesheet Language (XSL) reserved namespace prefix xml
external DTD result tree
forward slash root element
#IMPLIED flag root node
invalid document Schema element
IsEmptyElement property schema property
LastChild property Schemas property
Load method select attribute
match attribute Select method
markup sibling node
maxOccurs attribute single-quote character (')
method attribute source tree

892 Extensible Markup Language (XML) Chapter 18

SELF-REVIEW EXERCISES
18.1 Which of the following are valid XML element names?

a) yearBorn
b) year.Born
c) year Born
d) year-Born1
e) 2_year_born
f) --year/born
g) year*born
h) .year_born
i) _year_born_
j) y_e-a_r-b_o-r_n

18.2 State whether the following are true or false. If false, explain why.
a) XML is a technology for creating markup languages.
b) XML markup is delimited by forward and backward slashes (/ and \).
c) All XML start tags must have corresponding end tags.
d) Parsers check an XML document’s syntax.
e) XML does not support namespaces.
f) When creating new XML elements, document authors must use the set of XML tags pro-

vided by the W3C.

style sheet XmlDocument class
sum function XmlNodeReader class
SYSTEM flag XmlNodeType enumeration
System.Xml namespace XmlNodeType.Comment constant
System.Xml.Schema namespace XmlNodeType.Element constant
text node XmlNodeType.EndElement constant
Transform method XmlNodeType.Text constant
tree-based model XmlNodeType.XmlDeclaration constant
type attribute xmlns attribute
validating XML parser XmlPathNodeIterator class
ValidatingReader class XmlReader class
ValidationEventHandler class XmlSchema class
ValidationType property XmlSchemaCollection collection
ValidationType.Auto constant XmlTextWriter class
value property XPathExpression class
version attribute XPathNavigator class
version information parameter .xsl extension
W3C XML Schema XSL Transformations (XSLT)
well-formed document XSL variable
.xdr extension xsl:apply-templates element
XML (Extensible Markup Language) xsl:for-each element
XML declaration xsl:output element
.xml file extension xsl:sort element
xml namespace xsl:stylesheet element
XML node xsl:template element
XML processor xsl:value-of element
XML Schema XslTransform class
XML Validator XsltTextWriter class

Chapter 18 Extensible Markup Language (XML) 893

g) The pound character (#), the dollar sign ($), ampersand (&), greater-than (>) and less-
than (<) are examples of XML reserved characters.

18.3 Fill in the blanks for each of the following statements:
a) help prevent naming collisions.
b) embed application–specific information into an XML document.
c) is Microsoft’s XML parser.
d) XSL element writes a DOCTYPE to the result tree.
e) Microsoft XML Schema documents have root element .
f) To define an element attribute in a DTD, is used.
g) XSL element is the root element in an XSL document.
h) XSL element selects specific XML elements using repetition.

18.4 State which of the following statements are true and which are false. If false, explain why.
a) XML is not case sensitive.
b) C# architecture supports W3C Schema.
c) DTDs are a vocabulary of XML.
d) Schema is a technology for locating information in an XML document.

18.5 In Fig. 18.1, we subdivided the author element into more detailed pieces. How might you
subdivide the date element?

18.6 Write a processing instruction that includes the stylesheet wap.xsl for use in Internet Ex-
plorer.

18.7 Fill in the blanks in each of the following statements:
a) Nodes that contain other nodes are called nodes.
b) Nodes that are peers are called nodes.
c) Class XmlDocument is analogous to the of a tree.
d) Method adds an XmlNode to an XmlTree as a child of the current node.

18.8 Write an XPath expression that locates contact nodes in letter.xml (Fig. 18.3).

18.9 Describe the Select method of XPathNavigator.

ANSWERS TO SELF-REVIEW EXERCISES
18.1 a, b, d, i, j. [Choice c is incorrect because it contains a space; Choice e is incorrect because
the first character is a number; Choice f is incorrect because it contains a division symbol (/) and does
not begin with a letter or underscore; Choice g is incorrect because it contains an asterisk (*); Choice
h is incorrect because the first character is a period (.) and does not begin with a letter or underscore.]

18.2 a) True. b) False. In an XML document, markup text is delimited by angle brackets (< and
>), with a forward slash in the end tag. c) True. d) True. e) False. XML does support namespaces.
f) False. When creating new tags, document authors can use any valid name except the reserved word
xml (also XML, Xml etc.). g) False. XML reserved characters include the ampersand (&), the left-an-
gle bracket (<) and the right-angle bracket (>), but not # and $.

18.3 a) namespaces. b) processing instructions. c) msxml. d) xsl:output. e) Schema. f)
an operator (mo). g) xsl:stylesheet. h) xsl:for-each.

18.4 a) False. XML is case sensitive. b) True. c) False. DTDs use EBNF grammar which is not
XML syntax. d) False. XPath is a technology for locating information in an XML document.

18.5 <date>
<month>December</month>

 <day>6</day>
 <year>2001</year>

</date>.

894 Extensible Markup Language (XML) Chapter 18

18.6 <?xsl:stylesheet type = "text/xsl" href = "wap.xsl"?>

18.7 a) parent. b) sibling. c) root. e) AppendChild.

18.8 /letter/contact.

18.9 Select takes either an XPathExpression or a string argument containing an
XPathExpression to select nodes referenced by the navigator.

EXERCISES
18.10 Create an XML document that marks up the nutrition facts for a package of cookies. A pack-
age of cookies has a serving size of 1 package and the following nutritional value per serving: 260
calories, 100 fat calories, 11 grams of fat, 2 grams of saturated fat, 5 milligrams of cholesterol, 210
milligrams of sodium, 36 grams of total carbohydrates, 2 grams of fiber, 15 grams of sugars and 5
grams of protein. Name this document nutrition.xml. Load the XML document into Internet
Explorer [Hint: Your markup should contain elements describing the product name, serving size/
amount, calories, sodium, cholesterol, proteins, etc. Mark up each nutrition fact/ingredient listed
above.]

18.11 Write an XSLT style sheet for your solution to Exercise 18.10 that displays the nutritional
facts in an XHTML table. Modify Fig. 18.25 (TransformTest.cs) to output an XHTML file,
nutrition.html. Render nutrition.html in a Web browser.

18.12 Write a Microsoft Schema for Fig. 18.23.

18.13 Alter Fig. 18.20 (ValidationTest.cs) to include a list of Schemas in a drop-down box,
along with the list of XML files. Allow the user to test for whether any XML file on the list satisfies
a specific Schema. Use books.xml, books.xsd, nutrition.xml, nutrition.xsd and
fail.xml.

18.14 Modify XmlReaderTest (Fig. 18.7) to display letter.xml (Fig. 18.3) in a Tree-
View, instead of in a text box.

18.15 Modify Fig. 18.24 (sorting.xsl) to sort each section (i.e., frontmatter, chapters and ap-
pendices) by page number rather than by chapter number. Save the modified document as
sorting_byChapter.xsl.

18.16 Modify XmlTransform.cs (Fig. 18.25) to take in sorting.xml (Fig. 18.23), sort-
ing.xsl (Fig. 18.24) and sorting_byChapter.xsl, and print the XHTML document result-
ing from the transform of sorting.xml into two XHTML files, sorting_byPage.html and
sorting_byChapter.html.

19
Database, SQL and

ADO .NET

Objectives
• To understand the relational database model.
• To understand basic database queries using Structured

Query Language (SQL).
• To use the classes and interfaces of namespace
System.Data to manipulate databases.

• To understand and use ADO .NET’s disconnected
model.

• To use the classes and interfaces of namespace
System.Data.OleDb.

It is a capital mistake to theorize before one has data.
Arthur Conan Doyle

Now go, write it before them in a table, and note it in a book,
that it may be for the time to come for ever and ever.
The Holy Bible: The Old Testament

Let's look at the record.
Alfred Emanuel Smith

Get your facts first, and then you can distort them as much
as you please.
Mark Twain

I like two kinds of men: domestic and foreign.
Mae West

896 Database, SQL and ADO .NET Chapter 19

19.1 Introduction
A database is an integrated collection of data. Many different strategies exist for organizing
data in databases to facilitate easy access to and manipulation of the data. A database man-
agement system (DBMS) provides mechanisms for storing and organizing data in a manner
that is consistent with the database’s format. Database management systems enable program-
mers to access and store data without worrying about the internal representation of databases.

Today’s most popular database systems are relational databases. Almost universally,
relational databases use a language called Structured Query Language (SQL—pronounced
as its individual letters or as “sequel”) to perform queries (i.e., to request information that
satisfies given criteria) and to manipulate data. [Note: The writing in this chapter assumes
that SQL is pronounced as its individual letters. For this reason, we often precede SQL with
the article “an,” as in “an SQL database” or “an SQL statement.”]

Outline

19.1 Introduction
19.2 Relational Database Model
19.3 Relational Database Overview: Books Database
19.4 Structured Query Language (SQL)

19.4.1 Basic SELECT Query

19.4.2 WHERE Clause

19.4.3 ORDER BY Clause

19.4.4 Merging Data from Multiple Tables: INNER JOIN

19.4.5 Joining Data from Tables Authors, AuthorISBN,
Titles and Publishers

19.4.6 INSERT Statement

19.4.7 UPDATE Statement

19.4.8 DELETE Statement
19.5 ADO .NET Object Model
19.6 Programming with ADO .NET: Extracting Information from a DBMS

19.6.1 Connecting to and Querying an Access Data Source

19.6.2 Querying the Books Database
19.7 Programming with ADO.NET: Modifying a DBMS
19.8 Reading and Writing XML Files

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Bibliography

Chapter 19 Database, SQL and ADO .NET 897

Some popular, enterprise-level relational database systems include Microsoft SQL
Server, Oracle™, Sybase™, DB2™, Informix™ and MySQL™. This chapter presents
examples using Microsoft Access—a relational database system that is packaged with
Microsoft Office.

A programming language connects to, and interacts with, a relational database via an
interface—software that facilitates communication between a database management system
and a program. C# programmers communicate with databases and manipulate their data
through Microsoft ActiveX Data Objects™ (ADO), ADO .NET.

19.2 Relational Database Model
The relational database model is a logical representation of data that allows relationships
among data to be considered without concern for the physical structure of the data. A rela-
tional database is composed of tables. Figure 19.1 illustrates an example table that might
be used in a personnel system. The table name is Employee, and its primary purpose is to
illustrate the specific attributes of various employees. A particular row of the table is called
a record (or row). This table consists of six records. The number field (or column) of each
record in the table is the primary key for referencing data in the table. A primary key is a
field (or fields) in a table that contain(s) unique data—i.e, data that is not duplicated in other
records of that table. This guarantees that each record can be identified by at least one dis-
tinct value. Examples of primary-key fields are columns that contain social security num-
bers, employee IDs and part numbers in an inventory system. The records of Fig. 19.1 are
ordered by primary key. In this case, the records are listed in increasing order (they also
could be listed in decreasing order).

Each column of the table represents a different field. Records normally are unique (by
primary key) within a table, but particular field values might be duplicated in multiple
records. For example, three different records in the Employee table’s Department field
contain the number 413.

Fig. 19.1Fig. 19.1Fig. 19.1Fig. 19.1 Relational-database structure of an Employee table.

number name department salary location

23603 Jones 413 1100 New Jersey

24568 Kerwin 413 2000 New Jersey

34589 Larson 642 1800 Los Angeles

35761 Myers 611 1400 Orlando

47132 Neumann 413 9000 New Jersey

78321 Stephens 611 8500 Orlando

Record/Row

Field/ColumnPrimary key

898 Database, SQL and ADO .NET Chapter 19

Often, different users of a database are interested in different data and different rela-
tionships among those data. Some users require only subsets of the table columns. To
obtain table subsets, we use SQL statements to specify certain data we wish to select from
a table. SQL provides a complete set of commands (including SELECT) that enable pro-
grammers to define complex queries to select data from a table. The results of a query com-
monly are called result sets (or record sets). For example, we might select data from the
table in Fig. 19.1 to create a new result set containing only the location of each department.
This result set appears in Fig. 19.2. SQL queries are discussed in detail in Section 19.4.

19.3 Relational Database Overview: Books Database
The next section provides an overview of SQL in the context of a sample Books database
that we created for this chapter. However, before we discuss SQL, we must explain the vari-
ous tables of the Books database. We use this database to introduce various database con-
cepts, including the use of SQL to manipulate and obtain useful information from the
database. We provide a script to create the database, which is located in the Chapter 19 exam-
ples directory on the CD accompanying this book. Section 19.6 explains how to use the script.

The database consists of four tables: Authors, Publishers, AuthorISBN and
Titles. The Authors table (described in Fig. 19.3) consists of three fields (or columns)
that maintain each author’s unique ID number, first name and last name. Figure 19.4 con-
tains the data from the Authors table of the Books database.

Fig. 19.2Fig. 19.2Fig. 19.2Fig. 19.2 Result set formed by selecting Department and Location data
from the Employee table.

Field Description

authorID Author’s ID number in the database. In the Books database, this int field is
defined as an auto-incremented field. For each new record inserted in this table,
the database increments the authorID value, ensuring that each record has a
unique authorID. This field represents the table’s primary key.

firstName Author’s first name (a string).

lastName Author’s last name (a string).

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 Authors table from Books.

department location

413 New Jersey

642 Los Angeles

611 Orlando

Chapter 19 Database, SQL and ADO .NET 899

The Publishers table (described in Fig. 19.5) consists of two fields, representing
each publisher’s unique ID and name. Figure 19.6 contains the data from the Pub-
lishers table of the Books database.

The AuthorISBN table (described in Fig. 19.7) consists of two fields that maintain
the authors’ ID numbers and the corresponding ISBN numbers of their books. This table
helps associate the names of the authors with the titles of their books. Figure 19.8 con-
tains the data from the AuthorISBN table of the Books database. ISBN is an abbrevi-
ation for “International Standard Book Number”—a numbering scheme by which
publishers worldwide assign every book a unique identification number. [Note: To save
space, we have split the contents of this figure into two columns, each containing the
authorID and isbn fields.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Jeffrey Listfield

Fig. 19.4Fig. 19.4Fig. 19.4Fig. 19.4 Data from the Authors table of Books.

Field Description

publisherID The publisher’s ID number in the database. This auto-incremented int
field is the table’s primary-key field.

publisherName The name of the publisher (a string).

Fig. 19.5Fig. 19.5Fig. 19.5Fig. 19.5 Publishers table from Books.

900 Database, SQL and ADO .NET Chapter 19

publisherID publisherName

1 Prentice Hall

2 Prentice Hall PTG

Fig. 19.6Fig. 19.6Fig. 19.6Fig. 19.6 Data from the Publishers table of Books.

Field Description

authorID The author’s ID number, which allows the database to associate each
book with a specific author. The integer ID number in this field must
also appear in the Authors table.

isbn The ISBN number for a book (a string).

Fig. 19.7Fig. 19.7Fig. 19.7Fig. 19.7 AuthorISBN table from Books.

authorID isbn authorID isbn

1 0130895725 2 0139163050

1 0132261197 2 013028419x

1 0130895717 2 0130161438

1 0135289106 2 0130856118

1 0139163050 2 0130125075

1 013028419x 2 0138993947

1 0130161438 2 0130852473

1 0130856118 2 0130829277

1 0130125075 2 0134569555

1 0138993947 2 0130829293

1 0130852473 2 0130284173

1 0130829277 2 0130284181

1 0134569555 2 0130895601

1 0130829293 3 013028419x

1 0130284173 3 0130161438

1 0130284181 3 0130856118

1 0130895601 3 0134569555

2 0130895725 3 0130829293

2 0132261197 3 0130284173

2 0130895717 3 0130284181

2 0135289106 4 0130895601

Fig. 19.8Fig. 19.8Fig. 19.8Fig. 19.8 Data from AuthorISBN table in Books.

Chapter 19 Database, SQL and ADO .NET 901

The Titles table (described in Fig. 19.9) consists of seven fields that maintain gen-
eral information about the books in the database. This information includes each book’s
ISBN number, title, edition number, copyright year and publisher’s ID number, as well as
the name of a file containing an image of the book cover and, finally, each book’s price.
Figure 19.10 contains the data from the Titles table.

Field Description

isbn ISBN number of the book (a string).

title Title of the book (a string).

editionNumber Edition number of the book (a string).

copyright Copyright year of the book (an int).

publisherID Publisher’s ID number (an int). This value must correspond to an ID
number in the Publishers table.

imageFile Name of the file containing the book’s cover image (a string).

price Suggested retail price of the book (a real number). [Note: The prices
shown in this database are for example purposes only.]

Fig. 19.9Fig. 19.9Fig. 19.9Fig. 19.9 Titles table from Books.

isbn title
edition-
Number

publish-
erID

copy-
right imageFile price

0130923613 Python How to Pro-
gram

1 1 2002 python.jpg $69.95

0130622214 C# How to Program 1 1 2002 cshtp.jpg $69.95

0130341517 Java How to Pro-
gram

4 1 2002 jhtp4.jpg $69.95

0130649341 The Complete Java
Training Course

4 2 2002 javactc4.jpg $109.95

0130895601 Advanced Java 2
Platform How to
Program

1 1 2002 advjhtp1.jpg $69.95

0130308978 Internet and World
Wide Web How to
Program

2 1 2002 iw3htp2.jpg $69.95

0130293636 Visual Basic .NET
How to Program

2 1 2002 vbnet.jpg $69.95

0130895636 The Complete C++
Training Course

3 2 2001 cppctc3.jpg $109.95

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 Data from the Titles table of Books. (Part 1 of 3.)

902 Database, SQL and ADO .NET Chapter 19

0130895512 The Complete e-
Business & e-Com-
merce Program-
ming Training
Course

1 2 2001 ebecctc.jpg $109.95

013089561X The Complete Inter-
net & World Wide
Web Programming
Training Course

2 2 2001 iw3ctc2.jpg $109.95

0130895547 The Complete Perl
Training Course

1 2 2001 perl.jpg $109.95

0130895563 The Complete
XML Program-
ming Training
Course

1 2 2001 xmlctc.jpg $109.95

0130895725 C How to Program 3 1 2001 chtp3.jpg $69.95

0130895717 C++ How to Pro-
gram

3 1 2001 cpphtp3.jpg $69.95

013028419X e-Business and e-
Commerce How to
Program

1 1 2001 ebechtp1.jpg $69.95

0130622265 Wireless Internet
and Mobile Busi-
ness How to Pro-
gram

1 1 2001 wireless.jpg $69.95

0130284181 Perl How to Pro-
gram

1 1 2001 perlhtp1.jpg $69.95

0130284173 XML How to Pro-
gram

1 1 2001 xmlhtp1.jpg $69.95

0130856118 The Complete Inter-
net and World Wide
Web Programming
Training Course

1 2 2000 iw3ctc1.jpg $109.95

0130125075 Java How to Pro-
gram (Java 2)

3 1 2000 jhtp3.jpg $69.95

0130852481 The Complete Java
2 Training Course

3 2 2000 javactc3.jpg $109.95

0130323640 e-Business and e-
Commerce for
Managers

1 1 2000 ebecm.jpg $69.95

0130161438 Internet and World
Wide Web How to
Program

1 1 2000 iw3htp1.jpg $69.95

isbn title
edition-
Number

publish-
erID

copy-
right imageFile price

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 Data from the Titles table of Books. (Part 2 of 3.)

Chapter 19 Database, SQL and ADO .NET 903

Figure 19.11 illustrates the relationships among the tables in the Books database. The
first line in each table is the table’s name. The field whose name appears in italics contains
that table’s primary key. A table’s primary key uniquely identifies each record in the table.
Every record must have a value in the primary-key field, and the value must be unique. This
is known as the Rule of Entity Integrity. Note that the AuthorISBN table contains two
fields whose names are italicized. This indicates that these two fields form a compound pri-
mary key—each record in the table must have a unique authorID–isbn combination.
For example, several records might have an authorID of 2, and several records might
have an isbn of 0130895601, but only one record can have both an authorID of 2
and an isbn of 0130895601.

0130132497 Getting Started
with Visual C++ 6
with an Introduc-
tion to MFC

1 1 1999 gsvc.jpg $49.95

0130829293 The Complete
Visual Basic 6
Training Course

1 2 1999 vbctc1.jpg $109.95

0134569555 Visual Basic 6 How
to Program

1 1 1999 vbhtp1.jpg $69.95

0132719746 Java Multimedia
Cyber Classroom

1 2 1998 javactc.jpg $109.95

0136325890 Java How to Pro-
gram

1 1 1998 jhtp1.jpg $69.95

0139163050 The Complete C++
Training Course

2 2 1998 cppctc2.jpg $109.95

0135289106 C++ How to Pro-
gram

2 1 1998 cpphtp2.jpg $49.95

0137905696 The Complete Java
Training Course

2 2 1998 javactc2.jpg $109.95

0130829277 The Complete Java
Training Course
(Java 1.1)

2 2 1998 javactc2.jpg $99.95

0138993947 Java How to Pro-
gram (Java 1.1)

2 1 1998 jhtp2.jpg $49.95

0131173340 C++ How to Pro-
gram

1 1 1994 cpphtp1.jpg $69.95

0132261197 C How to Program 2 1 1994 chtp2.jpg $49.95

0131180436 C How to Program 1 1 1992 chtp.jpg $69.95

isbn title
edition-
Number

publish-
erID

copy-
right imageFile price

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 Data from the Titles table of Books. (Part 3 of 3.)

904 Database, SQL and ADO .NET Chapter 19

Common Programming Error 19.1
Failure to provide a value for a primary-key field in every record breaks the Rule of Entity
Integrity and causes the DBMS to report an error. 19.1

Common Programming Error 19.2
Providing duplicate values for the primary-key field of multiple records causes the DBMS to
report an error. 19.2

The lines connecting the tables in Fig. 19.11 represent the relationships among the
tables. Consider the line between the Publishers and Titles tables. On the Pub-
lishers end of the line, there is a 1, and, on the Titles end, there is an infinity (∞)
symbol. This line indicates a one-to-many relationship, in which every publisher in the
Publishers table can have an arbitrarily large number of books in the Titles table.
Note that the relationship line links the publisherID field in the Publishers table to
the publisherID field in Titles table. In the Titles table, the publisherID field
is a foreign key—a field for which every entry has a unique value in another table and where
the field in the other table is the primary key for that table (e.g., publisherID in the
Publishers table). Programmers specify foreign keys when creating a table. The for-
eign key helps maintain the Rule of Referential Integrity: Every foreign-key field value
must appear in another table’s primary-key field. Foreign keys enable information from
multiple tables to be joined together for analysis purposes. There is a one-to-many relation-
ship between a primary key and its corresponding foreign key. This means that a foreign-
key field value can appear many times in its own table, but must appear exactly once as the
primary key of another table. The line between the tables represents the link between the
foreign key in one table and the primary key in another table.

Common Programming Error 19.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error. 19.3

The line between the AuthorISBN and Authors tables indicates that, for each
author in the Authors table, the AuthorISBN table can contain an arbitrary number of
ISBNs for books written by that author. The authorID field in the AuthorISBN table
is a foreign key of the authorID field (the primary key) of the Authors table. Note,
again, that the line between the tables links the foreign key in table AuthorISBN to the

Fig. 19.11Fig. 19.11Fig. 19.11Fig. 19.11 Table relationships in Books.

AuthorISBN

authorID

isbn

Authors

authorID

firstName

lastName

Publishers

publisherID

publisherName

Titles

isbn

title

editionNumber

copyright

publisherID

imageFile

price

1 ∞ 1

∞

1
∞

Chapter 19 Database, SQL and ADO .NET 905

corresponding primary key in table Authors. The AuthorISBN table links information
in the Titles and Authors tables.

The line between the Titles and AuthorISBN tables illustrates another one-to-
many relationship; a title can be written by any number of authors. In fact, the sole purpose
of the AuthorISBN table is to represent a many-to-many relationship between the
Authors and Titles tables; an author can write any number of books, and a book can
have any number of authors.

19.4 Structured Query Language (SQL)
In this section, we provide an overview of Structured Query Language (SQL) in the context
of our Books sample database. The SQL queries discussed here form the foundation for
the SQL used in the chapter examples.

Figure 19.12 lists SQL keywords and provides a description of each. In the next sev-
eral subsections, we discuss these SQL keywords in the context of complete SQL queries.
Other SQL keywords exist, but are beyond the scope of this text. [Note: To locate additional
information on SQL, please refer to the bibliography at the end of this chapter.]

19.4.1 Basic SELECT Query

Let us consider several SQL queries that extract information from database Books. A typ-
ical SQL query “selects” information from one or more tables in a database. Such selections
are performed by SELECT queries. The basic format for a SELECT query is:

SELECT * FROM tableName

In this query, the asterisk (*) indicates that all columns from the tableName table of the da-
tabase should be selected. For example, to select the entire contents of the Authors table
(i.e., all data depicted in Fig. 19.4), use the query:

SELECT * FROM Authors

SQL keyword Description

SELECT Selects (retrieves) fields from one or more tables.

FROM Specifies tables from which to get fields or delete records. Required
in every SELECT and DELETE statement.

WHERE Specifies criteria that determine the rows to be retrieved.

INNER JOIN Joins records from multiple tables to produce a single set of records.

GROUP BY Specifies criteria for grouping records.

ORDER BY Specifies criteria for ordering records.

INSERT Inserts data into a specified table.

UPDATE Updates data in a specified table.

DELETE Deletes data from a specified table.

Fig. 19.12Fig. 19.12Fig. 19.12Fig. 19.12 SQL query keywords.

906 Database, SQL and ADO .NET Chapter 19

To select specific fields from a table, replace the asterisk (*) with a comma-separated
list of the field names to select. For example, to select only the fields authorID and
lastName for all rows in the Authors table, use the query:

SELECT authorID, lastName FROM Authors

This query returns only the data presented in Fig. 19.13. [Note: If a field name contains
spaces, the entire field name must be enclosed in square brackets ([]) in the query. For ex-
ample, if the field name is first name, it must appear in the query as [first name].

Common Programming Error 19.4
If a program assumes that an SQL statement using the asterisk (*) to select fields always re-
turns those fields in the same order, the program could process the result set incorrectly. If
the field order in the database table(s) changes, the order of the fields in the result set would
change accordingly. 19.4

Performance Tip 19.1
If a program does not know the order of fields in a result set, the program must process the
fields by name. This could require a linear search of the field names in the result set. If users
specify the field names that they wish to select from a table (or several tables), the application
receiving the result set knows the order of the fields in advance. When this occurs, the pro-
gram can process the data more efficiently, because fields can be accessed directly by col-
umn number. 19.1

19.4.2 WHERE Clause

In most cases, users search a database for records that satisfy certain selection criteria. Only
records that match the selection criteria are selected. SQL uses the optional WHERE clause
in a SELECT query to specify the selection criteria for the query. The simplest format for
a SELECT query that includes selection criteria is:

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

For example, to select the title, editionNumber and copyright fields from those
rows of table Titles in which the copyright date is greater than 1999, use the query:]

authorID lastName authorID lastName

1 Deitel 8 McPhie

2 Deitel 9 Yaeger

3 Nieto 10 Zlatkina

4 Steinbuhler 12 Wiedermann

5 Santry 12 Liperi

6 Lin 13 Listfield

7 Sadhu

Fig. 19.13Fig. 19.13Fig. 19.13Fig. 19.13 authorID and lastName from the Authors table.

Chapter 19 Database, SQL and ADO .NET 907

SELECT title, editionNumber, copyright
FROM Titles
WHERE copyright > 1999

Figure 19.14 shows the result set of the preceding query. [Note: When we construct a query
for use in C#, we simply create a string containing the entire query. However, when we
display queries in the text, we often use multiple lines and indentation to enhance readability.]

Performance Tip 19.2
Using selection criteria improves performance, because queries that involve such criteria
normally select a portion of the database that is smaller than the entire database. Working
with a smaller portion of the data is more efficient than working with the entire set of data
stored in the database. 19.2

Title editionNumber copyright

Internet and World Wide Web How to Program 2 2002

Java How to Program 4 2002

The Complete Java Training Course 4 2002

The Complete e-Business & e-Commerce Program-
ming Training Course

1 2001

The Complete Internet & World Wide Web Program-
ming Training Course

2 2001

The Complete Perl Training Course 1 2001

The Complete XML Programming Training Course 1 2001

C How to Program 3 2001

C++ How to Program 3 2001

The Complete C++ Training Course 3 2001

e-Business and e-Commerce How to Program 1 2001

Internet and World Wide Web How to Program 1 2000

The Complete Internet and World Wide Web Program-
ming Training Course

1 2000

Java How to Program (Java 2) 3 2000

The Complete Java 2 Training Course 3 2000

XML How to Program 1 2001

Perl How to Program 1 2001

Advanced Java 2 Platform How to Program 1 2002

e-Business and e-Commerce for Managers 1 2000

Wireless Internet and Mobile Business How to Program 1 2001

C# How To Program 1 2002

Python How to Program 1 2002

Visual Basic .NET How to Program 2 2002

Fig. 19.14Fig. 19.14Fig. 19.14Fig. 19.14 Titles with copyrights after 1999 from table Titles.

908 Database, SQL and ADO .NET Chapter 19

The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE. Oper-
ator LIKE is used for pattern matching with wildcard characters asterisk (*) and question
mark (?). Pattern matching allows SQL to search for strings that “match a pattern.”

A pattern that contains an asterisk (*) searches for strings in which zero or more char-
acters take the asterisk character’s place in the pattern. For example, the following query
locates the records of all authors whose last names start with the letter D:

SELECT authorID, firstName, lastName
FROM Authors
WHERE lastName LIKE 'D*'

The preceding query selects the two records shown in Fig. 19.15, because two of the au-
thors in our database have last names that begin with the letter D (followed by zero or more
characters). The * in the WHERE clause’s LIKE pattern indicates that any number of char-
acters can appear after the letter D in the lastName field. Notice that the pattern string is
surrounded by single-quote characters.

Portability Tip 19.1
Not all database systems support the LIKE operator, so be sure to read the database sys-
tem’s documentation carefully before employing this operator. 19.1

Portability Tip 19.2
Most databases use the % character in place of the * character in LIKE expressions. 19.2

Portability Tip 19.3
In some databases, string data is case sensitive. 19.3

Portability Tip 19.4
In some databases, table names and field names are case sensitive. 19.4

Good Programming Practice 19.1
By convention, SQL keywords should be written entirely in uppercase letters on systems that
are not case sensitive. This emphasizes the SQL keywords in an SQL statement. 19.1

A pattern string including a question mark (?) character searches for strings in which
exactly one character takes the question mark’s place in the pattern. For example, the fol-
lowing query locates the records of all authors whose last names start with any character
(specified with ?), followed by the letter i, followed by any number of additional charac-
ters (specified with *):

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 Authors from the Authors table whose last names start with D.

Chapter 19 Database, SQL and ADO .NET 909

SELECT authorID, firstName, lastName
FROM Authors
WHERE lastName LIKE '?i*'

The preceding query produces the records listed in Fig. 19.16; five authors in our database
have last names in which the letter i is the second letter.

Portability Tip 19.5
Most databases use the _ character in place of the ? character in LIKE expressions. 19.5

19.4.3 ORDER BY Clause
The results of a query can be arranged in ascending or descending order using the optional
ORDER BY clause. The simplest forms for an ORDER BY clause are:

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and field specifies the field whose values determine the sorting order.

For example, to obtain a list of authors arranged in ascending order by last name
(Fig. 19.17), use the query:

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName ASC

Note that the default sorting order is ascending; therefore, ASC is optional.

authorID firstName lastName

3 Tem Nieto

6 Ted Lin

11 Ben Wiedermann

12 Jonathan Liperi

13 Jeffrey Listfield

Fig. 19.16Fig. 19.16Fig. 19.16Fig. 19.16 Authors from table Authors whose last names contain i as the second
letter.

authorID firstName lastName

2 Paul Deitel

1 Harvey Deitel

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 Authors from table Authors in ascending order by lastName. (Part 1
of 2.)

910 Database, SQL and ADO .NET Chapter 19

To obtain the same list of authors arranged in descending order by last name
(Fig. 19.18), use the query:

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName DESC

6 Ted Lin

12 Jonathan Liperi

13 Jeffrey Listfield

8 David McPhie

3 Tem Nieto

7 Praveen Sadhu

5 Sean Santry

4 Kate Steinbuhler

11 Ben Wiedermann

9 Cheryl Yaeger

10 Marina Zlatkina

authorID firstName lastName

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 Authors from table Authors in ascending order by lastName. (Part 2
of 2.)

authorID firstName lastName

10 Marina Zlatkina

9 Cheryl Yaeger

11 Ben Wiedermann

4 Kate Steinbuhler

5 Sean Santry

7 Praveen Sadhu

3 Tem Nieto

8 David McPhie

13 Jeffrey Listfield

12 Jonathan Liperi

6 Ted Lin

2 Paul Deitel

1 Harvey Deitel

Fig. 19.18Fig. 19.18Fig. 19.18Fig. 19.18 Authors from table Authors in descending order by lastName.

Chapter 19 Database, SQL and ADO .NET 911

The ORDER BY clause also can be used to order records by multiple fields. Such que-
ries are written in the form:

ORDER BY field1 sortingOrder, field2 sortingOrder, …

where sortingOrder is either ASC or DESC. Note that the sortingOrder does not have to be
identical for each field.

For example, the query:

SELECT authorID, firstName, lastName
FROM Authors
ORDER BY lastName, firstName

sorts all authors in ascending order by last name, then by first name. This means that, if any
authors have the same last name, their records are returned sorted by first name
(Fig. 19.19).

The WHERE and ORDER BY clauses can be combined in one query. For example, the
query:

SELECT isbn, title, editionNumber, copyright, price
FROM Titles
WHERE title
LIKE '*How to Program' ORDER BY title ASC

returns the ISBN, title, edition number, copyright and price of each book in the Titles
table that has a title ending with “How to Program”; it lists these records in ascending
order by title. The results of the query are depicted in Fig. 19.20.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

6 Ted Lin

12 Jonathan Liperi

13 Jeffrey Listfield

8 David McPhie

3 Tem Nieto

7 Praveen Sadhu

5 Sean Santry

4 Kate Steinbuhler

11 Ben Wiedermann

9 Cheryl Yaeger

10 Marina Zlatkina

Fig. 19.19Fig. 19.19Fig. 19.19Fig. 19.19 Authors from table Authors in ascending order by lastName and by
firstName.

912 Database, SQL and ADO .NET Chapter 19

19.4.4 Merging Data from Multiple Tables: INNER JOIN

Database designers often split related data into separate tables to ensure that a database does
not store data redundantly. For example, the Books database has tables Authors and
Titles. We use an AuthorISBN table to provide “links” between authors and their cor-
responding titles. If we did not separate this information into individual tables, we would
need to include author information with each entry in the Titles table. This would result
in the database storing duplicate author information for authors who wrote multiple books.

Often, it is necessary for analysis purposes to merge data from multiple tables into a
single set of data. Referred to as joining the tables, this is accomplished via an INNER
JOIN operation in the SELECT query. An INNER JOIN merges records from two or more

isbn title
edition-
Number

copy-
right price

0130895601 Advanced Java 2 Platform
How to Program

1 2002 $69.95

0131180436 C How to Program 1 1992 $69.95

0130895725 C How to Program 3 2001 $69.95

0132261197 C How to Program 2 1994 $49.95

0130622214 C# How To Program 1 2002 $69.95

0135289106 C++ How to Program 2 1998 $49.95

0131173340 C++ How to Program 1 1994 $69.95

0130895717 C++ How to Program 3 2001 $69.95

013028419X e-Business and e-Commerce
How to Program

1 2001 $69.95

0130308978 Internet and World Wide
Web How to Program

2 2002 $69.95

0130161438 Internet and World Wide
Web How to Program

1 2000 $69.95

0130341517 Java How to Program 4 2002 $69.95

0136325890 Java How to Program 1 1998 $49.95

0130284181 Perl How to Program 1 2001 $69.95

0130923613 Python How to Program 1 2002 $69.95

0130293636 Visual Basic .NET How to
Program

2 2002 $69.95

0134569555 Visual Basic 6 How to
Program

1 1999 $69.95

0130622265 Wireless Internet and Mobile
Business How to Program

1 2001 $69.95

0130284173 XML How to Program 1 2001 $69.95

Fig. 19.20Fig. 19.20Fig. 19.20Fig. 19.20 Books from table Titles whose titles end with How to Program in
ascending order by title.

Chapter 19 Database, SQL and ADO .NET 913

tables by testing for matching values in a field that is common to the tables. The simplest
format for an INNER JOIN clause is:

SELECT fieldName1, fieldName2, …
FROM table1
INNER JOIN table2
 ON table1.fieldName = table2.fieldName

The ON part of the INNER JOIN clause specifies the fields from each table that are com-
pared to determine which records are joined. For example, the following query produces a
list of authors accompanied by the ISBN numbers for books written by each author:

SELECT firstName, lastName, isbn
FROM Authors
INNER JOIN AuthorISBN

ON Authors.authorID = AuthorISBN.authorID
ORDER BY lastName, firstName

The query merges the firstName and lastName fields from table Authors with the
isbn field from table AuthorISBN, sorting the results in ascending order by lastName
and firstName. Notice the use of the syntax tableName.fieldName in the ON part of the
INNER JOIN. This syntax (called a fully qualified name) specifies the fields from each ta-
ble that should be compared to join the tables. The “tableName.” syntax is required if the
fields have the same name in both tables. The same syntax can be used in any query to dis-
tinguish among fields in different tables that have the same name. Fully qualified names
that start with the database name can be used to perform cross-database queries.

Software Engineering Observation 19.1
If an SQL statement includes fields from multiple tables that have the same name, the state-
ment must precede those field names with their table names and the dot operator (e.g., Au-
thors.authorID). 19.1

Common Programming Error 19.5
In a query, failure to provide fully qualified names for fields that have the same name in two
or more tables is an error. 19.1

As always, the query can contain an ORDER BY clause. Figure 19.21 depicts the results
of the preceding query, ordered by lastName and firstName. [Note: To save space,
we split the results of the query into two columns, each containing the firstName,
lastName and isbn fields.]

firstName lastName isbn firstName lastName isbn

Harvey Deitel 0130895601

Harvey Deitel 0130284181

Harvey Deitel 0130284173

Fig. 19.21Fig. 19.21Fig. 19.21Fig. 19.21 Authors from table Authors and ISBN numbers of the authors’ books,
sorted in ascending order by lastName and firstName. (Part 1 of 2.)

914 Database, SQL and ADO .NET Chapter 19

19.4.5 Joining Data from Tables Authors, AuthorISBN, Titles
and Publishers

The Books database contains one predefined query (TitleAuthor), which selects as its
results the title, ISBN number, author’s first name, author’s last name, copyright year and
publisher’s name for each book in the database. For books that have multiple authors, the
query produces a separate composite record for each author. The TitleAuthor query is
depicted in Fig. 19.22. Figure 19.23 contains a portion of the query results.

Harvey Deitel 0130829293 Paul Deitel 0130852473

Harvey Deitel 0134569555 Paul Deitel 0138993947

Harvey Deitel 0130829277 Paul Deitel 0130125075

Harvey Deitel 0130852473 Paul Deitel 0130856118

Harvey Deitel 0138993947 Paul Deitel 0130161438

Harvey Deitel 0130856118 Paul Deitel 013028419x

Harvey Deitel 0130161438 Paul Deitel 0139163050

Harvey Deitel 013028419x Paul Deitel 0130895601

Harvey Deitel 0139163050 Paul Deitel 0135289106

Harvey Deitel 0135289106 Paul Deitel 0130895717

Harvey Deitel 0130895717 Paul Deitel 0132261197

Harvey Deitel 0132261197 Paul Deitel 0130895725

Harvey Deitel 0130895725 Tem Nieto 0130284181

Harvey Deitel 0130125075 Tem Nieto 0130284173

Paul Deitel 0130284181 Tem Nieto 0130829293

Paul Deitel 0130284173 Tem Nieto 0134569555

Paul Deitel 0130829293 Tem Nieto 0130856118

Paul Deitel 0134569555 Tem Nieto 0130161438

Paul Deitel 0130829277 Tem Nieto 013028419x

1SELECT Titles.title, Titles.isbn, Authors.firstName,
2 Authors.lastName, Titles.copyright,
3 Publishers.publisherName
4FROM
5 (Publishers INNER JOIN Titles
6 ON Publishers.publisherID = Titles.publisherID)
7 INNER JOIN

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 TitleAuthor query of Books database. (Part 1 of 2.)

firstName lastName isbn firstName lastName isbn

Fig. 19.21Fig. 19.21Fig. 19.21Fig. 19.21 Authors from table Authors and ISBN numbers of the authors’ books,
sorted in ascending order by lastName and firstName. (Part 2 of 2.)

Chapter 19 Database, SQL and ADO .NET 915

8 (Authors INNER JOIN AuthorISBN
9 ON Authors.authorID = AuthorISBN.authorID)

10 ON Titles.isbn = AuthorISBN.isbn
11ORDER BY Titles.title

Title isbn
first-
Name

last-
Name

copy-
right

publisher-
Name

Advanced Java 2 Platform
How to Program

0130895601 Paul Deitel 2002 Prentice Hall

Advanced Java 2 Platform
How to Program

0130895601 Harvey Deitel 2002 Prentice Hall

Advanced Java 2 Platform
How to Program

0130895601 Sean Santry 2002 Prentice Hall

C How to Program 0131180436 Harvey Deitel 1992 Prentice Hall

C How to Program 0131180436 Paul Deitel 1992 Prentice Hall

C How to Program 0132261197 Harvey Deitel 1994 Prentice Hall

C How to Program 0132261197 Paul Deitel 1994 Prentice Hall

C How to Program 0130895725 Harvey Deitel 2001 Prentice Hall

C How to Program 0130895725 Paul Deitel 2001 Prentice Hall

C# How To Program 0130622214 Tem Nieto 2002 Prentice Hall

C# How To Program 0130622214 Paul Deitel 2002 Prentice Hall

C# How To Program 0130622214 Jeffrey Listfield 2002 Prentice Hall

C# How To Program 0130622214 Cheryl Yaeger 2002 Prentice Hall

C# How To Program 0130622214 Marina Zlatkina 2002 Prentice Hall

C# How To Program 0130622214 Harvey Deitel 2002 Prentice Hall

C++ How to Program 0130895717 Paul Deitel 2001 Prentice Hall

C++ How to Program 0130895717 Harvey Deitel 2001 Prentice Hall

C++ How to Program 0131173340 Paul Deitel 1994 Prentice Hall

C++ How to Program 0131173340 Harvey Deitel 1994 Prentice Hall

C++ How to Program 0135289106 Harvey Deitel 1998 Prentice Hall

C++ How to Program 0135289106 Paul Deitel 1998 Prentice Hall

e-Business and e-Commerce
for Managers

0130323640 Harvey Deitel 2000 Prentice Hall

e-Business and e-Commerce
for Managers

0130323640 Kate Stein-
buhler

2000 Prentice Hall

Fig. 19.23Fig. 19.23Fig. 19.23Fig. 19.23 Portion of the result set produced by the query in Fig. 19.22.

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 TitleAuthor query of Books database. (Part 2 of 2.)

916 Database, SQL and ADO .NET Chapter 19

We added indentation to the query in Fig. 19.22 to make the query more readable. Let
us now break down the query into its various parts. Lines 1–3 contain a comma-separated
list of the fields that the query returns; the order of the fields from left to right specifies the
fields’ order in the returned table. This query selects fields title and isbn from table
Titles, fields firstName and lastName from table Authors, field copyright
from table Titles and field publisherName from table Publishers. For purposes
of clarity, we fully qualified each field name with its table name (e.g., Titles.isbn).

Lines 5–10 specify the INNER JOIN operations used to combine information from the
various tables. There are three INNER JOIN operations. It is important to note that,
although an INNER JOIN is performed on two tables, either of those two tables can be the
result of another query or another INNER JOIN. We use parentheses to nest the INNER
JOIN operations; SQL evaluates the innermost set of parentheses first and then moves out-
ward. We begin with the INNER JOIN:

(Publishers INNER JOIN Titles
ON Publishers.publisherID = Titles.publisherID)

which joins the Publishers table and the Titles table ON the condition that the pub-
lisherID numbers in each table match. The resulting temporary table contains informa-
tion about each book and its publisher.

The other nested set of parentheses contains the INNER JOIN:

(Authors INNER JOIN AuthorISBN ON
 Authors.AuthorID = AuthorISBN.AuthorID)

which joins the Authors table and the AuthorISBN table ON the condition that the au-
thorID fields in each table match. Remember that the AuthorISBN table has multiple en-
tries for ISBN numbers of books that have more than one author. The third INNER JOIN:

(Publishers INNER JOIN Titles
ON Publishers.publisherID = Titles.publisherID)

INNER JOIN
(Authors INNER JOIN AuthorISBN

ON Authors.authorID = AuthorISBN.authorID)
ON Titles.isbn = AuthorISBN.isbn

e-Business and e-Commerce
for Managers

0130323640 Paul Deitel 2000 Prentice Hall

e-Business and e-Commerce
How to Program

013028419X Harvey Deitel 2001 Prentice Hall

e-Business and e-Commerce
How to Program

013028419X Paul Deitel 2001 Prentice Hall

e-Business and e-Commerce
How to Program

013028419X Tem Nieto 2001 Prentice Hall

Title isbn
first-
Name

last-
Name

copy-
right

publisher-
Name

Fig. 19.23Fig. 19.23Fig. 19.23Fig. 19.23 Portion of the result set produced by the query in Fig. 19.22.

Chapter 19 Database, SQL and ADO .NET 917

joins the two temporary tables produced by the two prior inner joins ON the condition that
the Titles.isbn field for each record in the first temporary table matches the corre-
sponding AuthorISBN.isbn field for each record in the second temporary table. The
result of all these INNER JOIN operations is a temporary table from which the appropriate
fields are selected to produce the results of the query.

Finally, line 11 of the query:

ORDER BY Titles.title

indicates that all the records should be sorted in ascending order (the default) by title.

19.4.6 INSERT Statement
The INSERT statement inserts a new record in a table. The simplest form for this statement is:

INSERT INTO tableName (fieldName1, fieldName2, …, fieldNameN)
VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the record. The tableName is followed by
a comma-separated list of field names in parentheses. The list of field names is followed by
the SQL keyword VALUES and a comma-separated list of values in parentheses. The spec-
ified values in this list must match the field names listed after the table name in both order
and type (for example, if fieldName1 is specified as the firstName field, then value1
should be a string in single quotes representing the first name). The INSERT statement:

INSERT INTO Authors (firstName, lastName)
VALUES ('Sue', 'Smith')

inserts a record into the Authors table. The first comma-separated list indicates that the
statement provides data for the firstName and lastName fields. The corresponding
values to insert, which are contained in the second comma-separated list, are 'Sue' and
'Smith'. We do not specify an authorID in this example, because authorID is an
auto-increment field in the database. Every new record that we add to this table is assigned
a unique authorID value that is the next value in the auto-increment sequence (i.e., 1, 2,
3, etc.). In this case, Sue Smith would be assigned authorID number 14. Figure 19.24
shows the Authors table after we perform the INSERT operation.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

Fig. 19.24Fig. 19.24Fig. 19.24Fig. 19.24 Authors after an INSERT operation to add a record. (Part 1 of 2.)

918 Database, SQL and ADO .NET Chapter 19

Common Programming Error 19.6
SQL statements use the single-quote (') character as a delimiter for strings. To specify a
string containing a single quote (such as O’Malley) in an SQL statement, the string must in-
clude two single quotes in the position where the single-quote character should appear in the
string (e.g., 'O''Malley'). The first of the two single-quote characters acts as an escape
character for the second. Failure to escape single-quote characters in a string that is part of
an SQL statement is an SQL syntax error. 19.6

19.4.7 UPDATE Statement
An UPDATE statement modifies data in a table. The simplest form for an UPDATE state-
ment is:

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is
followed by keyword SET and a comma-separated list of field name/value pairs written in
the format, fieldName = value. The WHERE clause specifies the criteria used to determine
which record(s) to update. For example, the UPDATE statement:

UPDATE Authors
SET lastName = 'Jones'
WHERE lastName = 'Smith' AND firstName = 'Sue'

updates a record in the Authors table. The statement indicates that lastName will be
assigned the new value Jones for the record in which lastName currently is equal to
Smith and firstName is equal to Sue. If we know the authorID in advance of the
UPDATE operation (possibly because we searched for the record previously), the WHERE
clause could be simplified as follows:

WHERE AuthorID = 14

Figure 19.25 depicts the Authors table after we perform the UPDATE operation.

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Jeffrey Listfield

14 Sue Smith

authorID firstName lastName

Fig. 19.24Fig. 19.24Fig. 19.24Fig. 19.24 Authors after an INSERT operation to add a record. (Part 2 of 2.)

Chapter 19 Database, SQL and ADO .NET 919

Common Programming Error 19.7
Failure to use a WHERE clause with an UPDATE statement could lead to logic errors. 19.7

19.4.8 DELETE Statement

An SQL DELETE statement removes data from a table. The simplest form for a DELETE
statement is:

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE clause
specifies the criteria used to determine which record(s) to delete. For example, the DELETE
statement:

DELETE FROM Authors
WHERE lastName = 'Jones' AND firstName = 'Sue'

deletes the record for Sue Jones from the Authors table.

Common Programming Error 19.8
WHERE clauses can match multiple records. When deleting records from a database, be sure
to define a WHERE clause that matches only the records to be deleted. 19.8

Figure 19.26 depicts the Authors table after we perform the DELETE operation.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Jeffrey Listfield

14 Suet Jones

Fig. 19.25Fig. 19.25Fig. 19.25Fig. 19.25 Table Authors after an UPDATE operation to change a record.

920 Database, SQL and ADO .NET Chapter 19

19.5 ADO .NET Object Model
The ADO .NET object model provides an API for accessing database systems programmat-
ically. ADO .NET was created for the .NET framework and is the next generation of Ac-
tiveX Data Objects™ (ADO).

Namespace System.Data is the root namespace for the ADO .NET API. The primary
namespaces for ADO .NET, System.Data.OleDb and System.Data.SqlClient,
contain classes that enable programs to connect with and modify datasources. Namespace
System.Data.OleDb contains classes that are designed to work with any datasource,
whereas the System.Data.SqlClient namespace contains classes that are optimized to
work with Microsoft SQL Server 2000 databases.

Instances of class System.Data.DataSet, which consist of a set of DataT-
ables and relationships among those DataTables, represent caches of data—data that
a program stores temporarily in local memory. The structure of a DataSet mimics the
structure of a relational database. An advantage of using class DataSet is that it is discon-
nected—the program does not need a persistent connection to the datasource to work with
data in a DataSet. The program connects to the datasource only during the initial popu-
lation of the DataSet and then to store any changes made in the DataSet. Hence, the
program does not require any active, permanent connection to the datasource.

 Instances of class OleDbConnection (namespace System.Data.OleDb) rep-
resent connections to a datasource. An instance of class OleDbDataAdapter connects
to a datasource through an instance of class OleDbConnection and can populate a
DataSet with data from that datasource. We discuss the details of creating and populating
DataSets later in this chapter. An instance of class OleDbCommand (namespace
System.Data.OleDb) represents an arbitrary SQL command to be executed on a data-

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Kate Steinbuhler

5 Sean Santry

6 Ted Lin

7 Praveen Sadhu

8 David McPhie

9 Cheryl Yaeger

10 Marina Zlatkina

11 Ben Wiedermann

12 Jonathan Liperi

13 Jeffrey Listfield

Fig. 19.26Fig. 19.26Fig. 19.26Fig. 19.26 Table Authors after a DELETE operation to remove a record.

Chapter 19 Database, SQL and ADO .NET 921

source. A program can use instances of class OleDbCommand to manipulate a datasource
through an OleDbConnection. The programmer must close the active connection to the
datasource explicitly once no further changes are to be made. Unlike DataSets, OleD-
bCommand objects do not cache data in local memory.

19.6 Programming with ADO .NET: Extracting Information from
a DBMS
In this section, we present two examples that introduce how to connect to a database, query
the database and display the results of the query. The database used in these examples is the
Microsoft Access Books database that we have discussed throughout this chapter. It can
be found in the project directory for the application of Fig. 19.27. Each program must spec-
ify the location of this database on the computer’s hard drive. When executing these exam-
ples, readers must update this location for each program. For example, before readers can
run the application in Fig. 19.27 on their computers, they must change lines 234–247 so that
the code specifies the correct location of the database file.

19.6.1 Connecting to and Querying an Access Data Source

The first example (Fig. 19.27) performs a simple query on the Books database that re-
trieves the entire Authors table and displays the data in a DataGrid (a System.Win-
dows.Forms component class that can display a datasource in a GUI). The program
illustrates the process of connecting to the database, querying the database and displaying
the results in a DataGrid. The discussion following the example presents the key aspects
of the program. [Note: We present all of Visual Studio’s auto-generated code in Fig. 19.27
so that readers are aware of the code that Visual Studio generates for the example.]

This example uses an Access database. To register the Books database as a data-
source, select View > Server Explorer. Right click the Data Connections node in the
Server Explorer and then double click <Add Connection>. In the Provider tab of the
window that appears, choose “Microsoft Jet 4.0 OLE DB Provider,” which is the driver
for Access databases. In the Connection tab, click the ellipses button (…) to the right of
the textbox for the database name, which opens the Select Access Database window.
Go to the appropriate folder, select the Books database and click OK. Now, this database
is listed as a connection in the Server Explorer. Drag the database node onto the Win-
dows Form. This creates an OleDbConnection to the source, which the Windows Form
designer displays as oleDbConnection1.

1 // Fig. 19.27: TableDisplay.cs
2 // Displays data from a database table.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Accessing and displaying a database’s data. (Part 1 of 7.)

922 Database, SQL and ADO .NET Chapter 19

10
11 // Summary description for TableDisplay.cs.
12 public class TableDisplay : System.Windows.Forms.Form
13 {
14 private System.Data.DataSet dataSet1;
15 private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;
16 private System.Windows.Forms.DataGrid dataGrid1;
17 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
18 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
19 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
20 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
21 private System.Data.OleDb.OleDbConnection oleDbConnection1;
22
23 private System.ComponentModel.Container components = null;
24
25 public TableDisplay()
26 {
27 InitializeComponent();
28
29 // Fill dataSet1 with data
30 oleDbDataAdapter1.Fill(dataSet1, "Authors");
31
32 // bind data in Users table in dataSet1 to dataGrid1
33 dataGrid1.SetDataBinding(dataSet1, "Authors");
34 }
35
36 private void InitializeComponent()
37 {
38 this.dataSet1 = new System.Data.DataSet();
39 this.oleDbDataAdapter1 =
40 new System.Data.OleDb.OleDbDataAdapter();
41 this.dataGrid1 = new System.Windows.Forms.DataGrid();
42 this.oleDbSelectCommand1 =
43 new System.Data.OleDb.OleDbCommand();
44 this.oleDbInsertCommand1 =
45 new System.Data.OleDb.OleDbCommand();
46 this.oleDbUpdateCommand1 =
47 new System.Data.OleDb.OleDbCommand();
48 this.oleDbDeleteCommand1 =
49 new System.Data.OleDb.OleDbCommand();
50 this.oleDbConnection1 =
51 new System.Data.OleDb.OleDbConnection();
52 ((System.ComponentModel.ISupportInitialize)
53 (this.dataSet1)).BeginInit();
54 ((System.ComponentModel.ISupportInitialize)
55 (this.dataGrid1)).BeginInit();
56 this.SuspendLayout();
57 //
58 // dataSet1
59 //
60 this.dataSet1.DataSetName = "NewDataSet";
61 this.dataSet1.Locale =
62 new System.Globalization.CultureInfo("en-US");

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Accessing and displaying a database’s data. (Part 2 of 7.)

Chapter 19 Database, SQL and ADO .NET 923

63 //
64 // oleDbDataAdapter1
65 //
66 this.oleDbDataAdapter1.DeleteCommand =
67 this.oleDbDeleteCommand1;
68 this.oleDbDataAdapter1.InsertCommand =
69 this.oleDbInsertCommand1;
70 this.oleDbDataAdapter1.SelectCommand =
71 this.oleDbSelectCommand1;
72 this.oleDbDataAdapter1.TableMappings.AddRange(
73 new System.Data.Common.DataTableMapping[] {
74 new System.Data.Common.DataTableMapping(
75 "Table", "Authors",
76 new System.Data.Common.DataColumnMapping[] {
77 new System.Data.Common.DataColumnMapping(
78 "authorID", "authorID"),
79 new System.Data.Common.DataColumnMapping(
80 "firstName", "firstName"),
81 new System.Data.Common.DataColumnMapping(
82 "lastName", "lastName")})});
83 this.oleDbDataAdapter1.UpdateCommand =
84 this.oleDbUpdateCommand1;
85 //
86 // dataGrid1
87 //
88 this.dataGrid1.DataMember = "";
89 this.dataGrid1.HeaderForeColor =
90 System.Drawing.SystemColors.ControlText;
91 this.dataGrid1.Location =
92 new System.Drawing.Point(16, 16);
93 this.dataGrid1.Name = "dataGrid1";
94 this.dataGrid1.Size = new System.Drawing.Size(264, 248);
95 this.dataGrid1.TabIndex = 0;
96 //
97 // oleDbSelectCommand1
98 //
99 this.oleDbSelectCommand1.CommandText =
100 "SELECT authorID, firstName, lastName FROM Authors";
101 this.oleDbSelectCommand1.Connection =
102 this.oleDbConnection1;
103 //
104 // oleDbInsertCommand1
105 //
106 this.oleDbInsertCommand1.CommandText =
107 "INSERT INTO Authors(firstName, lastName) VALUES " +
108 "(?, ?)";
109 this.oleDbInsertCommand1.Connection =
110 this.oleDbConnection1;
111 this.oleDbInsertCommand1.Parameters.Add(
112 new System.Data.OleDb.OleDbParameter("firstName",
113 System.Data.OleDb.OleDbType.VarWChar, 50,
114 "firstName"));

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Accessing and displaying a database’s data. (Part 3 of 7.)

924 Database, SQL and ADO .NET Chapter 19

115 this.oleDbInsertCommand1.Parameters.Add(
116 new System.Data.OleDb.OleDbParameter("lastName",
117 System.Data.OleDb.OleDbType.VarWChar, 50,
118 "lastName"));
119 //
120 // oleDbUpdateCommand1
121 //
122 this.oleDbUpdateCommand1.CommandText =
123 "UPDATE Authors SET firstName = ?, lastName = ? WHERE" +
124 " (authorID = ?) AND (firstNam" +
125 "e = ? OR ? IS NULL AND firstName IS NULL) AND " +
126 "(lastName = ? OR ? IS NULL AND las" +
127 "tName IS NULL)";
128 this.oleDbUpdateCommand1.Connection =
129 this.oleDbConnection1;
130 this.oleDbUpdateCommand1.Parameters.Add(
131 new System.Data.OleDb.OleDbParameter(
132 "firstName",
133 System.Data.OleDb.OleDbType.VarWChar,
134 50, "firstName"));
135 this.oleDbUpdateCommand1.Parameters.Add(
136 new System.Data.OleDb.OleDbParameter(
137 "lastName",
138 System.Data.OleDb.OleDbType.VarWChar, 50,
139 "lastName"));
140 this.oleDbUpdateCommand1.Parameters.Add(
141 new System.Data.OleDb.OleDbParameter(
142 "Original_authorID",
143 System.Data.OleDb.OleDbType.Integer, 0,
144 System.Data.ParameterDirection.Input, false,
145 ((System.Byte)(10)), ((System.Byte)(0)),
146 "authorID", System.Data.DataRowVersion.Original,
147 null));
148 this.oleDbUpdateCommand1.Parameters.Add(
149 new System.Data.OleDb.OleDbParameter(
150 "Original_firstName",
151 System.Data.OleDb.OleDbType.VarWChar, 50,
152 System.Data.ParameterDirection.Input, false,
153 ((System.Byte)(0)), ((System.Byte)(0)),
154 "firstName", System.Data.DataRowVersion.Original,
155 null));
156 this.oleDbUpdateCommand1.Parameters.Add(
157 new System.Data.OleDb.OleDbParameter(
158 "Original_firstName1",
159 System.Data.OleDb.OleDbType.VarWChar, 50,
160 System.Data.ParameterDirection.Input, false,
161 ((System.Byte)(0)), ((System.Byte)(0)),
162 "firstName", System.Data.DataRowVersion.Original,
163 null));
164 this.oleDbUpdateCommand1.Parameters.Add(
165 new System.Data.OleDb.OleDbParameter(
166 "Original_lastName",
167 System.Data.OleDb.OleDbType.VarWChar, 50,

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Accessing and displaying a database’s data. (Part 4 of 7.)

Chapter 19 Database, SQL and ADO .NET 925

168 System.Data.ParameterDirection.Input, false,
169 ((System.Byte)(0)), ((System.Byte)(0)),
170 "lastName", System.Data.DataRowVersion.Original,
171 null));
172 this.oleDbUpdateCommand1.Parameters.Add(
173 new System.Data.OleDb.OleDbParameter(
174 "Original_lastName1",
175 System.Data.OleDb.OleDbType.VarWChar, 50,
176 System.Data.ParameterDirection.Input, false,
177 ((System.Byte)(0)), ((System.Byte)(0)),
178 "lastName", System.Data.DataRowVersion.Original,
179 null));
180 //
181 // oleDbDeleteCommand1
182 //
183 this.oleDbDeleteCommand1.CommandText =
184 "DELETE FROM Authors WHERE (authorID = ?) AND " +
185 "(firstName = ? OR ? IS NULL AND firs" +
186 "tName IS NULL) AND (lastName = ? OR ? IS NULL AND " +
187 "lastName IS NULL)";
188 this.oleDbDeleteCommand1.Connection =
189 this.oleDbConnection1;
190 this.oleDbDeleteCommand1.Parameters.Add(
191 new System.Data.OleDb.OleDbParameter(
192 "Original_authorID",
193 System.Data.OleDb.OleDbType.Integer, 0,
194 System.Data.ParameterDirection.Input, false,
195 ((System.Byte)(10)), ((System.Byte)(0)),
196 "authorID", System.Data.DataRowVersion.Original,
197 null));
198 this.oleDbDeleteCommand1.Parameters.Add(
199 new System.Data.OleDb.OleDbParameter(
200 "Original_firstName",
201 System.Data.OleDb.OleDbType.VarWChar, 50,
202 System.Data.ParameterDirection.Input, false,
203 ((System.Byte)(0)), ((System.Byte)(0)),
204 "firstName", System.Data.DataRowVersion.Original,
205 null));
206 this.oleDbDeleteCommand1.Parameters.Add(
207 new System.Data.OleDb.OleDbParameter(
208 "Original_firstName1",
209 System.Data.OleDb.OleDbType.VarWChar, 50,
210 System.Data.ParameterDirection.Input, false,
211 ((System.Byte)(0)), ((System.Byte)(0)),
212 "firstName", System.Data.DataRowVersion.Original,
213 null));
214 this.oleDbDeleteCommand1.Parameters.Add(
215 new System.Data.OleDb.OleDbParameter(
216 "Original_lastName",
217 System.Data.OleDb.OleDbType.VarWChar, 50,
218 System.Data.ParameterDirection.Input, false,
219 ((System.Byte)(0)), ((System.Byte)(0)),

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Accessing and displaying a database’s data. (Part 5 of 7.)

926 Database, SQL and ADO .NET Chapter 19

220 "lastName", System.Data.DataRowVersion.Original,
221 null));
222 this.oleDbDeleteCommand1.Parameters.Add(
223 new System.Data.OleDb.OleDbParameter(
224 "Original_lastName1",
225 System.Data.OleDb.OleDbType.VarWChar, 50,
226 System.Data.ParameterDirection.Input, false,
227 ((System.Byte)(0)), ((System.Byte)(0)),
228 "lastName", System.Data.DataRowVersion.Original,
229 null));
230 //
231 // oleDbConnection1
232 //
233 this.oleDbConnection1.ConnectionString =
234 @"Provider=Microsoft.Jet.OLEDB.4.0;Password="""";" +
235 @"User ID=Admin;Data Source=C:\Books\2001\csphtp1\" +
236 @"csphtp1_examples\ch19\Books.mdb;Mode=Share " +
237 @"Deny None;Extended Properties="""";Jet OLEDB:" +
238 @"System database="""";Jet OLEDB:Registry " +
239 @"Path="""";Jet OLEDB:Database Password="""";" +
240 @"Jet OLEDB:Engine Type=5;Jet OLEDB:Database " +
241 @"Locking Mode=1;Jet OLEDB:Global Partial Bulk " +
242 @"Ops=2;Jet OLEDB:Global Bulk Transactions=1;Jet " +
243 @"OLEDB:New Database Password="""";Jet OLEDB:" +
244 @"Create System Database=False;Jet OLEDB:Encrypt " +
245 @"Database=False;Jet OLEDB:Don't Copy Locale on " +
246 @"Compact=False;Jet OLEDB:Compact Without Replica " +
247 @"Repair=False;Jet OLEDB:SFP=False";
248 //
249 // TableDisplay
250 //
251 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
252 this.ClientSize = new System.Drawing.Size(292, 273);
253 this.Controls.AddRange(
254 new System.Windows.Forms.Control[] {
255 this.dataGrid1});
256 this.Name = "TableDisplay";
257 this.Text = "TableDisplay";
258 ((System.ComponentModel.ISupportInitialize)
259 (this.dataSet1)).EndInit();
260 ((System.ComponentModel.ISupportInitialize)
261 (this.dataGrid1)).EndInit();
262 this.ResumeLayout(false);
263
264 } // end of InitializeComponent
265
266 [STAThread]
267 static void Main()
268 {
269 Application.Run(new TableDisplay());
270 }
271 }

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Accessing and displaying a database’s data. (Part 6 of 7.)

Chapter 19 Database, SQL and ADO .NET 927

Next, drag an OleDbDataAdapter from the Toolbox’s Data group onto the Win-
dows Form designer. This displays the Data Adapter Configuration Wizard for con-
figuring the OleDbDataAdapter instance with a custom query for populating a
DataSet. Click Next to select a connection to use. Select the connection created in the
previous step from the drop-down list and click Next. The resulting screen allows us to
choose how the OleDbDataAdapter should access the database. Keep the default Use
SQL Statement option and then click Next. Click the Query Builder button, select the
Authors table from the Add menu and Close that menu. Place a check mark in the *All
Columns box from the Authors window. Notice how that particular window lists all col-
umns of the Authors table.

Next, we must create a DataSet to store the query results. To do so, drag DataSet
from the Data group in the Toolbox. This displays the Add DataSet window. Choose
the Untyped DataSet (no schema), because the query with which we populate the
DataSet dictates the DataSet’s schema, or structure.

 Figure 19.27 shows all of the code generated by Visual Studio. Normally, we omit this
code, because it usually only contains GUI related code. In this case, however, the code
contains database functionality that we must discuss. Furthermore, we have left the default
naming conventions of Visual Studio in this example to demonstrate the exact format of the
auto-generated code that Visual Studio creates. Normally, we would change these names to
conform to our programming conventions and style. The code generated by Visual Studio
has also been formatted for presentation purposes.

Good Programming Practice 19.2
Use clear, descriptive variable names in code. This makes programs easier to understand. 19.2

Lines 233–247 initialize the oleDbConnection for this program. The
ConnectionString property specifies the path to the database file on the computer’s
hard drive.

An instance of class OleDbDataAdapter populates the DataSet in this example
with data from the Books database. The instance properties DeleteCommand (lines 66–
67), InsertCommand (lines 68–69), SelectCommand (lines 70–71) and Update-

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 Accessing and displaying a database’s data. (Part 7 of 7.)

928 Database, SQL and ADO .NET Chapter 19

Command (lines 83–84) are OleDbCommand objects that specify how the OleDbData-
Adapter deletes, inserts, selects and updates data in the database, respectively.

Each OleDbCommand object must have an OleDbConnection through which the
OleDbCommand can communicate with the database. Property Connection is set to the
OleDbConnection to the Books database. For oleDbUpdateCommand1, lines
128–129 set the Connection property, and lines 122–127 set the CommandText.

Although Visual Studio generates most of this program’s code, we enter code in the
TableDisplay constructor (lines 25–34) for populating dataSet1 using an OleDb-
DataAdapter. Line 30 calls OleDbDataAdapter method Fill to retrieve informa-
tion from the database associated with the OleDbConnection, placing the information
in the DataSet provided as an argument. The second argument to this method is a
string that specifies the name of the table in the database from which to Fill the
DataSet.

Line 33 invokes DataGrid method SetDataBinding to bind the DataGrid to
a data source. The first argument is the DataSet—in this case, dataSet1—whose data
the DataGrid should display. The second argument is a string representing the name
of the table within the data source we want to bind to the DataGrid. Once this line exe-
cutes, the DataGrid is filled with the information in the DataSet—the number of rows
and number of columns are set from the information in dataSet1.

19.6.2 Querying the Books Database

The example in Fig. 19.28 demonstrates how to execute SQL SELECT statements on data-
base Books.mdb and display the results. Although Fig. 19.28 uses only SELECT state-
ments to query the data, the same program could be used to execute many different SQL
statements if we made a few minor modifications.

Method submitButton_Click is the key part of this program. When the program
invokes this event handler, lines 47–48 assign the SELECT query string to OleDb-
DataAdapter’s SelectCommand property. This string is parsed into an SQL query
and executed on the database via the OleDbDataAdapter’s Fill method (line 55). As
we discussed in the previous section, method Fill places data from the database into
dataSet1.

1 // Fig. 19.28: DisplayQueryResults.cs
2 // Displays the contents of the authors database.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class DisplayQueryResults : System.Windows.Forms.Form
12 {
13 private System.Data.OleDb.OleDbConnection oleDbConnection1;
14 private System.Data.DataSet dataSet1;

Fig. 19.28Fig. 19.28Fig. 19.28Fig. 19.28 Execute SQL statements on a database. (Part 1 of 3.)

Chapter 19 Database, SQL and ADO .NET 929

15 private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;
16 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
17 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
18 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
19 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
20 private System.Windows.Forms.TextBox queryTextBox;
21 private System.Windows.Forms.Button submitButton;
22 private System.Windows.Forms.DataGrid dataGrid1;
23 private System.ComponentModel.Container components = null;
24
25 public DisplayQueryResults()
26 {
27
28 InitializeComponent();
29 }
30
31 // Visual Studio.NET generated code
32
33 [STAThread]
34 static void Main()
35 {
36 Application.Run(new DisplayQueryResults());
37 }
38
39 // perform SQL query on data
40 private void submitButton_Click(object sender,
41 System.EventArgs e)
42 {
43 try
44 {
45 // set SQL query to what user
46 // input into queryTextBox
47 oleDbDataAdapter1.SelectCommand.CommandText =
48 queryTextBox.Text;
49
50 // clear DataSet from previous operation
51 dataSet1.Clear();
52
53 // Fill data set with information that results
54 // from SQL query
55 oleDbDataAdapter1.Fill(dataSet1, "Authors");
56
57 // bind DataGrid to contents of DataSet
58 dataGrid1.SetDataBinding(dataSet1, "Authors");
59 }
60
61 catch (System.Data.OleDb.OleDbException oleException)
62 {
63 MessageBox.Show("Invalid query");
64 }
65
66 } // end of submitButton_Click
67 }

Fig. 19.28Fig. 19.28Fig. 19.28Fig. 19.28 Execute SQL statements on a database. (Part 2 of 3.)

930 Database, SQL and ADO .NET Chapter 19

Common Programming Error 19.9
If a DataSet has been Filled at least once, forgetting to call a DataSet’s Clear meth-
od before calling the Fill method again will lead to logic errors. 19.9

To display, or redisplay, contents in the DataGrid, use method SetDataB-
inding. The first argument is the datasource to be displayed in the table—a DataSet,
in this case. The second argument is the string name of the datasource member to be dis-
played (line 58). Readers can try entering their own queries in the text box and then
pressing the Submit Query button to execute the query.

19.7 Programming with ADO.NET: Modifying a DBMS
Our next example implements a simple address-book application that enables the user to
insert, locate and update records in the Microsoft Access database Addressbook.

The Addressbook application (Fig. 19.29) provides a GUI enabling users to execute
SQL statements on the database. Earlier in the chapter, we presented examples demon-
strating the use of SELECT statements to query a database. Here, that same functionality is
provided.

Fig. 19.28Fig. 19.28Fig. 19.28Fig. 19.28 Execute SQL statements on a database. (Part 3 of 3.)

1 // Fig. 19.29: AddressBook.cs
2 // Using SQL statements to manipulate a database.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 1 of 8.)

Chapter 19 Database, SQL and ADO .NET 931

11 public class AddressBook : System.Windows.Forms.Form
12 {
13 private System.Windows.Forms.TextBox faxTextBox;
14 private System.Windows.Forms.TextBox homeTextBox;
15 private System.Windows.Forms.TextBox firstTextBox;
16 private System.Windows.Forms.TextBox stateTextBox;
17 private System.Windows.Forms.TextBox idTextBox;
18 private System.Windows.Forms.TextBox lastTextBox;
19 private System.Windows.Forms.TextBox postalTextBox;
20 private System.Windows.Forms.TextBox addressTextBox;
21 private System.Windows.Forms.TextBox cityTextBox;
22 private System.Windows.Forms.TextBox countryTextBox;
23 private System.Windows.Forms.TextBox emailTextBox;
24 private System.Data.DataSet dataSet1;
25 private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;
26 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
27 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
28 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
29 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
30 private System.Data.OleDb.OleDbConnection oleDbConnection1;
31 private System.Windows.Forms.TextBox statusTextBox;
32 private System.Windows.Forms.Label addressLabel;
33 private System.Windows.Forms.Label cityLabel;
34 private System.Windows.Forms.Label stateLabel;
35 private System.Windows.Forms.Label idLabel;
36 private System.Windows.Forms.Label firstLabel;
37 private System.Windows.Forms.Label lastLabel;
38 private System.Windows.Forms.Label postalLabel;
39 private System.Windows.Forms.Label countryLabel;
40 private System.Windows.Forms.Label emailLabel;
41 private System.Windows.Forms.Button clearButton;
42 private System.Windows.Forms.Button helpButton;
43 private System.Windows.Forms.Button findButton;
44 private System.Windows.Forms.Button addButton;
45 private System.Windows.Forms.Button updateButton;
46 private System.Windows.Forms.Label faxLabel;
47 private System.Windows.Forms.Label homeLabel;
48 private System.ComponentModel.Container components = null;
49
50 public AddressBook()
51 {
52 InitializeComponent();
53 oleDbConnection1.Open();
54 }
55
56 // Visual Studio.NET generated code
57
58 [STAThread]
59 static void Main()
60 {
61 Application.Run(new AddressBook());
62 }
63

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 2 of 8.)

932 Database, SQL and ADO .NET Chapter 19

64 private void findButton_Click(object sender,
65 System.EventArgs e)
66 {
67 try
68 {
69 if (lastTextBox.Text != "")
70 {
71 // clear DataSet from last operation
72 dataSet1.Clear();
73
74 // create SQL query to find contact with
75 // specified last name
76 oleDbDataAdapter1.SelectCommand.CommandText =
77 "SELECT * FROM addresses WHERE lastname = '" +
78 lastTextBox.Text + "'";
79
80 // fill dataSet1 with rows resulting from
81 // query
82 oleDbDataAdapter1.Fill(dataSet1);
83
84 // display information
85 Display(dataSet1);
86 statusTextBox.Text += "\r\nQuery successful\r\n";
87 }
88 else
89 lastTextBox.Text =
90 "Enter last name here then press Find";
91 }
92
93 catch (System.Data.OleDb.OleDbException oleException)
94 {
95 Console.WriteLine(oleException.StackTrace);
96 statusTextBox.Text += oleException.ToString();
97 }
98
99 catch (InvalidOperationException invalidException)
100 {
101 MessageBox.Show(invalidException.Message);
102 }
103
104 } // end of findButton_Click
105
106 private void addButton_Click(object sender, System.EventArgs e)
107 {
108 try
109 {
110 if (lastTextBox.Text != "" && firstTextBox.Text != "")
111 {
112 // create SQL query to insert row
113 oleDbDataAdapter1.InsertCommand.CommandText =
114 "INSERT INTO addresses (" +
115 "firstname, lastname, address, city, " +
116 "stateorprovince, postalcode, country, " +

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 3 of 8.)

Chapter 19 Database, SQL and ADO .NET 933

117 "emailaddress, homephone, faxnumber" +
118 ") VALUES ('" +
119 firstTextBox.Text + "', '" +
120 lastTextBox.Text + "', '" +
121 addressTextBox.Text + "', '" +
122 cityTextBox.Text + "', '" +
123 stateTextBox.Text + "', '" +
124 postalTextBox.Text + "', '" +
125 countryTextBox.Text + "', '" +
126 emailTextBox.Text + "', '" +
127 homeTextBox.Text + "', '" +
128 faxTextBox.Text + "')";
129
130 // notify user that query is being sent
131 statusTextBox.Text += "\r\nSending query: " +
132 oleDbDataAdapter1.InsertCommand.CommandText +
133 "\r\n" ;
134
135 // send query
136 oleDbDataAdapter1.InsertCommand.ExecuteNonQuery();
137
138 statusTextBox.Text += "\r\nQuery successful\r\n";
139 }
140 else
141 statusTextBox.Text += "\r\nEnter at least first " +
142 "and last name then press Add\r\n";
143 }
144
145 catch (System.Data.OleDb.OleDbException oleException)
146 {
147 Console.WriteLine(oleException.StackTrace);
148 statusTextBox.Text += oleException.ToString();
149 }
150
151 } // end of addButton_Click
152
153 private void updateButton_Click(object sender,
154 System.EventArgs e)
155 {
156 try
157 {
158 // make sure users have found record
159 // they wish to update
160 if (idTextBox.Text != "")
161 {
162 // set SQL query to update all fields in
163 // table where id number matches id
164 // in idTextBox
165 oleDbDataAdapter1.UpdateCommand.CommandText =
166 "UPDATE addresses SET " +
167 "firstname ='" + firstTextBox.Text +
168 "', lastname='" + lastTextBox.Text +
169 "', address='" + addressTextBox.Text +

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 4 of 8.)

934 Database, SQL and ADO .NET Chapter 19

170 "', city='" + cityTextBox.Text +
171 "', stateorprovince='" + stateTextBox.Text +
172 "', postalcode='" + postalTextBox.Text +
173 "', country='" + countryTextBox.Text +
174 "', emailaddress='" + emailTextBox.Text +
175 "', homephone='" + homeTextBox.Text +
176 "', faxnumber='" + faxTextBox.Text +
177 "' WHERE id=" + idTextBox.Text;
178
179 // notify user that query is being set
180 statusTextBox.Text += "\r\nSending query: " +
181 oleDbDataAdapter1.UpdateCommand.CommandText +
182 "\r\n";
183
184 // execute query
185 oleDbDataAdapter1.UpdateCommand.ExecuteNonQuery();
186
187 statusTextBox.Text += "\r\nQuery successful\r\n";
188 }
189 else
190 statusTextBox.Text += "\r\nYou may only update " +
191 "an existing record. Use Find to locate the" +
192 "record, then modify the information and " +
193 "press Update.\r\n";
194 }
195
196 catch (System.Data.OleDb.OleDbException oleException)
197 {
198 Console.WriteLine(oleException.StackTrace);
199 statusTextBox.Text += oleException.ToString();
200 }
201
202 } // end of updateButton_Click
203
204 private void clearButton_Click(object sender,
205 System.EventArgs e)
206 {
207 idTextBox.Clear();
208 ClearTextBoxes();
209 }
210
211 private void helpButton_Click(object sender,
212 System.EventArgs e)
213 {
214 statusTextBox.AppendText(
215 "\r\nClick Find to locate a record\r\n" +
216 "Click Add to insert a new record.\r\n" +
217 "Click Update to update the information in a record "
218 + "\r\nClick Clear to empty the textboxes");
219 }
220
221 private void Display(DataSet dataSet)
222 {

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 5 of 8.)

Chapter 19 Database, SQL and ADO .NET 935

223 try
224 {
225 // get first DataTable--there always will be one
226 DataTable dataTable = dataSet.Tables[0];
227
228 if (dataTable.Rows.Count != 0)
229 {
230 int recordNumber = (int) dataTable.Rows[0][0];
231
232 idTextBox.Text = recordNumber.ToString();
233 firstTextBox.Text =
234 (string) dataTable.Rows[0][1];
235 lastTextBox.Text =
236 (string) dataTable.Rows[0][2];
237 addressTextBox.Text =
238 (string) dataTable.Rows[0][3];
239 cityTextBox.Text =
240 (string) dataTable.Rows[0][4];
241 stateTextBox.Text =
242 (string) dataTable.Rows[0][5];
243 postalTextBox.Text =
244 (string) dataTable.Rows[0][6];
245 countryTextBox.Text =
246 (string) dataTable.Rows[0][7];
247 emailTextBox.Text =
248 (string) dataTable.Rows[0][8];
249 homeTextBox.Text =
250 (string) dataTable.Rows[0][9];
251 faxTextBox.Text =
252 (string) dataTable.Rows[0][10];
253 }
254
255 else
256 statusTextBox.Text += "\r\nNo record found\r\n";
257 }
258
259 catch(System.Data.OleDb.OleDbException oleException)
260 {
261 Console.WriteLine(oleException.StackTrace);
262 statusTextBox.Text += oleException.ToString();
263 }
264
265 } // end Display
266
267 private void ClearTextBoxes()
268 {
269 firstTextBox.Clear();
270 lastTextBox.Clear();
271 addressTextBox.Clear();
272 cityTextBox.Clear();
273 stateTextBox.Clear();
274 postalTextBox.Clear();
275 countryTextBox.Clear();

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 6 of 8.)

936 Database, SQL and ADO .NET Chapter 19

276 emailTextBox.Clear();
277 homeTextBox.Clear();
278 faxTextBox.Clear();
279 }
280 }

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 7 of 8.)

Chapter 19 Database, SQL and ADO .NET 937

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Modifying a database. (Part 8 of 8.)

938 Database, SQL and ADO .NET Chapter 19

Event handler findButton_Click performs the SELECT query on the database
for the record associated with the string in lastTextBox. This represents the last
name of the person whose record the user wishes to retrieve. Line 72 invokes method
Clear of class DataSet to empty the DataSet of any prior data. Lines 76–78 then
modify the text of the SQL query to perform the appropriate SELECT operation. This state-
ment is executed by the OleDbDataAdapter method Fill (line 82), which is passed
the DataSet as an argument. Finally, the TextBoxes are updated with a call to method
Display (line 85).

Methods addButton_Click and updateButton_Click perform INSERT and
UPDATE operations, respectively. Each method uses members of class OleDbCommand to
perform operations on a database. The instance properties InsertCommand and Update-
Command of class OleDbDataAdapter are instances of class OleDbCommand.

Property CommandText of class OleDbCommand is a string representing the
SQL statement that the OleDbCommand object executes. Method addButton_Click
sets this property of InsertCommand to execute the appropriate INSERT statement on
the database (lines 113–128). Method updateButton_Click sets this property of
UpdateCommand to execute the appropriate UPDATE statement on the database (lines
165–177).

Method ExecuteNonQuery of class OleDbCommand performs the action specified
by CommandText. Hence, the INSERT statement defined by oleDbData-
Adapter1.InsertCommand.CommandText in event handler addButton_Click
is executed when line 136 invokes method oleDbDataAdapter1.InsertCom-
mand.ExecuteNonQuery. Similarly, the UPDATE statement defined by oleDbData-
Adapter1.DeleteCommand.CommandText in updateButton_Click event
handler is executed by oleDbDataAdapter1.UpdateCommand.ExecuteNon-
Query (line 185).

Method Display (lines 221–265) updates the user interface with data from the newly
retrieved address-book record. Line 226 obtains a DataTable from the DataSet’s
Tables collection. This DataTable contains the results of our SQL query. Line 228
determines whether the query returned any rows. The Rows property in class DataTable
provides access to all records retrieved by the query. The Rows property is similar to a two-
dimensional rectangular array. Line 230 retrieves the field with index 0, 0 (i.e., the first
record’s first column of data) and stores the value in variable recordNumber. Lines 232–
252 then retrieve the remaining fields of data from the DataTable to populate the user
interface.

When clicked, the application’s Help button prints instructions in the console at the
bottom of the application window (lines 214–218). The event handler for this button is
helpButton_Click. The Clear button clears the text from the TextBoxes. This
event handler is defined in the method clearButton_Click and uses the utility method
ClearTextBoxes (line 208).

19.8 Reading and Writing XML Files
A powerful feature of ADO .NET is its ability to convert data stored in a datasource to
XML. Class DataSet of namespace System.Data provides methods WriteXml,
ReadXml and GetXml, which enable developers to create XML documents from data-
sources and to convert data from XML into datasources. The application in Fig. 19.30 pop-

Chapter 19 Database, SQL and ADO .NET 939

ulates a DataSet with statistics about baseball players and then writes the data to a file as
XML. The application also displays the XML in a TextBox.

1 // Fig. 19.30 XMLWriter.cs
2 // Demonstrates generating XML from an ADO .NET DataSet.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class DatabaseXMLWriter : System.Windows.Forms.Form
12 {
13 private System.Data.OleDb.OleDbConnection baseballConnection;
14 private System.Data.OleDb.OleDbDataAdapter playersDataAdapter;
15 private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;
16 private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;
17 private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;
18 private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;
19 private System.Data.DataSet playersDataSet;
20 private System.Windows.Forms.DataGrid playersDataGrid;
21 private System.Windows.Forms.Button writeButton;
22 private System.Windows.Forms.TextBox outputTextBox;
23 private System.ComponentModel.Container components = null;
24
25 public DatabaseXMLWriter()
26 {
27 //
28 // Required for Windows Form Designer support
29 //
30 InitializeComponent();
31
32 // open database connection
33 baseballConnection.Open();
34
35 // fill DataSet with data from OleDbDataAdapter
36 playersDataAdapter.Fill(playersDataSet, "Players");
37
38 // bind DataGrid to DataSet
39 playersDataGrid.SetDataBinding(playersDataSet, "Players");
40
41 }
42
43 // Visual Studio .NET generated code
44
45 // main entry point for application.
46 [STAThread]
47 static void Main()
48 {
49 Application.Run(new DatabaseXMLWriter());
50 }

Fig. 19.30Fig. 19.30Fig. 19.30Fig. 19.30 Application that writes an XML representation of a DataSet to a file.

940 Database, SQL and ADO .NET Chapter 19

The DatabaseXMLWriter constructor (lines 25–41) establishes a connection to the
Baseball database in line 33. Line 36 then calls method Fill of class OleDbData-
Adapter to populate playersDataSet with data from the Players table in the
Baseball database. Line 39 binds playersDataGrid to playersDataSet to dis-
play the information to the user.

Method writeButton_Click defines the event handler for the Write to XML
button. When the user clicks this button, line 57 invokes DataSet method WriteXml,
which generates an XML representation of the data contained in the DataSet and writes the
XML to the specified file. Figure 19.31 depicts this XML representation. Each Players ele-
ment represents a record in the Players table. The firstName, lastName, batting-
Average and playerID elements correspond to the fields of the same names in the
Players table. Method GetXml returns a string representing the DataSet’s data in
XML form. Lines 60–61 append the XML string to outputTextBox.

51
52 // write XML representation of DataSet when button is clicked
53 private void writeButton_Click(
54 object sender, System.EventArgs e)
55 {
56 // write XML representation of DataSet to file
57 playersDataSet.WriteXml("Players.xml");
58
59 // display XML in TextBox
60 outputTextBox.Text += "Writing the following XML:\n\n" +
61 playersDataSet.GetXml() + "\n\n";
62
63 }
64 }

Fig. 19.30Fig. 19.30Fig. 19.30Fig. 19.30 Application that writes an XML representation of a DataSet to a file.

Chapter 19 Database, SQL and ADO .NET 941

In this chapter, we discussed the fundamentals of Structured Query Language (SQL)
and C#’s database capabilities. We learned that C# programmers communicate with data-
bases and manipulate their data through Microsoft ActiveX Data Objects™ (ADO), ADO
.NET. In the next chapter we discuss ASP .NET Web Forms. Web Forms allow program-
mers to develop dynamic Web content using databases and ASP .NET features.

SUMMARY
• A database is an integrated collection of data. A database management system (DBMS) provides

mechanisms for storing and organizing data.

• Today’s most popular database systems are relational databases.

• A language called Structured Query Language (SQL) is used almost universally with relational-
database systems to perform queries and manipulate data.

• A programming language connects to, and interacts with, relational databases via an interface—
software that facilitates communications between a database management system and a program.

• C# programmers communicate with databases and manipulate their data via ADO .NET.

• A relational database is composed of tables. A row of a table is called a record.

• A primary key is a field that contains unique data, or data that is not duplicated in other records of
that table.

• Each column in a table represents a different field (or attribute).

• A primary key can be composed of more than one column (or field) in the database.

• SQL provides a complete set of commands, enabling programmers to define complex queries to
select data from a table. The results of a query commonly are called result sets (or record sets).

1 <?xml version="1.0" standalone="yes"?>
2 <NewDataSet>
3 <Players>
4 <firstName>John</firstName>
5 <lastName>Doe</lastName>
6 <battingAverage>0.375</battingAverage>
7 <playerID>1</playerID>
8 </Players>
9

10 <Players>
11 <firstName>Jack</firstName>
12 <lastName>Smith</lastName>
13 <battingAverage>0.223</battingAverage>
14 <playerID>2</playerID>
15 </Players>
16
17 <Players>
18 <firstName>George</firstName>
19 <lastName>O'Malley</lastName>
20 <battingAverage>0.444</battingAverage>
21 <playerID>3</playerID>
22 </Players>
23 </NewDataSet>

Fig. 19.31Fig. 19.31Fig. 19.31Fig. 19.31 XML document generated from DataSet in DatabaseXMLWriter.

942 Database, SQL and ADO .NET Chapter 19

• A one-to-many relationship between tables indicates that a record in one table can have many cor-
responding records in a separate table.

• A foreign key is a field for which every entry in one table has a unique value in another table and
where the field in the other table is the primary key for that table.

• The basic format for a SELECT query is:

SELECT * FROM tableName

where the asterisk (*) indicates that all columns from tableName should be selected, and tableNa-
me specifies the table in the database from which the data will be selected.

• To select specific fields from a table, replace the asterisk (*) with a comma-separated list of the
field names to select.

• Programmers process result sets by knowing in advance the order of the fields in the result set.
Specifying the field names to select guarantees that the fields are returned in the specified order,
even if the actual order of the fields in the database table(s) changes.

• The optional WHERE clause in a SELECT query specifies the selection criteria for the query. The
simplest format for a SELECT query with selection criteria is:

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

• The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE. Operator LIKE
is used for pattern matching with wildcard characters asterisk (*) and question mark (?).

• A pattern string containing an asterisk character (*) searches for strings in which zero or more
characters appear in the asterisk character’s location in the pattern.

• A pattern string containing a question mark (?) searches for strings in which exactly one character
appears in the question mark’s position in the pattern.

• The results of a query can be arranged in ascending or descending order via the optional ORDER
BY clause. The simplest form of an ORDER BY clause is:

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order, DESC specifies descending order and field specifies the field
to be sorted. The default sorting order is ascending, so ASC is optional.

• An ORDER BY clause also can sort records by multiple fields. Such queries are written in the form:

ORDER BY field1 sortingOrder, field2 sortingOrder, …

• The WHERE and ORDER BY clauses can be combined in one query.

• A join merges records from two or more tables by testing for matching values in a field that is com-
mon to both tables. The simplest format of a join is:

SELECT fieldName1, fieldName2, …
 FROM table1, table2
 WHERE table1.fieldName = table2.fieldName

in which the WHERE clause specifies the fields from each table that should be compared to deter-
mine which records are joined. These fields normally represent the primary key in one table and
the corresponding foreign key in another table.

• If an SQL statement uses fields that have the same name in multiple tables, the statement must ful-
ly qualify the field name by preceding it with its table name and the dot operator (.).

• An INSERT statement inserts a new record in a table. The simplest form for this statement is:

INSERT INTO tableName (fieldName1, fieldName2, …, fieldNameN)
VALUES (value1, value2, …, valueN)

Chapter 19 Database, SQL and ADO .NET 943

where tableName is the table in which to insert the record. The tableName is followed by a com-
ma-separated list of field names in parentheses. The list of field names is followed by the SQL key-
word VALUES and a comma-separated list of values in parentheses.

• SQL statements use a single quote (') as a delimiter for strings. To specify a string containing a
single quote in an SQL statement, the single quote must be escaped with another single quote.

• An UPDATE statement modifies data in a table. The simplest form for an UPDATE statement is:

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is followed
by keyword SET and a comma-separated list of field-name/value pairs, written in the format
fieldName = value. The WHERE criteria determine the record(s) to update.

• A DELETE statement removes data from a table. The simplest form for a DELETE statement is:

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE criteria de-
termine which record(s) to delete.

• System.Data, System.Data.OleDb and System.Data.SqlClient are the three
main namespaces in ADO .NET.

• Class DataSet is from the System.Data namespace. Instances of this class represent in-mem-
ory caches of data.

• The advantage of using class DataSet is that it is a way to modify the contents of a datasource
without having to maintain an active connection.

• One approach to ADO .NET programming uses OleDbCommand of the System.Data.Ole-
Db namespace. In this approach, SQL statements are executed directly on the datasource.

• Use the Add Connection option to create a database connection in the Data Link Properties
window.

• Use the Data Adapter Configuration Wizard to set up an OleDbDataAdapter and gener-
ate queries.

• If a DataSet needs to be named, use the instance property DataSetName.

• OleDbCommands commands are what the OleDbDataAdapter executes on the database in
the form of SQL queries.

• DataColumnMappings converts data from a database to a DataSet, and vice versa.

• Instance property Parameters of class OleDbCommand is a collection of OleDbParame-
ter objects. Adding them to an OleDbCommand is an optional way to add parameters in a com-
mand, instead of creating a lengthy, complex command string.

• OleDbCommand instance property Connection is set to the OleDbConnection that the
command will be executed on, and the instance property CommandText is set to the SQL query
that will be executed on the database.

• OleDbDataAdapter method Fill retrieves information from the database associated with the
OleDbConnection and places this information in the DataSet provided as an argument.

• DataGrid method SetDataBinding binds a DataGrid to a data source.

• Method Clear of class DataSet is called to empty the DataSet of any prior data.

• The instance properties InsertCommand and UpdateCommand of class OleDbData-
Adapter are instances of class OleDbCommand.

944 Database, SQL and ADO .NET Chapter 19

• Property CommandText of class OleDbCommand is the string representing the SQL state-
ment to be executed.

• Method ExecuteNonQuery of class OleDbCommand is called to perform the action specified
by CommandText on the database.

• A powerful feature of ADO .NET is its ability to convert data stored in a datasource to XML, and
vice versa.

• Method WriteXml of class DataSet writes the XML representation of the DataSet instance
to the first argument passed to it. This method has several overloaded versions that allow program-
mers to specify an output source and a character encoding for the data.

• Method ReadXml of class DataSet reads the XML representation of the first argument passed
to it into its own DataSet. This method has several overloaded versions that allow programmers
to specify an input source and a character encoding for the data.

TERMINOLOGY
* SQL wildcard character distributed computing system
? SQL wildcard character ExecuteNonQuery method of

 OleDbCommandAcceptChanges method of DataRow
AcceptChanges method of DataTable ExecuteReader method of OleDbCommand
ADO.NET ExecuteScalar method of OleDbCommand
AND field
ASC (ascending order) Fill method of OleDbAdapter
ascending order (ASC) foreign key
asterisk (*) FROM
atomic operation fully qualified name
authorISBN table of books database GetXml method of DataSet
authors table of books database GROUP BY
books database infinity symbol
books database table relationships INNER JOIN
cache INSERT INTO
Clear method of DataSet INSERT statement
column InsertCommand property of

 OleDbAdaptercolumn number
CommandText method of OleDbCommand interface
commit a transaction joining tables
connect to a database LIKE
data provider many-to-many relationship
database match the selection criteria
database management system (DBMS) merge records from Tables
database table OLE DB data provider
DataGrid class OleDbCommand class
DataSet class OleDbConnection class
default sorting order is ascending OleDbDataAdapter class
DELETE FROM one-to-many relationship
DELETE statement ORDER BY
DeleteCommand property of
 OleDbAdapter

ordered
ordering of records

DESC pattern matching
disconnected primary key

Chapter 19 Database, SQL and ADO .NET 945

SELF-REVIEW EXERCISES
19.1 Fill in the blanks in each of the following statements:

a) The most popular database query language is .
b) A table in a database consists of and .
c) Databases can be manipulated in C# as objects.
d) Class enables programmers to display data in DataSets graphically.
e) SQL keyword is followed by selection criteria that specify the records to se-

lect in a query.
f) SQL keyword specifies the order in which records are sorted in a query.
g) Selecting data from multiple database tables is called the data.
h) A(n) is/are an integrated collection of data that is/are centrally controlled.
i) A(n) is/are a field(s) in a table for which every entry has/have a unique value

in another table and where the field(s) in the other table is/are the primary key for that
table.

j) Namespace contains special classes and interfaces for manipulating
SQLServer databases in C#.

k) C# uses to transmit data between datasources.
l) Namespace is C#’s general interfacing to a database.

19.2 State which of the following are true or false. If false, explain why.
a) In general, ADO .NET is a disconnected model.
b) SQL can implicitly convert fields with the same name from two or mores tables to the

appropriate field.
c) Only the UPDATE SQL statement can commit changes to a database.

Publishers table of books database SetDataBinding method of DataGrid
query single-quote character
query a database SQL (Structured Query Language)
ReadXml method of DataSet SQL keyword
record SQL Server data provider
record set SQL statement
RejectChanges method of DataRow square brackets in a query
RejectChanges method of DataTable System.Data namespace
relational database System.Data.OleDb namespace
relational database model System.Data.SqlClient namespace
relational database table table
result set table column
roll back a transaction table in which record will be updated
row table row
rows to be retrieved titles table of books database
Rule of Entity Integrity transaction
Rule of Referential Integrity transaction processing
SELECT UPDATE
select Update method of OleDbDataAdapter
select all fields from a table UpdateCommand property of

 OleDbAdapterSelectCommand property of
 OleDbAdapter VALUES
selecting data from a table WHERE
selection criteria WriteXml method of DataSet
SET

946 Database, SQL and ADO .NET Chapter 19

d) Providing a foreign-key value that does not appear as a primary-key value in another ta-
ble breaks the Rule of Referential Integrity.

e) The VALUES keyword in an INSERT statement inserts multiple records in a table.
f) SELECT statements can merge data from multiple tables.
g) The DELETE statment deletes only one record in a table.
h) An OleDbDataAdapter can Fill a DataSet.
i) Class DataSet of namespace System.Data provides methods that enable developers

to create XML documents from datasources.
j) SQLServer is an example of a managed provider.
k) Because C# uses a disconnected model, OleDbConnections are optional.
l) It is always faster to assign a value to a variable than to instantiate a new object.

ANSWERS TO SELF-REVIEW EXERCISES
19.1 a) SQL. b) rows, columns. c) DataSet. d) DataGrid. e) WHERE. f) ORDERBY. g) joining.
h) database. i) foreign key. j) System.Data.SqlClient. k) XML. l) System.Data.OleDb.

19.2 a) True. b) False. In a query, failure to provide fully qualified names for fields with the same
name in two or more tables is an error. c) False. INSERT and DELETE change the database, as well.
Do not confuse the SQL Update statement with method OleDbDataAdapter.Update. d)
True. e) False. An INSERT statement inserts one record in the table. The VALUES keyword specifies
the comma-separated list of values from which the record is formed. f) True. g) False. The DELETE
statement deletes all records matching its WHERE clause. h) True. i) True. j) True. k) False. This
class is required to connect to a database. l) True.

EXERCISES
19.3 Using the techniques shown in this chapter, define a complete query application for the Au-
thors.mdb database. Provide a series of predefined queries with an appropriate name for each que-
ry displayed in a System.Windows.Forms.ComboBox. Also, allow users to supply their own
queries and add them to the ComboBox. Provide any queries you feel are appropriate.

19.4 Using the techniques shown in this chapter, define a complete query application for the
Books.mdb database. Provide a series of predefined queries with an appropriate name for each que-
ry displayed in a System.Windows.Forms.ComboBox. Also, allow users to supply their own
queries and add them to the ComboBox. Provide the following predefined queries:

a) Select all authors from the Authors table.
b) Select all publishers from the Publishers table.
c) Select a specific author and list all books for that author. Include the title, year and ISBN

number. Order the information alphabetically by title.
d) Select a specific publisher and list all books published by that publisher. Include the title,

year and ISBN number. Order the information alphabetically by title.
e) Provide any other queries you feel are appropriate.

19.5 Modify Exercise 19.4 to define a complete database-manipulation application for the
Books.mdb database. In addition to the querying capabilities, application should allow users to edit
existing data and add new data to the database. Allow the user to edit the database in the following ways:

a) Add a new author.
b) Edit the existing information for an author.
c) Add a new title for an author (remember that the book must have an entry in the Autho-

rISBN table). Be sure to specify the publisher of the title.
d) Add a new publisher.
e) Edit the existing information for a publisher.

Chapter 19 Database, SQL and ADO .NET 947

For each of the preceding database manipulations, design an appropriate GUI to allow the user to
perform the data manipulation.

19.6 Modify the address-book example of Fig. 19.29 to enable each address-book entry to contain
multiple addresses, phone numbers and e-mail addresses. The user should be able to view multiple
addresses, phone numbers and e-mail addresses. [Note: This is a large exercise that requires substan-
tial modifications to the original classes in the address-book example.]

19.7 Create an application that allows the user to modify all fields of a database using a transaction
process model. The user should be able to find, modify and create entries. The GUI should include
buttons Accept Changes and Reject Changes. Modifications to the datasource should be made
when the user clicks Accept Changes, by the invoking of method Update of the OleDbData-
Adapter object. The DataSet’s AcceptChanges method should be invoked after changes are
made to the datasource.

19.8 Write a program that allows the user to modify a database graphically through an XML text
editor. The GUI should be able to display the contents of the database and commit any changes in the
XML text to the database.

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

20
Web Forms and

ASP.NET

Objectives
• To become familiar with ASP.NET Web Forms.
• To be able to create ASP.NET Web Forms.
• To be able to create a series of Web Forms that work

together.
• To be able to use file processing and database

techniques with Web Forms.
Things are always at their best in their beginning.
Blaise Pascal

High thoughts must have high language.
Aristophanes

Our life is frittered away by detail … Simplify, simplify.
Henry Thoreau

968 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

20.1 Introduction
This chapter introduces ASP.NET and discusses its place in C#. ASP.NET is a technology
that allows for a simpler and quicker way to create Web applications. This chapter discuss-
es some of the concepts and techniques behind the design and implementation of ASP.NET
in the context of Web Forms.

We discuss how these Web Forms also called ASP.NET pages are processed in
response to a client (e.g., browser) request. These pages are processed by an ActiveX com-
ponent (i.e., a server-side ActiveX control) called a scripting engine. An ASPX file has the
file extension .aspx and contains HTML tags and scripting code.

We present ASP.NET’s object model and discuss the structure behind ASP.NET
pages. We introduce the various Web controls that are at your disposal for creating func-
tional and practical Web projects.

We present two case studies which combine building ASP.NET pages with other con-
cepts such as file processing and database manipulation. The Instant Page Content Builder
Case Study in Section 20.6.2 presents a moderately complicated application consisting of
four ASP.NET pages and taking advantage of the database concepts from Chapter 19.

20.2 How ASP.NET Pages Work
The ASP.NET in this chapter demonstrates communication between clients and servers via
the HTTP protocol of the World Wide Web. When a server receives a client’s HTTP re-
quest, the server loads the document (or page) requested by the client. HTML documents
are static documents—all clients see the same content when requesting an HTML docu-
ment. ASP.NET is a Microsoft technology for sending to the client dynamic Web content—
this includes HTML, Dynamic HTML, ActiveX controls and client-side scripts. The
ASP.NET page processes the request (which often includes interacting with a database),
and returns the results to the client—normally in the form of an HTML document, but other
data formats (e.g., images, binary data, etc.) can be returned.

Outline

20.1 Introduction
20.2 How ASP.NET Pages Work
20.3 A Simple HTTP Transaction
20.4 ASP.NET Object Model and WebForms
20.5 Web Controls Part 1: Text and Graphics Controls
20.6 Web Controls Part 2: Web Design Controls and Validation Controls

20.6.1 Case Study: An Online Guestbook
20.6.2 Case Study: An Instant Page Content Builder

20.7 Other Topics in ASP.NET: Tracing and Cookieless Session State

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 20 Web Forms and ASP.NET 969

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

The two most common HTTP request types (also known as request methods) are GET
and POST. These requests are frequently used to send client form data to a Web server.
Although GET and POST both send information to the server, the method of sending the
information is different. A GET request sends content as part of the URL (e.g.,
www.searchsomething.com/search?query=userquery). A POST request
posts form contents to the end of an HTTP request. An HTTP request contains information
about the server, client, connection, authorization, etc.

Software Engineering Observation 20.1
The data sent in a POST request is not part of the URL and cannot be seen by the user. Forms
that contain many fields are most often submitted by a POST request. sensitive form fields
such as passwords are usually sent using this request type. 20.1

An HTTP request is often used to post data to a server-side form handler that processes
the data. For example, when the user responds to a Web-based survey, a request sends the
Web server the information specified in the HTML form.

Browsers often cache (save on disk) Web pages for quick reloading. This speeds up
the user’s browsing experience by reducing the amount of data downloaded to view a Web
page. Browsers typically do not cache a server’s response to a POST request because the
next POST request may not contain the same information. For example several users might
request the same Web page to participate in a survey. Each user’s response changes the
overall results of the survey.

When a Web-based search engine is used, a GET request normally supplies the search
engine with the information specified in the HTML form. The search engine then performs
the search and returns the results as a Web page. These pages are often cached in the event
that the user performs the same search again.

Portability Tip 20.1
Because browsers are capable of rendering HTML, an ASP.NET page that generates pure
HTML can be rendered on any client browser—regardless of the fact that the page requested
ends in .aspx. 20.1

Software Engineering Observation 20.2
To take advantage of ASP.NET technology, a Web server must have the .NET framework in-
stalled. 20.2

ASP.NET is a derivation from the Active Server Page (ASP) technology with some
significant changes and additions. ASP.NET is part of the .NET Framework and enjoys
many of the benefits it provides such as garbage collection, integration of components
written in different languages and exception handling. Whereas an Active Server Page con-
sists simply of a text-file with HTML and scripts an ASP.NET page of two parts: an
ASP.NET page and its code-behind file. The code-behind file contains the code necessary
for the page. The code-behind file is compiled. When the page is loaded, the code in the
code-behind file is executed—we will discuss this in more detail in Section 20.4.

Both Web Applications and Web Services (Chapter 21) contain a file with a
.vsdisco extension generated by Visual Studio. This is the discovery file for the project
that stores information about the locations of various resources required for the project.
Despite it’s possibly misleading .vsdisco extension it is an XML file and allows devel-
opers to programmatically discover the Web Service.

970 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

20.3 A Simple HTTP Transaction
Before exploring how ASP.NET operates, it is necessary to have a basic understanding of
networking and how the World Wide Web works. In this section, we will examine the inner
workings of the HyperText Transfer Protocol (HTTP) and discuss what goes on behind the
scenes when a browser displays a Web page. HTTP describes a set of methods and headers
that allows clients and servers to interact and exchange information in a uniform and pre-
dictable way.

A Web page in its simplest form is nothing more than an HTML (HyperText Markup
Language) document. This document is just a plain text file containing markings (markup
or tags) that describe to a Web browser how to display and format the information in the
document. For example, the HTML

<title>My Web Page</title>

indicates to the browser that the text between the opening <title> tag and the closing </
title> tag is the title of the Web page. HTML documents can also contain hypertext in-
formation (usually called hyperlinks) that create links to different pages or to other portions
of the same page. When the user activates a hyperlink (usually by clicking on it with a
mouse), a new Web page (or a different part of the same Web page) is loaded for the user
to view. Note that in HTML, tags are not case sensitive, so <TITLE> works the same as
<title>.

Any HTML file available for viewing over the Web has a URL (Universal Resource
Locator) associated with it—an address of sorts. The URL contains information that directs
a browser to the resource (most often a Web page) that the user wishes to access. For
example, let us break down the URL

http://www.deitel.com/books/downloads.htm

into its basic components. The http:// indicates that the resource is to be obtained using
the Hypertext Transfer Protocol.

The middle portion, www.deitel.com, is the hostname of the server. The hostname
is the name of the computer where the resource resides, and likewise, this computer is usu-
ally referred to as the host, because it houses and maintains the resource. The hostname
www.deitel.com is translated into an IP address (207.60.134.230) that identifies
the server (just as a telephone number uniquely defines a particular phone line). The trans-
lation of the hostname into an IP address is normally performed by a domain name server
(DNS), a computer that maintains a database of hostnames and their corresponding IP
addresses. Many people refer to this translation operation as a DNS lookup.

The name of the resource being requested, /books/downloads.htm (an HTML
document), is the remainder of the URL. This portion of the URL specifies both the name
of the resource (downloads.htm) and its path (/books). The path could represent an
actual directory in the Web server’s file system. However, for security reasons, the path
often is a virtual directory. In this case, the server translates the path into a real location on
the server (or even on another computer), thus hiding the true location of the resource. In
fact, it is even possible that the resource is created dynamically and does not reside any-
where on the server computer. Thus, the URL uses the hostname to locate the correct
server, and the server uses the path and resource information to locate (or create) the

Chapter 20 Web Forms and ASP.NET 971

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

resource to respond to the client’s request. As we will see, URLs can also be used to provide
input to a program on the server.

Now we consider how a browser, when given a URL, performs a simple HTTP trans-
action to fetch and display a Web page. Figure 20.1 illustrates the transaction in detail. The
transaction is performed between a Web browser application on the client side and a Web
server application on the server side.

In step 1 of Fig. 20.1, the browser sends an HTTP request message to the server. The
request (in its simplest form) looks something like the following:

GET /books/downloads.htm HTTP/1.0

The word GET is an HTTP method (a term for functions in HTTP) indicating that the client
wishes to get a resource. The remainder of the request provides the name and path of the
resource (an HTML document) and the protocol’s name and version number (HTTP/1.0).

Any server that understands HTTP (version 1.0) will be able to translate this request
and respond appropriately. Part 2 of Fig. 20.1 shows the results of a successful request. The
server first responds with a line indicating the HTTP version, followed by a numeric code
and a phrase describing the status of the transaction. For example,

HTTP/1.0 200 OK

indicates success, while

HTTP/1.0 404 Not found

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Client interacting with server and Web server. Step 1: The GET request,
GET /books/downloads.htm HTTP/1.0 (part 1 of 2).

Internet

Web Server

Client

The GET request is
sent from the
client to the Web
Server.

1

After it receives
the request, the
Web Server
searches through
its system for the
resource.

2

972 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

informs the client that the requested resource was not found on the server in the specified
location.

The server normally then sends one or more HTTP headers, which provide additional
information about the data being sent. In this case, the server is sending an HTML text doc-
ument, so the HTTP header reads

Content-type: text/html

This information is known as the MIME type of the content. Each type of data sent from the
server has a MIME type that helps the browser determine how to process the data it re-
ceives. For example, the MIME type text/txt indicates that the data are text that should
be displayed without attempting to interpret any of the content as HTML markup. Similar-
ly, the MIME type image/gif indicates that the content is a GIF image. When this
MIME type is received by the browser, it attempts to display the image.

The header or set of headers is followed by a blank line, which indicates to the client
that the server is finished sending HTTP headers. The server then sends the text in the
requested HTML document (downloads.htm). The connection is terminated when the
transfer of the resource is complete. The client-side browser interprets the HTML it
receives and displays (or renders) the results.

Common Programming Error 20.1
Forgetting to place a blank line after a header is a logic error. 20.1

20.4 ASP.NET Object Model and WebForms
To run and create ASP.NET a Web server needs to be installed. We use the IIS Web Server
in all our examples, since IIS is already required for Visual Studio.NET to be installed. If
you have problems installing IIS go the Downloads/Resources link on the Deitel Web
site at www.deitel.com.

To create an ASP.NET Web Form project create a project of type ASP.NET Web
Application. By default this creates a project in the C:\inetpub\wwwroot root direc-
tory of IIS. The solution file for the project (the .sln file) is placed in a folder with the
project name in the default directory for all Visual Studio.NET projects—in the Visual

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Client interacting with server and Web server. Step 2: The HTTP response,
HTTP/1.0 200 OK (part 2 of 2).

Internet

Web Server

Client

The server
responds to the
request with an
appropriate
message, along
with the resource
contents.

Chapter 20 Web Forms and ASP.NET 973

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Studio Projects folder in your My Documents folder. Opening this file will open up
your ASP.NET project.

A Web Form is a Web version of Windows Form. It will always have the extension
.aspx and is there to contain all the visual components of your page. To design the Web
Form right click on it in the Solution Explorer and select View Designer.

Designing a Web Form is as simple as designing a Windows Form. To add controls
such as buttons or textboxes to the page they can be dragged from the Toolbox to the Web
Form. All controls are objects, including the page itself. This means they may have prop-
erties, methods and events. The properties and events can be changed and set just like
before in the Properties window. These controls, however, are contained in the
System.Web.UI.WebControls namespace, not in the System.Windows.Forms
namespace. Even though some classes such as the TextBox class belong in both
namespaces, they are in fact two completely different classes. One is designed to be used
on Windows Forms, the other on ASP.NET pages.

Common Programming Error 20.2
It is easy to confuse the classes from System.Windows.Forms and Sys-
tem.Web.UI.WebControls and expect them to be identical. They do share some simi-
lar properties and methods, but not others. 20.2

By default the pageLayout property of the page will be in GridLayout mode by
default, meaning all controls will be placed on a grid and assigned x and y coordinates—
their placement does not depend on one another. This can be changed by changing the
pageLayout property of Document to FlowLayout—all controls are sequentially
lined up as soon as they are placed. Document is the name Visual Studio.NET gives the
page you are currently working on. We use GridLayout mode for our examples.

Every ASP.NET page created in Visual Studio will have a corresponding C# class
which can contain event handlers, initialization code and anything else that the page may
need. The file in which this class is contained is called the code-behind file. To view the
contents of this C# class right click on the ASPX file in the Solution Explorer and choose
View Code.

Every ASP.NET page is actually an object of type Page in namespace
System.Web.UI. Among others, Page has three properties: Request of type
HttpRequest, Response of type HttpResponse and Session of type
HttpSessionState.

Request provides information about the incoming HTTP request such as the values
of the variables in our form. So if this page is being loaded in response to a user clicking a
button after filling out some fields (textboxes, choosing from a drop–down list, etc.) on a
page, the Request object allows us to retrieve those values. Response sends informa-
tion back to the clients browser. For example, it can be used to send HTML code or redirect
the user to a different page. Session provides information about the current session. It
stores session variables—variables that can be accessed by any page during the same ses-
sion. We will use these classes extensively in the case study of Section 20.6.2.

974 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Now let us look at Fig. 20.2 for a simple Web Form example which updates the time
every minute.

1 <%-- Fig. 20.2 ---%>
2 <%-- A page that updates the time every minute ---%>
3
4 <%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
5 AutoEventWireup="false" Inherits="WebTime.WebForm1" %>
6 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
7 <HTML>
8 <HEAD>
9 <meta name="GENERATOR"

10 Content="Microsoft Visual Studio 7.0">
11 <meta name="CODE_LANGUAGE" Content="C#">
12 <meta name="vs_defaultClientScript"
13 content="JavaScript (ECMAScript)">
14 <meta name="vs_targetSchema"
15 content="http://schemas.microsoft.com/intellisense/ie5">
16 <meta http-equiv="REFRESH" Content="60;
17 URL=WebForm1.aspx">
18 </HEAD>
19 <body MS_POSITIONING="GridLayout">
20 <form id="Form1" method="post" runat="server">
21 <asp:Label id="Label1" style="Z-INDEX: 101;
22 LEFT: 23px; POSITION: absolute; TOP: 66px"
23 runat="server" Width="229px" Height="55px"
24 ForeColor="#00C000" BackColor="Black"
25 Font-Size="XX-Large">Label
26 </asp:Label>
27 <asp:Label id="Label2" style="Z-INDEX: 102;
28 LEFT: 28px; POSITION: absolute; TOP: 31px"
29 runat="server" Width="221px" Height="19px"
30 Font-Size="Medium">A Simple ASP.NET Example
31 </asp:Label>
32 </form>
33 </body>
34 </HTML>

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 The ASPX code for a page that updates the time every minute.

Chapter 20 Web Forms and ASP.NET 975

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Almost all of the code you see here is generated for you by Visual Studio when you
drag two Labels onto the form and set their properties. The screen capture in Fig. 20.2
shows what the page looks like at design time. The code in Fig. 20.2 and other ASPX list-
ings in this chapter have been reformatted for display purposes. Let us take a look at the
generated code in detail.

Lines 4–5 use processing directives to specify some of the attributes of the page. The
language of the page is declared to be C#, the code-behind file is WebForm1.aspx.cs.
The “<%” and “%>” tags indicate that whatever is in between these constitutes a client-side
script. A script is a set of instructions for another program, not a CPU, to execute. A client-
side script is a script that executes on the clients computer. The output is displayed on their
Web browser.

The AutoEventWireup attribute is set to false; when it is set to true any event
handler that one writes in a script will be attached to the page provided it has the proper
naming convention. For example, the Init event occurs during the initialization stage of
the page, the name convention would be to name the event handler for it Page_Init. The
Inherits attribute specifies what class this ASP.NET class inherits from—in this case
its WebForm1. WebForm1 does not inherit from it in the way we have talked about so far
because the ASP.NET page is HTML code and not a C# class.

Common Programming Error 20.3
It is common for programmers to rename their Web Forms. Doing this in Visual Studio
means that the programmer must manually change the value of the Inherits attribute. A
way to avoid this problem is to delete the other Web Form and create a new once with the
desired name. 20.3

The only code we manually placed consists of lines 16–17, which tell the page to
refresh every 60 seconds by going to WebForm1.aspx—itself.

Lines 20–32 define the Form which will contain all our controls—two Labels. Lines
21–26 and 27–31 show how the two Labels are created via HTML. All the properties that
we set in the Properties window such as Font and Text are shown as attributes here.

Below, in Fig. 20.3 we see the corresponding code-behind file,
WebForm1.aspx.cs. Note that the project must be compiled before the page can be dis-
played.

1 // Fig. 20.3
2 // The code-behind file for a page that updates the current
3 // time every minute
4
5 using System;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Data;
9 using System.Drawing;

10 using System.Web;
11 using System.Web.SessionState;
12 using System.Web.UI;
13 using System.Web.UI.WebControls;

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Code-behind file for a page that updates the time every minute (part 1 of
3).

976 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

14 using System.Web.UI.HtmlControls;
15
16 namespace WebTime
17 {
18 /// <summary>
19 /// Summary description for WebForm1.
20 /// </summary>
21 public class WebForm1 : System.Web.UI.Page
22 {
23 protected System.Web.UI.WebControls.Label Label1;
24 protected System.Web.UI.WebControls.Label Label2;
25
26 public WebForm1()
27 {
28 Page.Init += new System.EventHandler(Page_Init);
29 }
30
31 private void Page_Load(object sender, System.EventArgs e)
32 {
33 // Put user code to initialize the page here
34 }
35
36 private void Page_Init(object sender, EventArgs e)
37 {
38 //
39 // CODEGEN: This call is required by the ASP.NET Web Form
40 // Designer.
41 //
42 InitializeComponent();
43
44 Label1.Text =
45 string.Format("{0:D2}", DateTime.Now.Hour) + ":" +
46 string.Format("{0:D2}", DateTime.Now.Minute) +
47 ":" + string.Format("{0:D2}", DateTime.Now.Second);
48 }
49
50 #region Web Form Designer generated code
51 /// <summary>
52 /// Required method for Designer support - do not modify
53 /// the contents of this method with the code editor.
54 /// </summary>
55 private void InitializeComponent()
56 {
57 this.Load += new System.EventHandler(this.Page_Load);
58 }
59 #endregion
60 }
61 }

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Code-behind file for a page that updates the time every minute (part 2 of
3).

Chapter 20 Web Forms and ASP.NET 977

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

For the purposes of this first example we have left all the Visual Studio generated code
in place. As you see when the object for the page is created an event handler is created and
attached for the Init event. This event happens during the initialization of the page and is
then fired. This event first calls InitializeComponent—much like with Windows
Forms this method is required for designer support. InitializeComponent is used to
create event handlers for controls on the page and for initialization purposes such as cre-
ating a database connection. InitializeComponent creates and attaches an event
handler for the Load event. This event fires when the page is loaded. After Initial-
izeComponent lines 44–47 execute, setting Label1 to contain the current time. The
Init event always fires before the Load event.

After you create your Web Form you may view and test it in three different ways. You
may select Start from the Debug menu which will run the application by opening up a
new browser. Closing this browser will terminate the application.

You may also right-click either on the ASPX file from the Solution Explorer or the
Web Form designer and select View In Browser. This will open up a browser within
Visual Studio and will allow you to preview the page—this is usually faster then running
the project.

A third way is to open up a browser yourself and type in the Web address of your
project. When testing a project on the same computer you should type "http://local-
host/ProjectFolder/PageName.aspx" where ProjectFolder is the folder

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Code-behind file for a page that updates the time every minute (part 3 of
3).

978 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

where your page resides (usually the name of your project) within C:/inetpub/
wwwroot and PageName is the name of your ASP.NET page.

20.5 Web Controls Part 1: Text and Graphics Controls
This section discusses some of the features that are at your disposal when designing Web
Forms. The Web Form tab of the Toolbox has numerous controls that are helpful when
designing them.

Web pages often contain ads by corporate sponsors advertising their service or prod-
ucts. They may only have one or two spots on their page for ads, and want to be able to
cycle through all the different ones they have easily. The AdRotator class is designed for
such a purpose. Using the information in an XML file, the AdRotator control can ran-
domly choose an image to display, set it to link to the appropriate page and show the appro-
priate caption. If the browser does not support images it will show the alternate text as
directed by the XML file. Figure 20.4 demonstrates how to use the AdRotator class.

1 <%-- Fig. 20.4 ---%>
2 <%-- A Web Form that demonstrates class AdRotator ---%>
3
4 <%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
5 AutoEventWireup="false"
6 Inherits="AdRotatorTest.WebForm1" %>
7 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
8 <HTML>
9 <HEAD>

10 <meta name="GENERATOR"
11 Content="Microsoft Visual Studio 7.0">
12 <meta name="CODE_LANGUAGE" Content="C#">
13 <meta name="vs_defaultClientScript"
14 content="JavaScript (ECMAScript)">
15 <meta name="vs_targetSchema"
16 content="http://schemas.microsoft.com/intellisense/ie5">
17 </HEAD>
18 <body MS_POSITIONING="GridLayout">
19 <form id="Form1" method="post" runat="server">
20 <asp:AdRotator id="AdRotator1" style="Z-INDEX: 101;
21 LEFT: 43px; POSITION: absolute; TOP: 73px"
22 runat="server" Width="108px" Height="72px"
23 AdvertisementFile="AdRotatorInformation.xml">
24 </asp:AdRotator>
25 <asp:Label id="Label1" style="Z-INDEX: 102;
26 LEFT: 42px; POSITION: absolute; TOP: 39px"
27 runat="server"
28 Font-Size="Medium">AdRotator Example
29 </asp:Label>
30 </form>
31 </body>
32 </HTML>

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 A Web Form that demonstrates the AdRotator class .

Chapter 20 Web Forms and ASP.NET 979

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

The above ASP.NET page is similar to the previous example. Instead of having two
Labels, this page has a Label and an AdRotator called AdRotator1.
AdRotator1’s AdvertisementFile property has been set to AdRota-
torInfo.xml (line 23). Notice that we set this property—as we do in many cases—in
the Properties window in Visual Studio, but this gets reflected in the generated code. This
is the file AdRotator1 will look in to get all the information it needs about which ad it
will show next. As you can see in Fig. 20.5, no additional code needed to be placed in the
code-behind file (Fig. 20.5).

1 // Fig. 20.5
2 // The code-behind file for a page that demonstrates
3 // the AdRotator class.
4
5 using System;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Data;
9 using System.Drawing;

10 using System.Web;
11 using System.Web.SessionState;
12 using System.Web.UI;
13 using System.Web.UI.WebControls;
14 using System.Web.UI.HtmlControls;
15
16 namespace AdRotatorTest
17 {
18 public class WebForm1 : System.Web.UI.Page
19 {
20 protected System.Web.UI.WebControls.AdRotator AdRotator1;
21 protected System.Web.UI.WebControls.Label Label1;
22
23 public WebForm1()
24 {
25 Page.Init += new System.EventHandler(Page_Init);
26 }
27
28 private void Page_Load(object sender,
29 System.EventArgs e)
30 {
31 }
32
33 private void Page_Init(object sender, EventArgs e)
34 {
35 InitializeComponent();
36 }
37
38 // Visual Studio generated code
39 }
40 }

Fig. 20.5Fig. 20.5Fig. 20.5Fig. 20.5 Code-behind file for page demonstrating the AdRotator class (part 1 of
2).

980 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

AdRotatorInformation.xml (Fig. 20.6) contains several Ad nodes, each of
which contain a complete set of information about each ad. The ImageUrl tag specifies
the location of the image that will be displayed when this ad is chosen. The NavigateUrl
tag specifies the URL of the site users will be sent to when they on the ad. The Alter-
nateText tag declares the text that should be displayed in case the browser in case it does
not support images. It is also the caption that will show in Internet Explorer when the mouse
is over the image as can be see in the screen shots in Fig. 20.5. The Impressions tag
specifies the frequency with which this image should be displayed. An ad having a higher
Impressions value will be displayed more often then one with a lower value. In our
example all the ads will be displayed with equal frequency because Impressions is
always 1.

1 <%-- Fig. 20.6 --%>
2 <%-- XML file containing ad information --%>
3
4 <?xml version="1.0" encoding="utf-8"?>

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 XML file containing AdRotator information.

Fig. 20.5Fig. 20.5Fig. 20.5Fig. 20.5 Code-behind file for page demonstrating the AdRotator class (part 2 of
2).

Chapter 20 Web Forms and ASP.NET 981

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

20.6 Web Controls Part 2: Web Design Controls and Validation
Controls
Web controls placed on a page are there to provide some sort of functionality—allowing
input, verifying input, allowing users to interact with the page. Some controls provided with
ASP.NET are: TextBox, HyperLink, Button, LinkButton, CheckBox, Check-
BoxList, RadioButtonList, Table, RequiredFieldValidator, Compare-

5 <Advertisements>
6 <Ad>
7 <ImageUrl>images/us.gif</ImageUrl>
8 <NavigateUrl>
9 http://www.odci.gov/cia/publications/factbook/geos/us.html

10 </NavigateUrl>
11 <AlternateText>United States Information</AlternateText>
12 <Impressions>1</Impressions>
13 </Ad>
14 <Ad>
15 <ImageUrl>images/france.gif</ImageUrl>
16 <NavigateUrl>
17 http://www.odci.gov/cia/publications/factbook/geos/fr.html
18 </NavigateUrl>
19 <AlternateText>France Information</AlternateText>
20 <Impressions>1</Impressions>
21 </Ad>
22 <Ad>
23 <ImageUrl>images/germany.gif</ImageUrl>
24 <NavigateUrl>
25 http://www.odci.gov/cia/publications/factbook/geos/gm.html
26 </NavigateUrl>
27 <AlternateText>Germany Information</AlternateText>
28 <Impressions>1</Impressions>
29 </Ad>
30 <Ad>
31 <ImageUrl>images/italy.gif</ImageUrl>
32 <NavigateUrl>
33 http://www.odci.gov/cia/publications/factbook/geos/it.html
34 </NavigateUrl>
35 <AlternateText>Italy Information</AlternateText>
36 <Impressions>1</Impressions>
37 </Ad>
38 <Ad>
39 <ImageUrl>images/spain.gif</ImageUrl>
40 <NavigateUrl>
41 http://www.odci.gov/cia/publications/factbook/geos/sp.html
42 </NavigateUrl>
43 <AlternateText>Spain Information</AlternateText>
44 <Impressions>1</Impressions>
45 </Ad>
46 </Advertisements>

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 XML file containing AdRotator information.

982 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Validator, RangeValidator, RegularExpressionValidator and
CustomValidator.

The example in Fig. 20.7 is an example of using a RegularExpressionVali-
dator and a RequiredFieldValidator. A validator is a control which checks that
the data in another control is valid and consistent. This is useful when validating informa-
tion—for example we may need to check that the user filled out every field, or that the zip
code field contains 5 digits.

This page accepts a phone number in the form xxx–xxxx (where each x represents a
digit) as input, and gives all the possible words that can be made with the first three letters,
and all the possible words that can be made with the last four.

1 <%-- Fig. 20.7 --%>
2 <%-- A Web Form demonstrating the use of validators --%>
3
4 <%@ Page language="c#" Codebehind="Generator.aspx.cs"
5 AutoEventWireup="false"
6 Inherits="WordGenerator.Generator" %>
7 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
8 <HTML>
9 <HEAD>

10 <meta content="Microsoft Visual Studio 7.0"
11 name="GENERATOR">
12 <meta content="C#" name="CODE_LANGUAGE">
13 <meta content="JavaScript (ECMAScript)"
14 name="vs_defaultClientScript">
15 <meta
16 content="http://schemas.microsoft.com/intellisense/ie5"
17 name="vs_targetSchema">
18 </HEAD>
19 <body MS_POSITIONING="GridLayout">
20 <form id="Generator" method="post" runat="server">
21 <asp:RegularExpressionValidator
22 id="RegularExpressionValidator1"
23 style="Z-INDEX: 101; LEFT: 9px;
24 POSITION: absolute; TOP: 5px" runat="server"
25 ErrorMessage=
26 "Please enter a phone number in the form xxx-xxxx"
27 ValidationExpression="\d{3}-\d{4}"
28 ControlToValidate="phoneTextBox">
29 </asp:RegularExpressionValidator>
30 <asp:TextBox id="phoneTextBox" style="Z-INDEX: 102;
31 LEFT: 12px; POSITION: absolute; TOP: 36px"
32 runat="server" Width="106px" Height="24px">
33 </asp:TextBox>
34 <asp:Button id="Button1" style="Z-INDEX: 103;
35 LEFT: 14px; POSITION: absolute; TOP: 77px"
36 runat="server" Text="Submit">
37 </asp:Button>
38 <asp:RequiredFieldValidator
39 id="RequiredFieldValidator1" style="Z-INDEX: 104;

Fig. 20.7Fig. 20.7Fig. 20.7Fig. 20.7 A Web Form that generates all possible words from a provided phone
number (part 1 of 2).

Chapter 20 Web Forms and ASP.NET 983

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Lines 21–29 create a RegularExpressionValidator named
RegularExpressionValidator1. Line 26 shows that value of the ErrorMes-
sage property. This is the message the user will see if the information entered is not vali-
dated by RegularExpressionValidator1. Line 27 set the regular expression the
validator will be using to check its input by setting the ValidationExpression prop-
erty. When clicking on the ValidationExpression property of
RegularExpressionValidator1 a box pops up containing several common regular
expressions such as phone numbers and zip codes. We do not want the user to be able to
enter an area code, so we type in a custom regular expression as above. Line 28, is the key
line which connects our TextBox phoneTextBox to
RegularExpressionValidator1 by setting the ControlToValidate property
of RegularExpressionValidator1. Now RegularExpressionValidator1
knows that it will be getting its input from phoneTextBox and will validate its text. If
the user types nothing and simply clicks the Button however, RegularExpression-
Validator will not catch the problem; to fix this problem we create a second validation
control.

Lines 38–44 define a RequiredFieldValidator called
RequiredFieldValidator1. RequiredFiledValidators have similar proper-
ties as RegularExpressionValidators. They however merely ensure that the user
filled out the control represented by the ControlToValidate property of the
RequiredFieldValidator. This second validator ensures that the user types at least
something in the TextBox—if the input is not in a valid format
RegularExpressionValidator1 will catch the mistake. The code-behind file for
the word generator is shown in Fig. 20.8.

40 LEFT: 132px; POSITION: absolute; TOP: 39px"
41 runat="server"
42 ErrorMessage="Please enter a phone number"
43 ControlToValidate="phoneTextBox">
44 </asp:RequiredFieldValidator>
45 </form>
46 </body>
47 </HTML>

1 // Fig. 20.8
2 // The code-behind file for a page that generates words
3 // given a phone number.
4
5 using System;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Data;
9 using System.Drawing;

10 using System.Web;
11 using System.Web.SessionState;

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Code-behind file for Word Generator page (part 1 of 5).

Fig. 20.7Fig. 20.7Fig. 20.7Fig. 20.7 A Web Form that generates all possible words from a provided phone
number (part 2 of 2).

984 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

12 using System.Web.UI;
13 using System.Web.UI.WebControls;
14 using System.Web.UI.HtmlControls;
15
16 namespace WordGenerator
17 {
18 public class Generator : System.Web.UI.Page
19 {
20 protected
21 System.Web.UI.WebControls.RegularExpressionValidator
22 RegularExpressionValidator1;
23 protected System.Web.UI.WebControls.TextBox
24 phoneTextBox;
25 protected
26 System.Web.UI.WebControls.RequiredFieldValidator
27 RequiredFieldValidator1;
28 protected System.Web.UI.WebControls.Button Button1;
29
30 public Generator()
31 {
32 Page.Init += new System.EventHandler(Page_Init);
33 }
34
35 private void Page_Load(object sender, System.EventArgs e)
36 {
37 // if this is not the first time the page is loaded
38 if (IsPostBack)
39 {
40 // retrieve the number and remove the "-"
41 string number = Request.Form["phoneTextBox"];
42 number = number.Remove(3, 1);
43
44 // calculate all the words for the first 3 numbers
45 Response.Write("

Here " +
46 "are the words for the first three digits:" +
47 "
");
48 ComputeWords(number.Substring(0, 3), "");
49
50 // calculate all the words for the last 4 numbers
51 Response.Write("
Here are the words for the"
52 + " last four digits:
");
53 ComputeWords(number.Substring(3), "");
54 }
55 }
56
57 private void Page_Init(object sender, EventArgs e)
58 {
59 InitializeComponent();
60 }
61
62 // Visual Studio generated code
63
64 public void ComputeWords(string number, string sofar)
65 {

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Code-behind file for Word Generator page (part 2 of 5).

Chapter 20 Web Forms and ASP.NET 985

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

66 // if number is empty, time to print the word
67 if (number == "")
68 {
69 Response.Write(sofar.ToString() + "
");
70 return;
71 }
72
73 // retrieve the first number from the string
74 int cur = Int32.Parse(number.Substring(0, 1));
75
76 // delete the first number from the string
77 number = number.Remove(0, 1);
78
79 // depending on the number, call ComputeWords
80 // recursively with the 3 (in the case of the number
81 // 0 it is 2) possibilities of letters.
82 switch (cur)
83 {
84 case 0: ComputeWords(number, sofar + "q");
85 ComputeWords(number, sofar + "z");
86 break;
87 case 1: ComputeWords(number, sofar + " ");
88 break;
89 case 2: ComputeWords(number, sofar + "a");
90 ComputeWords(number, sofar + "b");
91 ComputeWords(number, sofar + "c");
92 break;
93 case 3: ComputeWords(number, sofar + "d");
94 ComputeWords(number, sofar + "e");
95 ComputeWords(number, sofar + "f");
96 break;
97 case 4: ComputeWords(number, sofar + "g");
98 ComputeWords(number, sofar + "h");
99 ComputeWords(number, sofar + "i");
100 break;
101 case 5: ComputeWords(number, sofar + "j");
102 ComputeWords(number, sofar + "k");
103 ComputeWords(number, sofar + "l");
104 break;
105 case 6: ComputeWords(number, sofar + "m");
106 ComputeWords(number, sofar + "n");
107 ComputeWords(number, sofar + "o");
108 break;
109 case 7: ComputeWords(number, sofar + "p");
110 ComputeWords(number, sofar + "r");
111 ComputeWords(number, sofar + "s");
112 break;
113 case 8: ComputeWords(number, sofar + "t");
114 ComputeWords(number, sofar + "u");
115 ComputeWords(number, sofar + "v");
116 break;
117 case 9: ComputeWords(number, sofar + "w");
118 ComputeWords(number, sofar + "x");
119 ComputeWords(number, sofar + "y");

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Code-behind file for Word Generator page (part 3 of 5).

986 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

120 break;
121 } // end of switch statement
122 } // end of ComputeWords
123 }
124 }

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Code-behind file for Word Generator page (part 4 of 5).

Chapter 20 Web Forms and ASP.NET 987

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

We modified the Page_Load event handler and added some instructions if the page
is being loaded due to a postback. We want to retrieve the text in phoneTextBox, com-
pute all the words for the first three numbers, and compute all the words for the last four.
Method ComputeWords is called with the substring containing the first three numbers
and an empty string. This empty string represent what word we have computed so
far. ComputeWords, defined on lines 64–122, is a recursive method. If number is an
empty string, it is time to print out the word, so the contents of sofar are printed and
the function exits. Otherwise the first character is converted into an int cur and removed
from number. The switch statement determines which letters could possible be
appended to the string sofar based on cur. ComputeWords is then called again two

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Code-behind file for Word Generator page (part 5 of 5).

988 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

or three times depending on how many letters that number can represent. In each case,
ComputeWords is called again with number—now with its front character removed—
and sofar concatenated with one of the letters this number can represent. In this manner
all possible letter combinations of these numbers are printed out.

20.6.1 Case Study: An Online Guestbook

This section presents Web guestbook application which allows users to leave messages and
read those of others. Included with each message is the name of the person who left it and
e-mail link to the e-mail address the user provided. Here we put the concept we have used
throughout the chapter to develop an application of medium difficulty using ASP.NET and
file processing techniques.

Figure 20.9 has the code listing for the ASPX part of an online guestbook.

1 <%-- Fig. 20.9 --%>
2 <%-- A Web Form demonstrating a guestbook. --%>
3
4 <%@ Page language="c#" Codebehind="GuestbookPage.aspx.cs"
5 AutoEventWireup="false"
6 Inherits="Guestbook.GuestbookPage" %>
7 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
8 <HTML>
9 <HEAD>

10 <meta name="GENERATOR"
11 Content="Microsoft Visual Studio 7.0">
12 <meta name="CODE_LANGUAGE" Content="C#">
13 <meta name="vs_defaultClientScript"
14 content="JavaScript (ECMAScript)">
15 <meta name="vs_targetSchema"
16 content="http://schemas.microsoft.com/intellisense/ie5">
17 </HEAD>
18 <body MS_POSITIONING="GridLayout">
19 <form id="Guestbook" method="post" runat="server">
20 <asp:Table id="greetingTable" style="Z-INDEX: 101;
21 LEFT: 30px; POSITION: absolute; TOP: 17px"
22 runat="server">
23 <asp:TableRow>
24 <asp:TableCell ForeColor="Blue"
25 Font-Size="X-Large" Text=
26 "Please leave a message in our guestbook:">
27 </asp:TableCell>
28 </asp:TableRow>
29 </asp:Table>
30 <asp:Table id="messageTable" style="Z-INDEX: 102;
31 LEFT: 32px; POSITION: absolute; TOP: 409px"
32 runat="server">
33 </asp:Table>
34 <asp:Label id="Label1" style="Z-INDEX: 103;
35 LEFT: 37px; POSITION: absolute; TOP: 118px"
36 runat="server" Width="44px"
37 Height="19px">Your Name:

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 ASPX listing for the guestbook page (part 1 of 3).

Chapter 20 Web Forms and ASP.NET 989

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

38 </asp:Label>
39 <asp:TextBox id="nameTextBox" style="Z-INDEX: 104;
40 LEFT: 98px; POSITION: absolute; TOP: 126px"
41 runat="server" Width="447px" Height="24px">
42 </asp:TextBox>
43 <asp:Label id="Label2" style="Z-INDEX: 105;
44 LEFT: 34px; POSITION: absolute; TOP: 172px"
45 runat="server" Width="46px"
46 height="19px">Your email address:
47 </asp:Label>
48 <asp:TextBox id="emailTextBox" style="Z-INDEX: 106;
49 LEFT: 100px; POSITION: absolute; TOP: 186px"
50 runat="server" Width="449px" Height="24px">
51 </asp:TextBox>
52 <asp:TextBox id="messageTextBox" style="Z-INDEX: 107;
53 LEFT: 99px; POSITION: absolute; TOP: 241px"
54 runat="server" Width="449px" Height="113px"
55 TextMode="MultiLine">
56 </asp:TextBox>
57 <asp:Label id="Label3" style="Z-INDEX: 108;
58 LEFT: 38px; POSITION: absolute; TOP: 263px"
59 runat="server" Width="49px"
60 Height="19px">Tell the world:
61 </asp:Label>
62 <asp:Button id="Button1" style="Z-INDEX: 109;
63 LEFT: 196px; POSITION: absolute; TOP: 368px"
64 runat="server" Text="Submit">
65 </asp:Button>
66 <asp:Button id="Button2" style="Z-INDEX: 110;
67 LEFT: 357px; POSITION: absolute; TOP: 368px"
68 runat="server" Text="Clear" Height="24px"
69 Width="61px">
70 </asp:Button>
71 </form>
72 </body>
73 </HTML>

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 ASPX listing for the guestbook page (part 2 of 3).

990 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

The screen capture in Fig. 20.9 shows what generated the ASP.NET code seen. The top
item is in fact a Table called greetingTable. This will display a thank you message
and a horizontal rule after a message has been left. The rest are TextBoxes and Labels.
The two buttons require event handlers which can be created by double clicking on them.
The event handlers will be in the code-behind file, the listing for which is in Fig. 20.10.
Lastly, we have another Table called messageTable to display all guestbook entries.

1 // Fig. 20.10
2 // The code-behind file for the guestbook page.
3
4 using System;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Data;
8 using System.Drawing;
9 using System.Web;

10 using System.Web.SessionState;
11 using System.Web.UI;

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Code-behind file for the guestbook application (part 1 of 7).

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 ASPX listing for the guestbook page (part 3 of 3).

Chapter 20 Web Forms and ASP.NET 991

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

12 using System.Web.UI.WebControls;
13 using System.Web.UI.HtmlControls;
14 using System.IO;
15
16 namespace Guestbook
17 {
18 public class GuestbookPage : System.Web.UI.Page
19 {
20 protected System.Web.UI.WebControls.Table greetingTable;
21 protected System.Web.UI.WebControls.Table messageTable;
22 protected System.Web.UI.WebControls.Label Label1;
23 protected System.Web.UI.WebControls.TextBox nameTextBox;
24 protected System.Web.UI.WebControls.Label Label2;
25 protected System.Web.UI.WebControls.TextBox emailTextBox;
26 protected System.Web.UI.WebControls.TextBox
27 messageTextBox;
28 protected System.Web.UI.WebControls.Button Button1;
29 protected System.Web.UI.WebControls.Button Button2;
30 protected System.Web.UI.WebControls.Label Label3;
31
32 public GuestbookPage()
33 {
34 Page.Init += new System.EventHandler(Page_Init);
35 }
36
37 private void Page_Load(object sender,
38 System.EventArgs e)
39 {
40 }
41
42 private void Page_Init(object sender, EventArgs e)
43 {
44 InitializeComponent();
45 }
46
47 // Visual Studio generated code
48
49 public void clearButton_Click(object sender,
50 System.EventArgs e)
51 {
52 nameTextBox.Text = "";
53 emailTextBox.Text = "";
54 messageTextBox.Text = "";
55 }
56
57 public TableRow MakeHorizontalRule()
58 {
59 TableRow hRuleRow;
60 TableCell hCell;
61 HtmlGenericControl hRule;
62
63 // Create Horizontal Rule
64 hRule = new HtmlGenericControl();
65 hRule.TagName = "HR";

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Code-behind file for the guestbook application (part 2 of 7).

992 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

66
67 // Create a row for the Horizontal Rule
68 hRuleRow = new TableRow();
69 hCell = new TableCell();
70 hCell.Controls.Add(hRule);
71 hRuleRow.Cells.Add(hCell);
72
73 return hRuleRow;
74 }
75
76 public void FillMessageTable()
77 {
78 TableRow row;
79 TableCell cell;
80 HyperLink h;
81
82 // Open guestbook file for reading
83 StreamReader reader = new StreamReader(
84 @"C:\Inetpub\wwwroot\GuestBook\guestbook.txt");
85
86 // Create and add Header row
87 row = new TableRow();
88 cell = new TableCell();
89 cell.Controls.Add(
90 new LiteralControl("Guestbook Entries:"));
91 row.Cells.Add(cell);
92 messageTable.Rows.Add(row);
93
94 // Add Horizontal Rule
95 messageTable.Rows.Add(MakeHorizontalRule());
96
97 try
98 {
99 while (true)
100 {
101 // Read in one line from file
102 string message = reader.ReadLine();
103
104 // Throw exception if reached end of file
105 if (message == null)
106 throw new IOException();
107
108 // Split the string into its four parts
109 char[] separator = { '\t' };
110 string[] parts = message.Split(separator);
111
112 row = new TableRow();
113 cell = new TableCell();
114
115 // Create Hyperlink for email
116 h = new HyperLink();
117 h.NavigateUrl = "mailto:" + parts[2];
118 h.Text = parts[1];
119

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Code-behind file for the guestbook application (part 3 of 7).

Chapter 20 Web Forms and ASP.NET 993

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

120 // Add the date, hyperlink, and message to the
121 // cell
122 cell.Controls.Add(
123 new LiteralControl(parts[0] + " "));
124 cell.Controls.Add(h);
125 cell.Controls.Add(
126 new LiteralControl(": " + parts[3]));
127
128 // Add cell to row, and row to the table
129 row.Cells.Add(cell);
130 messageTable.Rows.Add(row);
131
132 // Add Horizontal Rule
133 messageTable.Rows.Add(MakeHorizontalRule());
134 }
135 }
136 catch(IOException e)
137 {
138 }
139
140 reader.Close();
141 }
142
143 public void FillGreetingTable()
144 {
145 // Get the Hyperlink from the last message posted
146 HyperLink h = (HyperLink)messageTable.Rows[
147 messageTable.Rows.Count - 2].Cells[
148 0].Controls[1];
149 TableCell cell = new TableCell();
150 TableRow row = new TableRow();
151
152 // Create thank you message using the text from the
153 // hyperlink from the last message posted
154 cell.Controls.Add(
155 new LiteralControl("Thanks for your entry, " +
156 h.Text + "!"));
157 cell.Font.Size = 24;
158 cell.ForeColor = Color.Blue;
159
160 // Add the cell with the message to the row, and
161 // the row to the greetingTable. Then add Horizontal
162 // Rule.
163 row.Cells.Add(cell);
164 greetingTable.Rows.AddAt(0, row);
165 greetingTable.Rows.AddAt(1, MakeHorizontalRule());
166 }
167
168 public void submitButton_Click(object sender,
169 System.EventArgs e)
170 {
171 // Open or create file
172 FileStream guestbookFile = new FileStream(
173 @"C:\Inetpub\wwwroot\GuestBook\guestbook.txt",

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Code-behind file for the guestbook application (part 4 of 7).

994 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

174 FileMode.OpenOrCreate);
175
176 // Open streams for writing and reading file
177 StreamWriter guestbook =
178 new StreamWriter(guestbookFile);
179 StreamReader getToEnd=
180 new StreamReader(guestbookFile);
181
182 // Get to the end of the file
183 getToEnd.ReadToEnd();
184
185 // Write new message to file
186 guestbook.WriteLine(
187 DateTime.Now.Date.ToString().Substring(0, 10) +
188 "\t" + nameTextBox.Text + "\t" + emailTextBox.Text
189 + "\t" + messageTextBox.Text);
190
191 // Clear all textboxes and close all streams
192 nameTextBox.Text = "";
193 emailTextBox.Text = "";
194 messageTextBox.Text = "";
195 guestbook.Close();
196 getToEnd.Close();
197 guestbookFile.Close();
198
199 // Fill the Tables
200 FillMessageTable();
201 FillGreetingTable();
202 } // end of submitButton_Click
203 }
204 }

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Code-behind file for the guestbook application (part 5 of 7).

Chapter 20 Web Forms and ASP.NET 995

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Code-behind file for the guestbook application (part 6 of 7).

996 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Lines 49–55 constitute the event handler for clearButton and simply sets all the
TextBoxes to contain no text. Lines 166–200 are the code for the event handler for sub-
mitButton. Lines 172–174 create a FileStream referencing the file containing all the
guestbook entries. Then lines 177–180 use this FileStream to create a Stream-
Writer and StreamReader to read and write text from and to the file. Line 190 uses
StreamReader’s method ReadToEnd to read the entire file. This places the pointer in
the file after the last character in the file. So when lines 186–189 execute, the file is
appended with the appropriate message. Before the event handler exits, it calls two
methods: FillMessageTable and FillGreetingTable.

FillMessageTable as its name suggest places all the guestbook entries in mes-
sageTable. Any object of type Table consists of a set of rows of type TableRow
which in turn consists of a set of cells of type TableCell. Any object that we want to
place in a Table must first be placed in a TableCell, which needs to be placed in a
TableRow, which in turn needs to be placed in the Table.

FillMessageTable starts out creating a row containing only the words "Guest-
book Entries". Notice the use of an unfamiliar class LiteralControl—a control
that is usually shown as plain text on a page. We then add a row containing the return value
of method MakeHorizontalRule. MakeHorizontalRule is a method that returns

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Code-behind file for the guestbook application (part 7 of 7).

Chapter 20 Web Forms and ASP.NET 997

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

a single TableRow containing one TableCell which has in it an object of type Html-
GenericControl. HtmlGenericControl represents any HTML control. We make
it into a horizontal rule on line 65 when we assign its TagName property the value "HR",
i.e. a horizontal rule. Lines 68–71 place this HtmlGenericControl into a Table-
Cell which is placed into a TableRow. We are going to separate all the guestbook entries
with a horizontal rule so this method will be useful. FillMessageTable then begins
executing an infinite loop which reads in a line from the guestbook file, if nothing has been
read, line 106 throws a new IOException which is caught in the catch clause. Line
110 breaks up the read string into its individual pieces which are separated by tabs.
Lines 112–113 create a new TableRow and TableCell object for this message. We can
now begin constructing the row for this message.

Line 116 creates an object of type HyperLink to allow users to click on it and send
e-mail to the person who left that message. Line 117 sets h’s NavigateUrl property to
be an e-mail link to the e-mail provided by the user. Line 118 sets h’s Text property to be
the name of the user. Anyone viewing the page will see the name of person who left the
message on the page, but when that link is clicked a new e-mail will be created with the
default e-mail client addressed to the e-mail address the poster provided. Lines 122–123
add a new LiteralControl to the TableCell containing the date the poster left the
message–the first piece of information. Line 124 adds HyperLink h to the cell, and lines
125–126 add another LiteralControl containing the message itself to the Table-
Cell. We now add this TableCell to our TableRow on line 136 and the TableRow
to the messageTable on line 126. Line 133 makes use of method MakeHorizontal-
Rule once more to add a row containing a horizontal rule to messageTable.

Method FillGreetingTable is invoked on line 201. Lines 146-148 of method
FillGreetingTable get the HyperLink object of the last message in messag-
eTable, i.e. the message of the person who just left it. Lines 154-156 create a Table-
Cell containing a thank you message to the person who just left the message. This
TableCell is then placed in a TableRow which is added to greetingTable using
Table method AddAt. AddAt takes two arguments—the first is an integer specifying the
index at which to add the row, and the second which is the TableRow to add.

20.6.2 Case Study: An Instant Page Content Builder
This case study presents a complex Web Application consisting of four linked ASP.NET
pages. This application starts on login.aspx where users select their name from the
drop–down list and enter their password. The information provided is sent on to the next
page—submitlogin.aspx. If the password provided is the same as the password in the
database the user is allowed to proceed to instantpage.aspx; otherwise the user is
sent back to login.aspx and instructed to enter the correct password. in-
stantpage.aspx allows users to enter their name, the name of the file they wish to cre-
ate, the title of their document and its contents. The information entered here is sent on to
process.aspx which processes this information and creates an ASP.NET page with the
corresponding properties. What the users see once they get to process.aspx is a page
with a link to their newly created file and a time. Clicking on the link takes them to their
new page which includes a time stamp of the last request for the page.

998 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

The ASPX listing for the first page—login.aspx—is shown in Fig. 20.11.

1 <%-- Fig. 20.10 --%>
2 <%-- ASPX code for login form. --%>
3
4 <%@ Page language="c#" Codebehind="login.cs"
5 AutoEventWireup="false"
6 Inherits="PageBuilder.LoginPage" %>
7 <html>
8 <head>
9 <meta name=vs_targetSchema content="HTML 4.0">

10 <meta name=vs_showGrid content="True">
11 <meta name="GENERATOR"
12 Content="Microsoft Visual Studio 7.0">
13 <meta name="CODE_LANGUAGE" Content="C#">
14 </head>
15 <body ms_positioning="GridLayout">
16
17 <!-- #include virtual = "b2bheader.shtml" -->
18

19 <%
20 if (Session["loginFailure"] == null)
21 Session.Add("loginFailure", false);
22
23 if ((bool)Session["loginFailure"] == true)
24 Response.Write("" +
25 "Login attempt failed, please try again<P>");
26 %>
27 <!-- Visual Studio Generated code for the WebForm -->
28 <form action="submitlogin.aspx" method="post" runat="server">
29 <asp:DropDownList id=nameList runat="server" height="22"
30 width="164" style="Z-INDEX: 101; LEFT: 101px;
31 POSITION: absolute; TOP: 207px">
32 </asp:DropDownList>
33 <asp:Label id=Label2 runat="server" style="Z-INDEX: 102;
34 LEFT: 13px; POSITION: absolute; TOP: 207px">Name:
35 </asp:Label>
36 <asp:Label id=Label3 runat="server" style="Z-INDEX: 104;
37 LEFT: 13px; POSITION: absolute; TOP: 271px">Password:
38 </asp:Label>
39 <asp:Button id=Button1 runat="server" Text="Log Me In"
40 Height="24" Width="108" style="Z-INDEX: 105;
41 LEFT: 101px; POSITION: absolute; TOP: 319px">
42 </asp:Button>
43 <asp:Label id=Label1 runat="server" Font-Size="Small"
44 style="Z-INDEX: 106; LEFT: 13px; POSITION: absolute;
45 TOP: 159px">Please select your name and enter your
46 password to login:
47 </asp:Label>
48 <asp:TextBox id=password style="Z-INDEX: 107; LEFT: 104px;
49 POSITION: absolute; TOP: 265px" runat="server"
50 Width="161" Height="24" TextMode="Password">
51 </asp:TextBox>

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 ASPX listing for log in page (part 1 of 2)

Chapter 20 Web Forms and ASP.NET 999

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Line 17 is a server side include (SSI) statement that incorporates the contents of
b2bheader.shtml (Figure 20.20) into the ASPX file. Server-side includes are com-
mands embedded in HTML documents that add dynamic content. The SSI statement in line
14 is replaced with the contents of the file b2bheader.shtml. Not all Web servers sup-
port the available SSI commands. Therefore, SSI commands are written as HTML com-
ments. SSI statements always execute before any scripting code executes.

We also use an SSI in line 54 to include b2bfooter.shtml (Figure 20.21). The
word virtual in the SSI refers to the include file’s path as it appears below the server’s
root directory. This is often referred to as a virtual path. SSIs can also use file instead of
virtual to indicate a physical path on the server.

The expression on line 17 uses HttpSessionState’s indexer to get the value of
the entry called “loginFailure”. There is another version of the indexer which takes
an integer parameter instead of a string. If the variable named “loginFailure” exists
the indexer will return its values; otherwise it will return null. This line checks to see if
it exists, if not it will add a session variable called “loginFailure” having the value
false on line 18 using HttpSessionState method Add. The first parameter to Add
is a string denoting the name of the variable, and the second is any object which is
the value of the variable. Line 20 also looks up the value of session variable “login-
Failure”. We know that this variable is of type bool, and if it did not exist before, it
was just created in preceding if statement, so we cast to a bool. If it is true then the user
did not provide a correct password and we must use the Response variable’s Write
method to send HTML code to the clients browser. In this case we send red text indicating
there was a log in problem.

The ASP.NET elements define a DropDownList named nameList which will be
populated in login.aspx.cs with user names from a database, a TextBox in which
the users will enter their password, and some Labels. The code-behind file for this page
is show in Fig. 20.12.

52 </form>
53
54 <!-- #include virtual = "b2bfooter.shtml" -->
55
56 </body></html>

1 // Fig. 20.11
2 // code for login.cs
3
4 namespace PageBuilder
5 {
6 using System;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Data;

10 using System.Drawing;
11 using System.Web;
12 using System.Web.SessionState;

Fig. 20.12Fig. 20.12Fig. 20.12Fig. 20.12 Code listing for login.cs (part 1 of 3).

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 ASPX listing for log in page (part 2 of 2)

1000 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

13 using System.Web.UI;
14 using System.Web.UI.WebControls;
15 using System.Web.UI.HtmlControls;
16 using System.Data.ADO;
17
18 public class LoginPage : System.Web.UI.Page
19 {
20 protected System.Data.ADO.ADODataSetCommand
21 adoDataSetCommand1;
22 protected System.Data.ADO.ADOConnection adoConnection1;
23 protected System.Web.UI.HtmlControls.HtmlGenericControl
24 H21;
25 protected System.Web.UI.WebControls.TextBox password;
26 protected System.Web.UI.WebControls.Label Label1;
27 protected System.Web.UI.WebControls.Button Button1;
28 protected System.Web.UI.WebControls.Label Label3;
29 protected System.Web.UI.WebControls.Label Label2;
30 protected System.Web.UI.WebControls.DropDownList
31 nameList;
32 protected ADODataReader dataReader;
33
34 public LoginPage()
35 {
36 Page.Init += new System.EventHandler(Page_Init);
37 }
38
39 protected void Page_Load(object sender, EventArgs e)
40 {
41 }
42
43 protected void Page_Init(object sender, EventArgs e)
44 {
45 InitializeComponent();
46
47 // open database connection
48 adoConnection1.Open();
49
50 // execute query
51 adoDataSetCommand1.SelectCommand.Execute(
52 out dataReader);
53
54 // while we can read a row from the result of the
55 // query, add the first item to the dropdown list
56 while (dataReader.Read())
57 nameList.Items.Add(dataReader.GetString(0));
58 }
59
60 private void InitializeComponent()
61 {
62 // Visual Studio generated code
63 }
64 }
65 }

Fig. 20.12Fig. 20.12Fig. 20.12Fig. 20.12 Code listing for login.cs (part 2 of 3).

Chapter 20 Web Forms and ASP.NET 1001

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

We want to use an Access database to get our user names and populate nameList.
We follow the same steps to add login.mdb as a data connection in Server Explorer
and configure the ADODataSetCommand as in Chapter 19. We want the select clause to
be "SELECT loginID FROM Users" to indicate that we want all the names stored in
table Users. This constitutes most of the code in InitializeComponent which we
omit for presentation purposes.

The while loop lines 56–57 places every user name in the database into nameList.
When the user clicks Log Me In, the browser is redirected to submit-

login.aspx—the code which is shown in Fig. 20.13.

1 <%-- Fig. 20.12 --%>
2 <%-- ASPX code for the page that process the login information. --%>
3
4 <%@ Page language="c#" Codebehind="SubmitLogin.cs"
5 AutoEventWireup="false"
6 Inherits="PageBuilder.SubmitLogin" %>
7
8 <html>
9 <head>

10 <meta name="GENERATOR"

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 ASPX listing for submitlogin.aspx (part 1 of 2)

Fig. 20.12Fig. 20.12Fig. 20.12Fig. 20.12 Code listing for login.cs (part 3 of 3).

1002 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

As you see submitlogin.aspx does not display anything, the code-behind file
submitlogin.cs (Fig. 20.14) performs the work involved in verifying the user’s pass-
word.

11 Content="Microsoft Visual Studio 7.0">
12 <meta name="CODE_LANGUAGE" Content="C#">
13 </head>
14 <body>
15 <form method="post" runat="server" ID=Form1>
16 </form>
17 </body>
18 </html>

1 // Fig. 20.13
2 // code for submitlogin.cs
3
4 namespace PageBuilder
5 {
6 using System;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Data;

10 using System.Drawing;
11 using System.Web;
12 using System.Web.SessionState;
13 using System.Web.UI;
14 using System.Web.UI.WebControls;
15 using System.Web.UI.HtmlControls;
16 using System.Data.ADO;
17
18 public class SubmitLogin : System.Web.UI.Page
19 {
20 protected System.Data.ADO.ADOConnection
21 adoConnection1;
22 protected System.Data.ADO.ADODataSetCommand
23 adoDataSetCommand1;
24
25 public SubmitLogin()
26 {
27 Page.Init += new System.EventHandler(Page_Init);
28 }
29
30 protected void Page_Load(object sender, EventArgs e)
31 {
32 ADODataReader dataReader;
33
34 // create a connection to the database
35 adoConnection1.Open();
36
37 // create a DataSetCommand and set the select command

Fig. 20.14Fig. 20.14Fig. 20.14Fig. 20.14 Code-behind file for submitlogin.cs (part 1 of 2)

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 ASPX listing for submitlogin.aspx (part 2 of 2)

Chapter 20 Web Forms and ASP.NET 1003

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

For this page as well, we drag the Users table from our database in Server
Explorer. We place all our password checking code in the Page_Load event handler.
Lines 40–43 set the CommandText property of the SelectCommand property of
adoDataSetCommand1 to an SQL query that retrieves the password of the user with
loginID that was selected from nameList. The if statement lines 54–66 sends the user
back login.aspx if the password did not match what is in the database, and sends them
to instantpage.aspx if it did.

38 // to find the password of the username from the
39 // dropdown list
40 adoDataSetCommand1.SelectCommand = new ADOCommand(
41 "SELECT * FROM Users WHERE loginID = '" +
42 Request.Form.Get("nameList").ToString() +
43 "'", adoConnection1);
44
45 adoDataSetCommand1.SelectCommand.Execute(
46 out dataReader);
47
48 dataReader.Read();
49
50 // if the password the user provided the correct
51 // password direct them to instantpage.aspx,
52 // otherwise send them back to login.aspx with
53 // "loginFailure set to true
54 if (Request.Form.Get("password").ToString() ==
55 dataReader.GetString(1))
56 {
57 Session["loginFailure"] = false;
58 Response.Redirect(
59 "instantpage.aspx");
60 }
61 else
62 {
63 Session["loginFailure"] = true;
64 Response.Redirect("login.aspx");
65 }
66 }
67
68 protected void Page_Init(object sender, EventArgs e)
69 {
70 InitializeComponent();
71 }
72
73 private void InitializeComponent()
74 {
75 // Visual Studio generated code
76 }
77 }
78 }

Fig. 20.14Fig. 20.14Fig. 20.14Fig. 20.14 Code-behind file for submitlogin.cs (part 2 of 2)

1004 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Once users successfully select their user name and enter the correct password they are
send to instantpage.aspx to start building their custom page. The ASPX listing for
instantpage.aspx is shown in Fig. 20.15.

1 <%-- Fig. 20.14 --%>
2 <%-- Web Form for user input regarding the page they --%>
3 <%-- wish to create. --%>
4
5 <%@ Page language="c#" Codebehind="instantpage.cs"
6 AutoEventWireup="false" Inherits="PageBuilder.InstantPage" %>
7 <html><head>
8 <TITLE>Instant Page Content Builder</TITLE>
9

10 <meta content="HTML 4.0" name=vs_targetSchema>
11 <meta content=True name=vs_showGrid>
12 <meta content="Microsoft Visual Studio 7.0" name=GENERATOR>
13 <meta content=C# name=CODE_LANGUAGE></head>
14 <body ms_positioning="GridLayout">
15
16 <!-- #include virtual = "b2bheader.shtml" -->
17
18 <h2 id=H21 runat="server"> </h2>

19
20 <%
21 if (Session["errorMessage"] == null)
22 Session.Add("errorMessage", "");
23
24 if (Session["welcomeBack"] == null)
25 Session.Add("welcomeBack", "");
26
27 if (Request.QueryString.Get("error") == "yes")
28 Response.Write(Session["errorMessage"].ToString());
29 else
30 Response.Write(Session["welcomeBack"].ToString());
31 %>
32
33 <form action="process.aspx" method=post runat="server">
34 <asp:TextBox id=name style="Z-INDEX: 101; LEFT: 117px;
35 POSITION: absolute; TOP: 238px" runat="server"
36 width="464" height="24">
37 </asp:TextBox>
38 <asp:TextBox id=filename style="Z-INDEX: 102; LEFT: 117px;
39 POSITION: absolute; TOP: 286px" runat="server"
40 width="464" height="24">YourFileName.aspx
41 </asp:TextBox>
42 <asp:TextBox id=doctitle style="Z-INDEX: 103; LEFT: 117px;
43 POSITION: absolute; TOP: 334px" runat="server"
44 width="464" height="24">Document Title
45 </asp:TextBox>
46 <asp:TextBox id=content style="Z-INDEX: 109; LEFT: 117px;
47 POSITION: absolute; TOP: 382px" runat="server"
48 width="466" height="136" textmode="MultiLine">
49 Replace this text with the information you would like to post.

Fig. 20.15Fig. 20.15Fig. 20.15Fig. 20.15 ASPX listing for instantpage.aspx (part 1 of 2).

Chapter 20 Web Forms and ASP.NET 1005

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Lines 19–30 constitute a client-side script which adds the errorMessage and wel-
comeBack session variables if they did not already exist. These variables will be used to
hold the error and welcome back messages respectively, and will be set if necessary later
on. Line 26 checks if the QueryString property of the Request object has a variable
named error. A query string appears at the end of the HTTP address in your browser’s
address bar and has the form "?var-name=var-value". If error has the value yes
then we need to print an error message, otherwise we can print the welcomeBack mes-
sage. If this is the first time we are at this page then the welcomeBack session variable
has just been created and holds an empty string. The rest of the code creates the various

50 </asp:TextBox>
51 <asp:Button id=submitButton style="Z-INDEX: 104;
52 LEFT: 181px;
53 POSITION: absolute;
54 TOP: 534px"
55 runat="server" Text="Submit">
56 </asp:Button>
57 </form>
58
59 <asp:Label id=Label1 style="Z-INDEX: 105; LEFT: 29px;
60 POSITION: absolute; TOP: 230px" runat="server"
61 Width="58" Height="16">Your Name:
62 </asp:Label>
63 <asp:Label id=Label2 style="Z-INDEX: 106; LEFT: 29px;
64 POSITION: absolute; TOP: 278px" runat="server"
65 Width="66" Height="52">Enter the Filename:
66 </asp:Label>
67 <asp:Label id=Label3 style="Z-INDEX: 107; LEFT: 29px;
68 POSITION: absolute; TOP: 326px" runat="server"
69 Width="57" Height="40">Enter the Title:
70 </asp:Label>
71 <asp:Label id=Label4 style="Z-INDEX: 108; LEFT: 29px;
72 POSITION: absolute; TOP: 398px" runat="server"
73 Width="64" Height="40">Enter the Content:
74 </asp:Label>
75
76 <form method=post >
77 <asp:Button id=resetButton style="Z-INDEX: 110; LEFT: 381px;
78 POSITION: absolute; TOP: 534px" runat="server"
79 Text="Reset" >
80 </asp:Button>
81 </form>
82
83 <!-- #include virtual = "b2bfooter.shtml" -->
84 <div style="Z-INDEX: 111; LEFT: 31px; POSITION: absolute;
85 TOP: 130px"
86 ms_positioning="text2D">
87 Instant Page Content Builder
88 </div>
89
90 </body></html>

Fig. 20.15Fig. 20.15Fig. 20.15Fig. 20.15 ASPX listing for instantpage.aspx (part 2 of 2).

1006 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

ASP.NET form elements required for the page—four TextBoxes, four Labels and two
Buttons. In this page as well we include b2bheader.shtml and
b2bfooter.shtml on lines 15 and 82 respectively.

When the user clicks on either button the browser is redirected to process.aspx.
This is specified in the action attribute of the form on line 32. process.aspx makes sure
it has all the necessary information and redirects the user back to instantpage.aspx
if necessary. The code listing for instantpage.cs is in Fig. 20.16 and has been for-
matted and cleaned up for presentation purposes, but not changed otherwise.

1 // Fig. 20.15
2 // code for instantpage.cs
3
4 namespace PageBuilder
5 {
6 using System;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Data;

10 using System.Drawing;
11 using System.Web;
12 using System.Web.SessionState;
13 using System.Web.UI;
14 using System.Web.UI.WebControls;
15 using System.Web.UI.HtmlControls;
16
17 public class InstantPage : System.Web.UI.Page
18 {
19 protected System.Web.UI.WebControls.Button resetButton;
20 protected System.Web.UI.WebControls.Label Label4;
21 protected System.Web.UI.WebControls.Label Label3;
22 protected System.Web.UI.WebControls.Label Label2;
23 protected System.Web.UI.WebControls.Label Label1;
24 protected System.Web.UI.WebControls.Button submitButton;
25 protected System.Web.UI.WebControls.TextBox content;
26 protected System.Web.UI.WebControls.TextBox doctitle;
27 protected System.Web.UI.WebControls.TextBox filename;
28 protected System.Web.UI.WebControls.TextBox name;
29
30 public InstantPage()
31 {
32 Page.Init += new System.EventHandler(Page_Init);
33 }
34
35 protected void Page_Load(object sender, EventArgs e)
36 {
37 }
38
39 protected void Page_Init(object sender, EventArgs e)
40 {
41 InitializeComponent();
42 }
43

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 Code-behind file instantpage.cs (part 1 of 4)

Chapter 20 Web Forms and ASP.NET 1007

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

44 private void InitializeComponent()
45 {
46 this.Load +=
47 new System.EventHandler (this.Page_Load);
48 }
49 }
50 }

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 Code-behind file instantpage.cs (part 2 of 4)

1008 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 Code-behind file instantpage.cs (part 3 of 4)

Chapter 20 Web Forms and ASP.NET 1009

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Information from instantpage.aspx is sent to process.aspx (Fig. 20.17) for
verification and file creation.

1 <%-- Fig. 20.16 --%>
2 <%-- ASPX code for the page that creates the user’s page. --%>
3
4 <%@ Page language="c#" Codebehind="process.cs"
5 AutoEventWireup="false" Inherits="PageBuilder.process" %>
6
7 <html><head>
8 <TITLE>File Generated:
9 <% Response.Write(Request.Form.Get("filename")); %>

10 </TITLE>

Fig. 20.17Fig. 20.17Fig. 20.17Fig. 20.17 ASPX listing for process.aspx (part 1 of 2).

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 Code-behind file instantpage.cs (part 4 of 4)

1010 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

This page creates a page with a link to the user’s file. Notice the use of client-side
scripts throughout the page. Line 9 dynamically creates the title of the page as seen in the
title bar of the client’s browser. Lines 22–24 create a link to the user’s new page with the
name of the file as text for the link. The user’s file itself is created in the code-behind file
(Fig. 20.18).

11 <meta name="GENERATOR"
12 Content="Microsoft Visual Studio 7.0">
13 <meta name="CODE_LANGUAGE" Content="C#"></head>
14 <BODY >
15 <!-- #include virtual = "b2bheader.shtml" -->
16 <center><h2><u>
17
18 File generated:
19 <% Response.Write(Request.Form.Get("filename")); %>
20 </h2></u></center>

21 Your file is ready:
22 <a href = "userpages/
23 <% Response.Write(Request.Form.Get("filename")); %>">
24 <% Response.Write(Request.Form.Get("doctitle")); %>
25
26
27 <form method="post" runat="server">
28 </form>
29 <!-- #include virtual = "b2bfooter.shtml" -->
30 </BODY></HTML>

1 // Fig. 20.17
2 // code for process.cs
3
4 namespace PageBuilder
5 {
6 using System;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Data;

10 using System.Drawing;
11 using System.Web;
12 using System.Web.SessionState;
13 using System.Web.UI;
14 using System.Web.UI.WebControls;
15 using System.Web.UI.HtmlControls;
16 using System.IO;
17
18 public class process : System.Web.UI.Page
19 {
20 public process()
21 {
22 Page.Init += new System.EventHandler(Page_Init);
23 }

Fig. 20.18Fig. 20.18Fig. 20.18Fig. 20.18 Code-behind file for process.cs (part 1 of 4).

Fig. 20.17Fig. 20.17Fig. 20.17Fig. 20.17 ASPX listing for process.aspx (part 2 of 2).

Chapter 20 Web Forms and ASP.NET 1011

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

24
25 protected void Page_Load(object sender, EventArgs e)
26 {
27 // if the user kept the defaul file name or left the
28 // field empty tell the user they need to enter a
29 // filename and redirect them back to instantpage.aspx
30 if (Request.Form.Get("filename") ==
31 "YourFileName.aspx" ||
32 Request.Form.Get("filename") == "")
33 {
34 Session["errorMessage"] = "<FONT COLOR = " +
35 "\"red\" SIZE = \"4\"> Please enter a filename."
36 + "
";
37 Response.Redirect("instantpage.aspx?error=yes");
38 }
39
40 // if the file the user wanted to create already
41 // exists signal the user that he/she needs to chose
42 // another name and redirect them back to
43 // instantpage.aspx
44 if (File.FileExists(
45 @"C:\Inetpub\wwwroot\PageBuilder\userpages\" +
46 Request.Form.Get("filename")))
47 {
48 Session["errorMessage"] = "<FONT COLOR = " +
49 "\"red\" SIZE = \"4\"> This file name is in"
50 + " use. Please enter another filename" +
51 "
";
52 Response.Redirect(
53 "instantpage.aspx?error=yes");
54 }
55
56 // create a new file
57 FileStream textFile = new
58 FileStream(@"C:\Inetpub\wwwroot\PageBuilder\" +
59 "userpages\\" +
60 Request.Form.Get("filename"), FileMode.Create);
61
62 // create a welcomeBack session variable containing
63 // a message in blue welcoming back the user
64 Session["welcomeBack"] = "<FONT COLOR = " +
65 "\"blue\" SIZE = \"4\">Welcome Back, " +
66 Request.Form.Get("name") + "
";
67
68 // define the opening and closing delimiters of
69 // client-side script
70 string openMark = "<" + "%", closeMark = "%" + ">";
71
72 // create the header of the page
73 string header = openMark + "@ Page language=\"c#\" "
74 + closeMark + "\r\n" + openMark + " // " +
75 Request.Form.Get("filename") + " " + closeMark +
76 "\r\n" +
77 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 "

Fig. 20.18Fig. 20.18Fig. 20.18Fig. 20.18 Code-behind file for process.cs (part 2 of 4).

1012 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

78 + "Transitional//EN\">\r\n<HTML>\r\n<HEAD>\r\n" +
79 "<META NAME = \"author\" CONTENT = \"" +
80 Request.Form.Get("name") + "\">\r\n<META NAME "
81 + "= \"pubdate\" CONTENT = \"" +
82 DateTime.Now.ToString().Substring(0, 10) +
83 "\">\r\n<TITLE>" + Request.Form.Get("doctitle")
84 + "</TITLE>\r\n</HEAD>\r\n<BODY>\r\n<FONT FACE = "
85 + "\"arial\" SIZE = \"3\" >\r\n<!-- #include file"
86 + " = \"../b2bheader.shtml\"-->\r\n<CENTER><U>" +
87 "<H2>" + Request.Form.Get("doctitle") +
88 "</H2></U>\r\n
\r\n";
89
90 // create the footer of the page
91 string footer = "\r\n</CENTER>

\r\n";
92 footer += "You have requested this page on ";
93 footer += openMark;
94 footer += " Response.Write(DateTime.Now.ToString()";
95 footer += ".Substring(0, 10)); " + closeMark;
96 footer += ",\r\nat " + openMark;
97 footer += " Response.Write(DateTime.Now.ToString()";
98 footer += ".Substring(11, 8));" + closeMark;
99 footer += ".
\r\n<!-- #include virtual = \"";
100 footer += "../b2bfooter.shtml\" -->\r\n\r\n";
101 footer += "<BODY>\r\n</HTML>";
102
103 // create a StreamWriter to the file
104 StreamWriter writer = new StreamWriter(textFile);
105
106 // write the header, the content the user wanted to
107 // display, and the footer to the file
108 writer.WriteLine(header);
109 writer.WriteLine(Request.Form.Get("content"));
110 writer.Write(footer);
111
112 writer.Close();
113 }
114
115 protected void Page_Init(object sender, EventArgs e)
116 {
117 InitializeComponent();
118 }
119
120 private void InitializeComponent()
121 {
122 this.Load +=
123 new System.EventHandler (this.Page_Load);
124 }
125 }
126 }

Fig. 20.18Fig. 20.18Fig. 20.18Fig. 20.18 Code-behind file for process.cs (part 3 of 4).

Chapter 20 Web Forms and ASP.NET 1013

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

All the code for the generation of the user’s file is placed in the Page_Load event
handler. Lines 30–38 make sure that the user did not keep the default file name and did not
leave the field empty. If this is the case however, session variable errorMessage is set
appropriately and the user is redirected back to "instantpage.aspx?error=yes".
errorMessage contains HTML code that when rendered in a browser will print out text
of red color because we are using the HttpResponse Write method which outputs
HTML code to the browser. Notice that there is a query string at the end of the page name
to signal to instantpage.aspx that it needs to print the error message.

If the file the user wanted to create already exists the if statement on lines 44–54 sets
errorMessage to the appropriate value and redirects the user back to
instantpage.aspx with the query string "?error=yes".

If neither one of these was the case method continues to execute and creates the file
with the user’s chose name on lines 58–60. Lines 64–66 set the welcomeBack session
variable to contain a welcome back message along with the user’s name.

The string header defined in lines 73–88 contains the HTML code necessary for
the part portion of the user’s page. It creates all the opening HTML tags, the meta tags with
the user’s information, and places the name of the page in the middle. It also places an SSI
include at the top of the file.

The string footer created in lines 91–101 creates the bottom portion of the page
by including a script to print out the time the user accessed this page. b2bfooter.shtml
is included as usual.

A StreamWriter to the newly created file is made so that the HTML code can be
placed in the file. The header, the information the user wanted to display and the
footer are written to the file. Now when the user clicks on the link generated by pro-
cess.aspx the browser will be sent to the newly created page. Fig. 20.19 shows the code

Fig. 20.18Fig. 20.18Fig. 20.18Fig. 20.18 Code-behind file for process.cs (part 4 of 4).

1014 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

generated for a page and has a screen capture of what this page would look like as rendered
by a browser.

1 <%-- Fig. 20.18 --%>
2 <%-- ASPX code for the generated page --%>
3
4 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
5 <HTML>
6 <HEAD>
7 <META NAME = "author" CONTENT = "TestUser">
8 <META NAME = "pubdate" CONTENT = "2001-05-30">
9 <TITLE>My Personal Page</TITLE>

10 </HEAD>
11 <BODY>
12
13
14
15 <CENTER><U><H2>My Personal Page</H2></U>
16

17
18 My personal page is under construction. Come again soon.
19
20 </CENTER>

21 You have requested this page on 2001-05-30,
22 at 09:42:36.

23
24 <HR COLOR = "blue" SIZE = "1">
25 <CENTER>
26 Ordering Information -
27 Contact the Editor

28 <HR COLOR = "blue" SIZE = "1">
29 </CENTER>
30
31
32 <BODY>
33 </HTML>

Fig. 20.19Fig. 20.19Fig. 20.19Fig. 20.19 A page created for a user (part 1 of 2).

Chapter 20 Web Forms and ASP.NET 1015

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Notice that we use scripts to include the current date and time as well. This ASP.NET
page has no code-behind file—this is because it does not need any additional code and we
did not place an Inherits attribute at the top of the ASPX code. The HTML and scripts
will be executed and rendered as usual.

Figure 20.20 is the code listing for b2bheader.shtml—it consists of only a tag to
display an image. Figure 20.21 is the code listing for b2bfooter.shtml—two e-mail
links with a horizontal rule above and below which are always placed at the bottom of the
page. We do this because the ASP.NET elements have absolute positioning, and anything
added dynamically or without absolute coordinates may overlap with them or cause the
page to look strange. This ensures that no matter what the page is, the footer always appears
at the bottom.

1 <%-- Fig. 20.19 --%>
2 <%-- Listing for b2bheader.shtml --%>
3
4

Fig. 20.20Fig. 20.20Fig. 20.20Fig. 20.20 HTML listing for b2bheader.shtml

1 <%-- Fig. 20.20 --%>
2 <%-- Listing for b2bfooter.shtml --%>

Fig. 20.21Fig. 20.21Fig. 20.21Fig. 20.21 HTML listing for b2bfooter.shtml

Fig. 20.19Fig. 20.19Fig. 20.19Fig. 20.19 A page created for a user (part 2 of 2).

1016 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

20.7 Other Topics in ASP.NET: Tracing and Cookieless Session
State
In this section we will discuss how to use ASP.NET features to help you design robust ap-
plications quicker and easier. We will start our discussion with Visual Studio.NET’s trac-
ing capabilities.

Debugging is one way to find the bugs in an application—tracing is another. Tracing
is the placing of statements throughout a program that output information about its status
during execution. The designer can then look at these statements to determine the problem.
In Windows Applications one might use message boxes to trace a program; in ASP.NET
one might use Response.Write to output information directly to the page to do the
same. Using Response.Write for tracing in ASP.NET, however, has several draw-
backs. One of these drawbacks is that once your application is working properly, you have
to search for these statements in your program and remove them. This is time consuming
and error-prone—you must differentiate between the statements that contribute to your
code and those that you used for tracing.

Fortunately, ASP.NET has two more sophisticated forms of tracing: page tracing and
application tracing. Page tracing involves tracing the actions of an individual page. Setting
the trace property of the page to True in the Properties window of Visual Studio.NET
turns on tracing for that page. Instead of using the Write method of the Response
object, we will use the Write method of the Trace object. Object Trace is an instance
of the TraceContext class and is used in ASP.NET to perform tracing. The Trace
object also has method Warn which prints statements in red. When tracing is disabled on
a page, the Trace object is disabled. This means that you do not have to go through your
code and remove the write statements—simply set trace to False.

3
4
5 <HR COLOR = "blue" SIZE = "1">
6 <CENTER>
7 Ordering Information -
8 Contact the Editor

9 <HR COLOR = "blue" SIZE = "1">

10 </CENTER>
11

Fig. 20.21Fig. 20.21Fig. 20.21Fig. 20.21 HTML listing for b2bfooter.shtml

Chapter 20 Web Forms and ASP.NET 1017

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Figure 20.22 shows a page created simply for the purpose of display a sentence. The
Page_Load event for this page includes the statement "Trace.Warn("Using
warnings");". However, as you see the Trace.Warn statement did not execute.

Figure 20.23 shows a page with the trace property set to True. The top of the page
contains the original page, below it is the tracing information generated by ASP.NET. The
Trace Information table contains all the information we wrote using the Trace object’s

Fig. 20.22Fig. 20.22Fig. 20.22Fig. 20.22 A page with tracing turned off.

Fig. 20.23Fig. 20.23Fig. 20.23Fig. 20.23 Viewing a page with tracing enabled.

1018 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Write and Warn methods. Our message is displayed on the second row in red. All mes-
sages you print via Trace will be shown here.

The Control Tree table lists all the form variables present on the page. If you scroll
down you will see several more tables. The Cookies Collection table contains informa-
tion about the cookies for this project (we will talk more about cookies shortly), the
Headers Collection table contains the HTTP headers for the page and the Server Vari-
ables table contains a list of server variables and their values.

Tracing is also available for the entire project. To turn on application level tracing open
the Web.config file for your project. Web.config contains information about your
project in XML format. Set the enabled property to true in the trace element. To
view the tracing information about the project navigate your browser to the trace.axd
file in your project folder. This file does not actually exist on your hard drive; instead it is
generated by ASP.NET when you type in the internet address. Figure 20.24 shows the Web
page generated by viewing the trace.axd file.

This page lists all the pages that were accessed for the project and when they were
accessed. Clicking on one of the View Details links will take the browser to a page similar
to the one in Fig. 20.23. The page for which the tracing information is for, will not be dis-
played at the top as it was in Fig. 20.23.

We now move on to another feature of ASP.NET—cookieless session state. Cookies
are files stored on your computer by Web sites when you visit one of their Web pages.
These Web sites store in those files information pertinent to you—a site may for example
want to be able to log you in from your computer automatically. It will store your log in
name and password in a cookie and when you next visit the site it will check it—if it con-
tains a log in name and password, it will log you in automatically. Cookies are used fre-
quently by commercial Web sites for many different purposes; an example of using cookies
in a shopping cart application is provided in Chapter 23.

Cookies are very useful, the only catch is that this allows Web sites to write to clients’
computers. Some people do not like giving this kind of access to Web sites and thus set their

Fig. 20.24Fig. 20.24Fig. 20.24Fig. 20.24 Viewing the tracing information for a project.

Chapter 20 Web Forms and ASP.NET 1019

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

browsers to reject cookies from all Web sites. This poses a problem because it is often nec-
essary for Web applications to use cookies to function properly and efficiently. ASP.NET
solves this problem by providing a cookieless session state, i.e., simulating cookies without
having to write to the client’s computer.

To do this, ASP.NET modifies every relative URL in an ASP.NET page by adding to
it an ID that uniquely identifies the session. This ID contains all the cookie information for
the client that would normally be stored on the client’s computer. When this modified URL
is received by the server, the ID is decoded to retrieve the cookie information.

By default, an application will use cookies. To have an application take advantage of
this functionality, the cookieless property of the sessionState tag in
Web.config must be set to true. We provide a detailed example of using cookies in
Chapter 19, Security.

SUMMARY
• ASP.NET is a technology that allows for a simpler and quicker way to create Web applications.

• To create an ASP.NET Web Form project create a project of type Web Application.

• A Web Form is a Web version of Windows Form. It will always have the extension .aspx and
is there to contain all the visual components of your page—HTML code.

• To add controls such as buttons or textboxes to the page they can be dragged from the Toolbox
to the Web Form.

• All controls, as was the case with Windows Form, are objects, including the page itself. This
means they may have properties, methods and events. The properties and events can be changed
and set just like before in the Properties window.

• These Web Form controls are in the System.Web.UI.WebControls namespace, not in the
System.Windows.Forms namespace. Even though some classes such as the TextBox class
belong in both namespaces, they are in fact two completely different classes. One is designed to
be used on Windows Forms, the other on ASP.NET pages.

• By default the pageLayout property of the page will be in GridLayout mode by default,
meaning all controls will be placed on a grid and assigned x and y coordinates—their placement
does not depend on one another. This can be changed by changing the pageLayout property of
Document to FlowLayout—all controls are sequentially lined up as soon as they are placed.

• Every ASP.NET page will have a corresponding C# class which can contain event handlers, ini-
tialization code and anything else that the page may need. The file in which this class is contained
is called the code-behind file.

• Every ASP.NET page is actually an object of type Page. Among others, Page has three proper-
ties: Request of type HttpRequest, Response of type HttpResponse, and Session of
type HttpSessionState.

• Request provides information about the incoming HTTP request such as the values of the vari-
ables in the form.

• Response sends information back to the clients browser.

• Session provides information about the current session. It stores session variables—variables
that can be accessed by any page during the same session.

• The “<%” and “%>” tags indicate that whatever is in between these constitutes a client-side script.
A script is a set of instructions for another program, not a CPU, to execute. A client-side script is
a script that executes on the clients computer on their Web browser.

1020 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

• Web pages often contain ads by corporate sponsers advertising their service or products. They may
only have one or two spots on their page for ads, and want to be able to cycle through all the dif-
ferent ones they have easily. The AdRotator class is designed for such a purpose.

• The AdRotator class uses information in an XML file it can randomly choose an image to dis-
play, set it to link to the appropriate page and show the appropriate caption. If the browser does
not support images it will show the alternate text as directed by the XML file.

• The XML file the AdRotator uses for its image information contains several Ad nodes, each of
which contain a complete set of information about each ad.

• A validator is a control which checks that the data in another control is valid and consistent.

• An object of type LiteralControl is a control that is usually shown as plain text on a page.

• An object of type HtmlGenericControl represents any HTML control.

• A server side include (SSI) statement incorporates the contents of a file into an ASPX file. Server-
side includes are commands embedded in HTML documents that add dynamic content. The SSI
statement is replaced with the contents of the file specified. Not all Web servers support the avail-
able SSI commands. Therefore, SSI commands are written as HTML comments. SSI statements
always execute before any scripting code executes.

• HttpSessionState’s method Add adds session variables to the current session. Its indexer
can be used to retrieve them, modify them or check if they are already there.

• HttpResponse’s method Write can be used to output HTML code to the browser.

• HttpRequest’s Form property contains the information about the contents of the referring
page’s form variables.

• Tracing can be enabled for an individual page by setting the trace property to True.

• Tracing can be enabled for a project by setting the enabled property in the trace tag in
Web.config to true.

• ASP.NET allows programmer to create programs with cookieless session state for those clients
who do not want Web sites to deposit cookies on their computers.

TERMINOLOGY
%> tag
<% tag
Active Server Pages
ActiveX component
Ad attribute in XML file
Add method of class HttpSessionState
ADODataSetCommand class
AdRotator class
AdvertisementFile property of class AdRotator
AlternateText attribute in XML file
application tracing
ASP
ASP.NET
ASP.NET page
ASP.NET Web Application project
aspx file extension
AutoEventWireup attribute of ASP.NET pages
Button class of namespace System.Web.UI.WebControls
caching Web pages

Chapter 20 Web Forms and ASP.NET 1021

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

CheckBox class of namespace System.Web.UI.WebControls
CheckBoxList class
client-side script
code-behind file
CommandText property of class ADOCommand
CompareValidator class
ControlToValidate property of class RegularExpressionValidator
cookie
cookieless property of sessionState element in Web.config
cookieless session state
CustomValidator class
debugging
discovery file for ASP.NET
DNS lookup
Document property of ASP.NET pages
domain name server (DNS)
DropDownList class
enabled property of trace element in Web.config
ErrorMessage property of class RegularExpressionValidator
FileStream class
FlowLayout mode of pageLayout property of ASP.NET pages
GridLayout mode of pageLayout property of ASP.NET pages
host
hostname
HTML (HyperText Markup Language)
HTML code
HTML tag
HtmlGenericControl class
HTTP (HyperText Transfer Protocol)
HTTP header
HTTP method
HTTP request type
HttpRequest class
HttpResponse class
HttpSessionState class
HyperLink class
HyperText Markup Language (HTML)
HyperText Transfer Protocol (HTTP)
IIS Web Server
image/gif MIME type
ImageUrl attribute in XML file
Impressions attribute in XML file
Indexer of class HttpSessionState
Inherits attribute of ASP.NET pages
Init event of class Page
InitializeComponent
instant page content builder
IOException class
IP address
LinkButton class

1022 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

LiteralControl class
Load even of class Page
markup
MIME type
MIME type image/gif
MIME type text/html
MIME type text/txt
NavigateUrl attribute in XML file
NavigateUrl property of class HyperLink
.NET Framework
online guestbook
Page class
page tracing
pageLayout property of ASP.NET pages
path to a resource
physical path on the server
postback
processing directives in ASP.NET pages
Properties window
QueryString property of class HttpRequest
RadioButtonList class
RangeValidator class
ReadToEnd method of class StreamReader
RegularExpressionValidator class
request method
Request property of classPage
RequiredFieldValidator class
Response property of class Page
scripting engine
SelectCommand property of class ADODataSetCommand
server root directory
server-side include (SSI)
Session property of class Page
session variable
sessionState element of Web.config
.sln solution file
SSI statement
static documents
StreamReader class
StreamWriter class
System.Web.UI
System.Web.UI.WebControls namespace
System.Windows.Forms namespace
Table class of namespace System.Web.UI.WebControls
TableCell class
TableRow class
tag
Text property of class HyperLink
text/html MIME type
text/txt MIME type

Chapter 20 Web Forms and ASP.NET 1023

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

TextBox class of namespace System.Web.UI.WebControls
title HTML element (<title>…</title>)
Toolbox
trace element in Web.config
trace property of an ASP.NET page
Trace property of class Page
trace.axd file
TraceContext class
tracing
URL (Universal Resource Locator)
validating information
ValidationExpression property of class RegularExpressionValidator
validator
virtual directory
virtual in the SSI
virtual path
vsdisco file extension
Warn method of class TraceContext
Web Form
Web.config file
Write method of class HttpResponse
Write method of class TraceContext

SELF-REVIEW EXERCISES
20.1 State whether each of the following is true or false. If false, explain why.

a) FlowLayout is the default setting of the pageLayout property.
b) It is possible to enable tracing in an individual page or in an entire application in

ASP.NET.
c) ASP.NET file names typically end in .aspx.
d) There is no limit on the number of session variables that may be used.
e) No more than two validator controls may be placed on any control.
f) The TextBox control we use in Web Forms is not the same TextBox control we use

in Windows Forms.
g) An AdRotator displays all ads with equal frequency.
h) The file which contains image information for an AdRotator may be in formats other

than XML.
i) HttpResponse method Redirect can only be used to redirect the browser to an

ASP.NET page within the same folder.
j) Changes made to properties of controls in the Properties window are reflected in the

InitializeComponent method in the code-behind file.
k) If a Web Application Project is not compiled before viewing the page(s) the page(s) will

not be displayed.

20.2 Fill in the blanks in each of the following:
a) HTML documents are ________ , while ASP.NET pages provide ________ dynamic

Web content to users.
b) A control that ensures that the data in another control is in a specific format is called a

__________.
c) Code embedded in an ASP.NET page which executes on the client’s computer when the

page is loaded is called a _________.

1024 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

d) Every ASP.NET page is an instance of the ________ class.
e) When a page loads the __________ event occurs first and the _________ event occurs

afterwards.
f) The code necessary for an ASP.NET page is contained in the __________ file.
g) Method _________ of the ________ property of class Page is used to output HTML

code to a page.
h) An HTML page is loaded due to a HTTP _________ request.
i) To programmatically fill a Table at runtime controls need to be placed in a _________,

which gets placed in a _________, which in turn gets placed in the Table.
j) AdRotator __________ property points to the file which contains information about

all the ads to be displayed in ________ format.
k) The _______ property in the Web Form designer allows us to create controls by either

lining them up or by placing them on a grid.
l) Code generated by Visual Studio during the design of an ASP.NET page is placed in the

__________ method.
m) If a Web Application Project is not compiled before viewing the page(s) the page(s) will

not be displayed.

ANSWERS TO SELF-REVIEW EXERCISES
20.1 a) False. GridLayout is the default setting of the pageLayout property. b) True. c) True.
d) True. e)False. An unlimited number of validation controls may be placed on one control. f) True.
g) False. The AdRotator displays the ads with frequencies as specified in the Advertisement-
File. h) False. The AdvertisementFile may only be an XML file. i) Flase. Redirect may
be used to redirect the user to any page. j) False. Changes to properties of controls can be seen in the
ASPX file. k) True.

20.2 a) static, dynamic. b) validator. c) client-side script. d) Page. e) Init, Load. f) code-be-
hind. g) Write, Response. h) GET. i) TableCell, TableRow. j) AdvertimesementFile.
k) pageLayout l) InitializeComponent.

EXERCISES
20.3 Modify the first example to allow users to select their time zones and then display the time
for that time zone. The time should be updated every second.

20.4 Modify the first example to contain drop-down lists for Label properties such as back-
ground color, fore color, font, etc.. Allow the user to select from these lists and then reload the page
with the appropriate changes made to the properties of the Label displaying the time.

20.5 Create an ASP.NET page which uses a file on disk to keep track of how many hits it has re-
ceived. Display this number every time the page loads.

20.6 Modify the Guestbook case study in Section 20.6.1 to read and write to a database rather than
a text file.

20.7 Using the same techniques as the Guestbook case study in Section 20.6.1 develop an
ASP.NET application for a discussion group. Allow new links to be created for new topics.

20.8 Create a set of ASP.NET pages which allows users to manipulate a database. Create a data-
base for a book seller with the following fields: BookName, Price, Quantity. The main ASP.NET
page should allow users to select from a drop-down list which will contain options to enter more in-
formation into the database, view the entire database, update a row from the database, and delete an
item from the database. After the user completes an operation they should be able to return to the main
page via a link or redirection to begin another operation.

1026 Web Forms and ASP.NET Chapter 20

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

[***Notes To Reviewers***]
Questions:

• Page Builder example is still in Beta1. I am having trouble with the "action" attribute of the form.
I am unable to set it, whatever changes I make in the ASPX file do not get reflected when the page
is loaded in IE - the attribute gets overwritten. Please help, we have not been able to get much feed-
back on this.

Comments:

• Please mark your comments in place on a paper copy of the chapter.

• Please return only marked pages to Deitel & Associates, Inc.

• Please do not send us e-mails with detailed, line-by-line comments; mark these directly on the pa-
per pages.

• Please feel free to send any lengthy additional comments by e-mail to cheryl.yaeger@dei-
tel.net.

• Please run all the code examples.

• Please check that we are using the correct programming idioms.

• Please check that there are no inconsistencies, errors or omissions in the chapter discussions.

• The manuscript is being copyedited by a professional copy editor in parallel with your reviews.
That person will probably find most typos, spelling errors, grammatical errors, etc.

• Please do not rewrite the manuscript. We are concerned mostly with technical correctness and cor-
rect use of idiom. We will not make significant adjustments to our writing style on a global scale.
Please send us a short e-mail if you would like to make such a suggestion.

• Please be constructive. This book will be published soon. We all want to publish the best possible
book.

• If you find something that is incorrect, please show us how to correct it.

• Please read all of the back matter including the exercises and any solutions we provide.

• Please review the index we provide with each chapter to be sure we have covered the topics you
feel are important.

Index 1

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Symbols
%> tag 975
<% tag 975

A
Active Server Pages 969
ActiveX component 968
Ad attribute in XML file 980
Add method of class HttpSes-

sionState 999
ADODataSetCommand class

1001
AdRotator class 978, 979
AdvertisementFile

property of class AdRota-
tor 979

AlternateText attribute in
XML file 980

application tracing 1016
ASP 969
ASP.NET 969, 972, 1016
ASP.NET page 973, 975
ASP.NET Web Application

project 972
aspx file extension 973
AutoEventWireup attribute of

ASP.NET pages 975

B
Button class of namespace

System.Web.UI.Web-
Controls 981

C
caching Web pages 969
CheckBox class of namespace

System.Web.UI.Web-
Controls 981

CheckBoxList class 981
client-side script 975, 1010
code-behind file 969, 973
CommandText property of class

ADOCommand 1003
CompareValidator class 981
ControlToValidate

property of class Regu-
larExpressionVali-
dator 983

cookie 1018
cookieless property of ses-

sionState element in
Web.config 1019

cookieless session state 1018

CustomValidator class 982

D
debugging 1016
discovery file for ASP.NET 969
DNS lookup 970
Document property of ASP.NET

pages 973
domain name server (DNS) 970
DropDownList class 999

E
enabled property of trace

element in Web.config
1018

ErrorMessage property of
class RegularExpres-
sionValidator 983

F
FileStream class 996
FlowLayout mode of page-

Layout property of
ASP.NET pages 973

G
GridLayout mode of page-

Layout property of
ASP.NET pages 973, 1019

H
host 970
hostname 970
HTML (HyperText Markup

Language) 970
HTML code 975
HTML tag 970
HtmlGenericControl class

997
HTTP (HyperText Transfer

Protocol) 970
HTTP header 972
HTTP method 971
HTTP request type 969
HttpRequest class 973
HttpResponse class 973
HttpSessionState class 973
HyperLink class 981
HyperText Markup Language

(HTML) 970
HyperText Transfer Protocol

(HTTP) 970

I
IIS Web Server 972
image/gif MIME type 972
ImageUrl attribute in XML file

980
Impressions attribute in XML

file 980
Indexer of class HttpSes-

sionState 999
Inherits attribute of ASP.NET

pages 975, 1015
Init event of class Page 975,

977
InitializeComponent 977
instant page content builder 997
IOException class 997
IP address 970

L
LinkButton class 981
LiteralControl class 996
Load even of class Page 977

M
markup 970
MIME type 972
MIME type image/gif 972
MIME type text/html 972
MIME type text/txt 972

N
NavigateUrl attribute in XML

file 980
NavigateUrl property of class

HyperLink 997
.NET Framework 969

O
online guestbook 988

P
Page class 973
page tracing 1016
pageLayout property of

ASP.NET pages 973
path to a resource 970
physical path on the server 999
postback 987
processing directives in ASP.NET

pages 975
Properties window 973

2 Index

© Copyright 1992– 2002 by Deitel & Associates, Inc. All Rights Reserved. 7/17/01

Q
QueryString property of class

HttpRequest 1005

R
RadioButtonList class 981
RangeValidator class 982
ReadToEnd method of class

StreamReader 996
RegularExpressionVali-

dator class 982
request method 969
Request property of classPage

973
RequiredFieldValidator

class 981
Response property of class

Page 973, 999

S
scripting engine 968
SelectCommand property of

class ADODataSetCom-
mand 1003

server root directory 999
server-side include (SSI) 999
Session property of class Page

973
session variable 973, 1005
sessionState element of

Web.config 1019
.sln solution file 972
SSI statement 999
static documents 968
StreamReader class 996
StreamWriter class 996
System.Web.UI 973
System.Web.UI.WebCon-

trols namespace 973
System.Windows.Forms

namespace 973

T
Table class of namespace Sys-

tem.Web.UI.WebCon-
trols 981, 996

TableCell class 996
TableRow class 996
tag 970
Text property of class Hyper-

Link 997
text/html MIME type 972
text/txt MIME type 972

TextBox class of namespace
System.Web.UI.Web-
Controls 981

title HTML element (<ti-
tle>…</title>) 970

Toolbox 973

trace element in Web.config
1018

trace property of an ASP.NET
page 1016

Trace property of class Page
1016

trace.axd file 1018

TraceContext class 1016

tracing 1016

U
URL (Universal Resource

Locator) 970

V
validating information 982

ValidationExpression
property of class Regu-
larExpressionVali-
dator 983

validator 982

virtual directory 970

virtual in the SSI 999

virtual path 999

vsdisco file extension 969

W
Warn method of class Trace-

Context 1016

Web Form 973, 978

Web.config file 1018

Write method of class HttpRe-
sponse 999, 1013, 1016

Write method of class Trace-
Context 1016

21
ASP .NET and Web

Services

Objectives
• To understand what a Web service is.
• To be able to create Web services.
• To understand the elements that comprise a Web

service, such as service descriptions and discovery
files.

• To be able to create a client that uses a Web service.
• To be able to use Web services with Windows and

Web applications.
• To understand session tracking in Web services.
• To be able to pass user-defined data types between

Web services and Web clients.
A client is to me a mere unit, a factor in a problem.
Sir Arthur Conan Doyle

...if the simplest things of nature have a message that you
understand, rejoice, for your soul is alive.
Eleonora Duse

Protocol is everything.
Francoise Giuliani

They also serve who only stand and wait.
John Milton

1040 ASP .NET and Web Services Chapter 21

21.1 Introduction1

Throughout this book, we have created dynamic link libraries (DLLs) to facilitate software
reusability and modularity—the cornerstones of good object-oriented programming. How-
ever, the use of DLLs is limited by the fact that DLLs must reside on the same machine as
the programs that use them. This chapter introduces the use of Web services (sometimes
called XML Web services) to promote software reusability in distributed systems. Distrib-
uted-systems technologies allow applications to execute across multiple computers on a
network. A Web service is an application that enables distributed computing by allowing
one machine to call methods on other machines via common data formats and protocols,
such as XML and HTTP. In .NET, these method calls are implemented using the Simple
Object Access Protocol (SOAP), an XML-based protocol describing how to mark up re-
quests and responses so that they can be transferred via protocols such as HTTP. Using
SOAP, applications represent and transmit data in a standardized format—XML. The un-
derlying implementation of the Web service is irrelevant to clients using the Web service.

Microsoft is encouraging software vendors and e-businesses to deploy Web services.
As more and more people worldwide connect to the Internet via networks, applications that
call methods across a network becomes more practical. Earlier in this text, we discussed the
merits of object-oriented programming. Web services represents the next step in object-ori-
ented programming: Instead of developing software from a small number of class libraries
provided at one location, programmers can access countless libraries in multiple locations.

This technology also makes it easier for businesses to collaborate and grow together.
By purchasing Web services that are relevant to their businesses, companies that create
applications can spend less time coding and more time developing new products from
existing components. In addition, e-businesses can employ Web services to provide their
customers with an enhanced shopping experience. As a simple example, consider an online
music store that enables users to purchase music CDs or to obtain information about artists.
Now, suppose another company that sells concert tickets provides a Web service that deter-
mines the dates of upcoming concerts by various artists and allows users to buy concert

Outline

21.1 Introduction
21.2 Web Services
21.3 Simple Object Access Protocol (SOAP) and Web Services
21.4 Publishing and Consuming Web Services
21.5 Session Tracking in Web Services
21.6 Using Web Forms and Web Services
21.7 Case Study: Temperature Information Application
21.8 User-Defined Types in Web Services

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Internet Information Services (IIS) must be running to create a Web service in Visual Studio.

Chapter 21 ASP .NET and Web Services 1041

tickets. By licensing the concert-ticket Web service for use on its site, the online music
store can sell concert tickets to its customers, which likely will result in increased traffic to
its site. The company that sells concert tickets also benefits from the business relationship.
In addition to selling more tickets, the company receives revenue from the online music
store in exchange for the use of its Web service.

Visual Studio and the .NET Framework provide a simple way to create Web services
like the one discussed in this example. In this chapter, we explore the steps involved in both
the creation and accessing of Web services. For each example, we provide the code for the
Web service, then give an example of an application that might use the Web service. Our
initial examples are designed to offer a brief introduction to Web services and how they
work in Visual Studio. In later sections, we move on to demonstrate more sophisticated
Web services.

21.2 Web Services
A Web service is an application stored on one machine that can be accessed on another ma-
chine over a network. Due to the nature of this relationship, the machine on which the Web
service resides commonly is referred to as a remote machine. The application that accesses
the Web service sends a method call to the remote machine, which processes the call and
sends a response to the application. This kind of distributed computing benefits various sys-
tems, including those without access to certain data and those lacking the processing power
necessary to perform specific computations.

A Web service is, in its simplest form, a class. In previous chapters, when we wanted
to include a class in a project, we would either define the class in our project or add a ref-
erence to the compiled DLL. This compiled DLL is placed in the bin directory of an appli-
cation by default. As a result, all pieces of our application reside on one machine. When
using Web services, the class (and its compiled DLL) we wish to include in our project are
stored on a remote machine—a compiled version of this class is not placed in the current
application.

Methods in a Web service are remotely invoked using a Remote Procedure Call
(RPC). These methods, which are marked with the WebMethod attribute, often are
referred to as Web-service methods. Declaring a method with this attribute makes the
method accessible to other classes via an RPC. The declaration of a Web-service method
with attribute WebMethod is known as exposing the method, or enabling it to be called
remotely.

Common Programming Error 21.1
Attempting to call a remote method from a Web service if the method is not declared with the
WebMethod attribute is a compilation error. 21.1

Most requests to and responses from Web services are transmitted via SOAP. This
means that any client capable of generating and processing SOAP messages can use a Web
service, regardless of the language in which the Web service is written.

Web services have important implications for business-to-business (B2B) transac-
tions, (i.e., transactions that occur between two or more businesses). Now, instead of using
proprietary applications, businesses can conduct transactions via Web services—a much
simpler and more efficient means of conducting business. Because Web services and SOAP

1042 ASP .NET and Web Services Chapter 21

are platform-independent, companies can collaborate and use Web services without wor-
rying about the compatibility of various technologies or programming languages. In this
way, Web services are an inexpensive, readily-available solution to facilitate B2B transac-
tions.

A Web service created in Visual Studio .NET has two parts: An ASMX file and a code-
behind file. The ASMX file by default can be viewed in any Web browser and contains
valuable information about the Web service, such as descriptions of Web-service methods
and ways to test these methods. The code-behind file provides the implementation for the
methods that the Web service encompasses. Figure 21.1 depicts Internet Explorer ren-
dering an ASMX file.

The top of the page provides a link to the Web service’s Service Description. A ser-
vice description is an XML document that conforms to the Web Service Description Lan-
guage (WSDL), an XML vocabulary that defines the methods that the Web service makes
available and the ways in which clients can interact with those methods. The WSDL docu-
ment also specifies lower-level information that clients might need, such as the required
formats for requests and responses. Visual Studio .NET generates the WSDL service
description. Client programs can use the service description to confirm the correctness of
method calls when the client programs are compiled.

The programmer should not alter the service description, as it defines how a Web ser-
vice works. When a user clicks the Service Description link at the top of the ASMX
page, WSDL is displayed that defines the service description for this Web service
(Fig. 21.2).

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 ASMX file rendered in Internet Explorer.

Link to service
description

Links to Web-
service methods

Chapter 21 ASP .NET and Web Services 1043

Below the Service Description link, the Web page shown in Fig. 21.1 lists the
methods that the Web service provides (i.e., all methods in the application that are declared
with WebMethod attributes). Clicking any method name requests a test page that describes
the method (Fig. 21.3). After explaining the method’s arguments, the test page allows users
to test the method by entering the proper parameters and clicking Invoke. (We discuss the
process of testing a Web-service method shortly.) Below the Invoke button, the page dis-
plays sample request and response messages using SOAP, HTTP GET and HTTP POST.
These protocols are the three options for sending and receiving messages in Web services.
The protocol used to transmit request and response messages is sometimes known as the
Web service’s wire protocol or wire format, because the protocol specifies how informa-
tion is sent “along the wire.” Notice that Fig. 21.3 uses the HTTP GET protocol to test a
method. Later in this chapter, when we use Web services in our C# programs, we use SOAP
as the wire protocol. The advantages to using SOAP over HTTP GET and HTTP POST are
discussed in the next section.

On the page depicted in Fig. 21.3, users can test a method by entering Values in the
first: and second: fields and then clicking Invoke (in this example, we tested method
Bigger). The method executes, and a new Web browser window opens to display an
XML document containing the result (Fig. 21.4). Now that we have introduced a simple
example using a Web service, the next several sections explore the role of XML in Web
services, as well as other aspects of Web service functionality.

Fig. 21.2Fig. 21.2Fig. 21.2Fig. 21.2 Service description for a Web service.

1044 ASP .NET and Web Services Chapter 21

Testing and Debugging Tip 21.1
Using the ASMX page of a Web service to test and debug methods makes that Web service
more reliable and robust; it also reduces the likelihood that clients using the Web service will
encounter errors. 21.1

21.3 Simple Object Access Protocol (SOAP) and Web Services
The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses
XML to make remote-procedure calls over HTTP. Each request and response is packaged in

Fig. 21.3Fig. 21.3Fig. 21.3Fig. 21.3 Invoking a method of a Web service from a Web browser.

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Results of invoking a Web-service method from a Web browser.

Chapter 21 ASP .NET and Web Services 1045

a SOAP message—an XML message that contains all the information necessary to process
its contents. SOAP messages are quite popular, because they are written in the easy-to-un-
derstand and platform-independent XML. Similarly, HTTP was chosen to transmit SOAP
messages, because HTTP is a standard protocol for sending information across the Internet.
The use of XML and HTTP enables different operating systems to send and receive SOAP
messages. Another benefit of HTTP is that it can be used with networks that contain fire-
walls—security barriers that restrict communication among networks.

SOAP supports an extensive set of data types. Readers should note that the wire format
used to transmit requests and responses must support all data types passed between the
applications. Web services that use SOAP support a wider variety of data types than do
Web services that employ other wire formats. The data types supported by SOAP include
most basic data types, as well as DataSet, DateTime, XmlNode and several others.
SOAP also permits the transmission of arrays of all these types. In addition, user-defined
types can be used—we demonstrate how to do this in Section 21.8.

Applications send requests and responses to and from Web services via SOAP. When
a program invokes a Web-service method, the request and all relevant information are
packaged in a SOAP message and sent to the appropriate destination. When the Web ser-
vice receives the SOAP message, it begins to process the contents (called the SOAP enve-
lope), which specifies the method that the client wishes to execute and the arguments the
client is passing to that method. After the Web service receives this request and parses it,
the proper method is called with the specified arguments (if there are any), and the response
is sent back to the client in another SOAP message. The client parses the response to
retrieve the result of the method call.

The SOAP request portrayed in Fig. 21.5 was taken directly from the Bigger method
of the HugeInteger Web service (Fig. 21.3). This Web service provides programmers
with several methods that manipulate integers larger than those that can be stored in a long
variable. Most programmers do not manipulate SOAP messages, allowing the Web service
to handle the details of transmission.

Figure 21.5 displays a standard SOAP request that is created when a client wishes to
execute the HugeInteger Web service’s method Bigger. When a request to a Web ser-
vice causes such a SOAP request to be created, the elements first and second’s char-
acter data (strings) would contain the actual values that the user entered (lines 16–17).
If this envelope contained the request from Fig. 21.3, element first and element
second would contain the values entered in Fig. 21.3. Placeholder length would con-
tain the length of this SOAP message.

1 POST /HugeIntegerWebService/HugeInteger.asmx HTTP/1.1
2 Host: localhost
3 Content-Type: text/xml; charset=utf-8
4 Content-Length: length
5 SOAPAction: "http://www.deitel.com/csphtp1/ch21/Bigger"
6
7 <?xml version="1.0" encoding="utf-8"?>
8
9 <soap:Envelope

10 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 SOAP request for the HugeInteger Web service. (Part 1 of 2.)

1046 ASP .NET and Web Services Chapter 21

21.4 Publishing and Consuming Web Services
This section presents several examples of creating (also known as publishing) and using
(also known as consuming) a Web service. An application that consumes a Web service ac-
tually consists of two parts: A proxy class that represents the Web service and a client ap-
plication that accesses the Web service via an instance of the proxy class. The proxy class
handles the transferral of the arguments for the Web-service method from the client appli-
cation to the Web service, as well as the transferral of the result from the Web-service meth-
od back to the client application. Visual Studio can generate proxy classes—we
demonstrate how to do this momentarily.

Figure 21.6 presents the code-behind file for the HugeInteger Web service
(Fig. 21.1). The name of the Web service is based on the name of the class that defines it
(in this case, HugeInteger). This Web service is designed to perform calculations with
integers that contain a maximum of 100 digits. As we mentioned earlier, long variables
cannot handle integers of this size (i.e., an overflow would occur). The Web service pro-
vides a client with methods that take two “huge integers” and determine which one is larger
or smaller, whether the two numbers are equal, their sum or their difference. The reader can
think of these methods as services that one application provides for the programmers of
other applications (hence the term, “Web services”). Any programmer can access this Web
service, use its methods and thus avoid the writing of over 200 lines of code. In the
remaining examples, we hide portions of the Visual Studio generated code in the code-
behind files. We do this both for brevity and for presentation purposes.

11 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
12 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
13
14 <soap:Body>
15 <Bigger xmlns="http://www.deitel.com/csphtp1/ch21/">
16 <first>string</first>
17 <second>string</second>
18 </Bigger>
19 </soap:Body>
20
21 </soap:Envelope>

1 // Fig. 21.6: HugeInteger.asmx.cs
2 // HugeInteger Web Service.
3
4 using System;
5 using System.Text;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Data;
9 using System.Diagnostics;

10 using System.Web;
11 using System.Web.Services; // contains Web service related classes

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 HugeInteger Web service. (Part 1 of 6.)

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 SOAP request for the HugeInteger Web service. (Part 2 of 2.)

Chapter 21 ASP .NET and Web Services 1047

12
13 namespace HugeIntegerWebService
14 {
15 /// <summary>
16 /// performs operations on large integers
17 /// </summary>
18 [WebService(
19 Namespace = "http://www.deitel.com/csphtp1/ch21/",
20 Description = "A Web service which provides methods that" +
21 " can manipulate large integer values.")]
22 public class HugeInteger : System.Web.Services.WebService
23 {
24 // default constructor
25 public HugeInteger()
26 {
27 // CODEGEN: This call is required by the ASP .NET Web
28 // Services Designer
29 InitializeComponent();
30
31 number = new int[MAXIMUM];
32 }
33
34 #region Component Designer generated code
35 /// <summary>
36 /// Required method for Designer support - do not modify
37 /// the contents of this method with the code editor.
38 /// </summary>
39 private void InitializeComponent()
40 {
41 }
42 #endregion
43
44 /// <summary>
45 /// Clean up any resources being used.
46 /// </summary>
47 protected override void Dispose(bool disposing)
48 {
49 }
50
51 // WEB SERVICE EXAMPLE
52 // The HelloWorld() example service returns
53 // the string Hello World
54 // To build, uncomment the following lines
55 // then save and build the project
56 // To test this web service, press F5
57
58 // [WebMethod]
59 // public string HelloWorld()
60 // {
61 // return "Hello World";
62 // }
63
64 private const int MAXIMUM = 100;

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 HugeInteger Web service. (Part 2 of 6.)

1048 ASP .NET and Web Services Chapter 21

65
66 public int[] number;
67
68 // indexer that accepts an integer parameter
69 public int this[int index]
70 {
71 get
72 {
73 return number[index];
74 }
75
76 set
77 {
78 number[index] = value;
79 }
80
81 } // end indexer
82
83 // returns string representation of HugeInteger
84 public override string ToString()
85 {
86 StringBuilder returnString = new StringBuilder();
87
88 foreach (int digit in number)
89 returnString.Insert(0, digit);
90
91 return returnString.ToString();
92 }
93
94 // creates HugeInteger based on argument
95 public static HugeInteger FromString(string integer)
96 {
97 HugeInteger parsedInteger = new HugeInteger();
98
99 for (int i = 0; i < integer.Length; i++)
100 parsedInteger[i] = Int32.Parse(
101 integer[integer.Length - i - 1].ToString());
102
103 return parsedInteger;
104 }
105
106 // WebMethod that performs integer addition
107 // represented by string arguments
108 [WebMethod (Description = "Adds two huge integers.")]
109 public string Add(string first, string second)
110 {
111 int carry = 0;
112
113 HugeInteger operand1 = HugeInteger.FromString(first);
114 HugeInteger operand2 =
115 HugeInteger.FromString(second);
116

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 HugeInteger Web service. (Part 3 of 6.)

Chapter 21 ASP .NET and Web Services 1049

117 // store result of addition
118 HugeInteger result = new HugeInteger();
119
120 // perform addition algorithm for each digit
121 for (int i = 0; i < MAXIMUM; i++)
122 {
123 // add two digits in same column
124 // result is their sum, plus carry from
125 // previous operation modulus 10
126 result[i] =
127 (operand1[i] + operand2[i]) % 10 + carry;
128
129 // store remainder of dividing
130 // sums of two digits by 10
131 carry = (operand1[i] + operand2[i]) / 10;
132 }
133
134 return result.ToString();
135
136 } // end method Add
137
138 // WebMethod that performs the subtraction of integers
139 // represented by string arguments
140 [WebMethod (
141 Description = "Subtracts two huge integers.")]
142 public string Subtract(string first, string second)
143 {
144 HugeInteger operand1 = HugeInteger.FromString(first);
145 HugeInteger operand2 =
146 HugeInteger.FromString(second);
147 HugeInteger result = new HugeInteger();
148
149 // subtract top digit from bottom digit
150 for (int i = 0; i < MAXIMUM; i++)
151 {
152 // if top digit is smaller than bottom
153 // digit we need to borrow
154 if (operand1[i] < operand2[i])
155 Borrow(operand1, i);
156
157 // subtract bottom from top
158 result[i] = operand1[i] - operand2[i];
159 }
160
161 return result.ToString();
162
163 } // end method Subtract
164
165 // borrows 1 from next digit
166 private void Borrow(HugeInteger integer, int place)
167 {

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 HugeInteger Web service. (Part 4 of 6.)

1050 ASP .NET and Web Services Chapter 21

168 // if no place to borrow from, signal problem
169 if (place >= MAXIMUM - 1)
170 throw new ArgumentException();
171
172 // otherwise if next digit is zero,
173 // borrow from digit to left
174 else if (integer[place + 1] == 0)
175 Borrow(integer, place + 1);
176
177 // add ten to current place because we borrowed
178 // and subtract one from previous digit -
179 // this is digit borrowed from
180 integer[place] += 10;
181 integer[place + 1] -= 1;
182
183 } // end method Borrow
184
185 // WebMethod that returns true if first integer is
186 // bigger than second
187 [WebMethod (Description = "Determines whether first " +
188 "integer is larger than the second integer.")]
189 public bool Bigger(string first, string second)
190 {
191 char[] zeroes = { '0' };
192
193 try
194 {
195 // if elimination of all zeroes from result
196 // of subtraction is an empty string,
197 // numbers are equal, so return false,
198 // otherwise return true
199 if (Subtract(first, second).Trim(zeroes) == "")
200 return false;
201 else
202 return true;
203 }
204
205 // if ArgumentException occurs, first number
206 // was smaller, so return false
207 catch (ArgumentException)
208 {
209 return false;
210 }
211
212 } // end method Bigger
213
214 // WebMethod returns true if first integer is
215 // smaller than second
216 [WebMethod (Description = "Determines whether the " +
217 "first integer is smaller than the second integer.")]
218 public bool Smaller(string first, string second)
219 {

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 HugeInteger Web service. (Part 5 of 6.)

Chapter 21 ASP .NET and Web Services 1051

Line 13 places class HugeInteger in namespace HugeIntegerWebService.
Line 19 assigns the Web service namespace to www.deitel.com/csphtp1/ch21/
to uniquely identify this Web service. The namespace is specified using the Namespace
property of the WebService attribute. In lines 20–21, we use property Description
to provide information about our Web service that appears in the ASMX file. Line 22 spec-

220 // if second is bigger than first, then first is
221 // smaller than second
222 return Bigger(second, first);
223 }
224
225 // WebMethod that returns true if two integers are equal
226 [WebMethod (Description = "Determines whether the " +
227 "first integer is equal to the second integer.")]
228 public bool EqualTo(string first, string second)
229 {
230 // if either first is bigger than second, or first is
231 // smaller than second, they are not equal
232 if (Bigger(first, second) ||
233 Smaller(first, second))
234 return false;
235 else
236 return true;
237 }
238
239 } // end class HugeInteger
240
241 } // end namespace HugeIntegerWebService

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 HugeInteger Web service. (Part 6 of 6.)

1052 ASP .NET and Web Services Chapter 21

ifies that our class derives from System.Web.Services.WebService. By default,
Visual Studio defines our Web service so that it inherits from the WebService class.
Although a Web service class is not required to subclass WebService, class WebSer-
vice provides members that are useful in determining information about the client and the
Web service itself. Several methods in class HugeInteger are tagged with the Web-
Method attribute, which exposes the method such that it can be called remotely. When this
attribute is absent, the method is not accessible through the Web service. Notice that the
WebMethod attribute, like the WebService attribute, contains a Description prop-
erty, which provides information about the method to the ASMX page. Readers can see
these descriptions in the output of Fig. 21.6.

Good Programming Practice 21.1
Specify a namespace for each Web service so that it can be uniquely identified. 21.1

Good Programming Practice 21.2
Specify descriptions for all Web services and Web-service methods so that clients can obtain
additional information about the Web service and its contents. 21.2

Common Programming Error 21.2
Web-service methods cannot be declared static, or a runtime error will occur when at-
tempting to view the ASMX page. For a client to access a Web-service method, an instance
of that Web service must exist. 21.2

Lines 69–81 define an indexer for our class. This enables us to access any digit in
HugeInteger as if we were accessing it through array number. Lines 108–136 and
142–163 define WebMethods Add and Subtract, which perform addition and subtrac-
tion, respectively. Method Borrow (lines 166–183) handles the case in which the digit in
the left operand is smaller than the corresponding digit in the right operand. For instance,
when we subtract 19 from 32, we usually go digit by digit, starting from the right. The
number 2 is smaller than 9, so we add 10 to 2 (resulting in 12), which subtracts 9, resulting
in 3 for the rightmost digit in the solution. We then subtract 1 from the next digit over (3),
making it 2. The corresponding digit in the right operand is now the “1” in 19. The subtrac-
tion of 1 from 2 is 1, making the corresponding digit in the result 1. The final result, when
both resulting digits are combined, is 13. Method Borrow adds 10 to the appropriate digits
and subtracts 1 from the digit to the left. Because this is a utility method that is not intended
to be called remotely, it is not qualified with attribute WebMethod.

The screen capture in Fig. 21.6 is identical to the one in Fig. 21.1. A client application
can invoke only the five methods listed in the screen shot (i.e., the methods qualified with
the WebMethod attribute).

Now, let us demonstrate how to create this Web service. To begin, we must create a
project of type ASP.NET Web Service. Like Web Forms, Web services are by default
placed in the Web server’s wwwroot directory on the server (localhost). By default,
Visual Studio places the solution file (.sln) in the Visual Studio Projects folder,
in a directory for the solution. (The Visual Studio Projects folder is usually located
in the My Documents folder.)

Notice that, when the project is created, the code-behind file is displayed in design
view by default (Fig. 21.7). If this file is not open, it can be opened by clicking

Chapter 21 ASP .NET and Web Services 1053

Service1.asmx. The file that will be opened, however, is Service1.asmx.cs (the
code-behind file for our Web service). This is because, when creating Web services in
Visual Studio, programmers work almost exclusively in the code-behind file. In fact, if a
programmer were to open the ASMX file, it would contain only the lines:

<%@ WebService Language="c#" Codebehind="Service1.asmx.cs"
 Class="WebService1.Service1" %>

indicating the name of the code-behind file, the programming language in which the code-
behind file is written and the class that defines our Web service. This is the extent of the
information that this file must contain. [Note: By default, the code-behind file is not listed
in the Solution Explorer. The code-behind file is displayed when the ASMX file is dou-
ble clicked in the Solution Explorer. This file can be listed in the Solution Explorer
by clicking the icon to show all files.]

It might seem strange that there is a design view for Web services, given that Web ser-
vices do not have graphical user interfaces. A design view is provided because more sophis-
ticated Web services contain methods that manipulate more than just strings or numbers.
For example, a Web-service method could manipulate a database. Instead of typing all the
code necessary to create a database connection, developers can simply drop the proper
ADO .NET components into the design view and manipulate them as we would in a Win-
dows or Web application. We show an example of this in Section 21.6.

Now that we have defined our Web service, we demonstrate how to use it. First, a
client application must be created. In this first example, we create a Windows application
as our client. Once this application has been created, the client must add a proxy class for
accessing the Web service. A proxy class (or proxy) is a class created from the Web ser-
vice’s WSDL file that enables the client to call Web-service methods over the Internet. The
proxy class handles all the “plumbing” required for Web-service method calls. Whenever
a call is made in the client application to a Web-service method, the application actually
calls a corresponding method in the proxy class. This method takes the name of the method
and its arguments, then formats them so that they can be sent as a request in a SOAP mes-
sage. The Web service receives this request and executes the method call, sending back the
result as another SOAP message. When the client application receives the SOAP message
containing the response, the proxy class decodes it and formats the results so that they are
understandable to the client. This information then is returned to the client. It is important
to note that the proxy class essentially is hidden from the programmer. We cannot, in fact,
view it in the Solution Explorer unless we choose to show all the files. The purpose of
the proxy class is to make it seem to clients as though they are calling the Web-service
methods directly. It is rarely necessary for the client to view or manipulate the proxy class.

The next example demonstrates how to create a Web service client and its corre-
sponding proxy class. We must begin by creating a project and adding a Web reference to
that project. When we add a Web reference to a client application, the proxy class is created.
The client then creates an instance of the proxy class, which is used to call methods
included in the Web service.

To create a proxy in Visual Studio, right click the References folder in Solution
Explorer and select Add Web Reference (Fig. 21.8). In the Add Web Reference
dialog that appears (Fig. 21.9), enter the Web address of the Web service and press Enter.
In this chapter, we store the Web service in the root directory of our local Web server

1054 ASP .NET and Web Services Chapter 21

(http://localhost, whose physical path is C:\Inetpub\wwwroot). We now can
add a Web reference by clicking the link Web References on Local Web Server
(Fig. 21.9). Next, we select the appropriate Web service from the list of Web services
located on localhost (Fig. 21.10). Notice that each Web service is listed as a file with
the extension .vsdisco that is located in the directory for the Web service project. Files
with the extension .disco or .vsdisco are known as discovery files. We discuss dis-
covery files, as well as the distinctions between .disco files and .vsdisco files, later
in this section. Once a Web service is chosen the description of that Web service appears,
and the developer can click Add Reference (Fig. 21.11). This adds to the Solution
Explorer (Fig. 21.12) a Web References folder with a node named for the domain
where the Web service is located. In this case, the name is localhost, because we are
using the local Web server. This means that, when we reference class HugeInteger, we
will be doing so through class HugeInteger in namespace localhost, instead of class
HugeInteger in namespace HugeIntegerWebService [Note: The Web service
class and the proxy class have the same name. Visual Studio generates a proxy for the Web
service and adds it as a reference (Fig. 21.12).]

Good Programming Practice 21.3
When creating a program that will use Web services, add the Web reference first. This will
enable Visual Studio to recognize an instance of the Web service class, allowing Intellisense
to help the developer use the Web service. 21.3

The steps that we described previously work well if the programmer knows the appro-
priate Web services reference. However, what if we are trying to locate a new Web service?
There are two technologies that facilitate this process: Universal Description, Discovery
and Integration (UDDI) and Discovery files (DISCO). UDDI is a project for developing a

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 Design view of a Web service.

Chapter 21 ASP .NET and Web Services 1055

set of specifications that define how Web services should be published so that programmers
searching for Web services can find them. Microsoft began this ongoing project to facilitate
the locating of Web services that conform to certain specifications, allowing programmers
to find different Web services using search engines. UDDI organizes and describes Web
services and then places this information in a central location. Although UDDI is beyond
the scope of what we are teaching, the reader can learn more about this project and view a
demonstration by visiting www.uddi.org and uddi.microsoft.com. These sites
contain search tools that make finding Web services fast and easy.

Fig. 21.8Fig. 21.8Fig. 21.8Fig. 21.8 Adding a Web service reference to a project.

Fig. 21.9Fig. 21.9Fig. 21.9Fig. 21.9 Add Web Reference dialog.

Link to root directory
of local Web server

1056 ASP .NET and Web Services Chapter 21

Fig. 21.10Fig. 21.10Fig. 21.10Fig. 21.10 Web services located on localhost.

Fig. 21.11Fig. 21.11Fig. 21.11Fig. 21.11 Web reference selection and description.

Chapter 21 ASP .NET and Web Services 1057

A DISCO file catalogs Web services in a particular directory. There are two types of
discovery files: Dynamic discovery files (with a .vsdisco extension) and static dis-
covery files (with a .disco extension). These files indicate both the location of the
ASMX file and the service description (a WSDL file) for each Web service in the current
directory, as well as any Web services in the current directory’s subdirectories. When a pro-
grammer creates a Web service, Visual Studio generates a dynamic discovery file for that
Web service. When a Web reference is added, the client uses the dynamic discovery file to
select the desired Web service, as demonstrated in Fig. 21.10. Once the Web reference is
created, a static discovery file is placed in the client’s project. The static discovery file hard
codes the location for the ASMX and WSDL files. (By “hard code”, we mean that the loca-
tion is entered directly into the file.) Dynamic discovery files, on the other hand, are created
such that a list of Web services is created dynamically on the server when a client is
searching for a Web service. The use of dynamic discovery enables certain extra options,
such as hiding of certain Web services in subdirectories. Discovery files are a Microsoft-
specific technology, whereas UDDI is not. However, the two can work together to enable
a client to find a Web service. Using both technologies, the client can use a search engine
to find a location with various Web services on a topic, and then use discovery files to view
all the Web services in that location.

Once the Web reference is added, the client can access the Web service through our
proxy. Because our proxy class is named HugeInteger and is located in namespace
localhost, we must use localhost.HugeInteger to reference this class. The
Windows Form in Fig. 21.13 uses the HugeInteger Web service to perform computa-
tions with positive integers up to 100 digits long. [Note: If using the example on this book’s
CD, the reader might need to regenerate the proxy.]

Fig. 21.12Fig. 21.12Fig. 21.12Fig. 21.12 Solution Explorer after adding a Web reference to a project.

1 // Fig. 21.13: UsingHugeIntegerService.cs
2 // Using the HugeInteger Web Service.
3

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using the HugeInteger Web service. (Part 1 of 6.)

Web service
discovery file

Service description

Proxy class

1058 ASP .NET and Web Services Chapter 21

4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Web.Services.Protocols;

10
11 // allows user to perform operations on large integers
12 public class UsingHugeIntService : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Label promptLabel;
15 private System.Windows.Forms.Label resultLabel;
16
17 private System.Windows.Forms.TextBox firstTextBox;
18 private System.Windows.Forms.TextBox secondTextBox;
19
20 private System.Windows.Forms.Button addButton;
21 private System.Windows.Forms.Button subtractButton;
22 private System.Windows.Forms.Button biggerButton;
23 private System.Windows.Forms.Button smallerButton;
24 private System.Windows.Forms.Button equalButton;
25
26 private System.ComponentModel.Container components = null;
27
28 // declare a reference Web service
29 private localhost.HugeInteger remoteInteger;
30
31 private char[] zeroes = { '0' };
32
33 // default constructor
34 public UsingHugeIntService()
35 {
36 InitializeComponent();
37
38 // instantiate remoteInteger
39 remoteInteger = new localhost.HugeInteger();
40 }
41
42 // Visual Studio .NET generated code
43
44 [STAThread]
45 static void Main()
46 {
47 Application.Run(new UsingHugeIntService());
48
49 } // end Main
50
51 // checks whether two numbers user input are equal
52 protected void equalButton_Click(
53 object sender, System.EventArgs e)
54 {

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using the HugeInteger Web service. (Part 2 of 6.)

Chapter 21 ASP .NET and Web Services 1059

55 // make sure HugeIntegers do not exceed 100 digits
56 if (CheckSize(firstTextBox, secondTextBox))
57 return;
58
59 // call Web-service method to determine
60 // whether integers are equal
61 if (remoteInteger.EqualTo(
62 firstTextBox.Text, secondTextBox.Text))
63
64 resultLabel.Text =
65 firstTextBox.Text.TrimStart(zeroes) +
66 " is equal to " +
67 secondTextBox.Text.TrimStart(zeroes);
68 else
69 resultLabel.Text =
70 firstTextBox.Text.TrimStart(zeroes) +
71 " is NOT equal to " +
72 secondTextBox.Text.TrimStart(zeroes);
73
74 } // end method equalButton_Click
75
76 // checks whether first integer input
77 // by user is smaller than second
78 protected void smallerButton_Click(
79 object sender, System.EventArgs e)
80 {
81 // make sure HugeIntegers do not exceed 100 digits
82 if (CheckSize(firstTextBox, secondTextBox))
83 return;
84
85 // call Web-service method to determine whether first
86 // integer is smaller than second
87 if (remoteInteger.Smaller(
88 firstTextBox.Text, secondTextBox.Text))
89
90 resultLabel.Text =
91 firstTextBox.Text.TrimStart(zeroes) +
92 " is smaller than " +
93 secondTextBox.Text.TrimStart(zeroes);
94 else
95 resultLabel.Text =
96 firstTextBox.Text.TrimStart(zeroes) +
97 " is NOT smaller than " +
98 secondTextBox.Text.TrimStart(zeroes);
99
100 } // end method smallerButton_Click
101
102 // checks whether first integer input
103 // by user is bigger than second
104 protected void biggerButton_Click(
105 object sender, System.EventArgs e)
106 {

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using the HugeInteger Web service. (Part 3 of 6.)

1060 ASP .NET and Web Services Chapter 21

107 // make sure HugeIntegers do not exceed 100 digits
108 if (CheckSize(firstTextBox, secondTextBox))
109 return;
110
111 // call Web-service method to determine whether first
112 // integer is larger than the second
113 if (remoteInteger.Bigger(firstTextBox.Text,
114 secondTextBox.Text))
115
116 resultLabel.Text =
117 firstTextBox.Text.TrimStart(zeroes) +
118 " is larger than " +
119 secondTextBox.Text.TrimStart(zeroes);
120 else
121 resultLabel.Text =
122 firstTextBox.Text.TrimStart(zeroes) +
123 " is NOT larger than " +
124 secondTextBox.Text.TrimStart(zeroes);
125
126 } // end method biggerButton_Click
127
128 // subtract second integer from first
129 protected void subtractButton_Click(
130 object sender, System.EventArgs e)
131 {
132 // make sure HugeIntegers do not exceed 100 digits
133 if (CheckSize(firstTextBox, secondTextBox))
134 return;
135
136 // perform subtraction
137 try
138 {
139 string result = remoteInteger.Subtract(
140 firstTextBox.Text,
141 secondTextBox.Text).TrimStart(zeroes);
142
143 resultLabel.Text = ((result == "") ? "0" : result);
144 }
145
146 // if WebMethod throws an exception, then first
147 // argument was smaller than second
148 catch (SoapException)
149 {
150 MessageBox.Show(
151 "First argument was smaller than the second");
152 }
153
154 } // end method subtractButton_Click
155
156 // adds two integers input by user
157 protected void addButton_Click(
158 object sender, System.EventArgs e)
159 {

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using the HugeInteger Web service. (Part 4 of 6.)

Chapter 21 ASP .NET and Web Services 1061

160 // make sure HugeInteger does not exceed 100 digits
161 // and is not situation where both integers are 100
162 // digits long--result in overflow
163 if (firstTextBox.Text.Length > 100 ||
164 secondTextBox.Text.Length > 100 ||
165 (firstTextBox.Text.Length == 100 &&
166 secondTextBox.Text.Length == 100))
167 {
168 MessageBox.Show("HugeIntegers must not be more "
169 + "than 100 digits\nBoth integers cannot be of"
170 + " length 100: this causes an overflow",
171 "Error", MessageBoxButtons.OK,
172 MessageBoxIcon.Information);
173
174 return;
175 }
176
177 // perform addition
178 resultLabel.Text = remoteInteger.Add(firstTextBox.Text,
179 secondTextBox.Text).TrimStart(zeroes).ToString();
180
181 } // end method addButton_Click
182
183 // determines whether size of integers is too big
184 private bool CheckSize(TextBox first, TextBox second)
185 {
186 if (first.Text.Length > 100 || second.Text.Length > 100)
187 {
188 MessageBox.Show("HugeIntegers must be less than 100"
189 + " digits", "Error", MessageBoxButtons.OK,
190 MessageBoxIcon.Information);
191
192 return true;
193 }
194
195 return false;
196
197 } // end method CheckSize
198
199 } // end class UsingHugeIntegerService

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using the HugeInteger Web service. (Part 5 of 6.)

1062 ASP .NET and Web Services Chapter 21

The user inputs two integers, each up to 100 digits long. The clicking of any button
invokes a remote method to perform the appropriate calculation and return the result. The
return value of each operation is displayed, and all leading zeroes are eliminated using
string method TrimStart. Note that UsingHugeInteger does not have the capa-
bility to perform operations with 100-digit numbers. Instead, it creates string represen-
tations of these numbers and passes them as arguments to Web-service methods that handle
such tasks for us.

21.5 Session Tracking in Web Services
In Chapter 20, ASP .NET, Web Forms and Web Controls, we described the importance of
maintaining information about users to personalize their experiences. In the context of this
discussion, we explored session tracking using cookies and sessions. In this section, we in-
corporate session tracking into a Web service. Sometimes, it makes sense for client appli-
cations to call several methods from the same Web service, and to call some methods
several times. It would be beneficial for the Web service to maintain state information for
the client. Using session tracking can be beneficial, because information that is stored as
part of the session will not need to be passed back and forth between the Web service and
the client. This will not only cause the client application to run faster, but it will require less
effort on the part of the programmer (who likely will have to pass less information to a
Web-service method).

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using the HugeInteger Web service. (Part 6 of 6.)

Chapter 21 ASP .NET and Web Services 1063

Storing session information also can provide for a more intuitive Web service. In the
following example, we create a Web service designed to assist with the computations
involved in playing a game of Blackjack (Fig. 21.14). We then use this Web service to
create a dealer for a game of Blackjack. This dealer handles the details for our deck of cards.
The information is stored as part of the session, so that one set of cards does not get mixed
up with another deck of cards being used by another client application. Our example uses
casino Blackjack rules as follows:

Two cards each are dealt to each the dealer and the player. The player’s cards are dealt face
up. Only one of the dealer’s cards is dealt face up. Then, the player can begin taking addi-
tional cards, one at a time. These cards are dealt face up, and the player decides when to
stop taking cards. If the sum of the player’s cards exceeds 21, the game is over, and the
player loses. When the player is satisfied with the current set of cards, the player “stays”
(i.e., stops taking cards), and the dealer’s hidden card is revealed. If the dealer’s total is less
than 17, the dealer must take another card; otherwise, the dealer must stay. The dealer must
continue to take cards until the sum of the dealer’s cards is greater than or equal to 17. If
the dealer exceeds 21, the player wins. Otherwise, the hand with the higher point total wins.
If both sets of cards have the same point total, the game is a “push” (i.e., a tie), and no one
wins. Finally, if a player’s first two cards total 21, the player immediately wins. This type of
win is known as a “Blackjack.”

The Web service that we create provides methods to deal a card and to count cards in
a hand, determining a value for a specific hand. Each card is represented by a string in the
form “face suit,” where face is a digit that represents the face of the card, and suit
is a digit that represents the suit of the card. After the Web service is created, we create a
Windows application that uses these methods to implement a game of Blackjack.

1 // Fig. 21.14: BlackjackService.asmx.cs
2 // Blackjack Web Service which manipulates a deck of cards.
3
4 using System;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Data;
8 using System.Diagnostics;
9 using System.Web;

10 using System.Web.Services;
11
12 namespace BlackjackWebService
13 {
14 [WebService(
15 Namespace = "http://www.deitel.com/csphtp1/ch21/",
16 Description = "A Web service that provides methods " +
17 "to manipulate a deck of cards.")]
18 public class BlackjackService : System.Web.Services.WebService
19 {
20
21 // Visual Studio .NET generated code
22

Fig. 21.14Fig. 21.14Fig. 21.14Fig. 21.14 Blackjack Web service. (Part 1 of 3.)

1064 ASP .NET and Web Services Chapter 21

23 // deal new card
24 [WebMethod(EnableSession = true,
25 Description = "Deal a new card from the deck.")]
26 public string DealCard()
27 {
28 string card = "2 2";
29
30 // get client's deck
31 ArrayList deck = (ArrayList) Session["deck"];
32 card = (string) deck[0];
33 deck.RemoveAt(0);
34 return card;
35
36 } // end method DealCard
37
38 [WebMethod(EnableSession = true,
39 Description = "Create and shuffle a deck of cards.")]
40 public void Shuffle()
41 {
42 Random randomObject = new Random();
43
44 ArrayList deck = new ArrayList();
45
46 // generate all possible cards
47 for (int i = 2; i < 15; i++) {
48 for (int j = 0; j < 4; j++) {
49 deck.Add(i + " " + j);
50 }
51 }
52
53 // swap each card with another card randomly
54 for (int i = 0; i < deck.Count; i++)
55 {
56 int newIndex = randomObject.Next(deck.Count);
57 object temporary = deck[i];
58 deck[i] = deck[newIndex];
59 deck[newIndex] = temporary;
60 }
61
62 // add this deck to user's session state
63 Session["deck"] = deck;
64 }
65
66 // computes value of hand
67 [WebMethod (Description = "Compute a " +
68 "numerical value for the current hand.")]
69 public int CountCards(string dealt)
70 {
71 // split string containing cards
72 char[] tab = { '\t' };
73 string[] cards = dealt.Split(tab);
74 int total = 0, face, aceCount = 0;
75

Fig. 21.14Fig. 21.14Fig. 21.14Fig. 21.14 Blackjack Web service. (Part 2 of 3.)

Chapter 21 ASP .NET and Web Services 1065

Lines 24–36 define method DealCard as a WebMethod, with property
EnableSession set to true. This property needs to be set to true to maintain session
information. This simple step provides an important advantage to our Web service. The
Web service now can use an HttpSessionState object (called Session) to maintain
the deck of cards for each client application that wishes to use this Web service (line 31).

76 foreach (string drawn in cards)
77 {
78 // get face of card
79 face =
80 Int32.Parse(drawn.Substring(
81 0, drawn.IndexOf(" ")));
82
83 switch (face)
84 {
85 // if ace, increment number of aces in hand
86 case 14:
87 aceCount++;
88 break;
89
90 // if Jack, Queen or King, add 10 to total
91 case 11: case 12: case 13:
92 total += 10;
93 break;
94
95 // otherwise, add value of face
96 default:
97 total += face;
98 break;
99
100 } // end switch
101
102 } // end foreach
103
104 // if any aces, calculate optimum total
105 if (aceCount > 0)
106 {
107 // if it is possible to count one ace as 11, and rest
108 // 1 each, do so; otherwise, count all aces as 1 each
109 if (total + 11 + aceCount - 1 <= 21)
110 total += 11 + aceCount - 1;
111 else
112 total += aceCount;
113 }
114
115 return total;
116
117 } // end method CountCards
118
119 } // end class BlackjackService
120
121 } // end namespace BlackjackWebService

Fig. 21.14Fig. 21.14Fig. 21.14Fig. 21.14 Blackjack Web service. (Part 3 of 3.)

1066 ASP .NET and Web Services Chapter 21

We can use Session to store objects for a specific client between method calls. We dis-
cussed session state in detail in Chapter 20, ASP .NET, Web Forms and Web Controls.

As we discuss shortly, method DealCard removes a card from the deck and returns
it to the client. If we were not using a session variable, the deck of cards would need to be
passed back and forth with each method call. Not only does the use of session state make
the method easier to call (it now requires no arguments), but we avoid the overhead that
would occur from sending this information back and forth, making our Web service faster.

In our current implementation, we simply have methods that use session variables. The
Web service, however, still cannot determine which session variables belong to which user.
This is an important point—if the Web service cannot uniquely identify a user, it has failed
to perform session-tracking properly. If the same client called method DealCard twice,
two different decks would be manipulated (as if two different users had called Deal-
Card). To identify various users, the Web service creates a cookie for each user. Unfortu-
nately, the Web service has no way of determining whether or not cookies are enabled on
the client’s machine. If the client application wishes to use this Web service, the client must
accept this cookie in a CookieContainer object. We discuss this in more detail shortly,
when we look into the client application that uses the Blackjack Web service.

Method DealCard (lines 24–36) obtains the current user’s deck as an ArrayList
from the Web service’s Session object (line 31). You can think of an ArrayList as a
dynamic array (i.e., its size can change at runtime). Class ArrayList is discussed in
greater detail in Chapter 23, Data Structures and Collections. The class’s method Add
places an object in the ArrayList. Method DealCard then removes the top card
from the deck (line 33) and returns the card’s value as a string (line 34).

Method Shuffle (lines 38–64) generates an ArrayList representing a card deck,
shuffles it and stores the shuffled cards in the client’s Session object. Lines 47–51
include for loops to generate strings in the form “face suit” to represent each pos-
sible card in a deck. Lines 54–60 shuffle the re-created deck by swapping each card with
another card in the deck. Line 63 adds the ArrayList to the Session object to maintain
the deck between method calls.

Method CountCards (lines 67–117) counts the values of the cards in a hand by
trying to attain the highest score possible without going over 21. Precautions need to be
taken when calculating the value of the cards, because an ace can be counted as either 1 or
11, and all face cards count as 10.

The string dealt is tokenized into its individual cards by calling string method
Split and passing it an array that contains the tab character. The foreach loop (line 76–
102) counts the value of each card. Lines 79–81 retrieve the first integer—the face—and
use that value as input to the switch statement in line 83. If the card is 1 (an ace), the pro-
gram increments variable aceCount. Because an ace can have two values, additional
logic is required to process aces. If the card is a 13, 12 or 11 (King, Queen or Jack), the
program adds 10 to the total. If the card is anything else, the program increases the total by
that value.

In lines 105–113, the aces are counted after all the other cards. If several aces are
included in a hand, only one can be counted as 11 (e.g., if two were counted as 11 we would
already have a hand value of 22, which is a losing hand). We then determine if we can count
an ace as 11 without exceeding 21. If this is possible, line 110 adjusts the total accordingly.
Otherwise, line 112 adjusts the total by counting each ace as 1 point.

Chapter 21 ASP .NET and Web Services 1067

CountCards attempts to maximize the value of the current cards without exceeding
21. Imagine, for example, that the dealer has a 7 and then receives an ace. The new total
could be either 8 or 18. However, CountCards always tries the maximize the value of
the cards without going over 21, so the new total is 18.

Now, we use the Blackjack Web service in a Windows application called Game
(Fig. 21.15). This program uses an instance of BlackjackWebService to represent the
dealer, calling its DealCard and CountCards methods. The Web service keeps track
of both the player’s and the dealer’s cards (i.e., all the cards that have been dealt).

Each player has 11 PictureBoxes—the maximum number of cards that can be dealt
without exceeding 21. These PictureBoxes are placed in an ArrayList, allowing us
to index the ArrayList to determine which PictureBox displays the card image.

Previously we mentioned that the client must provide a way to accept any cookies cre-
ated by the Web service to identify users. Line 64 in the constructor creates a new Cook-
ieContainer object for the CookieContainer property of dealer. Class
CookieContainer (defined in namespace System.Net) acts as a storage space for
an object of the HttpCookie class. Creating the CookieContainer allows the Web
service to maintain session state for the current client. This CookieContainer stores a
Cookie with a unique identifier that the server can use to recognize the client when the
client makes future requests. By default, the CookieContainer is null, and a new
Session object is created by the Web Service for each client.

1 // Fig. 21.15: Blackjack.cs
2 // Blackjack game that uses the Blackjack Web service.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.Net;
11
12 // game that uses Blackjack Web Service
13 public class Blackjack : System.Windows.Forms.Form
14 {
15 private System.Windows.Forms.PictureBox pictureBox1;
16 private System.Windows.Forms.PictureBox pictureBox2;
17 private System.Windows.Forms.PictureBox pictureBox3;
18 private System.Windows.Forms.PictureBox pictureBox4;
19 private System.Windows.Forms.PictureBox pictureBox5;
20 private System.Windows.Forms.PictureBox pictureBox6;
21 private System.Windows.Forms.PictureBox pictureBox7;
22 private System.Windows.Forms.PictureBox pictureBox8;
23 private System.Windows.Forms.PictureBox pictureBox9;
24 private System.Windows.Forms.PictureBox pictureBox10;
25 private System.Windows.Forms.PictureBox pictureBox11;
26 private System.Windows.Forms.PictureBox pictureBox12;
27 private System.Windows.Forms.PictureBox pictureBox13;
28 private System.Windows.Forms.PictureBox pictureBox14;

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 1 of 8.)

1068 ASP .NET and Web Services Chapter 21

29 private System.Windows.Forms.PictureBox pictureBox15;
30 private System.Windows.Forms.PictureBox pictureBox16;
31 private System.Windows.Forms.PictureBox pictureBox17;
32 private System.Windows.Forms.PictureBox pictureBox18;
33 private System.Windows.Forms.PictureBox pictureBox19;
34 private System.Windows.Forms.PictureBox pictureBox20;
35 private System.Windows.Forms.PictureBox pictureBox21;
36 private System.Windows.Forms.PictureBox pictureBox22;
37
38 private System.Windows.Forms.Button dealButton;
39 private System.Windows.Forms.Button hitButton;
40 private System.Windows.Forms.Button stayButton;
41
42 private System.ComponentModel.Container components = null;
43
44 private localhost.BlackjackService dealer;
45 private string dealersCards, playersCards;
46 private ArrayList cardBoxes;
47 private int playerCard, dealerCard;
48
49 // labels displaying game status, dealer and player
50 private System.Windows.Forms.Label dealerLabel;
51 private System.Windows.Forms.Label playerLabel;
52 private System.Windows.Forms.Label statusLabel;
53
54 public enum GameStatus :
55 int { PUSH, LOSE, WIN, BLACKJACK };
56
57 public Blackjack()
58 {
59 InitializeComponent();
60
61 dealer = new localhost.BlackjackService();
62
63 // allow session state
64 dealer.CookieContainer = new CookieContainer();
65
66 cardBoxes = new ArrayList();
67
68 // put PictureBoxes into cardBoxes
69 cardBoxes.Add(pictureBox1);
70 cardBoxes.Add(pictureBox2);
71 cardBoxes.Add(pictureBox3);
72 cardBoxes.Add(pictureBox4);
73 cardBoxes.Add(pictureBox5);
74 cardBoxes.Add(pictureBox6);
75 cardBoxes.Add(pictureBox7);
76 cardBoxes.Add(pictureBox8);
77 cardBoxes.Add(pictureBox9);
78 cardBoxes.Add(pictureBox10);
79 cardBoxes.Add(pictureBox11);
80 cardBoxes.Add(pictureBox12);
81 cardBoxes.Add(pictureBox13);

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 2 of 8.)

Chapter 21 ASP .NET and Web Services 1069

82 cardBoxes.Add(pictureBox14);
83 cardBoxes.Add(pictureBox15);
84 cardBoxes.Add(pictureBox16);
85 cardBoxes.Add(pictureBox17);
86 cardBoxes.Add(pictureBox18);
87 cardBoxes.Add(pictureBox19);
88 cardBoxes.Add(pictureBox20);
89 cardBoxes.Add(pictureBox21);
90 cardBoxes.Add(pictureBox22);
91
92 } // end method Blackjack
93
94 // Visual Studio .NET generated code
95
96 [STAThread]
97 static void Main()
98 {
99 Application.Run(new Blackjack());
100
101 } // end Main
102
103 // deals cards to dealer while dealer's total is
104 // less than 17, then computes value of each hand
105 // and determines winner
106 protected void stayButton_Click(
107 object sender, System.EventArgs e)
108 {
109 stayButton.Enabled = false;
110 hitButton.Enabled = false;
111 dealButton.Enabled = true;
112 DealerPlay();
113 }
114
115 // process dealers turn
116 private void DealerPlay()
117 {
118 // while value of dealer's hand is below 17,
119 // dealer must take cards
120 while (dealer.CountCards(dealersCards) < 17)
121 {
122 dealersCards += "\t" + dealer.DealCard();
123 DisplayCard(dealerCard, "");
124 dealerCard++;
125 MessageBox.Show("Dealer takes a card");
126 }
127
128 int dealersTotal = dealer.CountCards(dealersCards);
129 int playersTotal = dealer.CountCards(playersCards);
130
131 // if dealer busted, player wins
132 if (dealersTotal > 21)
133 {
134 GameOver(GameStatus.WIN);

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 3 of 8.)

1070 ASP .NET and Web Services Chapter 21

135 return;
136 }
137
138 // if dealer and player have not exceeded 21,
139 // higher score wins; equal scores is a push.
140 if (dealersTotal > playersTotal)
141 GameOver(GameStatus.LOSE);
142 else if (playersTotal > dealersTotal)
143 GameOver(GameStatus.WIN);
144 else
145 GameOver(GameStatus.PUSH);
146
147 } // end method DealerPlay
148
149 // deal another card to player
150 protected void hitButton_Click(
151 object sender, System.EventArgs e)
152 {
153 // get player another card
154 string card = dealer.DealCard();
155 playersCards += "\t" + card;
156 DisplayCard(playerCard, card);
157 playerCard++;
158
159 int total = dealer.CountCards(playersCards);
160
161 // if player exceeds 21, house wins
162 if (total > 21)
163 GameOver(GameStatus.LOSE);
164
165 // if player has 21, they cannot take more cards
166 // the dealer plays
167 if (total == 21)
168 {
169 hitButton.Enabled = false;
170 DealerPlay();
171 }
172
173 } // end method hitButton_Click
174
175 // deal two cards each to dealer and player
176 protected void dealButton_Click(
177 object sender, System.EventArgs e)
178 {
179 string card;
180
181 // clear card images
182 foreach (PictureBox cardImage in cardBoxes)
183 cardImage.Image = null;
184
185 // clear status from previous game
186 statusLabel.Text = "";
187

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 4 of 8.)

Chapter 21 ASP .NET and Web Services 1071

188 // shuffle cards
189 dealer.Shuffle();
190
191 // deal two cards to player
192 playersCards = dealer.DealCard();
193 DisplayCard(11, playersCards);
194 card = dealer.DealCard();
195 DisplayCard(12, card);
196 playersCards += "\t" + card;
197
198 // deal two cards to dealer, only display face
199 // of first card
200 dealersCards = dealer.DealCard() ;
201 DisplayCard(0, dealersCards);
202 card = dealer.DealCard();
203 DisplayCard(1, "");
204 dealersCards += "\t" + card;
205
206 stayButton.Enabled = true;
207 hitButton.Enabled = true;
208 dealButton.Enabled = false;
209
210 int dealersTotal = dealer.CountCards(dealersCards);
211 int playersTotal = dealer.CountCards(playersCards);
212
213 // if hands equal 21, it is a push
214 if (dealersTotal == playersTotal &&
215 dealersTotal == 21)
216 GameOver(GameStatus.PUSH);
217
218 // if player has 21 player wins with blackjack
219 else if (playersTotal == 21)
220 GameOver(GameStatus.BLACKJACK);
221
222 // if dealer has 21, dealer wins
223 else if (dealersTotal == 21)
224 GameOver(GameStatus.LOSE);
225
226 dealerCard = 2;
227 playerCard = 13;
228
229 } // end method dealButton_Click
230
231 // displays card represented by cardValue in
232 // PictureBox with number card
233 public void DisplayCard(int card, string cardValue)
234 {
235 // retrieve appropriate PictureBox from ArrayList
236 PictureBox displayBox = (PictureBox) cardBoxes[card];
237

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 5 of 8.)

1072 ASP .NET and Web Services Chapter 21

238 // if string representing card is empty,
239 // set displayBox to display back of card
240 if (cardValue == "")
241 {
242 displayBox.Image =
243 Image.FromFile("blackjack_images\\cardback.png");
244 return;
245 }
246
247 // retrieve face value of card from cardValue
248 int faceNumber = Int32.Parse(cardValue.Substring(0,
249 cardValue.IndexOf(" ")));
250
251 string face = faceNumber.ToString();
252
253 // retrieve the suit of the card from cardValue
254 string suit = cardValue.Substring(
255 cardValue.IndexOf(" ") + 1);
256
257 char suitLetter;
258
259 // determine if suit is other than clubs
260 switch (Convert.ToInt32(suit))
261 {
262 // suit is clubs
263 case 0:
264 suitLetter = 'c';
265 break;
266
267 // suit is diamonds
268 case 1:
269 suitLetter = 'd';
270 break;
271
272 // suit is hearts
273 case 2:
274 suitLetter = 'h';
275 break;
276
277 // else suit is spades
278 default:
279 suitLetter = 's';
280 break;
281 }
282
283 // set displayBox to display appropriate image
284 displayBox.Image = Image.FromFile(
285 "blackjack_images\\" + face + suitLetter + ".png");
286
287 } // end method DisplayCard
288
289 // displays all player cards and shows
290 // appropriate game status message

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 6 of 8.)

Chapter 21 ASP .NET and Web Services 1073

291 public void GameOver(GameStatus winner)
292 {
293 char[] tab = { '\t' };
294 string[] cards = dealersCards.Split(tab);
295
296 for (int i = 0; i < cards.Length; i++)
297 DisplayCard(i, cards[i]);
298
299 // push
300 if (winner == GameStatus.PUSH)
301 statusLabel.Text = "It's a tie!";
302
303 // player loses
304 else if (winner == GameStatus.LOSE)
305 statusLabel.Text = "You Lose Try Again!";
306
307 // player wins
308 else if (winner == GameStatus.WIN)
309 statusLabel.Text = "You Win!";
310
311 // player has won with blackjack
312 else
313 statusLabel.Text = "BlackJack!";
314
315 stayButton.Enabled = false;
316 hitButton.Enabled = false;
317 dealButton.Enabled = true;
318
319 } // end method GameOver
320
321 } // end class Blackjack

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 7 of 8.)

1074 ASP .NET and Web Services Chapter 21

Method GameOver (lines 291–319) displays all the dealer’s cards (many of which are
turned face down during the game) and shows the appropriate message in the status Pic-
tureBox. Method GameOver receives as an argument a member of the GameStatus
enumeration (defined in lines 54–55). The enumeration represents whether the player tied,
lost or won the game; its four members are: PUSH, LOSE, WIN and BLACKJACK.

When the player clicks the Deal button (in the event handler on lines 176–229), all the
PictureBoxes are cleared, the deck is shuffled and the player and dealer receive two

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Blackjack game that uses Blackjack Web service. (Part 8 of 8.)

Chapter 21 ASP .NET and Web Services 1075

cards each. If both obtain scores of 21, method GameOver is called and is passed
GameStatus.PUSH. If the player has 21, GameOver is called and is passed
GameStatus.BLACKJACK. Finally, if only the dealer has 21, method GameOver is
called and is passed GameStatus.LOSE.

If GameOver is not called, the player can take additional cards by clicking the Hit button
(in the event handler on lines 150–173). Each time a player clicks Hit, the player is dealt one
card, which is displayed in the GUI. If the player exceeds 21, the game is over, and the player
loses. If the player has exactly 21, the player is not allowed to take any more cards.

Players can click the Stay button to indicate that they do not want to risk being dealt
another card. In the event handler for this event (lines 106–113), all three buttons are dis-
abled, and method DealerPlay is called. This method (lines 116–147) causes the dealer
to keep taking cards until the dealer’s hand is worth 17 or more. If the dealer’s hand exceeds
21, the player wins; otherwise, the values of the hands are compared, and GameOver is
called with the appropriate argument.

Method DisplayCard (lines 233–287) retrieves the appropriate card image. It takes
as arguments an integer representing the index of the PictureBox in the ArrayList that
must have its image set and a string representing the card. An empty string indicates
that we wish to display the back of a card; otherwise, the program extracts the face and suit
from the string and uses this information to find the correct image. The switch statement
(lines 260–281) converts the number representing the suit into an integer and assigns the
appropriate character to suitLetter (c for Clubs, d for Diamonds, h for Hearts and s for
Spades). The character suitLetter completes the image’s file name.

21.6 Using Web Forms and Web Services
In the previous examples, we have accessed Web services from Windows applications.
However, we can just as easily use them in Web applications. Because Web-based business
is becoming more and more prevalent, it often is more practical for programmers to design
Web services as part of Web applications. Figure 21.16 presents an airline-reservation Web
service that receives information regarding the type of seat the customer wishes to reserve
and then makes a reservation if such a seat is available.

The airline-reservation Web service has a single WebMethod—Reserve (lines 36–
85)—which searches its seat database to locate a seat matching a user’s request. If it finds
an appropriate seat, Reserve updates the database, makes the reservation and returns
true; otherwise, no reservation is made, and the method returns false.

Reserve takes two arguments: A string representing the desired type of seat (the
choices are window, middle or aisle) and a string representing the desired class type (the
choices are economy or first class). Our database contains four columns: The seat number,
the seat type, the class type and a column containing either 0 or 1 to indicate whether the
seat is taken. Lines 48–51 define an SQL command that retrieves the number of available
seats matching the requested seat and class types. The statement in lines 52–53 executes the
query. If the result of the query is not empty, the application reserves the first seat number
that the query returns. The database is updated with an UPDATE command, and Reserve
returns true, indicating that the reservation was successful. If the result of the SELECT
query is not successful, Reserve returns false, indicating that no available seats
matched the request.

1076 ASP .NET and Web Services Chapter 21

1 // Fig. 21.16: Reservation.asmx.cs
2 // Airline reservation Web Service.
3
4 using System;
5 using System.Data;
6 using System.Diagnostics;
7 using System.Web;
8 using System.Web.Services;
9 using System.Data.OleDb;

10
11 namespace AirlineReservation
12 {
13 // performs reservation of a seat
14 [WebService(Namespace = "http://www.deitel.com/csphtp1/ch21/",
15 Description = "Service that enables a user to " +
16 "reserve a seat on a plane.")]
17 public class Reservation : System.Web.Services.WebService
18 {
19 private System.Data.OleDb.OleDbCommand
20 oleDbSelectCommand1;
21 private System.Data.OleDb.OleDbCommand
22 oleDbInsertCommand1;
23 private System.Data.OleDb.OleDbCommand
24 oleDbUpdateCommand1;
25 private System.Data.OleDb.OleDbCommand
26 oleDbDeleteCommand1;
27 private System.Data.OleDb.OleDbConnection
28 oleDbConnection1;
29 private System.Data.OleDb.OleDbDataAdapter
30 oleDbDataAdapter1;
31
32 // Visual Studio .NET generated code
33
34 // checks database to determine whether
35 // matching seat is available
36 [WebMethod (Description = "Method to reserve seat.")]
37 public bool Reserve(string seatType, string classType)
38 {
39 OleDbDataReader dataReader;
40
41 // try database connection
42 try
43 {
44 // open database connection
45 oleDbConnection1.Open();
46
47 // set and execute SQL query
48 oleDbDataAdapter1.SelectCommand.CommandText =
49 "SELECT Number FROM Seats WHERE Type = '" +
50 seatType + "' AND Class = '" + classType +
51 "' AND Taken = '0'" ;
52 dataReader =
53 oleDbDataAdapter1.SelectCommand.ExecuteReader();

Fig. 21.16Fig. 21.16Fig. 21.16Fig. 21.16 Airline reservation Web service. (Part 1 of 2.)

Chapter 21 ASP .NET and Web Services 1077

Earlier in the chapter, we displayed a Web service in design view (Fig. 21.7), and we
explained that this design view allows the programmer to add components to a Web ser-
vice. In our airline-reservation Web service (Fig. 21.16), we used various data components.
Figure 21.18 shows these components in design view. Notice that it is easier to drop these
components into our Web service using the Toolbox than to type the equivalent code.

Figure 21.18 presents the ASPX listing for the Web Form through which users can
select seat types. This page allows a user to reserve a seat on the basis of its class and loca-
tion in a row of seats. The page then uses the airline-reservation Web service to carry out
the user’s request. If the database request is not successful, the user is instructed to modify
the request and try again.

54
55 // if there were results, seat is available
56 if (dataReader.Read())
57 {
58 string seatNumber = dataReader.GetString(0);
59
60 dataReader.Close();
61
62 // update first available seat to be taken
63 oleDbDataAdapter1.UpdateCommand.CommandText =
64 "Update Seats Set Taken = '1' WHERE Number = '"
65 + seatNumber + "'";
66 oleDbDataAdapter1.UpdateCommand.ExecuteNonQuery();
67
68 return true;
69
70 } // end if
71 dataReader.Close();
72 }
73 catch (OleDbException) // if connection problem
74 {
75 return false;
76 }
77 finally
78 {
79 oleDbConnection1.Close();
80 }
81
82 // no seat was reserved
83 return false;
84
85 } // end method Reserve
86
87 } // end class Reservation
88
89 } // end namespace AirlineReservation

Fig. 21.16Fig. 21.16Fig. 21.16Fig. 21.16 Airline reservation Web service. (Part 2 of 2.)

1078 ASP .NET and Web Services Chapter 21

Fig. 21.17Fig. 21.17Fig. 21.17Fig. 21.17 Airline Web Service in design view.

1 <%-- Fig. 21.18: TicketReservation.aspx --%>
2 <%-- A Web Form to allow users to select the kind of seat --%>
3 <%-- they wish to reserve. --%>
4
5 <%@ Page language="c#" Codebehind="TicketReservation.aspx.cs"
6 AutoEventWireup="false"
7 Inherits="MakeReservation.TicketReservation" %>
8
9 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

10 <HTML>
11 <HEAD>
12 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
13 <meta name="CODE_LANGUAGE" Content="C#">
14 <meta name="vs_defaultClientScript"
15 content="JavaScript (ECMAScript)">
16 <meta name="vs_targetSchema"
17 content="http://schemas.microsoft.com/intellisense/ie5">
18 </HEAD>
19 <body MS_POSITIONING="GridLayout">
20
21 <form id="MakeReservation" method="post" runat="server">
22
23 <asp:DropDownList id="seatList" style="Z-INDEX: 101;
24 LEFT: 16px; POSITION: absolute; TOP: 43px"
25 runat="server" Width="105px" Height="22px">
26
27 <asp:ListItem Value="Aisle">Aisle</asp:ListItem>
28 <asp:ListItem Value="Middle">Middle</asp:ListItem>
29 <asp:ListItem Value="Window">Window</asp:ListItem>
30
31 </asp:DropDownList>
32
33 <asp:DropDownList id="classList" style="Z-INDEX: 102;
34 LEFT: 145px; POSITION: absolute; TOP: 43px"
35 runat="server" Width="98px" Height="22px">
36

Fig. 21.18Fig. 21.18Fig. 21.18Fig. 21.18 ASPX file that takes reservation information. (Part 1 of 2.)

Chapter 21 ASP .NET and Web Services 1079

The page in Fig. 21.17 defines two DropDownList objects and a Button. One
DropDownList displays all the seat types from which users can select. The second lists
choices for the class type. Users click the Button, named reserveButton, to submit
requests after making selections from the DropDownLists. The code-behind file
(Fig. 21.19) attaches an event handler for this button.

Lines 30–31 create a Reservation object. When the user clicks Reserve, the
reserveButton_Click event handler executes, and the page reloads. The event han-
dler (lines 48–63) calls the Web service’s Reserve method and passes it the selected seat
and class types as arguments. If Reserve returns true, the application displays a mes-
sage thanking the user for making a reservation; otherwise, the user is notified that the type
of seat requested is not available, and the user is instructed to try again.

37 <asp:ListItem Value="Economy">Economy</asp:ListItem>
38 <asp:ListItem Value="First">First</asp:ListItem>
39
40 </asp:DropDownList>
41
42 <asp:Button id="reserveButton" style="Z-INDEX: 103;
43 LEFT: 21px; POSITION: absolute; TOP: 83px" runat="server"
44 Text="Reserve">
45 </asp:Button>
46
47 <asp:Label id="Label1" style="Z-INDEX: 104;
48 LEFT: 17px; POSITION: absolute; TOP: 13px"
49 runat="server">Please select the type of seat and
50 class you wish to reserve:
51 </asp:Label>
52
53 </form>
54 </body>
55 </HTML>

1 // Fig. 21.19: TicketReservation.aspx.cs
2 // Making a Reservation using a Web Service.
3
4 using System;
5 using System.Collections;
6 using System.ComponentModel;
7 using System.Data;
8 using System.Drawing;
9 using System.Web;

10 using System.Web.SessionState;
11 using System.Web.UI;
12 using System.Web.UI.WebControls;
13 using System.Web.UI.HtmlControls;
14

Fig. 21.19Fig. 21.19Fig. 21.19Fig. 21.19 Code-behind file for the reservation page. (Part 1 of 3.)

Fig. 21.18Fig. 21.18Fig. 21.18Fig. 21.18 ASPX file that takes reservation information. (Part 2 of 2.)

1080 ASP .NET and Web Services Chapter 21

15 namespace MakeReservation
16 {
17 // allows visitors to select seat type to reserve, and
18 // then make reservation
19 public class TicketReservation : System.Web.UI.Page
20 {
21 protected System.Web.UI.WebControls.DropDownList
22 seatList;
23 protected System.Web.UI.WebControls.DropDownList
24 classList;
25
26 protected System.Web.UI.WebControls.Button
27 reserveButton;
28 protected System.Web.UI.WebControls.Label Label1;
29
30 private localhost.Reservation agent =
31 new localhost.Reservation();
32
33 private void Page_Load(
34 object sender, System.EventArgs e)
35 {
36 if (IsPostBack)
37 {
38 seatList.Visible = false;
39 classList.Visible = false;
40 reserveButton.Visible = false;
41 Label1.Visible = false;
42 }
43 }
44
45 // Visual Studio .NET generated code
46
47 // calls Web Service to try to reserve specified seat
48 public void reserveButton_Click (
49 object sender, System.EventArgs e)
50 {
51 // if Web-service method returned true, signal success
52 if (agent.Reserve(seatList.SelectedItem.Text,
53 classList.SelectedItem.Text))
54 Response.Write("Your reservation has been made."
55 + " Thank you.");
56
57 // Web-service method returned false, so signal failure
58 else
59 Response.Write("This seat is not available, " +
60 "please hit the back button on your browser " +
61 "and try again.");
62
63 } // end method reserveButton_Click
64
65 } // end class TicketReservation
66
67 } // end namespace MakeReservation

Fig. 21.19Fig. 21.19Fig. 21.19Fig. 21.19 Code-behind file for the reservation page. (Part 2 of 3.)

Chapter 21 ASP .NET and Web Services 1081

21.7 Case Study: Temperature Information Application
This case study discusses both a Web service that presents weather forecasts for various cit-
ies around the United States and a windows application that employs the Web service. The
Web service uses networking capabilities to display the forecasts; it parses a Web page con-
taining the required information and then extracts weather forecast data.

Fig. 21.19Fig. 21.19Fig. 21.19Fig. 21.19 Code-behind file for the reservation page. (Part 3 of 3.)

1082 ASP .NET and Web Services Chapter 21

First, we present Web service TemperatureServer in Fig. 21.20. This Web ser-
vice reads a Web page and collects information about the temperature and weather condi-
tions in an assortment of American cities. [Note: At the time of publication, this program
runs in the manner that we describe. However, if changes are made to the Web page from
which the program retrieves data, the program might work differently or not at all. Please
check our Web site at www.deitel.com for updates.]

1 // Fig. 21.20: TemperatureServer.asmx.cs
2 // TemperatureServer Web Service that extracts weather
3 // information from a Web page.
4
5 using System;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Data;
9 using System.Diagnostics;

10 using System.Web;
11 using System.Web.Services;
12 using System.IO;
13 using System.Net;
14
15 namespace TemperatureWebService
16 {
17 [WebService(Namespace = "http://www.deitel.com/csphtp1/ch21/",
18 Description = "A Web service that provides information " +
19 "from the National Weather Service.")]
20 public class TemperatureServer :
21 System.Web.Services.WebService
22 {
23 // Visual Studio .NET generated code
24
25 [WebMethod(EnableSession = true, Description =
26 "Method to read information from the weather service.")]
27 public void UpdateWeatherConditions()
28 {
29 // create WebClient to get access to Web page
30 WebClient myClient = new WebClient();
31 ArrayList cityList = new ArrayList();
32
33 // get StreamReader for response so we can read page
34 StreamReader input = new StreamReader(
35 myClient.OpenRead(
36 "http://iwin.nws.noaa.gov/iwin/us/" +
37 "traveler.html"));
38
39 string separator = "TAV12";
40
41 // locate first horizontal line on Web page
42 while (!input.ReadLine().StartsWith(
43 separator)) ; // do nothing
44

Fig. 21.20Fig. 21.20Fig. 21.20Fig. 21.20 TemperatureServer Web service. (Part 1 of 3.)

Chapter 21 ASP .NET and Web Services 1083

45 // day format and night format
46 string dayFormat =
47 "CITY WEA HI/LO WEA " +
48 "HI/LO";
49 string nightFormat =
50 "CITY WEA LO/HI WEA " +
51 "LO/HI";
52 string inputLine = "";
53
54 // locate header that begins weather information
55 do
56 {
57 inputLine = input.ReadLine();
58 } while (!inputLine.Equals(dayFormat) &&
59 !inputLine.Equals(nightFormat));
60
61 // get first city's data
62 inputLine = input.ReadLine();
63
64 while (inputLine.Length > 28)
65 {
66 // create CityWeather object for city
67 CityWeather weather = new CityWeather(
68 inputLine.Substring(0, 16),
69 inputLine.Substring(16, 7),
70 inputLine.Substring(23, 7));
71
72 // add to List
73 cityList.Add(weather);
74
75 // get next city's data
76 inputLine = input.ReadLine();
77 }
78
79 // close connection to NWS server
80 input.Close();
81
82 // add city list to user session
83 Session.Add("cityList", cityList);
84
85 } // end UpdateWeatherConditions
86
87 // gets all city names
88 [WebMethod(EnableSession = true, Description =
89 "Method to retrieve a list of cities.")]
90 public string[] Cities()
91 {
92 ArrayList cityList = (ArrayList) Session["cityList"];
93 string[] cities= new string[cityList.Count];
94
95 // retrieve names for cities
96 for (int i = 0; i < cityList.Count; i++)
97 {

Fig. 21.20Fig. 21.20Fig. 21.20Fig. 21.20 TemperatureServer Web service. (Part 2 of 3.)

1084 ASP .NET and Web Services Chapter 21

98 CityWeather weather = (CityWeather) cityList[i];
99
100 cities[i] = weather.CityName;
101 }
102
103 return cities;
104
105 } // end method Cities
106
107 // gets all city descriptions
108 [WebMethod(EnableSession = true, Description = "Method" +
109 " to retrieve weather descriptions for a " +
110 "list of cities.")]
111 public string[] Descriptions()
112 {
113 ArrayList cityList = (ArrayList) Session["cityList"];
114 string[] descriptions= new string[cityList.Count];
115
116 // retrieve weather descriptions for all cities
117 for (int i = 0; i < cityList.Count; i++)
118 {
119 CityWeather weather = (CityWeather)cityList[i];
120
121 descriptions[i] = weather.Description;
122 }
123
124 return descriptions;
125
126 } // end method Descriptions
127
128 // obtains each city temperature
129 [WebMethod(EnableSession = true, Description = "Method " +
130 "to retrieve the temperature for a list of cities.")]
131 public string[] Temperatures()
132 {
133 ArrayList cityList = (ArrayList) Session["cityList"];
134 string[] temperatures= new string[cityList.Count];
135
136 // retrieve temperatures for all cities
137 for (int i = 0; i < cityList.Count; i++)
138 {
139 CityWeather weather = (CityWeather)cityList[i];
140 temperatures[i] = weather.Temperature;
141 }
142
143 return temperatures;
144
145 } // end method Temperatures
146
147 } // end class TemperatureServer
148
149 } // end namespace TemperatureWebService

Fig. 21.20Fig. 21.20Fig. 21.20Fig. 21.20 TemperatureServer Web service. (Part 3 of 3.)

Chapter 21 ASP .NET and Web Services 1085

Method UpdateWeatherConditions, which gathers weather data from a Web
page, is the first WebMethod that a client must call from the Web service. The service also
provides WebMethods Cities, Descriptions and Temperatures, which return
different kinds of forecast-related information.

When UpdateWeatherConditions (lines 25–85) is invoked, the method con-
nects to a Web site containing the traveler’s forecasts from the National Weather Service
(NWS). Line 30 creates a WebClient object, which we use because the WebClient
class is designed for interaction with a source specified by a URL. In this case, the URL for
the NWS page is http://iwin.nws.noaa.gov/iwin/us/traveler.html.
Lines 34–37 call WebClient method OpenRead; the method retrieves a Stream from
the URL containing the weather information and then uses this Stream to create a
StreamReader object. Using a StreamReader object, the program can read the Web
page’s HTML markup line by line.

The section of the Web page in which we are interested starts with the string
“TAV12.” Therefore, lines 42–43 read the HTML markup one line at a time until this
string is encountered. Once the string “TAV12” is reached, the do/while structure
(lines 55–59) continues to read the page one line at a time until it finds the header line (i.e.,
the line at the beginning of the forecast table). This line starts with either dayFormat,
indicating day format, or nightFormat, indicating night format. Because the line could
be in either format, the structure checks for both. Line 62 reads the next line from the page,
which is the first line containing temperature information.

The while structure (lines 64–77) creates a new CityWeather object to represent
the current city. It parses the string containing the current weather data, separating the
city name, the weather condition and the temperature. The CityWeather object is added
to cityList (an ArrayList that contains a list of the cities, their descriptions and their
current temperatures); then, the next line from the page is read and stored in inputLine
for the next iteration. This process continues until the length of the string read from the
Web page is less than or equal to 28. This signals the end of the temperature section. Line
83 adds the ArrayList cityList to the Session object so that the values are main-
tained between method calls.

Method Cities (lines 88–105) creates an array of strings that can contain as many
string elements as there are elements in cityList. Line 92 obtains the list of cities
from the Session object. Lines 96–101 iterate through each CityWeather object in
cityList and insert the city name into the array, which is returned in line 103. Methods
Descriptions (lines 108–126) and Temperatures (lines 129–145) behave simi-
larly, except that they return weather descriptions and temperatures, respectively.

Figure 21.21 contains the code listing for the CityWeather class. The constructor
takes three arguments: The city’s name, the weather description and the current tempera-
ture. The class provides the read-only properties CityName, Temperature and
Description so that these values can be retrieved by the Web service.

1 // Fig. 21.21: CityWeather.cs
2 // Class representing the weather information for one city.
3
4 using System;

Fig. 21.21Fig. 21.21Fig. 21.21Fig. 21.21 Class that stores weather information about a city. (Part 1 of 2.)

1086 ASP .NET and Web Services Chapter 21

The Windows application in Fig. 21.22 uses the TemperatureServer Web service
to display weather information in a user-friendly format.

TemperatureClient (Fig. 21.22) is a Windows application that uses the Tem-
peratureServer Web service to display weather information in a graphical and easy-

5
6 namespace TemperatureWebService
7 {
8 public class CityWeather
9 {

10 private string cityName;
11 private string temperature;
12 private string description;
13
14 public CityWeather(
15 string city, string information, string degrees)
16 {
17 cityName = city;
18 description = information;
19 temperature = degrees;
20 }
21
22 // city name
23 public string CityName
24 {
25 get
26 {
27 return cityName;
28 }
29 }
30
31 // city temperature
32 public string Temperature
33 {
34 get
35 {
36 return temperature;
37 }
38 }
39
40 // forecast description
41 public string Description
42 {
43 get
44 {
45 return description;
46 }
47 }
48
49 } // end class CityWeather
50 } // end namespace TemperatureWebService

Fig. 21.21Fig. 21.21Fig. 21.21Fig. 21.21 Class that stores weather information about a city. (Part 2 of 2.)

Chapter 21 ASP .NET and Web Services 1087

to-read manner. The application consists of 36 Labels, which are placed in two columns.
Each Label displays the weather information for a different city.

1 // Fig. 21.22: Client.cs
2 // Class that displays weather information that it receives
3 // from a Web service.
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Net;
11
12 namespace TemperatureClient
13 {
14 public class Client : System.Windows.Forms.Form
15 {
16 private System.Windows.Forms.Label label1;
17 private System.Windows.Forms.Label label2;
18 private System.Windows.Forms.Label label3;
19 private System.Windows.Forms.Label label4;
20 private System.Windows.Forms.Label label5;
21 private System.Windows.Forms.Label label6;
22 private System.Windows.Forms.Label label7;
23 private System.Windows.Forms.Label label8;
24 private System.Windows.Forms.Label label9;
25 private System.Windows.Forms.Label label10;
26 private System.Windows.Forms.Label label11;
27 private System.Windows.Forms.Label label12;
28 private System.Windows.Forms.Label label13;
29 private System.Windows.Forms.Label label14;
30 private System.Windows.Forms.Label label15;
31 private System.Windows.Forms.Label label16;
32 private System.Windows.Forms.Label label17;
33 private System.Windows.Forms.Label label18;
34 private System.Windows.Forms.Label label19;
35 private System.Windows.Forms.Label label20;
36 private System.Windows.Forms.Label label21;
37 private System.Windows.Forms.Label label22;
38 private System.Windows.Forms.Label label23;
39 private System.Windows.Forms.Label label24;
40 private System.Windows.Forms.Label label25;
41 private System.Windows.Forms.Label label26;
42 private System.Windows.Forms.Label label27;
43 private System.Windows.Forms.Label label28;
44 private System.Windows.Forms.Label label29;
45 private System.Windows.Forms.Label label30;
46 private System.Windows.Forms.Label label31;
47 private System.Windows.Forms.Label label32;
48 private System.Windows.Forms.Label label33;
49 private System.Windows.Forms.Label label34;

Fig. 21.22Fig. 21.22Fig. 21.22Fig. 21.22 Receiving temperature and weather data from a Web service. (Part 1 of 4.)

1088 ASP .NET and Web Services Chapter 21

50 private System.Windows.Forms.Label label36;
51 private System.Windows.Forms.Label label35;
52
53 private System.ComponentModel.Container components =
54 null;
55
56 public Client()
57 {
58 InitializeComponent();
59
60 localhost.TemperatureServer client =
61 new localhost.TemperatureServer();
62 client.CookieContainer = new CookieContainer();
63 client.UpdateWeatherConditions();
64
65 string[] cities = client.Cities();
66 string[] descriptions = client.Descriptions();
67 string[] temperatures = client.Temperatures();
68
69 label35.BackgroundImage = new Bitmap(
70 "images/header.png");
71 label36.BackgroundImage = new Bitmap(
72 "images/header.png");
73
74 // create Hashtable and populate it with every label
75 Hashtable cityLabels = new Hashtable();
76 cityLabels.Add(1, label1);
77 cityLabels.Add(2, label2);
78 cityLabels.Add(3, label3);
79 cityLabels.Add(4, label4);
80 cityLabels.Add(5, label5);
81 cityLabels.Add(6, label6);
82 cityLabels.Add(7, label7);
83 cityLabels.Add(8, label8);
84 cityLabels.Add(9, label9);
85 cityLabels.Add(10, label10);
86 cityLabels.Add(11, label11);
87 cityLabels.Add(12, label12);
88 cityLabels.Add(13, label13);
89 cityLabels.Add(14, label14);
90 cityLabels.Add(15, label15);
91 cityLabels.Add(16, label16);
92 cityLabels.Add(17, label17);
93 cityLabels.Add(18, label18);
94 cityLabels.Add(19, label19);
95 cityLabels.Add(20, label20);
96 cityLabels.Add(21, label21);
97 cityLabels.Add(22, label22);
98 cityLabels.Add(23, label23);
99 cityLabels.Add(24, label24);
100 cityLabels.Add(25, label25);
101 cityLabels.Add(26, label26);
102 cityLabels.Add(27, label27);

Fig. 21.22Fig. 21.22Fig. 21.22Fig. 21.22 Receiving temperature and weather data from a Web service. (Part 2 of 4.)

Chapter 21 ASP .NET and Web Services 1089

103 cityLabels.Add(28, label28);
104 cityLabels.Add(29, label29);
105 cityLabels.Add(30, label30);
106 cityLabels.Add(31, label31);
107 cityLabels.Add(32, label32);
108 cityLabels.Add(33, label33);
109 cityLabels.Add(34, label34);
110
111 // create Hashtable and populate with
112 // all weather conditions
113 Hashtable weather = new Hashtable();
114 weather.Add("SUNNY", "sunny");
115 weather.Add("PTCLDY", "pcloudy");
116 weather.Add("CLOUDY", "mcloudy");
117 weather.Add("MOCLDY", "mcloudy");
118 weather.Add("TSTRMS", "rain");
119 weather.Add("RAIN", "rain");
120 weather.Add("SNOW", "snow");
121 weather.Add("VRYHOT", "vryhot");
122 weather.Add("FAIR", "fair");
123 weather.Add("RNSNOW", "rnsnow");
124 weather.Add("SHWRS", "showers");
125 weather.Add("WINDY", "windy");
126 weather.Add("NOINFO", "noinfo");
127 weather.Add("MISG", "noinfo");
128 weather.Add("DRZL", "rain");
129 weather.Add("HAZE", "noinfo");
130 weather.Add("SMOKE", "mcloudy");
131
132 Bitmap background = new Bitmap("images/back.png");
133 Font font = new Font("Courier New", 8,
134 FontStyle.Bold);
135
136 // for every city
137 for (int i = 0; i < cities.Length; i++)
138 {
139 // use Hashtable cityLabels to find the next Label
140 Label currentCity = (Label)cityLabels[i + 1];
141
142 // set current Label's image to image
143 // corresponding to the city's weather condition -
144 // find correct image name in Hashtable weather
145 currentCity.Image = new Bitmap("images/" +
146 weather[descriptions[i].Trim()] + ".png");
147
148 // set background image, font and forecolor
149 // of Label
150 currentCity.BackgroundImage = background;
151 currentCity.Font = font;
152 currentCity.ForeColor = Color.White;
153

Fig. 21.22Fig. 21.22Fig. 21.22Fig. 21.22 Receiving temperature and weather data from a Web service. (Part 3 of 4.)

1090 ASP .NET and Web Services Chapter 21

154 // set label's text to city name
155 currentCity.Text = "\r\n" + cities[i] + " " +
156 temperatures[i];
157 }
158
159 } // end of constructor
160
161 // Visual Studio .NET generated code
162
163 [STAThread]
164 static void Main()
165 {
166 Application.Run(new Client());
167 }
168
169 } // end class Client
170
171 } // end namespace TemperatureClient

Fig. 21.22Fig. 21.22Fig. 21.22Fig. 21.22 Receiving temperature and weather data from a Web service. (Part 4 of 4.)

Chapter 21 ASP .NET and Web Services 1091

Lines 60–63 of the constructor instantiate a TemperatureServer object, create a
new CookieContainer object and update the weather data by calling method
UpdateWeatherConditions. Lines 65–67 call TemperatureServer methods
Cities, Descriptions and Temperatures to retrieve the city’s weather and
description information. Because the application presents weather data for so many cities,
we must establish a way to organize the information in the Labels and to ensure that each
weather description is accompanied by an appropriate image. To address these concerns,
the program uses class Hashtable (discussed further in Chapter 23, Data Structures and
Collections) to store all the Labels and weather descriptions and the names of their cor-
responding images. A Hashtable stores key-value pairs, in which both the key and the
value can be any type of object. Method Add adds key-value pairs to a Hashtable. The
class also provides an indexer to return the key value on which the Hashtable is indexed.
Line 75 creates a Hashtable object, and lines 76–109 add the Labels to the Hash-
table, using the numbers 1 through 36 as keys. Then, line 113 creates a second Hash-
table object (weather) to contain pairs of weather conditions and the images associated
with those conditions. Note that a given weather description does not necessarily corre-
spond to the name of the PNG file containing the correct image. For example, both
“TSTRMS” and “RAIN” weather conditions use the rain.png file.

Lines 137–157 set each Label so that it contains a city name, the current temperature
in the city and an image corresponding to the weather condition for that city. Line 140 uses
the Hashtable indexer to retrieve the next Label by passing as an argument the current
value of i plus 1. We add 1 because the Hashtable indexer begins at 0, despite the fact
that both the labels and the Hashtable keys are numbered from 1–36.

Lines 145–146 set the Label’s image to the PNG image that corresponds to the city’s
weather condition. The application does this by retrieving the name of the PNG image from
the weather Hashtable. The program eliminates any spaces in the description
string by calling string method Trim. Lines 150–156 set several Labels’ proper-
ties to achieve the visual effect seen in the output. For each label, we specify a blue-and-
black background image (line 150). Lines 155–156 set each label’s text so that it displays
the correct information for each city (i.e., the city’s name and temperature).

21.8 User-Defined Types in Web Services
The Web service discussed in the previous section returns arrays of strings. It would be
much more convenient if TemperatureServer could return an array of CityWeath-
er objects, instead of an array of strings. Fortunately, it is possible to define and employ
user-defined types (also known as custom types) in a Web service. These types can be
passed into or returned from Web-service methods. Web-service clients also can use these
user-defined types, because the proxy class created for the client contains these type defi-
nitions. There are, however, some subtleties to keep in mind when using user-defined types
in Web services; we point these out as we encounter them in the next example.

The case study in this section presents a math-tutoring program. The Web service gen-
erates random equations of type Equation. The client inputs information about the kind
of mathematical example that the user wants (addition, subtraction or multiplication) and
the skill level of the user (1 creates equations using one-digit numbers, 2 specifies more dif-
ficult equations involving two-digit numbers and 3 specifies the most difficult equations,
containing three-digit numbers). It then generates an equation consisting of random num-

1092 ASP .NET and Web Services Chapter 21

bers that have the proper number of digits. The client receives the Equation and uses a
Windows Form to display the sample questions to the user.

We mentioned earlier that all data types passed to and from Web services must be sup-
ported by SOAP. How, then, can SOAP support a type that is not even created yet? In
Chapter 17, Files and Streams, we discussed the serializing of data types, which enables
them to be written to files. Similarly, custom types that are sent to or from a Web service
are serialized, enabling them to be passed in XML format. This process is referred to as
XML serialization.

When defining objects to be returned from Web-service methods, there are several
subtleties to understand. For example, any object returned by a Web-service method must
have a default constructor. Although all objects can be instantiated using a default public
constructor (even if this constructor is not defined explicitly), a class returned from a Web
service must have an explicitly defined constructor, even if its body is empty.

Common Programming Error 21.3
Failure to define explicitly a public constructor for a type being used in a Web service re-
sults in a run-time error. 21.3

A few additional requirements apply to custom types in Web services. Any variables of
our user-defined type that we wish to access on the client-side must be declared public. We
also must define both the get and set accessors of any properties that we wish to access at
runtime. The Web service needs to have a way both to retrieve and manipulate such proper-
ties, because objects of the user-defined type will be converted into XML (when the objects
are serialized) then converted back to objects (when they are de-serialized). During serializa-
tion, the property value must be read (through the get accessor); during de-serialization, the
property value of the new object must be set (through the set accessor). If only one accessor
is present, the client application will not have access to the property.

Common Programming Error 21.4
Defining only the get or set accessor of a property for a user-defined type being used in a
Web service results in a property that is inaccessible to the client. 21.4

Common Programming Error 21.5
Clients of a Web service can access only that service’s public members. To allow access
to private data, the programmer should provide public properties. 21.5

Figure 21.23 displays class Equation. The constructor that is called (lines 18–37)
takes three arguments—two integers representing the left and right operands and a
string representing the algebraic operation to carry out. We define a default constructor
(line 13–15) that calls another constructor (lines 18–37) and passes some default values.
The constructor sets the left, right and operation fields, then calculates the appro-
priate result. We do not use this default constructor, but it must be defined in the program.

Class Equation defines properties LeftHandSide, RightHandSide, Left,
Right, Operation and Result. The program does not need to modify the values of
some of these properties, but implementation for the set accessor must be provided.
LeftHandSide returns a string representing everything to the left of the “=” sign, and
RightHandSide returns a string representing everything to the right of the “=” sign.
Left returns the int to the left of the operator (known as the left operand), and Right
returns the int to the right of the operator (known as the right operand). Result returns

Chapter 21 ASP .NET and Web Services 1093

1 // Fig. 21.23: Equation.cs
2 // Class Equation that contains
3 // information about an equation.
4
5 using System;
6
7 public class Equation
8 {
9 private int left, right, result;

10 private string operation;
11
12 // required default constructor
13 public Equation() : this(0, 0, "+")
14 {
15 }
16
17 // constructor for class Equation
18 public Equation(int leftValue, int rightValue,
19 string operationType)
20 {
21 Left = leftValue;
22 Right = rightValue;
23 Operation = operationType;
24
25 switch (operationType)
26 {
27 case "+":
28 Result = Left + Right;
29 break;
30 case "-":
31 Result = Left - Right;
32 break;
33 case "*":
34 Result = Left * Right;
35 break;
36 }
37 }
38
39 public override string ToString()
40 {
41 return Left.ToString() + " " + Operation + " " +
42 Right.ToString() + " = " + Result.ToString();
43 }
44
45 // property returning string representing
46 // left-hand side
47 public string LeftHandSide
48 {
49 get
50 {
51 return Left.ToString() + " " + Operation + " " +
52 Right.ToString();
53 }

Fig. 21.23Fig. 21.23Fig. 21.23Fig. 21.23 Class that stores equation information. (Part 1 of 3.)

1094 ASP .NET and Web Services Chapter 21

54
55 set
56 {
57 }
58 }
59
60 // property returning string representing
61 // right-hand side
62 public string RightHandSide
63 {
64 get
65 {
66 return Result.ToString();
67 }
68
69 set
70 {
71 }
72 }
73
74 // left operand get and set property
75 public int Left
76 {
77 get
78 {
79 return left;
80 }
81
82 set
83 {
84 left = value;
85 }
86 }
87
88 // right operand get and set property
89 public int Right
90 {
91 get
92 {
93 return right;
94 }
95
96 set
97 {
98 right = value;
99 }
100 }
101
102 // get and set property of result of applying
103 // operation to left and right operands
104 public int Result
105 {

Fig. 21.23Fig. 21.23Fig. 21.23Fig. 21.23 Class that stores equation information. (Part 2 of 3.)

Chapter 21 ASP .NET and Web Services 1095

the answer to the equation, and Operation returns the operator. The program does not
actually need the RightHandSide property, but we have chosen to include it in case
other clients choose to use it. Figure 21.24 presents the Generator Web service that cre-
ates random, customized Equations.

106 get
107 {
108 return result;
109 }
110
111 set
112 {
113 result = value;
114 }
115 }
116
117 // get and set property for operation
118 public string Operation
119 {
120 get
121 {
122 return operation;
123 }
124
125 set
126 {
127 operation = value;
128 }
129 }
130
131 } // end class Equation

1 // Fig. 21.24: Generator.asmx.cs
2 // Web Service to generate random equations based on a
3 // specified operation and difficulty level.
4
5 using System;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Data;
9 using System.Diagnostics;

10 using System.Web;
11 using System.Web.Services;
12
13 namespace EquationGenerator
14 {
15 [WebService(Namespace = "http://www.deitel.com/csphtp1/ch21",
16 Description = "A Web service that generates questions " +
17 "based on the specified mathematical operation and " +
18 "level of difficulty chosen.")]

Fig. 21.24Fig. 21.24Fig. 21.24Fig. 21.24 Web service that generates random equations. (Part 1 of 2.)

Fig. 21.23Fig. 21.23Fig. 21.23Fig. 21.23 Class that stores equation information. (Part 3 of 3.)

1096 ASP .NET and Web Services Chapter 21

Web service Generator contains only one method, GenerateEquation. This
method takes as arguments a string representing the operation we wish to perform and
an integer representing the desired difficulty level of the equation. Figure 21.25 dem-
onstrates the result of executing a test call of this Web service. Notice that the return value
from our Web-service method is marked up as XML. However, this example differs from
previous ones in that the XML specifies the values for all public properties and fields of
the object that is being returned. The return object has been serialized into XML. Our proxy
class takes this return value and deserializes it into an object (containing the public data
from the original object) that then is passed back to the client.

Lines 30–31 define the lower and upper bounds for the random numbers that the
method generates. To set these limits, the program first calls static method Pow of class
Math—this method raises its first argument to the power of its second argument. Integer
maximum represents the upper bound for a randomly generated number. The program
raises 10 to the power of the specified level argument and then passes this value as the
upper bound. For instance, if level is 1, maximum is 10; if level is 2; maximum is
100 and so on. Variable minimum’s value is determined by raising 10 to a power one less
then level. This calculates the smallest number with level digits. If level is 2, min-
imum is 10; if level is 3, minimum is 100 and so on.

19 public class Generator : System.Web.Services.WebService
20 {
21
22 // Visual Studio .NET generated code
23
24 [WebMethod (Description =
25 "Method that generates a random equation.")]
26 public Equation GenerateEquation(string operation,
27 int level)
28 {
29 // find maximum and minimum number to be used
30 int maximum = (int) Math.Pow(10, level),
31 minimum = (int) Math.Pow(10, level - 1);
32
33 Random random = new Random();
34
35 // create equation consisting of two random numbers
36 // between minimum and maximum parameters
37 Equation equation = new Equation(
38 random.Next(minimum, maximum),
39 random.Next(minimum, maximum), operation);
40
41 return equation;
42
43 } // end method GenerateEquation
44
45 } // end class Generator
46
47 } // end namespace EquationGenerator

Fig. 21.24Fig. 21.24Fig. 21.24Fig. 21.24 Web service that generates random equations. (Part 2 of 2.)

Chapter 21 ASP .NET and Web Services 1097

Lines 37–39 create a new Equation object. The program calls Random method
Next, which returns an integer that is greater than or equal to a specified lower bound, but
less than a specified upper bound. In this example, Random generates a left operand value
that is greater than or equal to minimum, but less than maximum (i.e., a number with
level digits). The right operand is another random number with the same characteristics.
The operation passed to the Equation constructor is the string operation that was
received by GenerateEquation. The new Equation object is returned.

Figure 21.26 lists the math-tutoring application that uses the Generator Web ser-
vice. The application calls Generator’s GenerateEquation method to create an
Equation object. The application then displays the left-hand side of the Equation and
waits for user input. In this example, the program accesses both class Generator and

Fig. 21.25Fig. 21.25Fig. 21.25Fig. 21.25 Returning an object from a Web-service method.

Create a
subtraction exercise

Make exercise for
users of skill level 2

1098 ASP .NET and Web Services Chapter 21

class Equation from within the localhost namespace—both are placed in this
namespace when the proxy is generated.

The math-tutoring application displays a question and waits for input. The default set-
ting for the difficulty level is 1, but the user can change this at any time by choosing a level
from among the top row of RadioButtons. Clicking any of the level options invokes
levelRadioButtons_Click (lines 110–120), which sets integer level to the level
selected by the user. Although the default setting for the question type is Addition, the user
also can change this at any time by selecting one of the bottom-row RadioButtons.
Doing so invokes the operationRadioButtons_Click (lines 91–107) event han-
dler, which sets string operation so that it contains the symbol corresponding to the
user’s selection.

1 // Fig. 21.26: Tutor.cs
2 // Math tutor program.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9

10 namespace EquationGeneratorClient
11 {
12 public class Tutor : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Panel panel1;
15 private System.Windows.Forms.Panel panel2;
16
17 private System.Windows.Forms.Label questionLabel;
18 private System.Windows.Forms.TextBox answerTextBox;
19 private System.Windows.Forms.Button okButton;
20 private System.Windows.Forms.Button generateButton;
21
22 private System.Windows.Forms.RadioButton oneRadioButton;
23 private System.Windows.Forms.RadioButton twoRadioButton;
24 private System.Windows.Forms.RadioButton
25 threeRadioButton;
26 private System.Windows.Forms.RadioButton addRadioButton;
27 private System.Windows.Forms.RadioButton
28 subtractRadioButton;
29 private System.Windows.Forms.RadioButton
30 multiplyRadioButton;
31
32 private System.ComponentModel.Container components =
33 null;
34 private int level = 1;
35
36 private localhost.Equation equation;
37 private localhost.Generator generator =
38 new localhost.Generator();
39 private string operation = "+";

Fig. 21.26Fig. 21.26Fig. 21.26Fig. 21.26 Math tutor application. (Part 1 of 4.)

Chapter 21 ASP .NET and Web Services 1099

40
41 // Visual Studio .NET generated code
42
43 [STAThread]
44 static void Main()
45 {
46 Application.Run(new Tutor());
47 }
48
49 // generates new equation on click event
50 protected void generateButton_Click(object sender,
51 System.EventArgs e)
52 {
53 // generate equation using current operation
54 // and level
55 equation = generator.GenerateEquation(operation,
56 level);
57
58 // display left-hand side of equation
59 questionLabel.Text = equation.LeftHandSide;
60
61 okButton.Enabled = true;
62 answerTextBox.Enabled = true;
63
64 } // end method generateButton_Click
65
66 // check users answer
67 protected void okButton_Click(object sender,
68 System.EventArgs e)
69 {
70 // determine correct result from Equation
71 // object
72 int answer = equation.Result;
73
74 // get user's answer
75 int myAnswer = Int32.Parse(answerTextBox.Text);
76
77 // test if user's answer is correct
78 if (answer == myAnswer)
79 {
80 questionLabel.Text = "";
81 answerTextBox.Text = "";
82 okButton.Enabled = false;
83 MessageBox.Show("Correct! Good job!");
84 }
85 else
86 MessageBox.Show("Incorrect. Try again.");
87
88 } // end method okButton_Click
89

Fig. 21.26Fig. 21.26Fig. 21.26Fig. 21.26 Math tutor application. (Part 2 of 4.)

1100 ASP .NET and Web Services Chapter 21

90 // set the selected operation
91 protected void operationRadioButtons_Click(object sender,
92 EventArgs e)
93 {
94 RadioButton item = (RadioButton) sender;
95
96 // set the operation to be the appropriate symbol
97 if (item == addRadioButton)
98 operation = "+";
99 else if (item == subtractRadioButton)
100 operation = "-";
101 else
102 operation = "*";
103
104 generateButton.Text = "Generate " + item.Text +
105 " Example";
106
107 } // end method operationRadioButtons_Click
108
109 // set the current level
110 protected void levelRadioButtons_Click(object sender,
111 EventArgs e)
112 {
113 if (sender == oneRadioButton)
114 level = 1;
115 else if (sender == twoRadioButton)
116 level = 2;
117 else
118 level = 3;
119
120 } // end method levelRadioButtons_Click
121
122 } // end class Tutor
123
124 } // end namespace EquationGeneratorClient

Fig. 21.26Fig. 21.26Fig. 21.26Fig. 21.26 Math tutor application. (Part 3 of 4.)

Chapter 21 ASP .NET and Web Services 1101

Event handler generateButton_Click (lines 50–64) invokes Generator
method GenerateEquation. The left-hand side of the equation is displayed in ques-
tionLabel (line 59), and okButton is enabled so that the user can enter an answer.
When the user clicks OK, okButton_Click (lines 67–88) checks whether the user pro-
vided the correct answer.

This chapter and the previous familiarized readers with the creation of Web applica-
tions and Web services, both of which enable users to request and receive data via the
Internet. In the next chapter, we discuss the low-level details of how data are sent from one
location to another (this process is called networking). Topics discussed in the next chapter
include the implementation of servers and clients and the sending of data via sockets.

SUMMARY
• A Web service is an application that is stored on a remote machine and accessed through a remote

procedure call.

• Distributed systems technologies enable applications to execute across multiple computers on a
network.

• Web-services method calls are implemented using Simple Object Access Protocol (SOAP), an
XML-based protocol describing how requests and responses are marked up so that they can be
transferred via protocols such as HTTP.

• Methods are executed using a Remote Procedure Call (RPC). These methods are marked with the
WebMethod attribute and are often referred to as Web-service methods.

• Requests to and responses from Web services are sent using SOAP by default. As long as a client
can create and understand SOAP messages, the client can use Web services, regardless of the pro-
gramming languages in which the Web services are written.

• A Web service in .NET has two parts: an ASMX file and a code-behind file.

• The ASMX file can be viewed in any Web browser and displays information about the Web service.

Fig. 21.26Fig. 21.26Fig. 21.26Fig. 21.26 Math tutor application. (Part 4 of 4.)

1102 ASP .NET and Web Services Chapter 21

• The code-behind file contains the definition for the methods in the Web service.

• A service description is an XML document that conforms to the Web Service Description Lan-
guage (WSDL).

• WSDL is an XML vocabulary that describes how Web services behave.

• The service description can be used by a client program to confirm the correctness of method calls
at compile time.

• The ASMX file also provides a way for clients to execute test runs of the Web-service methods.

• SOAP, HTTP GET and HTTP POST are the three different ways of sending and receiving mes-
sages in Web services. The format used for these request and response messages is sometimes
known as the wire protocol or wire format, because the format defines how information is sent
“along the wire.”

• The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses XML to
make remote-procedure calls over HTTP.

• Requests to and responses from a Web-service method are packaged by default in a SOAP mes-
sage—an XML message containing all the information necessary to process its contents.

• SOAP allows Web services to employ a variety of data types, including user-defined data types.

• When a program invokes a Web-service method, the request and all relevant information are pack-
aged in a SOAP message and sent to the appropriate destination.

• When the Web service receives the SOAP message, it processes the message’s contents, which
specifies the method that the client wishes to execute and the arguments the client is passing to that
method.

• When the Web service receives a request, the request is parsed, and the proper method is called
with the specified arguments (if there are any). The response is sent back to the client as another
SOAP message.

• An application that uses a Web service consists of two parts: a proxy class for the Web service and
a client application that accesses the Web service via the proxy.

• A proxy class handles the task of transferring the arguments passed from the client into a SOAP
message that is sent to the Web service. The proxy likewise handles the transferring of information
in the SOAP response to the client.

• The Namespace property of a WebService attribute uniquely identifies a Web service.

• The Description property of a WebService attribute adds a description of the Web ser-
vice when the Web service is displayed in a browser.

• Class WebService provides members that determine information about the user, the applica-
tion and other topics relevant to the Web service.

• A Web service is not required to inherit from class WebService.

• A programmer specifies a method as a Web-service method by tagging it with the WebMethod
attribute.

• Visual Studio provides a design view for each Web service, which allows the programmer to add
components to the application.

• A proxy class is created from the Web service’s WSDL file that enables the client to call Web-
service methods over the Internet.

• Whenever a call is made in a client application to a Web-service method, a method in the proxy
class is called. This method takes the method name and arguments passed by the client and formats
them so that they can be sent as a request in a SOAP message.

Chapter 21 ASP .NET and Web Services 1103

• By default, the namespace of a proxy class is the name of the domain in which the Web service
resides.

• UDDI is a project for developing a set of specifications that define how Web services should be
discovered so that programmers searching for Web services can find them.

• A DISCO file is a file that specifies any Web services that are available in the current directory.

• There are two types of discovery files: Dynamic discovery files (.vsdisco extension) and static
discovery files (.disco extension).

• Once a Web reference is created, a static discovery file is placed in the client’s project. The static
discovery file hard codes the locations of the ASMX and WSDL files.

• Dynamic discovery files are created so that a list of Web services is created when a client is search-
ing for Web services.

• To store session information, the EnableSession property of the WebMethod attribute must
be set to true.

• The use of session state in a Web service can make coding easier and reduce overhead.

• When storing session information, a Web service must have a way of identifying users between
method calls. The approach is implemented using cookies, which are stored in a CookieCon-
tainer.

• Types can be defined by a programmer and used in a Web service. These types can be passed into
or returned from Web-service methods.

• User-defined types can be sent to or returned from Web-service methods, because the types are
defined in the proxy class created for the client.

• Custom types that are sent to or from a Web service are serialized as XML.

• Any object returned by a Web-service method must have a default constructor.

• Any variables of a custom type that we wish to make available to clients must be declared public.

• Properties of a custom type that we wish to make available to clients must have both get and set
accessors defined.

• When an object is returned from a Web service, all its public properties and fields are marked
up in XML. This information can then be transferred back into an object on the client side.

TERMINOLOGY
Add Web Reference dialog EnableSession property of a WebMethod

 attributeASMX file
ASP.NET Web Service project type exposing a Web-service method
code-behind file in Web services firewall
consuming a Web service Invoke button
CookieContainer class Namespace property of a WebService

 attributeCookieContainer property
creating a proxy class for a Web service OpenRead method of class WebClient
Description property of a WebMethod
 attribute

proxy class
publishing a Web service

Description property of a WebService
 attribute

remote machine
Remote Procedure Call (RPC)

.disco file extension session tracking in Web services
discovery (DISCO) files Simple Object Access Protocol (SOAP)
distributed computing SOAP envelope
distributed system SOAP message

1104 ASP .NET and Web Services Chapter 21

SELF-REVIEW EXERCISES
21.1 State whether each of the following is true or false. If false, explain why.

a) The purpose of a Web service is to create objects that are instantiated and used on the
local machine.

b) A Web server is required to create Web services and make them available.
c) If a Web service is referenced by adding a Web reference to a client in Visual

Studio .NET, a proxy class is not created.
d) In .NET, a program communicating with a Web service uses HTTP GET by default to

send and receive messages.
e) A client can use only Web-service methods that are tagged with the WebMethod at-

tribute.
f) To enable session tracking in a Web-service method, the programmer sets the En-

ableSession property to true in the WebMethod attribute. No other action is re-
quired.

g) An application can use only one Web service.
h) Not all primitive data types can be returned from a Web service.
i) WebMethods methods cannot be declared static.
j) A user-defined type used in a Web service must define both get and set accessors for

any property that will be accessed in an application.

21.2 Fill in the blanks for each of the following statements:
a) When messages are sent between an application and a Web service, each message is

placed in a .
b) A Web service can inherit from class .
c) The class that defines a Web service usually is located in the file for that

Web service.
d) The format used by a Web service to send and receive messages is usually known as the

 or .
e) A file specifies any Web services that are available in the current directory.
f) Class is designed for interaction with resources identified by a URL.
g) Web-service requests are sent over the Internet via the protocol.
h) To add a description for a Web service method in an ASMX page, the prop-

erty of the WebService attribute is used.
i) Sending objects between a Web service and a client requires of the object.
j) A proxy class is defined in a namespace whose name is that of the in which

the Web service is defined.

ANSWERS TO SELF-REVIEW EXERCISES
21.1 a) False. Web services are used to execute methods on remote machines. The Web service
receives the parameters it needs to execute a particular method, executes the method and then returns
the result to the caller. b) True. c) True. d) False. A program communicating with a Web service uses

SOAP request Web-service method
System.Net WebClient class
Uniform Resource Locator (URL) WebMethod attribute
Universal Description, Discovery and
 Integration (UDDI)

WebService attribute
WebService class

.vsdisco file extension wire format
Web service wire protocol
Web Service Description Language (WSDL) XML serialization

Chapter 21 ASP .NET and Web Services 1105

SOAP by default to send and receive messages. e) True. f) False. A CookieContainer also must
be created on the client side. g) False. An application can use as many Web services as it needs. h)
True. i) True. j) True.

21.2 a) SOAP message. b) WebService. c) code-behind. d) wire format, wire protocol. e)
.disco. f) WebClient. g) HTTP. h) Description. i) XML serialization. j) domain.

EXERCISES
21.3 Create a Web service that stores phone-book entries in a database. Give the user the capabil-
ity to enter new contacts and to find contacts by last name. Pass only primitive types as arguments to
the Web service.

21.4 Modify Exercise 21.3 so that it uses a class named PhoneBookEntry. The client applica-
tion should provide objects of type PhoneBookEntry to the Web service when adding contacts and
should receive objects of type PhoneBookEntry when searching for contacts.

21.5 Modify the Blackjack Web service example in Section 21.5 to include a class Card.
Have DealCard return an object of type Card. Also, have the client application keep track of what
cards have been dealt, using Cards. Your card class should include properties to determine the face
and suit of the card.

21.6 Modify the airline reservation example in Section 21.6 so that it contains two separate Web
methods—one that allows users to view all available seats and another that allows users to reserve
seats. Use an object of type Ticket to pass information to and from the Web service. This Web ap-
plication should list all available seats in a ListBox and then allow the user to click a seat to reserve
it. Your application must be able to handle cases where two users view available seats, one reserves
a seat, and then the second user tries to reserve the same seat, not knowing that the database has
changed since the page was loaded.

21.7 Modify the TemperatureServer example in Section 21.7 so that it returns an array of
CityWeather objects that the client application uses to display the weather information.

21.8 Modify the Web service in the math-tutor example in Section 21.8 so that it includes a meth-
od that calculates how “close” the player is to the correct answer. The client application should pro-
vide the correct answer only after a user has offered numerous answers that were far from the correct
one. Use your best judgment regarding what constitutes being “close” to the right answer. Remember
that there should be a different formula for one-digit, two-digit and three-digit numbers. Also, give
the program the capability of suggesting that users try a lower difficulty level if the users are consis-
tently wrong.

22
Networking: Streams-

Based Sockets and
Datagrams

Objectives
• To be able to implement C# networking applications

that use sockets and datagrams.
• To understand how to implement C# clients and

servers that communicate with one another.
• To understand how to implement network-based

collaborative applications.
• To construct a multithreaded server.
If the presence of electricity can be made visible in any part
of a circuit, I see no reason why intelligence may not be
transmitted instantaneously by electricity.
Samuel F. B. Morse

Mr. Watson, come here, I want you.
Alexander Graham Bell

What networks of railroads, highways and canals were in
another age, the networks of telecommunications,
information and computerization … are today.
Bruno Kreisky, Austrian Chancellor

Science may never come up with a better office-
communication system than the coffee break.
Earl Wilson

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1107

22.1 Introduction
The Internet and the World Wide Web have generated a great deal of excitement in the busi-
ness and computing communities. The Internet ties the “information world” together; the
Web makes the Internet easy to use while providing the flair of multimedia. Organizations
see both the Internet and the Web as crucial to their information-systems strategies. C# and
the .NET Framework offer a number of built-in networking capabilities that facilitate Inter-
net-based and Web-based applications development. C# not only can specify parallelism
through multithreading, but also can enable programs to search the Web for information and
collaborate with programs running on other computers internationally.

In Chapters 20 and 21, we began our presentation of C#’s networking and distributed-
computing capabilities. We discussed Web Forms and Web Services, two high-level net-
working technologies that enable programmers to develop distributed applications in C#.
In this chapter, we focus on the networking technologies that support C#’s ASP.NET capa-
bilities and can be used to build distributed applications.

Our discussion of networking focuses on both sides of a client–server relationship.
The client requests that some action be performed; the server performs the action and
responds to the client. A common implementation of this request–response model is
between Web browsers and Web servers. When users select Web sites that they wish to
view through a browser (the client application), the browser makes a request to the appro-
priate Web server (the server application). The server normally responds to the client by
sending the appropriate HTML Web pages.

C#’s networking capabilities are grouped into several namespaces. The fundamental
networking capabilities are defined by classes and interfaces of namespace
System.Net.Sockets. Through this namespace, C# offers socket-based communica-
tions, which enable developers to view networking as if it were file I/O. This means that a
program can read from a socket (network connection) or write to a socket as easily as it can
read from or write to a file. Sockets are the fundamental way to perform network commu-
nications in the .NET Framework. The term “socket” refers to the Berkeley Sockets Inter-
face, which was developed in 1978 for network programming with UNIX and was
popularized by C and C++ programmers.

The classes and interfaces of namespace System.Net.Sockets also offer packet-
based communications, through which individual packets of information are transmitted—

Outline

22.1 Introduction
22.2 Establishing a Simple Server (Using Stream Sockets)
22.3 Establishing a Simple Client (Using Stream Sockets)
22.4 Client/Server Interaction with Stream-Socket Connections
22.5 Connectionless Client/Server Interaction with Datagrams
22.6 Client/Server Tic-Tac-Toe Using a Multithreaded Server

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1108 Networking: Streams-Based Sockets and Datagrams Chapter 22

this is a common method of transmitting audio and video over the Internet. In this chapter,
we show how to create and manipulate sockets and how to communicate via packets of data.

Socket-based communications in C# employ stream sockets. With stream sockets, a
process (running program) establishes a connection to another process. While the connec-
tion is in place, data flows between the processes in continuous streams. For this reason,
stream sockets are said to provide a connection-oriented service. The popular TCP (Trans-
mission Control Protocol) facilitates stream-socket transmission.

By contrast, packet-based communications in C# employ datagram sockets, through
which individual packets of information are transmitted. Unlike TCP, the protocol used to
enable datagram sockets—UDP, the User Datagram Protocol—is a connectionless service
and does not guarantee that packets will arrive in any particular order. In fact, packets can be
lost or duplicated and can arrive out of sequence. Applications that use UDP often require sig-
nificant extra programming to deal with these problems. UDP is most appropriate for network
applications that do not require the error checking and reliability of TCP. For example, sev-
eral online multi-player games use UDP, because speed is more important than perfect accu-
racy in these types of applications. Stream sockets and the TCP protocol will be the most
desirable method of communication for the vast majority of C# programmers.

Performance Tip 22.1
Connectionless services generally offer better performance but less reliability than do con-
nection-oriented services. 22.1

Portability Tip 22.1
The TCP protocol and its related set of protocols enable intercommunication among a wide
variety of heterogeneous computer systems (i.e., computer systems with different processors
and different operating systems). 22.1

22.2 Establishing a Simple Server (Using Stream Sockets)
Typically, with TCP and stream sockets, a server “waits” for a connection request from a
client. Often, the server program contains a control structure or block of code that executes
continuously until the server receives a request. On receiving a request, the server estab-
lishes a connection with the client. The server then uses this connection to handle future
requests from that client and to send data to the client.

The establishment of a simple server with TCP and stream sockets in C# requires five
steps. The first step is to create an object of class TcpListener, which belongs to
namespace System.Net.Sockets. This class represents a TCP stream socket through
which a server can listen for requests. A call to the TcpListener constructor, such as

TcpListener server = new TcpListener(port);

binds (assigns) the server to the specified port number. A port number is a numeric identi-
fier that a process uses to identify itself at a given network address, also known as an Inter-
net Protocol Address (IP Address). IP addresses identify computers on the Internet. In fact,
Web-site names, such as www.deitel.com, are aliases for IP addresses. Any process
that performs networking identifies itself via an IP address/port number pair. Hence, no
two processes can have the same port number at a given IP address. The explicit binding of
a socket to a port (using method Bind of class Socket) is usually unnecessary, because

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1109

class TcpListener and other classes discussed in this chapter hide this binding (i.e.,
bind sockets to ports implicitly), plus they perform other socket-initialization operations.

Software Engineering Observation 22.1
Port numbers can have values between 0 and 65535. Many operating systems reserve port
numbers below 1024 for system services (such as e-mail and Web servers). Applications must
be granted special privileges to use these reserved port numbers. Usually, a server-side ap-
plication should not specify port numbers below 1024 as connection ports, because some op-
erating systems might reserve these numbers. 22.1

Common Programming Error 22.1
Attempting to bind an already assigned port at a given IP address is a logic error. 22.1

To receive requests, the TcpListener first must listen for them. The second step in
our connection process is to call TcpListener’s Start method, which causes the
TcpListener object to begin listening for connection requests. The third step estab-
lishes the connection between the server and client. The server listens indefinitely for a
request—i.e., the execution of the server-side application waits until some client attempts
to connect with it. The server creates a connection to the client upon receipt of a connection
request. An object of class System.Net.Sockets.Socket manages each connection
to the client. Method AcceptSocket of class TcpListener waits for a connection
request, then creates a connection when a request is received. This method returns a
Socket object upon connection, as in the statement

Socket connection = server.AcceptSocket();

When the server receives a request, method AcceptSocket calls method Accept of the
TcpListener’s underlying Socket to make the connection. This is an example of C#’s
hiding of networking complexity from the programmer. The programmer can write the pre-
ceding statement into a server-side program, then allow the classes of namespace Sys-
tem.Net.Sockets to handle the details of accepting requests and establishing
connections.

Step four is the processing phase, in which the server and the client communicate via
methods Receive and Send of class Socket. Note that these methods, as well as TCP
and stream sockets, can be used only when the server and client are connected. By contrast,
through Socket methods SendTo and ReceiveFrom, UDP and datagram sockets can
be used when no connection exists.

The fifth step is the connection-termination phase. When the client and server have
finished communicating, the server uses method Close of the Socket object to close
the connection. Most servers then return to step two (i.e., wait for another client’s connec-
tion request).

One problem associated with the server scheme described in this section is that step
four blocks other requests while processing a client’s request, so that no other client can
connect with the server while the code that defines the processing phase is executing. The
most common technique for addressing this problem is to use multithreaded servers, which
place the processing-phase code in a separate thread. When the server receives a connection
request, the server spawns, or creates, a Thread to process the connection, leaving its
TcpListener (or Socket) free to receive other connections.

1110 Networking: Streams-Based Sockets and Datagrams Chapter 22

Software Engineering Observation 22.2
Using C#’s multithreading capabilities, we can create servers that can manage simultaneous
connections with multiple clients. This multithreaded-server architecture is precisely what
popular UNIX and Windows network servers use. 22.2

Software Engineering Observation 22.3
A multithreaded server can be implemented to create a thread that manages network I/O
across a reference to a Socket object returned by method AcceptSocket. A multi-
threaded server also can be implemented to maintain a pool of threads that manage network
I/O across newly created Sockets. 22.3

Performance Tip 22.2
In high-performance systems with abundant memory, a multithreaded server can be imple-
mented to create a pool of threads. These threads can be assigned quickly to handle network
I/O across each multiple Socket. Thus, when a connection is received, the server does not
incur the overhead of thread creation. 22.2

22.3 Establishing a Simple Client (Using Stream Sockets)
We create TCP-stream-socket clients via a process that requires four steps. In the first step,
we create an object of class TcpClient (which belongs to namespace Sys-
tem.Net.Sockets) to connect to the server. This connection is established through
method Connect of class TcpClient. One overloaded version of this method receives
two arguments—the server’s IP address and the port number—as in the following:

TcpClient client = new TcpClient();
client.Connect(serverAddress, serverPort);

Here, serverPort is an int that represents the server’s port number; serverAd-
dress can be either an IPAddress instance (that encapsulates the server’s IP address)
or a string that specifies the server’s hostname. Alternatively, the programmer could
pass an object reference of class IPEndPoint, which represents an IP address/port num-
ber pair, to a different overload of method Connect. Method Connect of class Tcp-
Client calls method Connect of class Socket to establish the connection. If the
connection is successful, method TcpClient.Connect returns a positive integer; oth-
erwise, it returns 0.

In step two, the TcpClient uses its method GetStream to get a Network-
Stream so that it can write to and read from the server. NetworkStream methods
WriteByte and Write can be used to output individual bytes or sets of bytes to the
server, respectively; similarly, NetworkStream methods ReadByte and Read can be
used to input individual bytes or sets of bytes from the server, respectively.

The third step is the processing phase, in which the client and the server communicate.
In this phase, the client uses methods Read, ReadByte, Write and WriteByte of
class NetworkStream to perform the appropriate communications. Using a process sim-
ilar to that used by servers, a client can employ threads to prevent blocking of communica-
tions with other servers while processing data from one connection.

After the transmission is complete, step four requires the client to close the connection
by calling method Close of the NetworkStream object. This closes the underlying

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1111

Socket (if the NetworkStream has a reference to that Socket). Then, the client calls
method Close of class TcpClient to terminate the TCP connection. At this point, a new
connection can be established through method Connect, as we have described.

22.4 Client/Server Interaction with Stream-Socket
Connections
The applications in Fig. 22.1 and Fig. 22.2 use the classes and techniques discussed in the
previous two sections to construct a simple client/server chat application. The server waits
for a client’s request to make a connection. When a client application connects to the server,
the server application sends an array of bytes to the client, indicating that the connection
was successful. The client then displays a message notifying the user that a connection has
been established.

Both the client and the server applications contain TextBoxes that enable users to
type messages and send them to the other application. When either the client or the server
sends message “TERMINATE,” the connection between the client and the server termi-
nates. The server then waits for another client to request a connection. Figure 22.1 and
Fig. 22.2 provide the code for classes Server and Client, respectively. Figure 22.2 also
contains screen captures displaying the execution between the client and the server.

1 // Fig. 22.1: Server.cs
2 // Set up a Server that will receive a connection from a client,
3 // send a string to the client, and close the connection.
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Threading;
11 using System.Net.Sockets;
12 using System.IO;
13
14 // server that awaits client connections (one at a time) and
15 // allows a conversation between client and server
16 public class Server : System.Windows.Forms.Form
17 {
18 private System.Windows.Forms.TextBox inputTextBox;
19 private System.Windows.Forms.TextBox displayTextBox;
20 private Socket connection;
21 private Thread readThread;
22
23 private System.ComponentModel.Container components = null;
24 private NetworkStream socketStream;
25 private BinaryWriter writer;
26 private BinaryReader reader;
27

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Server portion of a client/server stream-socket connection. (Part 1 of 4.)

1112 Networking: Streams-Based Sockets and Datagrams Chapter 22

28 // default constructor
29 public Server()
30 {
31 InitializeComponent();
32
33 // create a new thread from the server
34 readThread = new Thread(new ThreadStart(RunServer));
35 readThread.Start();
36 }
37
38 // Visual Studio .NET generated code
39
40 [STAThread]
41 static void Main()
42 {
43 Application.Run(new Server());
44 }
45
46 protected void Server_Closing(
47 object sender, CancelEventArgs e)
48 {
49 System.Environment.Exit(System.Environment.ExitCode);
50 }
51
52 // sends the text typed at the server to the client
53 protected void inputTextBox_KeyDown(
54 object sender, KeyEventArgs e)
55 {
56 // sends the text to the client
57 try
58 {
59 if (e.KeyCode == Keys.Enter && connection != null)
60 {
61 writer.Write("SERVER>>> " + inputTextBox.Text);
62
63 displayTextBox.Text +=
64 "\r\nSERVER>>> " + inputTextBox.Text;
65
66 // if the user at the server signaled termination
67 // sever the connection to the client
68 if (inputTextBox.Text == "TERMINATE")
69 connection.Close();
70
71 inputTextBox.Clear();
72 }
73 }
74 catch (SocketException)
75 {
76 displayTextBox.Text += "\nError writing object";
77 }
78 } // inputTextBox_KeyDown
79

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Server portion of a client/server stream-socket connection. (Part 2 of 4.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1113

80 // allows a client to connect and displays the text it sends
81 public void RunServer()
82 {
83 TcpListener listener;
84 int counter = 1;
85
86 // wait for a client connection and display the text
87 // that the client sends
88 try
89 {
90 // Step 1: create TcpListener
91 listener = new TcpListener(5000);
92
93 // Step 2: TcpListener waits for connection request
94 listener.Start();
95
96 // Step 3: establish connection upon client request
97 while (true)
98 {
99 displayTextBox.Text = "Waiting for connection\r\n";
100
101 // accept an incoming connection
102 connection = listener.AcceptSocket();
103
104 // create NetworkStream object associated with socket
105 socketStream = new NetworkStream(connection);
106
107 // create objects for transferring data across stream
108 writer = new BinaryWriter(socketStream);
109 reader = new BinaryReader(socketStream);
110
111 displayTextBox.Text += "Connection " + counter +
112 " received.\r\n";
113
114 // inform client that connection was successfull
115 writer.Write("SERVER>>> Connection successful");
116
117 inputTextBox.ReadOnly = false;
118 string theReply = "";
119
120 // Step 4: read String data sent from client
121 do
122 {
123 try
124 {
125 // read the string sent to the server
126 theReply = reader.ReadString();
127
128 // display the message
129 displayTextBox.Text += "\r\n" + theReply;
130 }
131

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Server portion of a client/server stream-socket connection. (Part 3 of 4.)

1114 Networking: Streams-Based Sockets and Datagrams Chapter 22

132 // handle exception if error reading data
133 catch (Exception)
134 {
135 break;
136 }
137
138 } while (theReply != "CLIENT>>> TERMINATE" &&
139 connection.Connected);
140
141 displayTextBox.Text +=
142 "\r\nUser terminated connection";
143
144 // Step 5: close connection
145 inputTextBox.ReadOnly = true;
146 writer.Close();
147 reader.Close();
148 socketStream.Close();
149 connection.Close();
150
151 ++counter;
152 }
153 } // end try
154
155 catch (Exception error)
156 {
157 MessageBox.Show(error.ToString());
158 }
159
160 } // end method RunServer
161
162 } // end class Server

1 // Fig. 22.2: Client.cs
2 // Set up a Client that will read information sent from a Server
3 // and display the information.
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Threading;
11 using System.Net.Sockets;
12 using System.IO;
13
14 // connects to a chat server
15 public class Client : System.Windows.Forms.Form
16 {
17 private System.Windows.Forms.TextBox inputTextBox;

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Client portion of a client/server stream-socket connection. (Part 1 of 5.)

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Server portion of a client/server stream-socket connection. (Part 4 of 4.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1115

18 private System.Windows.Forms.TextBox displayTextBox;
19
20 private NetworkStream output;
21 private BinaryWriter writer;
22 private BinaryReader reader;
23
24 private string message = "";
25
26 private Thread readThread;
27
28 private System.ComponentModel.Container components = null;
29
30 // default constructor
31 public Client()
32 {
33 InitializeComponent();
34
35 readThread = new Thread(new ThreadStart(RunClient));
36 readThread.Start();
37 }
38
39 // Visual Studio .NET-generated code
40
41 [STAThread]
42 static void Main()
43 {
44 Application.Run(new Client());
45 }
46
47 protected void Client_Closing(
48 object sender, CancelEventArgs e)
49 {
50 System.Environment.Exit(System.Environment.ExitCode);
51 }
52
53 // sends text the user typed to server
54 protected void inputTextBox_KeyDown (
55 object sender, KeyEventArgs e)
56 {
57 try
58 {
59 if (e.KeyCode == Keys.Enter)
60 {
61 writer.Write("CLIENT>>> " + inputTextBox.Text);
62
63 displayTextBox.Text +=
64 "\r\nCLIENT>>> " + inputTextBox.Text;
65
66 inputTextBox.Clear();
67 }
68 }

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Client portion of a client/server stream-socket connection. (Part 2 of 5.)

1116 Networking: Streams-Based Sockets and Datagrams Chapter 22

69 catch (SocketException ioe)
70 {
71 displayTextBox.Text += "\nError writing object";
72 }
73
74 } // end method inputTextBox_KeyDown
75
76 // connect to server and display server-generated text
77 public void RunClient()
78 {
79 TcpClient client;
80
81 // instantiate TcpClient for sending data to server
82 try
83 {
84 displayTextBox.Text += "Attempting connection\r\n";
85
86 // Step 1: create TcpClient and connect to server
87 client = new TcpClient();
88 client.Connect("localhost", 5000);
89
90 // Step 2: get NetworkStream associated with TcpClient
91 output = client.GetStream();
92
93 // create objects for writing and reading across stream
94 writer = new BinaryWriter(output);
95 reader = new BinaryReader(output);
96
97 displayTextBox.Text += "\r\nGot I/O streams\r\n";
98
99 inputTextBox.ReadOnly = false;
100
101 // loop until server signals termination
102 do
103 {
104
105 // Step 3: processing phase
106 try
107 {
108 // read message from server
109 message = reader.ReadString();
110 displayTextBox.Text += "\r\n" + message;
111 }
112
113 // handle exception if error in reading server data
114 catch (Exception)
115 {
116 System.Environment.Exit(
117 System.Environment.ExitCode);
118 }
119 } while(message != "SERVER>>> TERMINATE");
120

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Client portion of a client/server stream-socket connection. (Part 3 of 5.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1117

121 displayTextBox.Text += "\r\nClosing connection.\r\n";
122
123 // Step 4: close connection
124 writer.Close();
125 reader.Close();
126 output.Close();
127 client.Close();
128 Application.Exit();
129 }
130
131 // handle exception if error in establishing connection
132 catch (Exception error)
133 {
134 MessageBox.Show(error.ToString());
135 }
136
137 } // end method RunClient
138
139 } // end class Client

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Client portion of a client/server stream-socket connection. (Part 4 of 5.)

1118 Networking: Streams-Based Sockets and Datagrams Chapter 22

As we analyze this example, we begin by discussing class Server (Fig. 22.1). In the
constructor, line 34 creates a Thread that will accept connections from clients. Line 35
starts the Thread, which invokes method RunServer (lines 81–160). Method Run-
Server initializes the server to receive connection requests and process connections. Line
91 instantiates the TcpListener to listen for a connection request from a client at port
5000 (Step 1). Line 94 then calls method Start of the TcpListener object, which
causes the TcpListener to begin waiting for requests (Step 2).

Lines 97–152 declare an infinite while loop that establishes connections requested
by clients (Step 3). Line 102 calls method AcceptSocket of the TcpListener object,
which returns a Socket upon successful connection. The thread in which method
AcceptSocket is called stops executing until a connection is established. The Socket
object will manage the connection. Line 105 passes this Socket object as an argument to
the constructor of a NetworkStream object. Class NetworkStream provides access
to streams across a network—in this example, the NetworkStream object provides
access to the Socket connection. Lines 108–109 create instances of the BinaryWriter
and BinaryReader classes for writing and reading data. We pass the Network-
Stream object as an argument to each constructor; BinaryWriter can write bytes to
the NetworkStream, and BinaryReader can read bytes from NetworkStream.
Lines 111–112 append text to the TextBox, indicating that a connection was received.

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Client portion of a client/server stream-socket connection. (Part 5 of 5.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1119

BinaryWriter method Write has many overloaded versions, which enable the
method to write various types to a stream. (You might remember that we used these over-
loaded methods in Chapter 17 to write record data to files.) Line 115 uses method Write to
send to the client a string notifying the user of a successful connection. Lines 121–139
declare a do/while structure that executes until the server receives a message indicating
connection termination (i.e., CLIENT>>> TERMINATE). Line 126 uses BinaryReader
method ReadString to read a string from the stream (Step 4). (You might remember
that we also used this method in Chapter 17 to read records’ first-name and last-name
strings from files.) Method ReadString blocks until a string is read. To prevent the
whole server from blocking, we use a separate Thread to handle the transfer of information.
The while statement loops until there is more information to read—this results in I/O
blocking, which causes the program always to appear frozen. However, if we run this portion
of the program in a separate Thread, the user can interact with the Windows Form and send
messages while the program waits in the background for incoming messages.

When the chat is complete, lines 146–149 close the BinaryWriter, Bina-
ryReader, NetworkStream and Socket (Step 5) by invoking their respective
Close methods. The server then waits for another client connection request by returning
to the beginning of the while loop (line 97).

When the user of the server application enters a string in the TextBox and presses
the Enter key, event handler inputTextBox_KeyDown (lines 53–78) reads the
string and sends it via method Write of class BinaryWriter. If a user terminates
the server application, line 69 calls method Close of the Socket object to close the con-
nection.

Lines 46–50 define the Server_Closing event handler for the Closing event.
The event closes the application and uses System.Environment.Exit method with
parameter System.Environment.ExitCode to terminate all threads. Method Exit
of class Environment closes all threads associated with the application.

Figure 22.2 lists the code for the Client object. Like the Server object, the
Client object creates a Thread (lines 35–36) in its constructor to handle all incoming
messages. Client method RunClient (lines 77–137) connects to the Server,
receives data from the Server and sends data to the Server (when the user presses
Enter). Lines 87–88 instantiate a TcpClient object, then call its method Connect to
establish a connection (Step 1). The first argument to method Connect is the name of the
server—in our case, the server’s name is "localhost", meaning that the server is
located on the same machine as the client. The localhost is also known as the loopback
IP address and is equivalent to the IP address 127.0.0.1. This value sends the data trans-
mission back to the sender’s IP address. [Note: We chose to demonstrate the client/server
relationship by connecting between programs that are executing on the same computer
(localhost). Normally, this argument would contain the Internet address of another
computer.] The second argument to method Connect is the server port number. This
number must match the port number at which the server waits for connections.

The Client uses a NetworkStream to send data to and receive data from the server.
The client obtains the NetworkStream on line 91 through a call to TcpClient method
GetStream (Step 2). The do/while structure in lines 102–119 loops until the client
receives the connection-termination message (SERVER>>> TERMINATE). Line 109 uses
BinaryReader method ReadString to obtain the next message from the server (Step

1120 Networking: Streams-Based Sockets and Datagrams Chapter 22

3). Line 110 displays the message, and lines 124–127 close the BinaryWriter, Bina-
ryReader, NetworkStream and TcpClient objects (Step 4).

When the user of the client application enters a string in the TextBox and presses
the Enter key, the event handler inputTextBox_KeyDown (lines 54–74) reads the
string from the TextBox and sends it via BinaryWriter method Write. Notice
that, here, the Server receives a connection, processes it, closes it and waits for the next
one. In a real-world application, a server would likely receive a connection, set up the con-
nection to be processed as a separate thread of execution and wait for new connections. The
separate threads that process existing connections can continue to execute while the
Server concentrates on new connection requests.

22.5 Connectionless Client/Server Interaction with Datagrams
Up to this point, we have discussed connection-oriented, streams-based transmission. Now,
we consider connectionless transmission using datagrams.

Connection-oriented transmission is similar to interaction over a telephone system, in
which a user dials a number and is connected to the telephone of the party they wish to con-
nect. The system maintains the connection for the duration of the phone call, regardless of
whether the users are speaking.

By contrast, connectionless transmission via datagrams more closely resembles the
method by which the postal service carries and delivers mail. Connectionless transmission
bundles and sends information in packets called datagrams, which can be thought of as sim-
ilar to posted letters. If a large message will not fit in one envelope, that message is broken
into separate message pieces and placed in separate, sequentially numbered envelopes. All the
letters are mailed at once. The letters might arrive in order, out of order or not at all. The
person at the receiving end reassembles the message pieces into sequential order before
attempting to interpret the message. If the message is small enough to fit in one envelope, the
sequencing problem is eliminated, but it is still possible that the message will never arrive.
(Unlike with posted mail, duplicate of datagrams could reach receiving computers.) C# pro-
vides the UdpClient class for connectionless transmission. Like TcpListener and
TcpClient, UdpClient uses methods from class Socket. The UdpClient methods
Send and Receive are used to transmit data with Socket’s SendTo method and to read
data with Socket’s ReceiveFrom method, respectively.

The programs in Fig. 22.3 and Fig. 22.4 use datagrams to send packets of information
between a client and server applications. In the Client application, the user types a mes-
sage into a TextBox and presses Enter. The client converts the message to a byte array
and sends it to the server. The server receives the packet and displays the packet’s informa-
tion, then echoes, or returns, the packet back to the client. When the client receives the
packet, the client displays the packet’s information. In this example, the implementations
of the Client and Server classes are similar.

1 // Fig. 22.5: Server.cs
2 // Set up a Server that will receive packets from a
3 // client and send packets to a client.
4

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Server-side portion of connectionless client/server computing. (Part 1 of 3.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1121

5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.Net;
12 using System.Net.Sockets;
13 using System.Threading;
14
15 // create the UDP server
16 public class Server : System.Windows.Forms.Form
17 {
18 private System.Windows.Forms.TextBox displayTextBox;
19 private UdpClient client;
20 private IPEndPoint receivePoint;
21 private System.ComponentModel.Container components = null;
22
23 // no-argument constructor
24 public Server()
25 {
26 InitializeComponent();
27
28 client = new UdpClient(5000);
29 receivePoint = new IPEndPoint(new IPAddress(0), 0);
30 Thread readThread = new Thread(
31 new ThreadStart(WaitForPackets));
32
33 readThread.Start();
34 }
35
36 // Visual Studio .NET generated code
37
38 [STAThread]
39 static void Main()
40 {
41 Application.Run(new Server());
42 }
43
44 // shut down the server
45 protected void Server_Closing(
46 object sender, CancelEventArgs e)
47 {
48 System.Environment.Exit(System.Environment.ExitCode);
49 }
50
51 // wait for a packet to arrive
52 public void WaitForPackets()
53 {
54 while (true)
55 {
56 // receive byte array from client
57 byte[] data = client.Receive(ref receivePoint);

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Server-side portion of connectionless client/server computing. (Part 2 of 3.)

1122 Networking: Streams-Based Sockets and Datagrams Chapter 22

58
59 // output packet data to TextBox
60 displayTextBox.Text += "\r\nPacket received:" +
61 "\r\nLength: " + data.Length + "\r\nContaining: " +
62 System.Text.Encoding.ASCII.GetString(data);
63
64 displayTextBox.Text +=
65 "\r\n\r\nEcho data back to client...";
66
67 // echo information from packet back to client
68 client.Send(data, data.Length, receivePoint);
69 displayTextBox.Text += "\r\nPacket sent\r\n";
70 }
71
72 } // end method WaitForPackets
73
74 } // end class Server

1 // Fig. 22.6: Client.cs
2 // Set up a Client that sends packets to a server and receives
3 // packets from a server.
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.Net;
12 using System.Net.Sockets;
13 using System.Threading;
14

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Client portion of connectionless client/server computing. (Part 1 of 3.)

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Server-side portion of connectionless client/server computing. (Part 3 of 3.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1123

15 // run the UDP client
16 public class Client : System.Windows.Forms.Form
17 {
18 private System.Windows.Forms.TextBox inputTextBox;
19 private System.Windows.Forms.TextBox displayTextBox;
20
21 private UdpClient client;
22 private IPEndPoint receivePoint;
23
24 private System.ComponentModel.Container components = null;
25
26 // no-argument constructor
27 public Client()
28 {
29 InitializeComponent();
30
31 receivePoint = new IPEndPoint(new IPAddress(0), 0);
32 client = new UdpClient(5001);
33 Thread thread =
34 new Thread(new ThreadStart(WaitForPackets));
35 thread.Start();
36 }
37
38 // Visual Studio.NET generated code
39
40 [STAThread]
41 static void Main()
42 {
43 Application.Run(new Client());
44 }
45
46 // shut down the client
47 protected void Client_Closing(
48 object sender, CancelEventArgs e)
49 {
50 System.Environment.Exit(System.Environment.ExitCode);
51 }
52
53 // send a packet
54 protected void inputTextBox_KeyDown(
55 object sender, KeyEventArgs e)
56 {
57 if (e.KeyCode == Keys.Enter)
58 {
59 // create packet (datagram) as string
60 string packet = inputTextBox.Text;
61 displayTextBox.Text +=
62 "\r\nSending packet containing: " + packet;
63
64 // convert packet to byte array
65 byte[] data =
66 System.Text.Encoding.ASCII.GetBytes(packet);
67

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Client portion of connectionless client/server computing. (Part 2 of 3.)

1124 Networking: Streams-Based Sockets and Datagrams Chapter 22

The code in Fig. 22.3 defines the Server for this application. Line 28 in the con-
structor for class Server creates an instance of the UdpClient class that receives data
at port 5000. This initializes the underlying Socket for communications. Line 29 creates
an instance of class IPEndPoint to hold the IP address and port number of the client(s)
that transmit to Server. The first argument to the constructor of IPEndPoint is an
IPAddress object; the second argument to the constructor for IPEndPoint is the port
number of the endpoint. These values are both 0, because we need only instantiate an empty
IPEndPoint object. The IP addresses and port numbers of clients are copied into the
IPEndPoint when datagrams are received from clients.

68 // send packet to server on port 5000
69 client.Send(data, data.Length, "localhost", 5000);
70 displayTextBox.Text += "\r\nPacket sent\r\n";
71 inputTextBox.Clear();
72 }
73 } // end method inputTextBox_KeyDown
74
75 // wait for packets to arrive
76 public void WaitForPackets()
77 {
78 while (true)
79 {
80 // receive byte array from server
81 byte[] data = client.Receive(ref receivePoint);
82
83 // output packet data to TextBox
84 displayTextBox.Text += "\r\nPacket received:" +
85 "\r\nLength: " + data.Length + "\r\nContaining: " +
86 System.Text.Encoding.ASCII.GetString(data) +
87 "\r\n";
88 }
89
90 } // end method WaitForPackets
91
92 } // end class Client

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Client portion of connectionless client/server computing. (Part 3 of 3.)

Client window before sending
a packet to the server

Client window after sending a packet
to the server and receiving it back

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1125

Server method WaitForPackets (lines 52–72) executes an infinite loop while
waiting for data to arrive at the Server. When information arrives, the UdpClient
method Receive (line 57) receives a byte array from the client. We include Receive
in the IPEndPoint object created in the constructor; this provides the method with a ref-
erence to an IPEndPoint into which the program copies the client’s IP address and port
number. This program will compile and run without an exception even if the reference to
the IPEndPoint object is null, because method Receive initializes the IPEnd-
Point if it is null.

Good Programming Practice 22.1
Initialize all references to objects (to a value other than null). This protects code from
methods that do not check their parameters for null references. 22.1

Lines 60–65 update the Server’s display to include the packet’s information and
content. Line 68 echoes the data back to the client, using UdpClient method Send. This
version of Send takes three arguments: The byte array to send, an int representing the
array’s length and the IPEndPoint to which to send the data. We use array data
returned by method Receive as the data, the length of array data as the length and the
IPEndPoint passed to method Receive as the data’s destination. The IP address and
port number of the client that sent the data to Server are stored in receivePoint, so
merely passing receivePoint to Send allows Server to respond to the client.

Class Client (Fig. 22.4) works similarly to class Server, except that the Client
object sends packets only when the user types a message in a TextBox and presses the
Enter key. When this occurs, the program calls event handler
inputTextBox_KeyDown (lines 54–73). Lines 65–66 convert the string that the
user entered in the TextBox to a byte array. Line 69 calls UdpClient method Send
to send the byte array to the Server that is located on localhost (i.e., the same
machine). We specify the port as 5000, which we know to be Server’s port.

Line 32 instantiates a UdpClient object to receive packets at port 5001—we choose
port 5001, because the Server already occupies port 5000. Method WaitFor-
Packets of class Client (lines 76–90) uses an infinite loop to wait for these packets.
The UdpClient method Receive blocks until a packet of data is received (line 81). The
blocking performed by method Receive does not prevent class Client from per-
forming other services (e.g., handling user input), because a separate thread runs method
WaitForPackets.

When a packet arrives, lines 84–87 display its contents in the TextBox. The user can
type information into the Client window’s TextBox and press the Enter key at any
time, even while a packet is being received. The event handler for the TextBox processes
the event and sends the data to the server.

22.6 Client/Server Tic-Tac-Toe Using a Multithreaded Server
In this section, we present our capstone networking example—the popular game Tic-

Tac-Toe, implemented with stream sockets and client/server techniques. The program con-
sists of a Server application (Fig. 22.5) and two Client applications (Fig. 22.6);
Server allows the Clients to connect to the server and play Tic-Tac-Toe. We depict
the output in Fig. 22.7. When the server receives a client connection, lines 72–83 of

1126 Networking: Streams-Based Sockets and Datagrams Chapter 22

Fig. 22.5 create an instance of class Player to process the client in a separate thread of
execution. This enables the server to handle requests from both clients. The server assigns
value "X" to the first client that connects (player X makes the first move), then assigns
value "O" to the second client. Throughout the game, the server maintains information
regarding the status of the board so that the server can validate players’ requested moves.
However, neither the server nor the client can establish whether a player has won the
game—in this application, method GameOver (lines 143–147) always returns false.
Exercise 22.7 asks the reader to implement functionality that enables the application to
determine a winner. Each Client maintains its own GUI version of the Tic-Tac-Toe
board to display the game. The clients can place marks only in empty squares on the board.
Class Square (Fig. 22.7) is used to define squares on the Tic-Tac-Toe board.

1 // Fig. 22.5: Server.cs
2 // This class maintains a game of Tic-Tac-Toe for two
3 // client applications.
4
5 using System;
6 using System.Drawing;
7 using System.Collections;
8 using System.ComponentModel;
9 using System.Windows.Forms;

10 using System.Data;
11 using System.Net.Sockets;
12 using System.Threading;
13 using System.IO;
14
15 // awaits connections from two clients and allows them to
16 // play tic-tac-toe against each other
17 public class Server : System.Windows.Forms.Form
18 {
19 private System.Windows.Forms.TextBox displayTextBox;
20
21 private byte[] board;
22
23 private Player[] players;
24 private Thread[] playerThreads;
25
26 private TcpListener listener;
27 private int currentPlayer;
28 private Thread getPlayers;
29
30 private System.ComponentModel.Container components = null;
31
32 internal bool disconnected = false;
33
34 // default constructor
35 public Server()
36 {
37 InitializeComponent();
38
39 board = new byte[9];

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Server side of client/server Tic-Tac-Toe program. (Part 1 of 6.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1127

40
41 players = new Player[2];
42 playerThreads = new Thread[2];
43 currentPlayer = 0;
44
45 // accept connections on a different thread
46 getPlayers = new Thread(new ThreadStart(SetUp));
47 getPlayers.Start();
48 }
49
50 // Visual Studio .NET-generated code
51
52 [STAThread]
53 static void Main()
54 {
55 Application.Run(new Server());
56 }
57
58 protected void Server_Closing(
59 object sender, CancelEventArgs e)
60 {
61 disconnected = true;
62 }
63
64 // accepts connections from 2 players
65 public void SetUp()
66 {
67 // set up Socket
68 listener = new TcpListener(5000);
69 listener.Start();
70
71 // accept first player and start a thread for him or her
72 players[0] =
73 new Player(listener.AcceptSocket(), this, 0);
74 playerThreads[0] = new Thread(
75 new ThreadStart(players[0].Run));
76 playerThreads[0].Start();
77
78 // accept second player and start a thread for him or her
79 players[1] =
80 new Player(listener.AcceptSocket(), this, 1);
81 playerThreads[1] =
82 new Thread(new ThreadStart(players[1].Run));
83 playerThreads[1].Start();
84
85 // let the first player know that the other player has
86 // connected
87 lock (players[0])
88 {
89 players[0].threadSuspended = false;
90 Monitor.Pulse(players[0]);
91 }
92 } // end method SetUp

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Server side of client/server Tic-Tac-Toe program. (Part 2 of 6.)

1128 Networking: Streams-Based Sockets and Datagrams Chapter 22

93
94 // appends the argument to text in displayTextBox
95 public void Display(string message)
96 {
97 displayTextBox.Text += message + "\r\n";
98 }
99
100 // determine if a move is valid
101 public bool ValidMove(int location, int player)
102 {
103 // prevent another thread from making a move
104 lock (this)
105 {
106 // while it is not the current player's turn, wait
107 while (player != currentPlayer)
108 Monitor.Wait(this);
109
110 // if the desired square is not occupied
111 if (!IsOccupied(location))
112 {
113 // set the board to contain the current player's mark
114 board[location] = (byte) (currentPlayer == 0 ?
115 'X' : 'O');
116
117 // set the currentPlayer to be the other player
118 currentPlayer = (currentPlayer + 1) % 2;
119
120 // notify the other player of the move
121 players[currentPlayer].OtherPlayerMoved(location);
122
123 // alert the other player it's time to move
124 Monitor.Pulse(this);
125
126 return true;
127 }
128 else
129 return false;
130 }
131 } // end method ValidMove
132
133 // determines whether the specified square is occupied
134 public bool IsOccupied(int location)
135 {
136 if (board[location] == 'X' || board[location] == 'O')
137 return true;
138 else
139 return false;
140 }
141
142 // determines if the game is over
143 public bool GameOver()
144 {

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Server side of client/server Tic-Tac-Toe program. (Part 3 of 6.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1129

145 // place code here to test for a winner of the game
146 return false;
147 }
148
149 } // end class Server
150
151 public class Player
152 {
153 internal Socket connection;
154 private NetworkStream socketStream;
155 private Server server;
156 private BinaryWriter writer;
157 private BinaryReader reader;
158
159 private int number;
160 private char mark;
161 internal bool threadSuspended = true;
162
163 // constructor requiring Socket, Server and int objects
164 // as arguments
165 public Player(Socket socket, Server serverValue, int newNumber)
166 {
167 mark = (newNumber == 0 ? 'X' : 'O');
168
169 connection = socket;
170
171 server = serverValue;
172 number = newNumber;
173
174 // create NetworkStream object for Socket
175 socketStream = new NetworkStream(connection);
176
177 // create Streams for reading/writing bytes
178 writer = new BinaryWriter(socketStream);
179 reader = new BinaryReader(socketStream);
180
181 } // end constructor
182
183 // signal other player of move
184 public void OtherPlayerMoved(int location)
185 {
186 // signal that opponent moved
187 writer.Write("Opponent moved");
188 writer.Write(location); // send location of move
189 }
190
191 // allows the players to make moves and receives moves
192 // from other player
193 public void Run()
194 {
195 bool done = false;
196

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Server side of client/server Tic-Tac-Toe program. (Part 4 of 6.)

1130 Networking: Streams-Based Sockets and Datagrams Chapter 22

197 // display on the server that a connection was made
198 server.Display("Player " + (number == 0 ? 'X' : 'O')
199 + " connected");
200
201 // send the current player's mark to the server
202 writer.Write(mark);
203
204 // if number equals 0 then this player is X, so send
205 writer.Write("Player " + (number == 0 ?
206 "X connected\r\n" : "O connected, please wait\r\n"));
207
208 // wait for another player to arrive
209 if (mark == 'X')
210 {
211 writer.Write("Waiting for another player");
212
213 // wait for notification from server that another
214 // player has connected
215 lock (this)
216 {
217 while (threadSuspended)
218 Monitor.Wait(this);
219 }
220
221 writer.Write("Other player connected. Your move");
222
223 } // end if
224
225 // play game
226 while (!done)
227 {
228 // wait for data to become available
229 while (connection.Available == 0)
230 {
231 Thread.Sleep(1000);
232
233 if (server.disconnected)
234 return;
235 }
236
237 // receive data
238 int location = reader.ReadInt32();
239
240 // if the move is valid, display the move on the
241 // server and signal the move is valid
242 if (server.ValidMove(location, number))
243 {
244 server.Display("loc: " + location);
245 writer.Write("Valid move.");
246 }
247

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Server side of client/server Tic-Tac-Toe program. (Part 5 of 6.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1131

Server (Fig. 22.5) uses its constructor (lines 35–48) to create a byte array to store
the moves the players have made (line 39). The program creates an array of two references
to Player objects (line 41) and an array of two references to Thread objects (line 42).
Each element in both arrays corresponds to a Tic-Tac-Toe player. Variable current-
Player is set to 0, which corresponds to player "X." In our program, player "X" makes
the first move (line 43). Lines 46–47 create and start Thread getPlayers, which the
Server uses to accept connections so that the current Thread does not block while
awaiting players.

Thread getPlayers executes method SetUp (lines 65–92), which creates a
TcpListener object to listen for requests on port 5000 (lines 68–69). This object then
listens for connection requests from the first and second players. Lines 72–73 and 79–80
instantiate Player objects representing the players, and lines 74–75 and 81–82 create two
Threads that execute the Run methods of each Player object.

The Player constructor (Fig. 22.5, lines 165–181) receives as arguments a reference
to the Socket object (i.e., the connection to the client), a reference to the Server object
and an int indicating the mark ("X" or "O") used by that player. In this case study, Server
calls method Run (lines 193–264) after instantiating a Player object. Lines 198–206 notify
the server of a successful connection and send to the client the char that the client will place
on the board when making a move. If Run is executing for Player "X", lines 211–221 exe-
cute, causing Player "X" to wait for a second player to connect. Lines 217–218 define a
while loop that suspends the Player "X" Thread until the server signals that Player
"O" has connected. The server notifies the Player of the connection by setting the
Player’s threadSuspended variable to false (line 89). When threadSuspended
becomes false, Player exits the while loop of lines 217–218.

Method Run executes the while structure (lines 226–256), enabling the user to play
the game. Each iteration of this structure waits for the client to send an int specifying
where on the board to place the "X" or "O"—the Player then places the mark on the

248 // signal the move is invalid
249 else
250 writer.Write("Invalid move, try again");
251
252 // if game is over, set done to true to exit while loop
253 if (server.GameOver())
254 done = true;
255
256 } // end while loop
257
258 // close the socket connection
259 writer.Close();
260 reader.Close();
261 socketStream.Close();
262 connection.Close();
263
264 } // end method Run
265
266 } // end class Player

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Server side of client/server Tic-Tac-Toe program. (Part 6 of 6.)

1132 Networking: Streams-Based Sockets and Datagrams Chapter 22

board, if the specified mark location is valid (e.g., that location does not already contain a
mark). Note that the while structure continues execution only if bool variable done is
false. This variable is set to true by event handler Server_Closing of class
Server, which is invoked when the server closes the connection.

1 // Fig. 22.6: Client.cs
2 // Client for the TicTacToe program.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.Net.Sockets;
11 using System.Threading;
12 using System.IO;
13
14 // represents a tic-tac-toe player
15 public class Client : System.Windows.Forms.Form
16 {
17 private System.Windows.Forms.Label idLabel;
18
19 private System.Windows.Forms.TextBox displayTextBox;
20
21 private System.Windows.Forms.Panel panel1;
22 private System.Windows.Forms.Panel panel2;
23 private System.Windows.Forms.Panel panel3;
24 private System.Windows.Forms.Panel panel5;
25 private System.Windows.Forms.Panel panel6;
26 private System.Windows.Forms.Panel panel4;
27 private System.Windows.Forms.Panel panel7;
28 private System.Windows.Forms.Panel panel8;
29 private System.Windows.Forms.Panel panel9;
30
31 private Square[,] board;
32 private Square currentSquare;
33
34 private Thread outputThread;
35
36 private TcpClient connection;
37 private NetworkStream stream;
38 private BinaryWriter writer;
39 private BinaryReader reader;
40
41 private char myMark;
42 private bool myTurn;
43
44 private SolidBrush brush;
45 private System.ComponentModel.Container components = null;
46
47 bool done = false;

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Client side of client/server Tic-Tac-Toe program. (Part 1 of 7.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1133

48
49 // default constructor
50 public Client()
51 {
52 InitializeComponent();
53
54 board = new Square[3, 3];
55
56 // create 9 Square objects and place them on the board
57 board[0, 0] = new Square(panel1, ' ', 0);
58 board[0, 1] = new Square(panel2, ' ', 1);
59 board[0, 2] = new Square(panel3, ' ', 2);
60 board[1, 0] = new Square(panel4, ' ', 3);
61 board[1, 1] = new Square(panel5, ' ', 4);
62 board[1, 2] = new Square(panel6, ' ', 5);
63 board[2, 0] = new Square(panel7, ' ', 6);
64 board[2, 1] = new Square(panel8, ' ', 7);
65 board[2, 2] = new Square(panel9, ' ', 8);
66
67 // create a SolidBrush for writing on the Squares
68 brush = new SolidBrush(Color.Black);
69
70 // Make connection to sever and get the associated
71 // network stream. Start separate thread to allow this
72 // program to continually update its output in textbox.
73 connection = new TcpClient("localhost", 5000);
74 stream = connection.GetStream();
75
76 writer = new BinaryWriter(stream);
77 reader = new BinaryReader(stream);
78
79 // start a new thread for sending and receiving messages
80 outputThread = new Thread(new ThreadStart(Run));
81 outputThread.Start();
82 } // end Client constructor
83
84 // Visual Studio .NET-generated code
85
86 [STAThread]
87 static void Main()
88 {
89 Application.Run(new Client());
90 }
91
92 protected void Client_Paint (
93 object sender, System.Windows.Forms.PaintEventArgs e)
94 {
95 PaintSquares();
96 }
97

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Client side of client/server Tic-Tac-Toe program. (Part 2 of 7.)

1134 Networking: Streams-Based Sockets and Datagrams Chapter 22

98 protected void Client_Closing(
99 object sender, CancelEventArgs e)
100 {
101 done = true;
102 }
103
104 // draws the mark of each square
105 public void PaintSquares()
106 {
107 Graphics g;
108
109 // draw the appropriate mark on each panel
110 for (int row = 0; row < 3; row++)
111 for (int column = 0; column < 3; column++)
112 {
113 // get the Graphics for each Panel
114 g = board[row, column].SquarePanel.CreateGraphics();
115
116 // draw the appropriate letter on the panel
117 g.DrawString(board[row, column].Mark.ToString(),
118 this.Font, brush, 8, 8);
119 }
120 } // end method PaintSquares
121
122 // send location of the clicked square to server
123 protected void square_MouseUp(
124 object sender, System.Windows.Forms.MouseEventArgs e)
125 {
126 // for each square check if that square was clicked
127 for (int row = 0; row < 3; row++)
128 for (int column = 0; column < 3; column++)
129 if (board[row, column].SquarePanel == sender)
130 {
131 CurrentSquare = board[row, column];
132
133 // send the move to the server
134 SendClickedSquare(board[row, column].Location);
135 }
136 } // end method square_MouseUp
137
138 // control thread that allows continuous update of the
139 // textbox display
140 public void Run()
141 {
142 // first get players's mark (X or O)
143 myMark = reader.ReadChar();
144 idLabel.Text = "You are player \"" + myMark + "\"";
145 myTurn = (myMark == 'X' ? true : false);
146
147 // process incoming messages
148 try
149 {

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Client side of client/server Tic-Tac-Toe program. (Part 3 of 7.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1135

150 // receive messages sent to client
151 while (true)
152 ProcessMessage(reader.ReadString());
153 }
154 catch (EndOfStreamException)
155 {
156 MessageBox.Show("Server is down, game over", "Error",
157 MessageBoxButtons.OK, MessageBoxIcon.Error);
158 }
159
160 } // end method Run
161
162 // process messages sent to client
163 public void ProcessMessage(string message)
164 {
165 // if the move player sent to the server is valid
166 // update the display, set that square's mark to be
167 // the mark of the current player and repaint the board
168 if (message == "Valid move.")
169 {
170 displayTextBox.Text +=
171 "Valid move, please wait.\r\n";
172 currentSquare.Mark = myMark;
173 PaintSquares();
174 }
175
176 // if the move is invalid, display that and it is now
177 // this player's turn again
178 else if (message == "Invalid move, try again")
179 {
180 displayTextBox.Text += message + "\r\n";
181 myTurn = true;
182 }
183
184 // if opponent moved
185 else if (message == "Opponent moved")
186 {
187 // find location of their move
188 int location = reader.ReadInt32();
189
190 // set that square to have the opponents mark and
191 // repaint the board
192 board[location / 3, location % 3].Mark =
193 (myMark == 'X' ? 'O' : 'X');
194 PaintSquares();
195
196 displayTextBox.Text +=
197 "Opponent moved. Your turn.\r\n";
198
199 // it is now this player's turn
200 myTurn = true;
201 }
202

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Client side of client/server Tic-Tac-Toe program. (Part 4 of 7.)

1136 Networking: Streams-Based Sockets and Datagrams Chapter 22

203 // display the message
204 else
205 displayTextBox.Text += message + "\r\n";
206
207 } // end method ProcessMessage
208
209 // sends the server the number of the clicked square
210 public void SendClickedSquare(int location)
211 {
212 // if it is the current player's move right now
213 if (myTurn)
214 {
215 // send the location of the move to the server
216 writer.Write(location);
217
218 // it is now the other player's turn
219 myTurn = false;
220 }
221 }
222
223 // write-only property for the current square
224 public Square CurrentSquare
225 {
226 set
227 {
228 currentSquare = value;
229 }
230 }
231
232 } // end class Client

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Client side of client/server Tic-Tac-Toe program. (Part 5 of 7.)

1.

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1137

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Client side of client/server Tic-Tac-Toe program. (Part 6 of 7.)

2.

3.

4.

1138 Networking: Streams-Based Sockets and Datagrams Chapter 22

Line 229 of Fig. 22.5 begins a while that loops until Socket property Available
indicates that there is information to receive from the Socket (or until the server discon-
nects from the client). If there is no information, the thread goes to sleep for one second.
Upon awakening, the thread uses property Disconnected to check for whether server
variable disconnect is true. If the value is true, the Thread exits the method (thus
terminating the Thread); otherwise, the Thread loops again. However, if property
Available indicates that there is data to receive, the while loop of lines 229–235 ter-
minates, enabling the information to be processed.

This information contains an int representing the location in which the client wants
to place a mark. Line 238 calls method ReadInt32 of the BinaryReader object
(which reads from the NetworkStream created with the Socket) to read this int. Line
242 then passes the int to Server method ValidMove. If this method validates the
move, the Player places the mark in the desired location.

Method ValidMove (lines 101–131) sends to the client a message indicating whether
the move was valid. Locations on the board correspond to numbers from 0–8 (0–2 for the
first row, 3–5 for the second and 6–8 for the third). All statements in method ValidMove
are enclosed in a lock statement that allows only one move to be attempted at a time. This
prevents two players from modifying the game’s state information simultaneously. If the
Player attempting to validate a move is not the current player (i.e., the one allowed to
make a move), that Player is placed in a wait state until it is that Player’s turn to move.
If the user attempts to place a mark on a location that already contains a mark, method
ValidMove returns false. However, if the user has selected an unoccupied location
(line 111), lines 114–115 place the mark on the local representation of the board. Line 121
notifies the other Player that a move has been made, and line 124 invokes the Pulse
method so that the waiting Player can validate a move. The method then returns true
to indicate that the move is valid.

When a Client application (Fig. 22.6) executes, it creates a TextBox to display mes-
sages from the server and the Tic-Tac-Toe board representation. The board is created out of
nine Square objects (Fig. 22.7) that contain Panels on which the user can click, indicating
the position on the board in which to place a mark. The Client’s constructor (line 50–82)
opens a connection to the server (line 73) and obtains a reference to the connection’s associ-

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Client side of client/server Tic-Tac-Toe program. (Part 7 of 7.)

server output after (1.)

server output after (2.)

server output after (3.)

server output after (4.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1139

ated NetworkStream object from TcpClient (line 74). Lines 80–81 start a thread to
read messages sent from the server to the client. The server passes messages (for example,
whether each move is valid) to method ProcessMessage (lines 163–207). If the message
indicates that a move is valid (line 168), the client sets its mark to the current square (the
square that the user clicked) and repaints the board. If the message indicates that a move is
invalid (line 178), the client notifies the user to click a different square. If the message indi-
cates that the opponent made a move (line 185), line 188 reads from the server an int spec-
ifying where on the board the client should place the opponent’s mark.

1 // Fig. 22.7: Square.cs
2 // A Square on the TicTacToe board.
3
4 using System.Windows.Forms;
5
6 // the representation of a square in a tic-tac-toe grid
7 public class Square
8 {
9 private Panel panel;

10 private char mark;
11 private int location;
12
13 // constructor
14 public Square(Panel newPanel, char newMark, int newLocation)
15 {
16 panel = newPanel;
17 mark = newMark;
18 location = newLocation;
19 }
20
21 // property SquarePanel; the panel which the square represents
22 public Panel SquarePanel
23 {
24 get
25 {
26 return panel;
27 }
28 } // end property SquarePanel
29
30 // property Mark; the mark of the square
31 public char Mark
32 {
33 get
34 {
35 return mark;
36 }
37
38 set
39 {
40 mark = value;
41 }
42 } // end property Mark

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 Class Square. (Part 1 of 2.)

1140 Networking: Streams-Based Sockets and Datagrams Chapter 22

In this chapter, we discussed how to use C#’s networking technologies by providing
both connection-oriented (i.e., streams-based) transmission and connectionless (i.e.,
packet-based) transmission. We showed how to create a simple server and client via stream
sockets, then showed how to create a multithreaded server. In Chapter 23, Data Structures
and Collections, we discuss how to store data dynamically and discuss several of the key
classes that belong to the C# System.Collections namespace.

SUMMARY
• Sockets are the fundamental way to perform network communications in the .NET Framework.

The term “socket” refers to the Berkeley Sockets Interface, which was developed in 1978 to facil-
itate network programming with UNIX and was popularized by C and C++ programmers.

• The two most popular types of sockets are stream sockets and datagram sockets.

• Stream sockets provide a connection-oriented service, meaning that one process establishes a con-
nection to another process, and data can flow between the processes in continuous streams.

• Datagram sockets provide a connectionless service that uses messages to transmit data.

• Connectionless services generally offer greater performance but less reliability than connection-
oriented services.

• Transmission Control Protocol (TCP) is the preferred protocol for stream sockets. It is a reliable
and relatively fast way to send data through a network.

• The User Datagram Protocol (UDP) is the preferred protocol for datagram sockets. UDP is unre-
liable. There is no guarantee that packets sent with UDP will arrive in the order in which they were
sent or that they will arrive at all.

• The establishment of a simple server with TCP and stream sockets in C# requires five steps. Step
1 is to create a TcpListener object. This class represents a TCP stream socket that a server can
use to receive connections.

• To receive connections, the TcpListener must be listening for them. For the TcpListener
to listen for client connections, its Start method must be called (Step 2).

• TcpListener method AcceptSocket blocks indefinitely until a connection is established, at
which point it returns a Socket (Step 3).

• Step 4 is the processing phase, in which the server and the client communicate via methods Read
and Write via a NetworkStream object.

• When the client and server have finished communicating, the server closes the connection with the
Close method on the Socket (Step 5). Most servers will then, by means of a control loop, return
to the AcceptSocket call step to wait for another client’s connection.

43
44 // property Location; the square's location on the board
45 public int Location
46 {
47 get
48 {
49 return location;
50 }
51 } // property Location
52
53 } // end class Square

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 Class Square. (Part 2 of 2.)

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1141

• A port number is a numeric ID number that a process uses to identify itself at a given network ad-
dress, also known as an Internet Protocol Address (IP Address).

• An individual process running on a computer is identified by an IP address/port number pair.
Hence, no two processes can have the same port number at a given IP address.

• The establishment of a simple client requires four steps. In Step 1, we create a TcpClient to
connect to the server. This connection is established through a call to the TcpClient method
Connect containing two arguments—the server’s IP address and the port number

• In Step 2, the TcpClient uses method GetStream to get a Stream to write to and read from
the server.

• Step 3 is the processing phase, in which the client and the server communicate.

• Step 4 has the client close the connection by calling the Close method on the NetworkStream.

• NetworkStream methods WriteByte and Write can be used to output individual bytes or
sets of bytes to the server, respectively.

• NetworkStream methods ReadByte and Read can be used to read individual bytes or sets of
bytes from the server, respectively.

• Class UdpClient is provided for connectionless transmission of data.

• Class UdpClient methods Send and Receive are used to transmit data.

• Class IPEndPoint represents an endpoint on a network.

• Class IPAddress represents an Internet Protocol address.

• Multithreaded servers can manage many simultaneous connections with multiple clients.

TERMINOLOGY
127.0.0.1 connection-oriented service
AcceptSocket method of class connection-oriented, streams-based transmission

TcpListener datagram
Berkeley Sockets Interface datagram socket
BinaryReader class duplicate of datagram
BinaryWriter class echo a packet back to a client
Bind method of class Socket e-mail
binding a server to a port Exit method of class Environment
block ExitCode property of class Environment
block until connection received file processing
client GetStream method of class Socket
client/server chat infinite loop
client/server model Internet Protocol Addresses (IP Address)
Close method of class Socket IP Address
Close method of class TcpClient IPAddress class
collaborative applications IPEndPoint class
Connect method of class TcpListener LAN
connection Local Area Network (LAN)
connection attempt localhost
connection between client and server terminates loopback IP address
connection port Loopback static member of class
connection to a server IPAddress
connectionless service Microsoft Internet Explorer
connectionless transmission with datagrams Netscape Communicator

1142 Networking: Streams-Based Sockets and Datagrams Chapter 22

SELF-REVIEW EXERCISES

22.1 State whether each of the following is true or false. If false, explain why.
a) UDP is a connection-oriented protocol.
b) With stream sockets, a process establishes a connection to another process.
c) Datagram-packet transmission over a network is reliable—packets are guaranteed to ar-

rive in sequence.
d) Most of the time TCP protocol is preferred over the UDP protocol.
e) Each TcpListener can accept only one connection.
f) A TcpListener can listen for connections at more than one port at a time.
g) A UdpClient can send information only to one particular port.
h) Packets sent via a UDP connection are sent only once.
i) Clients need to know the port number at which the server is waiting for connections.

22.2 Fill in the blanks in each of the following statements:
a) Many of C#’s networking classes are contained in namespaces and

.
b) Class is used for unreliable but fast datagram transmission.
c) An object of class represents an Internet Protocol (IP) address.
d) The two types of sockets we discussed in this chapter are sockets and

sockets.
e) The acronym TCP stands for .
f) Class listens for connections from clients.
g) Class connects to servers.
h) Class provides access to stream data on a network.

network address server port number
networking as file I/O socket
NetworkStream class socket-based communications
OpenRead method of class WebClient Socket class
OpenWrite method of class WebClient spawning
packet Start method of class TcpListener
pool of threads stream
port number stream socket
protocol streams-based transmission
Read method of class NetworkStream system service
ReadByte method of class NetworkStream System.Net namespace
reading a file on a Web server System.Net.Sockets namespace
ReadString method of class BinaryReader TcpClient class
receive a connection TcpListener class
receive data from a server telephone system
Receive method of class Socket Thread class
Receive method of class UdpClient Transmission Control Protocol (TCP)
ReceiveFrom method of class Socket UdpClient class
send data to a server User Datagram Protocol (UDP)
Send method of class Socket Web server
Send method of class UdpClient WebClient class
SendTo method of class Socket Write method of class BinaryWriter
server Write method of class NetworkStream
server Internet address WriteByte method of class NetworkStream

Chapter 22 Networking: Streams-Based Sockets and Datagrams 1143

ANSWERS TO SELF-REVIEW EXERCISES
22.1 a) False. UDP is a connectionless protocol, and TCP is a connection-oriented protocol. b) True.
c) False. Packets can be lost, arrive out of order or even be duplicated. d) True. e) False. TcpListen-
er AcceptSocket may be called as often as necessary—each call will accept a new connection.
f) False. A TcpListener can listen for connections at only one port at a time. g) False. A UdpCli-
ent can send information to any port represented by an IPEndPoint. h) False. Packets may be sent
more than once, to make it more likely that at least one copy of each packet arrives. i) True.

22.2 a) System.Net, System.Net.Sockets. b) UdpClient. c) IPAddress. d) stream,
datagram. e) Transmission Control Protocol. f) TcpListener. g) TcpClient. h) Network-
Stream.

EXERCISES
22.3 Use a socket connection to allow a client to specify a file name and have the server send the
contents of the file or indicate that the file does not exist. Allow the client to modify the file contents
and to send the file back to the server for storage.

22.4 Multithreaded servers are quite popular today, especially because of the increasing use of
multiprocessing servers (i.e., servers with more than one processor unit). Modify the simple server
application presented in Section 22.4 to be a multithreaded server. Then, use several client applica-
tions and have each of them connect to the server simultaneously.

22.5 Create a client/server application for the game of Hangman, using socket connections. The
server should randomly pick a word or phrase from a file or a database. After connecting, the client
should be allowed to begin guessing. If a client guesses incorrectly five times, the game is over. Dis-
play the original phrase or word on the server. Display underscores (for letters that have not been
guessed yet) and the letters that have been guessed in the word or phrase on the client.

22.6 Modify the previous exercise to be a connectionless game using datagrams.

22.7 (Modifications to the Multithreaded Tic-Tac-Toe Program) The programs of Fig. 22.5–
Fig. 22.7 implement a multithreaded, client/server version of the game Tic-Tac-Toe. Our goal in de-
veloping this game was to demonstrate a multithreaded server that could process multiple connections
from clients at the same time. The server in the example is really a mediator between the two clients—
it makes sure that each move is valid and that each client moves in the proper order. The server does
not determine who won or lost or whether there was a draw. Also, there is no capability to allow a
new game to be played or to terminate an existing game.

The following is a list of suggested modifications to the multithreaded Tic-Tac-Toe application:
a) Modify class Server to test for a win, loss or draw on each move in the game. When

the game is over, send a message to each client that indicates the result of the game.
b) Modify class Client to display a button that, when clicked, allows the client to play

another game. The button should be enabled only when a game completes. Note that both
class Client and class Server must be modified to reset the board and all state infor-
mation. Also, the other Client should be notified of a new game, so that client can reset
its board and state information.

c) Modify class Client to provide a button that allows a client to terminate the program
at any time. When the button is clicked, the server and the other client should be notified.
The server should then wait for a connection from another client so that a new game can
begin.

d) Modify class Client and class Server so that the loser of a game can choose game
piece X or O for the next game. Remember that X always goes first.

1144 Networking: Streams-Based Sockets and Datagrams Chapter 22

22.8 (Networked Morse Code) Perhaps the most famous of all coding schemes is the Morse code,
developed by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a se-
ries of dots and dashes to each letter of the alphabet, each digit, and a few special characters (such as
period, comma, colon and semicolon). In sound-oriented systems, the dot represents a short sound
and the dash represents a long sound. Other representations of dots and dashes are used with light-
oriented systems and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, the absence of a dot or dash.
In a sound-oriented system, a space is indicated by a short period of time during which no sound is
transmitted. The international version of the Morse code appears in Fig. 22.8.

Write an application that reads an English-language phrase and encodes the phrase into Morse
code. Also, write a program that reads a phrase in Morse code and converts the phrase into the English-
language equivalent. Use one blank between each Morse-coded letter and three blanks between each
Morse-coded word. Then, enable these two applications to send Morse Code messages to each other
through a multithreaded-server application. Each application should allow the user to type normal char-
acters into a TextBox. The application should then translate the characters into Morse Code and send
the coded message through the server to the other client. When messages are received, they should be
decoded and displayed as normal characters and as Morse Code. The application should have two
TextBoxes: One for displaying the other client’s messages, and one for typing.

Character Code Character Code

A •- T -

B -••• U ••-

C -•-• V •••-

D -•• W •--

E • X -••-

F ••-• Y -•--

G --• Z --••

H ••••

I •• Digits

J •--- 1 •----

K -•- 2 ••---

L •-•• 3 •••--

M -- 4 ••••-

N -• 5 •••••

O --- 6 -••••

P •--• 7 --•••

Q --•- 8 ---••

R •-• 9 ----•

S ••• 0 -----

Fig. 22.8 English letters of the alphabet and decimal digits as expressed in
international Morse code.

23
Data Structures and

Collections

Objectives
• To be able to form linked data structures using

references, self-referential classes and recursion.
• To be able to create and manipulate dynamic data

structures such as linked lists, queues, stacks and
binary trees.

• To understand various important applications of
linked data structures.

• To understand how to create reusable data structures
with classes, inheritance and composition.

Much that I bound, I could not free;
Much that I freed returned to me.
Lee Wilson Dodd

‘Will you walk a little faster?’ said a whiting to a snail,
‘There’s a porpoise close behind us, and he’s treading on my
tail.’
Lewis Carroll

There is always room at the top.
Daniel Webster

Push on—keep moving.
Thomas Morton

I think that I shall never see
A poem lovely as a tree.
Joyce Kilmer

1146 Data Structures and Collections Chapter 23

23.1 Introduction
The data structures that we have studied thus far have had fixed size, such as single- and
double-subscripted arrays. This chapter introduces dynamic data structures that grow and
shrink at execution time. Linked lists are collections of data items “lined up in a row”—
users can make insertions and deletions anywhere in a linked list. Stacks are important in
compilers and operating systems because insertions and deletions are made at only one
end—its top. Queues represent waiting lines; insertions are made at the back (also referred
to as the tail) of a queue, and deletions are made from the front (also referred to as the head)
of a queue. Binary trees facilitate high-speed searching and sorting of data, efficient elim-
ination of duplicate data items, representation of file system directories and compilation of
expressions into machine language. These data structures have many other interesting ap-
plications as well.

We will discuss each of the major types of data structures and implement programs that
create and manipulate them. We use classes, inheritance and composition to create and
package these data structures for reusability and maintainability.

The chapter examples are practical programs that will be useful in more advanced
courses and in industrial applications. The programs devote special attention to and focus
on reference manipulation. The exercises offer a rich collection of useful applications.

23.2 Self-Referential Classes
A self-referential class contains a reference member that refers to an object of the same
class type. For example, the class definition in Fig. 23.1 defines a type, Node. This type
has two private instance variables—integer data and Node reference next. Member
next references an object of type Node, an object of the same type as the one being de-

Outline

23.1 Introduction
23.2 Self-Referential Classes
23.3 Linked Lists
23.4 Stacks
23.5 Queues
23.6 Trees

23.6.1 Binary Search Tree of Integer Values

23.6.2 Binary Search Tree of IComparable Objects
23.7 Collection Classes

23.7.1 Class Array

23.7.2 Class ArrayList

23.7.3 Class Stack

23.7.4 Class Hashtable
Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 23 Data Structures and Collections 1147

clared here—hence, the term “self-referential class.” Member next is referred to as a link
(i.e., next can be used to “tie” an object of type Node to another object of the same type).
Class Node also has two properties: One for variable data (named Data), and another
for variable next (named Next).

Self-referential objects can be linked together to form useful data structures, such as
lists, queues, stacks and trees. Figure 23.2 illustrates two self-referential objects linked
together to form a list. A backslash (representing a null reference) is placed in the link
member of the second self-referential object to indicate that the link does not refer to
another object. The slash is for illustration purposes; it does not correspond to the backslash
character in C#. A null reference normally indicates the end of a data structure.

Common Programming Error 23.1
Not setting the link in the last node of a list (or other linear data structure) to null is a com-
mon logic error. 23.1

1 class Node
2 {
3 private int data;
4 private Node next;
5
6 public Node(int d)
7 {
8 // constructor body
9 }

10
11 public int Data
12 {
13 get
14 {
15 // get body
16 }
17
18 set
19 {
20 // set body
21 }
22 }
23
24 public Node Next
25 {
26 get
27 {
28 // get body
29 }
30
31 set
32 {
33 // set body
34 }
35 }
36 }

Fig. 23.1Fig. 23.1Fig. 23.1Fig. 23.1 Sample self-referential Node class definition.

1148 Data Structures and Collections Chapter 23

Creating and maintaining dynamic data structures requires dynamic memory alloca-
tion—a program’s ability to obtain more memory space at execution time to hold new
nodes and to release space no longer needed. As we have already learned, C# programs do
not explicitly release dynamically allocated memory. Rather, C# performs automatic gar-
bage collection.

The limit for dynamic memory allocation can be as large as the amount of available
disk space in a virtual-memory system. Often, the limits are much smaller, because the
computer’s available memory must be shared among many users.

Operator new is essential to dynamic memory allocation. Operator new takes as an
operand the type of the object being dynamically allocated and returns a reference to a
newly created object of that type. For example, the statement

Node nodeToAdd = new Node(10);

allocates the appropriate amount of memory to store a Node and stores a reference to this
object in nodeToAdd. If no memory is available, new throws an OutOfMemoryEx-
ception. The 10 is the Node object’s data.

The following sections discuss lists, stacks, queues and trees. These data structures are
created and maintained with dynamic memory allocation and self-referential classes.

Good Programming Practice 23.1
When creating a very large number of objects, test for an OutOfMemoryException. Per-
form appropriate error processing if the requested memory is not allocated. 23.1

23.3 Linked Lists
A linked list is a linear collection (i.e., a sequence) of self-referential class objects, called
nodes, connected by reference links—hence, the term “linked” list. A program accesses
a linked list via a reference to the first node of the list. Each subsequent node is accessed
via the link-reference member stored in the previous node. By convention, the link refer-
ence in the last node of a list is set to null to mark the end of the list. Data are stored in
a linked list dynamically—that is, each node is created as necessary. A node can contain
data of any type, including objects of other classes. Stacks and queues are also linear data
structures, and they are constrained versions of linked lists. Trees are nonlinear data
structures.

Lists of data can be stored in arrays, but linked lists provide several advantages. A
linked list is appropriate when the number of data elements to be represented in the data
structure is unpredictable. Unlike a linked list, the size of a conventional C# array cannot
be altered, because the array size is fixed at creation time. Conventional arrays can become
full, but linked lists become full only when the system has insufficient memory to satisfy
dynamic storage allocation requests.

Fig. 23.2Fig. 23.2Fig. 23.2Fig. 23.2 Two self-referential class objects linked together.

15 10

Chapter 23 Data Structures and Collections 1149

Performance Tip 23.1
An array can be declared to contain more elements than the number of items expected, at the
expense of wasting memory. Linked lists provide better memory utilization in these situations
and they allow the program to adapt at run time. 23.1

Performance Tip 23.2
After locating the insertion point for a new item in a sorted linked list, inserting an element
in the list is fast—only two references have to be modified. All existing nodes remain at their
current locations in memory. 23.2

Programmers can maintain linked lists in sorted order simply by inserting each new
element at the proper point in the list (locating the proper insertion point does take time).
They do not need to move existing list elements.

Performance Tip 23.3
The elements of an array are stored contiguously in memory to allow immediate access to
any array element—the address of any element can be calculated directly from its offset from
the beginning of the array. Linked lists do not afford such immediate access to their ele-
ments—an element can be accessed only by traversing the list from the front. 23.3

Memory does not normally store linked list nodes contiguously. Rather, the nodes are
logically contiguous. Figure 23.3 illustrates a linked list with several nodes.

Performance Tip 23.4
Using dynamic memory allocation (instead of arrays) for data structures that grow and
shrink at execution time can save memory. Keep in mind, however, that references occupy
space, and that dynamic memory allocation incurs the overhead of method calls. 23.4

The program of Fig. 23.4–Fig. 23.5 uses an object of class List to manipulate a list
of miscellaneous object types. The Main method of class ListTest (Fig. 23.5) creates a
list of objects, inserts objects at the beginning of the list using List method InsertAt-
Front, inserts objects at the end of the list using List method InsertAtBack, deletes
objects from the front of the list using List method RemoveFromFront and deletes
objects from the end of the list using List method RemoveFromBack. Each insertion
and deletion operation invokes List method Print to display the current list contents. A
detailed discussion of the program follows. If an attempt is made to remove an item from
an empty list, an EmptyListException occurs.

Fig. 23.3Fig. 23.3Fig. 23.3Fig. 23.3 A graphical representation of a linked list.

...

lastNodefirstNode

H D Q

1150 Data Structures and Collections Chapter 23

Performance Tip 23.5
Insertion and deletion in a sorted array can be time consuming—all the elements following
the inserted or deleted element must be shifted appropriately. 23.5

The program consists of four classes—ListNode (Fig. 23.4, lines 9–52), List
(Fig. 23.4, lines 55–193), EmptyListException (Fig. 23.4, lines 196–203) and class
ListTest (Fig. 23.5). The classes in Fig. 23.4 create a linked-list library (defined in
namespace LinkedListLibrary) that can be reused throughout this chapter.

Encapsulated in each List object is a linked list of ListNode objects. Class List-
Node (Fig. 23.4, lines 9–52) consists of two member variables—data and next.
Member data can refer to any object. Member next stores a reference to the next List-
Node object in the linked list. A List accesses the ListNode member variables via the
properties Data (lines 44–50) and Next (lines 30–41), respectively.

Class List contains private members firstNode (a reference to the first
ListNode in a List) and lastNode (a reference to the last ListNode in a List).
The constructors (lines 62–66 and 69–71) initialize both references to null. InsertAt-
Front (lines 76–87), InsertAtBack (lines 92–104), RemoveFromFront (lines
107–125) and RemoveFromBack (lines 128–156) are the primary methods of class
List. Each method uses a lock block to ensure that List objects are multithread safe
when used in a multithreaded program. If one thread is modifying the contents of a List
object, no other thread can modify the same List object at the same time. Method
IsEmpty (lines 159–165) is a predicate method that determines whether the list is empty
(i.e., the reference to the first node of the list is null). Predicate methods typically test a
condition and do not modify the object on which they are called. If the list is empty, method
IsEmpty returns true; otherwise, it returns false. Method Print (lines 168–191)
displays the list’s contents. Both IsEmpty and Print also use lock blocks so that the
state of the list does not change while those methods are performing their tasks.

Class EmptyListException (lines 196–203) defines an exception class to handle
illegal operations on an empty List.

Class ListTest (Fig. 23.5) uses the linked-list library to create and manipulate a
linked list. Line 14 creates a new instance of type List named list. Lines 17–20 create
data to add to the list. Lines 23–30 use List insertion methods to insert these objects and use
List method Print to output the contents of list after each insertion. The code inside
the try block (lines 36–53) removes objects via List deletion methods, outputs the object
removed and outputs list after every deletion. If there is an attempt to remove an object
from an empty list, this try block catches the EmptyListException. Note that class
ListTest uses namespace LinkedListLibrary (Fig. 23.4); thus, the solution for class
ListTest must have a reference to the LinkedListLibrary class library.

Over the next several pages, we discuss each of the methods of class List in detail.
Method InsertAtFront (Fig. 23.4, lines 76–87) places a new node at the front of the
list. The method consists of three steps (illustrated in Fig. 23.6):

1. Call IsEmpty to determine whether the list is empty (line 80).

2. If the list is empty, set both firstNode and lastNode to refer to a new
ListNode initialized with insertItem (lines 81–82). The ListNode con-
structor at lines 16–19 (Fig. 23.4) calls the ListNode constructor at lines 23–27

Chapter 23 Data Structures and Collections 1151

(Fig. 23.4) to set instance variable data to refer to the object passed as the first
argument and sets the next reference to null.

3. If the list is not empty, the new node is “threaded” (not to be confused with multi-
threading) into the list by setting firstNode to refer to a new ListNode object
initialized with insertItem and firstNode (lines 84–85). When the List-
Node constructor (lines 23–27 of Fig. 23.4) executes, it sets instance variable data
to refer to the object passed as the first argument and performs the insertion by
setting the next reference to the ListNode passed as the second argument.

1 // Fig. 23.4: LinkedListLibrary.cs
2 // Class ListNode and class List definitions.
3
4 using System;
5
6 namespace LinkedListLibrary
7 {
8 // class to represent one node in a list
9 class ListNode

10 {
11 private object data;
12 private ListNode next;
13
14 // constructor to create ListNode that refers to dataValue
15 // and is last node in list
16 public ListNode(object dataValue)
17 : this(dataValue, null)
18 {
19 }
20
21 // constructor to create ListNode that refers to dataValue
22 // and refers to next ListNode in List
23 public ListNode(object dataValue, ListNode nextNode)
24 {
25 data = dataValue;
26 next = nextNode;
27 }
28
29 // property Next
30 public ListNode Next
31 {
32 get
33 {
34 return next;
35 }
36
37 set
38 {
39 next = value;
40 }
41 }

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Definitions of classes ListNode, List and EmptyListException.
(Part 1 of 5.)

1152 Data Structures and Collections Chapter 23

42
43 // property Data
44 public object Data
45 {
46 get
47 {
48 return data;
49 }
50 }
51
52 } // end class ListNode
53
54 // class List definition
55 public class List
56 {
57 private ListNode firstNode;
58 private ListNode lastNode;
59 private string name; // string like "list" to display
60
61 // construct empty List with specified name
62 public List(string listName)
63 {
64 name = listName;
65 firstNode = lastNode = null;
66 }
67
68 // construct empty List with "list" as its name
69 public List() : this("list")
70 {
71 }
72
73 // Insert object at front of List. If List is empty,
74 // firstNode and lastNode will refer to same object.
75 // Otherwise, firstNode refers to new node.
76 public void InsertAtFront(object insertItem)
77 {
78 lock (this)
79 {
80 if (IsEmpty())
81 firstNode = lastNode =
82 new ListNode(insertItem);
83 else
84 firstNode =
85 new ListNode(insertItem, firstNode);
86 }
87 }
88
89 // Insert object at end of List. If List is empty,
90 // firstNode and lastNode will refer to same object.
91 // Otherwise, lastNode's Next property refers to new node.
92 public void InsertAtBack(object insertItem)
93 {

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Definitions of classes ListNode, List and EmptyListException.
(Part 2 of 5.)

Chapter 23 Data Structures and Collections 1153

94 lock (this)
95 {
96 if (IsEmpty())
97 firstNode = lastNode =
98 new ListNode(insertItem);
99
100 else
101 lastNode = lastNode.Next =
102 new ListNode(insertItem);
103 }
104 }
105
106 // remove first node from List
107 public object RemoveFromFront()
108 {
109 lock (this)
110 {
111 if (IsEmpty())
112 throw new EmptyListException(name);
113
114 object removeItem = firstNode.Data; // retrieve data
115
116 // reset firstNode and lastNode references
117 if (firstNode == lastNode)
118 firstNode = lastNode = null;
119
120 else
121 firstNode = firstNode.Next;
122
123 return removeItem; // return removed data
124 }
125 }
126
127 // remove last node from List
128 public object RemoveFromBack()
129 {
130 lock (this)
131 {
132 if (IsEmpty())
133 throw new EmptyListException(name);
134
135 object removeItem = lastNode.Data; // retrieve data
136
137 // reset firstNode and lastNode references
138 if (firstNode == lastNode)
139 firstNode = lastNode = null;
140
141 else
142 {
143 ListNode current = firstNode;
144

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Definitions of classes ListNode, List and EmptyListException.
(Part 3 of 5.)

1154 Data Structures and Collections Chapter 23

145 // loop while current node is not lastNode
146 while (current.Next != lastNode)
147 current = current.Next; // move to next node
148
149 // current is new lastNode
150 lastNode = current;
151 current.Next = null;
152 }
153
154 return removeItem; // return removed data
155 }
156 }
157
158 // return true if List is empty
159 public bool IsEmpty()
160 {
161 lock (this)
162 {
163 return firstNode == null;
164 }
165 }
166
167 // output List contents
168 virtual public void Print()
169 {
170 lock (this)
171 {
172 if (IsEmpty())
173 {
174 Console.WriteLine("Empty " + name);
175 return;
176 }
177
178 Console.Write("The " + name + " is: ");
179
180 ListNode current = firstNode;
181
182 // output current node data while not at end of list
183 while (current != null)
184 {
185 Console.Write(current.Data + " ");
186 current = current.Next;
187 }
188
189 Console.WriteLine("\n");
190 }
191 }
192
193 } // end class List
194

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Definitions of classes ListNode, List and EmptyListException.
(Part 4 of 5.)

Chapter 23 Data Structures and Collections 1155

195 // class EmptyListException definition
196 public class EmptyListException : ApplicationException
197 {
198 public EmptyListException(string name)
199 : base("The " + name + " is empty")
200 {
201 }
202
203 } // end class EmptyListException
204
205 } // end namespace LinkedListLibrary

1 // Fig 23.5: ListTest.cs
2 // Testing class List.
3
4 using System;
5 using LinkedListLibrary;
6
7 namespace ListTest
8 {
9 // class to test List class functionality

10 class ListTest
11 {
12 static void Main(string[] args)
13 {
14 List list = new List(); // create List container
15
16 // create data to store in List
17 bool aBoolean = true;
18 char aCharacter = '$';
19 int anInteger = 34567;
20 string aString = "hello";
21
22 // use List insert methods
23 list.InsertAtFront(aBoolean);
24 list.Print();
25 list.InsertAtFront(aCharacter);
26 list.Print();
27 list.InsertAtBack(anInteger);
28 list.Print();
29 list.InsertAtBack(aString);
30 list.Print();
31
32 // use List remove methods
33 object removedObject;
34

Fig. 23.5Fig. 23.5Fig. 23.5Fig. 23.5 Demonstrating the linked list. (Part 1 of 2.)

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Definitions of classes ListNode, List and EmptyListException.
(Part 5 of 5.)

1156 Data Structures and Collections Chapter 23

35 // remove data from list and print after each removal
36 try
37 {
38 removedObject = list.RemoveFromFront();
39 Console.WriteLine(removedObject + " removed");
40 list.Print();
41
42 removedObject = list.RemoveFromFront();
43 Console.WriteLine(removedObject + " removed");
44 list.Print();
45
46 removedObject = list.RemoveFromBack();
47 Console.WriteLine(removedObject + " removed");
48 list.Print();
49
50 removedObject = list.RemoveFromBack();
51 Console.WriteLine(removedObject + " removed");
52 list.Print();
53 }
54
55 // process exception if list empty when attempt is
56 // made to remove item
57 catch (EmptyListException emptyListException)
58 {
59 Console.Error.WriteLine("\n" + emptyListException);
60 }
61
62 } // end method Main
63
64 } // end class ListTest
65 }

The list is: True

The list is: $ True

The list is: $ True 34567

The list is: $ True 34567 hello

$ removed
The list is: True 34567 hello

True removed
The list is: 34567 hello

hello removed
The list is: 34567

34567 removed
Empty list

Fig. 23.5Fig. 23.5Fig. 23.5Fig. 23.5 Demonstrating the linked list. (Part 2 of 2.)

Chapter 23 Data Structures and Collections 1157

Fig. 23.6 illustrates method InsertAtFront. Part (a) of the figure shows the list
and the new node during the InsertAtFront operation and before the threading of the
new node into the list. The dotted arrows in part (b) illustrate step 3 of the InsertAt-
Front operation, which enables the node containing 12 to become the new list front.

Method InsertAtBack (Fig. 23.4, lines 92–104) places a new node at the back of
the list. The method consists of three steps (illustrated in Fig. 23.7):

1. Call IsEmpty to determine whether the list is empty (line 96).

2. If the list is empty, set both firstNode and lastNode to refer to a new
ListNode initialized with insertItem (lines 97–98). The ListNode con-
structor at lines 16–19 (Fig. 23.4) calls the ListNode constructor at lines 23–27
(Fig. 23.4) to set instance variable data to refer to the object passed as the first
argument and sets the next reference to null.

3. If the list is not empty, thread the new node into the list by setting lastNode and
lastNode.next to refer to a new ListNode object initialized with
insertItem (lines 101–102). When the ListNode constructor (lines 16–19
of Fig. 23.4) executes, it sets instance variable data to refer to the object
passed as an argument and sets the next reference to null.

Fig. 23.7 illustrates an InsertAtBack operation. Part a) of the figure shows the list
and the new node during the InsertAtBack operation and before the new node has been
threaded into the list. The dotted arrows in part b) illustrate the steps of method Insert-
AtBack that enable a new node to be added to the end of a list that is not empty.

Method RemoveFromFront (Fig. 23.4, lines 107–127) removes the front node of
the list and returns a reference to the removed data. The method throws an EmptyList-
Exception (line 114) if the programmer tries to remove a node from an empty list. Oth-
erwise, the method returns a reference to the removed data. The method consists of four
steps (illustrated in Fig. 23.8):

1. Assign firstNode.Data (the data being removed from the list) to reference
removeItem (line 116).

2. If the objects to which firstNode and lastNode refer are the same object, the
list has only one element prior to the removal attempt. In this case, the method sets
firstNode and lastNode to null (line 120) to “dethread” (remove) the
node from the list (leaving the list empty).

3. If the list has more than one node prior to removal, then the method leaves refer-
ence lastNode as is and simply assigns firstNode.Next to reference
firstNode (line 123). Thus, firstNode references the node that was the sec-
ond node prior to the RemoveFromFront call.

4. Return the removeItem reference.

Fig. 23.8 illustrates method RemoveFromFront. Part a) illustrates the list before the
removal operation. Part b) shows actual reference manipulations.

Method RemoveFromBack (Fig. 23.4, lines 130–160) removes the last node of a list
and returns a reference to the removed data. The method throws an EmptyListExcep-
tion (line 137) if the program attempts to remove a node from an empty list. The method
consists of several steps (illustrated in Fig. 23.9):

1158 Data Structures and Collections Chapter 23

1. Assign lastNode.Data (the data being removed from the list) to reference
removeItem (line 139).

2. If the objects to which firstNode and lastNode refer are the same object
(line 142), the list has only one element prior to the removal attempt. In this case,
the method sets firstNode and lastNode to null (line 143) to dethread (re-
move) that node from the list (leaving the list empty).

Fig. 23.6Fig. 23.6Fig. 23.6Fig. 23.6 A graphical representation of the InsertAtFront operation.

Fig. 23.7Fig. 23.7Fig. 23.7Fig. 23.7 A graphical representation of the InsertAtBack operation.

firstNode(a)

firstNode(b)

New ListNode

New ListNode

7 11

12

7 11

12

firstNode(a)

firstNode(b)

New ListNode

New ListNode

7 11

12 7 11

12

lastNode

lastNode

5

5

Chapter 23 Data Structures and Collections 1159

3. If the list has more than one node prior to removal, create the ListNode refer-
ence current and assign it firstNode (line 147).

4. Now “walk the list” with current until it references the node before the last
node. The while loop (lines 150–151) assigns current.Next to reference
current as long as current.Next is not equal to lastNode.

5. After locating the second-to-last node, assign current to lastNode (line 154)
to dethread the last node from the list.

6. Set current.Next to null (line 155) in the new last node of the list to ensure
proper list termination.

7. Return the removeItem reference (line 140).

Fig. 23.9 illustrates method RemoveFromBack. Part a) illustrates the list before the
removal operation. Part b) shows the actual reference manipulations.

Method Print (Fig. 23.4, lines 172–195) first determines whether the list is empty
(line 176). If so, Print displays a string consisting of the string "Empty " and the
list’s name, then returns control to the calling method. Otherwise, Print outputs the data
in the list. The method prints a string consisting of the string "The ", the name and the
string " is: ". Then, line 184 creates ListNode reference current and initializes it
with firstNode. While current is not null, there are more items in the list. There-
fore, the method prints current.Data (line 189), then assigns current.Next to
current (line 190) to move to the next node in the list. Note that, if the link in the last
node of the list is not null, the printing algorithm will erroneously attempt to print past
the end of the list. The printing algorithm is identical for linked lists, stacks and queues.

Fig. 23.8Fig. 23.8Fig. 23.8Fig. 23.8 A graphical representation of the RemoveFromFront operation.

12

firstNode(a)

firstNode(b)

7 1112

lastNode

lastNode

5

7 1112 5

removeItem

1160 Data Structures and Collections Chapter 23

23.4 Stacks
A stack is a constrained version of a linked list—a stack takes new nodes and releases nodes
only at the top. For this reason, a stack is referred to as a last-in, first-out (LIFO) data struc-
ture. The link member in the bottom (i.e., last) node of the stack is set to null to indicate
the bottom of the stack.

The primary operations to manipulate a stack are push and pop. Operation push adds
a new node to the top of the stack. Operation pop removes a node from the top of the stack
and returns the item from the popped node.

Stacks have many interesting applications. For example, when a program calls a
method, the called method must know how to return to its caller, so the return address is
pushed onto the program execution stack. If a series of method calls occurs, the successive
return values are pushed onto the stack in last-in, first-out order so that each method can
return to its caller. Stacks support recursive method calls in the same manner that they do
conventional nonrecursive method calls.

The program-execution stack contains the space created for local variables on each
invocation of a method during a program’s execution. When the method returns to its caller,
the space for that method's local variables is popped off the stack, and those variables are
no longer known to the program.

The System.Collections namespace contains class Stack for implementing
and manipulating stacks that can grow and shrink during program execution. Section 23.7
discusses class Stack.

Fig. 23.9Fig. 23.9Fig. 23.9Fig. 23.9 A graphical representation of the RemoveFromBack operation.

firstNode(a)

firstNode(b)

7 1112

lastNode

lastNode

5

7 1112 5

removeItem

current

Chapter 23 Data Structures and Collections 1161

We take advantage of the close relationship between lists and stacks to implement a
stack class by reusing a list class. We demonstrate two different forms of reusability. First,
we implement the stack class by inheriting from class List of Fig. 23.4. Then, we imple-
ment an identically performing stack class through composition by including a List
object as a private member of a stack class. This chapter implements list, stack and
queue data structures to store object references to encourage further reusability. Thus,
any object type can be stored in a list, stack or queue.

The program of Fig. 23.10 and Fig. 23.11 creates a stack class by inheriting from class
List of Fig. 23.4. We want the stack to have methods Push, Pop, IsEmpty and Print.
Essentially, these are the methods InsertAtFront, RemoveFromFront, IsEmpty
and Print of class List. Of course, class List contains other methods (such as
InsertAtBack and RemoveFromBack) that we would rather not make accessible
through the public interface of the stack. It is important to remember that all methods in
the public interface of class List are also public methods of the derived class
StackInheritance (Fig. 23.10).

When we implement the stack’s methods, we have each StackInheritance
method call the appropriate List method—method Push calls InsertAtFront,
method Pop calls RemoveFromFront. Class StackInheritance does not define
methods IsEmpty and Print, because StackInheritance inherits these methods
from class List into StackInheritance’s public interface. The methods in class
StackInheritance do not use lock statements. Each of the methods in this class calls
a method from class List that uses lock. If two threads call Push on the same stack
object, only one of the threads at a time will be able to call List method InsertAt-
Front. Note that class StackInheritance uses namespace LinkedListLibrary
(Fig. 23.4); thus, the solution for the class library that defines StackInheritance must
have a reference to the LinkedListLibrary class library.

StackInheritanceTest’s Main method (Fig. 23.11) uses class Stack-
Inheritance to instantiate a stack of objects called stack. Lines 18–21 define four
objects that will be pushed onto the stack and popped off the stack. The program pushes
onto the stack (lines 24, 26, 28 and 30) a bool containing true, a char containing $, an
int containing 34567 and a string containing hello. An infinite while loop (lines
36–41) pops the elements from the stack. When there are no objects left to pop, method
Pop throws an EmptyListException and the program displays the exception’s stack
trace, which shows the program execution stack at the time the exception occurred. The
program uses method Print (inherited from class List) to output the contents of the
stack after each operation. Note that class StackInheritanceTest uses namespace
LinkedListLibrary (Fig. 23.4) and namespace StackInheritanceLibrary
(Fig. 23.10); thus, the solution for class StackInheritanceTest must have refer-
ences to both class libraries.

1 // Fig. 23.10: StackInheritanceLibrary.cs
2 // Implementing a stack by inheriting from class List.
3
4 using System;
5 using LinkedListLibrary;

Fig. 23.10Fig. 23.10Fig. 23.10Fig. 23.10 StackInheritance extends class List. (Part 1 of 2.)

1162 Data Structures and Collections Chapter 23

Another way to implement a stack class is by reusing a list class through composition.
The class in Fig. 23.12 uses a private object of class List (line 12) in the definition of
class StackComposition. Composition enables us to hide the methods of class List
that should not be in our stack’s public interface by providing public interface
methods only to the required List methods. This class implements each stack method by
delegating its work to an appropriate List method. In particular, StackComposition
calls List methods InsertAtFront, RemoveFromFront, IsEmpty and Print.
In this example, we do not show class StackCompositionTest, because the only dif-
ference in this example is that we change the type of the stack from StackInheritance
to StackComposition. If you execute the application from the code on the CD that
accompanies this book, you will see that the output is identical.

6
7 namespace StackInheritanceLibrary
8 {
9 // class StackInheritance inherits class List's capabilities

10 public class StackInheritance : List
11 {
12 // pass name "stack" to List constructor
13 public StackInheritance() : base("stack")
14 {
15 }
16
17 // place dataValue at top of stack by inserting
18 // dataValue at front of linked list
19 public void Push(object dataValue)
20 {
21 InsertAtFront(dataValue);
22 }
23
24 // remove item from top of stack by removing
25 // item at front of linked list
26 public object Pop()
27 {
28 return RemoveFromFront();
29 }
30
31 } // end class StackInheritance
32 }

1 // Fig. 23.11: StackInheritanceTest.cs
2 // Testing class StackInheritance.
3
4 using System;
5 using StackInheritanceLibrary;
6 using LinkedListLibrary;
7

Fig. 23.11Fig. 23.11Fig. 23.11Fig. 23.11 Using class StackInheritance. (Part 1 of 3.)

Fig. 23.10Fig. 23.10Fig. 23.10Fig. 23.10 StackInheritance extends class List. (Part 2 of 2.)

Chapter 23 Data Structures and Collections 1163

8 namespace StackInheritanceTest
9 {

10 // demonstrate functionality of class StackInheritance
11 class StackInheritanceTest
12 {
13 static void Main(string[] args)
14 {
15 StackInheritance stack = new StackInheritance();
16
17 // create objects to store in the stack
18 bool aBoolean = true;
19 char aCharacter = '$';
20 int anInteger = 34567;
21 string aString = "hello";
22
23 // use method Push to add items to stack
24 stack.Push(aBoolean);
25 stack.Print();
26 stack.Push(aCharacter);
27 stack.Print();
28 stack.Push(anInteger);
29 stack.Print();
30 stack.Push(aString);
31 stack.Print();
32
33 // use method Pop to remove items from stack
34 try
35 {
36 while (true)
37 {
38 object removedObject = stack.Pop();
39 Console.WriteLine(removedObject + " popped");
40 stack.Print();
41 }
42 }
43
44 // if exception occurs, print stack trace
45 catch (EmptyListException emptyListException)
46 {
47 Console.Error.WriteLine(
48 emptyListException.StackTrace);
49 }
50
51 } // end method Main
52
53 } // end class StackInheritanceTest
54 }

The stack is: True

The stack is: $ True
 (continued on next page)

Fig. 23.11Fig. 23.11Fig. 23.11Fig. 23.11 Using class StackInheritance. (Part 2 of 3.)

1164 Data Structures and Collections Chapter 23

 (continued from previous page)
The stack is: 34567 $ True

The stack is: hello 34567 $ True

hello popped
The stack is: 34567 $ True

34567 popped
The stack is: $ True

$ popped
The stack is: True

True popped
Empty stack
 at LinkedListLibrary.List.RemoveFromFront()
 in z:\ch23\linkedlistlibrary\linkedlistlibrary.cs:line 114
 at StackInheritanceLibrary.StackInheritance.Pop()
 in z:\ch23\stackinheritancelibrary\
 stackinheritancelibrary.cs:line 28
 at StackInheritanceTest.StackInheritanceTest.Main(String[] args
 in z:\ch23\fig23_11\stackinheritancetest.cs:line 41

1 // Fig. 23.12: StackCompositionLibrary.cs
2 // StackComposition definition with composed List object.
3
4 using System;
5 using LinkedListLibrary;
6
7 namespace StackCompositionLibrary
8 {
9 // class StackComposition encapsulates List's capabilities

10 public class StackComposition
11 {
12 private List stack;
13
14 // construct empty stack
15 public StackComposition()
16 {
17 stack = new List("stack");
18 }
19
20 // add object to stack
21 public void Push(object dataValue)
22 {
23 stack.InsertAtFront(dataValue);
24 }
25

Fig. 23.12Fig. 23.12Fig. 23.12Fig. 23.12 StackComposition class encapsulates functionality of class List.
(Part 1 of 2.)

Fig. 23.11Fig. 23.11Fig. 23.11Fig. 23.11 Using class StackInheritance. (Part 3 of 3.)

Chapter 23 Data Structures and Collections 1165

23.5 Queues
Another common data structure is the queue. A queue is similar to a checkout line in a super-
market—the first person in line is served first; customers enter the line only at the end, and
they wait to be served. Queue nodes are removed only from the head of the queue and are
inserted only at the tail of the queue. For this reason, a queue is a first-in, first-out (FIFO) data
structure. The insert and remove operations are known as enqueue and dequeue.

Queues have many applications in computer systems. Most computers have only a
single processor, so they can only serve one user at a time. Entries for the other users are
placed in a queue. The entry at the front of the queue receives the first available service.
Each entry gradually advances to the front of the queue as users receive service.

Queues also support print spooling. A multiuser environment may have only one
printer. Several users may send output to the printer. If the printer is busy, users may still
generate other outputs, which are “spooled” to disk (much as thread is wound onto a spool),
where they wait in a queue until the printer becomes available.

Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, the routing node must route it to the next node on the network
along the path to the packet’s final destination. The routing node routes one packet at a
time, so additional packets are enqueued until the router can route them.

A file server in a computer network handles file access requests from many clients
throughout the network. Servers have a limited capacity to service requests from clients.
When client requests exceed that capacity, the requests wait in queues.

The program of Fig. 23.13 and Fig. 23.14 creates a queue class through inheritance
from a list class. We want the QueueInheritance class (Fig. 23.13) to have methods
Enqueue, Dequeue, IsEmpty and Print. Note that these methods are essentially the
InsertAtBack, RemoveFromFront, IsEmpty and Print methods of class List.

26 // remove object from stack
27 public object Pop()
28 {
29 return stack.RemoveFromFront();
30 }
31
32 // determine whether stack is empty
33 public bool IsEmpty()
34 {
35 return stack.IsEmpty();
36 }
37
38 // output stack contents
39 public void Print()
40 {
41 stack.Print();
42 }
43
44 } // end class StackComposition
45 }

Fig. 23.12Fig. 23.12Fig. 23.12Fig. 23.12 StackComposition class encapsulates functionality of class List.
(Part 2 of 2.)

1166 Data Structures and Collections Chapter 23

Of course, the list class contains other methods (such as InsertAtFront and Remove-
FromBack) that we would rather not make accessible through the public interface to
the queue class. Remember that all methods in the public interface of the List class are
also public methods of the derived class QueueInheritance.

When we implement the queue’s methods, we have each QueueInheritance
method call the appropriate List method—method Enqueue calls InsertAtBack,
method Dequeue calls RemoveFromFront, and IsEmpty and Print calls invoke their
base-class versions. Class QueueInheritance does not define methods IsEmpty and
Print, because QueueInheritance inherits these methods from class List into
QueueInheritance’s public interface. Also, the methods in class QueueInher-
itance do not use lock statements. Each of the methods in this class calls a method from
class List that uses lock. Note that class QueueInheritance uses namespace
LinkedListLibrary (Fig. 23.4); thus, the solution for the class library that defines
QueueInheritance must have a reference to the LinkedListLibrary class library.

Class QueueInheritanceTest’s Main method (Fig. 23.14) uses class
QueueInheritance to instantiate a queue of objects called queue. Lines 18–21
define four objects that will be enqueued and dequeued. The program enqueues (lines 24,
26, 28 and 30) a bool containing true, a char containing $, an int containing 34567
and a string containing hello.

1 // Fig. 23.13: QueueInheritanceLibrary.cs
2 // Implementing a queue by inheriting from class List.
3
4 using System;
5 using LinkedListLibrary;
6
7 namespace QueueInheritanceLibrary
8 {
9 // class QueueInheritance inherits List's capabilities

10 public class QueueInheritance : List
11 {
12 // pass name "queue" to List constructor
13 public QueueInheritance() : base("queue")
14 {
15 }
16
17 // place dataValue at end of queue by inserting
18 // dataValue at end of linked list
19 public void Enqueue(object dataValue)
20 {
21 InsertAtBack(dataValue);
22 }
23
24 // remove item from front of queue by removing
25 // item at front of linked list
26 public object Dequeue()
27 {
28 return RemoveFromFront();
29 }

Fig. 23.13Fig. 23.13Fig. 23.13Fig. 23.13 QueueInheritance extends class List. (Part 1 of 2.)

Chapter 23 Data Structures and Collections 1167

An infinite while loop (lines 39–44) dequeues the elements from the queue in FIFO
order. When there are no objects left to dequeue, method Dequeue throws an Empty-
ListException and the program displays the exception’s stack trace, which shows the
program execution stack at the time the exception occurred. The program uses method
Print (inherited from class List) to output the contents of the queue after each operation.
Note that class QueueInheritanceTest uses namespace LinkedListLibrary
(Fig. 23.4) and namespace QueueInheritanceLibrary (Fig. 23.13); thus, the solution
for class QueueInheritanceTest must have references to both class libraries.

30
31 } // end of QueueInheritance
32 }

1 // Fig. 23.14: QueueTest.cs
2 // Testing class QueueInheritance.
3
4 using System;
5 using QueueInheritanceLibrary;
6 using LinkedListLibrary;
7
8 namespace QueueTest
9 {

10 // demonstrate functionality of class QueueInheritance
11 class QueueTest
12 {
13 static void Main(string[] args)
14 {
15 QueueInheritance queue = new QueueInheritance();
16
17 // create objects to store in the stack
18 bool aBoolean = true;
19 char aCharacter = '$';
20 int anInteger = 34567;
21 string aString = "hello";
22
23 // use method Enqueue to add items to queue
24 queue.Enqueue(aBoolean);
25 queue.Print();
26 queue.Enqueue(aCharacter);
27 queue.Print();
28 queue.Enqueue(anInteger);
29 queue.Print();
30 queue.Enqueue(aString);
31 queue.Print();
32
33 // use method Dequeue to remove items from queue
34 object removedObject = null;
35

Fig. 23.14Fig. 23.14Fig. 23.14Fig. 23.14 Using inheritance to create a queue. (Part 1 of 2.)

Fig. 23.13Fig. 23.13Fig. 23.13Fig. 23.13 QueueInheritance extends class List. (Part 2 of 2.)

1168 Data Structures and Collections Chapter 23

23.6 Trees
Linked lists, stacks and queues are linear data structures (i.e., sequences). A tree is a non-
linear, two-dimensional data structure with special properties. Tree nodes contain two or

36 // remove items from queue
37 try
38 {
39 while (true)
40 {
41 removedObject = queue.Dequeue();
42 Console.WriteLine(removedObject + " dequeue");
43 queue.Print();
44 }
45 }
46
47 // if exception occurs, print stack trace
48 catch (EmptyListException emptyListException)
49 {
50 Console.Error.WriteLine(
51 emptyListException.StackTrace);
52 }
53
54 } // end method Main
55
56 } // end class QueueTest
57 }

The queue is: True

The queue is: True $

The queue is: True $ 34567

The queue is: True $ 34567 hello

True dequeue
The queue is: $ 34567 hello

$ dequeue
The queue is: 34567 hello

34567 dequeue
The queue is: hello

hello dequeue
Empty queue
 at LinkedListLibrary.List.RemoveFromFront()
 in z:\ch23\linkedlistlibrary\linkedlistlibrary.cs:line 114
 at QueueInheritanceLibrary.QueueInheritance.Dequeue()
 in z:\ch23\queueinheritancelibrary\
 queueinheritancelibrary.cs:line 28
 at QueueTest.QueueTest.Main(String[] args)
 in z:\ch23\fig23_14\queuetest.cs:line 41

Fig. 23.14Fig. 23.14Fig. 23.14Fig. 23.14 Using inheritance to create a queue. (Part 2 of 2.)

Chapter 23 Data Structures and Collections 1169

more links. This section discusses binary trees (Fig. 23.15)—trees whose nodes all contain
two links (none, one or both of which may be null). The root node is the first node in a
tree. Each link in the root node refers to a child. The left child is the first node in the left
subtree, and the right child is the first node in the right subtree. The children of a specific
node are called siblings. A node with no children is called a leaf node. Computer scientists
normally draw trees from the root node down—exactly the opposite of the way most trees
grow in nature.

Common Programming Error 23.2
Not setting to null the links in leaf nodes of a tree is a common logic error. 23.2

In our binary tree example, we create a special binary tree called a binary search
tree. A binary search tree (with no duplicate node values) has the characteristic that the
values in any left subtree are less than the value in the subtree’s parent node, and the
values in any right subtree are greater than the value in the subtree’s parent node.
Figure 23.16 illustrates a binary search tree with 12 integer values. Note that the shape
of the binary search tree that corresponds to a set of data can depend on the order in which
the values are inserted into the tree.

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 A graphical representation of a binary tree.

Fig. 23.16 A binary search tree containing 12 values.

A

B

D

C

47

25 77

11 43 65 93

7 17 31 44 68

1170 Data Structures and Collections Chapter 23

23.6.1 Binary Search Tree of Integer Values
The application of Fig. 23.17 and Fig. 23.18 creates a binary search tree of integers and
traverses it (i.e., walks through all its nodes) in three ways—using recursive inorder, pre-
order and postorder traversals. The program generates 10 random numbers and inserts
each into the tree. Figure 23.17 defines class Tree in namespace BinaryTreeLi-
brary for reuse purposes. Figure 23.18 defines class TreeTest to demonstrate class
Tree’s functionality. Method Main of class TreeTest instantiates an empty Tree ob-
ject, then randomly generates 10 integers and inserts each value in the binary tree by calling
Tree method InsertNode. The program then performs preorder, inorder and postorder
traversals of the tree. We will discuss these traversals shortly.

Class TreeNode (lines 9–95 of Fig. 23.17) is a self-referential class containing three
private data members—leftNode and rightNode, of type TreeNode, and data,
of type int. Initially, every TreeNode is a leaf node, so the constructor (lines 16–20) ini-
tializes references leftNode and rightNode to null. Properties LeftNode (lines 23–
34), Data (lines 37–48) and RightNode (lines 51–62) provide access to a ListNode’s
private data members. We discuss TreeNode method Insert (lines 67–93) shortly.

1 // Fig. 23.17: BinaryTreeLibrary.cs
2 // Definition of class TreeNode and class Tree.
3
4 using System;
5
6 namespace BinaryTreeLibrary
7 {
8 // class TreeNode definition
9 class TreeNode

10 {
11 private TreeNode leftNode;
12 private int data;
13 private TreeNode rightNode;
14
15 // initialize data and make this a leaf node
16 public TreeNode(int nodeData)
17 {
18 data = nodeData;
19 leftNode = rightNode = null; // node has no children
20 }
21
22 // LeftNode property
23 public TreeNode LeftNode
24 {
25 get
26 {
27 return leftNode;
28 }
29

Fig. 23.17Fig. 23.17Fig. 23.17Fig. 23.17 Definitions of TreeNode and Tree for a binary search tree. (Part 1 of 5.)

Chapter 23 Data Structures and Collections 1171

30 set
31 {
32 leftNode = value;
33 }
34 }
35
36 // Data property
37 public int Data
38 {
39 get
40 {
41 return data;
42 }
43
44 set
45 {
46 data = value;
47 }
48 }
49
50 // RightNode property
51 public TreeNode RightNode
52 {
53 get
54 {
55 return rightNode;
56 }
57
58 set
59 {
60 rightNode = value;
61 }
62 }
63
64
65 // insert TreeNode into Tree that contains nodes;
66 // ignore duplicate values
67 public void Insert(int insertValue)
68 {
69 // insert in left subtree
70 if (insertValue < data)
71 {
72 // insert new TreeNode
73 if (leftNode == null)
74 leftNode = new TreeNode(insertValue);
75
76 // continue traversing left subtree
77 else
78 leftNode.Insert(insertValue);
79 }
80

Fig. 23.17Fig. 23.17Fig. 23.17Fig. 23.17 Definitions of TreeNode and Tree for a binary search tree. (Part 2 of 5.)

1172 Data Structures and Collections Chapter 23

81 // insert in right subtree
82 else if (insertValue > data)
83 {
84 // insert new TreeNode
85 if (rightNode == null)
86 rightNode = new TreeNode(insertValue);
87
88 // continue traversing right subtree
89 else
90 rightNode.Insert(insertValue);
91 }
92
93 } // end method Insert
94
95 } // end class TreeNode
96
97 // class Tree definition
98 public class Tree
99 {
100 private TreeNode root;
101
102 // construct an empty Tree of integers
103 public Tree()
104 {
105 root = null;
106 }
107
108 // Insert a new node in the binary search tree.
109 // If the root node is null, create the root node here.
110 // Otherwise, call the insert method of class TreeNode.
111 public void InsertNode(int insertValue)
112 {
113 lock (this)
114 {
115 if (root == null)
116 root = new TreeNode(insertValue);
117
118 else
119 root.Insert(insertValue);
120 }
121 }
122
123 // begin preorder traversal
124 public void PreorderTraversal()
125 {
126 lock (this)
127 {
128 PreorderHelper(root);
129 }
130 }
131

Fig. 23.17Fig. 23.17Fig. 23.17Fig. 23.17 Definitions of TreeNode and Tree for a binary search tree. (Part 3 of 5.)

Chapter 23 Data Structures and Collections 1173

132 // recursive method to perform preorder traversal
133 private void PreorderHelper(TreeNode node)
134 {
135 if (node == null)
136 return;
137
138 // output node data
139 Console.Write(node.Data + " ");
140
141 // traverse left subtree
142 PreorderHelper(node.LeftNode);
143
144 // traverse right subtree
145 PreorderHelper(node.RightNode);
146 }
147
148 // begin inorder traversal
149 public void InorderTraversal()
150 {
151 lock (this)
152 {
153 InorderHelper(root);
154 }
155 }
156
157 // recursive method to perform inorder traversal
158 private void InorderHelper(TreeNode node)
159 {
160 if (node == null)
161 return;
162
163 // traverse left subtree
164 InorderHelper(node.LeftNode);
165
166 // output node data
167 Console.Write(node.Data + " ");
168
169 // traverse right subtree
170 InorderHelper(node.RightNode);
171 }
172
173 // begin postorder traversal
174 public void PostorderTraversal()
175 {
176 lock (this)
177 {
178 PostorderHelper(root);
179 }
180 }
181

Fig. 23.17Fig. 23.17Fig. 23.17Fig. 23.17 Definitions of TreeNode and Tree for a binary search tree. (Part 4 of 5.)

1174 Data Structures and Collections Chapter 23

182 // recursive method to perform postorder traversal
183 private void PostorderHelper(TreeNode node)
184 {
185 if (node == null)
186 return;
187
188 // traverse left subtree
189 PostorderHelper(node.LeftNode);
190
191 // traverse right subtree
192 PostorderHelper(node.RightNode);
193
194 // output node data
195 Console.Write(node.Data + " ");
196 }
197
198 } // end class Tree
199 }

1 // Fig. 23.18: TreeTest.cs
2 // This program tests class Tree.
3
4 using System;
5 using BinaryTreeLibrary;
6
7 namespace TreeTest
8 {
9 // class TreeTest definition

10 public class TreeTest
11 {
12 // test class Tree
13 static void Main(string[] args)
14 {
15 Tree tree = new Tree();
16 int insertValue;
17
18 Console.WriteLine("Inserting values: ");
19 Random random = new Random();
20
21 // insert 10 random integers from 0-99 in tree
22 for (int i = 1; i <= 10; i++)
23 {
24 insertValue = random.Next(100);
25 Console.Write(insertValue + " ");
26
27 tree.InsertNode(insertValue);
28 }
29
30 // perform preorder traversal of tree
31 Console.WriteLine("\n\nPreorder traversal");

Fig. 23.18Fig. 23.18Fig. 23.18Fig. 23.18 Creating and traversing a binary tree. (Part 1 of 2.)

Fig. 23.17Fig. 23.17Fig. 23.17Fig. 23.17 Definitions of TreeNode and Tree for a binary search tree. (Part 5 of 5.)

Chapter 23 Data Structures and Collections 1175

Class Tree (lines 98–198 of Fig. 23.17) manipulates objects of class TreeNode.
Class Tree has as private data root (line 100)—a reference to the root node of the
tree. The class contains public method InsertNode (lines 111–121) to insert a new
node in the tree and public methods PreorderTraversal (lines 124–130), Inor-
derTraversal (lines 149–155) and PostorderTraversal (lines 174–180) to
begin traversals of the tree. Each of these methods calls a separate recursive utility method
to perform the traversal operations on the internal representation of the tree. The Tree con-
structor (lines 103–106) initializes root to null to indicate that the tree initially is empty.

The Tree class’s method InsertNode (lines 67–74) first locks the Tree object
for thread safety, then determines whether the tree is empty. If so, line 116 allocates a
new TreeNode, initializes the node with the integer being inserted in the tree and
assigns the new node to root. If the tree is not empty, InsertNode calls TreeNode
method Insert (lines 67–93), which recursively determines the location for the new
node in the tree and inserts the node at that location. A node can be inserted only as a leaf
node in a binary search tree.

The TreeNode method Insert compares the value to insert with the data value
in the root node. If the insert value is less than the root-node data, the program determines
whether the left subtree is empty (line 73). If so, line 74 allocates a new TreeNode, ini-
tializes it with the integer being inserted and assigns the new node to reference leftNode.
Otherwise, line 78 recursively calls Insert for the left subtree to insert the value into the

32 tree.PreorderTraversal();
33
34 // perform inorder traversal of tree
35 Console.WriteLine("\n\nInorder traversal");
36 tree.InorderTraversal();
37
38 // perform postorder traversal of tree
39 Console.WriteLine("\n\nPostorder traversal");
40 tree.PostorderTraversal();
41 Console.WriteLine();
42 }
43
44 } // end class TreeTest
45 }

Inserting values:
39 69 94 47 50 72 55 41 97 73

Preorder traversal
39 69 47 41 50 55 94 72 73 97

Inorder traversal
39 41 47 50 55 69 72 73 94 97

Postorder traversal
41 55 50 47 73 72 97 94 69 39

Fig. 23.18Fig. 23.18Fig. 23.18Fig. 23.18 Creating and traversing a binary tree. (Part 2 of 2.)

1176 Data Structures and Collections Chapter 23

left subtree. If the insert value is greater than the root-node data, the program determines
whether the right subtree is empty (line 85). If so, line 86 allocates a new TreeNode, ini-
tializes it with the integer being inserted and assigns the new node to reference right-
Node. Otherwise, line 90 recursively calls Insert for the right subtree to insert the value
in the right subtree.

Methods InorderTraversal, PreorderTraversal and PostorderTra-
versal call helper methods InorderHelper (lines 158–171), PreorderHelper
(lines 133–146) and PostorderHelper (lines 183–196), respectively, to traverse the
tree and print the node values. The purpose of the helper methods in class Tree is to allow
the programmer to start a traversal without the need to obtain a reference to the root node
first, then call the recursive method with that reference. Methods InorderTraversal,
PreorderTraversal and PostorderTraversal simply take the private refer-
ence root and pass it to the appropriate helper method to initiate a traversal of the tree.
For the following discussion, we use the binary search tree shown in Fig. 23.19.

Method InorderHelper (lines 158–171) defines the steps for an inorder traversal.
Those steps are as follows:

1. If the argument is null, return immediately.

2. Traverse the left subtree with a call to InorderHelper (line 164).

3. Process the value in the node (line 167).

4. Traverse the right subtree with a call to InorderHelper (line 170).

The inorder traversal does not process the value in a node until the values in that node’s left
subtree are processed. The inorder traversal of the tree in Fig. 23.19 is

6 13 17 27 33 42 48

Note that the inorder traversal of a binary search tree prints the node values in
ascending order. The process of creating a binary search tree actually sorts the data—thus,
this process is called the binary tree sort.

Method PreorderHelper (lines 133–146) defines the steps for a preorder tra-
versal. Those steps are as follows:

1. If the argument is null, return immediately.

2. Process the value in the node (line 139).

3. Traverse the left subtree with a call to PreorderHelper (line 142).

4. Traverse the right subtree with a call to PreorderHelper (line 145).

Fig. 23.19Fig. 23.19Fig. 23.19Fig. 23.19 A binary search tree.

27

13 42

4833176

Chapter 23 Data Structures and Collections 1177

The preorder traversal processes the value in each node as the node is visited. After pro-
cessing the value in a given node, the preorder traversal processes the values in the left sub-
tree, then the values in the right subtree. The preorder traversal of the tree in Fig. 23.19 is

27 13 6 17 42 33 48

Method PostorderHelper (lines 183–198) defines the steps for a postorder tra-
versal. Those steps are as follows:

1. If the argument is null, return immediately.

2. Traverse the left subtree with a call to PostorderHelper (line 189).

3. Traverse the right subtree with a call to PostorderHelper (line 192).

4. Process the value in the node (line 195).

The postorder traversal processes the value in each node after the values of all that node’s
children are processed. The postorder traversal of the tree in Fig. 23.19 is

6 17 13 33 48 42 27

The binary search tree facilitates duplicate elimination. While building a tree, the inser-
tion operation recognizes attempts to insert a duplicate value, because a duplicate follows
the same “go left” or “go right” decisions on each comparison as the original value did. Thus,
the insertion operation eventually compares the duplicate with a node containing the same
value. At this point, the insertion operation might simply discard the duplicate value.

Searching a binary tree for a value that matches a key value is fast, especially for tightly
packed trees. In a tightly packed tree, each level contains about twice as many elements as
the previous level. Figure 23.19 is a tightly packed binary tree. A binary search tree with n
elements has a minimum of log2n levels. Thus, at most log2n comparisons are required
either to find a match or to determine that no match exists. Searching a (tightly packed)
1000-element binary search tree requires at most 10 comparisons, because 210 > 1000.
Searching a (tightly packed) 1,000,000-element binary search tree requires at most 20 com-
parisons, because 220 > 1,000,000.

The chapter exercises present algorithms for other binary tree operations, such as per-
forming a level-order traversal of a binary tree. The level-order traversal of a binary tree
visits the nodes of the tree row by row, starting at the root-node level. On each level of the
tree, a level-order traversal visits the nodes from left to right.

23.6.2 Binary Search Tree of IComparable Objects

The binary tree example in Section 23.6.1 works nicely when all the data is of type int.
Suppose that you want to manipulate a binary tree of double values. You could rewrite the
TreeNode and Tree classes with different names and customize the classes to manipu-
late double values. Similarly, for each data type you could create customized versions of
classes TreeNode and Tree. This results in a proliferation of code, which can become
difficult to manage and maintain. The C++ programming language provides a technology
called templates that enables us to write a class definition once, then have the compiler gen-
erate new versions of the class for any data type we choose.

Ideally, we would like to define the functionality of a binary tree once and reuse that
functionality for many data types. Languages like Java™ and C# provide polymorphic

1178 Data Structures and Collections Chapter 23

capabilities that enable all objects to be manipulated in a uniform manner. Using such capa-
bilities enables us to design a more flexible data structure.

In our next example, we take advantage of C#’s polymorphic capabilities by imple-
menting TreeNode and Tree classes that manipulate objects of any type that implements
interface IComparable (namespace System). It is imperative that we be able to com-
pare objects stored in a binary search, so we can determine the path to the insertion point
of a new node. Classes that implement IComparable define method CompareTo,
which compares the object that invokes the method with the object that the method receives
as an argument. The method returns an int value less than zero if the calling object is less
than the argument object, zero if the objects are equal, a positive value if the calling object
is greater than the argument object. Also, both the calling and argument objects must be of
the same data type; otherwise, the method throws an ArgumentException.

The program of Fig. 23.20 and Fig. 23.21 enhances the program from Section 23.6.1
to manipulate IComparable objects. One restriction on the new versions of classes
TreeNode and Tree in Fig. 23.20 is that each Tree object can contain objects of only
one data type (e.g., all strings or all doubles). If a program attempts to insert multiple
data types in the same Tree object, ArgumentExceptions will occur. We modified
only six lines of code in class TreeNode (lines 13, 17, 38, 67, 70 and 82) and one line of
code in class Tree (line 111) to enable processing of IComparable objects. With the
exception of lines 70 and 82, all other changes simply replaced the type int with the type
IComparable. Lines 70 and 82 previously used the < and > operators to compare the
value being inserted with the value in a given node. These lines now compare ICompa-
rable objects via the interface’s method CompareTo, then test the method’s return value
to determine whether it is less than zero (the calling object is less than the argument object)
or greater than zero (the calling object is greater than the argument object), respectively.

Class TreeTest (Fig. 23.21) creates three Tree objects to store int, double and
string values, all of which the .NET Framework defines as IComparable types. The
program populates the trees with the values in arrays intArray (line 15), double-
Array (lines 16–17) and stringArray (lines 18–19), respectively.

Method populateTree (lines 38–48) receives an Array containing the initializer
values for the Tree, a Tree into which the array elements will be placed and a string
representing the Tree name as arguments, then inserts each Array element in the Tree.
Method traverseTree (lines 51–68) receives a Tree and a string representing the
Tree name as arguments, then outputs the preorder, inorder and postorder traversals of the
Tree. Note that the inorder traversal of each Tree outputs the data in sorted order regard-
less of the data type stored in the Tree. Our polymorphic implementation of class Tree
invokes the appropriate data type’s CompareTo method to determine the path to each
value’s insertion point by using the standard binary search tree insertion rules. Also, notice
that the Tree of strings appears in alphabetical order.

1 // Fig. 23.20: BinaryTreeLibrary2.cs
2 // Definition of class TreeNode and class Tree for IComparable
3 // objects.
4

Fig. 23.20Fig. 23.20Fig. 23.20Fig. 23.20 Definitions of class TreeNode and Tree for manipulating
IComparable objects. (Part 1 of 5.)

Chapter 23 Data Structures and Collections 1179

5 using System;
6
7 namespace BinaryTreeLibrary2
8 {
9 // class TreeNode definition

10 class TreeNode
11 {
12 private TreeNode leftNode;
13 private IComparable data;
14 private TreeNode rightNode;
15
16 // initialize data and make this a leaf node
17 public TreeNode(IComparable nodeData)
18 {
19 data = nodeData;
20 leftNode = rightNode = null; // node has no children
21 }
22
23 // LeftNode property
24 public TreeNode LeftNode
25 {
26 get
27 {
28 return leftNode;
29 }
30
31 set
32 {
33 leftNode = value;
34 }
35 }
36
37 // Data property
38 public IComparable Data
39 {
40 get
41 {
42 return data;
43 }
44
45 set
46 {
47 data = value;
48 }
49 }
50
51 // RightNode property
52 public TreeNode RightNode
53 {
54 get
55 {

Fig. 23.20Fig. 23.20Fig. 23.20Fig. 23.20 Definitions of class TreeNode and Tree for manipulating
IComparable objects. (Part 2 of 5.)

1180 Data Structures and Collections Chapter 23

56 return rightNode;
57 }
58
59 set
60 {
61 rightNode = value;
62 }
63 }
64
65 // insert TreeNode into Tree that contains nodes;
66 // ignore duplicate values
67 public void Insert(IComparable insertValue)
68 {
69 // insert in left subtree
70 if (insertValue.CompareTo(data) < 0)
71 {
72 // insert new TreeNode
73 if (leftNode == null)
74 leftNode = new TreeNode(insertValue);
75
76 // continue traversing left subtree
77 else
78 leftNode.Insert(insertValue);
79 }
80
81 // insert in right subtree
82 else if (insertValue.CompareTo(data) > 0)
83 {
84 // insert new TreeNode
85 if (rightNode == null)
86 rightNode = new TreeNode(insertValue);
87
88 // continue traversing right subtree
89 else
90 rightNode.Insert(insertValue);
91 }
92
93 } // end method Insert
94
95 } // end class TreeNode
96
97 // class Tree definition
98 public class Tree
99 {
100 private TreeNode root;
101
102 // construct an empty Tree of integers
103 public Tree()
104 {
105 root = null;
106 }
107

Fig. 23.20Fig. 23.20Fig. 23.20Fig. 23.20 Definitions of class TreeNode and Tree for manipulating
IComparable objects. (Part 3 of 5.)

Chapter 23 Data Structures and Collections 1181

108 // Insert a new node in the binary search tree.
109 // If the root node is null, create the root node here.
110 // Otherwise, call the insert method of class TreeNode.
111 public void InsertNode(IComparable insertValue)
112 {
113 lock (this)
114 {
115 if (root == null)
116 root = new TreeNode(insertValue);
117
118 else
119 root.Insert(insertValue);
120 }
121 }
122
123 // begin preorder traversal
124 public void PreorderTraversal()
125 {
126 lock (this)
127 {
128 PreorderHelper(root);
129 }
130 }
131
132 // recursive method to perform preorder traversal
133 private void PreorderHelper(TreeNode node)
134 {
135 if (node == null)
136 return;
137
138 // output node data
139 Console.Write(node.Data + " ");
140
141 // traverse left subtree
142 PreorderHelper(node.LeftNode);
143
144 // traverse right subtree
145 PreorderHelper(node.RightNode);
146 }
147
148 // begin inorder traversal
149 public void InorderTraversal()
150 {
151 lock (this)
152 {
153 InorderHelper(root);
154 }
155 }
156
157 // recursive method to perform inorder traversal
158 private void InorderHelper(TreeNode node)
159 {

Fig. 23.20Fig. 23.20Fig. 23.20Fig. 23.20 Definitions of class TreeNode and Tree for manipulating
IComparable objects. (Part 4 of 5.)

1182 Data Structures and Collections Chapter 23

160 if (node == null)
161 return;
162
163 // traverse left subtree
164 InorderHelper(node.LeftNode);
165
166 // output node data
167 Console.Write(node.Data + " ");
168
169 // traverse right subtree
170 InorderHelper(node.RightNode);
171 }
172
173 // begin postorder traversal
174 public void PostorderTraversal()
175 {
176 lock (this)
177 {
178 PostorderHelper(root);
179 }
180 }
181
182 // recursive method to perform postorder traversal
183 private void PostorderHelper(TreeNode node)
184 {
185 if (node == null)
186 return;
187
188 // traverse left subtree
189 PostorderHelper(node.LeftNode);
190
191 // traverse right subtree
192 PostorderHelper(node.RightNode);
193
194 // output node data
195 Console.Write(node.Data + " ");
196 }
197
198 } // end class Tree
199 }

1 // Fig. 23.21: TreeTest.cs
2 // This program tests class Tree.
3
4 using System;
5 using BinaryTreeLibrary2;

Fig. 23.21Fig. 23.21Fig. 23.21Fig. 23.21 Demonstrating class Tree with IComparable objects. (Part 1 of 3.)

Fig. 23.20Fig. 23.20Fig. 23.20Fig. 23.20 Definitions of class TreeNode and Tree for manipulating
IComparable objects. (Part 5 of 5.)

Chapter 23 Data Structures and Collections 1183

6
7 namespace TreeTest
8 {
9 // class TreeTest definition

10 public class TreeTest
11 {
12 // test class Tree
13 static void Main(string[] args)
14 {
15 int[] intArray = { 8, 2, 4, 3, 1, 7, 5, 6 };
16 double[] doubleArray =
17 { 8.8, 2.2, 4.4, 3.3, 1.1, 7.7, 5.5, 6.6 };
18 string[] stringArray = { "eight", "two", "four",
19 "three", "one", "seven", "five", "six" };
20
21 // create int Tree
22 Tree intTree = new Tree();
23 populateTree(intArray, intTree, "intTree");
24 traverseTree(intTree, "intTree");
25
26 // create double Tree
27 Tree doubleTree = new Tree();
28 populateTree(doubleArray, doubleTree, "doubleTree");
29 traverseTree(doubleTree, "doubleTree");
30
31 // create string Tree
32 Tree stringTree = new Tree();
33 populateTree(stringArray, stringTree, "stringTree");
34 traverseTree(stringTree, "stringTree");
35 }
36
37 // populate Tree with array elements
38 static void populateTree(
39 Array array, Tree tree, string name)
40 {
41 Console.WriteLine("\nInserting into " + name + ":");
42
43 foreach (IComparable data in array)
44 {
45 Console.Write(data + " ");
46 tree.InsertNode(data);
47 }
48 }
49
50 // insert perform traversals
51 static void traverseTree(Tree tree, string treeType)
52 {
53 // perform preorder traveral of tree
54 Console.WriteLine(
55 "\n\nPreorder traversal of " + treeType);
56 tree.PreorderTraversal();
57

Fig. 23.21Fig. 23.21Fig. 23.21Fig. 23.21 Demonstrating class Tree with IComparable objects. (Part 2 of 3.)

1184 Data Structures and Collections Chapter 23

58 // perform inorder traveral of tree
59 Console.WriteLine(
60 "\n\nInorder traversal of " + treeType);
61 tree.InorderTraversal();
62
63 // perform postorder traveral of tree
64 Console.WriteLine(
65 "\n\nPostorder traversal of " + treeType);
66 tree.PostorderTraversal();
67 Console.WriteLine("\n");
68 }
69
70 } // end class TreeTest
71 }

Inserting into intTree:
8 2 4 3 1 7 5 6

Preorder traversal of intTree
8 2 1 4 3 7 5 6

Inorder traversal of intTree
1 2 3 4 5 6 7 8

Postorder traversal of intTree
1 3 6 5 7 4 2 8

Inserting into doubleTree:
8.8 2.2 4.4 3.3 1.1 7.7 5.5 6.6

Preorder traversal of doubleTree
8.8 2.2 1.1 4.4 3.3 7.7 5.5 6.6

Inorder traversal of doubleTree
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8

Postorder traversal of doubleTree
1.1 3.3 6.6 5.5 7.7 4.4 2.2 8.8

Inserting into stringTree:
eight two four three one seven five six

Preorder traversal of stringTree
eight two four five three one seven six

Inorder traversal of stringTree
eight five four one seven six three two

Postorder traversal of stringTree
five six seven one three four two eight

Fig. 23.21Fig. 23.21Fig. 23.21Fig. 23.21 Demonstrating class Tree with IComparable objects. (Part 3 of 3.)

Chapter 23 Data Structures and Collections 1185

23.7 Collection Classes
The previous sections of this chapter discussed how to create and manipulate data struc-
tures. The discussion was “low level,” in the sense that we painstakingly created each ele-
ment of each data structure dynamically with new and modified the data structures by
directly manipulating their elements and references to their elements. In this section, we
consider the prepackaged data-structure classes provided by the .NET Framework. These
classes are known as collection classes—they store collections of data. Each instance of
one of these classes is known as a collection, which is a set of items.

With collection classes, instead of creating data structures, the programmer simply
uses existing data structures, without concern for how the data structures are implemented.
This methodology is a marvelous example of code reuse. Programmers can code faster and
can expect excellent performance, maximizing execution speed and minimizing memory
consumption.

Some examples of collections are the cards you hold in a card game, your favorite
songs stored in your computer and the real-estate records in your local registry of deeds
(which map book numbers and page numbers to property owners). The .NET Framework
provides several collections. We demonstrate four collection classes—Array, Array-
List, Stack and Hashtable—all from namespace System.Collections, plus
built-in array capabilities. In addition, namespace System.Collections provides sev-
eral other data structures, including BitArray (a collection of true/false values), Queue
and SortedList (a collection of key/value pairs that are sorted by key and can be
accessed either by key or by index).

The .NET Framework provides ready-to-go, reusable components; you do not need to
write your own collection classes. The collections are standardized so applications can
share them easily, without having to be concerned with the details of their implementation.
These collections are written for broad reuse. They are tuned for rapid execution and for
efficient use of memory. As new data structures and algorithms are developed that fit this
framework, a large base of programmers already will be familiar with the interfaces and
algorithms implemented by those data structures.

23.7.1 Class Array

Chapter 7 presented basic array-processing capabilities, and many subsequent chapters
used the techniques shown there. We discussed briefly that all arrays inherit from class Ar-
ray (namespace System) which defines a Length property that specifies the number of
elements in an array. In addition, class Array provides static methods that provide al-
gorithms for processing arrays. Typically, class Array overloads these methods to provide
multiple options for performing algorithms. For example, Array method Reverse can
reverse the order of the elements in an entire array or can reverse the elements in a specified
range of elements in an array. For a complete list of class Array’s static methods and
their overloaded versions, see the online documentation for the class. Figure 23.22 demon-
strates several static methods of class Array.

Line 28 uses static Array method Sort to sort an array of double values. When
this method returns, the array contains its original elements sorted in ascending order.

Lines 31–32 uses static Array method Copy to copy elements from array
intArray into array intArrayCopy. The first argument is the array to copy

1186 Data Structures and Collections Chapter 23

(intValues), the second argument is the destination array (intValuesCopy) and the
third argument is an integer representing the number of elements to copy (in this case,
intValues.Length specifies all elements).

1 // Fig. 23.22: UsingArray.cs
2 // Using Array class to perform common array manipulations.
3
4 using System;
5 using System.Windows.Forms;
6 using System.Collections;
7
8 namespace UsingArray
9 {

10 // demonstrate algorithms of class Array
11 class UsingArray
12 {
13 private int[] intValues = { 1, 2, 3, 4, 5, 6 };
14 private double[] doubleValues =
15 { 8.4, 9.3, 0.2, 7.9, 3.4 };
16 private int[] intValuesCopy;
17 private string output;
18
19 // method to build and display program output
20 public void Start()
21 {
22 intValuesCopy = new int[intValues.Length];
23
24 output = "Initial array values:\n";
25 PrintArray(); // output initial array contents
26
27 // sort doubleValues
28 Array.Sort(doubleValues);
29
30 // copy intValues into intValuesCopy
31 Array.Copy(intValues, intValuesCopy,
32 intValues.Length);
33
34 output += "\nArray values after Sort and Copy:\n";
35 PrintArray(); // output array contents
36 output += "\n";
37
38 // search for 5 in intValues
39 int result = Array.BinarySearch(intValues, 5);
40 output +=
41 (result >= 0 ? "5 found at element " + result :
42 "5 not found") + " in intValues\n";
43
44 // search for 8763 in intValues
45 result = Array.BinarySearch(intValues, 8763);
46 output +=
47 (result >= 0 ? "8763 found at element " + result :
48 "8763 not found") + " in intValues";

Fig. 23.22Fig. 23.22Fig. 23.22Fig. 23.22 Program that demonstrates class Array. (Part 1 of 2.)

Chapter 23 Data Structures and Collections 1187

Lines 39 and 45 invoke static Array method BinarySearch to perform binary
searches on array intValues. Method BinarySearch receives the sorted array in
which to search and the key for which to search. The method returns the index in the array
at which it finds the key (but a negative number if the key was not found).

49
50 MessageBox.Show(output, "Using Class Array",
51 MessageBoxButtons.OK, MessageBoxIcon.Information);
52 }
53
54 // append array content to output string
55 private void PrintArray()
56 {
57 output += "doubleValues: ";
58
59 foreach (double element in doubleValues)
60 output += element + " ";
61
62 output += "\nintValues: ";
63
64 foreach (int element in intValues)
65 output += element + " ";
66
67 output += "\nintValuesCopy: ";
68
69 foreach (int element in intValuesCopy)
70 output += element + " ";
71
72 output += "\n";
73 }
74
75 // main entry point for application
76 static void Main(string[] args)
77 {
78 UsingArray application = new UsingArray();
79
80 application.Start();
81 }
82
83 } // end class UsingArray
84 }

Fig. 23.22Fig. 23.22Fig. 23.22Fig. 23.22 Program that demonstrates class Array. (Part 2 of 2.)

1188 Data Structures and Collections Chapter 23

Other static Array methods include Clear (to set a range of elements to 0 or
null), CreateInstance (to create a new array of a specified data type), IndexOf (to
locate the first occurrence of an object in an array or portion of an array), LastIndexOf
(to locate the last occurrence of an object in an array or portion of an array) and Reverse
(to reverse the contents of an array or portion of an array).

23.7.2 Class ArrayList

In most programming languages, conventional arrays have a fixed size—they cannot be
changed dynamically to conform to an application’s execution-time memory requirements.
In some applications, this fixed-size limitation presents a problem for programmers. They
must choose between using fixed-size arrays that are large enough to store the maximum
number of elements the program may require and using dynamic data structures that can
grow and shrink the amount of memory required to store data in response to the changing
requirements of a program at execution time.

The .NET Framework’s class ArrayList collection mimics the functionality of con-
ventional arrays and provides dynamic resizing of the collection through the class’s
methods. At any time an ArrayList contains a certain number of elements less than or
equal to its capacity—the number of elements currently reserved for an ArrayList. A
program can manipulate the capacity with ArrayList property Capacity. If an
ArrayList needs to grow, it by default doubles its current Capacity.

Performance Tip 23.6
As with linked lists, inserting additional elements into an ArrayList whose current size is
less than its capacity is a fast operation. 23.6

Performance Tip 23.7
It is a slow operation to insert an element into an ArrayList that needs to grow larger to
accommodate a new element. 23.7

Performance Tip 23.8
If storage is at a premium, use method TrimToSize of class ArrayList to trim an Ar-
rayList to its exact size. This will optimize an ArrayList’s memory use. Be careful—if
the program needs to insert additional elements, the process will be slower because the Ar-
rayList must grow dynamically (trimming leaves no room for growth). 23.8

Performance Tip 23.9
The default capacity increment, doubling the size of the ArrayList, may seem to waste
storage, but doubling is an efficient way for an ArrayList to grow quickly to “about the
right size.” This is a much more efficient use of time than growing the ArrayList by one
element at a time in response to insert operations. 23.9

ArrayLists store references to objects. All classes derive from class Object, so
an ArrayList can contain objects of any type. Figure 23.23 lists some useful methods of
class ArrayList.

Figure 23.24 demonstrates class ArrayList and several of its methods. Users can
type a string into the user interface’s TextBox, then press a button representing an
ArrayList method to see that method’s functionality. A TextBox displays messages
indicating each operation’s results.

Chapter 23 Data Structures and Collections 1189

Method Description

Add Adds an object to the ArrayList. Returns an int specifying the index
at which the object was added.

Clear Removes all the elements from the ArrayList.

Contains Returns true if the specified object is in the ArrayList; otherwise,
returns false.

IndexOf Returns the index of the first occurrence of the specified object in the
ArrayList.

Insert Inserts an object at the specified index.

Remove Removes the first occurrence of the specified object.

RemoveAt Removes an object at the specified index.

RemoveRange Removes a specified number of elements starting at a specified index in the
ArrayList.

Sort Sorts the ArrayList.

TrimToSize Sets the Capacity of the ArrayList to be the number of elements the
ArrayList currently contains.

Fig. 23.23Fig. 23.23Fig. 23.23Fig. 23.23 Some methods of class ArrayList.

1 // Fig. 23.24: ArrayListTest.cs
2 // Using class ArrayList.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.Text;
11
12 namespace ArrayListTest
13 {
14 // demonstrating ArrayList functionality
15 public class ArrayListTest : System.Windows.Forms.Form
16 {
17 private System.Windows.Forms.Button addButton;
18 private System.Windows.Forms.TextBox inputTextBox;
19 private System.Windows.Forms.Label inputLabel;
20 private System.Windows.Forms.Button removeButton;
21 private System.Windows.Forms.Button firstButton;
22 private System.Windows.Forms.Button lastButton;
23 private System.Windows.Forms.Button isEmptyButton;
24 private System.Windows.Forms.Button containsButton;
25 private System.Windows.Forms.Button locationButton;

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Demomstrating the ArrayList class. (Part 1 of 5.)

1190 Data Structures and Collections Chapter 23

26 private System.Windows.Forms.Button trimButton;
27 private System.Windows.Forms.Button statisticsButton;
28 private System.Windows.Forms.Button displayButton;
29
30 // Required designer variable.
31 private System.ComponentModel.Container components = null;
32 private System.Windows.Forms.TextBox consoleTextBox;
33
34 // ArrayList for manipulating strings
35 private ArrayList arrayList = new ArrayList(1);
36
37 public ArrayListTest()
38 {
39 // Required for Windows Form Designer support
40 InitializeComponent();
41 }
42
43 // Visual Studio.NET generated code
44
45 // main entry point for the application
46 [STAThread]
47 static void Main()
48 {
49 Application.Run(new ArrayListTest());
50 }
51
52 // add item to end of arrayList
53 private void addButton_Click(
54 object sender, System.EventArgs e)
55 {
56 arrayList.Add(inputTextBox.Text);
57 consoleTextBox.Text =
58 "Added to end: " + inputTextBox.Text;
59 inputTextBox.Clear();
60 }
61
62 // remove specified item from arrayList
63 private void removeButton_Click(
64 object sender, System.EventArgs e)
65 {
66 arrayList.Remove(inputTextBox.Text);
67 consoleTextBox.Text = "Removed: " + inputTextBox.Text;
68 inputTextBox.Clear();
69 }
70
71 // display first element
72 private void firstButton_Click(
73 object sender, System.EventArgs e)
74 {
75 // get first element
76 try
77 {

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Demomstrating the ArrayList class. (Part 2 of 5.)

Chapter 23 Data Structures and Collections 1191

78 consoleTextBox.Text =
79 "First element: " + arrayList[0];
80 }
81
82 // show exception if no elements in arrrayList
83 catch (ArgumentOutOfRangeException outOfRange)
84 {
85 consoleTextBox.Text = outOfRange.ToString();
86 }
87 }
88
89 // display last element
90 private void lastButton_Click(
91 object sender, System.EventArgs e)
92 {
93 // get last element
94 try
95 {
96 consoleTextBox.Text = "Last element: " +
97 arrayList[arrayList.Count - 1];
98 }
99
100 // show exception if no elements in arrrayList
101 catch (ArgumentOutOfRangeException outOfRange)
102 {
103 consoleTextBox.Text = outOfRange.ToString();
104 }
105 }
106
107 // determine whether arrayList is empty
108 private void isEmptyButton_Click(
109 object sender, System.EventArgs e)
110 {
111 consoleTextBox.Text = (arrayList.Count == 0 ?
112 "arrayList is empty" : "arrayList is not empty");
113 }
114
115 // determine whether arrayList contains specified object
116 private void containsButton_Click(
117 object sender, System.EventArgs e)
118 {
119 if (arrayList.Contains(inputTextBox.Text))
120 consoleTextBox.Text = "arrayList contains " +
121 inputTextBox.Text;
122 else
123 consoleTextBox.Text = inputTextBox.Text +
124 " not found";
125 }
126
127 // determine location of specified object
128 private void locationButton_Click(
129 object sender, System.EventArgs e)
130 {

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Demomstrating the ArrayList class. (Part 3 of 5.)

1192 Data Structures and Collections Chapter 23

131 consoleTextBox.Text = "Element is at location " +
132 arrayList.IndexOf(inputTextBox.Text);
133 }
134
135 // trim arrayList to current size
136 private void trimButton_Click(
137 object sender, System.EventArgs e)
138 {
139 arrayList.TrimToSize();
140 consoleTextBox.Text = "Vector trimmed to size";
141 }
142
143 // show arrayList current size and capacity
144 private void statisticsButton_Click(
145 object sender, System.EventArgs e)
146 {
147 consoleTextBox.Text = "Size = " + arrayList.Count +
148 "; capacity = " + arrayList.Capacity;
149 }
150
151 // display contents of arrayList
152 private void displayButton_Click(
153 object sender, System.EventArgs e)
154 {
155 IEnumerator enumerator = arrayList.GetEnumerator();
156 StringBuilder buffer = new StringBuilder();
157
158 while (enumerator.MoveNext())
159 buffer.Append(enumerator.Current + " ");
160
161 consoleTextBox.Text = buffer.ToString();
162 }
163 }
164 }

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Demomstrating the ArrayList class. (Part 4 of 5.)

Chapter 23 Data Structures and Collections 1193

The ArrayList in this example stores strings that users input in the TextBox.
Line 35 creates an ArrayList with an initial capacity of one element. This ArrayList
will double in size each time the user fills the array and attempts to add another element.

ArrayList method Add appends a new element at the end of an ArrayList.
When the user clicks Add, event handler addButton_Click (lines 53–60) invokes
method Add (line 56) to append the string in the inputTextBox to the ArrayList.

ArrayList method Remove deletes a specified item from an ArrayList. When
the user clicks Remove, event handler removeButton_Click (line 63–69) invokes
Remove (line 66) to remove the string specified in the inputTextBox from the
ArrayList. If the object passed to Remove is in the ArrayList, the first occurrence
of that object is removed, and all subsequent elements shift toward the beginning of the
ArrayList to fill the empty position.

A program can access ArrayList elements like conventional array elements by fol-
lowing the ArrayList reference name with the array subscript operator ([]) and the
desired index of the element. Event handlers firstButton_Click (lines 72–87) and
lastButton_Click (lines 90–105) use the ArrayList subscript operator to retrieve
the first element (line 79) and last element (line 97), respectively. An ArgumentOutOf-
RangeException occurs if the specified index is not both greater than 0 and less than
the number of elements currently stored in the ArrayList.

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Demomstrating the ArrayList class. (Part 5 of 5.)

1194 Data Structures and Collections Chapter 23

Event handler isEmptyButton_Click (lines 108–113) uses ArrayList prop-
erty Count (line 111) to determine whether the ArrayList is empty. Event handler
containsButton_Click (lines 116–125) uses ArrayList method Contains
(line 119) to determine whether the the given object is currently in the ArrayList. If so,
the method returns true; otherwise, it returns false.

Performance Tip 23.10
ArrayList method Contains performs a linear search, which is a costly operation for
large ArrayLists. If the ArrayList is sorted, use ArrayList method Binary-
Search to perform a more efficient search. 23.10

When the user clicks Location, event handler locationButton_Click (lines
128–133) invokes ArrayList method IndexOf (line 132) to determine the index of a
particular object in the ArrayList. IndexOf returns -1 if the element is not found.

When the user clicks Trim, event handler trimButton_Click (lines 136–141)
invokes method TrimToSize (line 139) to set the Capacity property to equal the
Count property. This reduces the storage capacity of the ArrayList to the exact number
of elements currently in the ArrayList.

When the user clicks Statistics, statisticsButton_Click (lines 144–149)
uses the Count and Capacity properties to display the current number of elements in
the ArrayList and the maximum number of elements that can be stored without allo-
cating more memory to the ArrayList.

When users click Display, displayButton_Click (lines 152–162) outputs the
contents of the ArrayList. This event handler uses an IEnumerator (sometimes
called an enumerator or an iterator) to traverse the elements of an ArrayList one ele-
ment at a time. Interface IEnumerator defines methods MoveNext and Reset and
property Current. MoveNext moves the enumerator to the next element in the Array-
List. The first call to MoveNext positions the enumerator at the first element of the
ArrayList. MoveNext returns true if there is at least one more element in the
ArrayList; otherwise, the method returns false. Method Reset positions the enu-
merator before the first element of the ArrayList. Methods MoveNext and Reset
throw an InvalidOperationException if the contents of the collection are modi-
fied in any way after the enumerator’s creation. Property Current returns the object at
the current location in the ArrayList.

Line 155 creates an IEnumerator called enumerator and assigns it the result of
calling ArrayList method GetEnumerator. Lines 158–159 iterate while MoveNext
returns true, retrieve the current item via property Count and append it to buffer.
When the loop terminates, line 161 displays the contents of buffer.

23.7.3 Class Stack
The Stack class, as its name implies, implements a stack data structure. This class provides
much of the functionality that we defined in our implementation in Section 23.4. Refer back
to that section for a discussion of stack data structure concepts. The application in Fig. 23.25
provides a GUI that enables the user to test many Stack methods. Line 38 of the Stack-
Test constructor creates a Stack with the default initial capacity (10 elements).

As one might expect, class Stack has methods Push and Pop to perform the basic
stack operations. Method Push takes an object as an argument and adds it to the top of

Chapter 23 Data Structures and Collections 1195

the Stack. If the number of items on the Stack (the Count property) is equal to the
capacity at the time of the Push operation, the Stack grows to accommodate more
objects. Event handler pushButton_Click (lines 51–56) uses method Push to add
a user-specified string to the stack (line 54).

Method Pop takes no arguments. This method removes and returns the object cur-
rently on top of the Stack. Event handler popButton_Click (lines 59–73) calls
method Pop (line 57) to remove an object from the Stack. An InvalidOperation-
Exception occurs if the Stack is empty when the program calls Pop.

1 // Fig. 23.25: StackTest.cs
2 // Demonstrates class Stack of namespace System.Collections.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.Text;
11
12 namespace StackTest
13 {
14 // demonstrate Stack collection
15 public class StackTest : System.Windows.Forms.Form
16 {
17 private System.Windows.Forms.Label inputLabel;
18 private System.Windows.Forms.TextBox inputTextBox;
19 private System.Windows.Forms.Button pushButton;
20 private System.Windows.Forms.Button popButton;
21 private System.Windows.Forms.Button peekButton;
22 private System.Windows.Forms.Button isEmptyButton;
23 private System.Windows.Forms.Button searchButton;
24 private System.Windows.Forms.Button displayButton;
25 private System.Windows.Forms.Label statusLabel;
26
27 // Required designer variable.
28 private System.ComponentModel.Container components = null;
29
30 private Stack stack;
31
32 public StackTest()
33 {
34 // Required for Windows Form Designer support
35 InitializeComponent();
36
37 // create Stack
38 stack = new Stack();
39 }
40
41 // Visual Studio.NET generated code
42

Fig. 23.25Fig. 23.25Fig. 23.25Fig. 23.25 Using the Stack class. (Part 1 of 4.)

1196 Data Structures and Collections Chapter 23

43 // main entry point for the application
44 [STAThread]
45 static void Main()
46 {
47 Application.Run(new StackTest());
48 }
49
50 // push element onto stack
51 private void pushButton_Click(
52 object sender, System.EventArgs e)
53 {
54 stack.Push(inputTextBox.Text);
55 statusLabel.Text = "Pushed: " + inputTextBox.Text;
56 }
57
58 // pop element from stack
59 private void popButton_Click(
60 object sender, System.EventArgs e)
61 {
62 // pop element
63 try
64 {
65 statusLabel.Text = "Popped: " + stack.Pop();
66 }
67
68 // print message if stack is empty
69 catch (InvalidOperationException invalidOperation)
70 {
71 statusLabel.Text = invalidOperation.ToString();
72 }
73 }
74
75 // peek at top element of stack
76 private void peekButton_Click(
77 object sender, System.EventArgs e)
78 {
79 // view top element
80 try
81 {
82 statusLabel.Text = "Top: " + stack.Peek();
83 }
84
85 // print message if stack is empty
86 catch (InvalidOperationException invalidOperation)
87 {
88 statusLabel.Text = invalidOperation.ToString();
89 }
90 }
91
92 // determine whether stack is empty
93 private void isEmptyButton_Click(
94 object sender, System.EventArgs e)
95 {

Fig. 23.25Fig. 23.25Fig. 23.25Fig. 23.25 Using the Stack class. (Part 2 of 4.)

Chapter 23 Data Structures and Collections 1197

96 statusLabel.Text = (stack.Count == 0 ?
97 "Stack is empty" : "Stack is not empty");
98 }
99
100 // determine whether specified element is on stack
101 private void searchButton_Click(
102 object sender, System.EventArgs e)
103 {
104 string result = stack.Contains(inputTextBox.Text) ?
105 " found" : " not found";
106
107 statusLabel.Text = inputTextBox.Text + result;
108 }
109
110 // display stack contents
111 private void displayButton_Click(
112 object sender, System.EventArgs e)
113 {
114 IEnumerator enumerator = stack.GetEnumerator();
115 StringBuilder buffer = new StringBuilder();
116
117 // while the enumerator can move on to the next element
118 // print that element out.
119 while (enumerator.MoveNext())
120 buffer.Append(enumerator.Current + " ");
121
122 statusLabel.Text = buffer.ToString();
123 }
124 }
125 }

Fig. 23.25Fig. 23.25Fig. 23.25Fig. 23.25 Using the Stack class. (Part 3 of 4.)

1198 Data Structures and Collections Chapter 23

Method Peek returns the value of the top stack element, but does not remove the ele-
ment from the Stack. We demonstrate Peek at line 82 in event handler
peekButton_Click (lines 76–90) to view the object on top of the Stack. As with
Pop, an InvalidOperationException occurs if the Stack is empty when the pro-
gram calls Peek.

Common Programming Error 23.3
Attempting to Peek or Pop an empty Stack (a Stack whose Count property equals 0)
causes an InvalidOperationException. 23.3

Event handler isEmptyButton_Click (lines 93–98) determines whether the
Stack is empty by comparing the Stack’s Count property to 0. If it is 0, the Stack is
empty; otherwise, it is not. Event handler searchButton_Click (lines 101–108) uses
Stack method Contains (lines 104–105) to determine whether the Stack contains the
object specified as its argument. Contains returns true if the Stack contains the spec-
ified object, false otherwise.

Event handler isEmptyButton_Click (lines 111–123) uses an IEnumerator to
traverse the Stack and display its contents.

23.7.4 Class Hashtable
Object-oriented programming languages facilitate creating new types. When a program
creates objects of new or existing types, it then needs to manage those objects efficiently.
This includes sorting and retrieving objects. Sorting and retrieving information with arrays
is efficient if some aspect of your data directly matches the key value and if those keys are
unique and tightly packed. If you have 100 employees with nine-digit Social Security num-
bers and you want to store and retrieve employee data by using the Social Security number
as a key, it would nominally require an array with 999,999,999 elements, because there are
999,999,999 unique nine-digit numbers. This is impractical for virtually all applications
that key on Social Security numbers. If you could have an array that large, you could get
very high performance storing and retrieving employee records by simply using the Social
Security number as the array index.

A large variety of applications have this problem—namely, that either the keys are of
the wrong type (i.e., not nonnegative integers), or they are of the right type, but they are
sparsely spread over a large range.

Fig. 23.25Fig. 23.25Fig. 23.25Fig. 23.25 Using the Stack class. (Part 4 of 4.)

Chapter 23 Data Structures and Collections 1199

What is needed is a high-speed scheme for converting keys such as Social Security
numbers and inventory part numbers into unique array subscripts. Then, when an applica-
tion needs to store something, the scheme could convert the application key rapidly into a
subscript and the record of information could be stored at that location in the array.
Retrieval occurs the same way—once the application has a key for which it wants to
retrieve the data record, the application simply applies the conversion to the key, which pro-
duces the array subscript where the data resides in the array and retrieves the data.

The scheme we describe here is the basis of a technique called hashing. Why the
name? Because, when we convert a key into an array subscript, we literally scramble the
bits, forming a kind of “mishmash” number. The number actually has no real significance
beyond its usefulness in storing and retrieving this particular data record.

A glitch in the scheme occurs when collisions occur [i.e., two different keys “hash
into” the same cell (or element) in the array]. Since we cannot sort two different data
records into the same space, we need to find an alternative home for all records beyond the
first that hash to a particular array subscript. Many schemes exist for doing this. One is to
“hash again” (i.e., to reapply the hashing transformation to the key to provide a next candi-
date cell in the array). The hashing process is designed to be quite random, so the assump-
tion is that with just a few hashes, an available cell will be found.

Another scheme uses one hash to locate the first candidate cell. If the cell is occupied,
successive cells are searched linearly until an available cell is found. Retrieval works the
same way—the key is hashed once, the resulting cell is checked to determine whether it
contains the desired data. If it does, the search is complete. If it does not, successive cells
are searched linearly until the desired data is found.

The most popular solution to hash-table collisions is to have each cell of the table be a
hash “bucket,” typically a linked list of all the key/value pairs that hash to that cell. This is
the solution that the .NET Framework’s Hashtable class implements.

The load factor is one factor that affects the performance of hashing schemes. The load
factor is the ratio of the number of occupied cells in the hash table to the size of the hash
table. The closer the ratio gets to 1.0, the greater the chance of collisions.

Performance Tip 23.11
The load factor in a hash table is a classic example of a space/time trade-off: By increasing
the load factor, we get better memory utilization, but the program runs slower due to in-
creased hashing collisions. By decreasing the load factor, we get better program speed be-
cause of reduced hashing collisions, but we get poorer memory utilization because a larger
portion of the hash table remains empty. 23.11

Programming hash tables properly is too complex for most casual programmers. Com-
puter science students study hashing schemes thoroughly in courses called “Data Struc-
tures” and “Algorithms.” Recognizing the value of hashing, C# provides class
Hashtable and some related features to enable programmers to take advantage of
hashing without the complex details.

The preceding sentence is profoundly important in our study of object-oriented pro-
gramming. Classes encapsulate and hide complexity (i.e., implementation details) and offer
user-friendly interfaces. Crafting classes to do this properly is one of the most valued skills
in the field of object-oriented programming.

A hash function performs a calculation that determines where to place data in the hash-
table. The hash function is applied to the key in a key/value pair of objects. Class Hash-

1200 Data Structures and Collections Chapter 23

table can accept any object as a key. For this reason, class Object defines method
GetHashCode, which all objects in C# inherit. Most classes that are candidates to be used
as keys in a hash table override this method to provide one that performs efficient hashcode
calculations for a specific data type. For example, a string has a hashcode calculation
that is based on the contents of the string. Figure 23.26 demonstrates several methods of
class Hashtable.

1 // Fig. 23.26: HashtableTest.cs
2 // Demonstrate class Hashtable of namespace System.Collections.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using System.Text;
11
12 namespace HashTableTest
13 {
14 // demonstrate Hashtable functionality
15 public class HashTableTest : System.Windows.Forms.Form
16 {
17 private System.Windows.Forms.Label firstNameLabel;
18 private System.Windows.Forms.Label lastNameLabel;
19 private System.Windows.Forms.Button addButton;
20 private System.Windows.Forms.TextBox lastNameTextBox;
21 private System.Windows.Forms.TextBox consoleTextBox;
22 private System.Windows.Forms.TextBox firstNameTextBox;
23 private System.Windows.Forms.Button getButton;
24 private System.Windows.Forms.Button removeButton;
25 private System.Windows.Forms.Button emptyButton;
26 private System.Windows.Forms.Button containsKeyButton;
27 private System.Windows.Forms.Button clearTableButton;
28 private System.Windows.Forms.Button listObjectsButton;
29 private System.Windows.Forms.Button listKeysButton;
30 private System.Windows.Forms.Label statusLabel;
31
32 // Required designer variable.
33 private System.ComponentModel.Container components = null;
34
35 // Hashtable to demonstrate functionality
36 private Hashtable table;
37
38 public HashTableTest()
39 {
40 // Required for Windows Form Designer support
41 InitializeComponent();
42
43 // create Hashtable object
44 table = new Hashtable();
45 }

Fig. 23.26Fig. 23.26Fig. 23.26Fig. 23.26 Using the Hashtable class. (Part 1 of 5.)

Chapter 23 Data Structures and Collections 1201

46
47 // Visual Studio.NET generated code
48
49 // main entry point for the application
50 [STAThread]
51 static void Main()
52 {
53 Application.Run(new HashTableTest());
54 }
55
56 // add last name and Employee object to table
57 private void addButton_Click(
58 object sender, System.EventArgs e)
59 {
60 Employee employee = new Employee(firstNameTextBox.Text,
61 lastNameTextBox.Text);
62
63 // add new key/value pair
64 try
65 {
66 table.Add(lastNameTextBox.Text, employee);
67 statusLabel.Text = "Put: " + employee.ToString();
68 }
69
70 // if key is null or already in table, output message
71 catch (ArgumentException argumentException)
72 {
73 statusLabel.Text = argumentException.ToString();
74 }
75 }
76
77 // get object for given key
78 private void getButton_Click(
79 object sender, System.EventArgs e)
80 {
81 object result = table[lastNameTextBox.Text];
82
83 if (result != null)
84 statusLabel.Text = "Get: " + result.ToString();
85 else
86 statusLabel.Text = "Get: " + lastNameTextBox.Text +
87 " not in table";
88 }
89
90 // remove key/value pair from table
91 private void removeButton_Click(
92 object sender, System.EventArgs e)
93 {
94 table.Remove(lastNameTextBox.Text);
95 statusLabel.Text = "Object Removed";
96 }
97

Fig. 23.26Fig. 23.26Fig. 23.26Fig. 23.26 Using the Hashtable class. (Part 2 of 5.)

1202 Data Structures and Collections Chapter 23

98 // determine whether table is empty
99 private void emptyButton_Click(
100 object sender, System.EventArgs e)
101 {
102 statusLabel.Text = "Table is " + (
103 table.Count == 0 ? "empty" : "not empty");
104 }
105
106 // determine whether table contains specified key
107 private void containsKeyButton_Click(
108 object sender, System.EventArgs e)
109 {
110 statusLabel.Text = "Contains key: " +
111 table.ContainsKey(lastNameTextBox.Text);
112 }
113
114 // discard all table contents
115 private void clearTableButton_Click(
116 object sender, System.EventArgs e)
117 {
118 table.Clear();
119 statusLabel.Text = "Clear: Table is now empty";
120 }
121
122 // display list of objects in table
123 private void listObjectsButton_Click(
124 object sender, System.EventArgs e)
125 {
126 IDictionaryEnumerator enumerator =
127 table.GetEnumerator();
128 StringBuilder buffer = new StringBuilder();
129
130 while (enumerator.MoveNext())
131 buffer.Append(enumerator.Value + "\r\n");
132
133 consoleTextBox.Text = buffer.ToString();
134 }
135
136 // display list of keys in table
137 private void listKeysButton_Click(
138 object sender, System.EventArgs e)
139 {
140 IDictionaryEnumerator enumerator =
141 table.GetEnumerator();
142 StringBuilder buffer = new StringBuilder();
143
144 while (enumerator.MoveNext())
145 buffer.Append(enumerator.Key + "\r\n");
146
147 consoleTextBox.Text = buffer.ToString();
148 }
149
150 } // end class HashtableTest

Fig. 23.26Fig. 23.26Fig. 23.26Fig. 23.26 Using the Hashtable class. (Part 3 of 5.)

Chapter 23 Data Structures and Collections 1203

151
152 // class Employee for use with HashtableTest
153 class Employee
154 {
155 private string first, last;
156
157 // constructor
158 public Employee(string fName, string lName)
159 {
160 first = fName;
161 last = lName;
162 }
163
164 // return Employee first and last names as string
165 public override string ToString()
166 {
167 return first + " " + last;
168 }
169
170 } // end class Employee
171 }

Fig. 23.26Fig. 23.26Fig. 23.26Fig. 23.26 Using the Hashtable class. (Part 4 of 5.)

1204 Data Structures and Collections Chapter 23

Event handler addButton_Click (lines 57–75) reads the first name and last name
of an employee from the user interface, creates an object of class Employee (defined at lines
153–170) and adds that Employee to the Hashtable with method Add (line 66). This
method receives two arguments–—a key object, and a value object. In this example, the key
is the last name of the Employee (a string), and the value is the corresponding
Employee object. An ArgumentException occurs if the Hashtable already con-
tains the key or if the key is null.

Event handler getButton_Click (lines 78–88) retrieves the object associated with
a specific key, using the Hashtable’s subscript operator as shown on line 81. The expres-
sion in square brackets is the key for which the Hashtable should return the corre-
sponding object. If the key is not found, the result is null.

Event handler removeButton_Click (lines 91–96) invokes Hashtable method
Remove to delete a key and its associated object from the Hashtable. If the key does
not exist in the table, nothing happens.

Event handler emptyButton_Click (lines 99–104) uses Hashtable property
Count to determine whether the Hashtable is empty (i.e., Count is 0).

Event handler containsKeyButton_Click (lines 107–112) invokes Hash-
table method ContainsKey to determine whether the Hashtable contains the spec-
ified key. If so, the method returns true; otherwise, it returns false.

Event handler clearTableButton_Click (lines 115–120) invokes Hashtable
method Clear to delete all Hashtable entries.

Class Hashtable provides method GetEnumerator that returns an enumerator of
type IDictionaryEnumerator, which derives from IEnumerator. Such enumera-
tors provide properties Key and Value to access the information for a key/value pair. The
event handler at lines 123–134 (listObjectsButton_click) uses the Value prop-
erty of the enumerator to output the objects in the Hashtable. The event handler at lines
123–134 (listKeysButton_click) uses the Key property of the enumerator to
output the keys in the Hashtable.

SUMMARY
• Dynamic data structures can grow and shrink at execution time.

• Creating and maintaining dynamic data structures requires dynamic memory allocation—the abil-
ity for a program to obtain more memory at execution time (to hold new nodes) and to release
memory no longer needed.

Fig. 23.26Fig. 23.26Fig. 23.26Fig. 23.26 Using the Hashtable class. (Part 5 of 5.)

Chapter 23 Data Structures and Collections 1205

• The limit for dynamic memory allocation can be as large as the available physical memory in the
computer or the amount of available disk space in a virtual-memory system.

• Operator new takes as an operand the type of the object being dynamically allocated and returns
a reference to a newly created object of that type. If no memory is available, new throws an Out-
OfMemoryException.

• A self-referential class contains a data member that refers to an object of the same class type. Self-
referential objects can be linked to form useful data structures such as lists, queues, stacks and
trees.

• A linked list is a linear collection (i.e., a sequence) of self-referential class objects called nodes,
connected by reference links.

• A node can contain data of any type, including objects of other classes.

• A linked list is accessed via a reference to the first node of the list. Each subsequent node is ac-
cessed via the link-reference member stored in the previous node.

• By convention, the link reference in the last node of a list is set to null to mark the end of the list.

• Stacks are important in compilers and operating systems.

• A stack is a constrained version of a linked list—new nodes can be added to a stack and removed
from a stack only at the top. A stack is referred to as a last-in, first-out (LIFO) data structure.

• The primary stack operations are push and pop. Operation push adds a new node to the top of the
stack. Operation pop removes a node from the top of the stack and returns the data object from the
popped node.

• Queues represent waiting lines. Insertions occur at the back (also referred to as the tail) of a queue
and deletions occur from the front (also referred to as the head) of a queue.

• A queue is similar to a checkout line in a supermarket: The first person in line is served first; other
customers enter the line only at the end and wait to be served.

• Queue nodes are removed only from the head of the queue and are inserted only at the tail of the
queue. For this reason, a queue is referred to as a first-in, first-out (FIFO) data structure.

• The insert and remove operations for a queue are known as enqueue and dequeue.

• Binary trees facilitate high-speed searching and sorting of data.

• Tree nodes contain two or more links.

• A binary tree is a tree whose nodes all contain two links. The root node is the first node in a tree.

• Each link in the root node refers to a child. The left child is the first node in the left subtree and
the right child is the first node in the right subtree.

• The children of a node are called siblings. A node with no children is called a leaf node.

• A binary search tree (with no duplicate node values) has the characteristic that the values in any
left subtree are less than the values that subtree’s parent node and the values in any right subtree
are greater than the values in that subtree’s parent node.

• A node can be inserted only as a leaf node in a binary search tree.

• An inorder traversal of a binary search tree processes the node values in ascending order.

• The process of creating a binary search tree actually sorts the data—hence, the term “binary tree
sort.”

• In a preorder traversal, the value in each node is processed as the node is visited. After the value
in a given node is processed, the values in the left subtree are processed, then the values in the right
subtree are processed.

1206 Data Structures and Collections Chapter 23

• In a postorder traversal, the value in each node is processed after the node’s left and right subtrees
are processed.

• The binary search tree facilitates duplicate elimination. As the tree is created, attempts to insert a
duplicate value are recognized because a duplicate follows the same “go left” or “go right” deci-
sions on each comparison as the original value did. Thus, the duplicate eventually is compared
with a node containing the same value. The duplicate value may simply be discarded at this point.

• Class ArrayList can be used as a dynamically growing array.

• ArrayList method Add adds an object to the ArrayList.

• ArrayList method Remove removes the first occurrence of the specified object from the
ArrayList.

• The ArrayList subscript operator accesses elements of an ArrayList as if it were an array.

• Class Stack is provided in the System.Collections namespace.

• Stack method Push performs the push operation on the Stack.

• Stack method Pop performs the pop operation on the Stack.

• Class Hashtable is provided in the System.Collections namespace.

• Hashtable method Add adds a key/value pair to the Hashtable.

• Any class that implements the IEnumerator interface must define methods MoveNext and
Reset and the Current property.

• Method MoveNext must be called before the Current property is accessed for the first time.

• Methods MoveNext and Reset throw an InvalidOperationException if the contents
of the collection were modified in any way after the enumerator’s creation.

TERMINOLOGY
Add method of ArrayList IEnumerator interface
ArgumentException IndexOf method of ArrayList
ArrayList class InvalidOperationException
binary tree linked list
BinarySearch method of ArrayList MoveNext method of IEnumerator
Capacity property of ArrayList Peek method of Stack
Clear method of ArrayList Pop method of Stack
Clear method of Hashtable Push method of Stack
collection queue
Contains method of ArrayList Remove method of ArrayList
Contains method of Stack Remove method of Hashtable
ContainsKey method of Hashtable RemoveAt method of ArrayList
Count property of ArrayList RemoveRange method of ArrayList
Count property of Stack Reset method of IEnumerator
Current property of IEnumerator searching
data structures self-referential class
dynamic data structures Sort method of ArrayList
enumerator sorting
GetEnumerator method of IEnumerable stack
GetHashCode method of Object Stack class
Hashtable class System.Collections namespace
head TrimToSize method of ArrayList
IDictionaryEnumerator interface waiting line

Chapter 23 Data Structures and Collections 1207

SELF-REVIEW EXERCISES
23.1 State whether each of the following is true or false. If false, explain why.

a) In a queue, the first item to be added, is the last item to be removed.
b) Trees can have no more than two child nodes per node.
c) A tree node with no children is called a leaf node.
d) Class Stack is in the System.Collections namespace.
e) A class implementing interface IEnumerator must define only methods MoveNext

and Reset.
f) A hashtable stores key/value pairs.
g) Linked list nodes are stored contiguously in memory.
h) The primary operations of the stack data structure are enqueue and dequeue.
i) Lists, stacks and queues are linear data structures.

23.2 Fill in the blanks in each of the following statements:
a) A class is used to define nodes that form dynamic data structures, which can

grow and shrink at execution time.
b) Operator allocates memory dynamically; this operator returns a reference to

the allocated memory.
c) A is a constrained version of a linked list in which nodes can be inserted and

deleted only from the start of the list; this data structure returns node values in last-in,
first-out order.

d) A queue is a data structure, because the first nodes inserted are the first nodes
removed.

e) A is a constrained version of a linked list in which nodes can be inserted only
at the end of the list and deleted only from the start of the list.

f) A is a nonlinear, two-dimensional data structure that contains nodes with
two or more links.

g) The nodes of a tree contain two link members.
h) IEnumerator method advances the enumerator to the next item.
i) The tree-traversal algorithm that processes the node and then processes all the nodes to

its left followed by all the nodes to its right is called .
j) If the collection it references was altered after the enumerator’s creation, calling method

Reset will cause an .

ANSWERS TO SELF-REVIEW EXERCISES
23.1 a) False. A queue is a first-in, first-out data structure—the first item added is the first item
removed. b) False. In general, trees may have as many child nodes per node as is necessary. Only bi-
nary trees are restricted to no more than two child nodes per node. c) True. d) True. e) False. The class
must also implement property Current. f) True. g) False. Linked-list nodes are logically contigu-
ous, but they need not be stored in a physically contiguous memory space. h) False. Those are the
primary operations of a queue. The primary operations of a stack are push and pop. i) True.

23.2 a) self-referential. b) new. c) stack. d) first-in, first-out (FIFO). e) queue. f) tree. g) binary.
h) MoveNext. i) preorder. j) InvalidOperationException.

EXERCISES
23.3 Write a program that merges two ordered list objects of integers into a single ordered list ob-
ject of integers. Method Merge of class ListMerge should receive references to each of the list
objects to be merged and should return a reference to the merged list object.

23.4 Write a program that inputs a line of text and uses a stack object to print the line reversed.

1208 Data Structures and Collections Chapter 23

23.5 Write a program that uses a stack to determine whether a string is a palindrome (i.e., the string
is spelled identically backward and forward). The program should ignore spaces and punctuation.

23.6 Stacks are used by compilers to help in the process of evaluating expressions and in generat-
ing machine language code. In this and the next exercise, we investigate how compilers evaluate
arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9, in which the operator (+ or /
here) is written between its operands—this is called infix notation. Computers “prefer” postfix nota-
tion, in which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to
postfix notation, then evaluate the postfix version of the expression. Each of these algorithms
requires only a single left-to-right pass of the expression. Each algorithm uses a stack object in sup-
port of its operation, and in each algorithm the stack is used for a different purpose.

In this exercise, you will write a C# version of the infix-to-postfix conversion algorithm. In
the next exercise, you will write a C# version of the postfix expression evaluation algorithm. In a
later exercise, you will discover that code you write in this exercise can help you implement a com-
plete working compiler.

Write class InfixToPostfixConverter to convert an ordinary infix arithmetic
expression (assume a valid expression is entered), with single-digit integers, such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression (note that no parenthe-
ses are needed) is

6 2 + 5 * 8 4 / -

The program should read the expression into StringBuilder infix, then use class Stack-
Composition (implemented in Fig. 23.12) to help create the postfix expression in String-
Builder postfix. The algorithm for creating a postfix expression is as follows:

a) Push a left parenthesis '(' on the stack.
b) Append a right parenthesis ')' to the end of infix.
c) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, append it to postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator:

Pop operators (if there are any) at the top of the stack while they have equal
or higher precedence than the current operator, and append the popped
operators to postfix.

Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis:

Pop operators from the top of the stack and append them to postfix until
a left parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.

The following arithmetic operations are allowed in an expression:
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

Chapter 23 Data Structures and Collections 1209

Some of the methods you may want to provide in your program follow:
a) Method ConvertToPostfix, which converts the infix expression to postfix notation.
b) Method IsOperator, which determines whether c is an operator.
c) Method Precedence, which determines whether the precedence of operator1

(from the infix expression) is less than, equal to or greater than the precedence of
operator2 (from the stack). The method returns true if operator1 has lower pre-
cedence than operator2. Otherwise, false is returned.

d) Add this method to the class definition for class StackComposition.

23.7 Write class PostfixEvaluator, which evaluates a postfix expression (assume it is valid)
such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a String-
Builder. Using class StackComposition from Exercise 23.6, the program should scan the
expression and evaluate it. The algorithm is as follows:

a) Append a right parenthesis (')') to the end of the postfix expression. When the right-
parenthesis character is encountered, no further processing is necessary.

b) When the right-parenthesis character has not been encountered, read the expression from
left to right.

If the current character is a digit do the following:
Push its integer value on the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in Unicode).

Otherwise, if the current character is an operator:
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

c) When the right parenthesis is encountered in the expression, pop the top value of the
stack. This is the result of the postfix expression.

[Note: In b) above (based on the sample expression at the beginning of this exercises), if the operator
is '/', the top of the stack is 2 and the next element in the stack is 8, then pop 2 into x, pop 8 into
y, evaluate 8 / 2 and push the result, 4, back on the stack. This note also applies to operator '-'.]
The arithmetic operations allowed in an expression are:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

You may want to provide the following methods:
a) Method EvaluatePostfixExpression, which evaluates the postfix expression.
b) Method Calculate, which evaluates the expression op1 operator op2.

23.8 (Binary Tree Delete) In this exercise, we discuss deleting items from binary search trees. The
deletion algorithm is not as straightforward as the insertion algorithm. There are three cases that are
encountered when deleting an item—the item is contained in a leaf node (i.e., it has no children), the
item is contained in a node that has one child or the item is contained in a node that has two children.

If the item to be deleted is contained in a leaf node, the node is deleted and the reference in the
parent node is set to null.

If the item to be deleted is contained in a node with one child, the reference in the parent node

1210 Data Structures and Collections Chapter 23

is set to reference the child node and the node containing the data item is deleted. This causes the
child node to take the place of the deleted node in the tree.

The last case is the most difficult. When a node with two children is deleted, another node in the
tree must take its place. However, the reference in the parent node simply cannot be assigned to ref-
erence one of the children of the node to be deleted. In most cases, the resulting binary search tree
would not adhere to the following characteristic of binary search trees (with no duplicate values):
The values in any left subtree are less than the value in the parent node, and the values in any right
subtree are greater than the value in the parent node.

Which node is used as a replacement node to maintain this characteristic—either the node con-
taining the largest value in the tree less than the value in the node being deleted, or the node contain-
ing the smallest value in the tree greater than the value in the node being deleted. Let us consider the
node with the smaller value. In a binary search tree, the largest value less than a parent’s value is
located in the left subtree of the parent node and is guaranteed to be contained in the rightmost node
of the subtree. This node is located by walking down the left subtree to the right until the reference to
the right child of the current node is null. We are now referencing the replacement node which is
either a leaf node or a node with one child to its left. If the replacement node is a leaf node, the steps
to perform the deletion are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to reference the replacement

node.
c) Set the reference in the parent of the replacement node to null.
d) Set the reference to the right subtree in the replacement node to reference the right subtree

of the node to be deleted.
e) Set the reference to the left subtree in the replacement node to reference the left subtree

of the node to be deleted.

The deletion steps for a replacement node with a left child are similar to those for a replacement
node with no children, but the algorithm also must move the child into the replacement node’s posi-
tion in the tree. If the replacement node is a node with a left child, the steps to perform the deletion
are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to reference the replacement

node.
c) Set the reference in the parent of the replacement node reference to the left child of the

replacement node.
d) Set the reference to the right subtree in the replacement node reference to the right subtree

of the node to be deleted.
e) Set the reference to the left subtree in the replacement node to reference the left subtree

of the node to be deleted.

Write method DeleteNode, which takes as its argument the value to be deleted. Method
DeleteNode should locate in the tree the node containing the value to be deleted and use the algo-
rithms discussed here to delete the node. If the value is not found in the tree, the method should print
a message that indicates whether the value is deleted. Modify the program of Fig. 23.18 to use this
method. After deleting an item, call the methods InorderTraversal, PreorderTraversal
and PostorderTraversal to confirm that the delete operation was performed correctly.

23.9 (Level-Order Binary Tree Traversal) The program of Fig. 23.18 illustrated three recursive
methods of traversing a binary tree—inorder, preorder, and postorder traversals. This exercise pre-
sents the level-order traversal of a binary tree, in which the node values are printed level by level,
starting at the root-node level. The nodes on each level are printed from left to right. The level-order
traversal is not a recursive algorithm. It uses a queue object to control the output of the nodes. The
algorithm is as follows:

Chapter 23 Data Structures and Collections 1211

a) Insert the root node in the queue.
b) While there are nodes left in the queue, do the following:

Get the next node in the queue.
Print the node’s value.
If the reference to the left child of the node is not null:

Insert the left child node in the queue.
If the reference to the right child of the node is not null:

Insert the right child node in the queue.

Write method LevelOrder to perform a level-order traversal of a binary tree object. Modify
the program of Fig. 23.18 to use this method. [Note: You also will need to use the queue-processing
methods of Fig. 23.13 in this program.]

24
Accessibility

Objectives
• To introduce the World Wide Web Consortium’s Web

Content Accessibility Guidelines 1.0 (WCAG 1.0).
• To understand how to use the alt attribute of the

HTML tag to describe images to people with
visual impairments, mobile-Web-device users and
others unable to view images.

• To understand how to make tables more accessible to
page readers.

• To understand how to verify that XHTML tags are
used properly and to ensure that Web pages can be
viewed on any type of display or reader.

• To understand how VoiceXML™ and CallXML™ are
changing the way in which people with disabilities
access information on the Web.

• To introduce the various accessibility aids offered in
Windows 2000.

’Tis the good reader that makes the good book...
Ralph Waldo Emerson

I once was lost, but now am found,
Was blind, but now I see.
John Newton

Chapter 24 Accessibility 1213

24.1 Introduction
Throughout this book, we discuss the creation of C# applications. Later chapters also in-
troduce the development of Web-based content using Web Forms, ASP .NET, XHTML
and XML. In this chapter, we explore the topic of accessibility, which refers to the level
of usability that an application or Web site provides to people with various disabilities.
Disabilities that might affect an individual’s computer or Internet usage are common;
they include visual impairments, hearing impairments, other physical injuries (such as

Outline

24.1 Introduction
24.2 Regulations and Resources
24.3 Web Accessibility Initiative
24.4 Providing Alternatives for Images
24.5 Maximizing Readability by Focusing on Structure
24.6 Accessibility in Visual Studio .NET

24.6.1 Enlarging Toolbar Icons
24.6.2 Enlarging the Text
24.6.3 Modifying the Toolbox
24.6.4 Modifying the Keyboard
24.6.5 Rearranging Windows

24.7 Accessibility in C#
24.8 Accessibility in XHTML Tables
24.9 Accessibility in XHTML Frames
24.10 Accessibility in XML
24.11 Using Voice Synthesis and Recognition with VoiceXML™
24.12 CallXML™
24.13 JAWS® for Windows
24.14 Other Accessibility Tools
24.15 Accessibility in Microsoft® Windows® 2000

24.15.1 Tools for People with Visual Impairments
24.15.2 Tools for People with Hearing Impairments
24.15.3 Tools for Users Who Have Difficulty Using the Keyboard
24.15.4 Microsoft Narrator
24.15.5 Microsoft On-Screen Keyboard
24.15.6 Accessibility Features in Microsoft Internet Explorer 5.5

24.16 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1214 Accessibility Chapter 24

the inability to use a keyboard or a mouse) and learning disabilities. In today’s computing
environment, such impediments prevent many users from taking full advantage of appli-
cations and Web content.

The design of applications and sites to meet the needs of individuals with disabilities
should be a priority for all software companies and e-businesses. People affected by dis-
abilities represent a significant portion of the population, and legal ramifications could exist
for companies that discriminate by failing to provide adequate and universal access to their
resources. In this chapter, we explore the World Wide Web Consortium’s Web Accessi-
bility Initiative and its guidelines and review various laws regarding the availability of com-
puting and Internet resources to people with disabilities. We also highlight companies that
have developed systems, products and services that meet the needs of this demographic. As
students use C# and its related technologies to design applications and Web sites, they
should keep in mind the accessibility requirements and recommendations that we discuss
in this chapter.

24.2 Regulations and Resources
Over the past several years, the United States has taken legislative steps to ensure that peo-
ple with disabilities are given the tools they need to use computers and access the Web. A
wide variety of legislation, including the Americans With Disabilities Act (ADA) of 1990,
governs the provision of computer and Web accessibility (Fig. 24.1). These laws have in-
spired significant legal action. For example, according to the ADA, companies are required
to offer equal access to individuals with visual problems. The National Federation for the
Blind (NFB) cited this law in a 1999 suit against AOL, responding to the company’s failure
to make its services available to individuals with disabilities.

There are 54 million Americans with disabilities, and these individuals represent an
estimated $1 trillion in annual purchasing power. In addition to legislation, many organiza-
tions and resources focus on assisting individuals with disabilities to access computers and
the Internet. WeMedia.com™ (Fig. 24.2) is a Web site that provides news, information,
products and services to the millions of people with disabilities and to their families, friends
and caregivers.

Act Purpose

Americans with Disabilities Act The ADA prohibits discrimination on the basis of disability in
employment, state and local government, public accommoda-
tions, commercial facilities, transportation and telecommuni-
cations.

Telecommunications Act of 1996 The Telecommunications Act of 1996 contains two amend-
ments to Section 255 and Section 251(a)(2) of the Communi-
cations Act of 1934. These amendments require that
communication devices, such as cell phones, telephones and
pagers, be accessible to individuals with disabilities.

Fig. 24.1Fig. 24.1Fig. 24.1Fig. 24.1 Acts designed to improve Internet and computer accessibility for people
with disabilities. (Part 1 of 2.)

Chapter 24 Accessibility 1215

As these laws and resources exemplify, computer and Internet accessibility for indi-
viduals with disabilities is quickly becoming a reality. Such accessibility enables individ-

Individuals with Disabilities
Education Act of 1997

The Individuals with Disabilities Education Act stipulates that
education materials in schools must be made accessible to chil-
dren with disabilities.

Rehabilitation Act Section 504 of the Rehabilitation Act states that college spon-
sored activities receiving federal funding cannot discriminate
against individuals with disabilities. Section 508 mandates that
all government institutions receiving federal funding must
design their Web sites so that they are accessible to individuals
with disabilities. Businesses that sell services to the govern-
ment also must abide by this act.

Fig. 24.2Fig. 24.2Fig. 24.2Fig. 24.2 We Media’s home page. (Courtesy of WeMedia, Inc.)

Act Purpose

Fig. 24.1Fig. 24.1Fig. 24.1Fig. 24.1 Acts designed to improve Internet and computer accessibility for people
with disabilities. (Part 2 of 2.)

1216 Accessibility Chapter 24

uals with disabilities to work in a vast array of new fields. This is partly because the Internet
provides a medium through which disabled people can telecommute to jobs and interact
easily with others without traveling. Such technologies as voice activation, visual
enhancers and auditory aids create additional employment opportunities. For example,
people with visual impairments can use computer monitors with enlarged text, and people
with physical impairments can use head pointers with on-screen keyboards. In the
remaining sections of this chapter, we explore various organizations, techniques, products
and services that help provide computer and Internet access to people with disabilities.

24.3 Web Accessibility Initiative
Currently, most Web sites are considered to be either partially or totally inaccessible to peo-
ple with visual, learning or mobility impairments. Total accessibility is difficult to achieve,
because of the variety of disabilities that must be accommodated and because of problems
resulting from language barriers and hardware and software inconsistencies. However, a
high level of accessibility is attainable. As more people with disabilities begin to use the
Internet, it is imperative that Web-site designers increase the accessibility of their sites. Al-
though computer and Web accessibility is the focus of some recent legislation, standards
organizations also see the need for industry recommendations. In an attempt to address is-
sues of accessibility, the World Wide Web Consortium (W3C) launched the Web Accessi-
bility Initiative (WAI™) in April 1997. To learn more about the WAI or to read its mission
statement, visit www.w3.org/WAI.

This chapter explains various techniques used to develop accessible Web sites. In
1999, the WAI published the Web Content Accessibility Guidelines (WCAG) 1.0 to help
businesses determine whether their Web sites are universally accessible. The WCAG 1.0
(available at www.w3.org/TR/WCAG10) uses checkpoints to list specific accessibility
requirements. Each checkpoint is accompanied by a corresponding priority rating that indi-
cates the requirement’s level of importance. Priority-one checkpoints are goals that must
be met to ensure accessibility; we focus on these points in this chapter. Priority-two check-
points, though not essential, are highly recommended. If these checkpoints are not satisfied,
people with certain disabilities will experience difficulty accessing Web sites. Priority-
three checkpoints slightly improve accessibility.

At the time of publication, the WAI was working on WCAG 2.0; a working draft of this
publication can be found at www.w3.org/TR/WCAG20. A single checkpoint in the
WCAG 2.0 Working Draft might encompass several checkpoints from WCAG 1.0. Once
WCAG 2.0 has been reviewed and published by the W3C, its checkpoints will supersede
those of WCAG 1.0. Furthermore, the new version can be applied to a wider range of
markup languages (i.e., XML, WML, etc.) and content types than can its predecessor.

The WAI also presents a supplemental checklist of quick tips, which reinforce ten
important points relating to accessible Web–site design. More information on the WAI
Quick Tips can be found at www.w3.org/WAI/References/Quicktips.

24.4 Providing Alternatives for Images
One important WAI requirement specifies that every image on a Web page should be ac-
companied by a textual description that clearly defines the purpose of the image. To accom-

Chapter 24 Accessibility 1217

plish this task, Web developers can use the alt attribute of the img and input tags to
include a textual equivalent for every image or graphic included on a site.

Web developers who do not use the alt attribute to provide text equivalents increase
the difficulties that people with visual impairments experience in navigating the Web. Spe-
cialized user agents (or accessibility aids), such as screen readers (programs that allow
users to hear all text that is displayed on their screens) and braille displays (devices that
receive data from screen-reading software and then output the data as braille), enable
people with visual impairments to access text-based information that normally is displayed
on the screen. A user agent visually interprets Web-page source code and translates it into
a format that is accessible to people with various disabilities. Web browsers, such as
Microsoft Internet Explorer and Netscape Communicator, and the screen readers men-
tioned throughout this chapter are examples of user agents.

Similarly, Web pages that do not provide text equivalents for video and audio clips are
difficult for people with visual and hearing impairments to access. Screen readers cannot
interpret images, movies and most other non-XHTML content from these Web pages.
However, by providing multimedia-based information in a variety of ways (e.g., using the
alt attribute or providing in-line descriptions of images), Web designers can help maxi-
mize the accessibility of their sites’ content.

Web designers should provide useful and appropriate text equivalents in the alt
attribute for use by nonvisual user agents. For example, if the alt attribute describes a
sales-growth chart, it should provide a brief summary of the data, but should not describe
the data in the chart. Instead, a complete description of the chart’s data should be included
in the longdesc (long description) attribute, which is intended to augment the alt
attribute’s description. The longdesc attribute contains a link to a Web page describing
the image or multimedia content. Currently, most Web browsers do not support the long-
desc attribute. An alternative to the longdesc attribute is D-link, which provides
descriptive text about graphs and charts. More information on D-links can be obtained at
the CORDA Technologies Web site (www.corda.com).

The use of a screen reader to facilitate Web-site navigation can be time-consuming and
frustrating, because screen readers cannot interpret pictures and other graphical content.
The inclusion of a link at the top of each Web page providing direct access to the page’s
content could allow disabled users to bypass long lists of navigation links and other irrele-
vant or inaccessible content. This jump can save time and eliminate frustration for individ-
uals with visual impairments.

Emacspeak (www.cs.cornell.edu/home/raman/emacspeak/emacs-
peak.html) is a screen interface that improves the quality of Internet access for individ-
uals with visual disabilities by translating text to voice data. The open-source product also
implements auditory icons that play various sounds. Emacspeak can be customized with
Linux operating systems and provides support for the IBM ViaVoice speech engine.

In March 2001, We Media introduced another user agent, the WeMedia Browser,
which allows people with vision impairments and cognitive disabilities (such as dyslexia)
to use the Internet more conveniently. The WeMedia Browser enhances traditional browser
capabilities by providing oversized buttons and keystroke commands that assist in naviga-
tion. The browser “reads” text that the user selects, allowing the user to control the speed
and volume at which the browser reads the contents of the Web page. The WeMedia
Browser free download is available at www.wemedia.com.

1218 Accessibility Chapter 24

IBM Home Page Reader (HPR) is another browser that “reads” text selected by the
user. The HPR uses IBM ViaVoice technology to synthesize an audible voice. A trial ver-
sion of HPR is available at www-3.ibm.com/able/hpr.html.

24.5 Maximizing Readability by Focusing on Structure
Many Web sites use XHTML tags for aesthetic purposes, ignoring the tags’ intended func-
tions. For example, the <h1> heading tag often is used erroneously to make text large and
bold, rather than to indicate a major section head for content. This practice might create a
desired visual effect, but it causes problems for screen readers. When the screen-reader
software encounters the <h1> tag, it might verbally inform the user that a new section has
been reached. If this is not in fact the case, the <h1> tag might confuse users. Therefore,
developers should use the h1 only in accordance with its XHTML specifications (e.g., to
mark up a heading that introduces an important section of a document). Instead of using h1
to make text large and bold, developers can use CSS (Cascading Style Sheets) or XSL (Ex-
tensible Stylesheet Language) to format and style the text. For further examples of this na-
ture, refer to the WCAG 1.0 Web site at www.w3.org/TR/WCAG10. [Note: The
 tag also can be used to make text bold; however, screen readers emphasize bold
text, which affects the inflection of what is spoken.]

Another accessibility issue is readability. When creating a Web page intended for the
general public, it is important to consider the reading level (i.e., level of difficulty to read
and understand) at which content is written. Web-site designers can make their sites easier
to read by using shorter words. Furthermore, slang terms and other nontraditional language
could be problematic for users from other countries, so developers should limit the use of
such words.

WCAG 1.0 suggests using a paragraph’s first sentence to convey its subject. When a
Web site states the point of a paragraph in this paragraph’s first sentence, it is easier for indi-
viduals with disabilities both to find crucial information and to bypass unwanted material.

The Gunning Fog Index, a formula that produces a readability grade when applied to
a text sample, can evaluate a Web site’s readability. To obtain more information about the
Gunning Fog Index, visit www.trainingpost.org/3-2-inst.htm.

24.6 Accessibility in Visual Studio .NET
In the previous sections, we have outlined various accessibility guidelines presented in the
W3C’s Web Accessibility initiative. However, Visual Studio .NET provides its own guide-
lines for designing accessible software within its programming environment. For instance,
one guideline recommends reserving the use of color for the enhancement or emphasis of
information, instead of for aesthetic purposes. A second guideline recommends providing
information about objects (e.g., desktop icons and open windows) to the accessibility aids
(specialized software that renders applications to individuals with disabilities). Such infor-
mation might include the name, location and size of a window. A third guideline recom-
mends designing user interfaces so that they can accommodate user preferences. For
example, people with visual disabilities should be able to modify the font size of a user in-
terface. A fourth guideline recommends allowing users to adjust the time setting for appli-
cations that have time constraints. For example, users with mobility or speech disabilities

Chapter 24 Accessibility 1219

might experience difficulty when using applications that require users to enter input within
a predetermined period of time (such as 10 seconds). However, if such applications provide
adjustable time settings, users can modify the settings to suit their needs.

In addition to suggesting guidelines the help developers create accessible applications,
Visual Studio .NET also offers features that enable disabled individuals to use the develop-
ment environment itself. For example, users can enlarge icons and text, customize the toolbox
and keyboard and rearrange windows. The next subsections illustrate these capabilities.

24.6.1 Enlarging Toolbar Icons

To enlarge icons in Visual Studio, select Customize from the Tools menu. In the Cus-
tomize window’s Options tab, select the Large Icons check box (Fig. 24.3), and select
Close. Figure 24.4 depicts the enlarged icons on the Visual Studio development window.

Fig. 24.3Fig. 24.3Fig. 24.3Fig. 24.3 Enlarging icons using the Customize feature.

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Enlarged icons in the development window.

1220 Accessibility Chapter 24

24.6.2 Enlarging the Text
Visual Studio uses the default operating-system font settings when displaying text. How-
ever, some individuals cannot read these default font settings, causing the applications to
be inaccessible to them. To remedy this, Visual Studio allows users to modify the font size.
Select Options from the Tools menu. In the Options window, open the Environment
directory and choose Fonts and Colors. In the Show settings for drop-down box, se-
lect Text Editor. In the Font drop-down box, select a different style of font and, in the
Size drop-down box, select a different font size. Figure 24.5 depicts the Text Editor be-
fore we modified the font size, Fig. 24.6 shows the Options window with new font set-
tings and Fig. 24.7 displays the Text Editor after the changes have been applied.

Fig. 24.5 Text Editor before modifying the font size.

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Enlarging text in the Options window.

Chapter 24 Accessibility 1221

24.6.3 Modifying the Toolbox

The Toolbox feature of Visual Studio contains numerous design elements that facilitate
the creation Web applications; however, some developers might use only a few of these de-
sign elements. To accommodate the needs of individual developers, Visual Studio allows
programmers to customize the toolbox by creating new tabs and then inserting design ele-
ments into the tabs. This eliminates the need for users with disabilities to navigate among
multiple tabs or scroll through long lists in search of design elements. To create a new tab,
right-click any existing tab and select Add Tab from the context menu. In the text box,
type an identifier for the tab (such as “Frequently Used”) and click Enter. By default, the
Pointer element is placed in all tabs (Fig. 24.8). The Pointer element simply allows the
cursor to function normally.

To insert elements into the newly created tab, select Customize Toolbox from the
Tools menu. In the .NET Framework Components tab, select the elements to include
in the new tab and click OK. The selected elements now will appear in the tab.

24.6.4 Modifying the Keyboard

Another accessibility feature in Visual Studio .NET allows individuals with disabilities to
customize their keyboards by creating shortcut keys (i.e., combinations of keyboard keys
that, when pressed together, perform frequent tasks; for example, Ctrl + V causes text to be

Fig. 24.7Fig. 24.7Fig. 24.7Fig. 24.7 Text Editor after the font size is modified.

1222 Accessibility Chapter 24

pasted from the clipboard). To create a shortcut key, begin by selecting Options from the
Tools menu. In the Options window, select the Keyboard item from the Environment
directory. From the Keyboard mapping scheme drop-down list, select a scheme and
click the Save As button. Then, assign a name to the scheme in the Save Scheme dialog
box and click OK. Enter the task of the shortcut key in the Show commands contain-
ing text box. For example, if we were creating a shortcut key for the paste function, we
would enter Paste in the text box, or we would select the proper task from the selection
list directly below the text box. Then, in the Use new shortcut drop-down list, select the
applications that will use the shortcut key. If the shortcut key will be used in all applica-
tions, select Global. Finally, in the Press shortcut key(s) text box, assign a shortcut
key to the task in the form non-text key + text key. Valid non-text keys include Ctrl, Shift
and Alt; valid text keys include A–Z, inclusive. [Note: To enter a non-text key, select the
key itself—do not type the word Ctrl, Shift or Alt. It is possible to include more than one
non-text key as part of a shortcut key. Do not enter the + symbol.] Thus, a valid shortcut
key might be Ctrl+Alt+D. After assigning a shortcut key, select Assign and then OK.
Figure 24.9 illustrates the process of creating a shortcut key for the NewBreakpoint
function. The shortcut key (Ctrl+Alt+D) is valid only in the Text Editor.

24.6.5 Rearranging Windows

Some screen readers have difficulty interpreting user interfaces that include multiple tabs;
this is because most screen readers can read information on only one screen. To accommo-
date such screen readers, Visual Studio allows developers to customize their user interfaces
so that only the console window appears. To remove tabs, select Options from the Tools
menu. Then, in the Options window, select the General item from the Environment
directory. In the Settings section, select the MDI environment radio button and click
OK. Figure 24.10 depicts the Options window, and Fig. 24.11 illustrates a console win-
dow with and without tabs.

Fig. 24.8Fig. 24.8Fig. 24.8Fig. 24.8 Adding tabs to the Toolbox.

Chapter 24 Accessibility 1223

Fig. 24.9Fig. 24.9Fig. 24.9Fig. 24.9 Shortcut key creation.

Fig. 24.10Fig. 24.10Fig. 24.10Fig. 24.10 Removing tabs from Visual Studio environment.

operation selection mapping scheme
application to
apply shortcuts key designation

1224 Accessibility Chapter 24

24.7 Accessibility in C#
Visual Studio .NET provides extensive accessibility features and also presents guidelines
for creating accessible applications in its development environment. Similar recommenda-
tions guide the development of C# applications that are accessible to people with disabili-
ties. It is important that C# programmers gear applications toward as many potential users
as possible, rather then toward only the average user. WIth some modifications, most ap-
plications can be made accessible to a wide variety of individuals. General guidelines for
designing accessible applications are:

1. Use larger-sized fonts—this helps people with visual impairments see the text.

2. Create flexible applications that provide keyboard shortcuts for all features within
the application—this allows people to use the application without employing a
mouse.

3. Allow information to be conveyed to the user both in a visual and in an audio con-
text.

4. Use graphics and images whenever helpful—visual cues can increase accessibility
for people who have trouble reading text on the screen.

Fig. 24.11Fig. 24.11Fig. 24.11Fig. 24.11 Console windows with tabs and without tabs.

Tab

No Tabs

Chapter 24 Accessibility 1225

5. Never signal information with sound only—someone accessing the information
might not have speakers or might have hearing impairments.1

6. Test the application without using either a mouse or a keyboard. Access to an ap-
plication’s functionality should not be limited to one input device.

For more information on these and other design guidelines for accessible applications,
please refer to the Visual Studio .NET documentation under the overview subsection of
the index topic accessibility. This section provides links to discussions of how to design
more accessible Windows and ASP.NET applications.

One specific way that programmers can make their applications more accessible is to
use a text-to-speech control in their programs. A text-to-speech control can convert text into
speech—a computerized voice speaks the words provided as text to the control. Text-to-
speech controls facilitate access for people who cannot see the screen.

Another way to make applications more accessible is to use tab stops. A tab stop
occurs when the user presses the Tab key, causing the focus to transfer to another control.
The order in which the controls gain focus is called the tab order, which is determined by
the TabIndex value of the controls (controls gain focus in ascending order). Each control
also has a TabStop property—if this property is true, the control is included in the tab
order; otherwise, it is not. Using the TabIndex and TabStop properties makes it simple
to create more easily navigable applications. If these properties are set incorrectly, the log-
ical ordering of the application might not be maintained. Consider an application that has
TextBoxes in which a user inputs a first name, a last name and an address. The logical tab
order would take the user from the TextBox for the first name to the one for the last name
and then to the one for the address.

A third and important way in which programmers can increase the accessibility of their
applications is to use specific classes provided by .NET. Class Control, for example, has
many properties designed for conveying information to users. These applications can then,
in turn, find the required information stored as properties. Figure 24.12 lists some proper-
ties of class Control that are designed to provide information to users.

1. "Basic Principles of Accessible Design," .NET Framework Developer’s Guide, Visual Studio
.NET Online Help

Property Purpose

AccessibleDescription Describes the control to an accessibility client application. For
example, a CheckBox that says "New User" would not
require more description, but a CheckBox with an image of a
cat would have its AccessibleDescription property set
to something like, "A CheckBox with an image of a cat
on it".

AccessibleName Contains a short name or identifier for the control.

Fig. 24.12Fig. 24.12Fig. 24.12Fig. 24.12 Properties of class Control related to accessibility. (Part 1 of 2.)

1226 Accessibility Chapter 24

The application in Fig. 24.13 uses a text-to-speech control, tab stops and class Con-
trol’s accessibility-related properties. It consists of a form with three Labels, three
TextBoxes and a Button, enabling a user to submit the information. Submitting the
information simply terminates the application—the application is intended only to demon-
strate the use of the text-to-speech control.

The accessibility features in this program work as follows: When the mouse is over a
Label, the text-to-speech control prompts the user to enter the appropriate information in the
TextBox located to the right of the Label. If the mouse is over a TextBox, the contents
of the TextBox are spoken. Lastly, if the mouse is over Button Submit, the user is told
that the button should be clicked to submit the information. The tab order is the following:
The TextBoxes where the user inputs the name, phone number and password, then the
Button. The Labels and text-to-speech control are not included in the tab order, because
the user cannot interact with them, and their inclusion would serve no purpose. The accessi-
bility properties are set so that accessibility client applications will obtain appropriate infor-
mation about the controls. Please note that only the relevant code generated by Visual Studio
.NET is included in Fig. 24.13. To use the text-to-speech control, first add it to the Toolbox.
This is accomplished by selecting Customize Toolbox from the Tools menu. The Cus-
tomize Toolbox dialog pops up—check the box next to the TextToSpeech Class
option. Click OK to dismiss the dialog box. The VText control now is in the ToolBox and
can be dragged onto a form int he same way that any other control.

The application has three Labels that prompts for the user’s name, phone number and
password. Three corresponding TextBoxes accept the user’s input and, a Button allows
the user to submit the form. Line 25 declares a text-to-speech control named speaker.
We want the user to hear audio descriptions of controls when the mouse is located over
those controls. Lines 112–139 define the controls_MouseHover event handler—we
attach this method to the three TextBoxes and the Button as the event handler for the
MouseHover event.

AccessibleRole Member of the AccessibleRole enumeration. Represents
the role of this control in the application—this information
might help the accessibility client application determine what
actions it should take.

IsAccessible Contains a bool value specifying whether the control is visi-
ble to accessibility client applications.

1 // Fig. 24.13: TextToSpeech.cs
2 // Providing audio for people with visual impairments.
3
4 using System;
5 using System.Drawing;

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 Application with accessibility features. (Part 1 of 4.)

Property Purpose

Fig. 24.12Fig. 24.12Fig. 24.12Fig. 24.12 Properties of class Control related to accessibility. (Part 2 of 2.)

Chapter 24 Accessibility 1227

6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 // helps users navigate form with aid of audio cues
12 public class TextToSpeech : System.Windows.Forms.Form
13 {
14 private System.Windows.Forms.Label nameLabel;
15 private System.Windows.Forms.Label phoneLabel;
16
17 private System.Windows.Forms.TextBox nameTextBox;
18 private System.Windows.Forms.TextBox phoneTextBox;
19 private System.Windows.Forms.TextBox passwordTextBox;
20
21 private System.Windows.Forms.Button submitButton;
22
23 private System.Windows.Forms.Label passwordLabel;
24
25 private AxHTTSLib.AxTextToSpeech speaker;
26
27 private System.ComponentModel.Container components = null;
28
29 // default constructor
30 public TextToSpeech()
31 {
32 InitializeComponent();
33
34 // set Form to be visible to accessibility applications
35 this.IsAccessible = true;
36
37 // let all controls be visible to accessibility applications
38 foreach (Control current in this.Controls)
39 current.IsAccessible = true;
40 }
41
42 private void InitializeComponent()
43 {
44 this.nameLabel.AccessibleDescription = "User Name";
45 this.nameLabel.AccessibleName = "User Name";
46 this.nameLabel.TabIndex = 5;
47 this.nameLabel.MouseHover +=
48 new System.EventHandler(this.controls_MouseHover);
49
50 this.phoneLabel.AccessibleDescription =
51 "Phone Number Label";
52 this.phoneLabel.AccessibleName = "Phone Number Label";
53 this.phoneLabel.TabIndex = 6;
54 this.phoneLabel.MouseHover +=
55 new System.EventHandler(this.controls_MouseHover);
56
57 this.nameTextBox.AccessibleDescription =
58 "Enter User Name";

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 Application with accessibility features. (Part 2 of 4.)

1228 Accessibility Chapter 24

59 this.nameTextBox.AccessibleName = "User Name TextBox";
60 this.nameTextBox.TabIndex = 1;
61 this.nameTextBox.MouseHover +=
62 new System.EventHandler(this.controls_MouseHover);
63
64 this.phoneTextBox.AccessibleDescription =
65 "Enter Phone Number";
66 this.phoneTextBox.AccessibleName = "Phone Number TextBox";
67 this.phoneTextBox.TabIndex = 2;
68 this.phoneTextBox.MouseHover +=
69 new System.EventHandler(this.controls_MouseHover);
70
71 this.passwordTextBox.AccessibleDescription =
72 "Enter Password";
73 this.passwordTextBox.AccessibleName = "Password TextBox";
74 this.passwordTextBox.TabIndex = 3;
75 this.passwordTextBox.MouseHover +=
76 new System.EventHandler(this.controls_MouseHover);
77
78 this.submitButton.AccessibleDescription =
79 "Submit the Information";
80 this.submitButton.AccessibleName = "Submit Information";
81 this.submitButton.TabIndex = 4;
82 this.submitButton.Text = "&Submit";
83 this.submitButton.Click +=
84 new System.EventHandler(this.submitButton_Click);
85 this.submitButton.MouseHover +=
86 new System.EventHandler(this.controls_MouseHover);
87
88 this.passwordLabel.AccessibleDescription =
89 "Password Label";
90 this.passwordLabel.AccessibleName = "Password Label";
91 this.passwordLabel.TabIndex = 7;
92 this.passwordLabel.MouseHover +=
93 new System.EventHandler(this.controls_MouseHover);
94
95 this.speaker.AccessibleDescription =
96 "Give Information about Form";
97 this.speaker.AccessibleName = "Speaker";
98 this.speaker.TabIndex = 8;
99 this.speaker.TabStop = false;
100
101 this.AccessibleDescription = "Registration Form";
102 this.AccessibleName = "Registration Form";
103 }
104
105 [STAThread]
106 static void Main()
107 {
108 Application.Run(new TextToSpeech());
109 }
110

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 Application with accessibility features. (Part 3 of 4.)

Chapter 24 Accessibility 1229

Method controls_MouseHover determines which type of control the mouse is
hovering over and generates the appropriate audio. Line 116 determines whether the type

111 // tell user over which control mouse is
112 private void controls_MouseHover(
113 object sender, System.EventArgs e)
114 {
115 // if mouse is over Label, tell user to enter information
116 if (sender.GetType() == nameLabel.GetType())
117 {
118 Label temporary = (Label) sender;
119 speaker.Speak("Please enter your " + temporary.Text +
120 " in the textbox to the right");
121 }
122
123 // if mouse is over TextBox, tell user what
124 // information was entered
125 else if (sender.GetType() == nameTextBox.GetType())
126 {
127 TextBox temporary = (TextBox) sender;
128 speaker.Speak("You have entered " +
129 (temporary.Text == "" ? "nothing" :
130 temporary.Text) + " in the " + temporary.Name);
131 }
132
133 // otherwise, user is over Button, so tell user to click
134 // it to submit information
135 else
136 speaker.Speak(
137 "Click on this button to submit your information");
138
139 } // end method controls_MouseHover
140
141 // thank user for information submission
142 private void submitButton_Click(
143 object sender, System.EventArgs e)
144 {
145 speaker.Speak(
146 "Thank you, your information has been submitted.");
147
148 Application.Exit();
149 }
150
151 } // end class TextToSpeech

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 Application with accessibility features. (Part 4 of 4.)

1230 Accessibility Chapter 24

of the control calling the method is the same as that of nameLabel. Here, we use method
GetType of class Type, which returns an instance of class Type; this class represents
information about a particular class. We call method GetType on object sender. Event-
handler argument sender is a reference to the control that triggered the event. When the
condition at line 116 evaluates to true (i.e., the control that triggered the event is name-
Label), lines 118–120 execute. Line 118 casts sender to a Label (now that we know
it is one) and assigns it to Label temporary. Lines 119–120 call speaker’s method
Speak, which provides the string that should be converted to speech.

A similar process is performed to determine whether the mouse is over a TextBox
(line 125) and to generate the appropriate audio (lines 127–130). Lastly, if the control over
which the mouse is hovering is neither a Label nor a TextBox, it must be the Button;
lines 136–137 tell the user to click the button to submit information. Method
submitButton_Click (lines 142–149) executes when the user clicks the Button.
This event handler calls speaker’s method Speak, providing as an argument a thank-
you message, and then exits the application.

Line 82 sets the Text property of submitButton to "&Submit". This is an
example of providing keyboard access to the functionality of the application. Recall that, in
Chapter 13, we assigned shortcut keys by placing "&" in front of the letter that would become
the shortcut key. Here, we do the same for submitButton—pressing Alt+S on the key-
board is equivalent to clicking the submitButton.

We establish the tab order in this application by setting the TabIndex and TabStop
properties. The TabIndex properties of the controls are assigned in lines 46, 60, 67, 74,
81, 91 and 98. The TextBoxes are assigned the tab indices 1–3, in order of their appear-
ance (vertically) on the form. The Button is assigned tab index 4, and the rest of the con-
trols are given tab indices 5–8. We want the tab order to include only the TextBoxes and
the Button. The default setting for the TabStop property of Labels is false—thus,
we do not need to change it; the labels will not be included in the tab order. The TabStop
property of TextBoxes and Buttons is true, which means that we do not need to
change the values for those controls either. The TabStop property of speaker, however,
is true by default. We set it to false, indicating that we do not want speaker included
in the tab order. In general, those controls with which the user cannot directly interact
should have their TabStop properties set to false.

The last accessibility feature in this application involves setting the accessibility prop-
erties of the controls so that client accessibility applications can access and process the con-
trols properly. Lines 44, 50–51, 57–58, 64–65, 71–72, 78–79, 88–89 and 95–96 set the
AccessibleDescription properties of all the controls (including the Form). Lines
45, 52, 59, 66, 73, 80, 90 and 97 set the AccessibleName properties of all the controls
(again including the Form). The IsAccessible property is not visible in the Proper-
ties window during design time, so we must write code to set it to true. Line 35 sets the
IsAccessible property of TextToSpeech to true. Lines 38–39 loop through each
control on the form and set each IsAccessible property to true. The Form and all its
controls now will be visible to client accessibility applications.

24.8 Accessibility in XHTML Tables
Complex Web pages often contain tables that format content and present data. However,
many screen readers are incapable of translating tables correctly unless developers design

Chapter 24 Accessibility 1231

the tables with screen-reader requirements in mind. For example, the CAST eReader, a
screen reader developed by the Center for Applied Special Technology
(www.cast.org), starts at the top-left-hand cell and reads columns from left to right, top
to bottom. This technique of reading data from a table is referred to as linearized.
Figure 24.14 creates a simple table listing the costs of various fruits; later, we provide this
table to the CAST eReader to demonstrate its linear reading of the table. The CAST eRead-
er reads the table in Fig. 24.14 as follows:

Price of Fruit Fruit Price Apple $0.25 Orange $0.50 Banana
$1.00 Pineapple $2.00

This reading does not present the content of the table adequately: The reading neither
specifies caption and header information nor links data contained in cells to the column
headers that describe them. WCAG 1.0 recommends using Cascading Style Sheets (CSS)
instead of tables, unless a table’s content linearizes in an understandable manner.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 24.14: withoutheaders.html -->
6 <!-- Table without headers -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>XHTML Table Without Headers</title>
11
12 <style type = "text/css">
13 body { background-color: #ccffaa;
14 text-align: center }
15 </style>
16 </head>
17
18 <body>
19
20 <p>Price of Fruit</p>
21
22 <table border = "1" width = "50%">
23
24 <tr>
25 <td>Fruit</td>
26 <td>Price</td>
27 </tr>
28
29 <tr>
30 <td>Apple</td>
31 <td>$0.25</td>
32 </tr>
33

Fig. 24.14Fig. 24.14Fig. 24.14Fig. 24.14 XHTML table without accessibility modifications. (Part 1 of 2.)

1232 Accessibility Chapter 24

If the table in Fig. 24.14 were large, the screen reader’s linearized reading would be
even more confusing to users. However, modifying the <td> tag with the headers
attribute and modifying header cells (cells specified by the <th> tag) with the id attribute
causes the table to be read as intended. Figure 24.15 demonstrates how these modifications
change the way in which a screen reader interprets the table.

34 <tr>
35 <td>Orange</td>
36 <td>$0.50</td>
37 </tr>
38
39 <tr>
40 <td>Banana</td>
41 <td>$1.00</td>
42 </tr>
43
44 <tr>
45 <td>Pineapple</td>
46 <td>$2.00</td>
47 </tr>
48
49 </table>
50
51 </body>
52 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 24.15: withheaders.html -->
6 <!-- Table with headers -->
7

Fig. 24.15Fig. 24.15Fig. 24.15Fig. 24.15 Table optimized for screen reading, using attribute headers. (Part 1 of 3.)

Fig. 24.14Fig. 24.14Fig. 24.14Fig. 24.14 XHTML table without accessibility modifications. (Part 2 of 2.)

Chapter 24 Accessibility 1233

8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>XHTML Table With Headers</title>
11
12 <style type = "text/css">
13 body { background-color: #ccffaa;
14 text-align: center }
15 </style>
16 </head>
17
18 <body>
19
20 <!-- This table uses the id and headers attributes to -->
21 <!-- ensure readability by text-based browsers. It also -->
22 <!-- uses a summary attribute, used by screen readers to -->
23 <!-- describe the table. -->
24
25 <table width = "50%" border = "1"
26 summary = "This table uses th elements and id and
27 headers attributes to make the table readable
28 by screen readers">
29
30 <caption>Price of Fruit</caption>
31
32 <tr>
33 <th id = "fruit">Fruit</th>
34 <th id = "price">Price</th>
35 </tr>
36
37 <tr>
38 <td headers = "fruit">Apple</td>
39 <td headers = "price">$0.25</td>
40 </tr>
41
42 <tr>
43 <td headers = "fruit">Orange</td>
44 <td headers = "price">$0.50</td>
45 </tr>
46
47 <tr>
48 <td headers = "fruit">Banana</td>
49 <td headers = "price">$1.00</td>
50 </tr>
51
52 <tr>
53 <td headers = "fruit">Pineapple</td>
54 <td headers = "price">$2.00</td>
55 </tr>
56
57 </table>
58
59 </body>
60 </html>

Fig. 24.15Fig. 24.15Fig. 24.15Fig. 24.15 Table optimized for screen reading, using attribute headers. (Part 2 of 3.)

1234 Accessibility Chapter 24

This table does not appear to be different from the standard XHTML table shown in
Fig. 24.14. However, the formatting of this table allows a screen reader to read the con-
tained data more intelligently. A screen reader vocalizes the data from the table in
Fig. 24.15 as follows:

Caption: Price of Fruit
Summary: This table uses th elements and id and headers
attributes to make the table readable by screen readers
Fruit: Apple, Price: $0.25
Fruit: Orange, Price: $0.50
Fruit: Banana, Price: $1.00
Fruit: Pineapple, Price: $2.00

Every cell in the table is preceded by its corresponding header when read by the screen
reader. This format helps the listener understand the table. The headers attribute is
intended specifically for use in tables that hold large amounts of data. Most small tables lin-
earize fairly well, as long as the <th> tag is used properly. We also suggest using the sum-
mary attribute and caption element to enhance clarity. To view additional examples that
demonstrate how to make tables accessible, visit www.w3.org/TR/WCAG.

24.9 Accessibility in XHTML Frames
Web designers often use frames to display more than one XHTML file in a single browser
window. Frames are a convenient way to ensure that certain content always displays on the
screen. Unfortunately, frames often lack proper descriptions, and this prevents users with
text-based browsers and users listening via speech synthesizers from navigating the Web site.

A site that uses frames must provide a meaningful description of each frame in the
frame’s <title> tag. Examples of good titles include “Navigation Frame” and “Main
Content Frame.” Users navigating via text-based browsers, such as Lynx, must choose
which frame they want to open; descriptive titles make this choice simpler. However, the
assignment of titles to frames does not solve all the navigation problems associated with
frames. Web designers also should use the <noframes> tag, which provides alternative
content for browsers that do not support frames.

Fig. 24.15Fig. 24.15Fig. 24.15Fig. 24.15 Table optimized for screen reading, using attribute headers. (Part 3 of 3.)

Chapter 24 Accessibility 1235

Look-and-Feel Observation 24.1
Always provide titles for frames to ensure that user agents that do not support frames have
alternatives. 24.1

Look-and-Feel Observation 24.2
Include a title for each frame’s contents with the frame element; if possible, provide links
to the individual pages within the frameset, so that users still can navigate through the Web
pages. To provide alternative content to browsers that do not support frames, use the <nof-
rames> tag. This also improves access for browsers that offer limited support for frames. 24.2

WCAG 1.0 suggests using Cascading Style Sheets (CSS) as an alternative to frames,
because CSS can provide similar functionality and is highly customizible. Unfortunately,
the ability to display multiple XHTML documents in a single browser window requires the
complete support of HTML 4, which is not widespread. However, the second generation of
Cascading Style Sheets (CSS2) can display a single document as if it were several docu-
ments. CSS2 is not yet fully supported by many user agents.

24.10 Accessibility in XML
XML gives developers the freedom to create new markup languages. Although this feature
provides many advantages, the new languages might not incorporate accessibility features.
To prevent the proliferation of inaccessible languages, the WAI is developing guidelines—
the XML Guidelines (XML GL)—to facilitate the creation of accessible XML documents.
The XML Guidelines recommend including a text description, similar to XHTML’s
<alt> tag, for each non-text object on a page. To enhance accessibility further, element
types should allow grouping and classification and should identify important content.
Without an accessible user interface, other efforts to implement accessibility are less effec-
tive. Therefore, it is essential to create stylesheets that can produce multiple outputs, includ-
ing document outlines.

Many XML languages, including Synchronized Multimedia Integration Language
(SMIL) and Scalable Vector Graphics (SVG), have implemented several of the WAI guide-
lines. The WAI XML Accessibility Guidelines can be found at www.w3.org/WAI/PF/
xmlgl.htm.

24.11 Using Voice Synthesis and Recognition with VoiceXML™
A joint effort by AT&T®, IBM®, Lucent™ and Motorola® has created an XML vocabulary
that marks up information for use by speech synthesizers, or tools that enable computers to
speak to users. This technology, called VoiceXML, can provide tremendous benefits to peo-
ple with visual impairments and to people who are illiterate. VoiceXML-enabled applica-
tions read Web pages to the user and then employ speech recognition technology to
understand words spoken into a microphone. An example of a speech-recognition tool is
IBM’s ViaVoice (www-4.ibm.com/software/speech). To learn more about speech
recognition and synthesis, consult Chapter 16, Graphics and Multimedia.

The VoiceXML interpreter and the VoiceXML browser process VoiceXML. In the
future, Web browsers might incorporate these interpreters. VoiceXML is derived from
XML, so VoiceXML is platform–independent. When a VoiceXML document is loaded, a
voice server sends a message to the VoiceXML browser and begins a verbal conversation
between the user and the computer.

1236 Accessibility Chapter 24

The IBM WebSphere Voice Server SDK 1.5 is a VoiceXML interpreter that can be used
to test VoiceXML documents on the desktop. To download the VoiceServer SDK, visit
www.alphaworks.ibm.com/tech/voiceserversdk. [Note: To run the
VoiceXML program in Fig. 24.16, download Java 2 Platform Standard Edition (Java
SDK) 1.3 from www.java.sun.com/j2se/1.3. Installation instructions for both the
VoiceServerSDK and the Java SDK are located on the Deitel & Associates, Inc., Web site
at www.deitel.com.]

Figure 24.16 and Fig. 24.17 depict examples of VoiceXML that could be included on
a Web site. The computer speaks a document’s text to the user, and the text embedded in
the VoiceXML tags enables verbal interaction between the user and the browser. The
output included in Fig. 24.17 demonstrates a conversation that might take place between a
user and a computer after this document is loaded.

1 <?xml version = "1.0"?>
2 <vxml version = "1.0">
3
4 <!-- Fig. 24.16: main.vxml -->
5 <!-- Voice page -->
6
7 <link next = "#home">
8 <grammar>home</grammar>
9 </link>

10
11 <link next = "#end">
12 <grammar>exit</grammar>
13 </link>
14
15 <var name = "currentOption" expr = "'home'"/>
16
17 <form>
18 <block>
19 <emp>Welcome</emp> to the voice page of Deitel and
20 Associates. To exit any time say exit.
21 To go to the home page any time say home.
22 </block>
23
24 <subdialog src = "#home"/>
25 </form>
26
27 <menu id = "home">
28 <prompt count = "1" timeout = "10s">
29 You have just entered the Deitel home page.
30 Please make a selection by speaking one of the
31 following options:
32 <break msecs = "1000" />
33 <enumerate/>
34 </prompt>
35
36 <prompt count = "2">
37 Please say one of the following.
38 <break msecs = "1000" />

Fig. 24.16Fig. 24.16Fig. 24.16Fig. 24.16 Home page written in VoiceXML. (Part 1 of 3.)

Chapter 24 Accessibility 1237

39 <enumerate/>
40 </prompt>
41
42 <choice next = "#about">About us</choice>
43 <choice next = "#directions">Driving directions</choice>
44 <choice next = "publications.vxml">Publications</choice>
45 </menu>
46
47 <form id = "about">
48 <block>
49 About Deitel and Associates, Inc.
50 Deitel and Associates, Inc. is an internationally
51 recognized corporate training and publishing
52 organization, specializing in programming languages,
53 Internet and World Wide Web technology and object
54 technology education. Deitel and Associates, Inc. is a
55 member of the World Wide Web Consortium. The company
56 provides courses on Java, C++, Visual Basic, C, Internet
57 and World Wide Web programming and Object Technology.
58 <assign name = "currentOption" expr = "'about'"/>
59 <goto next = "#repeat"/>
60 </block>
61 </form>
62
63 <form id = "directions">
64 <block>
65 Directions to Deitel and Associates, Inc.
66 We are located on Route 20 in Sudbury,
67 Massachusetts, equidistant from route
68 <sayas class = "digits">128</sayas> and route
69 <sayas class = "digits">495</sayas>.
70 <assign name = "currentOption" expr = "'directions'"/>
71 <goto next = "#repeat"/>
72 </block>
73 </form>
74
75 <form id = "repeat">
76 <field name = "confirm" type = "boolean">
77 <prompt>
78 To repeat say yes. To go back to home, say no.
79 </prompt>
80
81 <filled>
82 <if cond = "confirm == true">
83 <goto expr = "'#' + currentOption"/>
84 <else/>
85 <goto next = "#home"/>
86 </if>
87 </filled>
88
89 </field>
90 </form>
91

Fig. 24.16Fig. 24.16Fig. 24.16Fig. 24.16 Home page written in VoiceXML. (Part 2 of 3.)

1238 Accessibility Chapter 24

92 <form id = "end">
93 <block>
94 Thank you for visiting Deitel and Associates voice page.
95 Have a nice day.
96 <exit/>
97 </block>
98 </form>
99
100 </vxml>

101 <?xml version = "1.0"?>
102 <vxml version = "1.0">
103
104 <!-- Fig. 24.17: publications.vxml -->
105 <!-- Voice page for various publications -->
106
107 <link next = "main.vxml#home">
108 <grammar>home</grammar>
109 </link>
110
111 <link next = "main.vxml#end">
112 <grammar>exit</grammar>
113 </link>
114
115 <link next = "#publication">
116 <grammar>menu</grammar>
117 </link>
118
119 <var name = "currentOption" expr = "'home'"/>
120
121 <menu id = "publication">
122
123 <prompt count = "1" timeout = "12s">
124 Following are some of our publications. For more
125 information visit our web page at www.deitel.com.
126 To repeat the following menu, say menu at any time.
127 Please select by saying one of the following books:
128 <break msecs = "1000" />
129 <enumerate/>
130 </prompt>
131
132 <prompt count = "2">
133 Please select from the following books.
134 <break msecs = "1000" />
135 <enumerate/>
136 </prompt>
137
138 <choice next = "#java">Java.</choice>
139 <choice next = "#c">C.</choice>

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page. (Part 1 of 4.)

Fig. 24.16Fig. 24.16Fig. 24.16Fig. 24.16 Home page written in VoiceXML. (Part 3 of 3.)

Chapter 24 Accessibility 1239

140 <choice next = "#cplus">C plus plus.</choice>
141 </menu>
142
143 <form id = "java">
144 <block>
145 Java How to program, third edition.
146 The complete, authoritative introduction to Java.
147 Java is revolutionizing software development with
148 multimedia-intensive, platform-independent,
149 object-oriented code for conventional, Internet,
150 Intranet and Extranet-based applets and applications.
151 This Third Edition of the world's most widely used
152 university-level Java textbook carefully explains
153 Java's extraordinary capabilities.
154 <assign name = "currentOption" expr = "'java'"/>
155 <goto next = "#repeat"/>
156 </block>
157 </form>
158
159 <form id = "c">
160 <block>
161 C How to Program, third edition.
162 This is the long-awaited, thorough revision to the
163 world's best-selling introductory C book! The book's
164 powerful "teach by example" approach is based on
165 more than 10,000 lines of live code, thoroughly
166 explained and illustrated with screen captures showing
167 detailed output.World-renowned corporate trainers and
168 best-selling authors Harvey and Paul Deitel offer the
169 most comprehensive, practical introduction to C ever
170 published with hundreds of hands-on exercises, more
171 than 250 complete programs written and documented for
172 easy learning, and exceptional insight into good
173 programming practices, maximizing performance, avoiding
174 errors, debugging, and testing. New features include
175 thorough introductions to C++, Java, and object-oriented
176 programming that build directly on the C skills taught
177 in this book; coverage of graphical user interface
178 development and C library functions; and many new,
179 substantial hands-on projects.For anyone who wants to
180 learn C, improve their existing C skills, and understand
181 how C serves as the foundation for C++, Java, and
182 object-oriented development.
183 <assign name = "currentOption" expr = "'c'"/>
184 <goto next = "#repeat"/>
185 </block>
186 </form>
187
188 <form id = "cplus">
189 <block>
190 The C++ how to program, second edition.
191 With nearly 250,000 sold, Harvey and Paul Deitel's C++
192 How to Program is the world's best-selling introduction

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page. (Part 2 of 4.)

1240 Accessibility Chapter 24

193 to C++ programming. Now, this classic has been thoroughly
194 updated! The new, full-color Third Edition has been
195 completely revised to reflect the ANSI C++ standard, add
196 powerful new coverage of object analysis and design with
197 UML, and give beginning C++ developers even better live
198 code examples and real-world projects. The Deitels' C++
199 How to Program is the most comprehensive, practical
200 introduction to C++ ever published with hundreds of
201 hands-on exercises, roughly 250 complete programs written
202 and documented for easy learning, and exceptional insight
203 into good programming practices, maximizing performance,
204 avoiding errors, debugging, and testing. This new Third
205 Edition covers every key concept and technique ANSI C++
206 developers need to master: control structures, functions,
207 arrays, pointers and strings, classes and data
208 abstraction, operator overloading, inheritance, virtual
209 functions, polymorphism, I/O, templates, exception
210 handling, file processing, data structures, and more. It
211 also includes a detailed introduction to Standard
212 Template Library containers, container adapters,
213 algorithms, and iterators.
214 <assign name = "currentOption" expr = "'cplus'"/>
215 <goto next = "#repeat"/>
216 </block>
217 </form>
218
219 <form id = "repeat">
220 <field name = "confirm" type = "boolean">
221
222 <prompt>
223 To repeat say yes. Say no, to go back to home.
224 </prompt>
225
226 <filled>
227 <if cond = "confirm == true">
228 <goto expr = "'#' + currentOption"/>
229 <else/>
230 <goto next = "#publication"/>
231 </if>
232 </filled>
233 </field>
234 </form>
235 </vxml>

Computer speaks:
Welcome to the voice page of Deitel and Associates. To exit any time
say exit. To go to the home page any time say home.

User speaks:
Home

 (continued on next page)

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page. (Part 3 of 4.)

Chapter 24 Accessibility 1241

A VoiceXML document contains a series of dialogs and subdialogs, resulting in
spoken interaction between the user and the computer. The <form> and <menu> tags
implement the dialogs. A form element both presents information to the user and gathers
data from the user. A menu element provides the user with list options and then transfers
control to another dialog in response to the user’s selection.

Lines 7–9 (of Fig. 24.16) use element link to create an active link to the home page.
Attribute next specifies the URL to which the browser is directed when a user selects the
link. Element grammar marks up the text that the user must speak to select the link. In the
link element, we navigate to the element containing id home when a user speaks the
word home. Lines 11–13 use element link to create a link to id end when a user speaks
the word exit.

Lines 17–25 create a form dialog using element form, which collects information
from the user. Lines 18–22 present introductory text. Element block, which can exist only
within a form element, groups together elements that perform an action or an event. Ele-
ment emp indicates that a section of text should be spoken with emphasis. If the level of
emphasis is not specified, then the default level—moderate—is used. Our example uses the
default level. [Note: To specify an emphasis level, use the level attribute. This attribute
accepts the following values: strong, moderate, none and reduced.]

The menu element in line 27 enables users to select the page to which they would like
to link. The choice element, which always is part of either a menu or a form, presents
the options. The next attribute indicates the page that is loaded when a user makes a selec-
tion. The user selects a choice element by speaking the text marked up between the tags
into a microphone. In this example, the first and second choice elements in lines 42–43
transfer control to a local dialog (i.e., a location within the same document) when they are
selected. The third choice element transfers the user to the document publica-
tions.vxml. Lines 28–34 use element prompt to instruct the user to make a selection.
Attribute count maintains a record of the number of times that a prompt is spoken (i.e.,
each time the computer reads a prompt, count increments by one). The count attribute
transfers control to another prompt once a certain limit has been reached. Attribute tim-

 (continued from previous page)

Computer speaks:
You have just entered the Deitel home page. Please make a selection by
speaking one of the following options: About us, Driving directions,
Publications.

User speaks:
Driving directions

Computer speaks:
Directions to Deitel and Associates, Inc.
We are located on Route 20 in Sudbury,
Massachusetts, equidistant from route 128
and route 495.
To repeat say yes. To go back to home, say no.

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Publication page of Deitel and Associates’ VoiceXML page. (Part 4 of 4.)

1242 Accessibility Chapter 24

eout specifies how long the program should wait after outputting the prompt for users to
respond. In the event that the user does not respond before the timeout period expires, lines
36–40 provide a second, shorter prompt that reminds the user to make a selection.

 When the user chooses the publications option, publications.vxml
(Fig. 24.17) loads into the browser. Lines 107–113 define link elements that provide
links to main.vxml. Lines 115–117 provide links to the menu element (lines 121–141),
which asks users to select one of the following publications: Java, C or C++. The form
elements in lines 143–217 describe books that correspond to these topics. Once the browser
speaks the description, control transfers to the form element with an id attribute whose
value equals repeat (lines 219–234).

Figure 24.18 provides a brief description of each VoiceXML tag that we used in the
previous example (Fig. 24.17).

VoiceXML Tag Description

<assign> Assigns a value to a variable.

<block> Presents information to users without any interaction between the user and
the computer (i.e., the computer does not expect any input from the user).

<break> Instructs the computer to pause its speech output for a specified period of
time.

<choice> Specifies an option in a menu element.

<enumerate> Lists all the available options to the user.

<exit> Exits the program.

<filled> Contains elements that execute when the computer receives input for a form
element from the user.

<form> Gathers information from the user for a set of variables.

<goto> Transfers control from one dialog to another.

<grammar> Specifies grammar for the expected input from the user.

<if>,
<else>,
<elseif>

Indicates a control statement used for making logic decisions.

<link> Performs a transfer of control similar to the goto statement, but a link can
be executed at any time during the program’s execution.

<menu> Provides user options and then transfers control to other dialogs on the basis
of the selected option.

<prompt> Specifies text to be read to users when they must make a selection.

<subdialog> Calls another dialog. After executing the subdialog, the calling dialog
resumes control.

<var> Declares a variable.

<vxml> Top-level tag that specifies that the document should be processed by a
VoiceXML interpreter.

Fig. 24.18Fig. 24.18Fig. 24.18Fig. 24.18 VoiceXML tags.

Chapter 24 Accessibility 1243

24.12 CallXML™
Another advancement benefiting people with visual impairments is CallXML, a voice tech-
nology created and supported by Voxeo (www.voxeo.com). CallXML creates phone-to-
Web applications that control incoming and outgoing telephone calls. Examples of
CallXML applications include voice mail, interactive voice-response systems and Internet
call waiting. VoiceXML allows computers to read Web pages to users with visual impair-
ments; CallXML reads Web content to users via a telephone. CallXML has important im-
plications for individuals who do not have a computer, but do have a telephone.

When users access CallXML applications, a text-to-speech (TTS) engine converts text
to an automated voice. The TTS engine then reads information contained within CallXML
elements to the users. CallXML applications are tailored to respond to input from callers.
[Note: Users must have a touch-tone phone to access CallXML applications.]

Typically, CallXML applications play prerecorded audio clips or text as output,
requesting responses as input. An audio clip might contain a greeting that introduces callers
to the application, or it might recite a menu of options, requesting that callers make a touch-
tone entry. Certain applications, such as voice mail, might require both verbal and touch-
tone input. Once the application receives the necessary input, it responds by invoking
CallXML elements (such as text) that contain the information a TTS engine reads to
users. If the application does not receive input within a designated time frame, it prompts
the user to enter valid input.

When a user accesses a CallXML application, the incoming telephone call is referred
to as a session. A CallXML application can support multiple sessions, which means that the
application can process multiple telephone calls at once. Each session is independent of the
others and is assigned a unique sessionID for identification. A session terminates either
when the user hangs up the telephone or when the CallXML application invokes the
hangup element.

Our first CallXML application demonstrates the classic “Hello World” example
(Fig. 24.19). Line 1 contains the optional XML declaration. Value version indicates the
XML version to which the document conforms. The current XML recommendation is ver-
sion 1.0. Value encoding indicates the type of Unicode encoding that the application
uses. For this example, we empty UTF-8, which requires eight bits to transfer and receive
data. More information on Unicode can be found in Appendix G, Unicode®.

The <callxml> tag in line 6 declares that the content is a CallXML document. Line
7 contains the Hello World text. All text that is to be spoken by a text-to-speech (TTS)
engine must be placed within <text> tags.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. 24.19: hello.xml -->
4 <!-- The classic Hello World example -->
5
6 <callxml>
7 <text>Hello World.</text>
8 </callxml>

Fig. 24.19Fig. 24.19Fig. 24.19Fig. 24.19 Hello World CallXML example. (Part 1 of 2.) (Courtesy of Voxeo, © Voxeo
Corporation 2000–2001.)

1244 Accessibility Chapter 24

To deploy a CallXML application, register with the Voxeo Community (commu-
nity.voxeo.com), a Web resource that facilitates the creation, debugging and deploy-
ment of phone applications. For the most part, Voxeo resources are free, but the company
does charge fees when CallXML applications are deployed commercially. The Voxeo
Community assigns a unique telephone number to each CallXML application so that
external users can access and interact with the application. [Note: Voxeo assigns telephone
numbers only to applications that reside on the Internet. If you have access to a Web server
(such as IIS, PWS or Apache), use it to post your CallXML application. Otherwise, open
an Internet account through one of the many Internet-service companies (such as
www.geocities.com, www.angelfire.com, www.stormpages.com,
www.freewebsites.com, or www.brinkster.com). These companies allow indi-
viduals to post documents on the Internet using their Web servers.]

Figure 24.19 also demonstrates the logging feature of the Voxeo Account Man-
ager, which is accessible to registered members. The logging feature records and displays
the “conversation” between the user and the application. The first row of the logging fea-
ture lists the URL of the CallXML application and the global variables associated with that
session. When a session begins, the application creates and assigns values to global vari-
ables that the entire application can access and modify. The subsequent row(s) display the
“conversation.” This example demonstrates a one-way conversation (i.e., the application
does not accept any input from the user) in which the TTS engine says Hello World. The
last row displays the end of session message, which states that the phone call has termi-
nated. The logging feature assists developers in the debugging of their applications. By
observing a CallXML “conversation,” a developer can determine the point at which the
application terminates. If the application terminates abruptly (“crashes”), the logging fea-
ture displays information regarding the type and location of the error, pointing the devel-
oper toward the section of the application that is causing the problem.

Fig. 24.19Fig. 24.19Fig. 24.19Fig. 24.19 Hello World CallXML example. (Part 2 of 2.) (Courtesy of Voxeo, © Voxeo
Corporation 2000–2001.)

Chapter 24 Accessibility 1245

The next example (Fig. 24.20) depicts a CallXML application that reads the ISBN num-
bers of three Deitel textbooks—Internet and World Wide Web How to Program: Second Edi-
tion, XML How to Program and Java How to Program: Fourth Edition—on the basis of a
user’s touch-tone input. [Note: The code has been formatted for presentation purposes.]

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- Fig. 24.20: isbn.xml -->
4 <!-- Reads the ISBN value of three Deitel books -->
5
6 <callxml>
7 <block>
8 <text>
9 Welcome. To obtain the ISBN of the Internet and World

10 Wide Web How to Program: Second Edition, please enter 1.
11 To obtain the ISBN of the XML How to Program,
12 please enter 2. To obtain the ISBN of the Java How
13 to Program: Fourth Edition, please enter 3. To exit the
14 application, please enter 4.
15 </text>
16
17 <!-- Obtains the numeric value entered by the user and -->
18 <!-- stores it in the variable ISBN. The user has 60 -->
19 <!-- seconds to enter one numeric value -->
20 <getDigits var = "ISBN"
21 maxDigits = "1"
22 termDigits = "1234"
23 maxTime = "60s" />
24
25 <!-- Requests that the user enter a valid numeric -->
26 <!-- value after the elapsed time of 60 seconds -->
27 <onMaxSilence>
28 <text>
29 Please enter either 1, 2, 3 or 4.
30 </text>
31
32 <getDigits var = "ISBN"
33 termDigits = "1234"
34 maxDigits = "1"
35 maxTime = "60s" />
36
37 </onMaxSilence>
38
39 <onTermDigit value = "1">
40 <text>
41 The ISBN for the Internet book is 0130308978.
42 Thank you for calling our CallXML application.
43 Good-bye.
44 </text>
45 </onTermDigit>
46

Fig. 24.20Fig. 24.20Fig. 24.20Fig. 24.20 CallXML example that reads three ISBN values. (Part 1 of 2.) (Courtesy of
Voxeo, © Voxeo Corporation 2000–2001.)

1246 Accessibility Chapter 24

47 <onTermDigit value = "2">
48 <text>
49 The ISBN for the XML book is 0130284173.
50 Thank you for calling our CallXML application.
51 Good-bye.
52 </text>
53 </onTermDigit>
54
55 <onTermDigit value = "3">
56 <text>
57 The ISBN for the Java book is 0130341517.
58 Thank you for calling our CallXML application.
59 Good-bye.
60 </text>
61 </onTermDigit>
62
63 <onTermDigit value = "4">
64 <text>
65 Thank you for calling our CallXML application.
66 Good-bye.
67 </text>
68 </onTermDigit>
69 </block>
70
71 <!-- Event handler that terminates the call -->
72 <onHangup />
73 </callxml>

Fig. 24.20Fig. 24.20Fig. 24.20Fig. 24.20 CallXML example that reads three ISBN values. (Part 2 of 2.) (Courtesy of
Voxeo, © Voxeo Corporation 2000–2001.)

Chapter 24 Accessibility 1247

The <block> tag (line 7) encapsulates other CallXML tags. Usually, sets of
CallXML tags that perform similar tasks are enclosed within <block>...</block>. The
block element in this example encapsulates the <text>, <getDigits>, <onMaxSi-
lence> and <onTermDigit> tags. A block element also can be nested in other
block elements.

Lines 20–23 contain some attributes of the <getDigits> tag. The getDigits ele-
ment obtains the user’s touch-tone response and stores it in the variable declared by the
var attribute (i.e., ISBN). The maxDigits attribute (line 21) indicates the maximum
number of digits that the application can accept. This application accepts only one char-
acter. If no maximum is stated, then the application uses the default value, nolimit.

The termDigits attribute (line 22) contains the list of characters that terminate user
input. When a user inputs a character from this list, the application is notified that it has
received the last acceptable input; any character entered after this point is invalid. These char-
acters do not terminate the call; they simply notify the application to proceed to the next
instruction, because the necessary input has been received. In our example, the values for
termDigits are 1, 2, 3 and 4. The default value for termDigits is the null value ("").

The maxTime attribute (line 23) indicates the maximum amount of time that the appli-
cation will wait for a user response. If the user fails to enter input within the given time
frame, then the CallXML application invokes the event handler onMaxSilence. The
default value for this attribute is 30 seconds.

The onMaxSilence element (lines 27–37) is an event handler that is invoked when
attribute maxTime (or maxSilence) expires. The event handler notifies the application
of the appropriate action to perform when a user fails to respond. In this case, the applica-
tion asks the user to enter a value, because the maxTime has expired. After receiving input,
getDigits (line 32) stores the entered value in the ISBN variable.

The onTermDigit element (lines 39–68) is an event handler that notifies the appli-
cation of the appropriate action to perform when a user selects one of the termDigits
characters. At least one <onTermDigit> tag must be associated with (i.e., must appear
after) the getDigits element, even if the default value ("") is used. We provide four
actions that the application can perform in response to the specific termDigits value
entered by the user. For example, if the user enters 1, the application reads the ISBN value
for the Internet and World Wide Web How to Program: Second Edition textbook.

Line 72 contains the <onHangup/> event handler, which terminates the telephone
call when the user hangs up the telephone. Our <onHangup> event handler is an empty
tag (i.e., no action is performed when this tag is invoked).

The logging feature (Fig. 24.20) displays the “conversation” between the application
and the user. As in the previous example, the first row specifies the URL of the application
and the global variables of the session. The subsequent rows display the “conversation”:
The application asks the caller which ISBN value to read; the caller enters 1 (Internet and
World Wide Web How to Program: Second Edition), and the application reads the corre-
sponding ISBN. The end of session message states that the application has terminated.

We provide brief descriptions of various logic and action CallXML elements in
Fig. 24.21. Logic elements assign values to, and clear values from, the session variables;
action elements perform specified tasks, such as answering and terminating a telephone call
during the current session. A complete list of CallXML elements is available at:

www.oasis-open.org/cover/callxmlv2.html

1248 Accessibility Chapter 24

24.13 JAWS® for Windows
JAWS (Job Access with Sound) is one of the leading screen readers currently on the market.
Henter-Joyce, a division of Freedom Scientific™, created this application to help people
with visual impairments interact with technology.

To download a demonstration version of JAWS, visit www.freedomscien-
tific.com. The JAWS demo is fully functional and includes an extensive, highly custom-
ized help system. Users can select the voice that “reads” Web content and the rate at which
text is spoken. Users also can create keyboard shortcuts. Although the demo is in English, the
full version of JAWS allows the user to choose one of several supported languages.

JAWS also includes special key commands for popular programs, such as Microsoft
Internet Explorer and Microsoft Word. For example, when browsing in Internet Explorer,
JAWS’ capabilities extend beyond the reading of content on the screen. If JAWS is
enabled, pressing Insert + F7 in Internet Explorer opens a Links List dialog, which dis-
plays all the links available on a Web page. For more information about JAWS and the
other products offered by Henter-Joyce, visit www.freedomscientific.com.

Elements Description

assign Assigns a value to a variable, var.

clear Clears the contents of the var attribute.

clearDigits Clears all digits that the user has entered.

goto Navigates to another section of the current CallXML application or
to a different CallXML application. The value attribute specifies
the URL of the invoked application. The submit attribute lists the
variables that are passed to the invoked application. The method
attribute states whether to use the HTTP get or post request type
when sending and retrieving information. A get request retrieves
data from a Web server without modifying the contents, whereas
the post request receives modified data.

run Starts a new CallXML session for each call. The value attribute
specifies the CallXML application to retrieve. The submit
attribute lists the variables that are passed to the invoked applica-
tion. The method attribute states whether to use the HTTP get or
post request type. The var attribute stores the identification num-
ber of the session.

sendEvent Allows multiple sessions to exchange messages. The value
attribute stores the message, and the session attribute specifies
the identification number of the session that receives the message.

answer Answers an incoming telephone call.

call Calls the URL specified by the value attribute. The callerID
attribute contains the phone number that is displayed on a CallerID
device. The maxTime attribute specifies the length of time to wait
for the call to be answered before disconnecting.

Fig. 24.21Fig. 24.21Fig. 24.21Fig. 24.21 CallXML elements. (Part 1 of 2.)

Chapter 24 Accessibility 1249

24.14 Other Accessibility Tools
Many accessibility products are available to assist people with disabilities. One such tech-
nology, Microsoft’s Active Accessibility®, establishes a protocol by which an accessibility
aid can retrieve information about an application’s user interface in a consistent manner.
Accessibility aids require information such as the name, location and layout of particular
GUI elements within an application, so that the accessibility aid can render the information
properly to the intended audience. Active Accessibility also enables software developers
and accessibility-aid developers to design programs and products that are compatible with
each other. Moreover, Active Accessibility is packaged in two components, enabling both
programmers and individuals who use accessibility aids to employ the software. The Soft-
ware Development Kit (SDK) component is intended for programmers: It includes testing
tools, programmatic libraries and header files. The Redistribution Kit (RDK) component is
intended for those who use accessibility aids: It installs a runtime component into the Mi-
crosoft operating system. Accessibility aids use the Active Accessibility runtime compo-
nent to interact with and obtain information from any application software. For more
information on Active Accessibility, visit:

www.microsoft.com/enable/msaa

Another important accessibility tool for individuals with visual impairments is the
braille keyboard. In addition to providing keys labeled with the letters they represent, a
braille keyboard also has the equivalent braille symbol printed on each key. Most often,

conference Connects multiple sessions so that individuals can participate in a
conference call. The targetSessions attribute specifies the
identification numbers of the sessions, and the termDigits
attribute indicates the touch-tone keys that terminate the call.

wait Waits for user input. The value attribute specifies how long to
wait. The termDigits attribute indicates the touch-tone keys
that terminate the wait element.

play Plays an audio file or pronounces a value that is stored as a num-
ber, date or amount of money and is indicated by the format
attribute. The value attribute contains the information (location
of the audio file, number, date or amount of money) that corre-
sponds to the format attribute. The clearDigits attribute
specifies whether or not to delete the previously entered input. The
termDigits attribute indicates the touch-tone keys that termi-
nate the audio file, etc.

recordAudio Records an audio file and stores it at the URL specified by value.
The format attribute indicates the file extension of the audio clip.
Other attributes include termDigits, clearDigits, max-
Time and maxSilence.

Elements Description

Fig. 24.21Fig. 24.21Fig. 24.21Fig. 24.21 CallXML elements. (Part 2 of 2.)

1250 Accessibility Chapter 24

braille keyboards are combined with a speech synthesizer or a braille display, enabling
users to interact with the computer to verify that their typing is correct.

Speech synthesis also provides benefits to people with disabilities. Speech synthesizers
have been used for many years to aid people who are unable to communicate verbally.
However, the growing popularity of the Web has prompted a surge of interest in the fields
of speech synthesis and speech recognition. Now, these technologies are allowing individ-
uals with disabilities to use computers more than ever before. The development of speech
synthesizers also is enabling the improvement of other technologies, such as VoiceXML
and AuralCSS (www.w3.org/TR/REC-CSS2/aural.html). These tools allow
people with visual impairments and illiterate people to access Web sites.

Despite the existence of adaptive software and hardware for people with visual
impairments, the accessibility of computers and the Internet is still hampered by the high
costs, rapid obsolescence and unnecessary complexity of current technology. Moreover,
almost all software currently available requires installation by a person who can see.
Ocularis is a project launched in the open-source community that aims to address these
problems. (Open-source software for people with visual impairments already exists;
although it is often superior to its proprietary, closed-source counterparts, it has not yet
reached its full potential.) Ocularis ensures that the blind can access and use all aspects
of the Linux operating system. Products that integrate with Ocularis include word pro-
cessors, calculators, basic finance applications, Internet browsers and e-mail clients. In
addition, a screen reader is included for use with programs that have a command-line
interface. The official Ocularis Web site is located at

ocularis.sourceforge.net.

People with visual impairments are not the only beneficiaries of efforts to improve
markup languages. People with hearing impairments also have a number of tools to help
them interpret auditory information delivered over the Web. One of these tools, Synchro-
nized Multimedia Integration Language (SMIL™), is designed to add extra tracks (layers
of content found within a single audio or video file) to multimedia content. The additional
tracks can contain closed captioning.

Technologies are being designed to help people with severe disabilities, such as
quadriplegia, a form of paralysis that affects the body from the neck down. One such
technology, EagleEyes, developed by researchers at Boston College (www.bc.edu/
eagleeyes), is a system that translates eye movements into mouse movements. A user
moves the mouse cursor by moving his or her eyes or head and is thereby able to control
the computer.

GW Micro, Henter-Joyce and Adobe Systems, Inc., also are working on software that
assists people with disabilities. Adobe Acrobat 5.0 complies with Microsoft’s application
programming interface (API) to allow businesses to provide information to a wider audi-
ence. JetForm Corp is also accommodating the needs of people with disabilities by devel-
oping server-based XML software. The new software allows users to download
information in a format that best meets their needs.

There are many services on the Web that assist e-businesses in designing Web sites so
that they are accessible to individuals with disabilities. For additional information, the U.S.
Department of Justice (www.usdoj.gov) provides extensive resources detailing legal
and technical issues related to people with disabilities.

Chapter 24 Accessibility 1251

24.15 Accessibility in Microsoft® Windows® 2000
Because of the prominence of the Windows operating system, it is crucial that this operat-
ing system provide proper accessibility to individuals with disabilities. Beginning with Mi-
crosoft Windows 95, Microsoft has included accessibility features in its operating systems
and many of its applications, including Office 97, Office 2000 and Netmeeting. In Microsoft
Windows 2000, Microsoft significantly enhanced the operating system’s accessibility fea-
tures. All the accessibility options provided by Windows 2000 are available through the
Accessibility Wizard, which guides users through Windows 2000 accessibility features
and then configures users’ computers in accordance with the chosen specifications. This
section uses the Accessibility Wizard to guide users through the configuration of their
Windows 2000 accessibility options.

To access the Accessibility Wizard, users’ computers must be equipped with
Microsoft Windows 2000. Click the Start button and select Programs, followed by
Accessories, Accessibility and Accessibility Wizard. When the wizard starts, the
Welcome screen displays. Click Next. The next dialog (Fig. 24.22) asks the user to select
a font size. Modify the font size if necessary and then click Next.

Figure 24.22 depicts the Display Settings dialog. This dialog allows the user to acti-
vate the font-size settings chosen in the previous window, change the screen resolution,
enable the Microsoft Magnifier (a program that displays an enlarged section of the screen
in a separate window) and disable personalized menus. Personalized menus hide rarely
used programs from the start menu and can be a hindrance to users with disabilities. Make
appropriate selections and click Next.

The Set Wizard Options dialog (Fig. 24.23) asks questions about the user’s disabil-
ities; the answers to these questions allow the Accessibility Wizard to customize Win-
dows to better suit the user’s needs. For demonstration purposes, we selected every type of
disability included in the dialogue. Click Next to continue.

Fig. 24.22Fig. 24.22Fig. 24.22Fig. 24.22 Display Settings dialog.

1252 Accessibility Chapter 24

24.15.1 Tools for People with Visual Impairments
When we check all the options in Fig. 24.23, the wizard begins to configure Windows

so that it is accessible to people with visual impairments. The dialog box shown in
Fig. 24.24 allows the user to resize the scroll bars and window borders to increase their vis-
ibility. Click Next to proceed to the next dialog.

Figure 24.25 contains a dialog that allows the user to resize icons. Users with poor
vision and users who are illiterate or have trouble reading benefit from large icons.

Fig. 24.23Fig. 24.23Fig. 24.23Fig. 24.23 Accessibility Wizard initialization options.

Fig. 24.24Fig. 24.24Fig. 24.24Fig. 24.24 Scroll Bar and Window Border Size dialog.

Chapter 24 Accessibility 1253

Clicking Next displays the Display Color Settings dialog (Fig. 24.26). These set-
tings enable the user to change the Windows color scheme and resize various screen elements.

Click Next to view the dialog (Fig. 24.27) that enables customization of the mouse
cursor. Anyone who has ever used a laptop computer knows how difficult it can be to see
the mouse cursor. This is even more problematic for people with visual impairments. To
address this problem, the wizard offers users the options of larger cursors, black cursors and
cursors that invert the colors of objects underneath them. Click Next.

Fig. 24.25Fig. 24.25Fig. 24.25Fig. 24.25 Adjusting window-element sizes.

Fig. 24.26Fig. 24.26Fig. 24.26Fig. 24.26 Display Color Settings options.

1254 Accessibility Chapter 24

24.15.2 Tools for People with Hearing Impairments

This section, which focuses on accessibility for people with hearing impairments,
begins with the SoundSentry window (Fig. 24.28). SoundSentry is a tool that creates
visual signals to notify users of system events. For example, people with hearing impair-
ments are unable to hear the beeps that normally indicate warnings, so SoundSentry
flashes the screen when a beep occurs. To continue on to the next dialog, click Next.

Fig. 24.27Fig. 24.27Fig. 24.27Fig. 24.27 Accessibility Wizard mouse cursor adjustment tool.

Fig. 24.28Fig. 24.28Fig. 24.28Fig. 24.28 SoundSentry dialog.

Chapter 24 Accessibility 1255

The next window is the ShowSounds window (Fig. 24.29). ShowSounds adds cap-
tions to spoken text and other sounds produced by today’s multimedia-rich software. Note
that, for ShowSounds to work in a specific application, developers must provide the cap-
tions and spoken text specifically within their software. Make selections and click Next.

24.15.3 Tools for Users Who Have Difficulty Using the Keyboard

The next dialog describes StickyKeys (Fig. 24.30). StickyKeys is a program that helps
users who have difficulty pressing multiple keys at the same time. Many important com-
puter commands can be invoked only by pressing specific key combinations. For example,
the reboot command requires the user to press Ctrl+Alt+Delete simultaneously. Stick-
yKeys enables the user to press key combinations in sequence, rather than at the same
time. Click Next to continue to the BounceKeys dialog (Fig. 24.31).

Fig. 24.29Fig. 24.29Fig. 24.29Fig. 24.29 ShowSounds dialog.

Fig. 24.30Fig. 24.30Fig. 24.30Fig. 24.30 StickyKeys window.

1256 Accessibility Chapter 24

Another common problem that affects certain users with disabilities is the accidental
pressing of the same key multiple times. This problem typically is caused by holding a key
down too long. BounceKeys forces the computer to ignore repeated keystrokes. Click
Next.

ToggleKeys (Fig. 24.32) alerts users that they have pressed one of the lock keys (i.e.,
Caps Lock, Num Lock or Scroll Lock) by sounding an audible beep. Make selections and
click Next.

Fig. 24.31Fig. 24.31Fig. 24.31Fig. 24.31 BounceKeys dialog.

Fig. 24.32Fig. 24.32Fig. 24.32Fig. 24.32 ToggleKeys window.

Chapter 24 Accessibility 1257

Next, the Extra Keyboard Help dialog (Fig. 24.33) is displayed. This dialog can
activate a tool that displays information such as keyboard shortcuts and tool tips when such
information is available. Like ShowSounds, this tool requires that software developers
provide the content to be displayed.

Clicking Next will load the MouseKeys (Fig. 24.34) customization window.
MouseKeys is a tool that uses the keyboard to imitate mouse movements. The arrow keys
direct the mouse, and the 5 key indicates a single click. To double click, the user must press
the + key; to simulate the holding down of the mouse button, the user must press the Ins
(Insert) key. To release the mouse button, the user must press the Del (Delete) key. Choose
whether to enable MouseKeys and then click Next.

Fig. 24.33Fig. 24.33Fig. 24.33Fig. 24.33 Extra Keyboard Help dialog.

Fig. 24.34Fig. 24.34Fig. 24.34Fig. 24.34 MouseKeys window.

1258 Accessibility Chapter 24

Today’s computer tools, including most mice, are designed almost exclusively for
right-handed users. Microsoft recognized this problem and added the Mouse Button Set-
tings window (Fig. 24.35) to the Accessibility Wizard. This tool allows the user to
create a virtual left-handed mouse by swapping the button functions. Click Next.

Users can adjust mouse speed through the MouseSpeed (Fig. 24.36) section of the
Accessibility Wizard. Dragging the scroll bar changes the speed. Clicking the Next
button sets the speed and displays the wizard’s Set Automatic Timeouts window
(Fig. 24.37). Although accessibility tools are important to users with disabilities, they can
be a hindrance to users who do not need them. In situations where varying accessibility
needs exist, it is important that the user be able to turn the accessibility tools on and off as
necessary. The Set Automatic Timeouts window specifies a timeout period for enabling
or disabling accessibility tools. A timeout either enables or disables a certain action after
the computer has idled for a specified amount of time. A screen saver is a common example
of a program with a timeout period. Here, a timeout is set to toggle the accessibility tools.

After the user clicks Next, the Save Settings to File dialog appears (Fig. 24.38).
This dialog determines whether the accessibility settings should be used as the default set-
tings, which are loaded when the computer is rebooted or after a timeout. Set the accessi-
bility settings as the default if the majority of users needs them. Users also can save
multiple accessibility settings. The user can create an.acw file, which, when chosen, acti-
vates the saved accessibility settings on any Windows 2000 computer.

24.15.4 Microsoft Narrator
Microsoft Narrator is a text-to-speech program designed for people with visual impair-
ments. It reads text, describes the current desktop environment and alerts the user when cer-
tain Windows events occur. Narrator is intended to aid in the configuration of Microsoft
Windows. It is a screen reader that works with Internet Explorer, Wordpad, Notepad and
most programs in the Control Panel. Although its capabilities are limited outside these
applications, Narrator is excellent at navigating the Windows environment.

Fig. 24.35Fig. 24.35Fig. 24.35Fig. 24.35 Mouse Button Settings window.

Chapter 24 Accessibility 1259

To explore Narrator’s functionality, we explain how to use the program in conjunc-
tion with several Windows applications. Click the Start button and select Programs, fol-
lowed by Accessories, Accessibility and Narrator. Once Narrator is open, it
describes the current foreground window. It then reads the text inside the window aloud to
the user. When the user clicks OK, the dialog in Fig. 24.39 displays.

Fig. 24.36Fig. 24.36Fig. 24.36Fig. 24.36 Mouse Speed dialog.

Fig. 24.37Fig. 24.37Fig. 24.37Fig. 24.37 Set Automatic Timeouts dialog.

1260 Accessibility Chapter 24

Checking the first option instructs Narrator to describe menus and new windows
when they are opened. The second option instructs Narrator to speak the characters that
users type as they type them. The third option moves the mouse cursor to the region cur-
rently being read by Narrator. Clicking the Voice... button enables the user to change the
pitch, volume and speed of the narrator voice (Fig. 24.40).

Now, we demonstrate Narrator in various applications. When Narrator is running,
open Notepad and click the File menu. Narrator announces the opening of the program
and begins to describe the items in the File menu. As a user scrolls down the list, Narrator
reads the item to which the mouse currently is pointing. Type some text and press Ctrl-
Shift-Enter to hear Narrator read it (Fig. 24.41). If the Read typed characters option
is checked, Narrator reads each character as it is typed. Users also can employ the key-
board’s direction arrows to make Narrator read. The up and down arrows cause Narrator
to speak the lines adjacent to the current mouse position, and the left and right arrows cause
Narrator to speak the characters adjacent to the current mouse position.

Fig. 24.38Fig. 24.38Fig. 24.38Fig. 24.38 Saving new accessibility settings.

Fig. 24.39Fig. 24.39Fig. 24.39Fig. 24.39 Narrator window.

Chapter 24 Accessibility 1261

24.15.5 Microsoft On-Screen Keyboard

Some computer users lack the ability to use a keyboard, but are able to use a pointing
device, such as a mouse. For these users, the On-Screen Keyboard is helpful. To access
the On-Screen Keyboard, click the Start button and select Programs, followed by
Accessories, Accessibility and On-Screen Keyboard. Figure 24.42 depicts the
layout of the Microsoft On-Screen Keyboard.

Users who have difficulty using the On-Screen Keyboard can purchase more sophisti-
cated products, such as Clicker 4™ by Inclusive Technology. Clicker 4 is an aid designed
for people who cannot use a keyboard effectively. Its best feature is that it can be custom-
ized. Keys can have letters, numbers, entire words or even pictures on them. For more
information regarding Clicker 4, visit www.inclusive.co.uk/catalog/
clicker.htm.

Fig. 24.40Fig. 24.40Fig. 24.40Fig. 24.40 Voice-settings window.

Fig. 24.41Fig. 24.41Fig. 24.41Fig. 24.41 Narrator reading Notepad text.

1262 Accessibility Chapter 24

24.15.6 Accessibility Features in Microsoft Internet Explorer 5.5
Internet Explorer 5.5 offers a variety of options that can improve usability. To access

IE5.5’s accessibility features, launch the program, click the Tools menu and select
Internet Options.... Then, from the Internet Options menu, press the button labeled
Accessibility... to open the accessibility options (Fig. 24.43).

The accessibility options in IE5.5 are designed to improve the Web browsing experi-
ences of users with disabilities. Users are able to ignore Web colors, Web fonts and font-
size tags. This eliminates accessibility problems arising from poor Web-page design and
allows users to customize their Web browsing. Users can even specify a style sheet, which
formats every Web site that users visit according to their personal preferences.

Fig. 24.42Fig. 24.42Fig. 24.42Fig. 24.42 Microsoft On-Screen Keyboard.

Fig. 24.43Fig. 24.43Fig. 24.43Fig. 24.43 Microsoft Internet Explorer 5.5’s accessibility options.

Chapter 24 Accessibility 1263

In the Internet Options dialog, click the Advanced tab. This opens the dialog
depicted in Fig. 24.44. The first available option is labeled Always expand ALT text for
images. By default, IE5.5 hides some of the <alt> text if the size of the text exceeds that
of the image it describes. This option forces IE5.5 to show all the text. The second option
reads: Move system caret with focus/selection changes. This option is intended to
make screen reading more effective. Some screen readers use the system caret (the blinking
vertical bar associated with editing text) to determine what to read. If this option is not acti-
vated, screen readers might not read Web pages correctly.

Web designers often forget to take accessibility into account when creating Web sites,
and, in attempts to provide large amounts of content, they use fonts that are too small. Many
user agents have addressed this problem by allowing the user to adjust the text size. Click
the View menu and select Text Size to change the font size in pages rendered by IE5.5.
By default, the text size is set to Medium.

In this chapter, we presented a wide variety of technologies that help people with var-
ious disabilities use computers and the Internet. We hope that all our readers will join us in
emphasizing the importance of these capabilities in their schools and workplaces.

Well, that’s it for now. We sincerely hope that you have enjoyed learning with C# How
To Program. As this book went to the presses, we were already at work on Advanced C#
How To Program, a book appropriate for professional developers writing enterprise appli-
cations and for students enrolled in advanced software-development courses.

Fig. 24.44Fig. 24.44Fig. 24.44Fig. 24.44 Advanced accessibility settings in Microsoft Internet Explorer 5.5.

1264 Accessibility Chapter 24

24.16 Internet and World Wide Web Resources
There are many accessibility resources available on the Internet and World Wide Web; this
section lists a variety of these resources.

General Information, Guidelines and Definitions

www.w3.org/WAI
The World Wide Web Consortium’s Web Accessibility Initiative (WAI) site promotes the design of
universally accessible Web sites. This site contains the current guidelines and forthcoming standards
for Web accessibility.

www.w3.org/TR/xhtml1
The XHTML 1.0 Recommendation contains XHTML 1.0 general information, compatibility issues,
document type definition information, definitions, terminology and much more.

www.abledata.com/text2/icg_hear.htm
This page contains a consumer guide that discusses technologies designed for people with hearing
impairments.

www.washington.edu/doit
The University of Washington’s DO-IT (Disabilities, Opportunities, Internetworking and Technolo-
gy) site provides information and Web-development resources for the creation of universally accessi-
ble Web sites.

www.webable.com
The WebABLE site contains links to many disability-related Internet resources; the site is geared to-
wards those developing technologies for people with disabilities.

www.webaim.org
The WebAIM site provides a number of tutorials, articles, simulations and other useful resources that
demonstrate how to design accessible Web sites. The site provides a screen-reader simulation.

deafness.about.com/health/deafness/msubvib.htm
This site provides information on vibrotactile devices, which allow individuals with hearing impair-
ments to experience audio in the form of vibrations.

Developing Accessible Applications with Existing Technologies

wdvl.com/Authoring/Languages/XML/XHTML
The Web Developers Virtual Library provides an introduction to XHTML. This site also contains ar-
ticles, examples and links to other technologies.

www.w3.org/TR/1999/xhtml-modularization-19990406/DTD/doc
The XHTML 1.0 DTD documentation site provides links to DTD documentation for the strict, tran-
sitional and frameset document type definitions.

www.webreference.com/xml/reference/xhtml.html
This Web page contains a list of the frequently used XHTML tags, such as header tags, table tags,
frame tags and form tags. It also provides a description of each tag.

www.w3.org/TR/REC-CSS2/aural.html
This site discusses Aural Style Sheets, outlining the purpose and uses of this new technology.

www.islandnet.com
Lynxit is a development tool that allows users to view any Web site as if they were using a text-only
browser. The site’s form allows you to enter a URL and returns the Web site in text-only format.

Chapter 24 Accessibility 1265

www.trill-home.com/lynx/public_lynx.html
This site allows users to browse the Web with a Lynx browser. Users can view how Web pages appear
to users who are not using the most current technologies.

java.sun.com/products/java-media/speech/forDevelopers/JSML
This site outlines the specifications for JSML, Sun Microsystem’s Java Speech Markup Language.
This language, like VoiceXML, helps improve accessibility for people with visual impairments.

ocfo.ed.gov/coninfo/clibrary/software.htm
This is the U.S. Department of Education’s Web site that outlines software accessibility requirements.
The site helps developers produce accessible products.

www.speech.cs.cmu.edu/comp.speech/SpeechLinks.html
The Speech Technology Hyperlinks page has over 500 links to sites related to computer-based speech
and speech-recognition tools.

www.islandnet.com/accessibility.html
This page provides a list of tips for creating accessible Web pages.

www.chantinc.com/technology
This page is the Chant Web site, which discusses speech technology and how it works. Chant also
provides speech–synthesis and speech-recognition software.

searchmiddleware.techtarget.com/sdefinition/
0,,sid26_gci518993,00.html
This site provides definitions and information about several topics, including CallXML. Its thorough
definition of CallXML differentiates CallXML from VoiceXML, another technology developed by
Voxeo. The site also contains links to other published articles that discuss CallXML.

www.oasis-open.org/cover/callxmlv2.html
This site provides a comprehensive list of the CallXML tags, complete with a description of each tag.
The site also provides short examples on how to apply the tags in various applications.

web.ukonline.co.uk/ddmc/software.html
This site provides links to software designed for people with disabilities.

www.freedomscientific.com
Henter-Joyce is a division of Freedom Scientific that provides software for people with visual impair-
ments. It is the homepage of JAWS (Job Access with Sound).

www-3.ibm.com/able/
This is the homepage of IBM’s accessibility site. It provides information on IBM products and their
accessibility and discusses hardware, software and Web accessibility.

www.w3.org/TR/voice-tts-reqs
This page explains the speech-synthesis markup requirements for voice markup languages.

www.cast.org
CAST (Center for Applied Special Technology) offers software, including a valuable accessibility
checker, that can help individuals with disabilities use computers. The accessibility checker is a Web-
based program that validates the accessibility of Web sites.

Information on Disabilities

deafness.about.com/health/deafness/msubmenu6.htm
This is the home page of deafness.about.com. It provides a wealth of information on the history
of hearing loss, the current state of medical developments and other resources related to these topics.

1266 Accessibility Chapter 24

www.trainingpost.org/3-2-inst.htm
This site presents a tutorial on the Gunning Fog Index. The Gunning Fog Index is a method of grading
text according to its readability.

laurence.canlearn.ca/English/learn/accessibility2001/neads/
index.shtml
INDIE stands for “Integrated Network of Disability Information and Education.” This site is home to
a search engine that helps users find information on disabilities.

www.wgbh.org/wgbh/pages/ncam/accesslinks.html
This page provides links to other accessibility pages across the Web.

SUMMARY
• Enabling a Web site to meet the needs of individuals with disabilities is an important issue.

• Enabling a Web site to meet the needs of individuals with disabilities is an issue relevant to all
business owners.

• Technologies such as voice activation, visual enhancers and auditory aids enable individuals with
disabilities to have access to the web and software applications.

• In 1997, the World Wide Web Consortium (W3C) launched the Web Accessibility Initiative
(WAI). The WAI is an attempt to make the Web more accessible; its mission is described at
www.w3.org/WAI.

• Accessibility refers to the level of usability of an application or Web site for people with disabili-
ties. Total accessibility is difficult to achieve because there are many different disabilities, lan-
guage barriers, and hardware and software inconsistencies.

• The majority of Web sites are considered to be either partially or totally inaccessible to people with
visual, learning or mobility impairments.

• The WAI published the Web Content Accessibility Guidelines 1.0, which assign accessibility pri-
orities to a three-tier structure of checkpoints. The WAI currently is working on a draft of the Web
Content Accessibility Guidelines 2.0.

• One important WAI requirement is to ensure that every image, movie and sound on a Web site is
accompanied by a description that clearly defines the item’s purpose; the description is called an
<alt> tag.

• Specialized user agents, such as screen readers (programs that allow users to hear what is being
displayed on their screen) and braille displays (devices that receive data from screen-reading soft-
ware and output the data as braille), allow people with visual impairments to access text-based in-
formation that normally is displayed on the screen.

• Using a screen reader to navigate a Web site can be time consuming and frustrating, because
screen readers are unable to interpret pictures and other graphical content that do not have alterna-
tive text.

• Including links at the top of each Web page provides easy access to the page’s main content.

• Web pages with large amounts of multimedia content are difficult for user agents to interpret un-
less they are designed properly. Images, movies and most non-XHTML objects cannot be read by
screen readers.

• Misused heading tags (<h1>) also present challenges to some Web users—particularly those who
cannot use a mouse.

• Web designers should avoid misuse of the alt attribute; it is intended to provide a short descrip-
tion of an XHTML object that might not load properly on all user agents.

Chapter 24 Accessibility 1267

• The value of the longdesc attribute is a text-based URL, linked to a Web page, that describes
the image associated with the attribute.

• When creating a Web page for the general public, it is important to consider the reading level at
which it is written. Web site designers can make their sites more readable through the use of short-
er words; some users may have difficulty understanding slang and other nontraditional language.

• Web designers often use frames to display more than one XHTML file at a time. Unfortunately,
frames often lack proper descriptions, which prevents users with text-based browsers and users
with visual impairments from navigating the Web site.

• The <noframes> tag allows the designer to offer alternative content to users whose browsers do
not support frames.

• VoiceXML has tremendous implications for people with visual impairments and for illiterate peo-
ple. VoiceXML, a speech recognition and synthesis technology, reads Web pages to users and un-
derstands words spoken into a microphone.

• A VoiceXML document is composed of a series of dialogs and subdialogs, which result in spoken
interaction between the user and the computer. VoiceXML is a voice-recognition technology.

• CallXML, a language created and supported by Voxeo, creates phone-to-Web applications. These
applications tailor themselves to the user’s input.

• When a user accesses a CallXML application, the incoming telephone call is referred to as a ses-
sion. A CallXML application can support multiple sessions that enable the application to receive
multiple telephone calls at any given time.

• A session terminates either when the user hangs up the telephone or when the CallXML applica-
tion invokes the hangup element.

• The contents of a CallXML application are inserted within the <callxml> tag.

• CallXML tags that perform similar tasks should be enclosed between the <block> and </
block> tags.

• To deploy a CallXML application, register with the Voxeo Community, which assigns a telephone
number to the application so that other users may access it.

• Voxeo’s logging feature enables developers to debug their telephone application by observing the
“conversation” between the user and the application.

• Braille keyboards are similar to standard keyboards, except that in addition to having each key la-
beled with the letter it represents, braille keyboards have the equivalent braille symbol printed on
the key. Most often, braille keyboards are combined with a speech synthesizer or a braille display,
so users are able to interact with the computer to verify that their typing is correct.

• People with visual impairments are not the only beneficiaries of the effort being made to improve
markup languages. Individuals with hearing impairments also have a great number of tools to help
them interpret auditory information delivered over the Web.

• Speech synthesis is another area in which research is being done to help people with disabilities.

• Open-source software for people with visual impairments already exists and is often superior to
most of its proprietary, closed-source counterparts. However, it still does not use the Linux OS to
its fullest extent.

• People with hearing impairments will soon benefit from what is called Synchronized Multimedia
Integration Language (SMIL). This markup language is designed to add extra tracks—layers of
content found within a single audio or video file. The additional tracks can contain such data as
closed captioning.

1268 Accessibility Chapter 24

• EagleEyes, developed by researchers at Boston College (www.bc.edu/eagleeyes), is a sys-
tem that translates eye movements into mouse movements. Users move the mouse cursor by mov-
ing their eyes or head and are thereby able to control the computer.

• All of the accessibility options provided by Windows 2000 are available through the Accessibil-
ity Wizard. The Accessibility Wizard takes a user step by step through all of the Windows ac-
cessibility features and configures his or her computer according to the chosen specifications.

• Microsoft Magnifier enlarges the section of your screen surrounding the mouse cursor.

• To solve problems seeing the mouse cursor, Microsoft offers the ability to use larger cursors, black
cursors and cursors that invert objects underneath them.

• SoundSentry is a tool that creates visual signals when system events occur.

• ShowSounds adds captions to spoken text and other sounds produced by today’s multimedia-
rich software.

• StickyKeys is a program that helps users who have difficulty pressing multiple keys at the same
time.

• BounceKeys forces the computer to ignore repeated keystrokes, solving the problem of acciden-
tally pressing the same key more than once.

• ToggleKeys causes an audible beep to alert users that they have pressed one of the lock keys (i.e.,
Caps Lock, Num Lock, or Scroll Lock).

• MouseKeys is a tool that uses the keyboard to emulate mouse movements.

• The Mouse Button Settings tool allows you to create a virtual left-handed mouse by swapping
the button functions.

• A timeout either enables or disables a certain action after the computer has idled for a specified
amount of time. A common use of a timeout is in a screen saver.

• Default settings are loaded when the computer is rebooted.

• You can create an .acw file, which, when chosen, will automatically activate the saved accessi-
bility settings on any Windows 2000 computer.

• Microsoft Narrator is a text-to-speech program for people with visual impairments. It reads text,
describes the current desktop environment and alerts the user when certain Windows events occur.

TERMINOLOGY
<alt> tag action element
accessibility Active Accessibility
accessibility aids in Visual Studio .NET Acts designed to ensure Internet access for
Accessibility Wizard people with disabilities
Accessibility Wizard initialization option .acw
Accessibility Wizard mouse-cursor ADA (Americans with Disabilities Act)

adjustment tool advanced accessibility settings in Microsoft
AccessibilityDescription property Internet Explorer 5.5

of class Control alt attribute
AccessibilityName property of class Americans with Disabilities Act (ADA)

Control answer element
AccessibleDescription property of class <assign> tag (<assign>…</assign>)

Control assign element
AccessibleName property of class Control Aural Style Sheet
AccessibleRole enumeration AuralCSS
AccessibleRole property of class Control block element

Chapter 24 Accessibility 1269

<block> tag (<block>…</block>) frame
BounceKeys Freedom Scientific
braille display get request type
braille keyboard getDigits element
<break> tag (<break>…</break>) global variable
call element goto element
callerID attribute <goto> tag (<goto>…</goto>)
CallXML <grammar> tag (<grammar>…</grammar>)
callxml element Gunning Fog Index
CallXML elements headers attribute
CallXML hangup element Henter-Joyce
caption element Home Page Reader (HPR)
Cascading Style Sheets (CSS) HPR (Home Page Reader)
CAST eReader HTTP (HyperText Transfer Protocol)
Center for Applied Special Technology <if> tag (<if>…</if>)
choice element of form tag img element
choice element of menu tag inclusive technology
<choice> tag (<choice>…</choice>) <input>
clear element IsAccessible property of class Control
clearDigits element Java Development Kit (Java SDK 1.3)
Clicker 4 JAWS (Job Access with Sound)
conference element JSML
CORDA Technologies linearized
count attribute if prompt element link element in VoiceXML
CSS (Cascading Style Sheets) <link> tag (<link>…</link>)
CSS2 local dialog
default setting logging feature
Display Color Settings logic element
Display Settings longdesc attribute
D-link Lynx
EagleEyes maxDigits attribute
Emacspeak maxTime attribute
encoding declaration <menu> tag (<menu>…</menu>)
end of session message method attribute
<enumerate> tag Microsoft Internet Explorer accessibility options

(<enumerate>…</enumerate>) Microsoft Magnifier
event handler Microsoft Narrator
exam Microsoft On-Screen Keyboard
hello.xml Mouse Button Settings
isbn.xml mouse cursor
main.vxml Mouse Speed dialog
publications.vxml MouseHover event
withheaders.html MouseKeys
withoutheaders.html Narrator reading Notepad text
<exit> tag (<exit>…</exit>) next attribute of choice element
Extra Keyboard Help object
<filled> tag (<filled>…</filled>) Ocularis
Font Size dialog onHangup element
<form> tag (<form>…</form>) onMaxSilence element
format attribute On-Screen Keyboard

1270 Accessibility Chapter 24

SELF-REVIEW EXERCISES
24.1 Expand the following acronyms:

a) W3C.
b) WAI.
c) JAWS.
d) SMIL.
e) CSS.

onTermDigit element TabStop property of class Control
play element targetSessions attribute
post request type termDigits attribute
prompt element in VoiceXML text element
<prompt> tag (<prompt>…</prompt>) text to speech (TTS)
RDK (Redistribution Kit) th element
readability timeout
recordAudio element timeout attribute of prompt element
Redistribution Kit (RDK) title tag (<title>…</title>)
run element ToggleKeys
screen reader track
scroll bar and window border size dialog TTS (text-to-speech) engine
SDK (Software Development Kit) Type class
sendEvent element user agent
session value attribute
session attribute <var> tag (<var>…</var>)
sessionID var attribute
Set Automatic Timeouts version declaration
setting up window element size ViaVoice
shortcut key Visual Studio accessibility guidelines
ShowSounds Voice Server SDK 1.0
SMIL (Synchronized Multimedia Integration voice synthesis

Language) voice technology
Software Development Kit (SDK) VoiceXML
SoundSentry VoiceXML tags
speech recognition Voxeo (www.voxeo.com)
speech synthesis Voxeo Account Manager
speech synthesizer <vxml> tag (<vxml>…</vxml>)
StickyKeys WAI (Web Accessibility Initiative)
style sheet WAI Quick Tip
<subdialog> tag wait element

(<subdialog>…</subdialog>) Web Accessibility Initiative (WAI)
submit attribute Web Content Accessibility Guidelines 1.0
summary attribute Web Content Accessibility Guidelines 2.0
Synchronized Multimedia Integration Language (Working Draft)

(SMIL) World Wide Web Consortium (W3C)
system caret www.voxeo.com (Voxeo)
tab order XHTML Recommendation
tab stop XML GL (XML Guidelines)
TabIndex property of class Control XML Guidelines (XML GL)
table

Chapter 24 Accessibility 1271

24.2 Fill in the blanks in each of the following statements.
a) The highest priority of the Web Accessibility Initiative is to ensure that ,

 and are accompanied by descriptions that clearly define their
purposes.

b) Technologies such as , and enable individuals with
disabilities to work in a large number of positions.

c) Although they are a great layout tool for presenting data, are difficult for
screen readers to interpret and convey clearly to a user.

d) To make a frame accessible to individuals with disabilities, it is important to include
tags on the page.

e) Blind people using computers often are assisted by and .
f) CallXML is used to create applications that allow individuals to receive and

send telephone calls.
g) A tag must be associated with the <getDigits> tag.

24.3 State whether each of the following is true or false. If false, explain why.
a) Screen readers have no problem reading and translating images.
b) When writing Web pages for the general public, it is important to consider the reading

level of the context.
c) The <alt> tag helps screen readers describe the images on a Web page.
d) Blind people have been helped by the improvements made in speech-recognition tech-

nology more than any other group of people.
e) VoiceXML lets users interact with Web content using speech recognition and speech

synthesis technologies.
f) Elements such as onMaxSilence, onTermDigit and onMaxTime are event han-

dlers because they perform specified tasks when invoked.
g) The debugging feature of the Voxeo Account Manager assists developers in de-

bugging their CallXML applications.

ANSWERS TO SELF-REVIEW EXERCISES
24.1 a) World Wide Web Consortium. b) Web Accessibility Initiative. c) Job Access with Sound.
d) Synchronized Multimedia Integration Language. e) Cascading Style Sheets.

24.2 a) image, movie, sound. b) voice activation, visual enhancers and auditory aids. c) tables. d)
<noframes>. e) braille displays, braille keyboards. f) phone-to-Web. g) <onTermDigit>.

24.3 a) False. Screen readers cannot directly interpret images. If the programmer includes an alt
attribute inside the tag, the screen reader reads this description to the user. b) True. c) True.
d) False. Although speech-recognition technology has had a large impact on blind people, speech-rec-
ognition technology has had also a large impact on people who have trouble typing. e) True. f) True.
g) False. The logging feature assists developers in debugging their CallXML application.

EXERCISES
24.4 Insert XHTML markup into each segment to make the segment accessible to someone with
disabilities. The contents of images and frames should be apparent from the context and filenames.

a)
b) <table width = "75%">

 <tr><th>Language</th><th>Version</th></tr>
 <tr><td>XHTML</td><td>1.0</td></tr>

1272 Accessibility Chapter 24

 <tr><td>Perl</td><td>5.6.0</td></tr>
 <tr><td>Java</td><td>1.3</td></tr>
</table>

c) <map name = "links">
<area href = "index.html" shape = "rect"

 coords = "50, 120, 80, 150" />
<area href = "catalog.html" shape = "circle"

 coords = "220, 30" />
</map>
<img src = "antlinks.gif" width = "300" height = "200"

usemap = "#links" />

24.5 Define the following terms:
a) Action element.
b) Gunning Fog Index.
c) Screen reader.
d) Session.
e) Web Accessibility Initiative (WAI).

24.6 Describe the three-tier structure of checkpoints (priority-one, priority-two and priority-three)
set forth by the WAI.

24.7 Why do misused <h1> heading tags create problems for screen readers?

24.8 Use CallXML to create a voice-mail system that plays a voice-mail greeting and records a
message. Have friends and classmates call your application and leave a message.

A
Operator Precedence

Chart

Operators are shown in decreasing order of precedence from top to bottom with each level
of precedence separated by a horizontal line.1

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

.
()
[]
++
--
new
typeof
checked
unchecked

member access
parenthesized expression
element access
post increment
post decrement
object creation
typeof
checked
unchecked

left-to-right

+
-
!
~
++
--

unary plus
unary minus
unary
unary
pre-increment
pre-decrement

left-to-right

Fig. A.1Fig. A.1Fig. A.1Fig. A.1 Operator precedence chart. (Part 1 of 2.)

1. This operator-precedence chart is based on Section 7.2.1, Operator precedence and associativity,
of the C# Language Specification (for more information, visit msdn.microsoft.com/li-
brary/default.asp?url=/library/en-us/csspec/html/CSharpSpec-
Start.asp).

1274 Operator Precedence Chart Appendix A

*
/
%

multiplication
division
modulus

left-to-right

+
-

addition
subtraction

left-to-right

<<
>>

shift left
shift right

left-to-right

<
>
<=
>=
is

relational less than
relational greater than
relational less than or equal to
relational greater than or equal to
type comparison

left-to-right

==
!=

relational is equal to
relational is not equal to

left-to-right

& logical AND left-to-right

^ logical exclusive OR left-to-right

| logical inclusive OR left-to-right

&& conditional AND left-to-right

|| conditional OR left-to-right

?: conditional right-to-left

=
*=
/=
+=
-=
<<=
>>=
&=
^=
|=

assignment
multiplication assignment
division assignment
addition assignment
subtraction assignment
shift left assignment
shift right assignment
logical AND assignment
logical exclusive OR assignment
logical inclusive OR assignment

right-to-left

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

Fig. A.1Fig. A.1Fig. A.1Fig. A.1 Operator precedence chart. (Part 2 of 2.)

B
Number Systems

Objectives
• To understand basic number system concepts such as

base, positional value and symbol value.
• To understand how to work with numbers represented

in the binary, octal and hexadecimal number systems
• To be able to abbreviate binary numbers as octal

numbers or hexadecimal numbers.
• To be able to convert octal numbers and hexadecimal

numbers to binary numbers.
• To be able to covert back and forth between decimal

numbers and their binary, octal and hexadecimal
equivalents.

• To understand binary arithmetic and how negative
binary numbers are represented using two’s
complement notation.

Here are only numbers ratified.
William Shakespeare

Nature has some sort of arithmetic-geometrical coordinate
system, because nature has all kinds of models. What we
experience of nature is in models, and all of nature’s models
are so beautiful.
It struck me that nature’s system must be a real beauty,
because in chemistry we find that the associations are always
in beautiful whole numbers—there are no fractions.
Richard Buckminster Fuller

1276 Number Systems Appendix B

B.1 Introduction
In this appendix, we introduce the key number systems that programmers use, especially

when they are working on software projects that require close interaction with “machine-
level” hardware. Projects like this include operating systems, computer networking software,
compilers, database systems, and applications requiring high performance.

When we write an integer such as 227 or –63 in a program, the number is assumed to
be in the decimal (base 10) number system. The digits in the decimal number system are 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—one less than the
base of 10. Internally, computers use the binary (base 2) number system. The binary
number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit
is 1—one less than the base of 2. Fig. B.1 summarizes the digits used in the binary, octal,
decimal and hexadecimal number systems.

As we will see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages and in high-level languages that enable pro-
grammers to reach down to the “machine level,” find it cumbersome to work with binary
numbers. So two other number systems the octal number system (base 8) and the hexadec-
imal number system (base 16)—are popular primarily because they make it convenient to
abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary
number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires sixteen digits—
a lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters, and numbers like FFE consisting solely of letters. Occasionally, a
hexadecimal number spells a common word such as FACE or FEED—this can appear
strange to programmers accustomed to working with numbers. Fig. B.2 summarizes each
of the number systems.

Outline

B.1 Introduction
B.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal

Numbers
B.3 Converting Octal Numbers and Hexadecimal Numbers to Binary

Numbers
B.4 Converting from Binary, Octal or Hexadecimal to Decimal
B.5 Converting from Decimal to Binary, Octal, or Hexadecimal
B.6 Negative Binary Numbers: Two’s Complement Notation

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises •
Exercises

Appendix B Number Systems 1277

Each of these number systems uses positional notation—each position in which a digit
is written has a different positional value. For example, in the decimal number 937 (the 9,
the 3, and the 7 are referred to as symbol values), we say that the 7 is written in the ones
position, the 3 is written in the tens position, and the 9 is written in the hundreds position.
Notice that each of these positions is a power of the base (base 10), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. B.3).

For longer decimal numbers, the next positions to the left would be the thousands posi-
tion (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hundred-
thousands position (10 to the 5th power), the millions position (10 to the 6th power), the
ten-millions position (10 to the 7th power) and so on.

In the binary number 101, we say that the rightmost 1 is written in the ones position,
the 0 is written in the twos position, and the leftmost 1 is written in the fours position.
Notice that each of these positions is a power of the base (base 2), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. B.4).

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position (2
to the 5th power), the sixty-fours position (2 to the 6th power), and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is written
in the eights position, and the 4 is written in the sixty-fours position. Notice that each of
these positions is a power of the base (base 8), and that these powers begin at 0 and increase
by 1 as we move left in the number (Fig. B.5).

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10)

B (decimal value of 11)

C (decimal value of 12)

D (decimal value of 13)

E (decimal value of 14)

F (decimal value of 15)

Fig. B.1 Digits of the binary, octal, decimal and hexadecimal number systems.

1278 Number Systems Appendix B

For longer octal numbers, the next positions to the left would be the five-hundred-and-
twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8 to the
4th power), the thirty-two-thousand-seven-hundred-and-sixty eights position (8 to the 5th
power), and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position, the
D is written in the sixteens position, and the 3 is written in the two-hundred-and-fifty-sixes
position. Notice that each of these positions is a power of the base (base 16), and that these
powers begin at 0 and increase by 1 as we move left in the number (Fig. B.6).

For longer hexadecimal numbers, the next positions to the left would be the four-thou-
sand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-hun-
dred-and-thirty-six position (16 to the 4th power), and so on.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. B.2 Comparison of the binary, octal, decimal and hexadecimal number
systems.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a
power of the base (10)

102 101 100

Fig. B.3 Positional values in the decimal number system.

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a
power of the base (2)

22 21 20

Fig. B.4 Positional values in the binary number system.

Appendix B Number Systems 1279

B.2 Abbreviating Binary Numbers as Octal Numbers and
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure B.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a
power of the base (8)

82 81 80

Fig. B.5 Positional values in the octal number system.

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-and-
fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a
power of the base (16)

162 161 160

Fig. B.6 Positional values in the hexadecimal number system.

Decimal
number

Binary
representation

Octal
representation

Hexadecimal
representation

 0 0 0 0

 1 1 1 1

 2 10 2 2

 3 11 3 3

 4 100 4 4

 5 101 5 5

 6 110 6 6

 7 111 7 7

Fig. B.7 Decimal, binary, octal, and hexadecimal equivalents (part 1 of 2).

1280 Number Systems Appendix B

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadecimal
(8 and 16 respectively) are powers of the base of the binary number system (base 2). Con-
sider the following 12-digit binary number and its octal and hexadecimal equivalents. See
if you can determine how this relationship makes it convenient to abbreviate binary num-
bers in octal or hexadecimal. The answer follows the numbers.

Binary Number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

To see how the binary number converts easily to octal, simply break the 12-digit binary
number into groups of three consecutive bits each, and write those groups over the corre-
sponding digits of the octal number as follows

100 011 010 001
4 3 2 1

Notice that the octal digit you have written under each group of thee bits corresponds
precisely to the octal equivalent of that 3-digit binary number as shown in Fig. B.7.

The same kind of relationship may be observed in converting numbers from binary to
hexadecimal. In particular, break the 12-digit binary number into groups of four consecu-
tive bits each and write those groups over the corresponding digits of the hexadecimal
number as follows

1000 1101 0001
8 D 1

Notice that the hexadecimal digit you wrote under each group of four bits corresponds
precisely to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. B.7.

 8 1000 10 8

 9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

Decimal
number

Binary
representation

Octal
representation

Hexadecimal
representation

Fig. B.7 Decimal, binary, octal, and hexadecimal equivalents (part 2 of 2).

Appendix B Number Systems 1281

B.3 Converting Octal Numbers and Hexadecimal Numbers to
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting these groups as
their equivalent octal digit values or hexadecimal digit values. This process may be used in
reverse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as its
3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101, and the 3 as its 3-
digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101, and the 5 as its 4-digit binary equivalent 0101 to form the 16-
digit 1111101011010101.

B.4 Converting from Binary, Octal or Hexadecimal to Decimal
Because we are accustomed to working in decimal, it is often convenient to convert a bina-
ry, octal, or hexadecimal number to decimal to get a sense of what the number is “really”
worth. Our diagrams in Section B.1 express the positional values in decimal. To convert a
number to decimal from another base, multiply the decimal equivalent of each digit by its
positional value, and sum these products. For example, the binary number 110101 is con-
verted to decimal 53 as shown in Fig. B.8.

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values as shown in Fig. B.9.

Converting a binary number to decimal

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=32 1*16=16 0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0 + 1 = 53

Fig. B.8 Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. B.9 Converting an octal number to decimal.

1282 Number Systems Appendix B

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this time
using appropriate hexadecimal positional values as shown in Fig. B.10.

B.5 Converting from Decimal to Binary, Octal, or Hexadecimal
The conversions of the previous section follow naturally from the positional notation
conventions. Converting from decimal to binary, octal or hexadecimal also follows these
conventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Positional values: 64 32 16 8 4 2 1

Then we discard the column with positional value 64 leaving:

Positional values: 32 16 8 4 2 1

Next we work from the leftmost column to the right. We divide 32 into 57 and observe
that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column. We divide
16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and write 1 in the 16
column. We divide 8 into 9 and observe that there is one 8 in 9 with a remainder of 1. The
next two columns each produce quotients of zero when their positional values are divided
into 1 so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1 so we write 1 in the 1
column. This yields:

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Positional values: 512 64 8 1

Then we discard the column with positional value 512, yielding:

Positional values: 64 8 1

Converting a hexadecimal number to decimal

Positional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=40960 D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. B.10 Converting a hexadecimal number to decimal.

Appendix B Number Systems 1283

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and write
4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in 7 with
no remainder so we write 7 in the 1 column. This yields:

Positional values: 64 8 1
Symbol values: 1 4 7

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write

Positional values: 4096 256 16 1

Then we discard the column with positional value 4096, yielding:

Positional values: 256 16 1

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a remainder
of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that there are
seven 1s in 7 with no remainder so we write 7 in the 1 column. This yields:

Positional values: 256 16 1
Symbol values: 1 7 7

and thus decimal 375 is equivalent to hexadecimal 177.

B.6 Negative Binary Numbers: Two’s Complement Notation
The discussion in this appendix has been focussed on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation. First
we explain how the two’s complement of a binary number is formed, and then we show
why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

int number = 13;

The 32-bit representation of number is

00000000 00000000 00000000 00001101

To form the negative of number we first form its one’s complement by applying C#’s ^
operator:

onesComplement = number ^ 0x7FFFFFFF;

Internally, onesComplement is now number with each of its bits reversed—ones be-
come zeros and zeros become ones as follows:

1284 Number Systems Appendix B

number:
00000000 00000000 00000000 00001101

onesComplement:
11111111 11111111 11111111 11110010

To form the two’s complement of number we simply add one to number one’s comple-
ment. Thus

Two’s complement of number:
11111111 11111111 11111111 11110011

Now if this is in fact equal to –13, we should be able to add it to binary 13 and obtain a
result of 0. Let us try this:

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

The carry bit coming out of the leftmost column is discarded and we indeed get zero as a
result. If we add the one’s complement of a number to the number, the result would be all
1s. The key to getting a result of all zeros is that the twos complement is 1 more than the
one’s complement. The addition of 1 causes each column to add to 0 with a carry of 1. The
carry keeps moving leftward until it is discarded from the leftmost bit, and hence the result-
ing number is all zeros.

Computers actually perform a subtraction such as

x = a - number;

by adding the two’s complement of number to a as follows:

x = a + (onesComplement + 1);

Suppose a is 27 and number is 13 as before. If the two’s complement of number is actu-
ally the negative of number, then adding the two’s complement of value to a should pro-
duce the result 14. Let us try this:

a (i.e., 27) 00000000 00000000 00000000 00011011
+(onesComplement + 1) +11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

which is indeed equal to 14.

SUMMARY
• When we write an integer such as 19 or 227 or –63 in a C# program, the number is automatically

assumed to be in the decimal (base 10) number system. The digits in the decimal number system
are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—one less than the
base of 10.

• Internally, computers use the binary (base 2) number system. The binary number system has only
two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit is 1—one less than the base of 2.

Appendix B Number Systems 1285

• The octal number system (base 8) and the hexadecimal number system (base 16) are popular pri-
marily because they make it convenient to abbreviate binary numbers.

• The digits of the octal number system range from 0 to 7.

• The hexadecimal number system poses a problem because it requires sixteen digits—a lowest digit
of 0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16). By
convention, we use the letters A through F to represent the hexadecimal digits corresponding to
decimal values 10 through 15.

• Each number system uses positional notation—each position in which a digit is written has a dif-
ferent positional value.

• A particularly important relationship that both the octal number system and the hexadecimal num-
ber system have to the binary system is that the bases of octal and hexadecimal (8 and 16 re-
spectively) are powers of the base of the binary number system (base 2).

• To convert an octal number to a binary number, simply replace each octal digit with its three-digit
binary equivalent.

• To convert a hexadecimal number to a binary number, simply replace each hexadecimal digit with
its four-digit binary equivalent.

• Because we are accustomed to working in decimal, it is convenient to convert a binary, octal or
hexadecimal number to decimal to get a sense of the number’s “real” worth.

• To convert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value, and sum these products.

• Computers represent negative numbers using two’s complement notation.

• To form the negative of a value in binary, first form its one’s complement by applying Visual Ba-
sic’s Xor operator. This reverses the bits of the value. To form the two’s complement of a value,
simply add one to the value’s one’s complement.

TERMINOLOGY

SELF-REVIEW EXERCISES
B.1 The bases of the decimal, binary, octal, and hexadecimal number systems are ,

, , and respectively.

B.2 In general, the decimal, octal, and hexadecimal representations of a given binary number
contain (more/fewer) digits than the binary number contains.

B.3 (True/False) A popular reason for using the decimal number system is that it forms a conve-
nient notation for abbreviating binary numbers simply by substituting one decimal digit per group of
four binary bits.

B.4 The (octal / hexadecimal / decimal) representation of a large binary value is the most concise
(of the given alternatives).

base digit
base 2 number system hexadecimal number system
base 8 number system negative value
base 10 number system octal number system
base 16 number system one’s complement notation
binary number system positional notation
bitwise complement operator (~) positional value
conversions symbol value
decimal number system two’s complement notation

1286 Number Systems Appendix B

B.5 (True/False) The highest digit in any base is one more than the base.

B.6 (True/False) The lowest digit in any base is one less than the base.

B.7 The positional value of the rightmost digit of any number in either binary, octal, decimal, or
hexadecimal is always .

B.8 The positional value of the digit to the left of the rightmost digit of any number in binary,
octal, decimal, or hexadecimal is always equal to .

B.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal ... 256
binary
octal 512 ... 8 ...

B.10 Convert binary 110101011000 to octal and to hexadecimal.

B.11 Convert hexadecimal FACE to binary.

B.12 Convert octal 7316 to binary.

B.13 Convert hexadecimal 4FEC to octal. (Hint: First convert 4FEC to binary then convert that
binary number to octal.)

B.14 Convert binary 1101110 to decimal.

B.15 Convert octal 317 to decimal.

B.16 Convert hexadecimal EFD4 to decimal.

B.17 Convert decimal 177 to binary, to octal, and to hexadecimal.

B.18 Show the binary representation of decimal 417. Then show the one’s complement of 417, and
the two’s complement of 417.

B.19 What is the result when the one’s complement of a number is added to itself?

SELF-REVIEW ANSWERS
B.1 10, 2, 8, 16.

B.2 Fewer.

B.3 False.

B.4 Hexadecimal.

B.5 False. The highest digit in any base is one less than the base.

B.6 False. The lowest digit in any base is zero.

B.7 1 (the base raised to the zero power).

B.8 The base of the number system.

B.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal 4096 256 16 1
binary 8 4 2 1
octal 512 64 8 1

B.10 Octal 6530; Hexadecimal D58.

Appendix B Number Systems 1287

B.11 Binary 1111 1010 1100 1110.

B.12 Binary 111 011 001 110.

B.13 Binary 0 100 111 111 101 100; Octal 47754.

B.14 Decimal 2+4+8+32+64=110.

B.15 Decimal 7+1*8+3*64=7+8+192=207.

B.16 Decimal 4+13*16+15*256+14*4096=61396.

B.17 Decimal 177
to binary:

256 128 64 32 16 8 4 2 1
128 64 32 16 8 4 2 1
(1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)
10110001

to octal:

512 64 8 1
64 8 1
(2*64)+(6*8)+(1*1)
261

to hexadecimal:

256 16 1
16 1
(11*16)+(1*1)
(B*16)+(1*1)
B1

B.18 Binary:

512 256 128 64 32 16 8 4 2 1
256 128 64 32 16 8 4 2 1
(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+
(1*1)
110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

110100001
001011111

000000000

B.19 Zero.

EXERCISES
B.20 Some people argue that many of our calculations would be easier in the base 12 number sys-
tem because 12 is divisible by so many more numbers than 10 (for base 10). What is the lowest digit
in base 12? What might the highest symbol for the digit in base 12 be? What are the positional values
of the rightmost four positions of any number in the base 12 number system?

1288 Number Systems Appendix B

B.21 How is the highest symbol value in the number systems we discussed related to the positional
value of the first digit to the left of the rightmost digit of any number in these number systems?

B.22 Complete the following chart of positional values for the rightmost four positions in each of
the indicated number systems:

decimal 1000 100 10 1
base 6 6 ...
base 13 ... 169
base 3 27

B.23 Convert binary 100101111010 to octal and to hexadecimal.

B.24 Convert hexadecimal 3A7D to binary.

B.25 Convert hexadecimal 765F to octal. (Hint: First convert 765F to binary, then convert that bi-
nary number to octal.)

B.26 Convert binary 1011110 to decimal.

B.27 Convert octal 426 to decimal.

B.28 Convert hexadecimal FFFF to decimal.

B.29 Convert decimal 299 to binary, to octal, and to hexadecimal.

B.30 Show the binary representation of decimal 779. Then show the one’s complement of 779, and
the two’s complement of 779.

B.31 What is the result when the two’s complement of a number is added to itself?

B.32 Show the two’s complement of integer value –1 on a machine with 32-bit integers.

C
Career Opportunities

Objectives
• To explore the various online career services.
• To examine the advantages and disadvantages of

posting and finding jobs online.
• To review the major online career services Web sites

available to job seekers.
• To explore the various online services available to

employers seeking to build their workforces.
What is the city but the people?
William Shakespeare

A great city is that which has the greatest men and women,
If it be a few ragged huts it is still the greatest city in the
whole world.
Walt Whitman

To understand the true quality of people, you must look into
their minds, and examine their pursuits and aversions.
Marcus Aurelius

The soul is made for action, and cannot rest till it be
employed. Idleness is its rust. Unless it will up and think and
taste and see, all is in vain.
Thomas Traherne

1290 Career Opportunities Appendix C

C.1 Introduction
There are approximately 40,000 career-advancement services on the Internet today.1 These
services include large, comprehensive job sites, such as Monster.com (see the upcoming
Monster.com feature), as well as interest-specific job sites such as JustJava-
Jobs.com. Companies can reduce the amount of time spent searching for qualified em-
ployees by building recruiting features on their Web sites or establishing accounts with
career sites. This results in a larger pool of qualified applicants, as online services can au-
tomatically select and reject resumes based on user-designated criteria. Online interviews,
testing services and other resources also expedite the recruiting process.

Applying for a position online is a relatively new method of exploring career opportu-
nities. Online recruiting services streamline the process and allow job seekers to concen-
trate their energies in careers that are of interest to them. Job seekers can explore
opportunities according to geographic location, position, salary or benefits packages.

Job seekers can learn how to write resumes and cover letters, post them online and
search through job listings to find the jobs that best suit their needs. Entry-level positions,
or positions commonly sought by individuals who are entering a specific field or the job
market for the first time; contracting positions; executive-level positions and middle-man-
agement-level positions are all available on the Web.

Outline

C.1 Introduction
C.2 Resources for the Job Seeker
C.3 Online Opportunities for Employers

C.3.1 Posting Jobs Online
C.3.2 Problems with Recruiting on the Web
C.3.3 Diversity in the Workplace

C.4 Recruiting Services
C.5 Career Sites

C.5.1 Comprehensive Career Sites
C.5.2 Technical Positions
C.5.3 Wireless Positions
C.5.4 Contracting Online
C.5.5 Executive Positions
C.5.6 Students and Young Professionals
C.5.7 Other Online Career Services

C.6 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

Appendix C Career Opportunities 1291

 Job seekers will find a number of time-saving features when searching for jobs online.
These include storing and distributing resumes digitally, e-mail notification of possible
positions, salary and relocation calculators, job coaches, self-assessment tools and informa-
tion on continuing education.

In this chapter, we explore online career services from the employer and employee’s
perspective. We suggest sites on which applications can be submitted, jobs can be searched
and applicants can be reviewed. We also review services that build recruiting pages directly
into e-businesses.

C.2 Resources for the Job Seeker
Finding a job online can greatly reduce the amount of time spent applying for a position.
Instead of searching through newspapers and mailing resumes, job seekers can request a
specific positions in specific industries through search engines. Some sites allow job seek-
ers to setup intelligent agents to find jobs that meet their requirements. Intelligent agents
are programs that search and arrange large amounts of data and report answers based on
that data. When the agent finds a potential match, it sends it to the job seeker’s inbox. Re-
sumes can be stored digitally, customized quickly to meet job requirements and e-mailed
instantaneously. A potential candidate also can learn more about a company by visiting its
Web site. Most employment sites are free to job seekers. These sites typically generate their
revenues by charging employers for posting job opportunities and by selling advertising
space on their Web pages (see the Monster.com feature).

Career services, such as FlipDog.com, search a list of employer job sites to find
positions. By searching links to employer Web sites, FlipDog.com is able to identify
positions from companies of all sizes. This feature enables job seekers to find jobs that
employers may not have posted outside the corporation’s Web site.

Monster.com

Super Bowl ads and effective marketing have made Monster.com one of the most
recognizable online brands (see Fig. C.1). In fact, in the 24 hours following Super Bowl
XXXIV, 5 million job searches occurred on Monster.com.2 The site allows people
looking for jobs to post their resumes, search job listings, read advice and information
about the job-search process and take proactive steps to improve their careers. These
services are free to job seekers. Employers can post job listings, search resume databas-
es and become featured employers.

Posting a resume at Monster.com is simple and free. Monster.com has a
resume builder that allows users to post a resume to its site in 15–30 minutes. Each user
can store up to 5 resumes and cover letters on the Monster.com server. Some com-
panies offer their employment applications directly through the Monster.com site.
Monster.com has job postings in every state and all major categories. Users can
limit access to their personal identification information. As one of the leading
recruiting sites on the Web, Monster.com is a good place to begin a job search or to
find out more about the search process.

1292 Career Opportunities Appendix C

Job seekers can visit FlipDog.com and choose, by state, the area in which they are
looking for positions. Applicants also can conduct worldwide searches. After a user selects
a region, FlipDog.com requests the user to choose a job category containing several spe-
cific positions. The user’s choice causes a list of local employers to appear. The user can
specify an employer or request that FlipDog.com search the employment databases for
jobs offered by all employers (see Fig. C.2).

Other services, such as employment networks, also help job seekers in their search.
Sites such as Vault.com (see the Vault.com feature) and WetFeet.com allow job
seekers to post questions in designated chat rooms or on electronic bulletin boards about
employers and positions.

C.3 Online Opportunities for Employers
Recruiting on the Internet provides several benefits over traditional recruiting. For exam-
ple, Web recruiting reaches a much larger audience than posting an advertisement in a local
newspaper. Given the breadth of the services provided by most online career services Web
sites, the cost of posting online can be considerably less than posting positions through tra-
ditional means. Even newspapers, which depend greatly on career opportunity advertising,
are starting online career sites.3

Fig. C.1 Monster.com home page. (Courtesy of Monster.com.]

Monster.com (Cont.)

Appendix C Career Opportunities 1293

Fig. C.2 FlipDog.com job search. (Courtesy of Flipdog.com.)

Vault.com: Finding the Right Job on the Web4

Vault.com allows potential employees to seek out additional, third-party informa-
tion for over 3000 companies. By visiting the Insider Research page, Web users have
access to a profile on the company of their choice, as long as it exists in Vault.com’s
database. In addition to Vault.com’s profile, there is a link to additional commentary
by company employees. Most often anonymous, these messages can provide prospec-
tive employees with potentially valuable decision-making information. However, users
must consider the integrity of the source. For example, a disgruntled employee may
leave a posting that is not an accurate representation of the corporate culture of his or
her company.

The Vault.com Electronic Watercooler™ is a message board that allows visi-
tors to post stories, questions and concerns and to advise employees and job seekers. In
addition, the site provides e-newsletters and feature stories designed to help job seekers
in their search. Individuals seeking information on business, law and graduate schools
can also find information on Vault.com.

Job-posting and career-advancement services for the job seeker are featured on
Vault.com. These services include VaultMatch, a career service that e-mails job
postings as requested, and Salary Wizard™, which helps job seekers determine the
salary they are worth. Online guides with advice for fulfilling career ambitions are also
available.

1294 Career Opportunities Appendix C

e-Fact C.1
According to Forrester Research, 33 percent of today’s average company’s hiring budget
goes toward online career services, while the remaining 66 percent is used for traditional
recruiting mechanisms. Online use is expected to increase to 42 percent by 2004, while tra-
ditional mechanisms may be reduced to 10 percent.5 C.1

Generally, jobs posted online are viewed by a larger number of job seekers than jobs
posted through traditional means. However, it is important not to overlook the benefits of
combining online efforts with human-to-human interaction. There are many job seekers
who are not yet comfortable with the process of finding a job online. Often, online
recruiting is used as a means of freeing up a recruiter’s time for the interviewing process
and final selection.

e-Fact C.2
Cisco Systems cites a 39 percent reduction in cost-per-hire expenses, and a 60 percent re-
duction in the time spent hiring.6 C.2

C.3.1 Posting Jobs Online

When searching for job candidates online, there are many things employers need to consid-
er. The Internet is a valuable tool for recruiting, but one that takes careful planning to ac-
quire the best results. It provides a good supplementary tool, but should not be considered
the complete solution for filling positions. Web sites, such as WebHire (www.web-
hire.com), enhance a company’s online employment search (see the WebHire feature).

There are a variety of sites that allow employers to post jobs online. Some of these sites
require a fee, which generally runs between $100–$200. Postings typically remain on the
Web site for 30–60 days. Employers should be careful to post to sites that are most likely
to be visited by eligible candidates. As we discovered in the previous section, there are a
variety of online career services focused on specific industries, and many of the larger,
more comprehensive sites have categorized their databases by job category.

When designing a posting, the recruiter should consider the vast number of postings
already on the Web. Defining what makes the job position unique, including information
such as benefits and salary, might convince a qualified candidate to further investigate the
position (see Fig. C.3).7

HotJobs.com career postings are cross-listed on a variety of other sites, thus
increasing the number of potential employees who see the job listings. Like Mon-
ster.com and jobfind.com, HotJobs.com requires a fee per listing. Employers
also have the option of becoming HotJobs.com members. Employers can gain access to
HotJob’s Private Label Job Boards (private corporate employment sites), online recruiting
technology and online career fairs.

Employers can also use the site. HR Vault, a feature of Vault.com, provides
employers with a free job-posting site. It offers career-management advice, employer-
to-employee relationship management and recruiting resources.

Vault.com: Finding the Right Job on the Web4 (Cont.)

Appendix C Career Opportunities 1295

Boston Herald Job Find (www.jobfind.com) also charges employers to post on its
site. The initial fee entitles the employer to post up to three listings. Employers have no lim-
itations on the length of their postings.

Other Web sites providing employers with employee recruitment services include
CareerPath.com, America’s Job Bank (www.ajb.dni.us/employer),
CareerWeb (www.cweb.com), Jobs.com and Career.com.

WebHire™8

Designed specifically for recruiters and employers, WebHire is a multifaceted service
that provides employers with end-to-end recruiting solutions. The service offers job-
posting services as well as candidate searches. The most comprehensive of the services,
WebHire™ Enterprise, locates and ranks candidates found through resume-scanning
mechanisms. Clients will also receive a report indicating the best resources for their
search. Other services available through the WebHire™ Employment Services Network
include preemployment screening, tools for assessing employees’ skill levels and in-
formation on compensation packages. An employment law advisor helps organizations
design interview questions.

WebHire™ Agent is an intelligent agent that searches for qualified applicants
based on job specifications. When WebHire Agent identifies a potential candidate, an
e-mail is sent to the candidate to generate interest. WebHire Agent then ranks appli-
cants according to the skills information it gains from the Web search; the information
is stored so that new applicants are distinguished from those who have already received
an e-mail from the site.

Yahoo!® Resumes, a feature of WebHire, allows recruiters to find potential
employees by typing in keywords on the Yahoo! Resumes search engine. Employers
can purchase a year’s membership to the recruiting solution for a flat fee; there are no
per-use charges.

Job Seeker’s Criteria

Position (responsibilities)

Salary

Location

Benefits (health, dental, stock options)

Advancement

Time Commitment

Training Opportunities

Tuition Reimbursement

Corporate Culture

Fig. C.3 List of a job seeker’s criteria.

1296 Career Opportunities Appendix C

C.3.2 Problems with Recruiting on the Web
The large number of applicants presents a challenge to both job seekers and employers.
On many recruitment sites, matching resumes to positions is conducted by resume-filter-
ing software. The software scans a pool of resumes for keywords that match the job de-
scription. While this software increases the number of resumes that receive attention, it
is not a foolproof system. For example, the resume-filtering software might overlook
someone with similar skills to those listed in the job description, or someone whose abil-
ities would enable them to learn the skills required for the position. Digital transmissions
can also create problems because certain software platforms are not always acceptable by
the recruiting software. This sometimes results in an unformatted transmission, or a
failed transmission.

A lack of confidentiality is another disadvantage of online career services. In many
cases, a job candidate will want to search for job opportunities anonymously. This reduces
the possibility of offending the candidate’s current employer. Posting a resume on the Web
increases the likelihood that the candidate’s employer might come across it when recruiting
new employees. The traditional method of mailing resumes and cover letters to potential
employers does not impose the same risk.

According to recent studies, the number of individuals researching employment posi-
tions through traditional means, such as referrals, newspapers and temporary agencies, far
outweighs the number of job seekers researching positions through the Internet.9 Optimists
feel, however, that this disparity is largely due to the early stages of e-business develop-
ment. Given time, online career services will become more refined in their posting and
searching capabilities, decreasing the amount of time it takes for a job seeker to find jobs
and employers to fill positions.

C.3.3 Diversity in the Workplace

Every workplace inevitably develops its own culture. Responsibilities, schedules, dead-
lines and projects all contribute to a working environment. Perhaps the most defining ele-
ments of a corporate culture are the employees. For example, if all employees were to have
the same skills, same backgrounds and the same ideas, the workplace would lack diversity.
It also might lack creativity and enthusiasm. One way to increase the dynamics of an orga-
nization is to employ people of different backgrounds and cultures.

The Internet hosts demographic-specific sites for employers seeking to increase diver-
sity in the workplace. By recruiting people from different backgrounds, new ideas and per-
spectives are brought forth, helping businesses meet the needs of a larger, more diverse
target audience.10

Blackvoices.com and hirediversity.com are demographic-specific Web
sites. BlackVoices™, which functions primarily as a portal (a site offering news, sports and
weather information, as well as Web searches), features job searching capabilities and the
ability for prospective employees to post resumes. HireDiversity is divided into several cat-
egories, including opportunities for African Americans, Hispanics and women. Other
online recruiting services place banner advertisements on ethnic Web sites for companies
seeking diverse workforces.

Appendix C Career Opportunities 1297

The Diversity Directory (www.mindexchange.com) offers international career-
searching capabilities. Users selecting the Diversity site can find job opportunities, infor-
mation and additional resources to help them in their career search. The site can be searched
according to demographics (African American, Hispanic, alternative lifestyle, etc.) or by
subject (employer, position, etc.) via hundreds of links. Featured sites include Bilin-
gualJobs.com, Latin World and American Society for Female Entrepreneurs.

Many sites have sections dedicated to job seekers with disabilities. In addition to pro-
viding job-searching capabilities, these sites include additional resources, such as equal
opportunity documents and message boards. The National Business and Disability Council
(NBDC) provides employers with integration and accessibility information for employing
people with disabilities, and the site also lists opportunities for job seekers.

C.4 Recruiting Services
There are many services on the Internet that help employers match individuals to positions.
The time saved by conducting preliminary searches on the Internet can be dedicated to in-
terviewing qualified candidates and making the best matches possible.

Advantage Hiring, Inc. (www.advantagehiring.com) provides employers with
a resume-screening service. When a prospective employee submits a resume for a partic-
ular position, Advantage Hiring, Inc. presents Net-Interview™, a small questionnaire to
supplement the information presented on the resume. The site also offers SiteBuilder, a ser-
vice that helps employers build an employee recruitment site. An online demonstration can
be found at www.advantagehiring.com. The demonstration walks the user through
the Net-Interview software, as well as a number of other services offered by Advantage
Hiring (see Fig. C.4).

Recruitsoft.com is an application service provider (ASP) that offers companies
recruiting software on a pay-per-hire basis (Recruitsoft receives a commission on hires
made via its service). Recruiter WebTop™ is the company’s online recruiting software. It
includes features such as Web-site hosting, an employee-referral program, skill-based
resume screening, applicant-tracking capabilities and job-board posting capabilities. A
demonstration of Recruiter WebTop’s Corporate Recruiting Solutions can be found at
www.recruitsoft.com/process. Other online recruiting services include
Hire.com, and Futurestep.com™.

The Internet also provides employers with a cost-effective means of testing their pro-
spective employees in such categories as decision making, problem solving and person-
ality. Services such eTest help to reduce the cost of in-house testing and to make the
interview process more effective. Test results, given in paragraph form, present employers
with the interested individual’s strengths and weaknesses. Based on these results, the report
suggests interview methods, such as asking open-ended questions, which are questions that
require more than a “yes” or “no” response. Sample reports and a free-trial test can be found
at www.etest.net.

Employers and job seekers can also find career placement exercises at www.advi-
sorteam.net/User/ktsintro.asp. Some of these services require a fee. The tests
ask several questions regarding the individual’s interests and working style. Results help
candidates determine the best career for their skills and interests.

1298 Career Opportunities Appendix C

C.5 Career Sites
Online career sites can be comprehensive or industry specific. In this section, we explore a
variety of sites on the Web that accommodate the needs of both the job seeker and the em-
ployer. We review sites offering technical positions, free-lancing opportunities and con-
tracting positions.

C.5.1 Comprehensive Career Sites

As mentioned previously, there are many sites on the Web that provide job seekers with
career opportunities in multiple fields. Monster.com is the largest of these sites, attract-
ing the greatest number of unique visitors per month. Other popular online recruiting sites
include JobsOnline.com, HotJobs.com, www.jobtrak.com (a Monster.com
site) and Headhunter.net.

Searching for a job online can be a conducted in a few steps. For example, during an
initial visit to JobsOnline.com, a user is required to fill out a registration form. The
form requests basic information, such as name, address and area of interest. After regis-
tering, members can search through job postings according to such criteria as job category,
location and the number of days the job has been posted. Contact information is provided
for additional communication.

Fig. C.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of
Advantage Hiring, Inc.)

Appendix C Career Opportunities 1299

C.5.2 Technical Positions
Technical positions are becoming widely available as the Internet grows more pervasive.
Limited job loyalty and high turnover rates in technical positions allow job seekers to find
jobs that best suit their needs and skills. Employers are required to rehire continuously to
keep positions filled and productivity levels high. The amount of time for an employer to
fill a technical position can be greatly reduced by using an industry-specific site. Career
sites designed for individuals seeking technical positions are among the most popular on-
line career sites. In this section, we review several sites that offer recruiting and hiring op-
portunities for technical positions.

e-Fact C.3
It costs a company 25 percent more to hire a new technical employee than it does to pay an
already employed individual’s salary.11

C.3

Dice.com (www.dice.com) is a recruiting Web site that focuses on technical
fields. Company fees are based on the number of jobs the company posts and the frequency
with which the postings are updated. Job seekers can post their resumes and search the job
database for free. JustTechJobs.com directs job seekers toward 39 specific computer
technologies for their job search. Language-specific sites include JustJavaJobs.com,
JustCJobs.com and JustPerlJobs.com. Hardware, software and communications
technology sites are also available. Other technology recruiting sites include Hire-
Ability.com, and HotDispatch.com.

C.5.3 Wireless Positions
The wireless industry is developing rapidly. According to WirelessResumes.com, the
number of wireless professionals is 328,000. This number is expected to increase 40 percent
each year for the next five years. To accommodate this growth, and the parallel demand for
professionals, WirelessResumes.com has created an online career site specifically for
the purpose of filling wireless jobs (see the WirelessResumes.com feature).

WirelessResumes.com: Filling Wireless Positions

WirelessResumes.com is an online career site focused specifically on matching
wireless professionals with careers in the industry. This narrow focus enables business-
es to locate new employees quickly—reducing the time and expense attached to tradi-
tional recruiting methods. Similarly, candidates can limit their searches to precisely the
job category of interest. Wireless carriers, device manufacturers, WAP and Bluetooth
developers, e-commerce companies and application service providers (ASPs) are
among those represented on the site.

In addition to searching for jobs and posting a resume, WirelessRe-
sumes.com provides job seekers with resume writing tips, interviewing techniques,
relocation tools and assistance in obtaining a Visa or the completion of other necessary
paperwork. Employers can use the site to search candidates and post job opportunities.

1300 Career Opportunities Appendix C

The Caradyne Group (www.pcsjobs.com), an executive search firm, connects job
seekers to employers in the wireless technology field. Interested job seekers must first fill
out a “Profile Questionnaire.” This information is then entered into The Caradyne Group’s
database and is automatically matched to an open position in the job seeker’s field of exper-
tise. If there are no open positions, a qualified consultant from The Caradyne Group will
contact the job seeker for further a interview and discussion.

C.5.4 Contracting Online

The Internet also serves as a forum for job seekers to find employment on a project-by-
project basis. Online contracting services allow businesses to post positions for which they
wish to hire outside resources, and individuals can identify projects that best suit their in-
terests, schedules and skills.

e-Fact C.4
Approximately six percent of America’s workforce falls into the category of independent con-
tractor.12

C.4

Guru.com (www.guru.com) is a recruiting site for contract employees. Indepen-
dent contractors, private consultants and trainers use guru.com to find short-term and
long-term contract assignments. Tips, articles and advice are available for contractors
who wish to learn more about their industry. Other sections of the site teach users how to
manage their businesses, buy the best equipment and deal with legal issues. Guru.com
includes an online store where contractors can buy products associated with small-busi-
ness management, such as printing services and office supplies. Companies wishing to
hire contractors must register with guru.com, but individuals seeking contract assign-
ments do not.

Monster.com’s Talent Market™ offers online auction-style career services to free
agents. Interested users design a profile, listing their qualifications. After establishing a
profile, free agents “Go Live” to start the bidding on their services. The bidding lasts for
five days during which users can view the incoming bids. At the close of five days, the user
can choose the job of his or her choice. The service is free for users, and bidding employers
pay a commission on completed transactions.

eLance.com is another site where individuals can find contracting work. Interested
applicants can search eLance’s database by category, including business, finance and mar-
keting (Fig. C.5). These projects, or requests for proposals (RFPs), are posted by compa-
nies worldwide. When users find projects for which they feel qualified, they submit bids on
the projects. Bids must contain a user’s required payment, a statement detailing the user’s
skills and a feedback rating drawn from other projects on which the user has worked. If a
user’s bid is accepted, the user is given the project, and the work is conducted over eLance’s
file-sharing system, enabling both the contractor and the employer to contact one another
quickly and easily. For an online demonstration, visit www.elance.com and click on the
take a tour... link.

Other Web sites that provide contractors with projects and information include
eWork® Exchange (www.ework.com), MBAFreeAgent.com, Aquent.com and
WorkingSolo.com.

Appendix C Career Opportunities 1301

C.5.5 Executive Positions

In this section, we discuss the advantages and disadvantages of finding an executive posi-
tion online. Executive career advancement sites usually include many of the features found
on comprehensive job-search sites. Searching for an executive position online differs from
finding an entry-level position online. The Internet allows individuals to continually survey
the job market. However, candidates for executive-level positions must exercise a higher
level of caution when determining who is able to view their resume. Applying for an exec-
utive position online is an extensive process. As a result of the high level of scrutiny passed
on a candidate during the hiring process, the initial criteria presented by an executive level
candidate often are more specific than the criteria presented by the first-time job seeker. Ex-
ecutive positions often are difficult to fill, due to the high demands and large amount of ex-
perience required for the jobs.

SixFigureJobs (www.sixfigurejobs.com) is a recruitment site designed for
experienced executives. Resume posting and job searching is free to job seekers. Other
sites, including www.execunet.com, Monster.com’s ChiefMonster™
(www.chiefmonster.com) and www.nationjob.com are designed for helping
executives find positions.

Fig. C.5 eLance.com request for proposal (RFP) example. (Courtesy of
eLance, Inc.]

1302 Career Opportunities Appendix C

C.5.6 Students and Young Professionals
The Internet provides students and young professionals with tools to get them started in the
job market. Individuals still in school and seeking internships, individuals who are just grad-
uating and individuals who have been in the workforce for a few years make up the target
market. Additional tools specifically designed for this demographic (a population defined by
a specific characteristic) are available. For example, journals kept by previous interns provide
prospective interns with information regarding what to look for in an internship, what to ex-
pect and what to avoid. Many sites will provide information to lead young professionals in
the right direction, such as matching positions to their college or university major.

Experience.com is a career services Web site geared toward the younger popu-
lation. Members can search for positions according to specific criteria, such as geo-
graphic location, job category, keywords, commitment (i.e. full time, part time,
internship), amount of vacation and amount of travel time. After applicants register, they
can send their resumes directly to the companies posted on the site. In addition to the
resume, candidates provide a personal statement, a list of applicable skills and their lan-
guage proficiency. Registered members also receive access to the site’s Job Agent. Up to
three Job Agents can be used by each member. The agents search for available positions,
based on the criteria posted by the member. If a match is made, the site contacts the can-
didate via e-mail.13,14

Internships.wetfeet.com helps students find internships. In addition to
posting a resume and searching for an internship, students can use the relocation calculator
to compare the cost of living in different regions. Tips on building resumes and writing
essays are provided. The City Intern program provides travel, housing and entertainment
guides to interns interviewing or accepting a position in an unfamiliar city, making them
feel more at home in a new location.

In addition to its internship locators, undergraduate, graduate, law school, medical
school and business school services, the Princeton Review’s Web site
(www.review.com) offers career services to graduating students. While searching for a
job, students and young professionals can also read through the site’s news reports or even
increase their vocabulary by visiting the “word for the day.” Other career sites geared
toward the younger population include campuscareercenter.com, brassring-
campus.com and collegegrad.com.

C.5.7 Other Online Career Services

In addition to Web sites that help users find and post jobs online, there are a number of Web
sites that offer features that will enhance searches, prepare users to search online, help ap-
plicants design resumes or help users calculate the cost of relocating.

Salary.com helps job seekers gauge their expected income, based on position, level
of responsibility and years of experience. The search requires job category, ZIP code and
specific job title. Based on this information, the site will return an estimated salary for an
individual living in the specified area and employed in the position described. Estimates are
returned based on the average level of income for the position.

In addition to helping applicants find employment, www.careerpower.com pro-
vides individuals with tests that will help them realize their strengths, weaknesses, values,
skills and personality traits. Based on the results, which can be up to 10–12 pages per test,

Appendix C Career Opportunities 1303

users can best decide what job categories they are qualified for and what career choice will
be best suited to their personal ambitions. The service is available for a fee.

InterviewSmart™ is another service offered through CareerPower that prepares job
seekers of all levels for the interviewing process. The service can be downloaded for a min-
imal fee or can be used on the Web for free. Both versions are available at www.career-
power.com/CareerPerfect/interviewing.htm#is.start.anchor.

Additional services will help applicants find positions that meet their unique needs,
or design their resumes to attract the attention of specific employers. Dog-
friendly.com, organized by geographic location, helps job seekers find opportuni-
ties that allow them to bring their pets to work, and cooljobs.com is a searchable
database of unique job opportunities.

C.6 Internet and World Wide Web Resources

Information Technology (IT) Career Sites

www.dice.com
This is a recruiting Web site that focuses on the computer industry.

www.guru.com
This is a recruiting site for contract employees. Independent contractors, private consultants and train-
ers can use guru.com to find short-term and long-term work.

www.hallkinion.com
This is a Web recruiting service for individuals seeking IT positions.

www.techrepublic.com
This site provides employers and job seekers with recruiting capabilities and information regarding
developing technology.

www.justcomputerjobs.com
This site serves as a portal with access to language-specific sites, including Java, Perl, C and C++.

www.hotdispatch.com
This forum provides software developers with the opportunity to share projects, discuss code and ask
questions.

www.techjobs.bizhosting.com/jobs.htm
This site directs job seekers to links of numerous technological careers listed by location, internet,
type of field, etc.

Career Sites

www.careerbuilder.com
A network of career sites, including IT Careers, USA Today and MSN, CareerBuilder attracts 3 mil-
lion unique job seekers per month. The site provides resume-builder and job-searching agents.

www.recruitek.com
This free site caters to jobs seekers, employers and contractors.

www.monster.com
This site, the largest of the online career sites, allows people looking for jobs to post their resumes,
search job listings and read advice and information about the job-search process. It also provides a
variety of recruitment services for employers.

1304 Career Opportunities Appendix C

www.jobsonline.com
Similar to Monster.com, this site provides opportunities for job seekers and employers.

www.hotjobs.com
This online recruiting site offers cross-listing possibilities on additional sites.

www.jobfind.com
This job site is an example of locally targeted job-search resources. JobFind.com targets the
Boston area.

www.flipdog.com
This site allows online job candidates to search for career opportunities. It employs intelligent agents
to scour the Web and return jobs matching the candidate’s request.

www.cooljobs.com
This site highlights unique job opportunities.

www.inetsupermall.com
This site aids job searchers in creating professional resumes and connecting with employers.

www.wirelessnetworksonline.com
This site helps connect job searchers to careers for which they are qualified.

www.careerweb.com
This site highlights featured employers and jobs and allows job seekers and employers to post and
view resumes, respectively.

www.jobsleuth.com
On this site job seekers can fill out a form that indicates their desired field of employment. Job
Sleuth™ searches the Internet and returns potential matches to the user’s inbox. The service is free.

www.ajb.org
America’s Job Bank is an online recruiting service provided through the Department of Labor and the
state employment service. Searching for and posting positions on the site are free.

Executive Positions

www.sixfigurejobs.com
This is a recruitment site designed for experienced executives.

www.leadersonline.com
This career services Web site offers confidential job searches for mid-level professionals. Potential
job matches are e-mailed to job candidates.

www.ecruitinginc.com
This site is designed to search for employees for executive positions.

Diversity

www.latpro.com
This site is designed for Spanish-speaking and Portuguese-speaking job seekers. In addition to pro-
viding resume-posting services, the site enables job seekers to receive matching positions via e-mail.
Advice and information services are available.

www.blackvoices.com
This portal site hosts a career center designed to match African American job seekers with job op-
portunities.

Appendix C Career Opportunities 1305

www.hirediversity.com
In addition to services for searching for and posting positions, resume-building and updating services
are also available on this site. The site targets a variety of demographics including African Americans,
Asian Americans, people with disabilities, women and Latin Americans.

People with Disabilities

www.halftheplanet.com
This site represents people with disabilities. The site is large and includes many different resources
and information services. A special section is dedicated to job seekers and employers.

www.wemedia.com
This site is designed to meet the needs of people with disabilities. It includes a section for job seekers
and employers.

www.disabilities.com
This site provides users with a host of links to information resources on career opportunities.

www.mindexchange.com
The diversity section of this site provides users with several links to additional resources regarding
people with disabilities and employment.

www.usdoj.gov/crt/ada/adahom1.htm
This is the Americans with Disabilities Act home page.

www.abanet.org/publicserv/mental.html
This is the Web site for The Commission on Mental and Physical Disability Law.

janweb.icdi.wvu.edu
The Job Accommodation Web site offers consulting services to employers regarding integration of
people with disabilities into the workplace.

General Resources

www.vault.com
This site provides potential employees with “insider information” on over 3000 companies. In addi-
tion, job seekers can search through available positions and post and answer questions on the message
board.

www.wetfeet.com
Similar to vault.com, this site allows visitors to ask questions and receive “insider information”
on companies that are hiring.

Special Interest

www.eharvest.com/careers/
This Web site provides job seekers interested in agricultural positions with online career services.

www.opportunitynocs.org
This career services site is for both employers and job seekers interested in non-profit opportunities.

www.experience.com
This Web site is designed specifically for young professionals and students seeking full-time, part-
time and internship positions.

www.internships.wetfeet.com
Students seeking internships can search job listings on this site. It also features City Intern, to help
interns become acquainted with a new location.

1306 Career Opportunities Appendix C

www.brassringcampus.com
This site provides college grads and young professionals with less than five years of experience with
job opportunities. Additional features help users buy cars or find apartments.

Online Contracting

www.ework.com
This online recruiting site matches outside contractors with companies needing project specialists.
Other services provided through eWork include links to online training sites, benefits packages and
payment services and online meeting and management resources.

www.elance.com
Similar to eWork.com, eLance matches outside contractors with projects.

www.MBAFreeAgent.com
This site is designed to match MBAs with contracting opportunities.

www.aquent.com
This site provides access to technical contracting positions.

www.WorkingSolo.com
This site helps contractors begin their own projects.

Recruiting Services

www.advantagehiring.com
This site helps employers screen resumes.

www.etest.net
This site provides employers with testing services to assess the strengths and weaknesses of prospec-
tive employees. This information can be used for better hiring strategies.

www.hire.com
Hire.com’s eRecruiter is an application service provider that helps organizations streamline their
Web-recruiting process.

www.futurestep.com
Executives can register confidentially at Futurestep.com to be considered for senior executive po-
sitions. The site connects registered individuals to positions. It also offers career management services.

www.webhire.com
This site provides employers with end-to-end recruiting solutions.

Wireless Career Resources

www.wirelessresumes.com/
This site connects employers and job seekers with resumes that focus on jobs revolving around wire-
less technology.

www.msua.org/job.htm
This site contains links to numerous wireless job-seeking Web sites.

www.wiwc.org
This site’s focus is wireless communication job searching for women.

www.firstsearch.com
At this site a job seeker is able to discover part-time, full-time and salary-based opportunities in the
wireless industry.

Appendix C Career Opportunities 1307

www.pcsjobs.com
This is the site for The Caradyne Group, which is an executive search firm that focuses on finding job
seekers wireless job positions.

www.cnijoblink.com
CNI Career Networks offers confidential, no-charge job placement in the wireless and telecommuni-
cations industries.

SUMMARY
• The Internet can improve an employer’s ability to recruit employees and help users find career op-

portunities worldwide.

• Job seekers can learn how to write a resume and cover letter, post them online and search through
job listings to find the jobs that best suit their needs.

• Employers can post jobs that can be searched by an enormous pool of applicants.

• Job seekers can store and distribute resumes digitally, receive e-mail notification of possible posi-
tions, use salary and relocation calculators, consult job coaches and use self-assessment tools when
searching for a job on the Web.

• There are approximately 40,000 career-advancement services on the Internet today.

• Finding a job online can greatly reduce the amount of time spent applying for a position. Potential
candidates can also learn more about a company by visiting its Web site.

• Most sites are free to job seekers. These sites typically generate their revenues by charging em-
ployers who post their job opportunities, and by selling advertising space on their Web pages.

• Sites such as Vault.com and WetFeet.com allow job seekers to post questions about employ-
ers and positions in chat rooms and on bulletin boards.

• On many recruitment sites, the match of a resume to a position is conducted with resume-filtering
software.

• A lack of confidentiality is a disadvantage of online career services.

• According to recent studies, the number of individuals researching employment positions through
means other than the Internet, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers.

• Career sites designed for individuals seeking technical positions are among the most popular on-
line career sites.

• Online contracting services allow businesses to post positions for which they wish to hire outside re-
sources, and allow individuals to identify projects that best suit their interests, schedules and skills.

• The Internet provides students and young professionals with some of the necessary tools to get
them started in the job market. The target market is made up of individuals still in school and seek-
ing internships, individuals who are just graduating and individuals who have been in the work-
force for a few years.

• There are a number of Web sites that offer features that enhance job searches, prepare users to
search online, help design applicants’ resumes or help users calculate the cost of relocating.

• Web recruiting reaches a much larger audience than posting an advertisement in the local news-
paper.

• There are a variety of sites that allow employers to post jobs online. Some of these sites require a
fee, which generally runs between $100–$200. Postings remain on the Web site for approximately
30–60 days.

• Employers should try to post to sites that are most likely to be visited by eligible candidates.

1308 Career Opportunities Appendix C

• When designing a job posting, defining what makes a job position unique and including informa-
tion such as benefits and salary might convince a qualified candidate to further investigate the po-
sition.

• The Internet hosts demographic-specific sites for employers seeking to increase diversity in the
workplace.

• The Internet has provided employers with a cost-effective means of testing their prospective em-
ployees in such categories as decision making, problem solving and personality.

TERMINOLOGY

SELF-REVIEW EXERCISES
C.1 State whether each of the following is true or false, if false, explain why.

a) Online contracting services allow businesses to post job listings for specific projects that
can be viewed by job seekers over the Web.

b) Employment networks are Web sites designed to provide information on a selected com-
pany to better inform job seekers of the corporate environment.

c) The large number of applications received over the Internet is considered an advantage
by most online recruiters.

d) There is a greater number of individuals searching for work on the Web than through all
other mediums combined.

e) Sixteen percent of America’s workforce is categorized as independent contractors.

C.2 Fill in the blanks in each of the following statements.
a) There are approximately online career services Web sites on the Internet to-

day.
b) The Internet hosts demographic-specific sites for employers seeking to increase

 in the workplace.
c) In the 24 hours following the Super Bowl, job searches occurred on Mon-

ster.com.
d) Many recruitment sites use to filter through received resumes.
e) Employers should try to post to sites that are most likely to be visited by can-

didates.

ANSWERS TO SELF-REVIEW EXERCISES
C.1 a) True. b) True. c) False. The large number of applicants reduces the amount of time a re-
cruiter can spend interviewing and making decisions. Despite screening processes, many highly qual-
ified applicants can be overlooked. d) False. The number of individuals researching employment
positions through other means, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers. e) False. Six percent of America’s workforce is categorized as in-
dependent consultants.

C.2 a) 40,000. b) diversity. c) 5 million. d) resume-filtering software. e) eligible.

corporate culture open-ended question
demographic pay-per-hire
end-to-end recruiting solutions request for proposal (RFP)
entry-level position resume-filtering software
online contracting service

Appendix C Career Opportunities 1309

EXERCISES
C.3 State whether each of the following is true or false, if false, explain why.

a) RFP is the acronym for request for proposal.
b) The Internet has provided employers with a cost-effective means of testing their prospec-

tive employees in such categories as decision making, problem solving and personality.
c) Online job recruiting can completely replace other means of hiring employees.
d) Posting a job online is less expensive than placing ads in more traditional media.
e) A lack of confidentiality is a disadvantage of online career services.

C.4 Fill in the blanks in each of the following:
a) Finding a job online can greatly the amount of time spent applying for a

position.
b) is an example of a Web site in which contractors can bid on projects.
c) When designing a job posting, defining what makes the position unique and including

information such as and might convince a qualified candidate
to further investigate the position.

d) The Internet hosts for employers seeking to increase diversity in the work-
place.

e) The Internet provides employers with a cost-effective means of testing their prospective
employees in such categories as , and .

C.5 Define the following
a) Corporate culture.
b) Pay-per-hire.
c) Request for proposal (RFP).
d) Resume-filtering software.

C.6 (Class discussion). In this chapter, we discuss the short-comings and advantages of recruiting
on the Internet. Using the text, additional reading material and personal accounts answer the follow-
ing questions. Be prepared to discuss your answers.

a) Do you think finding a job is easier on the Web? Why or why not?
b) What disadvantages can you identify?
c) What are some of the advantages?
d) Which online recruiting services do you think will be most successful? Why?

C.7 Many of the career services Web sites we have discussed in this chapter offer resume-build-
ing capabilities. Begin building your resume, choosing an objective that is of interest to you. Think
of your primary concerns. Are you searching for a paid internship or a volunteer opportunity? Do you
have a specific location in mind? Do you have an opportunity for future employment? Are stock op-
tions important to you? Find several entry-level jobs that meet your requirements. Write a short sum-
mary of your results. Include any obstacles and opportunities.

C.8 In this chapter, we have discussed online contracting opportunities. Visit eLance
(www.elance.com) and search the requests for proposals for contracting opportunities that interest
you or visit guru.com and create a profile.

C.9 In this chapter, we have discussed many career services Web sites. Choose three sites. Ex-
plore the opportunities and resources offered by the sites. Visit any demonstrations, conduct a job
search, build your resume and calculate your salary or relocation expenses. Answer the following
questions.

a) Which site provides the best service? Why?
b) What did you like? Dislike?
c) Write a brief summary of your findings, including descriptions of any features that you

would add.

1310 Career Opportunities Appendix C

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at the
Web site.

1. J. Gaskin, “Web Job Sites Face Tough Tasks,” Inter@ctive Week 14 August 2000: 50.

2. J. Gaskin, 50.

3. M. Berger, “Jobs Supermarket,” Upside November 2000: 224.

4. <www.vault.com>.

5. M. Berger, 224.

6. Cisco Advertisement, The Wall Street Journal 19 October 2000: B13.

7. M. Feffer, “Posting Jobs on the Internet,” 18 August 2000 <www.webhire.com/hr/
spotlight.asp>.

8. <www.webhire.com>.

9. J. Gaskin, 51.

10. C. Wilde, “Recruiters Discover Diverse Value in Web Sites,” Information Week 7 February
2000: 144.

11. A.K. Smith, “Charting Your Own Course,” U.S. News and World Report 6 November 2000: 58.

12. D. Lewis, “Hired! By the Highest Bidder,” The Boston Globe 9 July 2000: G1.

13. <www.experience.com>.

14. M. French, “Experience Inc., E-Recruiting for Jobs for College Students,” Mass High Tech 7
February–13 February 2000: 29.

D
Visual Studio .NET

Debugger

Objectives
• To understand syntax and logic errors.
• To become familiar with the Visual Studio .NET

debugging tools.
• To understand the use of breakpoints to suspend

program execution.
• To be able to examine data using expressions in the

debugging windows.
• To be able to debug methods and objects.
And often times excusing of a fault
Doth make the fault the worse by the excuse.
William Shakespeare

To err is human, to forgive divine.
Alexander Pope, An Essay on Criticism

1312 Visual Studio .NET Debugger Appendix D

D.1 Introduction
Two types of errors occur during software development: syntax errors and logic errors.
Syntax errors (or compilation errors) occur when program statements violate the grammat-
ical rules of a programming language, such as failure to end a statement with a semicolon.
When a compiler detects syntax errors, the compiler terminates without building the appli-
cation. By contrast, logic errors do not prevent programs from compiling or executing, but
rather prevent programs from operating as expected.

Syntax errors are easier to fix than are logic errors. Upon detecting a syntax error, the
compiler gives the description and line number in the Task List window (Fig. D.1). This
information gives the programmer a “clue” as to how to eliminate the error, so the compiler
can create the program. However, logic errors often are more subtle and usually do not
inform the user exactly where in the program the error occurred. This appendix overviews
both types of errors and details Visual Studio .NET’s capabilities for detecting and cor-
recting the these logic errors.

Outline

D.1 Introduction
D.2 Breakpoints
D.3 Examining Data
D.4 Program Control
D.5 Additional Method Debugging Capabilities
D.6 Additional Class Debugging Capabilities

Summary

Fig. D.1Fig. D.1Fig. D.1Fig. D.1 Syntax error.

Syntax
error

Error
message

Appendix D Visual Studio .NET Debugger 1313

Testing and Debugging Tip D.1
After fixing one error, you may observe that the number of overall errors perceived by the
compiler is significantly reduced. 24.0

Testing and Debugging Tip D.2
When the compiler reports a syntax error on a particular line, check that line for the syntax
error. If the error is not on that line, check the preceding few lines of code for the cause of
the syntax error. 24.0

Debugging is the process of finding and correcting logic errors in applications. Logic
errors are more subtle than syntax errors because a program that includes a logic error com-
piles successfully but does not run as expected. Logic errors often are difficult to debug,
because the programmer cannot see the code as it executes. One strategy that novice pro-
grammers often use to debug programs is to display program data directly, using message
boxes or Console.WriteLine statements. For example, the programmer might print
the value of a variable when its value changes to determine whether the variable is assigned
the correct value. This approach is cumbersome, because programmers must insert a line
of code wherever they suspect there might be a problem. Furthermore, once the program
has been debugged, the programmer then must remove the extraneous statements, which
often can be difficult to distinguish from the original program code.

A debugger is software that allows a programmer to analyze program data and trace the
flow of program execution while the application runs. A debugger provides capabilities that
allow the programmer to suspend program execution, examine and modify variables, call
methods without changing the program code and more. In this appendix, we introduce the
Visual Studio .NET debugger and several of its debugging tools. [Note: A program must suc-
cessfully compile before it can be used in the debugger.]

D.2 Breakpoints
Breakpoints are a simple but effective debugging tool. A breakpoint is a marker that a pro-
grammer places in a code listing. When a program reaches a breakpoint, execution paus-
es—this allows the programmer to examine the state of the program and ensure that it is
working as expected. Figure D.2 is a program that outputs the value of ten factorial (10!)1,
but contains two logic errors—the first iteration of the loop multiplies x by 10 instead of
multiplying x by 9, and the result of the factorial calculation is multiplied by 0 (so the result
is always 0). We use this program to demonstrate Visual Studio .NET’s debugging abili-
ties—using its breakpoint capabilities as our first example.

1. The factorial of x (x!) is defined as the product of all digits less than or equal to x but greater than
zero. For example, 10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1.

1 // Fig. D.2: DebugExample.cs
2 // Sample program to debug.
3
4 using System;
5

Fig. D.2Fig. D.2Fig. D.2Fig. D.2 Debug sample program. (Part 1 of 2.)

1314 Visual Studio .NET Debugger Appendix D

To set breakpoints in Visual Studio, click the gray area to the left of any line of code
or right-click a line of code and select Insert Breakpoint. A solid red circle appears, indi-
cating that the breakpoint has been set (Fig. D.3). The program execution is suspended
when it reaches the line containing the breakpoint.

To enable breakpoints and other debugging features, we must compile the program
using the debug configuration (Fig. D.4). Select Debug from the configuration toolbar if
it is not already selected. Alternatively, select Build > Configuration Manager and
change the Active Solution Configuration to Debug.

6 namespace Debug
7 {
8 class DebugExample
9 {

10 static void Main(string[] args)
11 {
12 int x = 10;
13
14 Console.Write("The value of " + x + " factorial is: ");
15
16 // loop to determine x factorial, contains logic error
17 for (int i = x; i >= 0; i--)
18 x *= i;
19
20 Console.Write(x);
21
22 Console.ReadLine(); // delay program exit
23
24 } // end main
25
26 } // end class DebugExample
27
28 } // end namespace Debug

The value of 10 factorial is: 0

Fig. D.3Fig. D.3Fig. D.3Fig. D.3 Setting a breakpoint.

Fig. D.2Fig. D.2Fig. D.2Fig. D.2 Debug sample program. (Part 2 of 2.)

Breakpoint tooltipBreakpoint

Appendix D Visual Studio .NET Debugger 1315

Selecting Debug > Start compiles the program and begins debugging. When debug-
ging a console application, the console window appears (Fig. D.5), allowing program inter-
action (input and output). When the debugger reaches the breakpoint (line 18) program
execution is suspended, and the IDE becomes the active window. Programmers may need
to switch between the IDE and the console window while debugging programs.

Figure D.6 shows the IDE with program execution suspended at the breakpoint. The
yellow arrow to the left of the statement

x *= i;

indicates the line at which execution is suspended and that the line contains the next state-
ment to execute. Note that the title bar of the IDE displays [break]—this indicates that the
IDE is in break mode (i.e., the debugger is running). Once the program reaches the break-
point, a programmer can “hover” with the mouse on a variable (in this case x or i) in the
source code to view the value of that variable in a tooltip as shown in Fig. D.6.

Testing and Debugging Tip D.3
Placing a breakpoint after a loop in a program allows the loop to complete without stopping
before the breakpoint is reached. 24.0

D.3 Examining Data
Visual Studio .NET includes several debugging windows that allow programmers to exam-
ine variables and expressions. All the windows are accessible from the
Debug > Windows submenu. Some windows are listed only when the IDE is in break
mode (also called debug mode). The Watch window, which is available only in break
mode (Fig. D.7), allows programmers to examine the values of related groups of variables
and expressions. Visual Studio .NET provides a total of four Watch windows.
.

Fig. D.4Fig. D.4Fig. D.4Fig. D.4 Debug configuration setting.

Debug
setting

Fig. D.5Fig. D.5Fig. D.5Fig. D.5 Console application suspended for debugging.

1316 Visual Studio .NET Debugger Appendix D

Upon first opening, the Watch window will not contain any expressions to evaluate. To
examine data, type an expression into the Name field. Most valid C# expressions can be
entered in the Name field, including expressions that contain method calls. Consult the doc-
umentation under “debugger, expressions” for a full description of valid expressions.

Once an expression is entered, its type and value appear in the Value and Type fields.
The first expression entered is the variable i, which has a value of 10 (line 12 assigns the
value of 10 to variable x, and line 17 assigns the value of x to i). The Watch window also
can evaluate more complex arithmetic expressions (e.g, (i + 3) * 5). Thus, the Watch
window provides a convenient way to display various types of program data without mod-
ifying code.

Fig. D.6Fig. D.6Fig. D.6Fig. D.6 Execution suspended at a breakpoint.

Fig. D.7Fig. D.7Fig. D.7Fig. D.7 Watch window.

Yellow arrow indicates next
statement to be executed

Title bar displays [break]

Expressions

Appendix D Visual Studio .NET Debugger 1317

By entering the variables and expressions that are relevant to a program’s logic error,
programmers can trace incorrect values to the source of the error and eliminate it. For
example, to debug the program in Fig. D.2, we might enter the expression i * x in the
Watch window. When we reach the breakpoint for the first time, the expression has a value
100 instead of 90, which indicates a logic error in our program. This occurs because the
loop at lines 17–18 started multiplying x by 10 as opposed to multiplying by 9. We sub-
tract 1 from the initial value that the for loop assigns to i (i.e., change 10 to 9) to correct
the error.

If a Name field in the Watch window contains a variable name, the variable’s value
can be modified for debugging purposes. To modify a variable’s value, click its value in the
Value field and enter a new value. Any modified value appears in red.

If an expression is invalid, an error appears in the Value field. For example, Variable-
ThatDoesNotExist is not an identifier used in the program (fourth line in Fig. D.7).
Therefore, Visual Studio .NET issues an error message in the Value field. To remove an
expression, select it and press Delete.

Visual Studio also provides the Locals, Autos and This windows (Fig. D.8), which
are similar to the Watch window, except the programmer does not specify their contents.
The Locals window displays the name and current value for all the variables that have
block scope in the method containing the current statement (indicated by the yellow arrow
in Fig. D.6). The Autos window displays the variables and values of the current statement
and the previous statement. Variables can be changed in either window by clicking the
appropriate Value field and entering a new value. The This window displays data that has
class scope for an object. If the program is inside a static method (such as method Main
in a console application), the This window is empty.

Fig. D.8Fig. D.8Fig. D.8Fig. D.8 Autos, Locals and This windows.

1318 Visual Studio .NET Debugger Appendix D

A programmer can evaluate expressions line-by-line in the Immediate window
(Fig. D.9). To evaluate an expression, a programmer types this expression into the window
and presses Enter. For example, when a programmer enters Console.WriteLine(i)
and presses Enter, the value of i is output to the console window. A developer also can use
the assignment operator (=) to perform assignments in the Immediate window. Notice
that the values for i and x in the Locals window contain these updated values.

Testing and Debugging Tip D.4
Use the Immediate window to call a method one time. Placing a method call inside the
Watch window calls that method every time the program breaks. 24.0

D.4 Program Control
The Visual Studio .NET Debugger give programmers considerable control over the execu-
tion of a program. Using breakpoints and program-control commands provided by the de-
bugger, programmers conveniently can analyze the execution of code at any point in a
program. This is useful when a program contains multiple calls to methods that are known
to execute properly. The Debug toolbar contains buttons that provide convenient access
for controlling the debugging process (Fig. D.10). To display the Debug toolbar, select
View > Toolbars > Debug.

The debug toolbar in Fig. D.10 controls debugger execution. The Restart button exe-
cutes the program from the beginning, pausing at the beginning of the program to allow the
programmer to set breakpoints before the program executes again. The Continue button
resumes execution of a suspended program. The Stop Debugging button ends the debug-
ging session, and the Break All button allows the programmer to suspend an executing
program directly (i.e., without explicitly setting breakpoints). After execution suspends, the
yellow arrow appears indicating the next statement to be executed.

Testing and Debugging Tip D.5
When a program is executing, problems such as infinite loops usually can be interrupted by
selecting Debug > Break All or by clicking the corresponding button on the toolbar. 24.0

Clicking the Show Next Statement button places the cursor on the same line as the
yellow arrow. This command is useful when a programmer needs to return to the current
execution point after setting breakpoints in a program that contains many lines of code.

The Step Over button executes the next executable statement and advances the
yellow arrow to the following line. If the next line of code contains a method call, the
method is executed in its entirety as one step. This button allows the user to execute the
program one line at a time without seeing the details of every method that is called. This is
useful when a program contains multiple calls to methods that are known to execute prop-
erly. We discuss the Step Into and Step Out buttons in the next section.

The Hex button toggles the display format of data. If enabled, Hex displays data in hexa-
decimal (base 16) format, rather than displaying data in decimal (base 10) format. Experi-
enced programmers often prefer to read values in hexadecimal format—especially large
numbers because hexadecimal number representation is more concise and can be converted
easily to binary (base 2) form. For more information about the hexadecimal and decimal
number formats, see Appendix B, Number Systems.

Appendix D Visual Studio .NET Debugger 1319

The Breakpoints window displays all the breakpoints set for the program
(Fig. D.11). A checkbox appears next to each breakpoint, indicating whether the breakpoint
is active (checked) or disabled (unchecked). Lines with disabled breakpoints contain an
unfilled red circle rather than a solid one (Fig. D.12). The debugger does not pause execu-
tion at disabled breakpoints.

Fig. D.9Fig. D.9Fig. D.9Fig. D.9 Immediate window.

Fig. D.10Fig. D.10Fig. D.10Fig. D.10 Debug toolbar icons.

Fig. D.11Fig. D.11Fig. D.11Fig. D.11 Breakpoints window.

assignment

updated value

Continue
debugging

Stop
debugging

Break all Restart
Show next
statement

Step into Step over Step out

Toggle
hexadecimal display

Breakpoint
window

1320 Visual Studio .NET Debugger Appendix D

]

Testing and Debugging Tip D.6
Disabled breakpoints allow the programmer to maintain breakpoints in key locations in the
program so they can be reactivated when needed. Disabled breakpoints are always visible. 24.0

In the Breakpoints window (Fig. D.11), the Condition field displays the condi-
tion that must be satisfied to suspend program execution at that breakpoint. The Hit
Count field displays the number of times the debugger has stopped at each breakpoint.
Double-clicking an item in the Breakpoints window moves the cursor to the line con-
taining that breakpoint.

A programmer can add breakpoints to a program by clicking the New button in the
Breakpoints window. This causes a New Breakpoint dialog to display (Fig. D.13). The
Function, File, Address and Data tabs allow the programmer to suspend execution at
either a method, a line in a particular file, an instruction in memory or when the value of a
variable changes. The Hit Count... button (Fig. D.14) can be used to specify when the
breakpoint should suspend the program (the default is to always break). A breakpoint
can be set to suspend the program when the hit count reaches a specific number, when the
hit count is a multiple of a number or is greater than or equal to a specific number.

The Visual Studio debugger also allows execution to suspend at a breakpoint
depending on the value of an expression. Clicking the Condition… button opens the
Breakpoint Condition dialog (Fig. D.15). The Condition checkbox indicates whether
breakpoint conditions are enabled. The radio buttons determine how the expression in the
text box is evaluated. The is true radio button pauses execution at the breakpoint whenever
the expression is true. The has changed radio button causes program execution to sus-
pend when it first encounters the breakpoint and again each time the expression differs from
its previous value when the breakpoint is encountered. When the New Breakpoint dialog
has been closed, the Breakpoints window displays the condition and hit count options for
the new break point.

Suppose we set x * i != 0 as the condition for the breakpoint in our loop, with the
has changed option enabled. (We might choose to do this because the program produces
an incorrect output of 0). Program execution suspends when it first reaches the breakpoint
and records that the expression has a value of true, because x * i is 100 (or 10 if we
fixed the earlier logic error). We continue, and the loop decrements i. While i is between
10 and 1, the condition’s value never changes, and execution is not suspended at that
breakpoint. When i is 0, the expression x * i != 0 is false, and execution is suspended.
At this point, the programmer identifies the second logic error in our program—the final
iteration of the for loop multiplies the result by 0. To return the IDE to design mode, click
the Stop Debugging button on the Debug toolbar.

Fig. D.12Fig. D.12Fig. D.12Fig. D.12 Disabled breakpoint.

Disabled breakpoint

Appendix D Visual Studio .NET Debugger 1321

Fig. D.13Fig. D.13Fig. D.13Fig. D.13 New Breakpoint dialog.

Fig. D.14Fig. D.14Fig. D.14Fig. D.14 Breakpoint Hit Count dialog.

Fig. D.15Fig. D.15Fig. D.15Fig. D.15 Breakpoint Condition dialog.

Function tab Data tabFile tab Address tab

1322 Visual Studio .NET Debugger Appendix D

D.5 Additional Method Debugging Capabilities
In programs with many methods, it is often difficult to determine which methods may have
been involved in incorrect calculations that resulted in a logic error. To simplify this pro-
cess, the Visual Studio debugger includes tools for analyzing methods and method calls.
We demonstrate some method-debugging tools in the following example (Fig. D.16).

The Call Stack window contains the program’s method call stack, which allows the
programmer to determine the exact sequence of calls that lead to the current method and to
examine calling methods on the stack. This window allows the programmer to determine
the flow of control in the program that resulted in the execution of the current method. For
example, a breakpoint is inserted in MyMethod, the call stack in (Fig. D.17) indicates that
the program called method Main first, followed by MyMethod.

1 // Fig. D.16: MethodDebugExample.cs
2 // Demonstrates debugging methods.
3
4 using System;
5
6 namespace Debug
7 {
8
9 // provides methods on which to demonstrate

10 // Visual Studio’s debug tools
11 class MethodDebug
12 {
13 // entry point for application
14 static void Main(string[] args)
15 {
16 // display MyMethod return values
17 for (int i = 0; i < 10; i++)
18 Console.WriteLine(MyMethod(i));
19
20 Console.ReadLine();
21 } // end method main
22
23 // perform calculation
24 static int MyMethod(int x)
25 {
26 return (x * x) - (3 * x) + 7;
27 } // end method MyMethod
28
29 // method with logic error
30 static int BadMethod(int x)
31 {
32 return 1 / (x - x);
33 } // end method BadMethod
34
35 } // end class MethodDebug
36
37 } // end namespace Debug

Fig. D.16Fig. D.16Fig. D.16Fig. D.16 Debugging methods.

Appendix D Visual Studio .NET Debugger 1323

Double-clicking any line in the Call Stack window displays the next line to be executed
in that method. This allows the programmer to determine how the result of each method will
affect the calling method’s execution. Visual Studio .NET highlights the line in green and dis-
plays the tooltip shown in Fig. D.18.

Visual Studio .NET also provides additional program-control buttons for debugging
methods. The Step Over button executes one statement in a method, then pauses program
execution at the following line. Using Step Over, if an evaluated statement invokes a
method, the method is invoked, and execution stops at the next statement. Using Step Into,
if a statement invokes a method, control transfers to the method for line-by-line. The Step
Out button finishes executing the current method and returns control to the line that called
the method.

Testing and Debugging Tip D.7
Use Step Out to finish a method that was stepped into accidentally. D.7

Figure D.19 lists each program-control debug feature, its shortcut key and a description.
Experienced programmers often prefer using these shortcut keys to access menu commands.

Fig. D.17Fig. D.17Fig. D.17Fig. D.17 Call Stack window.

Most recently called method

Fig. D.18Fig. D.18Fig. D.18Fig. D.18 IDE displaying a method’s calling point.

1324 Visual Studio .NET Debugger Appendix D

Programmers can use the Immediate window, discussed in Section D.3 for testing
method arguments passed to a method (Fig. D.20). Testing the arguments helps determine
if a method is functioning properly.

D.6 Additional Class Debugging Capabilities
In most sophisticated C# programs, a large portion of program data is contained in objects.
For these purposes, Visual Studio includes class debugging features, which allow program-
mers to determine the current state of objects used in a program. We demonstrate some
class debugging features using the code presented in Fig. D.21. To examine an instance of
class DebugEntry, we place a breakpoint at line 43, as shown in Fig. D.22. [Note: A C#
file may contain multiple classes, as is the case with this example.]

Control Button Shortcut Key Description

Continue F5 Continues program execution. Execution continues
until either a breakpoint is encountered or the program
ends (through normal execution).

Stop Debugging Shift + F5 Stops debugging and returns to Visual Studio design
mode.

Step Over F10 Advances to next statement, does not step into method
calls.

Step Into F11 Executes next statement. If the statement contains a
method call, control transfers to the method for line-by-
line debugging. If the statement does not contain a
method call, Step Into behaves like Step Over.

Step Out Shift + F11 Finishes executing the current method and suspends
program execution in the calling method.

Fig. D.19Fig. D.19Fig. D.19Fig. D.19 Debug program control features.

Fig. D.20Fig. D.20Fig. D.20Fig. D.20 Using the Immediate window to debug methods.

Appendix D Visual Studio .NET Debugger 1325

1 // Fig. D.21: DebugClass.cs
2 // Console application to demonstrate object debugging.
3
4 using System;
5
6 namespace ClassDebug
7 {
8
9 // creates array containing three different classes

10 public class DebugEntry
11 {
12 public int someInteger = 123;
13 private int[] integerArray = { 74, 101, 102, 102 };
14 private DebugClass debugClass;
15 private Random randomObject;
16 private object[] list = new object[3];
17
18 // constructor
19 public DebugEntry()
20 {
21 randomObject = new Random();
22 debugClass = new DebugClass("Hello World",
23 new object());
24
25 list[0] = integerArray;
26 list[1] = debugClass;
27 list[2] = randomObject;
28 }
29
30 // display values retrieved from three objects
31 public void DisplayValues()
32 {
33 Console.WriteLine(randomObject.Next());
34 Console.WriteLine(debugClass.SomeString);
35 Console.WriteLine(integerArray[0]);
36 }
37
38 // main entry point for application
39 [STAThread]
40 public static void Main()
41 {
42 DebugEntry entry = new DebugEntry();
43 entry.DisplayValues();
44 }
45 } // end class DebugEntry
46
47 // demonstrates class debugging
48 public class DebugClass
49 {
50 // private variables
51 private string someString;
52 private object privateObject;
53

Fig. D.21Fig. D.21Fig. D.21Fig. D.21 Object debugging example. (Part 1 of 2.)

1326 Visual Studio .NET Debugger Appendix D

To assist class debugging, Visual Studio .NET allows the programmer to expand and
view all data members and properties of a class, including private members. In any of
the three windows (i.e., Watch, Locals, Autos and This), a class that has data members
is displayed with a plus (+) (Fig. D.23). When a programmer clicks the plus box, all the
object’s data members and their values display. If a member references an object, the
object’s data members also can be listed by clicking the object’s plus box.

Many logic errors are the result of incorrect array calculations. To simplify the identi-
fication of such errors, the debugger includes the ability to display all the values in an array.
Figure D.24 displays the contents of the list array. The object at index 0 is and int
array, which is expanded to show its contents. Index 1 contains a DebugClass object—
expanded to show the object’s private data members, as well as a public property.
Index 2 contains a Random object, defined in the Framework Class Library (FCL).

The Visual Studio debugger contains several other debugging windows, including
Threads, Modules, Memory, Disassembly and Registers. These windows are used

54 // constructor
55 public DebugClass(string stringData,
56 object objectData)
57 {
58 someString = stringData;
59 privateObject = objectData;
60 }
61
62 // accessor property for someString
63 public string SomeString
64 {
65 get
66 {
67 return someString;
68 }
69
70 set
71 {
72 someString = value;
73 }
74 } // end property SomeString
75
76 } // end class DebugClass
77
78 } // end namespace ClassDebug

Fig. D.22Fig. D.22Fig. D.22Fig. D.22 Breakpoint location for class debugging.

Fig. D.21Fig. D.21Fig. D.21Fig. D.21 Object debugging example. (Part 2 of 2.)

Appendix D Visual Studio .NET Debugger 1327

by experienced programmers to debug large, complex projects—consult the Visual Studio
.NET documentation for more details on these features.

In this appendix we demonstrated several techniques for debugging programs,
methods and classes. The Visual Studio .NET debugger is a powerful tool, which allows
programmers to build more robust, fault-tolerant programs.

SUMMARY
• Debugging is the process of finding logic errors in applications.

• Syntax errors (or compilation errors) occur when program statements violate the grammatical
rules of a programming language. These errors are caught by the compiler.

• Logic errors are more subtle than syntax errors. They occur when a program compiles successful-
ly, but does not run as expected.

• Debuggers can suspend a program at any point, which allows programmers to examine and set
variables and call methods.

• A breakpoint is a marker set at a line of code. When a program reaches a breakpoint, execution is
suspended. The programmer then can examine the state of the program and ensure that the pro-
gram is working properly.

Fig. D.23Fig. D.23Fig. D.23Fig. D.23 Expanded class in Watch window.

Fig. D.24Fig. D.24Fig. D.24Fig. D.24 Expanded array in Watch window.

1328 Visual Studio .NET Debugger Appendix D

• To enable the debugging features, the program must be compiled using the debug configuration.

• To set breakpoints, click the gray area to the left of any line of code. Alternatively, right-click a
line of code and select Insert Breakpoint.

• The Watch window allows the programmer to examine variable values and expressions. To ex-
amine data, type a valid Visual Basic expression, such as a variable name, into the Name field.
Once the expression has been entered, its type and value appear in the Type and Value fields.

• Variables in the Watch window can be modified by the user for testing purposes. To modify a
variable’s value, click the Value field and enter a new value.

• The Locals window displays the name and current value for all the local variables or objects in
the current scope.

• The Autos window displays the variables and objects used in the previous statement and the cur-
rent statement (indicated by the yellow arrow).

• To evaluate an expression in the Immediate window, simply type the expression into the window
and press Enter.

• The Continue button resumes execution of a suspended program.

• The Stop Debugging button ends the debugging session.

• The Break All button allows the programmer to place an executing program in break mode.

• The Show Next Statement button places the cursor on the same line as the yellow arrow that
indicates the next statement to execute.

• The Step Over button executes the next executable line of code and advances the yellow arrow
to the following executable line in the program. If the line of code contains a method call, the meth-
od is executed in its entirety as one step.

• The Hex button toggles the display format of data. If enabled, Hex displays data in a hexadecimal
(base 16) form, rather than decimal (base 10) form.

• The Breakpoints window displays all the breakpoints currently set for a program.

• Disabled breakpoints allow the programmer to maintain breakpoints in key locations in the pro-
gram so they can be used again when needed.

• The Call Stack window contains the program’s method call stack, which allows the programmer
to determine the exact sequence of calls that led to the current method and to examine calling
methods on the stack.

• The Step Over button executes one statement in a method, then pauses program execution.

• The Step Into button executes next statement. If the statement contains a method call, control
transfers to the method for line-by-line debugging. If the statement does not contain a method call,
Step Into behaves like Step Over.

• The Step Out finishes executing the method and returns control to the line that called the method.

• The Immediate window is useful for testing arguments passed to a method. This helps determine
if a method is functioning properly.

• Visual Studio .NET includes class debugging features which allow the programmer to determine
the current state of any objects used in a program.

• To assist class debugging, Visual Studio .NET allows the programmer to expand and view all data
members variables and properties of an object, including those declared private.

E
Generating

Documentation in Visual
Studio

Objectives
• To introduce Visual Studio .NET’s documentation

generation tool.
• To introduce XML documentation comments.
• To understand XML documentation tags and their

use.
• To be able to generate HTML and XML

documentation files.

1330 Generating Documentation in Visual Studio Appendix E

E.1 Introduction
A single programmer can implement most of the programs from this book. However, in-
dustrial software is more complex, and each project almost always requires the talent of
several programmers. In such projects, communication among programmers is a necessity.
When a programmer writes code for a class, programmers from the same group should un-
derstand how that class operates. For this reason, each programmer should document spe-
cific information on a class, such as the class’s role in a system, the functionality that each
method provides for the class and the purpose of each class variable. This documentation
helps all programmers understand how classes can interoperate, and facilitates modifica-
tion, use and extension of each class.

To facilitate the creation of documentation for a project, Visual Studio .NET provides
the XML documentation tool. This tool converts key pieces of information in source code—
such as the class’s members, the hierarchy to which the class belongs and any other general
remarks the programmer wishes to document—to HTML1 or XML2 format. The pro-
grammer specifies the general remarks to be documented by placing them in special regions
in the code, called XML documentation comments.

In this appendix, we introduce Visual Studio .NET’s documentation capabilities. We
begin by discussing the format and structure of the XML documentation comments that the
documentation-generation tool uses to create the documentation files. We then show how
to generate the documentation through a LIVE-CODE™ example. We recommend reading
through Chapters 8–10 before reading this appendix, because the examples presented in
this appendix relate to the examples from these chapters.

E.2 Documentation Comments
Before the Visual Studio documentation-generation tool can generate documentation files,
the programmer must insert XML documentation comments into the source files. These
comments contain the information that the programmer wishes to document. The documen-
tation-generation tool recognizes only single-line comments that begin with three forward
slashes (///). An example of a simple documentation comment is

/// <summary>

Outline

E.1 Introduction
E.2 Documentation Comments
E.3 Documenting C# Source Code
E.4 Creating Comment Web Pages
E.5 Creating XML Documentation Files

Terminology • Summary

1. HTML is discussed in Appendices I and J.
2. XML is discussed in Chapter 18.

Appendix E Generating Documentation in Visual Studio 1331

/// this is a comment
/// </summary>

In this comment, the first line begins element summary, the second line defines the
text that element summary contains and the third line closes element summary. As we
will discuss later in this text, the documentation tool will document only the text within
these summary tags. All XML declaration comments (excluding the three forward
slashes) must contain well-formed XML. Like general comments, the compiler does not
translate documentation comments to MSIL (Microsoft Intermediate Language), so they do
not become “part of” the program.

Because the documentation tool creates XML files, documentation comments can con-
tain certain types of markup, such as HTML tags and customized XML content. For
example, the documentation comment

/// <summary>
/// Sorts integer array using MySort algorithm
/// </summary>

contains the HTML tags and . In the generated HTML files, MySort appears
as emphasized text (normally italic).

E.3 Documenting C# Source Code
Figure E.1, Fig. E.2 and Fig. E.3 present a modified version of the Point, Circle and
CircleTest classes from Section 9.4 that contains XML documentation comments. In
the text that follows the example, we discuss each XML element used in the documentation
comments. In Section E.4, we discuss how the documentation tool can generate XML doc-
umentation from this file.

1 // Fig. E.1: Point.cs
2 // Class Point maintains an X and Y coordinate.
3
4 using System;
5
6 namespace CircleTest
7 {
8 /// <summary>
9 /// Class <c>Point</c> defines a point as a pair

10 /// of x and y coordinates.
11 /// </summary>
12 public class Point
13 {
14 /// <summary>
15 /// This private member of <c>Point</c>
16 /// represents the x coordinate.
17 /// </summary>
18 /// <returns> The x coordinate as an integer.</returns>
19 private int x;

Fig. E.1Fig. E.1Fig. E.1Fig. E.1 Point marked up with XML comments. (Part 1 of 3.)

1332 Generating Documentation in Visual Studio Appendix E

20
21 /// <summary>
22 /// This private member of <c>Point</c>
23 /// represents the x coordinate.
24 /// </summary>
25 /// <returns> The y coordinate as an integer.</returns>
26 private int y;
27
28 /// <summary>
29 /// Default constructor for class <c>Point</c>.
30 /// </summary>
31 /// <remarks>
32 /// Sets properties <c>X</c> and <c>Y</c> to 0.
33 /// </remarks>
34 public Point()
35 {
36 // implicit call to base-class constructor occurs here
37 }
38
39 /// <summary>
40 /// Constructor for <c>Point</c> that accepts two
41 /// integers that represent the x- and
42 /// y coordinates of the point.
43 /// </summary>
44 /// <remarks>
45 /// Uses <c>X</c> and <c>Y</c>
46 /// properties to set the coordinates of the point,
47 /// not private members <c>x</c>
48 /// and <c>y</c>.
49 /// </remarks>
50 /// <param name="xValue">
51 /// The x coordinate of the circle
52 /// </param>
53 /// <param name="yValue">
54 /// The y coordinate of the circle.
55 /// </param>
56 public Point(int xValue, int yValue)
57 {
58 // implicit call to base-class constructor occurs here
59 X = xValue;
60 Y = yValue;
61 }
62
63 /// <summary>
64 /// Provides get and set access to member
65 /// <c>x</c>.
66 /// </summary>
67 /// <value>
68 /// <c>X</c> accesses the value of the
69 /// <c>x</c> data member.
70 /// </value>
71 public int X
72 {

Fig. E.1Fig. E.1Fig. E.1Fig. E.1 Point marked up with XML comments. (Part 2 of 3.)

Appendix E Generating Documentation in Visual Studio 1333

73 get
74 {
75 return x;
76 }
77
78 set
79 {
80 x = value;
81 }
82 }
83
84 /// <summary>
85 /// Provides get and set access to member
86 /// <c>y</c>.
87 /// </summary>
88 /// <value>
89 /// <c>Y</c> accesses the value of the
90 /// <c>y</c> data member.
91 /// </value>
92 public int Y
93 {
94 get
95 {
96 return y;
97 }
98
99 set
100 {
101 y = value;
102 }
103 }
104
105 /// <summary>
106 /// Converts the <c>Point</c> to
107 /// string format.
108 /// </summary>
109 /// <returns>
110 /// Returns a string in format:
111 /// [x coordinate, y coordinate].
112 /// </returns>
113 public override string ToString()
114 {
115 return "[" + X + ", " + Y + "]";
116 }
117
118 } // end class Point
119 }

1 // Fig. E.2: Circle.cs
2 // Class Circle inherits from Point.

Fig. E.2Fig. E.2Fig. E.2Fig. E.2 Circle class marked up with XML comments. (Part 1 of 4.)

Fig. E.1Fig. E.1Fig. E.1Fig. E.1 Point marked up with XML comments. (Part 3 of 3.)

1334 Generating Documentation in Visual Studio Appendix E

3
4 using System;
5
6 namespace CircleTest
7 {
8 /// <summary>
9 /// Class <c>Circle</c> inherits from class

10 /// <c>Point</c>. It has an additional member to
11 /// represent the radius, a property that provides access
12 /// to it and method <c>Area</c> to compute the area
13 /// of the circle.
14 /// </summary>
15 public class Circle : Point
16 {
17 /// <summary>
18 /// This private member of <c>Circle</c>
19 /// represents the radius.
20 /// </summary>
21 private double radius;
22
23 /// <summary>
24 /// Default constructor for class <c>Circle</c>.
25 /// </summary>
26 /// <remarks>
27 /// Sets the radius to 0.
28 /// </remarks>
29 public Circle()
30 {
31 // implicit call to base class constructor occurs here
32 }
33
34 /// <summary>
35 /// Constructor for <c>Circle</c> that accepts two integers
36 /// that represent the x- and y-coordinates of the circle
37 /// and a double that represents the radius.
38 /// </summary>
39 /// <remarks>
40 /// Uses property <c>Radius</c> to set the radius
41 /// of the circle, not private member
42 /// <c>radius</c>.
43 /// </remarks>
44 /// <param name="xValue">
45 /// The x-coordinate of the circle
46 /// </param>
47 /// <param name="yValue">
48 /// The y-coordinate of the circle.
49 /// </param>
50 /// <param name="radiusValue">
51 /// The radius of the circle.
52 /// </param>
53 public Circle(int xValue, int yValue, double radiusValue)
54 : base(xValue, yValue)
55 {

Fig. E.2Fig. E.2Fig. E.2Fig. E.2 Circle class marked up with XML comments. (Part 2 of 4.)

Appendix E Generating Documentation in Visual Studio 1335

56 Radius = radiusValue;
57 }
58
59 /// <summary>
60 /// Provides get and set access to member
61 /// <c>radius</c>.
62 /// </summary>
63 /// <remarks>
64 /// The <c>set</c> method ensures
65 /// that <c>radius</c> is
66 /// not set to a
67 /// negative number.
68 /// </remarks>
69 /// <value>
70 /// <c>Radius</c> accesses the value of the
71 /// <c>radius</c> data member.
72 /// </value>
73 public double Radius
74 {
75 get
76 {
77 return radius;
78 }
79
80 set
81 {
82 if (value >= 0)
83 radius = value;
84 }
85 }
86
87 /// <summary>
88 /// Computes the diameter of the circle.
89 /// </summary>
90 /// <returns>
91 /// Returns the diameter of the circle.
92 /// </returns>
93 public double Diameter()
94 {
95 return Radius * 2;
96 }
97
98 /// <summary>
99 /// Computes the circumference of the circle.
100 /// </summary>
101 /// <remarks>
102 /// Uses constant <c>Math.PI</c>
103 /// <see cref="System.Math.PI"/>
104 /// </remarks>
105 /// <returns>
106 /// Returns the circumference of the circle.
107 /// </returns>

Fig. E.2Fig. E.2Fig. E.2Fig. E.2 Circle class marked up with XML comments. (Part 3 of 4.)

1336 Generating Documentation in Visual Studio Appendix E

108 public double Circumference()
109 {
110 return Math.PI * Diameter();
111 }
112
113 /// <summary>
114 /// Computes the area of the circle.
115 /// </summary>
116 /// <remarks>
117 /// Uses constant <c>Math.PI</c>
118 /// <see cref="System.Math.PI"/>
119 /// </remarks>
120 /// <returns>
121 /// Returns the area of the circle.
122 /// </returns>
123 public double Area()
124 {
125 return Math.PI * Math.Pow(Radius, 2);
126 }
127
128 /// <summary>
129 /// Converts the <c>Circle</c> to
130 /// string format.
131 /// </summary>
132 /// <remarks>
133 /// Overrides <c>ToString</c> method of base class.
134 /// <see cref="CircleTest.Point.ToString"/>
135 /// </remarks>
136 /// <returns>
137 /// Returns a string that includes the center of the
138 /// circle and its radius.
139 /// </returns>
140 public override string ToString()
141 {
142 return "Center = " + base.ToString() +
143 "; Radius = " + Radius;
144 }
145
146 } // end class Circle
147 }

1 // Fig. E.3: CircleTest.cs
2 // Manipulating a Circle object.
3
4 using System;
5 using System.Windows.Forms;
6
7 namespace CircleTest
8 {

Fig. E.3Fig. E.3Fig. E.3Fig. E.3 CircleTest class marked up with XML comments. (Part 1 of 3.)

Fig. E.2Fig. E.2Fig. E.2Fig. E.2 Circle class marked up with XML comments. (Part 4 of 4.)

Appendix E Generating Documentation in Visual Studio 1337

9 /// <summary>
10 /// Class <c>CircleTest</c> test the
11 /// <c>Point</c> and <c>Point</c> classes.
12 /// </summary>
13 class CircleTest
14 {
15 /// <summary>
16 /// Entry point of application.
17 /// </summary>
18 /// <remarks>
19 /// In this application all command-line arguments
20 /// are ignored.
21 /// </remarks>
22 /// <param name="args">
23 /// Optional arguments to Main.
24 /// </param>
25 static void Main(string[] args)
26 {
27 Circle circle = new Circle(37, 43, 2.5);
28
29 // append Circle properties to output
30 string output = "X coordinate is " + circle.X + "\n" +
31 "Y coordinate is " + circle.Y + "\n" +
32 "Radius is " + circle.Radius;
33
34 // set new coordinates and radius
35 circle.X = 2;
36 circle.Y = 2;
37 circle.Radius = 4.25;
38
39 output += "\n\n" +
40 "The new location and radius of circle are " +
41 "\n" + circle + "\n";
42
43 // display Circle's Diameter
44 output += "Diameter is " +
45 String.Format("{0:F}", circle.Diameter()) + "\n";
46
47 // display Circle's Circumference
48 output += "Circumference is " +
49 String.Format("{0:F}", circle.Circumference()) + "\n";
50
51 // display Circle's Area
52 output += "Area is " +
53 String.Format("{0:F}", circle.Area());
54
55 MessageBox.Show(output, "Demonstrating Class Circle");
56
57 } // end method Main
58
59 } // end class CircleTest
60 }

Fig. E.3Fig. E.3Fig. E.3Fig. E.3 CircleTest class marked up with XML comments. (Part 2 of 3.)

1338 Generating Documentation in Visual Studio Appendix E

XML documentation comments can be placed before a class definition, an interface
definition, a constructor or a member (i.e., an instance variable or a reference). The pro-
grammer can place a description (i.e., purpose) of the class in element summary. The
summary element can contain as many lines as necessary to provide a description of the
class method, properties, members, etc. As we will see in the next section, any content
placed in element summary will be marked up in a column (labeled Description) of an
HTML table. An example of a summary is shown on lines 8–11 of Fig. E.1 to provide a
description of class Point. (We also used these tags in Section E.2 when we introduced
documentation comments.)

Two elements commonly used to describe methods are returns and param. Ele-
ment returns contains information on the return value, as illustrated by lines 109–112
of Fig. E.1. Method ToString of Point returns a formatted string that has the point’s
x-y coordinate pair. Similarly, the param element contains information on a method’s
parameters. For example, lines 50–55 of Fig. E.1 associate one param element with vari-
able x, and another param element with variable y.

We use c XML elements to mark up regions of code in our comments. Line 102 of
Fig. E.2 shows the use of the c element to specify that Math.PI should be marked up as
code in the resulting documentation. Notice that the c element contains b element that
places Math.PI in boldface type on the Web page.

The remarks tag enables programmers to document any “miscellaneous” informa-
tion or detailed comments. For example, lines 116–119 of Fig. E.2 documents that method
Area uses the constant Math.PI.

The see tag (lines 103, 118 and 134 of Fig. E.2) is references another class or member
(method, constant, property, etc.). Any member can be referenced by using the fully qual-
ifying name (e.g., System.Console.ReadLine). The value tag (lines 67–70 and
88–91 of Fig. E.1 and lines 69–72 of Fig. E.2) is used to describe properties. These com-
ments have no effect on the comment Web pages that can be generated.

For more information on these tags and other tags to use, visit the following URI:

ms-help://MS.VSCC/MS.MSDNVS/csref/html/
vclrftagsfordocumentationcomments.htm

Fig. E.3Fig. E.3Fig. E.3Fig. E.3 CircleTest class marked up with XML comments. (Part 3 of 3.)

Appendix E Generating Documentation in Visual Studio 1339

E.4 Creating Comment Web Pages
In this section, we show how Visual Studio .NET can create documentation in Web-page
format from source code that contains the XML documentation comments. We demon-
strate this feature on the project containing the classes of Fig. E.1, Fig. E.2 and Fig. E.3.
After opening this project, select Tools > Build Comment Web Pages (Fig. E.4).
The Build Comment Web Pages window will appear, enabling the developer to specify
the project(s) containing the files that Visual Studio .NET should document (Fig. E.5). If
the developer selects Build for entire Solution, Visual Studio .NET will document all
files in the current solution. If the developer selects Build for selected Projects, Visual
Studio .NET will document only those files in the project that the developer specifies. In
addition, the developer can specify the directory where Visual Studio .NET should store the
generated HTML content. If the developer selects Add to Favorites, Visual Studio .NET
will bookmark this content in the Favorites menu of Internet Explorer.

Press OK to generate the HTML content. Visual Studio immediately creates and dis-
plays the documentation using a style sheet. In our example, the user can view the commu-
nication from classes Circle, CircleTest and Point by selecting the desired class
in the left-most column. Figure E.6 shows the documentation for class Circle.

Note that all member names and summary elements in Fig. E.2 have been formatted
and placed in Members and Description columns, respectively (Fig. E.6). Selecting an
item from the Members column opens an HTML page associated with that item.
Figure E.7 shows the HTML page associated with method Area of class Circle. Notice
that the returns tags in Fig. E.2 on lines 120–122 mark up the text that is documented as
the text placed in the Description column.

Fig. E.4Fig. E.4Fig. E.4Fig. E.4 Selecting the Build Comment Web Pages from Tools menu.

1340 Generating Documentation in Visual Studio Appendix E

Fig. E.5Fig. E.5Fig. E.5Fig. E.5 Saving a document to a file.

Fig. E.6Fig. E.6Fig. E.6Fig. E.6 XHTML documentation of class Circle.

Appendix E Generating Documentation in Visual Studio 1341

E.5 Creating XML Documentation Files
In this section, we discuss how to generate an XML documentation file that contains all el-
ements in the source code comments. An application then can read such a file and create
custom documentation from its information.

To create an XML documentation file for a project, right-click on the project in the
Solution Explorer and select Properties. Select the Configuration folder, then the
Build tab. Change the XML Documentation File property to the name of the file that
will store the XML documentation and click OK. If this file does not exist, Visual Studio
will create the file and place it in the bin/Debug directory of the current project. Select
Build > Build Solution to compile the project and create the XML document. Figure E.8
shows the XML document generated for the example in Fig. E.1–Fig. E.3.

Fig. E.7Fig. E.7Fig. E.7Fig. E.7 XHTML documentation of method Area method of class Circle.

1 <?xml version="1.0"?>
2 <doc>
3 <assembly>
4 <name>Point-Circle</name>
5 </assembly>
6 <members>

Fig. E.8Fig. E.8Fig. E.8Fig. E.8 XML documentation generated by Visual Studio .NET. (Part 1 of 6.)

1342 Generating Documentation in Visual Studio Appendix E

7
8 <member name="T:CircleTest.Circle">
9 <summary>

10 Class <c>Circle</c> inherits from class
11 <c>Point</c>. It has an additional member to
12 represent the radius, a property that provides
13 accessto it and method <c>Area</c> to
14 compute the area of the circle.
15 </summary>
16 </member>
17
18 <member name="T:CircleTest.Point">
19 <summary>
20 Class <c>Point</c> defines a point as a pair
21 of x and y coordinates.
22 </summary>
23 </member>
24
25 <member name="F:CircleTest.Point.xCoordinate">
26 <summary>
27 This protected member of <c>Point</c>
28 represents the x coordinate.
29 </summary>
30 <returns> The x coordinate as an integer.</returns>
31 </member>
32
33 <member name="F:CircleTest.Point.yCoordinate">
34 <summary>
35 This protected member of <c>Point</c>
36 represents the x coordinate.
37 </summary>
38 <returns> The y coordinate as an integer.</returns>
39 </member>
40
41 <member name="M:CircleTest.Point.#ctor">
42 <summary>
43 Default constructor for class <c>Point</c>.
44 </summary>
45 <remarks>
46 Sets properties <c>X</c> and <c>Y</c> to 0.
47 </remarks>
48 </member>
49
50 <member name=
51 "M:CircleTest.Point.#ctor(System.Int32,System.Int32)">
52 <summary>
53 Constructor for <c>Point</c>
54 that accepts two integers
55 that represent the x and y coordinates of the point.
56 </summary>
57 <remarks>
58 Uses <c>X</c> and <c>Y</c>
59 properties to set the coordinates of the point,

Fig. E.8Fig. E.8Fig. E.8Fig. E.8 XML documentation generated by Visual Studio .NET. (Part 2 of 6.)

Appendix E Generating Documentation in Visual Studio 1343

60 not private members <c>x</c>
61 and <c>y</c>.
62 </remarks>
63 <param name="xValue">
64 The x coordinate of the circle
65 </param>
66 <param name="yValue">
67 The y coordinate of the circle.
68 </param>
69 </member>
70
71 <member name="M:CircleTest.Point.ToString">
72 <summary>
73 Converts the <c>Point</c> to
74 string format.
75 </summary>
76 <returns>
77 Returns a string in format:
78 [x coordinate, y coordinate].
79 </returns>
80 </member>
81
82 <member name="P:CircleTest.Point.X">
83 <summary>
84 Provides get and set access to member
85 <c>x</c>.
86 </summary>
87 <value>
88 <c>X</c> accesses the value of the
89 <c>x</c> data member.
90 </value>
91 </member>
92
93 <member name="P:CircleTest.Point.Y">
94 <summary>
95 Provides get and set access to member
96 <c>y</c>.
97 </summary>
98 <value>
99 <c>Y</c> accesses the value of the
100 <c>y</c> data member.
101 </value>
102 </member>
103
104 <member name="F:CircleTest.Circle.radius">
105 <summary>
106 This private member of <c>Circle</c>
107 represents the radius.
108 </summary>
109 </member>
110
111 <member name="M:CircleTest.Circle.#ctor">
112 <summary>

Fig. E.8Fig. E.8Fig. E.8Fig. E.8 XML documentation generated by Visual Studio .NET. (Part 3 of 6.)

1344 Generating Documentation in Visual Studio Appendix E

113 Default constructor for class <c>Circle</c>.
114 </summary>
115 <remarks>
116 Sets the radius to 0.
117 </remarks>
118 </member>
119
120 <member name="M:CircleTest.Circle.#ctor(System.Int32,
121 System.Int32,System.Double)">
122 <summary>
123 Constructor for <c>Circle</c> that accepts two
124 integersthat represent the x and y coordinates of the
125 circle and a double that represents the radius.
126 </summary>
127 <remarks>
128 Uses property <c>Radius</c> to set the radius
129 of the circle, not private member
130 <c>radius</c>.
131 </remarks>
132 <param name="xValue">
133 The x coordinate of the circle
134 </param>
135 <param name="yValue">
136 The y coordinate of the circle.
137 </param>
138 <param name="radiusValue">
139 The radius of the circle.
140 </param>
141 </member>
142
143 <member name="M:CircleTest.Circle.Diameter">
144 <summary>
145 Computes the diameter of the circle.
146 </summary>
147 <returns>
148 Returns the diameter of the circle.
149 </returns>
150 </member>
151
152 <member name="M:CircleTest.Circle.Circumerence">
153 <summary>
154 Computes the circumference of the circle.
155 </summary>
156 <remarks>
157 Uses constant <c>Math.PI</c>
158 <see cref="F:System.Math.PI"/>
159 </remarks>
160 <returns>
161 Returns the circumference of the circle.
162 </returns>
163 </member>
164
165 <member name="M:CircleTest.Circle.Area">

Fig. E.8Fig. E.8Fig. E.8Fig. E.8 XML documentation generated by Visual Studio .NET. (Part 4 of 6.)

Appendix E Generating Documentation in Visual Studio 1345

166 <summary>
167 Computes the area of the circle.
168 </summary>
169 <remarks>
170 Uses constant <c>Math.PI</c>
171 <see cref="F:System.Math.PI"/>
172 </remarks>
173 <returns>
174 Returns the area of the circle.
175 </returns>
176 </member>
177
178 <member name="M:CircleTest.Circle.ToString">
179 <summary>
180 Converts the <c>Circle</c> to
181 string format.
182 </summary>
183 <remarks>
184 Overrides <c>ToString</c> method of base class.
185 <see cref="!:CircleTest.Point.ToString"/>
186 </remarks>
187 <returns>
188 Returns a string that includes the center of the
189 circle and its radius.
190 </returns>
191 </member>
192
193 <member name="P:CircleTest.Circle.Radius">
194 <summary>
195 Provides get and set access to member
196 <c>radius</c>.
197 </summary>
198 <remarks>
199 The <c>set</c> method
200 ensures that <c>radius</c>
201 is not set to a
202 negative number.
203 </remarks>
204 <value>
205 <c>Radius</c> accesses the value of the
206 <c>radius</c> data member.
207 </value>
208 </member>
209
210 <member name="T:CircleTest.CircleTest">
211 <summary>
212 Class <c>CircleTest</c> inherits from class
213 tests the <c>Point</c> and
214 <c>Point</c> classes.
215 </summary>
216 </member>
217
218 <member name="M:CircleTest.CircleTest.Main(System.String[])">

Fig. E.8Fig. E.8Fig. E.8Fig. E.8 XML documentation generated by Visual Studio .NET. (Part 5 of 6.)

1346 Generating Documentation in Visual Studio Appendix E

Notice that only class members are included in the generated XML file. Each class
member has a member element which includes all XML comments for that member. For
example, lines 50–69 define a member element that contains information on the two-argu-
ment Point constructor. The name attribute of a member tag is a string that contains
information about the name and type of the member. The type is specified by a capital
letter: M stands for method, P for property (or indexer), E for event and T for type (i.e,
class). For a complete listing of these abbreviations, select Help > Index, then locate the
topic processing XML files in C#. In Fig. E.8, line 51 contains the value of the name
attribute and contains an M as the first letter, indicating that line 51 declares a method (recall
that a constructor is a specialized method). A colon follows, after which the full name of
the method is shown. For this example, it is Cir-
cleTest.Point.#ctor(System.Int32,System.Int32). Because this is a
constructor, the string #ctor is used in the fully qualified name. This constructor takes
two int arguments—the parentheses after the name of each member specify that
member’s type.

TERMINOLOGY

219 <summary>
220 Entry point of application.
221 </summary>
222 <remarks>
223 In this application all command-line arguments
224 are ignored.
225 </remarks>
226 <param name="args">
227 Optional arguments to Main.
228 </param>
229 </member>
230
231 </members>
232 </doc>

/// (documentation comment) name attribute of member element
Build Comment Web Pages para element
c element param element
class definition parameters
constructor property
creating XML documentation reference
directory remarks element
documentation return value
Documentation column returns element
HTML see element
instance variable source code
interface definition style sheet
member summary element
member element tag
Members column value element
method declaration XML documentation comment

Fig. E.8Fig. E.8Fig. E.8Fig. E.8 XML documentation generated by Visual Studio .NET. (Part 6 of 6.)

Appendix E Generating Documentation in Visual Studio 1347

SUMMARY
• Programmers should document specific information on a class, such as the class’s role

in a system, the functionality that each method provides for the class and the purpose of
each class variable.

• Documentation helps all programmers understand how classes can interoperate, as well
as facilitate modification, use and extension of each class.

• Visual Studio .NET provides the XML documentation tool. This tool converts key piec-
es of information in the code—such as the class’s members, the hierarchy to which the
class belongs and any other general remarks the programmer wishes to document—to
HTML or XML format.

• The programmer specifies the general remarks to be documented by placing them in spe-
cial regions in the code, called XML documentation comments.

• The documentation-generation tool recognizes only single-line comments that begin
with three forward slashes (///).

• The compiler does not translate documentation comments to MSIL (Microsoft Interme-
diate Language).

• The programmer can place a description (i.e., purpose) of the class in between summa-
ry tags.

• Element returns contains information on the return value. Similarly, the param ele-
ment contains information on a method’s parameters.

• Element c marked up regions of code in the comments.

• The remarks tag enables programmers to document any “miscellaneous” information
or detailed comments relating to a member.

• The see tag is used to reference another member (method, constant, property, etc.).

F
ASCII Character Set

Fig. F.1 ASCII character set.

The digits at the left of the table are the left digits of the decimal equivalent (0–127) of the
character code, and the digits at the top of the table are the right digits of the character code.
For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by C# to represent characters from most of the world’s languages. For
more information on the Unicode character set, see Appendix G.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht
1 nl vt ff cr so si dle dc1 dc2 dc3
2 dc4 nak syn etb can em sub esc fs gs
3 rs us sp ! " # $ % & ‘
4 () * + , - . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [\] ^ _ ’ a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ del

G
Unicode®

Objectives
• To become familiar with Unicode.
• To discuss the mission of the Unicode Consortium.
• To discuss the design basis of Unicode.
• To understand the three Unicode encoding forms:

UTF-8, UTF-16 and UTF-32.
• To introduce characters and glyphs.
• To discuss the advantages and disadvantages of using

Unicode.
• To provide a brief tour of the Unicode Consortium’s

Web site.

1350 Unicode® Appendix G

G.1 Introduction
The use of inconsistent character encodings (i.e., numeric values associated with charac-
ters) when developing global software products causes serious problems because comput-
ers process information using numbers. For example, the character “a” is converted to a
numeric value so that a computer can manipulate that piece of data. Many countries and
corporations have developed their own encoding systems that are incompatible with the en-
coding systems of other countries and corporations. For example, the Microsoft Windows
operating system assigns the value 0xC0 to the character “A with a grave accent,” while the
Apple Macintosh operating system assigns that same value to an upside-down question
mark. This results in the misrepresentation and possible corruption of data because the data
is not processed as intended.

In the absence of a widely implemented universal character encoding standard, global
software developers had to localize their products extensively before distribution. Local-
ization includes the language translation and cultural adaptation of content. The process of
localization usually includes significant modifications to the source code (such as the con-
version of numeric values and the underlying assumptions made by programmers), which
results in increased costs and delays releasing the software. For example, some English-
speaking programmers might design global software products assuming that a single char-
acter can be represented by one byte. However, when those products are localized for Asian
markets, the programmer’s assumptions are no longer valid; thus, the majority, if not the
entirety, of the code needs to be rewritten. Localization is necessary with each release of a
version. By the time a software product is localized for a particular market, a newer version,
which needs to be localized as well, may be ready for distribution. As a result, it is cumber-
some and costly to produce and distribute global software products in a market where there
is no universal character encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facili-
tates the production and distribution of software, was created. The Unicode Standard out-
lines a specification to produce consistent encoding of the world’s characters and symbols.
Software products that handle text encoded in the Unicode Standard need to be localized,
but the localization process is simpler and more efficient because the numeric values need
not be converted and the assumptions made by programmers about the character encoding
are universal. The Unicode Standard is maintained by a nonprofit organization called the

Outline

G.1 Introduction
G.2 Unicode Transformation Formats
G.3 Characters and Glyphs
G.4 Advantages and Disadvantages of Unicode
G.5 Unicode Consortium’s Web Site
G.6 Using Unicode
G.7 Character Ranges

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Appendix G Unicode® 1351

Unicode Consortium, whose members include Apple, IBM, Microsoft, Oracle, Sun Micro-
systems, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, they wanted
an encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed easily. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

G.2 Unicode Transformation Formats
Although Unicode incorporates the limited ASCII character set (i.e., a collection of charac-
ters), it encompasses a more comprehensive character set. In ASCII, each character is repre-
sented by a byte containing 0s and 1s. One byte is capable of storing the binary numbers from
0 to 255. Each character is assigned a number between 0 and 255; thus, ASCII-based systems
can support only 256 characters, a tiny fraction of the world’s characters. Unicode extends the
ASCII character set by encoding the vast majority of the world’s characters. The Unicode
Standard encodes all of those characters in a uniform numerical space from 0 to 10FFFF
hexadecimal. An implementation will express these numbers in one of several transformation
formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32, depending on the
size of the units—in bits—being used. UTF-8, a variable width encoding form, requires one
to four bytes to express each Unicode character. UTF-8 data consists of 8-bit bytes
(sequences of one, two, three or four bytes depending on the character being encoded) and
is well suited for ASCII-based systems when there is a predominance of one-byte charac-
ters (ASCII represents characters as one-byte). Currently, UTF-8 is widely implemented in
UNIX systems and in databases. [Note: Currently, Internet Explorer 5.5 and Netscape
Communicator 6 only support UTF-8, so document authors should use UTF-8 for encoding
XML and XHTML documents.]

The variable width UTF-16 encoding form expresses Unicode characters in units of
16-bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters
of Unicode are expressed in a single 16-bit unit. However, characters with values above
FFFF hexadecimal are expressed with an ordered pair of 16-bit units called surrogates. Sur-
rogates are 16-bit integers in the range D800 through DFFF, which are used solely for the
purpose of “escaping” into higher numbered characters. Approximately one million char-
acters can be expressed in this manner. Although a surrogate pair requires 32 bits to repre-
sent characters, it is space efficient to use these 16-bit units. Surrogates are rare characters
in current implementations. Many string-handling implementations are written in terms of
UTF-16. [Note: Details and sample code for UTF-16 handling are available on the Unicode
Consortium Web site at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts encoded
above FFFF hexadecimal should use UTF-32, a 32-bit, fixed-width encoding form that usu-
ally requires twice as much memory as UTF-16 encoded characters. The major advantage
of the fixed-width UTF-32 encoding form is that it expresses all characters uniformly, so it
is easy to handle in arrays.

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on computer systems and business protocols, not on the data.

1352 Unicode® Appendix G

Typically, the UTF-8 encoding form should be used where computer systems and business
protocols require data to be handled in 8-bit units, particularly in legacy systems being
upgraded because it often simplifies changes to existing programs. For this reason, UTF-8
has become the encoding form of choice on the Internet. Likewise, UTF-16 is the encoding
form of choice on Microsoft Windows applications. UTF-32 is likely to become more
widely used in the future as more characters are encoded with values above FFFF hexadec-
imal. Also, UTF-32 requires less sophisticated handling than UTF-16 in the presence of
surrogate pairs. Figure G.1 shows the different ways in which the three encoding forms
handle character encoding.

G.3 Characters and Glyphs
The Unicode Standard consists of characters, written components (i.e., alphabetic letters,
numerals, punctuation marks, accent marks, etc.) that can be represented by numeric val-
ues. Examples of characters include U+0041 LATIN CAPITAL LETTER A. In the first
character representation, U+yyyy is a code value, in which U+ refers to Unicode code val-
ues, as opposed to other hexadecimal values. The yyyy represents a four-digit hexadecimal
number of an encoded character. Code values are bit combinations that represent encoded
characters. Characters are represented using glyphs, various shapes, fonts and sizes for dis-
playing characters. There are no code values for glyphs in the Unicode Standard. Examples
of glyphs are shown in Fig. G.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators, etc. that comprise the written languages and
scripts of the world. A diacritic is a special mark added to a character to distinguish it from
another letter or to indicate an accent (e.g., in Spanish, the tilde “~” above the character
“n”). Currently, Unicode provides code values for 94,140 character representations, with
more than 880,000 code values reserved for future expansion.

Character UTF-8 UTF-16 UTF-32

LATIN CAPITAL LETTER A 0x41 0x0041 0x00000041

GREEK CAPITAL LETTER
ALPHA

0xCD 0x91 0x0391 0x00000391

CJK UNIFIED IDEOGRAPH-
4E95

0xE4 0xBA 0x95 0x4E95 0x00004E95

OLD ITALIC LETTER A 0xF0 0x80 0x83 0x80 0xDC00 0xDF00 0x00010300

Fig. G.1Fig. G.1Fig. G.1Fig. G.1 Correlation between the three encoding forms.

Fig. G.2Fig. G.2Fig. G.2Fig. G.2 Various glyphs of the character A.

Appendix G Unicode® 1353

G.4 Advantages and Disadvantages of Unicode
The Unicode Standard has several significant advantages that promote its use. One is the
impact it has on the performance of the international economy. Unicode standardizes the
characters for the world’s writing systems to a uniform model that promotes transferring
and sharing data. Programs developed using such a schema maintain their accuracy because
each character has a single definition (i.e., a is always U+0061, % is always U+0025). This
enables corporations to manage the high demands of international markets by processing
different writing systems at the same time. Also, all characters can be managed in an iden-
tical manner, thus avoiding any confusion caused by different character code architectures.
Moreover, managing data in a consistent manner eliminates data corruption, because data
can be sorted, searched and manipulated using a consistent process.

Another advantage of the Unicode Standard is portability (i.e., the ability to execute
software on disparate computers or with disparate operating systems). Most operating sys-
tems, databases, programming languages and Web browsers currently support, or are plan-
ning to support, Unicode. Additionally, Unicode includes more characters than any other
character set in common use (although it does not yet include all of the world’s characters).

A disadvantage of the Unicode Standard is the amount of memory required by UTF-
16 and UTF-32. ASCII character sets are 8 bits in length, so they require less storage than
the default 16-bit Unicode character set. However, the double-byte character set (DBCS)
and the multi-byte character set (MBCS) that encode Asian characters (ideographs) require
two to four bytes, respectively. In such instances, the UTF-16 or the UTF-32 encoding
forms may be used with little hindrance on memory and performance.

G.5 Unicode Consortium’s Web Site
If you would like to learn more about the Unicode Standard, visit www.unicode.org.
This site provides a wealth of information about the Unicode Standard. Currently, the home
page is organized into various sections: New to Unicode, General Information, The Con-
sortium, The Unicode Standard, Work in Progress and For Members.

The New to Unicode section consists of two subsections: What is Unicode? and
How to Use this Site. The first subsection provides a technical introduction to Unicode
by describing design principles, character interpretations and assignments, text processing
and Unicode conformance. This subsection is recommended reading for anyone new to
Unicode. Also, this subsection provides a list of related links that provide the reader with
additional information about Unicode. The How to Use this Site subsection contains
information about using and navigating the site as well hyperlinks to additional resources.

The General Information section contains six subsections: Where is my Char-
acter?, Display Problems?, Useful Resources, Enabled Products, Mail Lists
and Conferences. The main areas covered in this section include a link to the Unicode
code charts (a complete listing of code values) assembled by the Unicode Consortium as
well as a detailed outline on how to locate an encoded character in the code chart. Also, the
section contains advice on how to configure different operating systems and Web browsers
so that the Unicode characters can be viewed properly. Moreover, from this section, the
user can navigate to other sites that provide information on various topics such as, fonts,
linguistics and other standards such as the Armenian Standards Page and the Chinese GB
18030 Encoding Standard.

1354 Unicode® Appendix G

The Consortium section consists of five subsections: Who we are, Our Members,
How to Join, Press Info and Contact Us. This section provides a list of the current
Unicode Consortium members as well as information on how to become a member. Privi-
leges for each member type—full, associate, specialist and individual—and the fees
assessed to each member are listed here.

The Unicode Standard section consists of nine subsections: Start Here, Latest Ver-
sion, Technical Reports, Code Charts, Unicode Data, Updates & Errata, Uni-
code Policies, Glossary and Technical FAQ. This section describes the updates
applied to the latest version of the Unicode Standard, as well as categorizing all defined
encoding. The user can learn how the latest version has been modified to encompass more
features and capabilities. For instance, one enhancement of Version 3.1 is that it contains
additional encoded characters. Also, if users are unfamiliar with vocabulary terms used by
the Unicode Consortium, then they can navigate to the Glossary subsection.

The Work in Progress section consists of three subsections: Calendar of Meetings,
Proposed Characters and Submitting Proposals. This section presents the user with
a catalog of the recent characters included into the Unicode Standard scheme as well as
those characters being considered for inclusion. If users determine that a character has been
overlooked, then they can submit a written proposal for the inclusion of that character. The
Submitting Proposals subsection contains strict guidelines that must be adhered to
when submitting written proposals.

The For Members section consists of two subsections: Member Resources and
Working Documents. These subsections are password protected; only consortium mem-
bers can access these links.

G.6 Using Unicode
Visual Studio .NET uses Unicode UTF-16 encoding to represent all characters. Figure G.3
uses C# to display the text “Welcome to Unicode!” in eight different languages: English,
French, German, Japanese, Portuguese, Russian, Spanish and Simplified Chinese. [Note:
The Unicode Consortium’s Web site contains a link to code charts that lists the 16-bit Uni-
code code values.]

1 // Fig F.3: Unicode.cs
2 // Using unicode encoding
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10
11 public class Unicode : System.Windows.Forms.Form
12 {
13 internal System.Windows.Forms.Label lblChinese;
14 internal System.Windows.Forms.Label lblSpanish;
15 internal System.Windows.Forms.Label lblRussian;

Fig. G.3 Unicode values for multiple languages. (Part 1 of 3.)

Appendix G Unicode® 1355

16 internal System.Windows.Forms.Label lblPortuguese;
17 internal System.Windows.Forms.Label lblJapanese;
18 internal System.Windows.Forms.Label lblGerman;
19 internal System.Windows.Forms.Label lblFrench;
20 internal System.Windows.Forms.Label lblEnglish;
21 private System.ComponentModel.Container components = null;
22
23 // Visual Studio .NET generated code
24
25 // main entry point for the application.
26 [STAThread]
27 static void Main()
28 {
29 Application.Run(new Unicode());
30 }
31
32 private void Unicode_Load(object sender, System.EventArgs e)
33 {
34 // English
35 char[] english = {'\u0057', '\u0065', '\u006C',
36 '\u0063', '\u006F', '\u006D', '\u0065', '\u0020',
37 '\u0074', '\u006F', '\u0020' };
38
39 lblEnglish.Text = new string(english) +
40 "Unicode" + '\u0021';
41
42 // French
43 char[] french = { '\u0042', '\u0069', '\u0065',
44 '\u006E', '\u0076', '\u0065', '\u006E', '\u0075',
45 '\u0065', '\u0020', '\u0061', '\u0075', '\u0020' };
46
47 lblFrench.Text = new string(french) +
48 "Unicode" + '\u0021';
49
50 // German
51 char[] german = {'\u0057', '\u0069', '\u006C',
52 '\u006B', '\u006F', '\u006D', '\u006D', '\u0065',
53 '\u006E', '\u0020', '\u007A', '\u0075', '\u0020'};
54
55 lblGerman.Text = new string(german) +
56 "Unicode" + '\u0021';
57
58 // Japanese
59 char[] japanese = { '\u3078', '\u3087', '\u3045',
60 '\u3053', '\u305D', '\u0021'};
61
62 lblJapanese.Text = "Unicode" + new string(japanese);
63
64 // Portuguese
65 char[] portuguese = {'\u0053', '\u0065', '\u006A',
66 '\u0061', '\u0020', '\u0062', '\u0065', '\u006D',
67 '\u0020', '\u0076', '\u0069', '\u006E', '\u0064',
68 '\u006F', '\u0020', '\u0061', '\u0020' };

Fig. G.3 Unicode values for multiple languages. (Part 2 of 3.)

1356 Unicode® Appendix G

Lines 35–37 contain the hexadecimal codes for the English text. The Code Charts
page on the Unicode Consortium Web site contains a document that lists the code values
for the Basic Latin block (or category), which includes the English alphabet. The hexa-
decimal codes in lines 35–36 equate to “Welcome ”. When using Unicode characters in
C#, the format \uyyyy is used, where yyyy represents the hexadecimal Unicode encoding.
For example, the letter “W” (in “Welcome”) is denoted by \u0057. Line 36 contains the
hexadecimal for the space character (\u0020). The unicode value for the word “to ” is on
line 37. Lines 39–40 create a new string from the character array and append the word “Uni-

69
70 lblPortuguese.Text = new string(portuguese) +
71 "Unicode" + '\u0021';
72
73 // Russian
74 char[] russian = { '\u0414', '\u043E', '\u0431',
75 '\u0440', '\u043E', '\u0020', '\u043F', '\u043E',
76 '\u0436', '\u0430', '\u043B', '\u043E', '\u0432',
77 '\u0430', '\u0442', '\u044A', '\u0020', '\u0432',
78 '\u0020' };
79
80 lblRussian.Text = new string(russian) +
81 "Unicode" + '\u0021';
82
83 // Spanish
84 char[] spanish = {'\u0042', '\u0069', '\u0065',
85 '\u006E', '\u0076', '\u0065', '\u006E', '\u0069',
86 '\u0064', '\u006F', '\u0020', '\u0061', '\u0020' };
87
88 lblSpanish.Text = new string(spanish) +
89 "Unicode" + '\u0021';
90
91 // Simplified Chinese
92 char[] chinese = {'\u6B22', '\u8FCE', '\u4F7F',
93 '\u7528', '\u0020' };
94
95 lblChinese.Text = new string(chinese) +
96 "Unicode" + '\u0021';
97 } // end method Unicode_Load
98 } // end class Unicode

Fig. G.3 Unicode values for multiple languages. (Part 3 of 3.)

Appendix G Unicode® 1357

code.” “Unicode” is not encoded because it is a registered trademark and has no equivalent
translation in most languages. Line 40 also contains the \u0021 notation for the exclama-
tion mark (!).

The remaining welcome messages (lines 43–96) contain the unicode values for the
other seven languages. The code values used for the French, German, Portuguese and
Spanish text are located in the Basic Latin block, the code values used for the Simplified
Chinese text are located in the CJK Unified Ideographs block, the code values used for
the Russian text are located in the Cyrillic block and the code values used for the Japanese
text are located in the Hiragana block.

[Note: To render the Asian characters in a Windows application, you may need to
install the proper language files on your computer. To do this in Windows 2000, open the
Regional Options dialog from the Control Panel (Start > Settings > Control
Panel). At the bottom of the General tab is a list of languages. Check the Japanese and
the Traditional Chinese checkboxes and press Apply. Follow the directions of the
install wizard to install the languages. For additional assistance, visit www.uni-
code.org/help/display_problems.html.]

G.7 Character Ranges
The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to
E007F (Tags), to the written characters of the world. Currently, there are code values for
94,140 characters. To simplify the search for a character and its associated code value, the
Unicode Standard generally groups code values by script and function (i.e., Latin charac-
ters are grouped in a block, mathematical operators are grouped in another block, etc.). As
a rule, a script is a single writing system that is used for multiple languages (e.g., the Latin
script is used for English, French, Spanish, etc.) The Code Charts page on the Unicode
Consortium Web site lists all the defined blocks and their respective code values.
Figure G.4 lists some blocks (scripts) from the Web site and their range of code values.

Script Range of Code Values

Arabic U+0600–U+06FF

Basic Latin U+0000–U+007F

Bengali (India) U+0980–U+09FF

Cherokee (Native America) U+13A0–U+13FF

CJK Unified Ideographs (East Asia) U+4E00–U+9FAF

Cyrillic (Russia and Eastern Europe) U+0400–U+04FF

Ethiopic U+1200–U+137F

Greek U+0370–U+03FF

Hangul Jamo (Korea) U+1100–U+11FF

Hebrew U+0590–U+05FF

Hiragana (Japan) U+3040–U+309F

Fig. G.4Fig. G.4Fig. G.4Fig. G.4 Some character ranges. (Part 1 of 2.)

1358 Unicode® Appendix G

SUMMARY
• Before Unicode, software developers were plagued by the use of inconsistent character encoding

(i.e., numeric values for characters). Most countries and organizations had their own encoding sys-
tems, which were incompatible. A good example is the individual encoding systems on the Windows
and Macintosh platforms. Computers process data by converting characters to numeric values. For
instance, the character “a” is converted to a numeric value so that a computer can manipulate that
piece of data.

• Without Unicode, localization of global software requires significant modifications to the source
code, which results in increased cost and in delays releasing the product.

• Localization is necessary with each release of a version. By the time a software product is localized
for a particular market, a newer version, which needs to be localized as well, is ready for distribu-
tion. As a result, it is cumbersome and costly to produce and distribute global software products
in a market where there is no universal character encoding standard.

• The Unicode Consortium developed the Unicode Standard in response to the serious problems cre-
ated by multiple character encodings and the use of those encodings.

• The Unicode Standard facilitates the production and distribution of localized software. It outlines a
specification for the consistent encoding of the world’s characters and symbols.

• Software products which handle text encoded in the Unicode Standard need to be localized, but
the localization process is simpler and more efficient because the numeric values need not be con-
verted.

• The Unicode Standard is designed to be universal, efficient, uniform and unambiguous.

• A universal encoding system encompasses all commonly used characters; an efficient encoding sys-
tem parses text files easily; a uniform encoding system assigns fixed values to all characters; and an
unambiguous encoding system represents the same character for any given value.

• Unicode extends the limited ASCII character set to include all the major characters of the world.

• Unicode makes use of three Unicode Transformation Formats (UTF): UTF-8, UTF-16 and UTF-32,
each of which may be appropriate for use in different contexts.

• UTF-8 data consists of 8-bit bytes (sequences of one, two, three or four bytes depending on the
character being encoded) and is well suited for ASCII-based systems when there is a predomi-
nance of one-byte characters (ASCII represents characters as one-byte).

Khmer (Cambodia) U+1780–U+17FF

Lao (Laos) U+0E80–U+0EFF

Mongolian U+1800–U+18AF

Myanmar U+1000–U+109F

Ogham (Ireland) U+1680–U+169F

Runic (Germany and Scandinavia) U+16A0–U+16FF

Sinhala (Sri Lanka) U+0D80–U+0DFF

Telugu (India) U+0C00–U+0C7F

Thai U+0E00–U+0E7F

Script Range of Code Values

Fig. G.4Fig. G.4Fig. G.4Fig. G.4 Some character ranges. (Part 2 of 2.)

Appendix G Unicode® 1359

• UTF-8 is a variable-width encoding form that is more compact for text involving mostly Latin char-
acters and ASCII punctuation.

• UTF-16 is the default encoding form of the Unicode Standard. It is a variable width encoding form
that uses 16-bit code units instead of bytes. Most characters are represented by a single unit, but some
characters require surrogate pairs.

• Surrogates are 16-bit integers in the range D800 through DFFF, which are used solely for the pur-
pose of “escaping” into higher numbered characters.

• Without surrogate pairs, the UTF-16 encoding form can only encompass 65,000 characters, but with
the surrogate pairs, this is expanded to include over a million characters.

• UTF-32 is a 32-bit encoding form. The major advantage of the fixed-width encoding form is that it
uniformly expresses all characters, so that they are easy to handle in arrays and so forth.

• The Unicode Standard consists of characters. A character is any written component that can be rep-
resented by a numeric value.

• Characters are represented using glyphs, various shapes, fonts and sizes for displaying characters.

• Code values are bit combinations that represent encoded characters. The Unicode notation for a code
value is U+yyyy in which U+ refers to the Unicode code values, as opposed to other hexadecimal
values. The yyyy represents a four-digit hexadecimal number.

• Currently, the Unicode Standard provides code values for 94,140 character representations.

• An advantage of the Unicode Standard is its impact on the overall performance of the international
economy. Applications that conform to an encoding standard can be processed easily by computers
anywhere.

• Another advantage of the Unicode Standard is its portability. Applications written in Unicode can be
easily transferred to different operating systems, databases, Web browsers, etc. Most companies cur-
rently support, or are planning to support, Unicode.

• To obtain more information about the Unicode Standard and the Unicode Consortium, visit
www.unicode.org. It contains a link to the code charts, which contain the 16-bit code values for
the currently encoded characters.

• The Unicode Standard has become the default encoding system for XML and any language derived
from XML, such as XHTML.

• The C# IDE uses Unicode UTF-16 encoding to represent all characters.

• When marking up C# documents, the entity reference \uyyyy is used, where yyyy represents the
hexadecimal code value.

TERMINOLOGY
\uyyyy notation hexadecimal notation
ASCII localization
block multi-byte character set (MBCS)
character portability
character set script
code value surrogate
diacritic symbol
double-byte character set (DBCS) unambiguous (Unicode design basis)
efficient (Unicode design basis) Unicode Consortium
encode Unicode design basis
entity reference Unicode Standard
glyph Unicode Transformation Format (UTF)

1360 Unicode® Appendix G

SELF-REVIEW EXERCISES
G.1 Fill in the blanks in each of the following statements.

a) Global software developers had to their products to a specific market before
distribution.

b) The Unicode Standard is an standard that facilitates the uniform production
and distribution of software products.

c) The four design basis that constitute the Unicode Standard are: , ,
 and .

d) A is the smallest written component the can be represented with a numeric
value.

e) Software that can execute on different operating systems is said to be .
f) Of the three encoding forms, is currently supported by Internet Explorer 5.5

and Netscape Communicator 6.

G.2 State whether each of the following is true or false. If false, explain why.
a) The Unicode Standard encompasses all the world’s characters.
b) A Unicode code value is represented as U+yyyy, where yyyy represents a number in bi-

nary notation.
c) A diacritic is a character with a special mark that emphasizes an accent.
d) Unicode is portable.
e) When designing C# programs, the entity reference is denoted by #U+yyyy.

ANSWERS TO SELF-REVIEW EXERCISES
G.1 a) localize. b) encoding. c) universal, efficient, uniform, unambiguous. d) character. e) por-
table. f) UTF-8.

G.2 a) False. It encompasses the majority of the world’s characters. b) False. The yyyy represents
a hexadecimal number. c) False. A diacritic is a special mark added to a character to distinguish it
from another letter or to indicate an accent. d) True. e) False. The entity reference is denoted by
\uyyyy.

EXERCISES
G.3 Navigate to the Unicode Consortium Web site (www.unicode.org) and write the hexa-
decimal code values for the following characters. In which block are they located?

a) Latin letter ‘Z.’
b) Latin letter ‘n’ with the ‘tilde (~).’
c) Greek letter ‘delta.’
d) Mathematical operator ‘less than or equal to.’
e) Punctuation symbol ‘open quote (“).’

G.4 Describe the Unicode Standard design basis.

G.5 Define the following terms:
a) code value.
b) surrogates.
c) Unicode Standard.
d) UTF-8.

uniform (Unicode design basis) UTF-32
universal (Unicode design basis) UTF-8
UTF-16

Appendix G Unicode® 1361

e) UTF-16.
f) UTF-32.

G.6 Describe a scenario where it is optimal to store your data in UTF-16 format.

G.7 Using the Unicode Standard code values, create a C# document that prints your first and last
name. If you know other writing systems, print your first and last name in those as well. Use a Win-
dows form to render the document.

G.8 Write an ASP.NET program that prints “Welcome to Unicode!” in English, French, German,
Japanese, Portuguese, Russian, Spanish and Traditional Chinese. Use the code values provided in
Fig. G.3. In ASP.NET, a code value is represented the same way as in a Windows application
(\uyyyy, where yyyy is a four-digit hexadecimal number).

H
COM Integration

H.1 Introduction
Initially, applications created for Windows or DOS were designed as single monolithic ex-
ecutables—i.e., complete applications packaged as single executable files. However, as
software became more complex, developers began to experience difficulties constructing
all the necessary components of an application. Furthermore, as the size of applications in-
creased, it became impractical to redistribute an entire application to accommodate each
application upgrade or bug fix.

To address these problems, Microsoft incorporated shared libraries into Windows,
enabling developers to reuse and modularize code. A shared library, or dynamic link library
(DLL) in Windows, is a file that contains compiled code that an application loads at execution
time. The fact that these libraries are loaded at runtime allows developers to modify specific
libraries and test the results without rebuilding an entire application. Multiple applications can
use a single shared library, which reduces the overall memory requirements for running those
applications. The partitioning of programs into small pieces also makes it easier to distribute
application upgrades, because only the modified DLLs must be redistributed.

The introduction of shared libraries solved many problems that previously had
restricted modularity and code reusability. However, the libraries also raised new concerns.
Monolithic applications rarely created version conflicts—if an application vendor fixed a
bug in one piece of software, it was unlikely that the upgrade would affect any other soft-
ware on the system. With the establishment of system-wide shared libraries, a vendor’s
upgrade or modification of a library could “break” software that used an older version of
that library. Often, developers packaged DLLs with their applications to ensure software
compatibility. However, the packaged DLLs could overwrite preexisting libraries on users’
systems, possibly affecting previously installed software. Problems introduced by shared
libraries were so difficult to locate and fix that their effects became known as “DLL hell.”

Microsoft developed the Component Object Model (COM) in an attempt to expand DLL
functionality and correct DLL problems. COM is a specification that controls library versions

Appendix H COM Integration 1363

and backwards compatibility and defines a communication standard among libraries.
Microsoft defined the COM specification to be detailed and strict, thus ensuring that COM
developers create compatible libraries. Microsoft also implemented the COM architecture on
a large scale—virtually all Windows libraries adhere to the COM specification.

When implemented correctly, COM ensures highly organized and reusable libraries,
but the specification does have limitations. For example, COM is difficult to program and
deploy, because developers must guarantee that new COM components are both compat-
ible with previous versions and correctly registered with the system. If a COM library is
placed on a system without proper registration, the component will not be represented cor-
rectly in the registry, and applications might be unable to find or use the library.

In the .NET platform, COM components are no longer necessary. Microsoft .NET
components retain the benefits of COM while resolving many of its associated problems.
Components in .NET maintain all identification information internally—the independence
of the component from the Windows Registry ensures correct component identification.
Many developers and companies have invested significant resources in the development of
COM components, but want to harness the power, organization and functionality of .NET.
To facilitate developers’ migration from COM to .NET, Microsoft created a set of tools
designed to integrate existing COM components into the .NET platform.

H.2 ActiveX Integration
In recent years, ActiveX controls have been popular COM components. C# allows devel-
opers to import and use ActiveX controls in Windows Forms applications. We include an
ActiveX LabelScrollbar control on the CD that accompanies this book which we now
use to demonstrate Microsoft’s ActiveX integration utility.

To use this control, students first must register the .OCX file in the Windows Registry.
To register the control, open a Command Prompt and invoke the RegSvr32 utility pro-
gram which is located in the directory c:\winnt\system32. (This path might vary
among different computers and Windows versions.) Figure H.1 depicts the successful reg-
istration of the LabelScrollbar ActiveX control.

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 ActiveX control registration.

1364 COM Integration Appendix H

Once students register the ActiveX control, they must add it to the Visual Studio
IDE’s toolbox. To accomplish this, right click the toolbox and select Customize
Toolbox (Fig. H.2). The Customize Toolbox lists all the COM components that are
registered on the machine. Select the Deitel LabelScrollbar .OCX file to add the
LabelScrollbar to the toolbox and then click OK. When you add the
LabelScrollBar to your Web form Visual Studio generates libraries Deitel and
AxDeitel and adds them to the references in the Solution Explorer. The first refer-
ence (Deitel) is the Common Runtime Library proxy, which allows the programmer to
access the ActiveX component’s methods and properties from .NET code. The second
reference (AxDeitel) is the Windows Forms proxy, which allows the programmer to
add the ActiveX component to a form. In this context a proxy is an object which allows
.NET code to interact with COM code, we discuss the interaction between .NET and
COM in greater detail in the next section. Note that, once the LabelScrollbar is
added to the toolbox, two DLL files are generated in the bin directory of the application:
AxInterop.Deitel.dll and Interop.Deitel.dll.

The first image in Fig. H.3 depicts the IDE toolbox after the LabelScrollBar has
been added. The second image displays a list of the LabelScrollBar control proper-
ties, consisting of properties defined in the ActiveX control (i.e., Min, Max, Small-
Change, LargeChange, and Value) and Visual Studio-defined properties (e.g.,
Anchor, Dock and Location).

To demonstrate LabelScrollBar’s functionality, we add three LabelScroll-
bars to a form (Fig. H.4). These controls enable a user to select RGB values (i.e., red,
green and blue) that specify the color of a PictureBox.

Fig. H.2Fig. H.2Fig. H.2Fig. H.2 Customize Toolbox dialog with an ActiveX control selected.

Appendix H COM Integration 1365

Fig. H.3Fig. H.3Fig. H.3Fig. H.3 IDE’s toolbox and LabelScrollbar properties.

1 // Fig. H.4: LabelScrollbar.cs
2 // demonstrates ActiveX component usage in .NET.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using AxDeitel;

10
11 namespace FigH_04
12 {
13 // Demonstrates ActiveX LabelScrollBar control
14 public class LabelScrollTest : System.Windows.Forms.Form
15 {
16 private System.Windows.Forms.PictureBox pbColorBox;
17 private AxDeitel.AxLabelScrollbar redScrollBar;
18 private AxDeitel.AxLabelScrollbar greenScrollBar;
19 private AxDeitel.AxLabelScrollbar blueScrollBar;
20
21 /// Required designer variable.
22 private System.ComponentModel.Container components = null;
23

Fig. H.4 ActiveX COM control integration in C#. (Part 1 of 3.)

LabelScrollBar
Control

Control
Properties

.NET Properties

1366 COM Integration Appendix H

24 public LabelScrollTest()
25 {
26 InitializeComponent();
27
28 // setup LabelScrollbar properties
29 SetupRGBTitleScrollbar(redScrollBar);
30 SetupRGBTitleScrollbar(blueScrollBar);
31 SetupRGBTitleScrollbar(greenScrollBar);
32
33 // initialize PictureBox back color
34 pbColorBox.BackColor = Color.FromArgb(
35 redScrollBar.Value, greenScrollBar.Value,
36 blueScrollBar.Value);
37
38 } // end constructor
39
40 // initialize LabelScrollBar properties
41 private void SetupRGBTitleScrollbar(
42 AxLabelScrollbar scrollBar)
43 {
44 scrollBar.Min = 0; // minimum value
45 scrollBar.Max = 255; // maximum value
46 scrollBar.LargeChange = 10; // large change value
47 scrollBar.SmallChange = 1; // small change value
48
49 } // end method SetupRGBTitleScrollBar
50
51 // Visual Studio .NET generated code
52
53 [STAThread]
54 static void Main()
55 {
56 Application.Run(new LabelScrollTest());
57 }
58
59 // handles scrollbar changed event
60 private void scrollbar_Change(object sender,
61 System.EventArgs e)
62 {
63 pbColorBox.BackColor = Color.FromArgb(
64 redScrollBar.Value, greenScrollBar.Value,
65 blueScrollBar.Value);
66 } // end method scrollbar_Change
67 } // end class LabelScrollTest
68 } // end namespace FigH_04

Fig. H.4 ActiveX COM control integration in C#. (Part 2 of 3.)

Appendix H COM Integration 1367

The constructor calls SetupRGBTitleScrollbar (lines 41–49), which sets the ini-
tial property values of Min, Max, LargeChange and SmallChange for each
LabelScrollbar control. The Max property of each LabelScrollbar is set to 255,
allowing a color range of over 16 million colors.

 The constructor also sets the PictureBox’s initial back color (lines 34–36). Lines
60–66 define the event handler for the LabelScrollbar’s change event. When the
user changes the value of a LabelScrollbar, the change event fires and the Pic-
tureBox’s background color changes.

H.3 DLL Integration
Visual Studio .NET also supports the integration of COM DLLs. This process is similar to
the integration of ActiveX components. To demonstrate how Visual Studio .NET integrates
a COM DLL, we have included deitelvb6addition.dll on the CD that accompa-
nies this book. This simple library contains function AdditionFunction, which takes
two arguments, adds them together and returns the result.

The first step in the integration of this COM DLL is to identify the DLL in the Win-
dows Registry with the RegSvr32 utility as follows:

regsvr32 deitelvb6addition.dll

After registering the library, add a reference to it in a C# program by right-clicking
References in the Solution Explorer and selecting Add Reference. In the Add Ref-
erence dialog (Fig. H.5), select the COM tab. Then, choose Simple Addition DLL and
click OK. A dialog appears, indicating that .NET must generate a primary interop assembly
(Fig. H.5). Select Yes when this dialog appears. The primary interop assembly contains
information for all methods and classes contained in the COM library.

In Windows, all components (both .NET and COM) must be accompanied by identifi-
cation information. This information contains Globally Unique Identifiers (GUID) for the
component and its internal classes, as well as language-independent descriptions of all
classes and types that are defined in the component. These language-independent descrip-
tions help to enable component reuse across multiple programming languages. A GUID
consists of a long string of numbers that a computer generates on the basis of the com-
puter’s current time, hardware and a random number. The GUID algorithm never generates
the same identifier twice; thus, GUIDs enable unique component identification across all
computers.

Fig. H.4 ActiveX COM control integration in C#. (Part 3 of 3.)

1368 COM Integration Appendix H

When a COM component is registered, its GUID is stored in the Windows Registry;
programs then can use the registry to locate and identify the component. Once a program
has located a desired component, it uses the component’s type library to find and use the
library’s objects and methods. A type library describes all of a COM component’s inter-
faces, types and methods; the type library is included in either the component .dll file or
in a separate .tlb file. The separation of component identifiers (located in the Windows
Registry) from the data represented on the disk (the library file) is the source of many prob-
lems associated with the COM architecture. By contrast, .NET components avoid these
problems by maintaining all identification information internally. When Visual Studio
imports a COM component, it creates a file that contains all identification and data-descrip-
tion information internally. Visual Studio obtains the component GUID from the Windows
Registry and converts the data description from the type library-format into the .NET
assembly format. This processing creates a new DLL file, called a primary interop
assembly, which then is placed into the applications bin directory.

The primary interop assembly is used by .NET to locate COM methods and to translate
component data types between the .NET platform types and COM component types. The
translation for each COM component is performed by a Runtime Callable Wrapper (RCW).
The RCW is a proxy object created by the .NET runtime from the information in the
object’s primary interop assembly. The RCW manages the COM object and performs com-
munication between .NET code and the COM object.

Fig. H.5Fig. H.5Fig. H.5Fig. H.5 Add Reference dialog DLL Selection.

Appendix H COM Integration 1369

Performance Tip H.1
The .NET and COM architectures are fundamentally different in terms of memory manage-
ment and object representation. Method calls to COM objects can degrade program perfor-
mance because the RCW must convert all data types between the managed (.NET) context
and the unmanaged (COM) context. H.1

When we instantiate a COM object in C#, we are actually creating a new instance of
the object’s RCW. The communication between the RCW and the COM component is
entirely transparent, enabling the .NET developer to interact with the COM object as if it
were a .NET object.

We created an application (Fig. H.6) demonstrating how to use the Simple Addition
DLL that we want to integrate into .NET. This program includes three text boxes and a
button. After entering an int into each of the first two text boxes, the user clicks the Cal-
culate button, and the program displays the sum of the two int in the third text box.

Line 29 creates the RCW additionObject for COM component
Deitel_DLL.CAddition. Lines 55–59 enable the calculateButton button if
both text boxes contain values, and disable the button if the text boxes are empty. When the
user clicks Calculate, the button fires the event handler calculateButton_Click,
which obtains the content of the text boxes and adds the values. The event handler calls
COM method addFunction, which returns the sum as an int (lines 74–75). The result
then is displayed in txtResultBox (line 77).

In this appendix, we demonstrated the use of COM libraries and ActiveX controls from
a .NET application. In addition, we briefly explored the history of COM and the differences
between its architecture and that of .NET. After reading this appendix, students should have
a basic understanding of COM and should be able to use COM components in .NET appli-
cations. To learn more about .NET and COM, consult the Web resources described in
Section H.4.

1 // Fig. H.6: Addition.cs
2 // Uses a COM component to add two integers.
3
4 using System;
5 using System.Drawing;
6 using System.Collections;
7 using System.ComponentModel;
8 using System.Windows.Forms;
9 using System.Data;

10 using Deitel_DLL;
11
12 namespace Addition
13 {
14 // Adds two integers using a COM component
15 public class Addition : System.Windows.Forms.Form
16 {
17 // display labels
18 private System.Windows.Forms.Label SecondLabel;
19 private System.Windows.Forms.Label FirstLabel;
20

Fig. H.6 COM DLL component in C#. (Part 1 of 3.)

1370 COM Integration Appendix H

21 // integer text boxes
22 private System.Windows.Forms.TextBox resultBox;
23 private System.Windows.Forms.TextBox firstIntegerBox;
24 private System.Windows.Forms.TextBox secondIntegerBox;
25
26 // calculates addition
27 private System.Windows.Forms.Button calculateButton;
28
29 private CAddition additionObject = new CAddition();
30
31 // Required designer variable.
32 private System.ComponentModel.Container
33 components = null;
34
35 public Addition()
36 {
37 InitializeComponent();
38 }
39
40 // Visual Studio .NET generated code
41
42 // The main entry point for the application.
43 [STAThread]
44 static void Main()
45 {
46 Application.Run(new Addition());
47 }
48
49 // event handler to enable calculateButton
50 private void integerBox_TextChanged(object sender,
51 System.EventArgs e)
52 {
53 // enable calculate button if both boxes
54 // contain text
55 if (firstIntegerBox.Text != "" &&
56 secondIntegerBox.Text != "")
57 calculateButton.Enabled = true;
58 else
59 calculateButton.Enabled = false;
60 } // end method integerBox_TextChanged
61
62 // event handler that displays sum when calculate
63 // is clicked
64 private void calculateButton_Click(object sender,
65 System.EventArgs e)
66 {
67 int firstInteger, secondInteger, total;
68
69 firstInteger = Int32.Parse(firstIntegerBox.Text);
70 secondInteger = Int32.Parse(secondIntegerBox.Text);
71
72 // addition object invokes AddFunction that
73 // returns integer value

Fig. H.6 COM DLL component in C#. (Part 2 of 3.)

Appendix H COM Integration 1371

H.4 Internet and World Wide Web Resources
www.microsoft.com/com
The Microsoft COM Web page provides technical white papers, documentation and developer sup-
port. This Web page is an essential resource for COM developers.

www.cs.umd.edu/~pugh/com
This Web site presents a high-level technical overview of the COM architecture.

msdn.microsoft.com/msdnmag/issues/01/08/Interop/Interop.asp
This Web site provides an introduction to integration services provided in .NET. The Web site in-
cludes introductory examples and describes .NETs COM Interopability capabilities.

SUMMARY
• Initially, applications created for Windows or DOS were designed as single monolithic executa-

bles—entire applications packaged in single executable files.

• As applications grew larger and more complex, it became impractical for developers to construct
and distribute all the necessary components of an application, which resulted in longer develop-
ment times and more costly distribution mechanism.

• Microsoft incorporated dynamic link libraries (DLLs) in Windows to allow developers to modu-
larize and reuse code.

• A shared library, or dynamic link library, is a file containing compiled code that an application
loads at execution time.

• Runtime loading allows developers to modify a single library and immediately test the results
without rebuilding the entire application.

• Shared libraries increase the modularity of programs by allowing multiple applications to access
a single code library.

74 total = additionObject.AddFunction(ref firstInteger,
75 ref secondInteger);
76
77 resultBox.Text = total.ToString();
78 } // end method calculateButton_Click
79 } // end class Addition
80 } // end namespace Addition

Fig. H.6 COM DLL component in C#. (Part 3 of 3.)

1372 COM Integration Appendix H

• The partition of programs into smaller “pieces” makes it easier to distribute application upgrades,
because only modified DLLs must be redistributed.

• Often, developers packaged DLLs with their applications to ensure that users were running the li-
brary version designed for their software. However, the packaged DLLs could overwrite preexist-
ing libraries on users’ systems, possibly breaking previously installed software.

• The problems introduced by shared libraries were so difficult to locate and fix that their effects
became known as “DLL hell.”

• In an attempt to combat “DLL hell,” Microsoft developed the Component Object Model (COM).

• COM is a specification that controls library versions, backwards compatibility and language in-
teroperability.

• The COM specification, defined by Microsoft, is detailed and strict to ensure that COM developers
create compatible libraries.

• Microsoft implemented the COM architecture on a large scale. Today, virtually all Windows li-
braries adhere to the COM specification.

• When implemented correctly, COM ensures highly organized and reusable libraries, but it does
have limitations.

• COM is difficult to program and deploy, because developers must guarantee that new COM com-
ponents are both compatible with previous versions and registered with the system.

• Microsoft .NET components retain the benefits of COM while avoiding many of its associated
problems.

• To facilitate developers migration from COM to .NET, Microsoft created a set of utilities designed
to integrate existing COM components into the .NET platform.

• ActiveX controls are a commonly used COM component.

• The RegSvr32 utility program registers COM components with the operating system.

• ActiveX can be imported into the IDE’s toolbox.

• The Customize Toolbox option lists all the COM components that are registered on a specific
machine.

• Windows components contain Globally Unique Identifiers (GUID) for the component and its in-
ternal classes as well as language-independent descriptions of all classes and types that are defined
in the component.

• Language-independent descriptions help to enable component reuse across multiple programming
languages.

• A GUID consists of a long string of numbers that a computer generates on the basis of the com-
puter’s current time, hardware and a random number. The GUID algorithm never generates the
same identifier twice; thus, GUIDs enable unique component identification across all computers.

• When a COM component is registered, its GUID is stored in the Windows Registry; programs then
can use the registry to locate and identify the component.

• A type library describes all of a COM component’s interfaces, types and methods; the type library
is included in either the component .dll file or in a separate .tlb file.

• The separation of component identifiers (located in the Windows Registry) from the data repre-
sented on the disk (the library file) is the source of many problems associated with the COM ar-
chitecture.

• .NET components problems by maintaining all identification information internally.

• A primary interop assembly is used by .NET to locate COM methods and to translate component
data types between the .NET platform types and COM component types.

Appendix H COM Integration 1373

• The translation for each COM component is performed by a Runtime Callable Wrapper (RCW).
The RCW is a proxy object created by the .NET runtime from the information in the object’s pri-
mary interop assembly.

• The RCW manages the COM object and performs communication between .NET code and the
COM object.

• When we instantiate a COM object in C#, we are actually creating a new instance of the object’s
RCW. The communication between the RCW and the COM component is entirely transparent, en-
abling the .NET developer to interact with the COM object as if it were a .NET object.

TERMINOLOGY

SELF-REVIEW EXERCISES
H.1 Fill in the blanks in each of the following statements:

a) Initially, DOS and Windows programs were designed as executables.
b) Microsoft incorporated shared libraries, or , into Windows to allow program

modularity and code reusability.
c) The COM specification was designed as a uniform programming model that promotes

, and .
d) A contains language-independent descriptions of all interfaces, methods and

data types defined in a COM component.
e) When an ActiveX control is imported, two files are created: A(n) proxy and

 proxy.

H.2 State whether each of the following statements is true or false. If false, explain why.
a) The Runtime Callable Wrapper (RCW) allows .NET components to be accessed from

COM components.
b) A primary interop assembly contains information about COM components.
c) .NET component GUIDs must be entered in the Windows Registry.
d) The Component Object Model eliminates “DLL hell.”
e) ActiveX controls are COM components.

ANSWERS TO SELF-REVIEW EXERCISES
H.1 a) monolithic. b) Dynamic Link Libraries (DLLs). c) language independence, backwards com-
patibility and version control. d) type library e) Common Language Runtime, Windows Forms proxy.

H.2 a) False. The RCW allows .NET components to access COM components. b) True. c) False.
Unlike COM components, .NET components contain their GUIDs internally. d) False. COM DLLs
may not be correctly representing in the windows registry causing misidentification and resulting in
“DLL hell.” e) True.

ActiveX monolithic executable
COM (Component Object Model) .NET component
COM component .OCX file
COM limitation primary interop assembly
Common Runtime Library proxy proxy
Component Object Model (COM) RCW (Runtime Callable Wrapper)
DLL (Dynamic Link Library) RegSvr32 utility
.dll file Runtime Callable Wrapper (RCW)
DLL hell shared library
Dynamic Link Library (DLL) .tlb file
Globally Unique Identifier (GUID) Windows Forms proxy
GUID (Globally Unique Identifier) Windows Registry

I
Introduction to

HyperText Markup
Language 4: Part 1

Objectives
• To understand the key components of an HTML

document.
• To be able to use basic HTML elements to create

World Wide Web pages.
• To be able to add images to your Web pages.
• To understand how to create and use hyperlinks to

traverse Web pages.
• To be able to create lists of information.
To read between the lines was easier than to follow the text.
Henry James

Mere colour, unspoiled by meaning, and annulled with
definite form, can speak to the soul in a thousand different
ways.
Oscar Wide

High thoughts must have high language.
Aristophanes

I’ve gradually risen from lower-class background to lower-
class foreground.
Marvin Cohen

Appendix I Introduction to HyperText Markup Language 4: Part 1 1375

Marvin CohenMarvin Cohen

I.1 Introduction
In this appendix we introduce the basics of creating Web pages in HTML. We write many
simple Web pages. In Appendix J, Introduction to HyperText Markup Language 4: Part 2,
we introduce more sophisticated HTML techniques, such as tables, which are particularly
useful for structuring information from databases. In this appendix, we do not present any
C# programming.

In this appendix, we introduce basic HTML elements and attributes. A key issue when
using HTML is the separation of the presentation of a document (i.e., how the document is
rendered on the screen by a browser) from the structure of that document. In this appendix
and in Appendix J, we discuss this issue in depth.

I.2 Markup Languages
HTML is a markup language. It is used to format text and information. This “marking up”
of information is different from the intent of traditional programming languages, which is
to perform actions in a designated order.

In HTML, text is marked up with elements, delineated by tags that are keywords con-
tained in pairs of angle brackets. For example, the HTML element itself, which indicates
that we are writing a Web page to be rendered by a browser, begins with the start tag
<html> and terminates with the end tag </html>. These elements format your page in
a specified way. Over the course of the next two appendices, we introduce many of the
commonly used tags and how to use them.

Good Programming Practice I.1
HTML tags are not case sensitive. However, keeping all the letters in one case improves pro-
gram readability. Although the choice of case is up to you, we recommend that you write all
of your code in lowercase. Writing in lowercase ensures greater compatibility with future
markup languages that are designed to be written with only lowercase tags and elements. I.1

Outline

I.1 Introduction
I.2 Markup Languages
I.3 Editing HTML
I.4 Common Elements
I.5 Headers
I.6 Linking
I.7 Images
I.8 Special Characters and More Line Breaks
I.9 Unordered Lists
I.10 Nested and Ordered Lists
I.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1376 Introduction to HyperText Markup Language 4: Part 1 Appendix I

Common Programming Error I.1
Forgetting to include end tags for elements that require them is a syntax error and can grossly
affect the formatting and look of your page. Unlike conventional programming languages, a
syntax error in HTML does not usually cause page display in browsers to fail completely. I.1

I.3 Editing HTML
In this appendix we show how to write HTML in its source-code form. We create HTML
documents using a text editor and store them in files with either the.html or .htm file
name extension. A wide variety of text editors exist. We recommend that you initially use
a text editor called Notepad, which is built into Windows. Notepad can be found inside the
Accessories panel of your Program list, inside the Start menu. You can also download
a free HTML source-code editor called HTML-Kit at www.chami.com/html-kit.
Unix users can use popular text editors like vi or emacs.

Good Programming Practice I.2
Assign names to your files that describe their functionality. This practice can help you iden-
tify documents faster. It also helps people who want to link to your page, by giving them an
easier-to-remember name for the file. For example, if you are writing an HTML document
that will display your products, you might want to call it products.html. I.2

As mentioned previously, errors in conventional programming languages like C, C++
and Visual Basic often prevent the program from running. Errors in HTML markup are usu-
ally not fatal. The browser will make its best effort at rendering the page, but will probably
not display the page as you intended.

The file name of your home page (the first of your HTML pages that a user sees when
browsing your Web site) should be index.html, because when a browser does not
request a specific file in a directory, the normal default Web server response is to return
index.html (this may be different for your server) if it exists in that directory. For
example, if you direct your browser to www.deitel.com, the server actually sends the
file www.deitel.com/index.html to your browser.

I.4 Common Elements
Throughout these HTML appendices, we will present both HTML source code and a sam-
ple screen capture of the rendering of that HTML in Internet Explorer. Figure I.1 shows an
HTML file that displays one line of text.

Lines 1 and 2

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

are required in every HTML document and are used to specify the document type. The doc-
ument type specifies which version of HTML is used in the document and can be used with
a validation tool, such as the W3C’s validator.w3.org, to ensure an HTML docu-
ment conforms to the HTML recommendation. In these examples we create HTML version
4.01 documents. All of the examples in these appendices have been validated through the
Web site validator.w3.org.

The HTML document begins with the opening <html> tag (line 3) and ends with the
closing </html> tag (line 17).

Appendix I Introduction to HyperText Markup Language 4: Part 1 1377

Good Programming Practice I.3
Always include the <html>…</html> tags in the beginning and end of your HTML doc-
ument. I.3

Good Programming Practice I.4
Place comments throughout your code. Comments in HTML are placed inside the <!--…
--> tags. Comments help other programmers understand the code, assist in debugging and
list other useful information that you do not want the browser to render. Comments also help
you understand your own code, especially if you have not looked at it for a while. I.4

 We see our first comments (i.e., text that documents or describes the HTML markup)
on lines 5 and 6

<!-- Fig. I.1: main.html -->
<!-- Our first Web page. -->

Comments in HTML always begin with <!-- and end with -->. The browser ignores any
text and/or tags inside a comment. We place comments at the top of each HTML document
giving the figure number, the file name and a brief description of the purpose of the exam-

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.1: main.html -->
6 <!-- Our first Web page. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <p>Welcome to Our Web Site!</p>
15
16 </body>
17 </html>

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 Basic HTML file.

1378 Introduction to HyperText Markup Language 4: Part 1 Appendix I

ple. In subsequent examples, we also include comments in the markup, especially when we
introduce new features.

Every HTML document contains a head element, which generally contains informa-
tion about the document, and a body element, which contains the page content. Informa-
tion in the head element is not generally rendered in the display window, but may be made
available to the user through other means. Lines 8–10

<head>
 <title>C# How to Program - Welcome</title>
</head>

show the head element section of our Web page. Including a title element is required
for every HTML document. To include a title in your Web page, enclose your chosen title
between the pair of tags <title>…</title> in the head element.

Good Programming Practice I.5
Use a consistent title-naming convention for all pages on your site. For example, if your site
is called “Al’s Web Site,” then the title of your links page might best be “Al’s Web Site -
Links”. This practice presents a clearer picture to those browsing your site. I.5

The title element names your Web page. The title usually appears on the colored
bar at the top of the browser window, and also will appear as the text identifying your page
if a user adds your page to their list of Favorites or Bookmarks. The title is also used by
search engines for cataloging purposes, so picking a meaningful title can help search
engines direct a more focused group of people to your site.

Line 12

<body>

opens the body element. The body of an HTML document is the area where you place the
content of your document. This includes text, images, links and forms. We discuss many
elements that can be inserted in the body element later in this appendix. Remember to in-
clude the end </body> tag before the closing </html> tag.

Various elements enable you to place text in your HTML document. We see the para-
graph element on line 14

<p>Welcome to Our Web Site!</p>

All text placed between the <p>…</p> tags forms one paragraph. Most Web browsers
render paragraphs as set apart from all other material on the page by a line of vertical space
both before and after the paragraph. The HTML in line 12 causes Internet Explorer to ren-
der the enclosed text as shown in Fig. I.1.

Our code example ends on lines 16 and 17 with

</body>
</html>

These two tags close the body and HTML sections of the document, respectively. As dis-
cussed earlier, the last tag in any HTML document should be </html>, which tells the
browser that all HTML coding is complete. The closing </body> tag is placed before the
</html> tag because the body section of the document is entirely enclosed by the HTML
section. Therefore, the body section must be closed before the HTML section.

Appendix I Introduction to HyperText Markup Language 4: Part 1 1379

I.5 Headers
The six headers are used to delineate new sections and subsections of a page. Figure I.2
shows how these elements (h1 through h6) are used. Note that the actual size of the text of
each header element is selected by the browser and can vary significantly between browsers.

Good Programming Practice I.6
Adding comments to the right of short HTML lines is a clean-looking way to comment code. I.6

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.2: header.html -->
6 <!-- HTML headers. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <h1>Level 1 Header</h1> <!-- Level 1 header -->
15 <h2>Level 2 header</h2> <!-- Level 2 header -->
16 <h3>Level 3 header</h3> <!-- Level 3 header -->
17 <h4>Level 4 header</h4> <!-- Level 4 header -->
18 <h5>Level 5 header</h5> <!-- Level 5 header -->
19 <h6>Level 6 header</h6> <!-- Level 6 header -->
20
21 </body>
22 </html>

Fig. I.2Fig. I.2Fig. I.2Fig. I.2 Header elements h1 through h6.

1380 Introduction to HyperText Markup Language 4: Part 1 Appendix I

Line 14

<h1>Level 1 Header</h1>

introduces the h1 header element, with its start tag <h1> and its end tag </h1>. Any text
to be displayed is placed between the two tags. All six header elements, h1 through h6,
follow the same pattern.

Good Programming Practice I.7
Putting a header at the top of every Web page helps those viewing your pages understand
what the purpose of each page is. I.7

I.6 Linking
The most important capability of HTML is its ability to create hyperlinks to other docu-
ments, making possible a worldwide network of linked documents and information. In HT-
ML, both text and images can act as anchors to link to other pages on the Web. We
introduce anchors and links in Fig. I.3.

The first link can be found on line 19

<p>Yahoo</p>

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.3: links.html -->
6 <!-- Introduction to hyperlinks. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <h1>Here are my favorite Internet Search Engines</h1>
15
16 <p>Click on the Search Engine address to go to that
17 page.</p>
18
19 <p>Yahoo</p>
20
21 <p>AltaVista</p>
22
23 <p>Ask Jeeves</p>
24
25 <p>WebCrawler</p>
26
27 </body>
28 </html>

Fig. I.3Fig. I.3Fig. I.3Fig. I.3 Linking to other Web pages. (Part 1 of 2.)

Appendix I Introduction to HyperText Markup Language 4: Part 1 1381

Links are inserted with the a (anchor) element. The anchor element is unlike the elements
we have seen thus far in that it requires certain attributes (i.e., markup that provides infor-
mation about the element) to specify the hyperlink. Attributes are placed inside an ele-
ment’s start tag and consist of a name and a value. The most important attribute for the a
element is the location to which you would like the anchoring object to be linked. This lo-
cation can be any resource on the Web, including pages, files and email addresses. To spec-
ify the address to link to, add the href attribute to the anchor element as follows: . In this case, the address we are linking to is http://www.yahoo.com.
The hyperlink (line 19) makes the text Yahoo a link to the address specified in href.

Anchors can use mailto URLs to provide links to email addresses. When someone
selects this type of anchored link, most browsers launch the default email program to ini-
tiate an email message to the linked address. This type of anchor is demonstrated in Fig. I.4.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.4: contact.html -->
6 <!-- Adding email hyperlinks. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11

Fig. I.4Fig. I.4Fig. I.4Fig. I.4 Linking to an email address. (Part 1 of 2.)

Fig. I.3Fig. I.3Fig. I.3Fig. I.3 Linking to other Web pages. (Part 2 of 2.)

1382 Introduction to HyperText Markup Language 4: Part 1 Appendix I

We see an email link on lines 14 and 15

<p>My email address is
deitel@deitel.com. Click on the address and your browser

The form of an email anchor is …. It is im-
portant that this whole attribute, including the mailto:, be placed in quotation marks.

I.7 Images
We have thus far dealt exclusively with text. We now show how to incorporate images into
Web pages (Fig. I.5).

12 <body>
13
14 <p>My email address is
15 deitel@deitel.com. Click on the address and your browser
16 will open an email message and address it to me.</p>
17
18 </body>
19 </html>

Fig. I.4Fig. I.4Fig. I.4Fig. I.4 Linking to an email address. (Part 2 of 2.)

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.5: picture.html -->
6 <!-- Adding images with HTML. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11

Fig. I.5Fig. I.5Fig. I.5Fig. I.5 Placing images in HTML files. (Part 1 of 2.)

Appendix I Introduction to HyperText Markup Language 4: Part 1 1383

The image in this code example is inserted in lines 14 and 15:

<p><img src = "csphtp.jpg" height = "236" width = "181"
 alt = "Demonstration of the alt attribute"></p>

You specify the location of the image file in the img element. This is done by adding the
src = "location" attribute. You can also specify the height and width of an image,
measured in pixels. The term pixel stands for “picture element.” Each pixel represents one
dot of color on the screen. This image is 181 pixels wide and 236 pixels high.

Good Programming Practice I.8
Always include the height and the width of an image inside the img tag. When the
browser loads the HTML file, it will know immediately how much screen space to give the
image and will therefore lay out the page properly, even before it downloads the image. I.8

Common Programming Error I.2
Entering new dimensions for an image that changes its inherent width-to-height ratio distorts
the appearance of the image. For example, if your image is 200 pixels wide and 100 pixels high,
you should always make sure that any new dimensions have a 2:1 width-to-height ratio. I.2

The alt attribute is required for every img element. In Fig. I.5, the value of this
attribute is

alt = "Demonstration of the alt attribute"

12 <body>
13
14 <p><img src = "csphtp.jpg" height = "236" width = "181"
15 alt = "Demonstration of the alt attribute"></p>
16
17 </body>
18 </html>

Fig. I.5Fig. I.5Fig. I.5Fig. I.5 Placing images in HTML files. (Part 2 of 2.)

1384 Introduction to HyperText Markup Language 4: Part 1 Appendix I

Attribute alt is provided for browsers that have images turned off or cannot view images
(e.g., text-based browsers). The value of the alt attribute will appear on-screen in place
of the image, giving the user an idea of what was in the image. The alt attribute is espe-
cially important for making Web pages accessible to users with disabilities, as discussed in
Chapter 24, Accessibility.

Good Programming Practice I.9
Include a description of the purpose of every image, using the alt attribute in the img tag. I.9

Now that we have discussed placing images on your Web page, we will show you how
to transform images into anchors to provide links to other sites on the Internet (Fig. I.6).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.6: nav.html -->
6 <!-- Using images as link anchors. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <p>
15
16 <img src = "buttons/links.jpg" width = "65" height = "50"
17 alt = "Links Page">

18
19
20 <img src = "buttons/list.jpg" width = "65" height = "50"
21 alt = "List Example Page">

22
23
24 <img src = "buttons/contact.jpg" width = "65" height = "50"
25 alt = "Contact Page">

26
27
28 <img src = "buttons/header.jpg" width = "65" height = "50"
29 alt = "Header Page">

30
31
32 <img src = "buttons/table.jpg" width = "65" height = "50"
33 alt = "Table Page">

34
35
36 <img src = "buttons/form.jpg" width = "65" height = "50"
37 alt = "Feedback Form">

38 </p>
39

Fig. I.6Fig. I.6Fig. I.6Fig. I.6 Using images as link anchors. (Part 1 of 2.)

Appendix I Introduction to HyperText Markup Language 4: Part 1 1385

We see an image hyperlink in lines 15–17

<img src = "buttons/links.jpg" width = "65" height = "50"
 alt = "Links Page">

Here we use the a element and the img element. The anchor works the same way as when
it surrounds text; the image becomes an active hyperlink to a location somewhere on the
Internet, indicated by the href attribute inside the <a> tag. Remember to close the anchor
element when you want the hyperlink to end.

If you direct your attention to the src attribute of the img element,

src = "buttons/links.jpg"

you will see that it is not in the same form as that of the image in the previous example. This
is because the image we are using here, about.jpg, resides in a subdirectory called
buttons, which is in the main directory for our site. We have done this so that we can
keep all our button graphics in the same place, making them easier to find and edit.

You can always refer to files in different directories simply by putting the directory
name in the correct format in the src attribute. If, for example, there was a directory inside
the buttons directory called images, and we wanted to put a graphic from that directory
onto our page, we would just have to make the source attribute reflect the location of the
image: src = "buttons/images/filename".

40 </body>
41 </html>

Fig. I.6Fig. I.6Fig. I.6Fig. I.6 Using images as link anchors. (Part 2 of 2.)

1386 Introduction to HyperText Markup Language 4: Part 1 Appendix I

You can even insert an image from a different Web site into your site (after obtaining
permission from the site’s owner, of course). Just make the src attribute reflect the loca-
tion and name of the image file.

On line 17

alt = "Links Page">

we introduce the br element, which causes a line break to be rendered in most browsers.

I.8 Special Characters and More Line Breaks
In HTML, the old QWERTY typewriter setup no longer suffices for all our textual needs.
HTML 4.01 has a provision for inserting special characters and symbols (Fig. I.7).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.7: contact.html -->
6 <!-- Inserting special characters. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <!-- special characters are entered using the form &code; -->
15 <p>My email address is
16 deitel@deitel.com. Click on the address and your browser
17 will automatically open an email message and address it to my
18 address.</p>
19
20 <hr> <!-- inserts a horizontal rule -->
21
22 <p>All information on this site is ©
23 Deitel & Associates, 2002.</p>
24
25 <!-- text can be struck out with a set of ... -->
26 <!-- tags, it can be set in subscript with _{...}, -->
27 <!-- and it can be set into superscript with <sup...</sup> -->
28 <p>You may copy up to 3.14 x 10² characters
29 worth of information from this site. Just make sure
30 you _{do not copy more information} than is allowable.
31 </p>
32
33 <p>No permission is needed if you only need to use
34 < ¼ of the information presented here.</p>
35
36 </body>
37 </html>

Fig. I.7Fig. I.7Fig. I.7Fig. I.7 Inserting special characters into HTML. (Part 1 of 2.)

Appendix I Introduction to HyperText Markup Language 4: Part 1 1387

There are some special characters inserted into the text of lines 22 and 23:

<p>All information on this site is ©
Deitel & Associates, 2002.</p>

All special characters are inserted in their code form. The format of the code is always
&code;. An example of this is &, which inserts an ampersand. Codes are often abbre-
viated forms of the character (like amp for ampersand and copy for copyright) and can
also be in the form of hex codes. (For example, the hex code for an ampersand is 38, so
another method of inserting an ampersand is to use &.) Please refer to the chart in Ap-
pendix M for a listing of special characters and their respective codes.

In lines 28–31, we introduce three new styles.

<p>You may copy up to 3.14 x 10² characters
worth of information from this site. Just make sure
you _{do not copy more information} than is allow-
able.
</p>

You can indicate text that has been deleted from a document by including it in a del ele-
ment. This could be used as an easy way to communicate revisions of an online document.
Many browsers render the del element as strike-through text. To turn text into superscript
(i.e., raised vertically to the top of the line and made smaller) or to turn text into subscript
(the opposite of superscript, lowers text on a line and makes it smaller), use the sup or sub
element, respectively.

Line 20

<hr> <!-- inserts a horizontal rule -->

Fig. I.7Fig. I.7Fig. I.7Fig. I.7 Inserting special characters into HTML. (Part 2 of 2.)

1388 Introduction to HyperText Markup Language 4: Part 1 Appendix I

inserts a horizontal rule, indicated by the <hr> tag. A horizontal rule is rendered by most
browsers as a straight line going across the screen horizontally. The hr element also inserts
a line break directly below it.

I.9 Unordered Lists
Figure I.8 demonstrates displaying text in an unordered list. Here, we reuse the HTML file
from Fig. I.3, adding an unordered list to enhance the structure of the page. The unordered
list element ul creates a list in which every line begins with a bullet mark in most Web
browsers.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.8: links.html -->
6 <!-- Unordered list containing hyperlinks. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <h1>Here are my favorite Internet Search Engines</h1>
15
16
17 <p>Click on the Search Engine address to go to that
18 page.</p>
19
20
21
22 Yahoo
23
24
25
26 AltaVista
27
28
29
30 Ask Jeeves
31
32
33
34 WebCrawler
35
36
37
38 </body>
39 </html>

Fig. I.8Fig. I.8Fig. I.8Fig. I.8 Unordered lists in HTML. (Part 1 of 2.)

Appendix I Introduction to HyperText Markup Language 4: Part 1 1389

The first list item appears in lines 21–23

 Yahoo

Each entry in an unordered list is a li (list item) element. Most Web browsers render these
elements with a line break and a bullet mark at the beginning of the line.

I.10 Nested and Ordered Lists
Figure I.9 demonstrates nested lists (i.e., one list inside another list). This feature is useful
for displaying information in outline form.

Fig. I.8Fig. I.8Fig. I.8Fig. I.8 Unordered lists in HTML. (Part 2 of 2.)

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. I.9: list.html -->
6 <!-- Advanced Lists: nested and ordered. -->
7
8 <head>
9 <title>C# How to Program - Welcome</title>

10 </head>
11
12 <body>
13
14 <h1>The Best Features of the Internet</h1>
15
16
17 You can meet new people from countries around
18 the world.

Fig. I.9Fig. I.9Fig. I.9Fig. I.9 Nested and ordered lists in HTML. (Part 1 of 3.)

1390 Introduction to HyperText Markup Language 4: Part 1 Appendix I

19 You have access to new media as it becomes public:
20
21 <!-- this starts a nested list, which -->
22 <!-- uses a modified bullet. The list -->
23 <!-- ends when you close the tag -->
24
25 New games
26 New applications
27
28 <!-- another nested list -->
29
30 For business
31 For pleasure
32 <!-- this ends the double nested list -->
33
34
35 Around the clock news
36 Search engines
37 Shopping
38 Programming
39
40
41 C#
42 Java
43 HTML
44 Scripts
45 New languages
46
47
48
49
50 <!-- this ends the first level nested list -->
51
52
53 Links
54 Keeping in touch with old friends
55 It is the technology of the future!
56
57 <!-- this ends the primary unordered list -->
58
59 <h1>My 3 Favorite CEOs</h1>
60
61 <!-- ordered lists are constructed in the same way as -->
62 <!-- unordered lists, except their starting tag is -->
63
64 Lawrence J. Ellison
65 Steve Jobs
66 Michael Dell
67
68
69 </body>
70 </html>

Fig. I.9Fig. I.9Fig. I.9Fig. I.9 Nested and ordered lists in HTML. (Part 2 of 3.)

Appendix I Introduction to HyperText Markup Language 4: Part 1 1391

Our first nested list begins on line 24, and its first element is on 25.

 New games

A nested list is created in the same way as the list in Fig. I.8, except that the nested list is
itself contained in a list element. Most Web browsers render nested lists by indenting the
list one level and changing the bullet type for the list elements.

Good Programming Practice I.10
Indenting each level of a nested list in your code makes the code easier to edit and debug. I.10

In Fig. I.9, lines 16–57 show a list with three levels of nesting. When nesting lists, be
sure to insert the closing tags in the appropriate places. Lines 63–67

Fig. I.9Fig. I.9Fig. I.9Fig. I.9 Nested and ordered lists in HTML. (Part 3 of 3.)

1392 Introduction to HyperText Markup Language 4: Part 1 Appendix I

 Lawrence J. Ellison
 Steve Jobs
 Michael Dell

define an ordered list element with the tags …. Most browsers render ordered
lists with a sequence number for each list element instead of a bullet. By default, ordered
lists use decimal sequence numbers (1, 2, 3, …).

I.11 Internet and World Wide Web Resources
There are many resources available on the World Wide Web that go into more depth on the
topics we cover. Visit the following sites for additional information on this appendix’s topics.

www.w3.org
The World Wide Web Consortium (W3C), is the group that makes HTML recommendations. This
Web site holds a variety of information about HTML—both its history and its present status.

www.w3.org/TR/html401
The HTML 4.01 Specification contains all the nuances and fine points in HTML 4.01.

www.w3schools.com/html
The HTMl School. This site contains a complete guide to HTML, starting with an introduction to the
WWW and ending with advanced HTML features. This site also has a good reference for the features
of HTML.

www2.utep.edu/~kross/tutorial
This University of Texas at El Paso site contains another guide for simple HTML programming. The
site is helpful for beginners, because it focuses on teaching and gives specific examples.

www.w3scripts.com/html
This site, an offshoot of W3Schools, is a repository for code examples exhibiting all of the features of
HTML, from beginner to advanced.

SUMMARY
• HTML is not a procedural programming language like C, Fortran, Cobol or Pascal. It is a markup

language that identifies the elements of a page so a browser can render that page on the screen.

• HTML is used to format text and information. This “marking up” of information is different from
the intent of traditional programming languages, which is to perform actions in a designated order.

• In HTML, text is marked up with elements, delineated by tags that are keywords contained in pairs
of angle brackets.

• HTML documents are created via text editors.

• All HTML documents stored in files require either the.htm or the.html file name extension.

• Making errors while coding in conventional programming languages like C, C++ and Java often
produces a fatal error, preventing the program from running. Errors in HTML code are usually not
fatal. The browser will make its best effort at rendering the page, but will probably not display the
page as you intended. In our Common Programming Errors and Testing and Debugging Tips, we
highlight common HTML errors and how to detect and correct them.

• For most Web servers, the filename of your home page should be index.html. When a browser
requests a directory, the default Web server response is to return index.html, if it exists in that
directory.

Appendix I Introduction to HyperText Markup Language 4: Part 1 1393

• The document type specifies which version of HTML is used in the document and can be used with
a validation tool, such as the W3C’s validator.w3.org, to ensure an HTML document con-
forms to the HTML specification.

• <html> tells the browser that everything contained between the opening <html> tag and the
closing </html> tag is HTML.

• Comments in HTML always begin with <!-- and end with --> and can span across several
source lines. The browser ignores any text and/or tags placed inside a comment.

• Every HTML file is separated into a header section and a body.

• Including a title is mandatory for every HTML document. Use the <title>…</title> tags to
do so. They are placed inside the header.

• <body> opens the body element. The body of an HTML document is the area where you place
all content you would like browsers to display.

• All text between the <p>…</p> tags forms one paragraph. Most browsers render paragraphs as
set apart from all other material on the page by a line of vertical space both before and after the
paragraph.

• Headers are a simple form of text formatting that typically increase text size based on the header’s
“level” (h1 through h6). They are often used to delineate new sections and subsections of a page.

• The purpose of HTML is to mark up text; the question of how it is presented is left to the browser
itself.

• People who have difficulty seeing can use special browsers that read the text on the screen aloud.
These browsers (which are text based and do not show images, colors or graphics) might read
strong and em with different inflections to convey the impact of the styled text to the user.

• You should close tags in the reverse order from that in which they were started to ensure proper
nesting.

• The most important capability of HTML is creating hyperlinks to documents on any server to form
a worldwide network of linked documents and information.

• Links are inserted with the a (anchor) element. To specify the address you would like to link to,
add the href attribute to the anchor element, with the address as the value of href.

• Anchors can link to email addresses. When someone clicks this type of anchored link, their default
email program initiates an email message to the linked address.

• The term pixel stands for “picture element”. Each pixel represents one dot of color on the screen.

• You specify the location of the image file with the src = "location" attribute in the tag.
You can specify the height and width of an image, measured in pixels.

• alt is provided for browsers that cannot view pictures or that have images turned off (text-based
browsers, for example). The value of the alt attribute will appear on screen in place of the image,
giving the user an idea of what was in the image.

• You can refer to files in different directories by including the directory name in the correct format
in the src attribute. You can insert an image from a different Web site onto your site (after ob-
taining permission from the site’s owner). Just make the src attribute reflects the location and
name of the image file.

• The br element forces a line break. If the br element is placed inside a text area, the text begins
a new line at the place of the
 tag.

• HTML 4.01 has a provision for inserting special characters and symbols. All special characters are
inserted in the format of the code, always &code;. An example of this is &, which inserts an
ampersand. Codes are often abbreviated forms of the character (like amp for ampersand and copy

1394 Introduction to HyperText Markup Language 4: Part 1 Appendix I

for copyright) and can also be in the form of hex codes. (For example, the hex code for an amper-
sand is 38, so another method of inserting an ampersand is to use &.)

• The del element marks text as deleted, which is rendered with a strike through by most browsers.
To turn text into superscript or subscript, use the sup or sub element, respectively.

• Most visual Web browsers place a bullet mark at the beginning of each element in an unordered
list. All entries in an unordered list must be enclosed within … tags, which open and
close the unordered list element.

• Each entry in an unordered list is contained in an li element. You then insert and format any text.

• Nested lists display information in outline form. A nested list is a list that is contained in an li
element. Most visual Web browsers indent nested lists one level and change the bullet type to re-
flect the nesting.

• An ordered list (…) is rendered by most browsers with a sequence number instead
of a bullet at the beginning of each list element. By default, ordered lists use decimal sequence
numbers (1,2,3, …).

TERMINOLOGY
& HTML-kit
.htm hyperlink
.html hypertext
<!--…--> (comment) image
<body>…</body> img element
<hr> element (horizontal rule) index.html
a element (anchor; <a>…) line-break element (
…</br>)
alt link
anchor link attribute of body element…
attributes of an HTML tag mailto:
clear = "all" in
 markup language
closing tag opening tag
color p element (paragraph; <p>…</p>)
comments presentation of a Web page
content of an HTML element RGB colors
del element size = in
em element (…) source-code form
emphasis special characters
h1 element (<h1>…</h1>) src attribute in img element
h2 element (<h2>…</h2>) strong element (…)
h3 element (<h3>…</h3>) structure of a Web page
h4 element (<h4>…</h4>) sub (subscript)
h5 element (<h5>…</h5>) sup (superscript)
h6 element (<h6>…</h6>) tags in HTML
head element (<head>…</head>) text in body
height text-based browser
horizontal rule title element (<title>…</title>)
href attribute of <a> element unordered list (…)
HTML (HyperText Markup Language) Web site
HTML document width attribute
html element (<html>…</html>) width by percentage
HTML file width by pixel
HTML tags World Wide Web

Appendix I Introduction to HyperText Markup Language 4: Part 1 1395

SELF-REVIEW EXERCISES
I.1 State whether the following statements are true or false. If false, explain why.

a) The document type for an HTML document is optional.
b) The use of the em and strong elements is deprecated.
c) The name of your site’s home page should always be homepage.html.
d) It is a good programming practice to insert comments into your HTML document that

explain what you are doing.
e) A hyperlink is inserted around text with the link element.

I.2 Fill in the blanks in each of the following statements:
a) The element is used to insert a horizontal rule.
b) Superscript is formatted with the element and subscript is formatted with the

 element.
c) The element is located within the <head>…</head> tags.
d) The least important header is the element and the most important text header

is .
e) The element is used to create an unordered list.

I.3 Identify each of the following as either an element or attribute:
a) html
b) width
c) href
d) br
e) h3
f) a
g) src

ANSWERS TO SELF-REVIEW EXERCISES
I.1 a) False. The document type is required for HTMl documents. b) False. The use of the i and
b elements is deprecated. Elements em and strong may be used instead. c) False. The name of your
home page should always be index.html. d) True. e) False. A hyperlink is inserted around text
with the a (anchor) element.

I.2 a) hr. b) sup, sub. c) title. d) h6, h1. e) ul.

I.3 a) Tag. b) Attribute. c) Attribute. d) Tag. e) Tag. f) Tag. g) Attribute.

EXERCISES
I.4 Use HTML to mark up the first paragraph of this appendix. Use h1 for the section header, p
for text, strong for the first word of every sentence, and em for all capital letters.

I.5 Why is this code valid? (Hint: you can find the W3C specification for the p element at
www.w3.org/TR/html4)

<p>Here’s some text...
<hr>
<p>And some more text...</p>

I.6 Why is this code invalid? [Hint: you can find the W3C specification for the br element at the
same URL given in Exercise 2.5.]

<p>Here’s some text...
</br>
And some more text...</p>

1396 Introduction to HyperText Markup Language 4: Part 1 Appendix I

I.7 We have an image named deitel.gif that is 200 pixels wide and 150 pixels high. Use
the width and height attributes of the img tag to a) increase image size by 100%; b) increase im-
age size by 50%; c) change the width-to-height ratio to 2:1, keeping the width attained in a).

I.8 Create a link to each of the following: a) index.html, located in the files directory; b)
index.html, located in the text subdirectory of the files directory; c) index.html, located
in the other directory in your parent directory [Hint: .. signifies parent directory.]; d) A link to
the President of the United States’ email address (president@whitehouse.gov); e) An FTP
link to the file named README in the pub directory of ftp.cdrom.com. [Hint: remember to use
ftp://.]

J
Introduction to

HyperText Markup
Language 4: Part 2

Objectives
• To be able to create tables with rows and columns of

data.
• To be able to control the display and formatting of

tables.
• To be able to create and use forms.
• To be able to create and use image maps to aid

hyperlinking.
• To be able to make Web pages accessible to search

engines.
• To be able to use the frameset element to create

more interesting Web pages.
Yea, from the table of my memory
I’ll wipe away all trivial fond records.
William Shakespeare

1398 Introduction to HyperText Markup Language 4: Part 2 Appendix J

William Shakespeare

J.1 Introduction
In Appendix I, Introduction to HyperText Markup Language 4: Part 1, we discussed some
basic HTML features. We built several complete Web pages featuring text, hyperlinks, im-
ages and such formatting tools as horizontal rules and line breaks.

In this appendix, we discuss more substantial HTML elements and features. We will
see how to present information in tables. We discuss how to use forms to collect informa-
tion from people browsing a site. We explain how to use internal linking and image maps
to make pages more navigable. We also discuss how to use frames to make navigating Web
sites easier. By the end of this appendix, you will be familiar with most commonly used
HTML tags and features. You will then be able to create more complex Web sites. In this
appendix, we do not present any C# programming.

J.2 Basic HTML Tables
HTML 4.0 tables are used to mark up tabular data, such as data stored in a database. The
table in Fig. J.1 organizes data into rows and columns.

Outline

I.1 Introduction
I.2 Basic HTML Tables
I.3 Intermediate HTML Tables and Formatting
I.4 Basic HTML Forms
I.5 More Complex HTML Forms
I.6 Internal Linking
I.7 Creating and Using Image Maps

I.8 <meta> Tags

I.9 frameset Element

I.10 Nested framesets
I.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.1: table.html -->
6 <!-- Basic table design. -->
7
8 <head>
9 <title>C# How to Program - Tables</title>

10 </head>

Fig. J.1Fig. J.1Fig. J.1Fig. J.1 HTML table. (Part 1 of 2.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1399

All tags and text that apply to the table go inside the <table> element, which begins
on line 18:

<table border = "1" width = "40%">

11
12 <body>
13
14 <h1>Table Example Page</h1>
15
16 <!-- the <table> tag opens a new table and lets you -->
17 <!-- put in design options and instructions -->
18 <table border = "1" width = "40%">
19
20 <!-- use the <caption> tag to summarize the table's -->
21 <!-- contents (this helps the visually impaired) -->
22 <caption>Here is a small sample table.</caption>
23
24 <!-- The <thead> is the first (non-scrolling) -->
25 <!-- horizontal section. <th> inserts a header -->
26 <!-- cell and displays bold text -->
27 <thead>
28 <tr><th>This is the head.</th></tr>
29 </thead>
30
31 <!-- All of your important content goes in the <tbody>. -->
32 <!-- Use this tag to format the entire section -->
33 <!-- <td> inserts a data cell, with regular text -->
34 <tbody>
35 <tr><td>This is the body.</td></tr>
36 </tbody>
37
38 </table>
39
40 </body>
41 </html>

Fig. J.1Fig. J.1Fig. J.1Fig. J.1 HTML table. (Part 2 of 2.)

1400 Introduction to HyperText Markup Language 4: Part 2 Appendix J

The border attribute lets you set the width of the table’s border in pixels. If you want the
border to be invisible, you can specify border = "0". In the table shown in Fig. J.1, the
value of the border attribute is set to 1. The width attribute sets the width of the table as
either a number of pixels or a percentage of the screen width.

Line 22

<caption>Here is a small sample table.</caption>

inserts a caption element into the table. The text inside the caption element is inserted
directly above the table in most visual browsers. The caption text is also used to help text-
based browsers interpret the table data.

Tables can be split into distinct horizontal and vertical sections. The first of these sec-
tions, the head area, appears in lines 27–29

<thead>
 <tr><th>This is the head.</th></tr>
</thead>

Put all header information (for example, the titles of the table and column headers) inside
the thead element. The tr, or table row element, is used to create rows of table cells. All
of the cells in a row belong in the <tr> element for that row.

The smallest unit of the table is the data cell. There are two types of data cells, one
type—the th element—is located in the table header. The other type—the td element—is
located in the table body. The code example in Fig. J.1 inserts a header cell, using the th
element. Header cells, which are placed in the <thead> element, are suitable for column
headings.

The second grouping section, the tbody element, appears in lines 34–36

<tbody>
 <tr><td>This is the body.</td></tr>
</tbody>

Like thead, the tbody element is used for formatting and grouping purposes. Although
there is only one row and one cell (line 35) in the above example, most tables will use
tbody to group the majority of their content in multiple rows and multiple cells.

Look-and-Feel Observation J.1
Use tables in your HTML pages to mark up tabular data. J.1

Common Programming Error J.1
Forgetting to close any of the elements inside the table element is an error and can distort
the table format. Be sure to check that every element is opened and closed in its proper place
to make sure that the table is structured as intended. J.1

J.3 Intermediate HTML Tables and Formatting
In the previous section and code example, we explored the structure of a basic table. In
Fig. J.2, we extend our table example with more structural elements and attributes

Appendix J Introduction to HyperText Markup Language 4: Part 2 1401

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.2: table.html -->
6 <!-- Intermediate table design. -->
7
8 <head>
9 <title>C# How to Program - Tables</title>

10 </head>
11
12 <body>
13
14 <h1>Table Example Page</h1>
15
16 <table border = "1">
17 <caption>Here is a more complex sample table.</caption>
18
19 <!-- <colgroup> and <col> are used to format -->
20 <!-- entire columns at once. SPAN determines how -->
21 <!-- many columns the <col> tag effects. -->
22 <colgroup>
23 <col align = "right">
24 <col span = "4">
25 </colgroup>
26
27 <thead>
28
29 <!-- rowspans and colspans combine the indicated -->
30 <!-- number of cells vertically or horizontally -->
31 <tr>
32 <th rowspan = "2">
33 <img src = "camel.gif" width = "205"
34 height = "167" alt = "Picture of a camel">
35 </th>
36 <th colspan = "4" valign = "top">
37 <h1>Camelid comparison</h1>

38 <p>Approximate as of 8/99</p>
39 </th>
40 </tr>
41
42 <tr valign = "bottom">
43 <th># of Humps</th>
44 <th>Indigenous region</th>
45 <th>Spits?</th>
46 <th>Produces Wool?</th>
47 </tr>
48
49 </thead>
50

Fig. J.2Fig. J.2Fig. J.2Fig. J.2 Complex HTML table. (Part 1 of 2.)

1402 Introduction to HyperText Markup Language 4: Part 2 Appendix J

The table begins on line 16. The colgroup element, used for grouping columns, is
shown on lines 22–25

<colgroup>
 <col align = "right">

51 <tbody>
52
53 <tr>
54 <th>Camels (bactrian)</th>
55 <td>2</td>
56 <td>Africa/Asia</td>
57 <td rowspan = "2">Llama</td>
58 <td rowspan = "2">Llama</td>
59 </tr>
60
61 <tr>
62 <th>Llamas</th>
63 <td>1</td>
64 <td>Andes Mountains</td>
65 </tr>
66
67 </tbody>
68
69 </table>
70
71 </body>
72 </html>

Fig. J.2Fig. J.2Fig. J.2Fig. J.2 Complex HTML table. (Part 2 of 2.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1403

 <col span = "4">
</colgroup>

The colgroup element can be used to group and format columns. Each col element in
the <colgroup>…</colgroup> tags can format any number of columns (specified
with the span attribute). Any formatting to be applied to a column or group of columns
can be specified in both the colgroup and col tags. In this case, we align the text inside
the leftmost column to the right. Another useful attribute to use here is width, which spec-
ifies the width of the column.

Most visual Web browsers automatically format data cells to fit the data they contain.
However, it is possible to make some data cells larger than others. This effect is accom-
plished with the rowspan and colspan attributes, which can be placed inside any data
cell element. The value of the attribute specifies the number of rows or columns to be occu-
pied by the cell, respectively. For example, rowspan = "2" tells the browser that this data
cell will span the area of two vertically adjacent cells. These cells will be joined vertically
(and will thus span over two rows). An example of colspan appears in line 36,

<th colspan = "4" valign = "top">

where the header cell is widened to span four cells.
We also see here an example of vertical alignment formatting. The valign attribute

accepts the following values: "top", "middle", "bottom" and "baseline". All
cells in a row whose valign attribute is set to "baseline" will have the first text line
occur on a common baseline. The default vertical alignment in all data and header cells is
valign = "middle".

The remaining code in Fig. J.2 demonstrates other uses of the table attributes and
elements outlined above.

Common Programming Error J.2
When using colspan and rowspan in table data cells, consider that the modified cells will
cover the areas of other cells. Compensate for this in your code by reducing the number of
cells in that row or column. If you do not, the formatting of your table will be distorted, and
you could inadvertently create more columns and/or rows than you originally intended. J.2

J.4 Basic HTML Forms
HTML provides several mechanisms to collect information from people viewing your site;
one is the form (Fig. J.3).

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.3: form.html -->
6 <!-- Form design example 1. -->
7
8 <head>
9 <title>C# How to Program - Tables</title>

10 </head>

Fig. J.3Fig. J.3Fig. J.3Fig. J.3 Simple form with hidden fields and a text box. (Part 1 of 2.)

1404 Introduction to HyperText Markup Language 4: Part 2 Appendix J

11
12 <body>
13
14 <h1>Feedback Form</h1>
15
16 <p>Please fill out this form to help us improve our site.</p>
17
18 <!-- This tag starts the form, gives the method of sending -->
19 <!-- information and the location of form scripts. -->
20 <!-- Hidden inputs give the server non-visual information -->
21 <form method = "post" action = "/cgi-bin/formmail">
22
23 <p>
24 <input type = "hidden" name = "recipient"
25 value = "deitel@deitel.com">
26
27 <input type = "hidden" name = "subject"
28 value = "Feedback Form">
29
30 <input type = "hidden" name = "redirect"
31 value = "main.html">
32 </p>
33
34 <!-- <input type = "text"> inserts a text box -->
35 <p><label>Name:
36 <input name = "name" type = "text" size = "25">
37 </label></p>
38
39 <p>
40 <!-- input types "submit" and "reset" insert buttons -->
41 <!-- for submitting or clearing the form's contents -->
42 <input type = "submit" value = "Submit Your Entries">
43 <input type = "reset" value = "Clear Your Entries">
44 </p>
45
46 </form>
47
48 </body>
49 </html>

Fig. J.3Fig. J.3Fig. J.3Fig. J.3 Simple form with hidden fields and a text box. (Part 2 of 2.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1405

The form begins on line 21

<form method = "post" action = "/cgi-bin/formmail">

with the form element. The method attribute indicates the way the information gathered
in the form will be sent to the Web server for processing. Use method = "post" in a form
that causes changes to server data, for example when updating a database. The form data
will be sent to the server as an environment variable, which scripts are able to access. The
other possible value, method = "get", should be used when your form does not cause
any changes in server-side data, for example when making a database request. The form
data from method = "get" is appended to the end of the URL (for example, /cgi-
bin/formmail?name=bob&order=5). Also be aware that method = "get" is lim-
ited to standard characters and cannot submit any special characters.

A Web server is a machine that runs a software package like Microsoft’s PWS (Per-
sonal Web Server), Microsoft’s IIS (Internet Information Server) or Apache. Web servers
handle browser requests. When a browser requests a page or file somewhere on a server,
the server processes the request and returns an answer to the browser. In this example, the
data from the form goes to a CGI (Common Gateway Interface) script, which is a means of
interfacing an HTML page with a script (i.e., a program) written in Perl, C, Tcl or other
languages. The script then handles the data fed to it by the server and typically returns some
information for the user. The action attribute in the form tag is the URL for this script;
in this case, it is a simple script that emails form data to an address. Most Internet Service
Providers (ISPs) will have a script like this on their site, so you can ask your system admin-
istrator how to set up your HTML to use the script correctly.

For this particular script, there are several pieces of information (not seen by the user)
needed in the form. Lines 24–31

<input type = "hidden" name = "recipient"
 value = "deitel@deitel.com">

<input type = "hidden" name = "subject"
 value = "Feedback Form">

<input type = "hidden" name = "redirect"
 value = "main.html">

specify this information using hidden input elements. The input element is common in
forms and always requires the type attribute. Two other attributes are name, which pro-
vides a unique identifier for the input element, and value, which indicates the value that
the input element sends to the server upon submission.

As shown above, hidden inputs always have the attribute type = "hidden". The
three hidden inputs shown are typical for this kind of CGI script: An email address to which
the data will be sent, the subject line of the email and a URL to which the user is redirected
after submitting the form.

Good Programming Practice J.1
Place hidden input elements in the beginning of a form, right after the opening <form>
tag. This makes these elements easier to find and identify. J.1

The usage of an input element is defined by the value of its type attribute. We intro-
duce another of these options in lines 35–37:

1406 Introduction to HyperText Markup Language 4: Part 2 Appendix J

<p><label>Name:
 <input name = "name" type = "text" size = "25">
</label></p>

The input type = "text" inserts a one-line text box into the form (line 36). A good use
of the textual input element is for names or other one-line pieces of information. The la-
bel element on lines 35–37 provide a description for the input element on line 36.

We also use the size attribute of the input element to specify the width of the text
input, measured in characters. You can also set a maximum number of characters that the
text input will accept using the maxlength attribute.

Good Programming Practice J.2
When using input elements in forms, be sure to leave enough space with the maxlength
attribute for users to input the pertinent information. J.2

Common Programming Error J.3
Forgetting to include a label element for each form element is a design error. Without these
labels, users will have no way of knowing what the function of individual form elements is. J.3

There are two types of input elements in lines 42–43

<input type = "submit" value = "Submit Your Entries">
<input type = "reset" value = "Clear Your Entries">

that should be inserted into every form. The type = "submit" input element allows
the user to submit the data entered in the form to the server for processing. Most visual Web
browsers place a button in the form that submits the data when clicked. The value at-
tribute changes the text displayed on the button (the default value is "submit"). The input
element type = "reset" allows a user to reset all form elements to the default values.
This can help the user correct mistakes or simply start over. As with the submit input, the
value attribute of the reset input element affects the text of the button on the screen,
but does not affect its functionality.

Common Programming Error J.4
Be sure to close your form code with the </form> tag. Neglecting to do so is an error and
can affect the functionality of other forms on the same page. J.4

J.5 More Complex HTML Forms
We introduce additional form input options in Fig. J.4.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.4: form.html -->
6 <!-- Form design example 2. -->
7
8 <head>
9 <title>C# How to Program - Tables</title>

10 </head>

Fig. J.4Fig. J.4Fig. J.4Fig. J.4 Form including textareas, password boxes and checkboxes. (Part 1 of 3.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1407

11
12 <body>
13
14 <h1>Feedback Form</h1>
15
16 <p>Please fill out this form to help us improve our site.</p>
17
18 <form method = "post" action = "/cgi-bin/formmail">
19
20 <p>
21 <input type = "hidden" name = "recipient"
22 value = "deitel@deitel.com">
23
24 <input type = "hidden" name = "subject"
25 value = "Feedback Form">
26
27 <input type = "hidden" name = "redirect"
28 value = "main.html">
29 </p>
30
31 <p><label>Name:
32 <input name = "name" type = "text" size = "25">
33 </label></p>
34
35 <!-- <textarea> creates a textbox of the size given -->
36 <p><label>Comments:
37 <textarea name = "comments" rows = "4" cols = "36">
38 </textarea>
39 </label></p>
40
41 <!-- <input type = "password"> inserts textbox whose -->
42 <!-- readout will be in *** not regular characters -->
43 <p><label>Email Address:
44 <input name = "email" type = "password" size = "25">
45 </label></p>
46
47 <p>
48 Things you liked:

49
50 <label>Site design
51 <input name = "thingsliked" type = "checkbox"
52 value = "Design"></label>
53
54 <label>Links
55 <input name = "thingsliked" type = "checkbox"
56 value = "Links"></label>
57
58 <label>Ease of use
59 <input name = "thingsliked" type = "checkbox"
60 value = "Ease"></label>
61
62 <label>Images

Fig. J.4Fig. J.4Fig. J.4Fig. J.4 Form including textareas, password boxes and checkboxes. (Part 2 of 3.)

1408 Introduction to HyperText Markup Language 4: Part 2 Appendix J

Lines 37–38

<textarea name = "comments" rows = "4" cols = "36">
</textarea>

introduce the textarea element. The textarea element inserts a text box into the
form. You specify the size of the box with the rows attribute, which sets the number of
rows that will appear in the textarea. With the cols attribute, you specify how wide

63 <input name = "thingsliked" type = "checkbox"
64 value = "Images"></label>
65
66 <label>Source code
67 <input name = "thingsliked" type = "checkbox"
68 value = "Code"></label>
69 </p>
70
71 <p>
72 <input type = "submit" value = "Submit Your Entries">
73 <input type = "reset" value = "Clear Your Entries">
74 </p>
75
76 </form>
77
78 </body>
79 </html>

Fig. J.4Fig. J.4Fig. J.4Fig. J.4 Form including textareas, password boxes and checkboxes. (Part 3 of 3.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1409

the textarea should be. This textarea is four rows of characters tall and 36 charac-
ters wide. Any default text that you want to place inside the textarea should be con-
tained in the textarea element.

The input type = "password" (line 44)

<input name = "email" type = "password" size = "25">

inserts a text box with the indicated size. The password input field provides a way for users
to enter information that the user would not want others to be able to read on the screen. In
visual browsers, the data the user types into a password input field is shown as asterisks.
However, the actual value the user enters is sent to the server. Nonvisual browsers may ren-
der this type of input field differently.

Lines 50–68 introduce another type of form element, the checkbox. Every input ele-
ment with type = "checkbox" creates a new checkbox item in the form. Checkboxes
can be used individually or in groups. Each checkbox in a group should have the same
name (in this case, name = "thingsliked"). This notifies the script handling the form
that all of the checkboxes are related to one another.

Common Programming Error J.5
When your form has several checkboxes with the same name, you must make sure that they
have different values, or else the script will have no way of distinguishing between them. J.5

Additional form elements are introduced in Fig. J.5. In this form example, we intro-
duce two new types of input options. The first of these is the radio button, introduced in
lines 80–97. Inserted into forms with the input attribute type = "radio", radio buttons
are similar in function and usage to checkboxes. Radio buttons are different in that only one
element in the group may be selected at any time. All of the name attributes of a group of
radio inputs must be the same and all of the value attributes different. Insert the attribute
checked to indicate which radio button you would like selected initially. The checked
attribute can also be applied to checkboxes.

Common Programming Error J.6
When you are using a group of radio inputs in a form, forgetting to set the name values to the
same name will let the user select all the radio buttons at the same time—an undesired result. J.6

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.5: form.html -->
6 <!-- Form design example 3. -->
7
8 <head>
9 <title>C# How to Program - Tables</title>

10 </head>
11
12 <body>
13
14 <h1>Feedback Form</h1>
15

Fig. J.5Fig. J.5Fig. J.5Fig. J.5 Form including radio buttons and pulldown lists. (Part 1 of 4.)

1410 Introduction to HyperText Markup Language 4: Part 2 Appendix J

16 <p>Please fill out this form to help us improve our site.</p>
17
18 <form method = "post" action = "/cgi-bin/formmail">
19
20 <p>
21 <input type = "hidden" name = "recipient"
22 value = "deitel@deitel.com">
23
24 <input type = "hidden" name = "subject"
25 value = "Feedback Form">
26
27 <input type = "hidden" name = "redirect"
28 value = "main.html">
29 </p>
30
31 <p><label>Name:
32 <input name = "name" type = "text" size = "25">
33 </label></p>
34
35 <p><label>Comments:
36 <textarea name = "comments" rows = "4" cols = "36">
37 </textarea>
38 </label></p>
39
40 <p><label>Email Address:
41 <input name = "email" type = "password" size = "25">
42 </label></p>
43
44 <p>
45 Things you liked:

46
47 <label>Site design
48 <input name = "things" type = "checkbox"
49 value = "Design">
50 </label>
51
52 <label>Links
53 <input name = "things" type = "checkbox"
54 value = "Links">
55 </label>
56
57 <label>Ease of use
58 <input name = "things" type = "checkbox"
59 value = "Ease">
60 </label>
61
62 <label>Images
63 <input name = "things" type = "checkbox"
64 value = "Images">
65 </label>
66
67 <label>Source code

Fig. J.5Fig. J.5Fig. J.5Fig. J.5 Form including radio buttons and pulldown lists. (Part 2 of 4.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1411

68 <input name = "things" type = "checkbox"
69 value = "Code">
70 </label>
71 </p>
72
73 <!-- <input type = "radio"> creates one radio button -->
74 <!-- radio buttons and checkboxes differ in that -->
75 <!-- only one radio button in group can be selected -->
76 <p>
77 How did you get to our site?:

78
79 <label>Search engine
80 <input name = "how get to site" type = "radio"
81 value = "search engine" checked></label>
82
83 <label>Links from another site
84 <input name = "how get to site" type = "radio"
85 value = "link"></label>
86
87 <label>Deitel.com Web site
88 <input name = "how get to site" type = "radio"
89 value = "deitel.com"></label>
90
91 <label>Reference in a book
92 <input name = "how get to site" type = "radio"
93 value = "book"></label>
94
95 <label>Other
96 <input name = "how get to site" type = "radio"
97 value = "other"></label>
98
99 </p>
100
101 <!-- <select> tags present drop down menus -->
102 <!-- with choices indicated by <option> tags -->
103 <p>
104 <label>Rate our site:
105
106 <select name = "rating">
107 <option selected>Amazing:-)</option>
108 <option>10</option>
109 <option>9</option>
110 <option>8</option>
111 <option>7</option>
112 <option>6</option>
113 <option>5</option>
114 <option>4</option>
115 <option>3</option>
116 <option>2</option>
117 <option>1</option>
118 <option>The Pits:-(</option>
119 </select>
120

Fig. J.5Fig. J.5Fig. J.5Fig. J.5 Form including radio buttons and pulldown lists. (Part 3 of 4.)

1412 Introduction to HyperText Markup Language 4: Part 2 Appendix J

The last type of form input that we introduce here is the select element (lines 106–
119). This will place a selectable list of items inside your form.

<select name = "rating">
 <option selected>Amazing:-)</option>
 <option>10</option>
 <option>9</option>
 <option>8</option>
 <option>7</option>
 <option>6</option>

121 </label>
122 </p>
123
124 <p>
125 <input type = "submit" value = "Submit Your Entries">
126 <input type = "reset" value = "Clear Your Entries">
127 </p>
128
129 </form>
130
131 </body>
132 </html>

Fig. J.5Fig. J.5Fig. J.5Fig. J.5 Form including radio buttons and pulldown lists. (Part 4 of 4.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1413

 <option>5</option>
 <option>4</option>
 <option>3</option>
 <option>2</option>
 <option>1</option>
 <option>The Pits:-(</option>
</select>

This type of form input is created via a select element. Inside the opening <select>
tag, be sure to include the name attribute.

To add an item to the list, add to the select element an option element containing
the text to be displayed. The selected attribute, like the checked attribute for radio but-
tons and checkboxes, applies a default selection to your list.

The preceding code will generate a pull-down list of options in most visual browsers,
as shown in Fig. J.5. You can change the number of list options visible at one time, using
the size attribute of the select element. Use this attribute if you prefer an expanded
version of the list to the one-line expandable list.

J.6 Internal Linking
In Appendix I, Introduction to HyperText Markup Language 4: Part 1, we discussed how
to link one Web page to another with text and image anchors. Figure J.6 introduces internal
linking, which lets you create named anchors for hyperlinks to particular parts of an HTML
document.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.6: links.html -->
6 <!-- Internal linking. -->
7
8 <head>
9 <title>C# How to Program - Tables</title>

10 </head>
11
12 <body>
13
14 <!-- makes internal hyperlinks -->
15 <p>
16
17 </p>
18
19 <h1>The Best Features of the Internet</h1>
20
21 <!-- internal link's address is "xx.html#linkname" -->
22 <p>
23 Go to Favorite CEOs
24 </p>
25

Fig. J.6Fig. J.6Fig. J.6Fig. J.6 Using internal hyperlinks to make your pages more navigable. (Part 1 of 3.)

1414 Introduction to HyperText Markup Language 4: Part 2 Appendix J

26
27 You can meet people from countries around the world.
28
29
30 You have access to new media as it becomes public:
31
32
33 New games
34 New applications
35
36
37 For Business
38 For Pleasure
39
40
41
42
43 Around the Clock news
44 Search Engines
45 Shopping
46 Programming
47
48
49 HTML
50 Java
51 Dynamic HTML
52 Scripts
53 New languages
54
55
56
57
58
59
60
61 Links
62 Keeping In touch with old friends
63 It is the technology of the future!
64
65
66 <p></p>
67
68 <h1>My 3 Favorite CEOs</h1>
69
70 <p>
71 Go to Favorite Features
72 </p>
73
74
75 Lawrence J. Ellison
76 Steve Jobs
77 Michael Dell
78

Fig. J.6Fig. J.6Fig. J.6Fig. J.6 Using internal hyperlinks to make your pages more navigable. (Part 2 of 3.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1415

Lines 15–17

<p>

</p>

show a named anchor for an internal hyperlink. A named anchor is created via an a element
with a name attribute. Line 15 creates an anchor named features. Because the name of
the page is list.html, the URL of this anchor in the Web page is list.html#fea-
tures. Line 71

79
80 </body>
81 </html>

Fig. J.6Fig. J.6Fig. J.6Fig. J.6 Using internal hyperlinks to make your pages more navigable. (Part 3 of 3.)

1416 Introduction to HyperText Markup Language 4: Part 2 Appendix J

Go to Favorite Features

shows a hyperlink with the anchor features as its target. Selecting this hyperlink in a
visual browser would scroll the browser window to the features anchor (line 16). Ex-
amples of this occur in Fig. J.6, which shows two different screen captures from the same
page, each at a different anchor. You can also link to an anchor in another page, using the
URL of that location (using the format href = "page.html#name").

Look-and-Feel Observation J.2
Internal hyperlinks are most useful in large HTML files with lots of information. You can link
to various points on the page to save the user from having to scroll down and find a specific
location. J.2

J.7 Creating and Using Image Maps
We have seen that images can be used as links to other places on your site or elsewhere on
the Internet. We now discuss how to create image maps (Fig. J.7), which allow you to des-
ignate certain sections of the image as hotspots and then use these hotspots as links.

All elements of an image map are contained inside the <map>…</map> tags. The
required attribute for the map element is name (line 18):

<map name = "picture">

As we will see, this attribute is needed for referencing purposes. A hotspot on the
image is designated with the area element. Every area element has the following
attributes: href sets the target for the link on that spot, shape and coords set the char-
acteristics of the area and alt functions just as it does in the img element.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.7: picture.html -->
6 <!-- Creating and using imape maps. -->
7
8 <head>
9 <title>C# How to Program - Tables</title>

10 </head>
11
12 <body>
13
14 <p>
15
16 <!-- <map> opens and names image map formatting -->
17 <!-- area and to be referenced later -->
18 <map name = "picture">
19
20 <!-- "shape = rect" indicates rectangular -->
21 <!-- area, with coordinates of the -->
22 <!-- upper-left and lower-right corners -->

Fig. J.7Fig. J.7Fig. J.7Fig. J.7 Picture with links anchored to an image map. (Part 1 of 2.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1417

23 <area href = "form.html" shape = "rect"
24 coords = "3, 122, 73, 143"
25 alt = "Go to the feedback form">
26
27 <area href = "contact.html" shape = "rect"
28 coords = "109, 123, 199, 142"
29 alt = "Go to the contact page">
30
31 <area href = "main.html" shape = "rect"
32 coords = "1, 2, 72, 17"
33 alt = "Go to the homepage">
34
35 <area href = "links.html" shape = "rect"
36 coords = "155, 0, 199, 18"
37 alt = "Go to the links page">
38
39 <!-- "shape = polygon" indicates area of -->
40 <!-- cusotmizable shape, with the -->
41 <!-- coordinates of every vertex listed -->
42 <area href = "mailto:deitel@deitel.com" shape = "poly"
43 coords = "28, 22, 24, 68, 46, 114, 84, 111, 99, 56, 86, 13"
44 alt = "Email the Deitels">
45
46 <!-- "shape = circle" indicates circular -->
47 <!-- area with center and radius listed -->
48 <area href = "mailto:deitel@deitel.com" shape = "circle"
49 coords = "146, 66, 42" alt = "Email the Deitels">
50 </map>
51
52 <!-- says that -->
53 <!-- indicated image map will be used with image -->
54 <img src = "deitel.gif" width = "200" height = "144"
55 alt = "Harvey and Paul Deitel" usemap = "#picture">
56 </p>
57
58 </body>
59 </html>

Fig. J.7Fig. J.7Fig. J.7Fig. J.7 Picture with links anchored to an image map. (Part 2 of 2.)

1418 Introduction to HyperText Markup Language 4: Part 2 Appendix J

The markup on lines 23–25

<area href = "form.html" shape = "rect"
 coords = "3, 122, 73, 143" alt = "Go to the feedback form">

causes a rectangular hotspot to be drawn around the coordinates given in the coords ele-
ment. A coordinate pair consists of two numbers, which are the locations of the point on the
x and y axes. The x axis extends horizontally from the upper-left corner, the y axis vertically.
Every point on an image has a unique x–y coordinate. In the case of a rectangular hotspot, the
required coordinates are those of the upper-left and lower-right corners of the rectangle. In
this case, the upper-left corner of the rectangle is located at 3 on the x axis and 122 on the y
axis, annotated as (3, 122). The lower-right corner of the rectangle is at (73, 143).

Another map area is in lines 42–44

<area href = "mailto:deitel@deitel.com" shape = "poly"
 coords = "28, 22, 24, 68, 46, 114, 84, 111, 99, 56, 86, 13

alt = "Email the Deitels">

In this case, we use the value poly for the shape attribute. This creates a hotspot in the
shape of a polygon, using the coordinates in the coords attribute. These coordinates rep-
resent each vertex, or corner, of the polygon. The browser will automatically connect these
points with lines to form the area of the hotspot.

shape = "circle" is the last shape attribute that is commonly used in image maps.
It creates a circular hotspot, and requires both the coordinates of the center of the circle and
the radius of the circle, in pixels.

To use the image map with an img element, you must insert the usemap = "#name"
attribute into the img element, where name is the value of the name attribute in the map
element. Lines 54–55

<img src = "deitel.gif" width = "200" height= "144" alt =
"Harvey and Paul Deitel" usemap = "#picture">

show how the image map name = "picture" is applied to the img element.

J.8 <meta> Tags
People use search engines to find interesting Web sites. Search engines usually catalog sites
by following links from page to page and saving identification and classification informa-
tion for each page visited. The main HTML element that search engines use to catalog pag-
es is the meta tag (Fig. J.8).

A meta tag contains two attributes that should always be used. The first of these,
name, identifies the type of meta tag you are including. The content attribute provides
information the search engine will catalog about your site.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4
5 <!-- Fig. J.8: main.html -->
6 <!-- <meta> and <!doctype> tags. -->

Fig. J.8Fig. J.8Fig. J.8Fig. J.8 Using meta to provide keywords and a description. (Part 1 of 2.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1419

Lines 11–13 demonstrate the meta tag.

<meta name = "keywords" content = "Webpage, design, HTML,
 tutorial, personal, help, index, form, contact, feedback,
 list, links, frame, deitel">

The content of a meta tag with name = "keywords" provides search engines with a
list of words that describe key aspects of your site. These words are used to match with
searches—if someone searches for some of the terms in your keywords meta tag, they
have a better chance of being notified about your site in the search-engine output. Thus, in-
cluding meta tags and their content information will draw more viewers to your site.

The description attribute value (lines 15–17)

<meta name = "description" content = "This Web site will help
you learn the basics of HTML and Webpage design through the
use of interactive examples and instruction.">

7
8 <head>
9 <!-- <meta> tags give search engines information -->

10 <!-- they need to catalog your site -->
11 <meta name = "keywords" content = "Webpage, design, HTML,
12 tutorial, personal, help, index, form, contact, feedback,
13 list, links, frame, deitel">
14
15 <meta name = "description" content = "This Web site will help
16 you learn the basics of HTML and Webpage design through the
17 use of interactive examples and instruction.">
18
19 <title>C# How to Program - Tables</title>
20 </head>
21
22 <body>
23
24 <h1>Welcome to Our Web Site!</h1>
25
26 <p>
27 We have designed this site to teach about the wonders of
28 HTML. We have been using HTML since
29 version 2.0, and we enjoy the features
30 that have been added recently. It seems only a short
31 time ago that we read our first HTML book.
32 Soon you will know about many of the great new
33 features of HTML 4.01.
34 </p>
35
36 <p>Have Fun With the Site!</p>
37
38 </body>
39 </html>

Fig. J.8Fig. J.8Fig. J.8Fig. J.8 Using meta to provide keywords and a description. (Part 2 of 2.)

1420 Introduction to HyperText Markup Language 4: Part 2 Appendix J

is quite similar to the keywords value. Instead of giving a list of words describing your
page, the contents of the keywords meta element should be a readable 3-to-4-line de-
scription of your site, written in sentence form. This description is also used by search en-
gines to catalog and display your site.

Software Engineering Observation J.1
meta elements are not visible to users of the site and must be placed inside the header sec-
tion of your HTML document. J.1

J.9 frameset Element
All of the Web pages we have designed so far have the ability to link to other pages but can
display only one page at a time. Figure J.9 introduces frames, which can help you display
more than one HTML file at a time. Frames, when used properly, can make your site more
readable and usable for your users.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
2 "http://www.w3.org/TR/html4/frameset.dtd">
3 <html>
4
5 <!-- Fig. J.9: index.html -->
6 <!-- HTML Frames I. -->
7
8 <head>
9 <meta name = "keywords" content = "Webpage, design, HTML,

10 tutorial, personal, help, index, form, contact, feedback,
11 list, links, frame, deitel">
12
13 <meta name = "description" content = "This Web site will help
14 you learn the basics of HTML and Webpage design through the
15 use of interactive examples and instruction.">
16
17 <title>C# How to Program - Tables</title>
18 </head>
19
20 <!-- the <frameset> tag gives dimensions of your frame -->
21 <frameset cols = "110,*">
22
23 <!-- the individual frame elements specify -->
24 <!-- which pages appear in given frames -->
25 <frame name = "nav" src = "nav.html">
26 <frame name = "main" src = "main.html">
27
28 <noframes>
29 <p>
30 This page uses frames, but your browser
31 does not support them.
32 </p>
33

Fig. J.9Fig. J.9Fig. J.9Fig. J.9 Web site using two frames—navigation and content. (Part 1 of 2.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1421

On lines 1 and 2,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
 "http://www.w3.org/TR/html4/frameset.dtd">

we encounter a new document type. The document type specified here indicates that this
HTML document uses frames. You should use this document type whenever you use
frames in your HTML document.

The framed page begins with the opening frameset tag, on line 21

<frameset cols = "110,*">

This tag tells the browser that the page contains frames. The cols attribute of the opening
frameset tag gives the layout of the frameset. The value of cols (or rows, if you will
be writing a frameset with a horizontal layout) gives the width of each frame, either in pix-

34 <p>
35 Please, follow this link to
36 browse our site without frames.
37 </p>
38 </noframes>
39
40 </frameset>
41 </html>

Fig. J.9Fig. J.9Fig. J.9Fig. J.9 Web site using two frames—navigation and content. (Part 2 of 2.)

1422 Introduction to HyperText Markup Language 4: Part 2 Appendix J

els or as a percentage of the screen. In this case, the attribute cols = "110,*" tells the
browser that there are two frames. The first one extends 110 pixels from the left edge of the
screen, and the second frame fills the remainder of the screen (as indicated by the asterisk).

Now that we have defined the page layout, we have to specify what files will make up
the frameset. We do this with the frame element in lines 25 and 26:

<frame name = "nav" src = "nav.html">
<frame name = "main" src = "main.html">

In each frame element, the src attribute gives the URL of the page that will be displayed
in the frame. In the preceding example, the first frame (which covers 110 pixels on the left
side of the frameset) will display the page nav.html and has the attribute name =
"nav". The second frame will display the page main.html and has the attribute name
= "main".

The purpose of a name attribute in the frame element is to identify the frame,
enabling hyperlinks in a frameset to load in their intended target frame. For example,

would load links.html in the frame whose name attribute is "main".
A target in an anchor element can also be set to a number of preset values:

target="_blank" loads the page in a new blank browser window,
target="_self" loads the page into the same window as the anchor element,
target="_parent" loads it in the parent frameset (i.e., the frameset which con-
tains the current frame) and target="_top" loads the page into the full browser
window (the page loads over the frameset).

In lines 28–38 of the code example in Fig. J.9, the noframes element displays
HTML in those browsers that do not support frames.
No Portability Tip J.1

Not everyone uses a browser that supports frames. Use the noframes element inside the
frameset to direct users to a nonframed version of your site. J.1

Look-and-Feel Observation J.3
Frames are capable of enhancing your page, but are often misused. Never use frames to ac-
complish what you could with other, simpler HTML formatting. J.3

J.10 Nested framesets
You can use the frameset element to create more complex layouts in a framed Web site
by nesting frameset areas as in Fig. J.10.

 The first level of frameset tags is on lines 21 and 22

<frameset cols = "110,*">
 <frame name = "nav"src = "nav.html">

The frameset and frame elements here are constructed in the same manner as in
Fig. J.9. We have one frame that extends over the first 110 pixels, starting at the left edge.

The second (nested) level of the frameset element covers only the remaining
frame area that was not included in the primary frameset. Thus, any frames included

Appendix J Introduction to HyperText Markup Language 4: Part 2 1423

in the second frameset will not include the leftmost 110 pixels of the screen. Lines 26–
29 show the second level of frameset tags.

<frameset rows = "175,*">
 <frame name = "picture" src = "picture.html">
 <frame name = "main" src = "main.html">
</frameset>

In this frameset area, the first frame extends 175 pixels from the top of the screen, as
indicated by the rows = "175,*". Be sure to include the correct number of frame ele-
ments inside the second frameset area. Also, be sure to include a noframes element
and to close both of the frameset areas at the end of the Web page.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
2 "http://www.w3.org/TR/html4/frameset.dtd">
3 <html>
4
5 <!-- Fig. J.10: index.html -->
6 <!-- HTML frames II. -->
7
8 <head>
9

10 <meta name = "keywords" content = "Webpage, design, HTML,
11 tutorial, personal, help, index, form, contact, feedback,
12 list, links, frame, deitel">
13
14 <meta name = "description" content = "This Web site will help
15 you learn the basics of HTML and Webpage design through
16 the use of interactive examples and instruction.">
17
18 <title>C# How to Program - Tables</title>
19 </head>
20
21 <frameset cols = "110,*">
22 <frame name = "nav" src = "nav.html">
23
24 <!-- nested framesets are used to change formatting -->
25 <!-- and spacing of frameset as whole -->
26 <frameset rows = "175,*">
27 <frame name = "picture" src = "picture.html">
28 <frame name = "main" src = "main.html">
29 </frameset>
30
31 <noframes>
32 <p>
33 This page uses frames, but your browser does
34 not support them.
35 </p>
36
37 <p>
38 Please, follow this link
39 to browse our site without frames.

Fig. J.10Fig. J.10Fig. J.10Fig. J.10 Framed Web site with a nested frameset. (Part 1 of 2.)

1424 Introduction to HyperText Markup Language 4: Part 2 Appendix J

Testing and Debugging Tip J.1
When using nested frameset elements, indent every level of frame tag. This makes the
page clearer and easier to debug. J.1

Look-and-Feel Observation J.4
Nested framesets can help you create visually pleasing, easy-to-navigate Web sites. J.4

J.11 Internet and World Wide Web Resources
There are many Web sites that cover the more advanced and difficult features of HTML.
Several of these sites are featured here.

www.geocities.com/SiliconValley/Orchard/5212
Adam’s Advanced HTML Page is geared to those looking to master the more advanced techniques of
HTML. It includes instructions for creating tables, frames and marquees and other advanced topics.

www.w3scripts.com/html
This site, an offshoot of W3Schools, is a repository for code examples exhibiting all of the features of
HTML, from beginner to advanced.

www.blooberry.com/indexdot/html
Index Dot HTML, The Advance HTML Reference... The name speaks for itself. This site has a great
directory and tree-based index of all HTML elements, plus more.

40 </p>
41 </noframes>
42
43 </frameset>
44 </html>

Fig. J.10Fig. J.10Fig. J.10Fig. J.10 Framed Web site with a nested frameset. (Part 2 of 2.)

Appendix J Introduction to HyperText Markup Language 4: Part 2 1425

www.neiljohan.com/html/advancedhtml.htm
The Advanced HTML Guide gives insights into improving your site using HTML in ways you might
not have thought possible.

SUMMARY
• HTML tables organize data into rows and columns. All tags and text that apply to a table go inside

the <table>…</table> tags. The border attribute lets you set the width of the table’s bor-
der in pixels. The width attribute sets the width of the table—you specify either a number of pix-
els or a percentage of the screen width.

• The text inside the <caption>…</caption> tags is inserted directly above the table in the
browser window. The caption text is also used to help text-based browsers interpret the table data.

• Tables can be split into distinct horizontal and vertical sections. Put all header information (such
as table titles and column headers) inside the <thead>…</thead> tags. The tr (table row)
element is used for formatting the cells of individual rows. All of the cells in a row belong within
the <tr>…</tr> tags of that row.

• The smallest area of the table that we are able to format is the data cell. There are two types of
data cells: ones located in the header (<th>…</th>) and ones located in the table body
(<td>…</td>). Header cells, usually placed in the <thead> area, are suitable for titles and
column headings.

• Like thead, the tbody is used for formatting and grouping purposes. Most tables use tbody to
house the majority of their content.

• td table data cells are left aligned by default. th cells are centered by default.

• Just as you can use the thead and tbody elements to format groups of table rows, you can use
the colgroup element to group and format columns. colgroup is used by setting in its open-
ing tag the number of columns it affects and the formatting it imposes on that group of columns.

• Each col element contained inside the <colgroup>…</colgroup> tags can in turn format
a specified number of columns.

• You can add a background color or image to any table row or cell with either the bgcolor or
background attributes, which are used in the same way as in the body element.

• It is possible to make some table data cells larger than others by using the rowspan and col-
span attributes. The attribute value extends the data cell to span the specified number of cells.

• The valign (vertical alignment) attribute of a table data cell accepts the following values:
"top", "middle", "bottom" and "baseline".

• All cells in a table row whose valign attribute is set to "baseline" will have the first text line
on a common baseline.

• The default vertical alignment in all data and header cells is valign="middle".

• HTML provides several mechanisms—including the form—to collect information from people
viewing your site.

• Use method = "post" in a form that causes changes to server data, for example when updating
a database. The form data will be sent to the server as an environment variable, which scripts are
able to access. The other possible value, method = "get", should be used when your form does
not cause any changes in server-side data, for example when making a database request. The form
data from method = "get" is appended to the end of the URL. Because of this, the amount of
data submitted using this method is limited to 4K. Also be aware that method = "get" is lim-
ited to standard characters and cannot submit any special characters.

1426 Introduction to HyperText Markup Language 4: Part 2 Appendix J

• A Web server is a machine that runs a software package like Apache or IIS; servers are designed
to handle browser requests. When a user uses a browser to request a page or file somewhere on the
server, the server processes this request and returns an answer to the browser.

• The action attribute in the form tag is the path to a script that processes the form data.

• The input element is common in forms and always requires the type attribute. Two other at-
tributes are name, which provides a unique identification for the input, and value, which in-
dicates the value that the input element sends to the server upon submission.

• The input type="text" inserts a one-line text bar into the form. The value of this input ele-
ment and the information that the server sends to you from this input is the text that the user
types into the bar. The size attribute determines the width of the text input, measured in charac-
ters. You can also set a maximum number of characters that the text input will accept by inserting
the maxlength="length" attribute.

• You must make sure to include a label element for each form element to indicate the function
of the element.

• The type="submit" input element places a button in the form that submits data to the server
when clicked. The value attribute of the submit input changes the text displayed on the button.

• The type="reset" input element places a button on the form that, when clicked, will clear all
entries the user has entered into the form.

• The textarea element inserts a box into the form. You specify the size of the box (which is
scrollable) inside the opening <textarea> tag with the rows attribute and the cols attribute.

• Data entered in a type="password" input appears on the screen as asterisks. The password is
used for submitting sensitive information that the user would not want others to be able to read. It
is just the browser that displays asterisks—the real form data is still submitted to the server.

• Every input element with type="checkbox" creates a new checkbox in the form. Check-
boxes can be used individually or in groups. Each checkbox in a group should have the same name
(in this case, name="things").

• Inserted into forms by means of the input attribute type="radio", radio buttons are different
from checkboxes in that only one in the group may be selected at any time. All of the name at-
tributes of a group of radio inputs must be the same and all of the value attributes different.

• Insert the attribute checked to indicate which radio button you would like selected initially.

• The select element places a selectable list of items inside your form. To add an item to the list,
insert an option element in the <select>…</select> area and type what you want the list
item to display on the same line. You can change the number of list options visible at one time by
including the size="size" attribute inside the <select> tag. Use this attribute if you prefer an
expanded version of the list to the one-line expandable list.

• A location on a page is marked by including a name attribute in an a element. Clicking this hy-
perlink in a browser would scroll the browser window to that point on the page.

• An image map allows you to designate certain sections of the image as hotspots and then use these
hotspots as anchors for linking.

• All elements of an image map are contained inside the <map>…</map> tags. The required at-
tribute for the map element is name.

• A hotspot on the image is designated with the area element. Every <area> tag has the following
attributes: href sets the target for the link on that spot, shape and coords set the characteris-
tics of the area and alt function just as it does in tags.

• shape="rect" creates a rectangular hotspot around the coordinates of a coords element.

Appendix J Introduction to HyperText Markup Language 4: Part 2 1427

• A coordinate pair consists of two numbers, which are the locations of the point on the x and y axes.
The x axis extends horizontally from the upper-left corner, the y axis vertically. Every point on an
image has a unique x–y coordinate, annotated as (x, y).

• In the case of a rectangular hotspot, the required coordinates are those of the upper-left and lower-
right corners of the rectangle.

• The shape="poly" creates a hotspot of no preset shape—you specify the shape of the hotspot
in the coords attribute by listing the coordinates of every vertex, or corner of the hotspot.

• shape="circle" creates a circular hotspot; it requires both the coordinates of the center of the
circle and the length of the radius, in pixels.

• To use an image map with a graphic on your page, you must insert the usemap="#name" at-
tribute into the img element, where “name” is the value of the name attribute in the map element.

• The main element that interacts with search engines is the meta element.

• meta tags contain two attributes that should always be used. The first of these, name, is an iden-
tification of the type of meta tag you are including. The content attribute gives the information
the search engine will be cataloging.

• The content of a meta tag with name="keywords" provides the search engines with a list
of words that describe the key aspects of your site. By including meta tags and their content in-
formation, you can give precise information about your site to search engines. This will help you
draw a more focused audience to your site.

• The description value of the name attribute in the meta tag should be a 3-to-4-line descrip-
tion of your site, written in sentence form. This description is used by the search engine to catalog
and display your site.

• meta elements are not visible to users of the site and should be placed inside the header section
of your HTML document.

• The frameset tag tells the browser that the page contains frames.

• cols or rows gives the width of each frame in pixels or as a percentage of the screen.

• In each frame element, the src attribute gives the URL of the page that will be displayed in the
specified frame.

• The purpose of a name attribute in the frame element is to give an identity to that specific frame,
in order to enable hyperlinks in a frameset to load their intended frame. The target at-
tribute in an anchor element is set to the name of the frame in which the new page should load.

• A target in an anchor element can be set to a number of preset values: target="_blank" loads
the page in a new blank browser window, target="self" loads the page into the same window
as the anchor element, target="_parent" loads the page into the parent frameset and
target="_top" loads the page into the full browser window.

• Not everyone viewing a page has a browser that can handle frames. You therefore need to include
a noframes element inside of the frameset. You should include regular HTML tags and ele-
ments within the <noframes>…</noframes> tags. Use this area to direct the user to a non-
framed version of the site.

• By nesting frameset elements, you can create more complex layouts.

TERMINOLOGY
<!doctype…> area
<meta> tag border property of table element
<option> caption element
ACTION attribute in form element cell of a table

1428 Introduction to HyperText Markup Language 4: Part 2 Appendix J

SELF-REVIEW EXERCISES
J.1 State whether the following statements are true or false. If false, explain why.

a) The width of all data cells in a table must be the same.
b) The thead element is mandatory in a table.
c) You are limited to a maximum of 100 internal links per page.
d) All browsers can render framesets.

J.2 Fill in the blanks in each of the following statements.
a) The attribute in an input element inserts a button that, when clicked, will

clear the contents of the form.
b) The spacing of a frameset is set by including the attribute or the

 attribute inside of the <frameset> tag.
c) The element inserts a new item in a list.

CGI script name="redirect" in input element
checked name="subject" in input element
circular hotspot nested lists
col element noframes
colgroup element noresize attribute in frame
cols attribute of table element ol (ordered list) element (…)
colspan attribute of td element rectangular hotspot
column of a table row of a table
coords attribute inside area element rowspan attribute of td element
data cell scrolling attribute in frame
environment variable select element (<select>…</select>)
form shape attribute inside area element
frame element (<frame>…</frame>) size attribute in select
frameset element src attribute of frame element
header cell table
hotspot table element (<table>…</table>)
image map target="_blank"
indenting lists target="_blank"
input element (<input>…</input>) target="_parent"
input type="button" target="_top"
input type="checkbox" tbody
input type="password" td (table data) element (<td>…</td>)
input type="radio" text-based browser
input type="reset" th (header cell) element (<th>…</th>)
input type="submit" thead element (<thead>…</thead>)
input type="text" tr (table row) element (<tr>…</tr>)
input type="textarea" type=1 attribute of
internal linking type=a attribute of
list type=A attribute of
map element type=i attribute of
maxlength="#" type=I attribute of
method="get" ul (unordered list) element (…)
method="post" usemap="name" attribute in img
name attribute in input element value attribute of input element
name="recipient" in input element Web server

Appendix J Introduction to HyperText Markup Language 4: Part 2 1429

d) The element tells the browser what version of HTML is included on the
page. Two types of this element are and .

e) The common shapes used in image maps are , and .

J.3 Write HTML tags to accomplish the following tasks:
a) Insert a framed Web page with the first frame extending 300 pixels across the page from

the left side.
b) Insert an ordered list that will have numbering by lowercase Roman numerals.
c) Insert a scrollable list (in a form) that will always display four entries of the list.
d) Insert an image map onto a page, using deitel.gif as an image and map with

name="hello" as the image map, and have “hello” be the alt text.

ANSWERS TO SELF-REVIEW EXERCISES
J.1 a) False. You can specify the width of any column either in pixels or as a percentage of the total
width of the table. c) False. The thead element is used only for formatting purposes and is optional
(but it is recommended that you include it). d) False. You can have an unlimited number of hyperlink
locations on any page. e) False. Text-based browsers are unable to render a frameset and must there-
fore rely on the information that you include inside the <noframes>…</noframes> tag.

J.2 a) type = "reset". b) cols, rows. c) li. d) <!doctype…>, transitional,
frameset. e) poly, circle, rect.

J.3 a) <frameset cols = "300,*">…</frameset> b) <ol type = "i">…
c) <select size = "4">…</select> d)<img src = "deitel.gif" alt = "hello"
usemap = "#hello">

EXERCISES
J.4 Categorize each of the following as an element or an attribute:

a) width
b) td
c) th
d) frame
e) name
f) select
g) type

J.5 What will the frameset produced by the following code look like? Assume that the pages
being imported are blank with white backgrounds and that the dimensions of the screen are 800 by
600. Sketch the layout, approximating the dimensions.

<frameset rows = "20%,*">
<frame src = "hello.html" name = "hello">
 <frameset cols = "150,*">
 <frame src = "nav.html" name = "nav">
 <frame src = "deitel.html" name = "deitel">
 </frameset>
</frameset>

J.6 Assume that you have a document with many subsections. Write the HTML markup to create
a frame with a table of contents on the left side of the window, and have each entry in the table of
contents use internal linking to scroll down the document frame to the appropriate subsection.

K
Introduction to XHTML:

Part 1

Objectives
• To understand important components of XHTML

documents.
• To use XHTML to create World Wide Web pages.
• To be able to add images to Web pages.
• To understand how to create and use hyperlinks to

navigate Web pages.
• To be able to mark up lists of information.
To read between the lines was easier than to follow the text.
Aristophanes

Appendix K Introduction to XHTML: Part 1 1431

Henry JamesHigh thoughts must have high language.Aristophanes

K.1 Introduction
In this appendix, we introduce XHTML1—the Extensible HyperText Markup Language. In
the next appendix, Introduction to XHTML: Part 2, we introduce more sophisticated XHT-
ML techniques, such as tables, which are particularly useful for structuring information
from databases (i.e., software that stores structured sets of data). In this appendix, we do
not present any C# programming.

Unlike procedural programming languages such as C, Fortran, Cobol and Visual
Basic, XHTML is a markup language that specifies the format of text that is displayed in a
Web browser such as Microsoft’s Internet Explorer or Netscape’s Communicator.

One key issue when using XHTML2 is the separation of the presentation of a docu-
ment (i.e., the document’s appearance when rendered by a browser) from the structure of
the document’s information. Throughout this appendix and the next, we will discuss this
issue in depth.

K.2 Editing XHTML
In this appendix, we write XHTML in its source-code form. We create XHTML documents
by typing them in with a text editor (e.g., Notepad, Wordpad, vi or emacs), saving the doc-
uments with either an.html or .htm file-name extension.

Outline

K.1 Introduction
K.2 Editing XHTML
K.3 First XHTML Example
K.4 W3C XHTML Validation Service
K.5 Headers
K.6 Linking
K.7 Images
K.8 Special Characters and More Line Breaks
K.9 Unordered Lists
K.10 Nested and Ordered Lists
K.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. XHTML has replaced the HyperText Markup Language (HTML) as the primary means of describ-
ing Web content. XHTML provides more robust, richer and more extensible features than HTML.
For more on XHTML/HTML, visit www.w3.org/markup.

2. As this book was being submitted to the publisher, XHTML 1.1 became a World Wide Web Con-
sortium (W3C) Recommendation. The XHTML examples presented in this book are based upon
the XHTML 1.0 Recommendation, because Internet Explorer 5.5 does not support the full set of
XHTML 1.1 features. In the future, Internet Explorer and other browsers will support XHTML
1.1. When this occurs, we will update our Web site (www.deitel.com) with XHTML 1.1 ex-
amples and information.

1432 Introduction to XHTML: Part 1 Appendix K

Good Programming Practice K.1
Assign documents file names that describe their functionality. This practice can help you
identify documents faster. It also helps people who want to link to a page, by giving them an
easy-to-remember name. For example, if you are writing an XHTML document that contains
product information, you might want to call it products.html. K.1

Machines running specialized software called a Web server store XHTML documents.
Clients (e.g., Web browsers) request specific resources, such as the XHTML documents from
the Web server. For example, typing www.deitel.com/books/downloads.htm into
a Web browser’s address field requests downloads.htm from the Web server running at
www.deitel.com. This document is located in a directory named books.

K.3 First XHTML Example
In this appendix and the next, we present XHTML markup and provide screen captures that
show how Internet Explorer renders (i.e., displays) the XHTML. Every XHTML document
we show has line numbers for the reader’s convenience. These line numbers are not part of
the XHTML documents.

Our first example (Fig. K.1) is an XHTML document named main.html that dis-
plays the message Welcome to XHTML! in the browser.

The key line in the program is line 14, which tells the browser to display Welcome
to XHTML! Now let us consider each line of the program.

Lines 1–3 are required in XHTML documents to conform with proper XHTML syntax.
For now, copy and paste these lines into each XHTML document you create. The meaning
of these lines is discussed in detail in Chapter 18, Extensible Markup Language (XML).

Lines 5–6 are XHTML comments. XHTML document creators insert comments to
improve markup readability and describe the content of a document. Comments also help
other people read and understand an XHTML document’s markup and content. Comments
do not cause the browser to perform any action when the user loads the XHTML document
into the Web browser to view the document. XHTML comments always start with <!--
and end with -->. Each of our XHTML examples includes comments that specify the
figure number and file name and provide a brief description of the example’s purpose. Sub-
sequent examples include comments in the markup, especially to highlight new features.

Good Programming Practice K.2
Place comments throughout your markup. Comments help other programmers understand
the markup, assist in debugging and list useful information that you do not want the browser
to render. Comments also help you understand your own markup when you revisit a docu-
ment for modifications or updates in the future. K.2

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.1: main.html -->
6 <!-- Our first Web page. -->
7

Fig. K.1Fig. K.1Fig. K.1Fig. K.1 First XHTML example. (Part 1 of 2.)

Appendix K Introduction to XHTML: Part 1 1433

XHTML markup contains text that represents the content of a document and elements
that specify a document’s structure. Some important elements of an XHTML document
include the html element, the head element and the body element. The html element
encloses the head section (represented by the head element) and the body section (repre-
sented by the body element). The head section contains information about the XHTML
document, such as the title of the document. The head section also can contain special doc-
ument formatting instructions called style sheets and client-side programs called scripts for
creating dynamic Web pages. The body section contains the page’s content that the browser
displays when the user visits the Web page.

XHTML documents delimit an element with start and end tags. A start tag consists of
the element name in angle brackets (e.g., <html>). An end tag consists of the element
name preceded by a / in angle brackets (e.g., </html>). In this example, lines 8 and 16
define the start and end of the html element. Note that the end tag on line 16 has the same
name as the start tag, but is preceded by a / inside the angle brackets. Many start tags define
attributes that provide additional information about an element. Browsers can use this addi-
tional information to determine how to process the element. Each attribute has a name and
a value separated by an equal sign (=). Line 8 specifies a required attribute (xmlns) and
value (http://www.w3.org/1999/xhtml) for the html element in an XHTML
document. For now, simply copy and paste the html element start tag on line 8 into your
XHTML documents. We discuss the details of the html element’s xmlns attribute in
Chapter 18, Extensible Markup Language (XML).

Common Programming Error K.1
Not enclosing attribute values in either single or double quotes is a syntax error. K.1

Common Programming Error K.2
Using uppercase letters in an XHTML element or attribute name is a syntax error. K.2

8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome</title>
11 </head>
12
13 <body>
14 <p>Welcome to XHTML!</p>
15 </body>
16 </html>

Fig. K.1Fig. K.1Fig. K.1Fig. K.1 First XHTML example. (Part 2 of 2.)

1434 Introduction to XHTML: Part 1 Appendix K

An XHTML document divides the html element into two sections—head and body.
Lines 9–11 define the Web page’s head section with a head element. Line 10 specifies a
title element. This is called a nested element, because it is enclosed in the head ele-
ment’s start and end tags. The head element also is a nested element, because it is enclosed
in the html element’s start and end tags. The title element describes the Web page.
Titles usually appear in the title bar at the top of the browser window and also as the text
identifying a page when users add the page to their list of Favorites or Bookmarks,
which enable users to return to their favorite sites. Search engines (i.e., sites that allow users
to search the Web) also use the title for cataloging purposes.

Good Programming Practice K.3
Indenting nested elements emphasizes a document’s structure and promotes readability. K.3

Common Programming Error K.3
XHTML does not permit tags to overlap—a nested element’s end tag must appear in the doc-
ument before the enclosing element’s end tag. For example, the nested XHTML tags
<head><title>hello</head></title> cause a syntax error, because the enclos-
ing head element’s ending </head> tag appears before the nested title element’s end-
ing </title> tag. K.3

Good Programming Practice K.4
Use a consistent title naming convention for all pages on a site. For example, if a site is
named “Bailey’s Web Site,” then the title of the main page might be “Bailey’s Web Site—
Links”. This practice can help users better understand the Web site’s structure. K.4

Line 13 opens the document’s body element. The body section of an XHTML docu-
ment specifies the document’s content, which may include text and tags.

Some tags, such as the paragraph tags (<p> and </p>) in line 14, mark up text for dis-
play in a browser. All text placed between the <p> and </p> tags form one paragraph. When
the browser renders a paragraph, a blank line usually precedes and follows paragraph text.

This document ends with two closing tags (lines 15–16). These tags close the body
and html elements, respectively. The ending </html> tag in an XHTML document
informs the browser that the XHTML markup is complete.

To view this example in Internet Explorer, perform the following steps:

1. Copy the Appendix K examples onto your machine from the CD that accompanies
this book (or download the examples from www.deitel.com).

2. Launch Internet Explorer, and select Open... from the File Menu. This displays
the Open dialog.

3. Click the Open dialog’s Browse... button to display the Microsoft Internet
Explorer file dialog.

4. Navigate to the directory containing the Appendix K examples and select the file
main.html; then, click Open.

5. Click OK to have Internet Explorer render the document. Other examples are
opened in a similar manner.

At this point your browser window should appear similar to the sample screen capture
shown in Fig. K.1. (Note that we resized the browser window to save space in the book.)

Appendix K Introduction to XHTML: Part 1 1435

K.4 W3C XHTML Validation Service
Programming Web-based applications can be complex, and XHTML documents must be
written correctly to ensure that browsers process them properly. To promote correctly writ-
ten documents, the World Wide Web Consortium (W3C) provides a validation service
(validator.w3.org) for checking a document’s syntax. Documents can be validated
either from a URL that specifies the location of the file or by uploading a file to the site
validator.w3.org/file-upload.html. Uploading a file copies the file from the
user’s computer to another computer on the Internet. Figure K.2 shows main.html
(Fig. K.1) being uploaded for validation. Although the W3C’s Web page indicates that the
service name is HTML Validation Service,1 the validation service is able to validate the
syntax of XHTML documents. All the XHTML examples in this book have been validated
successfully through validator.w3.org.

By clicking Browse…, users can select files on their own computers for upload. After
selecting a file, clicking the Validate this document button uploads and validates the
file. Figure 4.3 shows the results of validating main.html. This document does not con-
tain any syntax errors. If a document does contain syntax errors, the Validation Service dis-
plays error messages describing the errors. In Exercise K.11, we ask readers to create an
invalid XHTML document (i.e., one that contains syntax errors) and to check the docu-
ment’s syntax, using the Validation Service. This enables readers to see the types of error
messages generated by the validator.

1. HTML (HyperText Markup Language) is the predecessor of XHTML designed for marking up
Web content. HTML is a deprecated technology.

Fig. K.2 Validating an XHTML document. (Courtesy of World Wide Web
Consortium (W3C).)

1436 Introduction to XHTML: Part 1 Appendix K

Testing and Debugging Tip K.1
Use a validation service, such as the W3C HTML Validation Service, to confirm that an XHT-
ML document is syntactically correct. K.1

K.5 Headers
Some text in an XHTML document may be more important than some other. For example,
the text in this section is considered more important than a footnote. XHTML provides six
headers, called header elements, for specifying the relative importance of information.
Figure K.4 demonstrates these elements (h1 through h6).

Portability Tip K.1
The text size used to display each header element can vary significantly between browsers. K.1

Fig. K.3 XHTML validation results. (Courtesy of World Wide Web Consortium
(W3C).)

Appendix K Introduction to XHTML: Part 1 1437

Header element h1 (line 15) is considered the most significant header and is rendered
in a larger font than the other five headers (lines 16–20). Each successive header element
(i.e., h2, h3, etc.) is rendered in a smaller font.

Look-and-Feel Observation K.1
Placing a header at the top of every XHTML page helps viewers understand the purpose of
each page. K.1

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.4: header.html -->
6 <!-- XHTML headers. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome</title>
11 </head>
12
13 <body>
14
15 <h1>Level 1 Header</h1>
16 <h2>Level 2 header</h2>
17 <h3>Level 3 header</h3>
18 <h4>Level 4 header</h4>
19 <h5>Level 5 header</h5>
20 <h6>Level 6 header</h6>
21
22 </body>
23 </html>

Fig. K.4Fig. K.4Fig. K.4Fig. K.4 Header elements h1 through h6.

1438 Introduction to XHTML: Part 1 Appendix K

Look-and-Feel Observation K.2
Use larger headers to emphasize more important sections of a Web page. K.2

K.6 Linking
One of the most important XHTML features is the hyperlink, which references (or links to)
other resources, such as XHTML documents and images. In XHTML, both text and images
can act as hyperlinks. Web browsers typically underline text hyperlinks and color their text
blue by default, so that users can distinguish hyperlinks from plain text. In Fig. K.5, we cre-
ate text hyperlinks to four different Web sites.

Line 17 introduces the tag. Browsers typically display text marked up with
 in a bold font.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.5: links.html -->
6 <!-- Introduction to hyperlinks. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome</title>
11 </head>
12
13 <body>
14
15 <h1>Here are my favorite sites</h1>
16
17 <p>Click a name to go to that page.</p>
18
19 <!-- create four text hyperlinks -->
20 <p>
21 Deitel
22 </p>
23
24 <p>
25 Prentice Hall
26 </p>
27
28 <p>
29 Yahoo!
30 </p>
31
32 <p>
33 USA Today
34 </p>
35
36 </body>
37 </html>

Fig. K.5Fig. K.5Fig. K.5Fig. K.5 Linking to other Web pages. (Part 1 of 2.)

Appendix K Introduction to XHTML: Part 1 1439

Links are created using the a (anchor) element. Line 21 defines a hyperlink that links
the text Deitel to the URL assigned to attribute href, which specifies the location of a
linked resource, such as a Web page, a file or an e-mail address. This particular anchor ele-
ment links to a Web page located at http://www.deitel.com. When a URL does not
indicate a specific document on the Web site, the Web server returns a default Web page.
This pages often is called index.html; however, most Web servers can be configured to
to use any file as the default Web page for the site. (Open http://www.deitel.com
in one browser window and http://www.deitel.com/index.html in a second
browser window to confirm that they are identical.) If the Web server cannot locate a
requested document, the server returns an error indication to the Web browser and the
browser displays an error message to the user.

Anchors can link to e-mail addresses through a mailto: URL. When someone clicks
this type of anchored link, most browsers launch the default e-mail program (e.g., Outlook
Express) to enable the user to write an e-mail message to the linked address. Figure K.6
demonstrates this type of anchor.

Fig. K.5Fig. K.5Fig. K.5Fig. K.5 Linking to other Web pages. (Part 2 of 2.)

1440 Introduction to XHTML: Part 1 Appendix K

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.6: contact.html -->
6 <!-- Adding email hyperlinks. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome</title>
11 </title>
12 </head>
13
14 <body>
15
16 <p>My email address is
17
18 deitel@deitel.com
19
20 . Click the address and your browser will
21 open an e-mail message and address it to me.
22 </p>
23 </body>
24 </html>

Fig. K.6Fig. K.6Fig. K.6Fig. K.6 Linking to an e-mail address.

Appendix K Introduction to XHTML: Part 1 1441

Lines 17–19 contain an e-mail link. The form of an e-mail anchor is <a href =
"mailto:emailaddress">…. In this case, we link to the e-mail address
deitel@deitel.com.

K.7 Images
The examples discussed so far demonstrated how to mark up documents that contain only
text. However, most Web pages contain both text and images. In fact, images are an equal
and essential part of Web-page design. The two most popular image formats used by Web
developers are Graphics Interchange Format (GIF) and Joint Photographic Experts Group
(JPEG) images. Users can create images, using specialized pieces of software, such as Ado-
be PhotoShop Elements and Jasc Paint Shop Pro (www.jasc.com). Images may also be
acquired from various Web sites, such as gallery.yahoo.com. Figure K.7 demon-
strates how to incorporate images into Web pages.

Lines 16–17 use an img element to insert an image in the document. The image file’s
location is specified with the img element’s src attribute. In this case, the image is located
in the same directory as this XHTML document, so only the image’s file name is required.
Optional attributes width and height specify the image’s width and height, respec-
tively. The document author can scale an image by increasing or decreasing the values of
the image width and height attributes. If these attributes are omitted, the browser uses
the image’s actual width and height. Images are measured in pixels (“picture elements”),
which represent dots of color on the screen. The image in Fig. K.7 is 181 pixels wide and
238 pixels high.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.7: picture.html -->
6 <!-- Adding images with XHTML. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome</title>
11 </head>
12
13 <body>
14
15 <p>
16 <img src = "csphtp.jpg" height = "238" width = "181"
17 alt = "C# How to Program book cover" />
18
19 <img src = "jhtp.jpg" height = "238" width = "181"
20 alt = "Java How to Program book cover" />
21 </p>
22
23 </body>
24 </html>

Fig. K.7Fig. K.7Fig. K.7Fig. K.7 Placing images in XHTML files. (Part 1 of 2.)

1442 Introduction to XHTML: Part 1 Appendix K

Good Programming Practice K.5
Always include the width and the height of an image inside the tag. When the
browser loads the XHTML file, it will know immediately from these attributes how much
screen space to provide for the image and will lay out the page properly, even before it down-
loads the image. K.5

Performance Tip K.1
Including the width and height attributes in an tag will help the browser load
and render pages faster. K.1

Common Programming Error K.4
Entering new dimensions for an image that change its inherent width-to-height ratio distorts
the appearance of the image. For example, if your image is 200 pixels wide and 100 pixels
high, you should ensure that any new dimensions have a 2:1 width-to-height ratio. K.4

Every img element in an XHTML document has an alt attribute. If a browser cannot
render an image, the browser displays the alt attribute’s value. A browser might not be
able to render an image for several reasons. It might not support images—as is the case with
a text-based browser (i.e., a browser that can display only text)—or the client may have dis-
abled image viewing to reduce download time. Figure K.7 shows Internet Explorer ren-
dering the alt attribute’s value when a document references a nonexistent image file
(jhtp.jpg).

The alt attribute is important for creating accessible Web pages for users with dis-
abilities, especially those with vision impairments and text-based browsers. Specialized
software called speech synthesizers often are used by people with disabilities. These soft-
ware applications “speak” the alt attribute’s value so that the user knows what the
browser is displaying. We discuss accessibility issues in detail in Chapter 24, Accessibility.

Fig. K.7Fig. K.7Fig. K.7Fig. K.7 Placing images in XHTML files. (Part 2 of 2.)

Appendix K Introduction to XHTML: Part 1 1443

Some XHTML elements (called empty elements) contain only attributes and do not
mark up text (i.e., text is not placed between the start and end tags). Empty elements (e.g.,
img) must be terminated, either by using the forward slash character (/) inside the closing
right angle bracket (>) of the start tag or by explicitly including the end tag. When using
the forward slash character, we add a space before the forward slash to improve readability
(as shown at the ends of lines 17 and 20). Rather than using the forward slash character,
lines 19–20 could be written with a closing tag as follows:

<img src = "jhtp.jpg" height = "238" width = "181"
 alt = "Java How to Program book cover">

By using images as hyperlinks, Web developers can create graphical Web pages that
link to other resources. In Fig. K.8, we create six different image hyperlinks.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.8: nav.html -->
6 <!-- U\sing images as link anchors. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome
11 </title>
12 </head>
13
14 <body>
15
16 <p>
17
18 <img src = "buttons/links.jpg" width = "65"
19 height = "50" alt = "Links Page" />
20

21
22
23 <img src = "buttons/list.jpg" width = "65"
24 height = "50" alt = "List Example Page" />
25

26
27
28 <img src = "buttons/contact.jpg" width = "65"
29 height = "50" alt = "Contact Page" />
30

31
32
33 <img src = "buttons/header.jpg" width = "65"
34 height = "50" alt = "Header Page" />
35

36

Fig. K.8Fig. K.8Fig. K.8Fig. K.8 Using images as link anchors. (Part 1 of 2.)

1444 Introduction to XHTML: Part 1 Appendix K

Lines 17–20 create an image hyperlink by nesting an img element within an anchor
(a) element. The value of the img element’s src attribute value specifies that this image
(links.jpg) resides in a directory named buttons. The buttons directory and the
XHTML document are in the same directory. Images from other Web documents also can
be referenced (after obtaining permission from the document’s owner) by setting the src
attribute to the name and location of the image.

37
38 <img src = "buttons/table.jpg" width = "65"
39 height = "50" alt = "Table Page" />
40

41
42
43 <img src = "buttons/form.jpg" width = "65"
44 height = "50" alt = "Feedback Form" />
45

46 </p>
47
48 </body>
49 </html>

Fig. K.8Fig. K.8Fig. K.8Fig. K.8 Using images as link anchors. (Part 2 of 2.)

Appendix K Introduction to XHTML: Part 1 1445

On line 20, we introduce the br element, which most browsers render as a line break.
Any markup or text following a br element is rendered on the next line. Like the img ele-
ment, br is an example of an empty element terminated with a forward slash. We add a
space before the forward slash to enhance readability.

K.8 Special Characters and More Line Breaks
When marking up text, certain characters or symbols (e.g., <) may be difficult to embed
directly into an XHTML document. Some keyboards may not provide these symbols, or the
presence of these symbols may cause syntax errors. For example, the markup

<p>if x < 10 then increment x by 1</p>

results in a syntax error, because it uses the less-than character (<), which is reserved for
start tags and end tags such as <p> and </p>. XHTML provides special characters or en-
tity references (in the form &code;) for representing these characters. We could correct the
previous line by writing

<p>if x < 10 then increment x by 1</p>

which uses the special character < for the less-than symbol.
Figure K.9 demonstrates how to use special characters in an XHTML document. For

a list of special characters, see Appendix M, Special Characters.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.9: contact2.html -->
6 <!-- Inserting special characters. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome
11 </title>
12 </head>
13
14 <body>
15
16 <!-- special characters are -->
17 <!-- entered using form &code; -->
18 <p>
19 Click
20 here
21 to open an e-mail message addressed to
22 deitel@deitel.com.
23 </p>
24
25 <hr /> <!-- inserts a horizontal rule -->
26

Fig. K.9Fig. K.9Fig. K.9Fig. K.9 Inserting special characters into XHTML. (Part 1 of 2.)

1446 Introduction to XHTML: Part 1 Appendix K

Lines 27–28 contain other special characters, which are expressed as either word
abbreviations (e.g., amp for ampersand and copy for copyright) or hexadecimal (hex)
values (e.g., & is the hexadecimal representation of &). Hexadecimal numbers
are base-16 numbers—digits in a hexadecimal number have values from 0 to 15 (a total of
16 different values). The letters A–F represent the hexadecimal digits corresponding to dec-
imal values 10–15. Thus, in hexadecimal notation we can have numbers like 876 consisting
solely of decimal-like digits, numbers like DA19F consisting of digits and letters, and num-
bers like DCB consisting solely of letters. We discuss hexadecimal numbers in detail in
Appendix B, Number Systems.

In lines 34–36, we introduce three new elements. Most browsers render the del ele-
ment as strike-through text. With this format, users can easily indicate document revisions.
To superscript text (i.e., raise text on a line with a decreased font size) or subscript text (i.e.,
lower text on a line with a decreased font size), use the sup and sub elements, respec-
tively. We also use special characters < for a less-than sign and ¼ for the
fraction 1/4 (line 38).

27 <p>All information on this site is ©
28 Deitel & Associates, Inc. 2002.</p>
29
30 <!-- to strike through text use tags -->
31 <!-- to subscript text use <sub> tags -->
32 <!-- to superscript text use <sup> tags -->
33 <!-- these tags are nested inside other tags -->
34 <p>You may download 3.14 x 10²
35 characters worth of information from this site.
36 Only _{one} download per hour is permitted.</p>
37
38 <p>Note: < ¼ of the information
39 presented here is updated daily.</p>
40
41 </body>
42 </html>

Fig. K.9Fig. K.9Fig. K.9Fig. K.9 Inserting special characters into XHTML. (Part 2 of 2.)

Appendix K Introduction to XHTML: Part 1 1447

In addition to special characters, this document introduces a horizontal rule, indicated
by the <hr /> tag in line 25. Most browsers render a horizontal rule as a horizontal line.
The <hr /> tag also inserts a line break above and below the horizontal line.

K.9 Unordered Lists
Up to this point, we have presented basic XHTML elements and attributes for linking to
resources, creating headers, using special characters and incorporating images. In this sec-
tion, we discuss how to organize information on a Web page using lists. In Appendix L,
Introduction to XHTML: Part 2, we introduce another feature for organizing information,
called a table. Figure K.9 displays text in an unordered list (i.e., a list that does not order
its items by letter or number). The unordered list element ul creates a list in which each
item begins with a bullet symbol (called a disc).

Each entry in an unordered list (element ul in line 20) is an li (list item) element
(lines 23, 25, 27 and 29). Most Web browsers render these elements with a line break and
a bullet symbol indented from the beginning of the new line.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. K.10: links2.html -->
6 <!-- Unordered list containing hyperlinks. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Links</title>
11 </head>
12
13 <body>
14
15 <h1>Here are my favorite sites</h1>
16
17 <p>Click on a name to go to that page.</p>
18
19 <!-- create an unordered list -->
20
21
22 <!-- add four list items -->
23 Deitel
24
25 W3C
26
27 Yahoo!
28
29 CNN
30
31
32

Fig. K.9Fig. K.9Fig. K.9Fig. K.9 Unordered lists in XHTML. (Part 1 of 2.)

1448 Introduction to XHTML: Part 1 Appendix K

K.10 Nested and Ordered Lists
Lists may be nested to represent hierarchical relationships, as in an outline format.
Figure K.10 demonstrates nested lists and ordered lists (i.e., list that order their items by
letter or number).

33 </body>
34 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. K.11: list.html -->
6 <!-- Advanced Lists: nested and ordered. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Lists</title>
11 </head>
12
13 <body>
14
15 <h1>The Best Features of the Internet</h1>
16
17 <!-- create an unordered list -->
18
19 You can meet new people from countries around
20 the world.
21
22
23 You have access to new media as it becomes public:
24
25 <!-- start nested list, use modified bullets -->
26 <!-- list ends with closing tag -->

Fig. K.10Fig. K.10Fig. K.10Fig. K.10 Nested and ordered lists in XHTML. (Part 1 of 3.)

Fig. K.9Fig. K.9Fig. K.9Fig. K.9 Unordered lists in XHTML. (Part 2 of 2.)

Appendix K Introduction to XHTML: Part 1 1449

27
28 New games
29
30 New applications
31
32 <!-- ordered nested list -->
33 <ol type = "I">
34 For business
35 For pleasure
36
37
38
39
40 Around the clock news
41 Search engines
42 Shopping
43
44 Programming
45
46 <!-- another nested ordered list -->
47 <ol type = "a">
48 XML
49 Java
50 XHTML
51 Scripts
52 New languages
53
54
55
56
57 <!-- ends nested list started in line 27 -->
58
59
60
61 Links
62 Keeping in touch with old friends
63 It is the technology of the future!
64
65 <!-- ends unordered list started in line 18 -->
66
67 <h1>My 3 Favorite CEOs</h1>
68
69 <!-- ol elements without type attribute have -->
70 <!-- numeric sequence type (i.e., 1, 2, ...) -->
71
72 Lawrence J. Ellison
73 Steve Jobs
74 Michael Dell
75
76
77 </body>
78 </html>

Fig. K.10Fig. K.10Fig. K.10Fig. K.10 Nested and ordered lists in XHTML. (Part 2 of 3.)

1450 Introduction to XHTML: Part 1 Appendix K

The first ordered list begins in line 33. Attribute type specifies the sequence type (i.e.,
the set of numbers or letters used in the ordered list). In this case, setting type to "I" spec-
ifies upper-case roman numerals. Line 47 begins the second ordered list and sets attribute
type to "a", specifying lowercase letters for the list items. The last ordered list (lines 71–
75) does not use attribute type. By default, the list’s items are enumerated from one to three.

A Web browser indents each nested list to indicate a hierarchal relationship. By
default, the items in the outermost unordered list (line 18) are preceded by discs. List items
nested inside the unordered list of line 18 are preceded by circles. Although not demon-
strated in this example, subsequent nested list items are preceded by squares. Unordered
list items may be explicitly set to discs, circles or squares by setting the ul element’s type
attribute to "disc", "circle" or "square", respectively.

Note: XHTML is based on HTML (HyperText Markup Language)—a legacy tech-
nology of the World Wide Web Consortium (W3C). In HTML, it was common to specify
the document’s content, structure and formatting. Formatting might specify where the
browser places an element in a Web page or the fonts and colors used to display an element.
The so-called strict form of XHTML allows only a document’s content and structure to
appear in a valid XHTML document, and not that document’s formatting. Our first several
examples used only the strict form of XHTML. In fact, the purpose of lines 2–3 in each of
the examples before Fig. K.10 was to indicate to the browser that each document con-
formed to the strict XHTML definition. This enables the browser to confirm that the docu-

Fig. K.10Fig. K.10Fig. K.10Fig. K.10 Nested and ordered lists in XHTML. (Part 3 of 3.)

Appendix K Introduction to XHTML: Part 1 1451

ment is valid. There are other XHTML document types as well. This particular example
uses the XHTML transitional document type. This document type exists to enable XHTML
document creators to use legacy HTML technologies in an XHTML document. In this
example, the type attribute of the ol element (lines 33 and 47) is a legacy HTML tech-
nology. Changing lines 2–3 as shown in this example, enables us to demonstrate ordered
lists with different numbering formats. Normally, such formatting is specified with style
sheets. Most examples in this book adhere to strict HTML form.

Testing and Debugging Tip K.2
Most current browsers still attempt to render XHTML documents, even if they are invalid. K.2

K.11 Internet and World Wide Web Resources
www.w3.org/TR/xhtml1
The XHTML 1.0 Recommendation contains XHTML 1.0 general information, compatibility issues,
document type definition information, definitions, terminology and much more.

www.xhtml.org
XHTML.org provides XHTML development news and links to other XHTML resources, which in-
clude books and articles.

www.w3schools.com/xhtml/default.asp
The XHTML School provides XHTML quizzes and references. This page also contains links to XHT-
ML syntax, validation and document type definitions.

validator.w3.org
This is the W3C XHTML validation service site.

hotwired.lycos.com/webmonkey/00/50/index2a.html
This site provides an article about XHTML. Key sections of the article overview XHTML and discuss
tags, attributes and anchors.

wdvl.com/Authoring/Languages/XML/XHTML
The Web Developers Virtual Library provides an introduction to XHTML. This site also contains ar-
ticles, examples and links to other technologies.

www.w3.org/TR/1999/xhtml-modularization-19990406/DTD/doc
The XHTML 1.0 DTD documentation site provides links to DTD documentation for the strict, tran-
sitional and frameset document type definitions.

SUMMARY
• XHTML (Extensible Hypertext Markup Language) is a markup language for creating Web pages.

• A key issue when using XHTML is the separation of the presentation of a document (i.e., the doc-
ument’s appearance when rendered by a browser) from the structure of the information in the doc-
ument.

• In XHTML, text is marked up with elements, delimited by tags that are names contained in pairs
of angle brackets. Some elements may contain additional markup called attributes, which provide
additional information about the element.

• A machine that runs specialized piece of software called a Web server stores XHTML documents.

• XHTML documents that are syntactically correct are guaranteed to render properly. XHTML doc-
uments that contain syntax errors may not display properly.

1452 Introduction to XHTML: Part 1 Appendix K

• Validation services (e.g., validator.w3.org) ensure that an XHTML document is syntacti-
cally correct.

• Every XHTML document contains a start <html> tag and an end </html> tag.

• Comments in XHTML always begin with <!-- and end with -->. The browser ignores all text
inside a comment.

• Every XHTML document has a head element, which generally contains information, such as a title,
and a body element, which contains the page content. Information in the head element generally
is not rendered in the display window, but it may be made available to the user through other means.

• The title element names a Web page. The title usually appears in the colored bar (called the
title bar) at the top of the browser window and also appears as the text identifying a page when
users add your page to their list of Favorites or Bookmarks.

• The body of an XHTML document is the area in which the document’s content is placed. The con-
tent may include text and tags.

• All text placed between the <p> and </p> tags forms one paragraph.

• XHTML provides six headers (h1 through h6) for specifying the relative importance of information.
Header element h1 is considered the most significant header and is rendered in a larger font than the
other five headers. Each successive header element (i.e., h2, h3, etc.) is rendered in a smaller font.

• Web browsers typically underline text hyperlinks and color them blue by default.

• The tag renders text in a bold font.

• Users can insert links with the a (anchor) element. The most important attribute for the a element
is href, which specifies the resource (e.g., page, file or e-mail address) being linked.

• Anchors can link to an e-mail address, using a mailto URL. When someone clicks this type of
anchored link, most browsers launch the default e-mail program (e.g., Outlook Express) to initiate
an e-mail message to the linked address.

• The img element’s src attribute specifies an image’s location. Optional attributes width and
height specify the image width and height, respectively. Images are measured in pixels (“picture
elements”), which represent dots of color on the screen. Every img element in a valid XHTML
document must have an alt attribute, which contains text that is displayed if the client cannot ren-
der the image.

• The alt attribute makes Web pages more accessible to users with disabilities, especially those
with vision impairments.

• Some XHTML elements are empty elements, contain only attributes and do not mark up text.
Empty elements (e.g., img) must be terminated, either by using the forward slash character (/) or
by explicitly writing an end tag.

• The br element causes most browsers to render a line break. Any markup or text following a br
element is rendered on the next line.

• XHTML provides special characters or entity references (in the form &code;) for representing
characters that cannot be marked up.

• Most browsers render a horizontal rule, indicated by the <hr /> tag, as a horizontal line. The hr
element also inserts a line break above and below the horizontal line.

• The unordered list element ul creates a list in which each item in the list begins with a bullet sym-
bol (called a disc). Each entry in an unordered list is an li (list item) element. Most Web browsers
render these elements with a line break and a bullet symbol at the beginning of the line.

• Lists may be nested to represent hierarchical data relationships.

• Attribute type specifies the sequence type (i.e., the set of numbers or letters used in the ordered list).

Appendix K Introduction to XHTML: Part 1 1453

TERMINOLOGY

SELF-REVIEW EXERCISES
K.1 State whether the following statements are true or false. If false, explain why.

a) Attribute type, when used with an ol element, specifies a sequence type.
b) An ordered list cannot be nested inside an unordered list.
c) XHTML is an acronym for XML HTML.
d) Element br represents a line break.
e) Hyperlinks are marked up with <link> tags.

K.2 Fill in the blanks in each of the following statements:
a) The element inserts a horizontal rule.
b) A superscript is marked up with element and a subscript is marked up with

element .
c) The least important header element is and the most important header element

is .
d) Element marks up an unordered list.
e) Element marks up a paragraph.

<!--…--> (XHTML comment) (list item) tag
a element (<a>…) linked document
alt attribute mailto: URL
& (& special character) markup language
anchor nested list
angle brackets (< >) ol (ordered list) element
attribute p (paragraph) element
body element special character
br (line break) element src attribute (img)
comments in XHTML tag
© (© special character) sub element
disc subscript
element superscript
e-mail anchor syntax
empty tag tag
Extensible Hypertext Markup Language
 (XHTML)

text editor
title element

head element type attribute
header unordered list element (ul)
header elements (h1 through h6) valid document
height attribute Web page
hexadecimal code width attribute
<hr /> tag (horizontal rule) World Wide Web (WWW)
href attribute XHTML (Extensible Hypertext

 Markup Language).htm (XHTML file-name extension)
<html> tag XHTML comment
.html (XHTML file-name extension) XHTML markup
hyperlink XHTML tag
image hyperlink XML declaration
img element xmlns attribute
level of nesting

1454 Introduction to XHTML: Part 1 Appendix K

ANSWERS TO SELF-REVIEW EXERCISES
K.1 a) True. b) False. An ordered list can be nested inside an unordered list. c) False. XHTML is
an acronym for Extensible HyperText Markup Language. d) True. e) False. A hyperlink is marked up
with <a> tags.

K.2 a) hr. b) sup, sub. c) h6, h1. d) ul. e) p.

EXERCISES
K.3 Use XHTML to create a document that contains instructions to mark up the following text:

Internet and World Wide Web How to Program: Second Edition
Welcome to the world of Internet programming. We have provided topical coverage for
many Internet-related topics.

Use h1 for the title (the first line of text), p for text (the second and third lines of text) and sub for
each word that begins with a capital letter. Insert a horizontal rule between the h1 element and the p
element. Open your new document in a Web browser to view the marked-up document.

K.4 Why is the following markup invalid?

<p>Here is some text...
<hr />
<p>And some more text...</p>

K.5 Why is the following markup invalid?

<p>Here is some text...

And some more text...</p>

K.6 An image named deitel.gif is 200 pixels wide and 150 pixels high. Use the width and
height attributes of the tag to (a) increase the size of the image by 100%; (b) increase the
size of the image by 50%; and (c) change the width-to-height ratio to 2:1, keeping the width attained
in part (a). Write separate XHTML statements for parts (a), (b) and (c).

K.7 Create a link to each of the following: (a) index.html, located in the files directory;
(b) index.html, located in the text subdirectory of the files directory; (c) index.html, locat-
ed in the other directory in your parent directory [Hint: .. signifies parent directory.]; (d) The United
States President’s e-mail address (president@whitehouse.gov); and (e) An FTP link to the file
named README in the pub directory of ftp.cdrom.com [Hint: Use ftp://.].

K.8 Create an XHTML document that marks up your resume.

K.9 Create an XHTML document containing three ordered lists: ice cream, soft serve and frozen
yogurt. Each ordered list should contain a nested, unordered list of your favorite flavors. Provide a
minimum of three flavors in each unordered list.

K.10 Create an XHTML document that uses an image as an e-mail link. Use attribute alt to pro-
vide a description of the image and link.

K.11 Create an XHTML document that contains an ordered list of your favorite Web sites. Your
page should contain the header “My Favorite Web Sites.”

K.12 Create an XHTML document that contains links to all the examples presented in this appen-
dix. [Hint: Place all the appendix examples in one directory].

K.13 Modify the XHTML document (picture.html) in Fig. K.7 by removing all end tags.
Validate this document, using the W3C validation service. What happens? Next remove the alt at-
tributes from the tags and revalidate your document. What happens?

Appendix K Introduction to XHTML: Part 1 1455

K.14 Identify each of the following as either an element or an attribute:
a) html
b) width
c) href
d) br
e) h3
f) a
g) src

K.15 State which of the following statements are true and which are false. If false, explain why.
a) A valid XHTML document can contain uppercase letters in element names.
b) Tags need not be closed in a valid XHTML document.
c) XHTML documents can have the file extension .htm.
d) Valid XHTML documents can contain tags that overlap.
e) &less; is the special character for the less-than (<) character.
f) In a valid XHTML document, can be nested inside either or tags.

K.16 Fill in the blanks for each of the following statements:
a) XHTML comments begin with <!-- and end with .
b) In XHTML, attribute values must be enclosed in .
c) is the special character for an ampersand.
d) Element can be used to bold text.

L
Introduction to XHTML:

Part 2

Objectives
• To be able to create tables with rows and columns of

data.
• To be able to control table formatting.
• To be able to create and use forms.
• To be able to create and use image maps to aid in

Web-page navigation.
• To be able to make Web pages accessible to search

engines through <meta> tags.
• To be able to use the frameset element to display

multiple Web pages in a single browser window.
Yea, from the table of my memory
I’ll wipe away all trivial fond records.
William Shakespeare

Appendix L Introduction to XHTML: Part 2 1457

L.1 Introduction
In the previous appendix, we introduced XHTML. We built several complete Web pages
featuring text, hyperlinks, images, horizontal rules and line breaks. In this appendix, we dis-
cuss more substantial XHTML features, including presentation of information in tables and
incorporating forms for collecting information from a Web-page visitor. We also introduce
internal linking and image maps for enhancing Web-page navigation and frames for dis-
playing multiple documents in the browser. By the end of this appendix, you will be famil-
iar with the most commonly used XHTML features and will be able to create more complex
Web documents. In this appendix, we do not present any C# programming.

L.2 Basic XHTML Tables
This section presents the XHTML table—a frequently used feature that organizes data into
rows and columns. Our first example (Fig. L.1) uses a table with six rows and two columns
to display price information for fruit.

Outline

L.1 Introduction
L.2 Basic XHTML Tables
L.3 Intermediate XHTML Tables and Formatting
L.4 Basic XHTML Forms
L.5 More Complex XHTML Forms
L.6 Internal Linking
L.7 Creating and Using Image Maps

K.8 meta Elements

K.9 frameset Element

K.10 Nested framesets
L.11 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.1: table1.html -->
6 <!-- Creating a basic table. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>A simple XHTML table</title>
11 </head>
12

Fig. L.1Fig. L.1Fig. L.1Fig. L.1 XHTML table. (Part 1 of 3.)

1458 Introduction to XHTML: Part 2 Appendix L

13 <body>
14
15 <!-- the <table> tag begins table -->
16 <table border = "1" width = "40%"
17 summary = "This table provides information about
18 the price of fruit">
19
20 <!-- <caption> tag summarizes table's -->
21 <!-- contents to help visually impaired -->
22 <caption>Price of Fruit</caption>
23
24 <!-- <thead> is first section of table -->
25 <!-- it formats table header area -->
26 <thead>
27 <tr> <!-- <tr> inserts one table row -->
28 <th>Fruit</th> <!-- insert heading cell -->
29 <th>Price</th>
30 </tr>
31 </thead>
32
33 <!-- all table content is enclosed within <tbody> -->
34 <tbody>
35 <tr>
36 <td>Apple</td> <!-- insert data cell -->
37 <td>$0.25</td>
38 </tr>
39
40 <tr>
41 <td>Orange</td>
42 <td>$0.50</td>
43 </tr>
44
45 <tr>
46 <td>Banana</td>
47 <td>$1.00</td>
48 </tr>
49
50 <tr>
51 <td>Pineapple</td>
52 <td>$2.00</td>
53 </tr>
54 </tbody>
55
56 <!-- <tfoot> is last section of table -->
57 <!-- it formats table footer -->
58 <tfoot>
59 <tr>
60 <th>Total</th>
61 <th>$3.75</th>
62 </tr>
63 </tfoot>
64
65 </table>

Fig. L.1Fig. L.1Fig. L.1Fig. L.1 XHTML table. (Part 2 of 3.)

Appendix L Introduction to XHTML: Part 2 1459

Tables are defined with the table element. Lines 16–18 specify the start tag for a
table element that has several attributes. The border attribute specifies the table’s border
width in pixels. To create a table without a border, set border to "0". This example
assigns attribute width "40%", to set the table’s width to 40 percent of the browser’s
width. A developer can also set attribute width to a specified number of pixels.

Testing and Debugging Tip L.1
Try resizing the browser window to see how the width of the window affects the width of the
table. L.1

As its name implies, attribute summary (line 17) describes the table’s contents.
Speech devices use this attribute to make the table more accessible to users with visual
impairments. The caption element (line 22) describes the table’s content and helps text-
based browsers interpret the table data. Text inside the <caption> tag is rendered above
the table by most browsers. Attribute summary and element caption are two of many
XHTML features that make Web pages more accessible to users with disabilities. We dis-
cuss accessibility programming in detail in Chapter 24, Accessibility.

A table has three distinct sections—head, body and foot. The head section (or header
cell) is defined with a thead element (lines 26–31), which contains header information,
such as column names. Each tr element (lines 27–30) defines an individual table row. The
columns in the head section are defined with th elements. Most browsers center text for-
matted by th (table header column) elements and display it in bold. Table header elements
are nested inside table row elements.

The body section, or table body, contains the table’s primary data. The table body
(lines 34–54) is defined in a tbody element. Data cells contain individual pieces of data
and are defined with td (table data) elements.

66
67 </body>
68 </html>

Fig. L.1Fig. L.1Fig. L.1Fig. L.1 XHTML table. (Part 3 of 3.)

Table
border

Table
header

Table
footer

Table
body

1460 Introduction to XHTML: Part 2 Appendix L

The foot section (lines 58–63) is defined with a tfoot (table foot) element and repre-
sents a footer. Text commonly placed in the footer includes calculation results and footnotes.
Like other sections, the foot section can contain table rows and each row can contain columns.

L.3 Intermediate XHTML Tables and Formatting
In the previous section, we explored the structure of a basic table. In Fig. L.2, we enhance
our discussion of tables by introducing elements and attributes that allow the document au-
thor to build more complex tables.

The table begins on line 17. Element colgroup (lines 22–27) groups and formats
columns. The col element (line 26) specifies two attributes in this example. The align
attribute determines the alignment of text in the column. The span attribute determines
how many columns the col element formats. In this case, we set align’s value to
"right" and span’s value to "1" to right-align text in the first column (the column con-
taining the picture of the camel in the sample screen capture).

Table cells are sized to fit the data they contain. Document authors can create larger
data cells by using attributes rowspan and colspan. The values assigned to these
attributes specify the number of rows or columns occupied by a cell. The th element at
lines 36–39 uses the attribute rowspan = "2" to allow the cell containing the picture of
the camel to use two vertically adjacent cells (thus the cell spans two rows). The th ele-
ment at lines 42–45 uses the attribute colspan = "4" to widen the header cell (containing
Camelid comparison and Approximate as of 9/2002) to span four cells.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.2: table2.html -->
6 <!-- Intermediate table design. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Tables</title>
11 </head>
12
13 <body>
14
15 <h1>Table Example Page</h1>
16
17 <table border = "1">
18 <caption>Here is a more complex sample table.</caption>
19
20 <!-- <colgroup> and <col> tags are -->
21 <!-- used to format entire columns -->
22 <colgroup>
23
24 <!-- span attribute determines how -->
25 <!-- many columns <col> tag affects -->

Fig. L.2Fig. L.2Fig. L.2Fig. L.2 Complex XHTML table. (Part 1 of 3.)

Appendix L Introduction to XHTML: Part 2 1461

26 <col align = "right" span = "1" />
27 </colgroup>
28
29 <thead>
30
31 <!-- rowspans and colspans merge specified -->
32 <!-- number of cells vertically or horizontally -->
33 <tr>
34
35 <!-- merge two rows -->
36 <th rowspan = "2">
37 <img src = "camel.gif" width = "205"
38 height = "167" alt = "Picture of a camel" />
39 </th>
40
41 <!-- merge four columns -->
42 <th colspan = "4" valign = "top">
43 <h1>Camelid comparison</h1>

44 <p>Approximate as of 9/2002</p>
45 </th>
46 </tr>
47
48 <tr valign = "bottom">
49 <th># of Humps</th>
50 <th>Indigenous region</th>
51 <th>Spits?</th>
52 <th>Produces Wool?</th>
53 </tr>
54
55 </thead>
56
57 <tbody>
58
59 <tr>
60 <th>Camels (bactrian)</th>
61 <td>2</td>
62 <td>Africa/Asia</td>
63 <td rowspan = "2">Llama</td>
64 <td rowspan = "2">Llama</td>
65 </tr>
66
67 <tr>
68 <th>Llamas</th>
69 <td>1</td>
70 <td>Andes Mountains</td>
71 </tr>
72
73 </tbody>
74
75 </table>
76
77 </body>
78 </html>

Fig. L.2Fig. L.2Fig. L.2Fig. L.2 Complex XHTML table. (Part 2 of 3.)

1462 Introduction to XHTML: Part 2 Appendix L

Common Programming Error L.1
When using colspan and rowspan to adjust the size of table data cells, keep in mind that
the modified cells will occupy more than one column or row; other rows or columns of the
table must compensate for the extra rows or columns spanned by individual cells. If you do
not, the formatting of your table will be distorted, and you could inadvertently create more
columns and rows than you originally intended. L.1

Line 42 introduces attribute valign, which aligns data vertically and may be
assigned one of four values—"top" aligns data with the top of the cell, "middle" ver-
tically centers data (the default for all data and header cells), "bottom" aligns data with
the bottom of the cell and "baseline" ignores the fonts used for the row data and sets
the bottom of all text in the row on a common baseline (i.e., the horizontal line to which
each character in a word is aligned).

L.4 Basic XHTML Forms
When browsing Web sites, users often need to provide information such as e-mail address-
es, search keywords and zip codes. XHTML provides a mechanism, called a form, for col-
lecting such user information.

Data that users enter on a Web page normally is sent to a Web server that provides
access to a site’s resources (e.g., XHTML documents or images). These resources are
located either on the same machine as the Web server or on a machine that the Web server
can access through the network. When a browser requests a Web page or file that is located
on a server, the server processes the request and returns the requested resource. A request

Fig. L.2Fig. L.2Fig. L.2Fig. L.2 Complex XHTML table. (Part 3 of 3.)

Appendix L Introduction to XHTML: Part 2 1463

contains the name and path of the desired resource and the method of communication
(called a protocol). XHTML documents use the HyperText Transfer Protocol (HTTP).

Figure L.3 sends the form data to the Web server, which passes the form data to a CGI
(Common Gateway Interface) script (i.e., a program) written in Perl, C or some other lan-
guage. The script processes the data received from the Web server and typically returns infor-
mation to the Web server. The Web server then sends the information in the form of an
XHTML document to the Web browser. [Note: This example demonstrates client-side func-
tionality. If the form is submitted (by clicking Submit Your Entries), an error occurs.]

Forms can contain visual and non-visual components. Visual components include
clickable buttons and other graphical user interface components with which users interact.
Non-visual components, called hidden inputs, store any data that the document author spec-
ifies, such as e-mail addresses and XHTML document file names that act as links. The form
begins on line 23 with the form element. Attribute method specifies how the form’s data
is sent to the Web server.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.3: form.html -->
6 <!-- Form design example 1. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Forms</title>
11 </head>
12
13 <body>
14
15 <h1>Feedback Form</h1>
16
17 <p>Please fill out this form to help
18 us improve our site.</p>
19
20 <!-- <form> tag begins form, gives -->
21 <!-- method of sending information -->
22 <!-- and location of form scripts -->
23 <form method = "post" action = "/cgi-bin/formmail">
24
25 <p>
26
27 <!-- hidden inputs contain non-visual -->
28 <!-- information -->
29 <input type = "hidden" name = "recipient"
30 value = "deitel@deitel.com" />
31
32 <input type = "hidden" name = "subject"
33 value = "Feedback Form" />
34

Fig. L.3Fig. L.3Fig. L.3Fig. L.3 Simple form with hidden fields and a textbox. (Part 1 of 2.)

1464 Introduction to XHTML: Part 2 Appendix L

Using method = "post" appends form data to the browser request, which contains
the protocol (i.e., HTTP) and the requested resource’s URL. Scripts located on the Web
server’s computer (or on a computer accessible through the network) can access the form
data sent as part of the request. For example, a script may take the form information and
update an electronic mailing list. The other possible value, method = "get", appends the

35 <input type = "hidden" name = "redirect"
36 value = "main.html" />
37 </p>
38
39 <!-- <input type = "text"> inserts text box -->
40 <p>
41 <label>Name:
42 <input name = "name" type = "text" size = "25"
43 maxlength = "30" />
44 </label>
45 </p>
46
47 <p>
48
49 <!-- input types "submit" and "reset" -->
50 <!-- insert buttons for submitting -->
51 <!-- and clearing form's contents -->
52 <input type = "submit" value =
53 "Submit Your Entries" />
54
55 <input type = "reset" value =
56 "Clear Your Entries" />
57 </p>
58
59 </form>
60
61 </body>
62 </html>

Fig. L.3Fig. L.3Fig. L.3Fig. L.3 Simple form with hidden fields and a textbox. (Part 2 of 2.)

Appendix L Introduction to XHTML: Part 2 1465

form data directly to the end of the URL. For example, the URL /cgi-bin/formmail
might have the form information name = bob appended to it.

 The action attribute in the <form> tag specifies the URL of a script on the Web
server; in this case, it specifies a script that e-mails form data to an address. Most Internet
Service Providers (ISPs) have a script like this on their site; ask the Web-site system admin-
istrator how to set up an XHTML document to use the script correctly.

Lines 29–36 define three input elements that specify data to provide to the script that
processes the form (also called the form handler). These three input element have type
attribute "hidden", which allows the document author to send form data that is not
entered by a user to a script.

The three hidden inputs are an e-mail address to which the data will be sent, the e-
mail’s subject line and a URL where the browser will be redirected after submitting the
form. Two other input attributes are name, which identifies the input element, and
value, which provides the value that will be sent (or posted) to the Web server.

Good Programming Practice L.1
Place hidden input elements at the beginning of a form, immediately after the opening
<form> tag. This placement allows document authors to locate hidden input elements
quickly. L.1

We introduce another type of input in lines 38–39. The "text" input inserts a
text box into the form. Users can type data in text boxes. The label element (lines 37–40)
provides users with information about the input element’s purpose.

Common Programming Error L.2
Forgetting to include a label element for each form element is a design error. Without
these labels, users cannot determine the purpose of individual form elements. L.2

The input element’s size attribute specifies the number of characters visible in the
text box. Optional attribute maxlength limits the number of characters input into the text
box. In this case, the user is not permitted to type more than 30 characters into the text box.

There are two types of input elements in lines 52–56. The "submit" input ele-
ment is a button. When the user presses a "submit" button, the browser sends the data in
the form to the Web server for processing. The value attribute sets the text displayed on
the button (the default value is Submit). The "reset" input element allows a user to
reset all form elements to their default values. The value attribute of the "reset"
input element sets the text displayed on the button (the default value is Reset).

L.5 More Complex XHTML Forms
In the previous section, we introduced basic forms. In this section, we introduce elements
and attributes for creating more complex forms. Figure L.4 contains a form that solicits user
feedback about a Web site.

The textarea element (lines 42–44) inserts a multiline text box, called a textarea,
into the form. The number of rows is specified with the rows attribute and the number of
columns (i.e., characters) is specified with the cols attribute. In this example, the tex-
tarea is four rows high and 36 characters wide. To display default text in the text area,
place the text between the <textarea> and </textarea> tags. Default text can be
specified in other input types, such as textboxes, by using the value attribute.

1466 Introduction to XHTML: Part 2 Appendix L

The "password" input in lines 52–53 inserts a password box with the specified
size. A password box allows users to enter sensitive information, such as credit card num-
bers and passwords, by “masking” the information input with asterisks. The actual value
input is sent to the Web server, not the asterisks that mask the input.

Lines 60–78 introduce the checkbox form element. Checkboxes enable users to select
from a set of options. When a user selects a checkbox, a check mark appears in the check
box. Otherwise, the checkbox remains empty. Each "checkbox" input creates a new
checkbox. Checkboxes can be used individually or in groups. Checkboxes that belong to a
group are assigned the same name (in this case, "thingsliked").

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.4: form2.html -->
6 <!-- Form design example 2. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Forms</title>
11 </head>
12
13 <body>
14
15 <h1>Feedback Form</h1>
16
17 <p>Please fill out this form to help
18 us improve our site.</p>
19
20 <form method = "post" action = "/cgi-bin/formmail">
21
22 <p>
23 <input type = "hidden" name = "recipient"
24 value = "deitel@deitel.com" />
25
26 <input type = "hidden" name = "subject"
27 value = "Feedback Form" />
28
29 <input type = "hidden" name = "redirect"
30 value = "main.html" />
31 </p>
32
33 <p>
34 <label>Name:
35 <input name = "name" type = "text" size = "25" />
36 </label>
37 </p>
38
39 <!-- <textarea> creates multiline textbox -->
40 <p>
41 <label>Comments:

Fig. L.4Fig. L.4Fig. L.4Fig. L.4 Form with textareas, password boxes and checkboxes. (Part 1 of 3.)

Appendix L Introduction to XHTML: Part 2 1467

42 <textarea name = "comments" rows = "4"
43 cols = "36">Enter your comments here.
44 </textarea>
45 </label></p>
46
47 <!-- <input type = "password"> inserts -->
48 <!-- textboxwhose display is masked -->
49 <!-- with asterisk characters -->
50 <p>
51 <label>E-mail Address:
52 <input name = "email" type = "password"
53 size = "25" />
54 </label>
55 </p>
56
57 <p>
58 Things you liked:

59
60 <label>Site design
61 <input name = "thingsliked" type = "checkbox"
62 value = "Design" /></label>
63
64 <label>Links
65 <input name = "thingsliked" type = "checkbox"
66 value = "Links" /></label>
67
68 <label>Ease of use
69 <input name = "thingsliked" type = "checkbox"
70 value = "Ease" /></label>
71
72 <label>Images
73 <input name = "thingsliked" type = "checkbox"
74 value = "Images" /></label>
75
76 <label>Source code
77 <input name = "thingsliked" type = "checkbox"
78 value = "Code" /></label>
79 </p>
80
81 <p>
82 <input type = "submit" value =
83 "Submit Your Entries" />
84
85 <input type = "reset" value =
86 "Clear Your Entries" />
87 </p>
88
89 </form>
90
91 </body>
92 </html>

Fig. L.4Fig. L.4Fig. L.4Fig. L.4 Form with textareas, password boxes and checkboxes. (Part 2 of 3.)

1468 Introduction to XHTML: Part 2 Appendix L

Common Programming Error L.3
When your form has several checkboxes with the same name, you must make sure that they
have different values, or the scripts running on the Web server will not be able to distin-
guish between them. L.3

We continue our discussion of forms by presenting a third example that introduces sev-
eral more form elements from which users can make selections (Fig. L.5). In this example,

Fig. L.4Fig. L.4Fig. L.4Fig. L.4 Form with textareas, password boxes and checkboxes. (Part 3 of 3.)

Appendix L Introduction to XHTML: Part 2 1469

we introduce two new input types. The first type is the radio button (lines 90–113), speci-
fied with type "radio". Radio buttons are similar to checkboxes, except that only one radio
button in a group of radio buttons may be selected at any time. All radio buttons in a group
have the same name attribute; they are distinguished by their different value attributes. The
attribute–value pair checked = "checked" (line 92) indicates which radio button, if any,
is selected initially. The checked attribute also applies to checkboxes.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.5: form3.html -->
6 <!-- Form design example 3. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Forms</title>
11 </head>
12
13 <body>
14
15 <h1>Feedback Form</h1>
16
17 <p>Please fill out this form to help
18 us improve our site.</p>
19
20 <form method = "post" action = "/cgi-bin/formmail">
21
22 <p>
23 <input type = "hidden" name = "recipient"
24 value = "deitel@deitel.com" />
25
26 <input type = "hidden" name = "subject"
27 value = "Feedback Form" />
28
29 <input type = "hidden" name = "redirect"
30 value = "main.html" />
31 </p>
32
33 <p>
34 <label>Name:
35 <input name = "name" type = "text" size = "25" />
36 </label>
37 </p>
38
39 <p>
40 <label>Comments:

41 <textarea name = "comments" rows = "4"
42 cols = "36"></textarea>
43 </label>
44 </p>
45

Fig. L.5Fig. L.5Fig. L.5Fig. L.5 Form including radio buttons and drop-down lists. (Part 1 of 4.)

1470 Introduction to XHTML: Part 2 Appendix L

46 <p>
47 <label>E-mail Address:
48 <input name = "email" type = "password"
49 size = "25" />
50 </label>
51 </p>
52
53 <p>
54 Things you liked:

55
56 <label>Site design
57 <input name = "thingsliked" type = "checkbox"
58 value = "Design" />
59 </label>
60
61 <label>Links
62 <input name = "thingsliked" type = "checkbox"
63 value = "Links" />
64 </label>
65
66 <label>Ease of use
67 <input name = "thingsliked" type = "checkbox"
68 value = "Ease" />
69 </label>
70
71 <label>Images
72 <input name = "thingsliked" type = "checkbox"
73 value = "Images" />
74 </label>
75
76 <label>Source code
77 <input name = "thingsliked" type = "checkbox"
78 value = "Code" />
79 </label>
80
81 </p>
82
83 <!-- <input type = "radio" /> creates one radio -->
84 <!-- button. The difference between radio buttons -->
85 <!-- and checkboxes is that only one radio button -->
86 <!-- in a group can be selected. -->
87 <p>
88 How did you get to our site?:

89
90 <label>Search engine
91 <input name = "howtosite" type = "radio"
92 value = "search engine" checked = "checked" />
93 </label>
94
95 <label>Links from another site
96 <input name = "howtosite" type = "radio"
97 value = "link" />
98 </label>

Fig. L.5Fig. L.5Fig. L.5Fig. L.5 Form including radio buttons and drop-down lists. (Part 2 of 4.)

Appendix L Introduction to XHTML: Part 2 1471

99
100 <label>Deitel.com Web site
101 <input name = "howtosite" type = "radio"
102 value = "deitel.com" />
103 </label>
104
105 <label>Reference in a book
106 <input name = "howtosite" type = "radio"
107 value = "book" />
108 </label>
109
110 <label>Other
111 <input name = "howtosite" type = "radio"
112 value = "other" />
113 </label>
114
115 </p>
116
117 <p>
118 <label>Rate our site:
119
120 <!-- <select> tag presents a drop-down -->
121 <!-- list with choices indicated by -->
122 <!-- <option> tags -->
123 <select name = "rating">
124 <option selected = "selected">Amazing</option>
125 <option>10</option>
126 <option>9</option>
127 <option>8</option>
128 <option>7</option>
129 <option>6</option>
130 <option>5</option>
131 <option>4</option>
132 <option>3</option>
133 <option>2</option>
134 <option>1</option>
135 <option>Awful</option>
136 </select>
137
138 </label>
139 </p>
140
141 <p>
142 <input type = "submit" value =
143 "Submit Your Entries" />
144
145 <input type = "reset" value = "Clear Your Entries" />
146 </p>
147
148 </form>
149
150 </body>
151 </html>

Fig. L.5Fig. L.5Fig. L.5Fig. L.5 Form including radio buttons and drop-down lists. (Part 3 of 4.)

1472 Introduction to XHTML: Part 2 Appendix L

Fig. L.5Fig. L.5Fig. L.5Fig. L.5 Form including radio buttons and drop-down lists. (Part 4 of 4.)

Appendix L Introduction to XHTML: Part 2 1473

Common Programming Error L.4
When using a group of radio buttons in a form, forgetting to set the name attributes to the
same name lets the user select all of the radio buttons at the same time, which is a logic error. L.4

The select element (lines 123–136) provides a drop-down list from which the user can
select an item. The name attribute identifies the drop-down list. The option element (lines
124–135) adds items to the drop-down list. The option element’s selected attribute
specifies which item initially is displayed as the selected item in the select element.

L.6 Internal Linking
In Appendix K, we discussed how to hyperlink one Web page to another. Figure L.6 intro-
duces internal linking—a mechanism that enables the user to jump between locations in the
same document. Internal linking is useful for long documents that contain many sections.
Clicking an internal link enables users to find a section without scrolling through the entire
document.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.6: links.html -->
6 <!-- Internal linking. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - List</title>
11 </head>
12
13 <body>
14
15 <!-- creates internal hyperlink -->
16 <p></p>
17
18 <h1>The Best Features of the Internet</h1>
19
20 <!-- address of internal link is "#linkname" -->
21 <p>
22 Go to Favorite CEOs
23 </p>
24
25
26 You can meet people from countries
27 around the world.
28
29 You have access to new media as it becomes public:
30
31
32 New games
33 New applications

Fig. L.6Fig. L.6Fig. L.6Fig. L.6 Using internal hyperlinks to make pages more easily navigable. (Part 1 of 3.)

1474 Introduction to XHTML: Part 2 Appendix L

34
35
36 For Business
37 For Pleasure
38
39
40
41
42 Around the clock news
43 Search Engines
44 Shopping
45 Programming
46
47
48 XHTML
49 Java
50 Dynamic HTML
51 Scripts
52 New languages
53
54
55
56
57
58
59
60 Links
61 Keeping in touch with old friends
62 It is the technology of the future!
63
64
65 <!-- named anchor -->
66 <p></p>
67
68 <h1>My 3 Favorite CEOs</h1>
69
70 <p>
71
72 <!-- internal hyperlink to features -->
73
74 Go to Favorite Features
75
76 </p>
77
78
79 Lawrence J. Ellison
80 Steve Jobs
81 Michael Dell
82
83
84 </body>
85 </html>

Fig. L.6Fig. L.6Fig. L.6Fig. L.6 Using internal hyperlinks to make pages more easily navigable. (Part 2 of 3.)

Appendix L Introduction to XHTML: Part 2 1475

Line 16 contains a named anchor (called features) for an internal hyperlink. To
link to this type of anchor inside the same Web page, the href attribute of another anchor
element includes the named anchor preceded with a pound sign (as in #features). Lines
73–74 contain a hyperlink with the anchor features as its target. Selecting this hyperlink
in a Web browser scrolls the browser window to the features anchor at line 16.

Look-and-Feel Observation L.1
Internal hyperlinks are useful in XHTML documents that contain large amounts of informa-
tion. Internal links to various sections on the page make it easier for users to navigate the
page: They do not have to scroll to find a specific section. L.1

Although not demonstrated in this example, a hyperlink can specify an internal link in
another document by specifying the document name followed by a pound sign and the
named anchor as in:

href = "page.html#name"

For example, to link to a named anchor called booklist in books.html, href is as-
signed "books.html#booklist".

Fig. L.6Fig. L.6Fig. L.6Fig. L.6 Using internal hyperlinks to make pages more easily navigable. (Part 3 of 3.)

1476 Introduction to XHTML: Part 2 Appendix L

L.7 Creating and Using Image Maps
In Appendix K, we demonstrated how images can be used as hyperlinks to link to other re-
sources on the Internet. In this section, we introduce another technique for image linking
called the image map, which designates certain areas of an image (called hotspots) as links.
Figure L.7 introduces image maps and hotspots.

1 <?xml version = "1.0" ?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.7: picture.html -->
6 <!-- Creating and using image maps. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Image Map
11 </title>
12 </head>
13
14 <body>
15
16 <p>
17
18 <!-- <map> tag defines image map -->
19 <map id = "picture">
20
21 <!-- shape = "rect" indicates rectangular -->
22 <!-- area, with coordinates for upper-left -->
23 <!-- and lower-right corners -->
24 <area href = "form.html" shape = "rect"
25 coords = "2,123,54,143"
26 alt = "Go to the feedback form" />
27
28 <area href = "contact.html" shape = "rect"
29 coords = "126,122,198,143"
30 alt = "Go to the contact page" />
31
32 <area href = "main.html" shape = "rect"
33 coords = "3,7,61,25" alt = "Go to the homepage" />
34
35 <area href = "links.html" shape = "rect"
36 coords = "168,5,197,25"
37 alt = "Go to the links page" />
38
39 <!-- value "poly" creates hotspot in shape -->
40 <!-- of polygon, defined by coords -->
41 <area shape = "poly" alt = "E-mail the Deitels"
42 coords = "162,25,154,39,158,54,169,51,183,39,161,26"
43 href = "mailto:deitel@deitel.com" />
44

Fig. L.7Fig. L.7Fig. L.7Fig. L.7 Image with links anchored to an image map. (Part 1 of 2.)

Appendix L Introduction to XHTML: Part 2 1477

Lines 19–50 define an image map via a map element. Attribute id (line 19) identifies
the image map. If id is omitted, the map cannot be referenced by an image. Shortly, we
discuss how to reference an image map. Hotspots are defined with area elements (as
shown on lines 24–26). Attribute href (line 24) specifies the link’s target (i.e., the
resource to which to link). Attributes shape (line 24) and coords (line 25) specify the
hotspot’s shape and coordinates, respectively. Attribute alt (line 26) provides alternative
text for the link.

Common Programming Error L.5
Not specifying an id attribute for a map element prevents an img element from using the
map’s area elements to define hotspots. L.5

The markup on lines 24–26 creates a rectangular hotspot (shape = "rect") for the
coordinates specified in the coords attribute. A coordinate pair consists of two numbers
representing the location of a point on the x-axis and the y-axis, respectively. The x-axis
extends horizontally and the y-axis extends vertically from the upper-left corner of the
image. Every point on an image has a unique x–y coordinate. For rectangular hotspots, the
required coordinates are those of the upper-left and lower-right corners of the rectangle. In

45 <!-- shape = "circle" indicates a circular -->
46 <!-- area with the given center and radius -->
47 <area href = "mailto:deitel@deitel.com"
48 shape = "circle" coords = "100,36,33"
49 alt = "E-mail the Deitels" />
50 </map>
51
52 <!-- indicates that -->
53 <!-- specified image map is used with this image -->
54 <img src = "deitel.gif" width = "200" height = "144"
55 alt = "Deitel logo" usemap = "#picture" />
56 </p>
57
58 </body>
59 </html>

Fig. L.7Fig. L.7Fig. L.7Fig. L.7 Image with links anchored to an image map. (Part 2 of 2.)

1478 Introduction to XHTML: Part 2 Appendix L

this case, the upper-left corner of the rectangle is located at 2 on the x-axis and 123 on the
y-axis, annotated as (2, 123). The lower-right corner of the rectangle is at (54, 143). Coor-
dinates are measured in pixels.

Common Programming Error L.6
Overlapping coordinates of an image map cause the browser to render the first hotspot it en-
counters for the area. L.6

The map area (lines 41–43) assigns the shape attribute "poly" to create a hotspot
in the shape of a polygon, using the coordinates in attribute coords. These coordinates
represent each vertex, or corner, of the polygon. The browser connects these points with
lines to form the hotspot’s area.

The map area (lines 47–49) assigns the shape attribute "circle" to create a cir-
cular hotspot. In this case, the coords attribute specifies the circle’s center coordinates
and the circle’s radius, in pixels.

To use an image map with an img element, the img element’s usemap attribute is
assigned the id of a map. Lines 54–55 reference the image map named "picture". The
image map is located within the same document, so internal linking is used.

L.8 meta Elements
People use search engines to find useful Web sites. Search engines usually catalog sites by
following links from page to page and saving identification and classification information
for each page. One way that search engines catalog pages is by reading the content in each
page’s meta elements, which specify information about a document.

Two important attributes of the meta element are name, which identifies the type of
meta element and content, which provides the information search engines use to cat-
alog pages. Figure L.8 introduces the meta element.

Lines 14–16 demonstrate a "keywords" meta element. The content attribute of
such a meta element provides search engines with a list of words that describe a page.
These words are compared with words in search requests. Thus, including meta elements
and their content information can draw more viewers to your site.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. L.8: main.html -->
6 <!-- Using meta tags. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Welcome</title>
11
12 <!-- <meta> tags provide search engines with -->
13 <!-- information used to catalog site -->
14 <meta name = "keywords" content = "Web page, design,
15 XHTML, tutorial, personal, help, index, form,
16 contact, feedback, list, links, frame, deitel" />

Fig. L.8Fig. L.8Fig. L.8Fig. L.8 Using meta to provide keywords and a description. (Part 1 of 2.)

Appendix L Introduction to XHTML: Part 2 1479

Lines 18–21 demonstrate a "description" meta element. The content
attribute of such a meta element provides a three- to four-line description of a site, written
in sentence form. Search engines also use this description to catalog your site and some-
times display this information as part of the search results.

Software Engineering Observation L.1
meta elements are not visible to users and must be placed inside the head section of your
XHTML document. If meta elements are not placed in this section, they will not be read by
search engines. L.1

L.9 frameset Element
All of the Web pages we have presented in this book have the ability to link to other pages,
but can display only one page at a time. Figure L.9 uses frames, which allow the browser
to display more than one XHTML document simultaneously, to display the documents in
Fig. L.8 and Fig. L.10.

Most of our prior examples adhered to the strict XHTML document type. This partic-
ular example uses the frameset document type—a special XHTML document type specif-
ically for framesets. This new document type is specified in lines 2–3 and is required for
documents that define framesets.

A document that defines a frameset normally consists of an html element that con-
tains a head element and a frameset element. The <frameset> tag (line 24) informs

17
18 <meta name = "description" content = "This Web site will
19 help you learn the basics of XHTML and Web page design
20 through the use of interactive examples and
21 instruction." />
22
23 </head>
24
25 <body>
26
27 <h1>Welcome to Our Web Site!</h1>
28
29 <p>
30 We have designed this site to teach about the wonders
31 of XHTML. XHTML is
32 better equipped than HTML to represent complex
33 data on the Internet. XHTML takes advantage of
34 XML’s strict syntax to ensure well-formedness. Soon you
35 will know about many of the great new features of
36 XHTML.
37 </p>
38
39 <p>Have Fun With the Site!</p>
40
41 </body>
42 </html>

Fig. L.8Fig. L.8Fig. L.8Fig. L.8 Using meta to provide keywords and a description. (Part 2 of 2.)

1480 Introduction to XHTML: Part 2 Appendix L

the browser that the page contains frames. Attribute cols specifies the frameset’s column
layout. The value of cols gives the width of each frame, either in pixels or as a percentage
of the browser width. In this case, the attribute cols = "110,*" informs the browser that
there are two vertical frames. The first frame extends 110 pixels from the left edge of the
browser window, and the second frame fills the remainder of the browser width (as indi-
cated by the asterisk). Similarly, frameset attribute rows can be used to specify the
number of rows and the size of each row in a frameset.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
4
5 <!-- Fig. L.9: index.html -->
6 <!-- XHTML frames I. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Main</title>
11
12 <meta name = "keywords" content = "Webpage, design,
13 XHTML, tutorial, personal, help, index, form,
14 contact, feedback, list, links, frame, deitel" />
15
16 <meta name = "description" content = "This Web site will
17 help you learn the basics of XHTML and Web page design
18 through the use of interactive examples
19 and instruction." />
20
21 </head>
22
23 <!-- <frameset> tag sets frame dimensions -->
24 <frameset cols = "110,*">
25
26 <!-- frame elements specify which pages -->
27 <!-- are loaded into given frame -->
28 <frame name = "leftframe" src = "nav.html" />
29 <frame name = "main" src = "main.html" />
30
31 <noframes>
32 <p>This page uses frames, but your browser does not
33 support them.</p>
34
35 <p>Please, follow this link to
36 browse our site without frames.</p>
37 </noframes>
38
39 </frameset>
40 </html>

Fig. L.9Fig. L.9Fig. L.9Fig. L.9 Web document containing two frames—navigation and content.
 (Part 1 of 2.)

Appendix L Introduction to XHTML: Part 2 1481

Fig. L.9Fig. L.9Fig. L.9Fig. L.9 Web document containing two frames—navigation and content.
 (Part 2 of 2.)

Left frame
leftframe

Right frame
main

1482 Introduction to XHTML: Part 2 Appendix L

The documents that will be loaded into the frameset are specified with frame ele-
ments (lines 28–29 in this example). Attribute src specifies the URL of the page to display
in the frame. Each frame has name and src attributes. The first frame (which covers 110
pixels on the left side of the frameset) is named leftframe and displays the page
nav.html (Fig. L.10). The second frame is named main and displays the page
main.html.

Attribute name identifies a frame, enabling hyperlinks in a frameset to specify the
target frame in which a linked document should display when the user clicks the link.
For example,

loads links.html in the frame whose name is "main".
Not all browsers support frames. XHTML provides the noframes element (lines 31–

37) to enable XHTML document designers to specify alternative content for browsers that
do not support frames.

Portability Tip L.1
Some browsers do not support frames. Use the noframes element inside a frameset to
direct users to a nonframed version of your site. L.1

Fig. L.10 is the Web page displayed in the left frame of Fig. L.9. This XHTML docu-
ment provides the navigation buttons that, when clicked, determine which document is dis-
played in the right frame.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4
5 <!-- Fig. L.10: nav.html -->
6 <!-- Using images as link anchors. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9

10 <head>
11 <title>C# How to Program - Navigation Bar
12 </title>
13 </head>
14
15 <body>
16
17 <p>
18
19 <img src = "buttons/links.jpg" width = "65"
20 height = "50" alt = "Links Page" />
21

22
23
24 <img src = "buttons/list.jpg" width = "65"
25 height = "50" alt = "List Example Page" />
26

Fig. L.10Fig. L.10Fig. L.10Fig. L.10 XHTML document displayed in the left frame of Fig. L.5. (Part 1 of 2.)

Appendix L Introduction to XHTML: Part 2 1483

Line 29 (Fig. L.9) displays the XHTML page in Fig. L.10. Anchor attribute target
(line 18 in Fig. L.10) specifies that the linked documents are loaded in frame main (line
30 in Fig. L.9). A target can be set to a number of preset values: "_blank" loads the
page into a new browser window, "_self" loads the page into the frame in which the
anchor element appears and "_top" loads the page into the full browser window (i.e.,
removes the frameset).

L.10 Nested framesets
You can use the frameset element to create more complex layouts in a Web page by
nesting framesets, as in Fig. L.11. The nested frameset in this example displays the
XHTML documents in Fig. L.7, Fig. L.8 and Fig. L.10.

The outer frameset element (lines 23–41) defines two columns. The left frame extends
over the first 110 pixels from the left edge of the browser, and the right frame occupies the
rest of the window’s width. The frame element on line 24 specifies that the document
nav.html (Fig. L.10) will be displayed in the left column.

Lines 28–31 define a nested frameset element for the second column of the outer
frameset. This frameset defines two rows. The first row extends 175 pixels from the top
of the browser window, and the second occupies the remainder of the browser window’s
height, as is indicated by rows = "175,*". The frame element at line 29 specifies that
the first row of the nested frameset will display picture.html (Fig. L.7). The
frame element at line 30 specifies that the second row of the nested frameset will dis-
play main.html (Fig. L.9).

27
28
29 <img src = "buttons/contact.jpg" width = "65"
30 height = "50" alt = "Contact Page" />
31

32
33
34 <img src = "buttons/header.jpg" width = "65"
35 height = "50" alt = "Header Page" />
36

37
38
39 <img src = "buttons/table.jpg" width = "65"
40 height = "50" alt = "Table Page" />
41

42
43
44 <img src = "buttons/form.jpg" width = "65"
45 height = "50" alt = "Feedback Form" />
46

47 </p>
48
49 </body>
50 </html>

Fig. L.10Fig. L.10Fig. L.10Fig. L.10 XHTML document displayed in the left frame of Fig. L.5. (Part 2 of 2.)

1484 Introduction to XHTML: Part 2 Appendix L

Testing and Debugging Tip L.2
When using nested frameset elements, indent every level of <frame> tag. This practice
makes the page clearer and easier to debug. L.2

In this appendix, we presented XHTML for marking up information in tables, creating
forms for gathering user input, linking to sections within the same document, using
<meta> tags and creating frames.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
4
5 <!-- Fig. L.11: index2.html -->
6 <!-- XHTML frames II. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9 <head>

10 <title>C# How to Program - Main</title>
11
12 <meta name = "keywords" content = "Webpage, design,
13 XHTML, tutorial, personal, help, index, form,
14 contact, feedback, list, links, frame, deitel" />
15
16 <meta name = "description" content = "This Web site will
17 help you learn the basics of XHTML and Web page design
18 through the use of interactive examples
19 and instruction." />
20
21 </head>
22
23 <frameset cols = "110,*">
24 <frame name = "leftframe" src = "nav.html" />
25
26 <!-- nested framesets are used to change -->
27 <!-- formatting and layout of frameset -->
28 <frameset rows = "175,*">
29 <frame name = "picture" src = "picture.html" />
30 <frame name = "main" src = "main.html" />
31 </frameset>
32
33 <noframes>
34 <p>This page uses frames, but your browser does not
35 support them.</p>
36
37 <p>Please, follow this link to
38 browse our site without frames.</p>
39 </noframes>
40
41 </frameset>
42 </html>

Fig. L.11Fig. L.11Fig. L.11Fig. L.11 Framed Web site with a nested frameset. (Part 1 of 2.)

Appendix L Introduction to XHTML: Part 2 1485

L.11 Internet and World Wide Web Resources
courses.e-survey.net.au/xhtml/index.html
The Web Page Design—XHTML site provides descriptions and examples for various XHTML fea-
tures, such as links, tables, frames and forms. Users can e-mail questions or comments to the Web
Page Design support staff.

www.vbxml.com/xhtml/articles/xhtml_tables
The VBXML.com Web site contains a tutorial on creating XHTML tables.

www.webreference.com/xml/reference/xhtml.html
This Web page contains a list of the frequently used XHTML tags, such as header tags, table tags,
frame tags and form tags. It also provides a description of each tag.

SUMMARY
• XHTML tables mark up tabular data and are one of the most frequently used features in XHTML.

• The table element defines an XHTML table. Attribute border specifies the table’s border
width, in pixels. Tables without borders set this attribute to "0".

• Element summary summarizes the table’s contents and is used by speech devices to make the ta-
ble more accessible to users with visual impairments.

Fig. L.11Fig. L.11Fig. L.11Fig. L.11 Framed Web site with a nested frameset. (Part 2 of 2.)

Left frame
leftframe

Right frame
contains
these two
nested
frames

1486 Introduction to XHTML: Part 2 Appendix L

• Element caption describe’s the table’s content. The text inside the <caption> tag is rendered
above the table in most browsers.

• A table can be split into three distinct sections: head (thead), body (tbody) and foot (tfoot).
The head section contains such information as table titles and column headers. The table body con-
tains the primary table data. The table foot contains secondary information, such as footnotes.

• Element tr, or table row, defines individual table rows. Element th defines a header cell. Text in
th elements usually is centered and displayed in bold by most browsers. This element can be
present in any section of the table.

• Data within a row are defined with td, or table data, elements.

• Element colgroup groups and formats columns. Each col element can format any number of
columns (specified with the span attribute).

• The document author has the ability to merge data cells with the rowspan and colspan at-
tributes. The values assigned to these attributes specify the number of rows or columns occupied
by the cell. These attributes can be placed inside any data-cell tag.

• XHTML provides forms for collecting information from users. Forms contain visual components,
such as buttons that users click. Forms may also contain nonvisual components, called hidden in-
puts, which are used to store any data, such as e-mail addresses and XHTML document file names
used for linking.

• A form begins with the form element. Attribute method specifies how the form’s data is sent to
the Web server.

• The "text" input inserts a textbox into the form. Textboxes allow the user to input data.

• The input element’s size attribute specifies the number of characters visible in the input el-
ement. Optional attribute maxlength limits the number of characters input into a textbox.

• The "submit" input submits the data entered in the form to the Web server for processing. Most
Web browsers create a button that submits the form data when clicked. The "reset" input al-
lows a user to reset all form elements to their default values.

• The textarea element inserts a multiline textbox, called a textarea, into a form. The number of
rows in the textarea is specified with the rows attribute, the number of columns (i.e., characters)
with the cols attribute.

• The "password" input inserts a password box into a form. A password box allows users to enter
sensitive information, such as credit card numbers and passwords, by “masking” the information
input with another character. Asterisks are the masking character used for most password boxes.
The actual value input is sent to the Web server, not the asterisks that mask the input.

• The checkbox input allows the user to make a selection. When the checkbox is selected, a check
mark appears in the checkbox. Otherwise, the checkbox is empty. Checkboxes can be used indi-
vidually and in groups. Checkboxes that are part of the same group have the same name.

• A radio button is similar in function and use to a checkbox, except that only one radio button in a
group can be selected at any time. All radio buttons in a group have the same name attribute value,
but different attribute values.

• The select input provides a drop-down list of items. The name attribute identifies the drop-down
list. The option element adds items to the drop-down list. The selected attribute, like the
checked attribute for radio buttons and checkboxes, specifies which list item is displayed initially.

• Image maps designate certain sections of an image as links. These links are more properly called
hotspots.

Appendix L Introduction to XHTML: Part 2 1487

• Image maps are defined with map elements. Attribute id identifies the image map. Hotspots are de-
fined with the area element. Attribute href specifies the link’s target. Attributes shape and co-
ords specify the hotspot’s shape and coordinates, respectively, and alt provides alternative text.

• One way that search engines catalog pages is by reading the meta elements’s contents. Two im-
portant attributes of the meta element are name, which identifies the type of meta element, and
content, which provides information a search engine uses to catalog a page.

• Frames allow the browser to display more than one XHTML document simultaneously. The
frameset element informs the browser that the page contains frames. Not all browsers support
frames. XHTML provides the noframes element to specify alternative content for browsers that
do not support frames.

TERMINOLOGY

SELF-REVIEW EXERCISES
L.1 State whether the following statements are true or false. If false, explain why.

a) The width of all data cells in a table must be the same.
b) Framesets can be nested.
c) You are limited to a maximum of 100 internal links per page.
d) All browsers can render framesets.

action attribute name attribute
area element navigational frame
border attribute nested frameset element
browser request nested tag
<caption> tag noframes element
checkbox password box
checked attribute "radio" (attribute value)
col element rows attribute (textarea)
colgroup element rowspan attribute (tr)
cols attribute selected attribute
colspan attribute size attribute (input)
coords element table element
form target = "_blank"
form element target = "_self"
frame element target = "_top"
frameset element tbody element
header cell td element
hidden input element textarea
hotspot textarea element
href attribute tfoot (table foot) element
image map <thead>...</thead>
img element tr (table row) element
input element type attribute
internal hyperlink usemap attribute
internal linking valign attribute (th)
map element value attribute
maxlength attribute Web server
meta element XHTML form
method attribute x–y coordinates

1488 Introduction to XHTML: Part 2 Appendix L

L.2 Fill in the blanks in each of the following statements:
a) Assigning attribute type in an input element inserts a button that, when

clicked, clears the contents of the form.
b) The layout of a frameset is set by including the attribute or the

 attribute inside the <frameset> tag.
c) The element marks up a table row.
d) are usually used as the masking characters in a password box.
e) The common shapes used in image maps are , and .

L.3 Write XHTML markup to accomplish each of the following tasks:
a) Insert a framed Web page, with the first frame extending 300 pixels across the page from

the left side.
b) Insert a table with a border of 8.
c) Indicate alternative content to a frameset.
d) Insert an image map in a page, using deitel.gif as an image and map with

name = "hello" as the image map, and set the alt text to “hello”.

ANSWERS TO SELF-REVIEW EXERCISES
L.1 a) False. You can specify the width of any column, either in pixels or as a percentage of the
table width. b) True. c) False. You can have an unlimited number of internal links. d) False. Some
browsers are unable to render a frameset and must therefore rely on the information that you in-
clude inside the <noframes>…</noframes> tags.

L.2 a) "reset". b) cols, rows. c) tr. d) asterisks. e) poly (polygons), circles, rect
(rectangles).

L.3 a) <frameset cols = "300,*">…</frameset>
b) <table border = "8">…</table>
c) <noframes>…</noframes>
d)

EXERCISES
L.4 Categorize each of the following as an element or an attribute:

a) width
b) td
c) th
d) frame
e) name
f) select
g) type

L.5 What will the frameset produced by the following code look like? Assume that the pages
referenced are blank with white backgrounds and that the dimensions of the screen are 800 by 600.
Sketch the layout, approximating the dimensions.

<frameset rows = "20%,*">
 <frame src = "hello.html" name = "hello" />
 <frameset cols = "150,*">
 <frame src = "nav.html" name = "nav" />
 <frame src = "deitel.html" name = "deitel" />
 </frameset>
</frameset>

Appendix L Introduction to XHTML: Part 2 1489

L.6 Write the XHTML markup to create a frame with a table of contents on the left side of the
window, and have each entry in the table of contents use internal linking to scroll down the document
frame to the appropriate subsection.

L.7 Create XHTML markup that produces the table shown in Fig. L.12. Use and
 tags as necessary. The image (camel.gif) is included in the Appendix L examples di-
rectory on the CD-ROM that accompanies this book.

L.8 Write an XHTML document that produces the table shown in Fig. L.13.

L.9 A local university has asked you to create an XHTML document that allows potential stu-
dents to provide feedback about their campus visit. Your XHTML document should contain a form
with textboxes for a name, address and e-mail. Provide checkboxes that allow prospective students to
indicate what they liked most about the campus. These chec boxes should include students, location,
campus, atmosphere, dorm rooms and sports. Also, provide radio buttons that ask the prospective stu-
dents how they became interested in the university. Options should include friends, television, Inter-
net and other. In addition, provide a textarea for additional comments, a submit button and a reset
button.

L.10 Create an XHTML document titled “How to Get Good Grades.” Use <meta> tags to include
a series of keywords that describe your document.

L.11 Create an XHTML document that displays a tic-tac-toe table with player X winning. Use
<h2> to mark up both Xs and Os. Center the letters in each cell horizontally. Title the game, using
an <h1> tag. This title should span all three columns. Set the table border to 1.

Fig. L.12 XHTML table for Exercise L.7.

1490 Introduction to XHTML: Part 2 Appendix L

Fig. L.13 XHTML table for Exercise L.8.

Bibliography

Albahari, B., P. Drayton and B. Merrill, C# Essentials. Cambridge, MA: O’Reilly & Associates,
2001.

Anderson, R., A. Homer, R. Howard and D. Sussman. A Preview of Active Server Pages+. Birming-
ham, UK: Wrox Press, 2001.

Anderson, R., B. Francis, A. Homer, R. Howard, D. Sussman and K. Watson, ASP .NET. Chicago,
IL: Wrox Press, Inc., 2001.

Archer, T. Inside C#. Redmond, WA: Microsoft Press, 2001.

Blaha, M. R., W. J. Premerlani and J. E. Rumbaugh. “Relational Database Design Using an Object-
Oriented Methodology.” Communications of the ACM, Vol. 31, No. 4, April 1988, 414–427.

Carr, D. “Hitting a High Note.” Internet World. March 2001, 71.

Carr, D. “Slippery SOAP.” Internet World. March 2001, 72–74.

Carr, D. F. “Dave Winer: The President of Userland and SOAP Co-Creator Surveys the Changing
Scene.” Internet World. March 2001, 53–58.

Chappel, D. “Coming Soon: The Biggest Platform Ever.” Application Development Trends Maga-
zine, May 2001,15.

Chappel, D. “A Standard for Web Services: SOAP vs. ebXML.” Application Development Trends,
February 2001, 17.

Codd, E. F. “A Relational Model of Data for Large Shared Data Banks.” Communications of the
ACM, June 1970.

Codd, E. F. “Further Normalization of the Data Base Relational Model.” Courant Computer Science
Symposia, Vol. 6, Data Base Systems. Upper Saddle River, N.J.: Prentice Hall, 1972.

Codd, E. F. “Fatal Flaws in SQL.” Datamation, Vol. 34, No. 16, August 15, 1988, 45–48.

Conard, J., P. Dengler, B. Francis, J. Glynn, B. Harvey, B. Hollis, R. Ramachandran, J. Schenken, S.
Short and C. Ullman. Introducing .NET. Birmingham, UK: Wrox Press, 2000.

Correia, E. J. “Visual Studio .NET to Speak in Tongues.” Software Development Times, April 2001, 12.

Bibliography 1519

Cornell, G. and J. Morrison. Moving to VB .NET: Strategies, Concepts, and Code. Berkeley, CA:
Apress Publishing, 2001.

Date, C. J. An Introduction to Database Systems, Seventh Edition. Reading, MA: Addison-Wesley
Publishing, 2000.

Davydov, M. “The Road to the Future of Web Services.” Intelligent Enterprise. May 2001, 50–52.

Deitel, H. M. and Deitel, P. J. Java How To Program, Fourth Edition. Upper Saddle River, NJ: Pren-
tice Hall, 2001

Deitel, H. M., Deitel, P. J. and T. R. Nieto. Visual Basic 6 How To Program. Upper Saddle River, NJ:
Prentice Hall, 1999.

Deitel, H. M., P. J. Deitel, T. R. Nieto, T. M. Lin and P. Sadhu. XML How To Program. Upper Saddle
River, NJ: Prentice Hall, 2001

Deitel, H. M. Operating Systems, Second Edition. Reading, MA: Addison Wesley Publishing, 1990.

Dejong, J. “Raising the Bar.” Software Development Times, March 2001, 29–30.

Dejong, J. “Microsoft’s Clout Drives Web Services.” Software Development Times, March 2001, 29, 31.

Dejong, J. “One-Stop Shopping: A Favored Method.” Software Development Times, February 2001, 20.

Erlanger. L. “.NET Services.” Internet World, March 2001, 47.

Erlanger. L. “Dissecting .NET.” Internet World, March 2001, 30–36.

Esposito, D. “Data Grid In-Place Editing.” MSDN Magazine, June 2001, 37–45.

Esposito, D. “Server-Side ASP .NET Data Binding: Part 2: Customizing the Data Grid Control.”
MSDN Magazine, April 2001, 33–45.

Finlay, D. “UDDI Works on Classification, Taxonomy Issues.” Software Development Times, March
2001, 3.

Finlay, D. “New York Prepares for .NET Conference.” Software Development Times, June 2001, 23.

Finlay, D. “GoXML Native Database Clusters Data, Reduces Seek Time.” Software Development
Times, March 2001, 5.

Fontana, J. “What You Get in .NET.” Network World, April 2001, 75.

Galli, P. and R. Holland. “.NET Taking Shape, But Developers Still Wary.” eWeek, June 2001, pages
9, 13.

Gillen, A. “Sun’s Answer to .NET.” EntMag, March 2001, 38.

Gillen, A. “What a Year It’s Been.” EntMag, December 2000, 54.

Gladwin, L. C. “Microsoft, eBay Strike Web Services Deal.” Computer World, March 2001, 22.

Grimes, R. “Make COM Programming a Breeze with New Feature in Visual Studio .NET.” MSDN
Magazine, April 2001, 48–62.

Gunnerson, E. A Programmer’s Introduction to C#: Second Edition. New York, NY: Apress, 2001.

Harvey, B., S. Robinson, J. Templeman and K. Watson. C# Programming With the Public Beta. Bir-
mingham, UK: Wrox Press, 2000.

Holland, R. “Microsoft Scales Back VB Changes.” eWeek, April 2001, 16.

Holland, R. “Tools Case Transition to .NET Platform.” eWeek, March 2001, 21.

Hulme, G, V. “XML Specification May Ease PKI Integration.” Information Week, December 2000, 38.

Hutchinson, J. “Can’t Fit Another Byte.” Network Computing, March 2001, 14.

1520 Bibliography

Jepson, B. “Applying .NET to Web Services.” Web Techniques, May 2001, 49–54.

Jones, B. Sams Teach Yourselft C# in 21 Days. Indianapolis, IN: Sams Publishing, 2002.

Karney. J. “.NET Devices.” Internet World, March 2001, 49–50.

Kiely, D. “Doing .NET In Internet Time.” Information Week, December 2000, 137–138, 142–144, 148.

Kirtland, M. “The Programmable Web: Web Services Provides Building Blocks for the Microsoft
.NET Framework.” MSDN Magazine, September 2000 <msdn.microsoft.com/msd-
nmag/issues/0900/WebPlatform/WebPlatform.asp>.

Levitt, J. “Plug-And-Play Redefined.” Information Week, April 2001, 63–68.

McCright, J. S. and D. Callaghan. “Lotus Pushes Domino Services.” eWeek, June 2001, 14.

Michaelis, M. and P. Spokas. C# Developer’s Headstart. New York, NY: Osbourne/McGraw-Hill,
2001.

“Microsoft Chimes in with New C Sharp Programming Language.” Xephon Web site. June 30, 2000
<www.xephon.com/news/00063019.html>.

Microsoft Corporation, Microsoft C# Language Specifications. Redmond, VA: Microsoft Press,
2001.

Microsoft Developer Network Documentation. Visual Studio .NET CD-ROM, 2001.

Microsoft Developer Network Library. .NET Framework SDK. Microsoft Web site
<msdn.microsoft.com/library/default.asp>.

Moran, B. “Questions, Answers, and Tips.” SQL Server Magazine, April 2001, 19–20.

MySQL Manual. MySQL Web site <www.mysql.com/doc/>.

Oracle Technology Network Documentation. Oracle Web site. <otn.oracle.com/docs/con-
tent.html>.

Otey, M. “Me Too .NET.” SQL Server Magazine. April 2001, 7.

Papa, J. “Revisiting the Ad-Hoc Data Display Web Application.” MSDN Magazine, June 2001, 27–33.

Powell, R. and R. Weeks. C# and the .NET Framework: The C# Perspective. Indianapolis, IN: Sams
Publishing, 2002.

Pratschner, S. “Simplifying Deployment and Solving DLL Hell with the .NET Framework.” MSDN
Library, September 2000 <msdn.microsoft.com/library/techart/dplywith-
net.htm>.

Prosise, J. “Wicked Code.” MSDN Magazine, April 2001, 121–127.

Relational Technology, INGRES Overview. Alameda, CA: Relational Technology, 1988.

Ricadela, A. and P. McDougall. “eBay Deal Helps Microsoft Sell .NET Strategy.” Information Week,
March 2001, 33.

Ricadela, A. “IBM Readies XML Middleware.” Information Week, December 2000, 155.

Richter, J. “An Introduction to Delegates.” MSDN Magazine, April 2001, 107–111.

Richter, J. “Delegates, Part 2." MSDN Magazine, June 2001, 133–139.

Rizzo, T. “Let’s Talk Web Services.” Internet World, April 2001, 4–5.

Rizzo, T. “Moving to Square One.” Internet World, March 2001, 4–5.

Robinson, S., O. Cornes, J. Glynn, B. Harvey, C. McQueen, J. Moemeka, C. Nagel, M. Skinner and
K. Watson. Professional C#. Birmingham, UK: Wrox Press, 2001.

Bibliography 1521

Rollman, R. “XML Q & A.” SQL Server Magazine, April 2001, 57–58.

Rubinstein, D. “Suit Settled, Acrimony Remains.” Software Development Times, February 2001,
pages 1, 8.

Rubinstein, D. “Play It Again, XML.” Software Development Times, March 2001, 12.

Scott, G. “Adjusting to Adversity.” EntMag, March 2001, 38.

Scott, G. “Putting on the Breaks.” EntMag, December 2000, 54.

Sells, C. “Managed Extensions Bring .NET CLR Support to C++.” MSDN Magazine. July 2001,
115–122.

Seltzer, L. “Standards and .NET.” Internet World, March 2001, 75–76.

Shohoud, Y. “Tracing, Logging, and Threading Made Easy with .NET.” MSDN Magazine, July
2001, 60–72.

Sliwa, C. “Microsoft Backs Off Changes to VB .NET.” Computer World, April 2001, 14.

Songini, Marc. “Despite Tough Times, Novell Users Remain Upbeat.” Computer World, March
2001, 22.

Spencer, K. “Cleaning House.” SQL Server Magazine, April 2001, 61–62.

Spencer, K. “Windows Forms in Visual Basic .NET.” MSDN Magazine, April 2001, 25–45.

Stonebraker, M. “Operating System Support for Database Management.” Communications of the
ACM, Vol. 24, No. 7, July 1981, 412–418.

Surveyor. J. “.NET Framework.” Internet World, March 2001, 43–44.

Tapang, C. C. “New Definition Languages Expose Your COM Objects to SOAP Clients.” MSDN
Magazine, April 2001, 85–89.

Thai, T. and H. Q. Lam. .NET Framework. Cambride, MA: O’Reilly & Associates, Inc., 2001.

Troelsen, A. C# and the .NET Platform. New York, NY: Apress, 2001.

Utley, C. A Programmer’s Introduction to Visual Basic .NET. Indianapolis, IN: Sams Publishing,
2001.

Visual Studio .NET ADO .NET Overview. Microsoft Developers Network Web site
<msdn.microsoft.com/vstudio/nextgen/technology/adoplusde-
fault.asp>.

Ward, K. “Microsoft Attempts to Demystify .NET.” EntMag, December 2000, 1.

Waymire, R. “Answers from Microsoft.” SQL Server Magazine, April 2001, 71–72.

Whitney, R. “XML for Analysis.” SQL Server Magazine, April 2001, 63–66.

Wille, C. Presenting C#. Indianapolis, IN: Sams Publishing, 2000.

Winston, A. “A Distributed Database Primer.” UNIX World, April 1988, 54–63.

Zeichick, A. “Microsoft Serious About Web Services.” Software Development Times, March 2001, 3.

Index

Symbols
! (logical NOT) 160, 163
!= is not equal to 81, 160
" (double quotation) 64, 67
"" 844
% (modulus operator) 76, 77, 78
%= (modulus assignment operator)

121
& (bitwise AND) 1496, 1497,

1500
& (boolean logical AND) 160, 166
& (menu access shortcut) 522, 523
&& (logical AND) 160, 162
&= (bitwise AND assignment

operator) 1507
& 1387
© 1387
¼ 1446
< 1445, 1446
(GCD) greatest common divisor

235
(GUI) graphical user interface 23,

37, 69, 475
* SQL wildcard character 881, 908
*/ end a multiline comment 61
*= (multiplication assignment

operator) 121
+ operator 78, 647
++, preincrement/postincrement

121
+= (addition assignment operator)

120

--, predecrement/postdecrement
121, 122

. (dot operator) 181

.disco file extension 1057

.vsdisco file extension 1057
// single-line comment 61
/= (division assignment operator)

121
; (empty statement) 70, 104
; (statement terminator) 64
< is-less-than operator 81
<%@Page…%> directive 954
<%@Register…%> directive

1015
<< (left-shift operator) 1496,

1497, 1498, 1504
<<= (left-shift assignment

operator) 1508
<= less than or equal 81, 160
<> angle brackets 840
<? and ?> delimiters 878
= (assignment operator) 74, 120
-= (subtraction assignment

operator) 121
== comparison operator 81, 638
> is-greater-than operator 81
>= is-greater-than-or-equal-to

operator 81
>> (right-shift operator) 1496,

1497, 1504
>>= (right-shift assignment

operator) 1508

? regular expression metacharacter
766

? SQL wildcard character 908
?: (ternary conditional operator)

101, 123
[] (brackets) 238, 239, 249
\ separator character 761
\' escape sequence 68
\\ escape sequence 68
\n escape sequence 67, 68
\r escape sequence 68
\t escape sequence 68
\uyyyy unicode format 1356
^ (bitwise exclusive OR) 1496,

1497, 1500, 1508
^ (boolean logical exclusive OR)

160
^= (bitwise exclusive OR

assignment operator) 1507
_ (underscore) 62
{ (left brace) 63, 104
| (bitwise inclusive OR) 1496,

1497, 1500, 1508
| (boolean logical inclusive OR)

160
|= (bitwise inclusive OR

assignment operator) 1507
|| (logical OR) 160, 161
} (right brace) 63, 104
~ (bitwise complement operator)

1496, 1497, 1500
‚ (comma) 149

Index 1523

A
A 12-element array 238
A binary search tree containing 12

values 1169
a element 1381, 1385, 1439, 1444
A graphical representation of a

binary tree 1169
A graphical representation of the

InsertAtBack operation
1158

A graphical representation of the
InsertAtFront
operation 1158

A graphical representation of the
RemoveFromBack
operation 1160

A graphical representation of the
RemoveFromFront
operation 1159

A portion of a Shape class
hierarchy 347

A property of structure Color 689
abbreviating an assignment

expression 120
Abort method of class Thread

593
AbortRetryIgnore method

148
AboutBox method of class Ax-

MediaPlayer 736
Abs method of class Math 182
absolute positioning 963
absolute value 182
abstract base class 392
abstract class 392, 393, 403,

404, 417
Abstract class Employee

definition 404
abstract data type (ADT) 22, 282
abstract derived class 404
abstract method 392, 403, 404
Abstract Shape base class 394
abstraction 344
AcceptButton property 478
AcceptSocket method of class

TcpListener 1109
AcceptsReturn property 489
access method 285
access shared data 607
access shortcut 522
accessibility 1217, 1249, 1251,

1258, 1262, 1263, 1264
accessibility aids in Visual Studio

.NET 1217, 1218

Accessibility Wizard 1251,
1254, 1258

Accessibility Wizard
initialization option 1252

Accessibility Wizard mouse
cursor adjustment tool 1254

AccessibilityDescrip-
tion property of class
Control 1230

AccessibilityName
property of class Control
1230

AccessibleDescription
property of class Control
1225

AccessibleName property of
class Control 1225

AccessibleRole enumeration
1226

AccessibleRole property of
class Control 1226

Accessing and displaying a
database’s data 921

Accessing private class
members from client code
generates syntax errors 291

accessing shared memory without
synchronization 601

action 64, 326
action attribute 1247, 1465
action oriented 282
action symbol 98
action/decision model of

programming 100
Activation property of class

ListView 553
Active Accessibility 1249
Active Server Pages (ASP) .NET

16, 26
active window 477
ActiveLinkColor property of

class LinkLabel 531
ActiveMdiChild property of

class Form 567
ActiveX 1363
ActiveX COM control integration

in Visual Basic .NET 1365
ActiveX control 28, 1364
ActiveX DLL 28
Acts designed to ensure Internet

access for people with
disabilities 1214

Ad attribute 974
Ada programming language 10,

591
add custom control to a form 583

Add member of enumeration
MenuMerge 568

Add method 722, 873
Add method of class ArrayList

1066, 1189, 1193
Add method of class Hashtable

1091, 1204
Add method of class TreeNode-

Collection 549
Add method of Columns

collection 1013
Add Reference dialog 70
Add Reference dialog DLL

Selection 1368
Add Tab menu item 560
Add User Control... option in

Visual Studio .NET 580
Add Web Reference dialog 1055
Add Windows Form... option in

Visual Studio .NET 567
Adding a new label to the form 48
adding a proxy class for a Web

service 1053
Adding a reference to an assembly

in Visual Studio .NET 70
adding a Web service reference to

a project 1055
adding Web References in

Visual Studio 1053
addition assignment operator (+=)

120
Addition program to add two

values entered by the user 72
Addition.cs 72
AddLine method of class

GraphicsPath 715
AddressBook.cs 930
Adjusting up window element size

1253
“administrative” section of the

computer 4
ADO .NET 25, 897, 920, 941
AdRotator class 971, 972
AdRotator class demonstrated

on a Web form 972
AdRotator.aspx 972
AdRotator.aspx.cs 973
AdRotatorInforma-

tion.xml 974
ADT (abstract data type) 22, 282
advanced accessibility settings in

Microsoft Internet Explorer
5.5 1263

Advanced Research Projects
Agency (ARPA) 13

Advantage Hiring, Inc. 1297

1524 Index

AdvertisementFile
property of class AdRota-
tor 972

AdvertisementFile used in
AdRotator example 974

advertisment 987
AfterSelect event of class

TreeView 549
 742
aggregation 290
Airline Reservation Web service

1076
airline reservation Web service

1076
airline Web Service in design view

1078
algebraic notation 77
algorithm 21, 95, 106, 222
algorithm for traversing a maze

279
Alignment property 49
allocating arrays 240
allocating memory 242
Allowed implicit conversions 194
AllowPaging property 1027
AllowPaging property of a

DataGrid control 1027
AllowSorting property of

windows form designer 1027
Alphabetic icon 42
alphabetizing 638
alt attribute 27, 1217, 1383,

1442
Alt key 511, 522
Alt property 514
<alt> tag 1263
ALU (arthimetic and logic unit) 4,

1496
America’s Job Bank 1295
American Society for Female

Entrepreneurs 1297
American Standard Code for

Information Interchange
(ASCII) 27

ampersand (&) 1387
 699
Analysis.cs 118
Analytical Engine mechanical

computing device 11
ancestor node 847
anchor 1380, 1385
anchor control 486
Anchor property 487
anchoring a control 486
Anchoring demonstration 486
AND 918, 919

And method of class BitArray
1508

AND operator (boolean logical)
160

AND operator (logical) 160, 162
angle bracket (<>) 840, 1375
animated character 24
animation 687
 720
answer element 1248
Apache 1405
API (application programming

interface) 685
APL progamming language 19
Append method of class

StringBuilder 654, 655
Append methods of class

StringBuilder 655
AppendFormat method of class

StringBuilder 655, 657
AppendText method of class

File 761
Apple Computer, Inc. 5, 1351
Application class 529
application class definition 108
application programming

interface (API) 685
application service provider (ASP)

1297
Application that writes an XML

representation of a
DataSet to a file 939

application tracing 1027
Application with accessibility

features 1226
Application.Exit method

529, 539
ApplicationException

class 448
Aquent.com 1300
arc angle 704
arc method 704
 705
area element 1416, 1477
ARGB values 688
argument 64, 181, 185
ArgumentOutOfRangeEx-

ception 636, 647, 658
ArgumentOutOfRangeEx-

ception class 1193
arithmetic and logic unit (ALU) 4,

1496
Arithmetic assignment operators

120
arithmetic calculation 76
arithmetic mean (average) 78

arithmetic operator 76, 77
arithmetic overflow 439, 440
ARPA (Advanced Research

Projects Agency) 13
ARPAnet 14
ArrangeIcons value in Lay-

outMdi enumeration 570
array 22, 237
array allocated with new 249
array as an object 239
array automatically initialized to

zeros 249
array bounds 250
Array class 1185
array elements of primitive data

types passed call-by-value
250

array indexer ([]) 238
array of a nonprimitive data type

240
array of arrays 266
array of primitive data types 240
array subscript operator, [] 1193
ArrayList class 722, 1066,

1067, 1185, 1188, 1193
ArrayListTest.cs 1189
ArrayReferenceTest.vb

254
arrays are C# objects 281
arrays as object 253
arrays passed call-by-reference

250
article.xml 839
article.xml displayed by

Internet Explorer 842
ASC (ascending order) 259, 882,

909, 911
ascent 698
ASCII (American Standard Code

for Information Interchange)
27, 1351

ASCII character, test for 514
ASCX code for the header 1015
ASCX file 1015
ASMX file 1042
ASMX file rendered in Internet

Explorer 1042
ASMX page 1044
ASP (Active Server Pages) .NET

16
ASP .NET comment 954
ASP .NET server controls 949
ASP.NET Web service project

type 1052
ASP.NET_SessionId cookie

996

Index 1525

ASPX file 949
.aspx file extension 949
ASPX file for the guest book

application 1007
ASPX file that allows a user to

select an author from a drop-
down list 1021

ASPX file that presents a list of
programming languages 989

ASPX file that takes ticket
information 1078

ASPX listing for the guest book
page 1007

ASPX page that displays book
information 994

ASPX page that displays the Web
server’s time 953

ASPX page with tracing turned off
1028

assembler 7
assembly 69, 332
assembly language 6
Assembly TimeLibrary

contains class Time3 329
Assembly TimeLibrary used

from class
AssemblyTest 333

<assign> tag 1242
assign element 1248
assign value to a variable 74
Assigning derived-class

references to base-class
references 387

assignment operator (=) 74, 81,
120

assignment statement 74
associate left to right 85, 123
associate right to left 78, 85, 115,

123
associativity of operators 78, 123,

239
asterisk (*) 905, 1480
asterisk (*) indicating

multiplication 76
asterisk (*) occurence indicator

866
asynchronous event 440
ATTLIST element 867
attribute 843, 1381
attribute of an element 1433
attributes 125
audio clip 591
audio-video interleave (AVI) 733
Aural Style Sheet 1264
AuralCSS 1250

authorISBN table of books
database 898, 899, 900

authorization 1021
Authors table of books

database 898
authors table of books

database 898
Authors.aspx 1021
Authors.aspx.cs 1023
auto hide 40
auto hide, disable 40
AutoEventWireup attribute of

ASP.NET page 954
automatic duration 212
automatic garbage collection 592
Autos window 1317
AutoScroll property 495
average 78
average calculation 106, 109
Average1.cs 107
Average2.cs 112
AVI (audio-video interleave) 733
AxAgent control 742, 749
AxMediaPlayer class 735

B
B property of structure Color 690
B2B 1041
Babbage, Charles 11
BackColor property 47, 485
background color 47, 518
BackgroundImage property

485
backslash (\) 67
Ballmer, Steve 20
bandwidth 14, 718
 772
bar chart 243
base 2 number system 1496
base case(s) 216, 220, 221
base class 125, 343, 344, 346
base-class constructor 348
base-class constructor call syntax

365
base-class default constructor 348
 772
base-class method is overridden in

a derived class 366
base-class Private member 347
base-class reference 388, 389
baseline 1462
BASIC (Beginner’s All-Purpose

Symbolic Instruction Code)
8

batch 5

batch processing 4
BCPL programming language 7
Beginner’s All-Purpose Symbolic

Instruction Code (BASIC) 8
behavior 125, 281
Berkeley System Distribution

(BSD) 18
Berners-Lee, Tim 14
BilingualJobs.com 1297
binary 176
binary digit 757
binary number system 1496
binary operator 74, 76, 115, 163
binary representation 1496, 1498
binary search 260, 261, 262, 278
Binary search of a sorted array 262
binary search tree 1169, 1175,

1176
binary tree 1146, 1169, 1176
binary tree sort 1176
BinaryFormatter class 760,

782
BinaryReader class 807, 1118
BinarySearch method of class

Array 1187
BinarySearch method of class

ArrayList 1194
BinaryTreeLibrary.cs

1170, 1178
BinaryWriter class 1118
Bind method of class Socket

1108
binding a server to a port 1108
bit (size of unit) 757, 1351, 1496
bit manipulation 757, 1496
bit mask 1498
bit representation of an integer

1498
bit set 1508
BitArray class 1185, 1496,

1508, 1510
BitArray indexer 1508
BitArrayTest.cs 1508
Bitmap class 714
BitOperations.cs 1501
bits-and-bytes level 1496
BitShift.cs 1505
bitwise AND (&) 1496, 1497,

1500
bitwise AND assignment operator

(&=) 1507
bitwise assignment operator 1507
bitwise complement operator (~)

1496, 1497, 1500
bitwise exclusive OR (^) 1496,

1497, 1500, 1508

1526 Index

bitwise exclusive OR assignment
operator (^=) 1507

bitwise inclusive OR (|) 1496,
1497, 1500, 1508

bitwise inclusive OR assignment
operator (|=) 1507

bitwise operators 501, 1496, 1497,
1498, 1507

BizTalk 25, 844
BizTalk Framework 885
BizTalk markup using an offer

Schema 885
BizTalk Schema Library 885
BizTalk Server (BTS) 885
BizTalk Terminologies 885
Black static property of

structure Color 689
Blackjack 1063
Blackjack game that uses Black-

jack Web service 1067
Blackjack Web service 1063
Blackjack.cs 1067
BlackjackSer-

vice.asmx.cs 1063
Blackvoices.com 1296
blank line 62
block 104, 187, 212, 1109
block element 1242, 1247
block for input/output 595
block scope 213, 290
blocked state 594
Blue static property of

structure Color 689
Bluetooth 1299
body 63
body element 1015, 1378, 1433,

1434
body of a class definition 63, 284
body of a loop 146
body of the if structure 80
body of the method definition 63
body of the while 105
body section 1433
Bohm, C. 97, 170
Bold member of enumeration

FontStyle 697
Bold property of class Font 696
book.xdr 871
book.xml 870, 872
book.xsd 872
books database 898
books database table

relationships 904
bookxdrfail.xml 876
bookxsd.xml 872
bookxsdfail.xml 876

bool primitive data type 100, 196
bool promotions 194
bool values 166
bool variables initialized to

false 212
boolean decision 1508
boolean flag 1508
boolean logical AND operator (&)

160
boolean logical exclusive OR

operator (^) 160
boolean logical inclusive OR

operator (|) 160
border = "0" 1400
border attribute 1400, 1459
Boss class inherits from class

Employee 405
bottom tier 952
BounceKeys 1256
boundary of control 579
bounding rectangle 702, 704
bounding rectangle for an oval 704
br (line break) element 1386,

1445
braces ({ and }) 104, 114, 143,

158, 186
braces not required in cases 155
braces that delimit a compound

statement 104
braces‚ matching left and right 75
brackets ([]) 238, 239, 249
braille display 1217, 1250
braille keyboard 1249
Brassringcampus.com 1302
Break All button 1318
break program 1318
break statement 21, 152, 158
<break> tag 1242
breakpoint 1313
breakpoint condition 1320
breakpoint hit count 1320
breakpoint, active 1319
breakpoint, disabled 1319
breakpoint, set 1314
Breakpoints window 1319
BreakTest.cs 158
brick-and-mortar store 987
browser request 1405, 1462
Brush class 685, 690, 701
BSD (Berkeley System

Distribution) 18
BTS (BizTalk Server) 885
bubble sort 257
Bubble sort using delegates 426
Bubble-sort Form application 427
BubbleSortForm.cs 427

bubbling a small value 259
buffer 601
buffer empty 601
BufferedStream class 760
buffering 25
Build menu 38, 52
Build Solution option 52
building-block approach 12, 95,

140
built-in array capabilities 1185
built-in data type 73, 326
Business letter DTD 866
business logic 953
business rule 953
business-to-business (B2B) 1041
button 34, 69, 70, 71, 476
Button class 488
button label 488
Button properties and events

490
Buttons for message dialogs 148
byte 758, 1496
byte offset 795
byte primitive data type 196,

1496
byte promotions 194

C
C formatting code 151
C programming language 7, 1376,

1431
C-style comment 61
C# generating exception for

invalid subscripting 249
C# How to Program 3
C# keywords 98
C# Language Specification 449
C# primitive data types 196
C# program for examination-

results problem 118
C# programming language 9, 19,

844
C#’s view of a file of n bytes 760
 760
C#’s view of an n-byte file 760
C++ programming language 8,

1376
C++-style single-line comment 61
cache 920
Calculating compound interest

with for 149
Calculating factorials with a

recursive method 217
calculation 4
call element 1248

Index 1527

Call Stack 457, 1322
call-by-reference 250
call-by-value 250
called method 180
caller 180
callerID attribute 1248
calling method 180
CallXML 27, 1243
callxml element 1243, 1248
CallXML example that reads three

ISBN values 1245
CallXML hangup element 1243
CampusCareerCenter.com

1302
CancelButton property 478
Candidate Recommendation 15
capacity of a collection 1188
Capacity property of class Ar-

rayList 1188
Capacity property of class

ArrayList 1194
Capacity property of class

StringBuilder 652
caption element 1234, 1459
Card class 664
Card dealing and shuffling

simulation 665
card games 664
Card.cs 664
Career.com 1295
CareerPath.com 1295
CareerWeb 1295
carriage return 68
carry bit 1284
Cascade value in LayoutMdi

enumeration 570
Cascading Style Sheets (CSS) 15,

27
case-sensitive language 62, 105,

1375
case statement 152, 154, 155
cast 92
CAST eReader 1231
cast operation 388
cast operator 112, 115, 194
catch all exception types 442
catch block (or handler) 442,

446, 450
Categorized icon 42
CCircle5 class inherits from

class CPoint3 and
overrides a finalizer method
374

CDATA flag 867
CD-ROM 3

CDT>Circle class contains an x-y
coordinate and a radius 351

Ceil method of class Math 182
Center for Applied Special

Technology 1231, 1265
Centering the text in the label 50
central processing unit (CPU) 4
CERN (the European

Organization for Nuclear
Research) 14

CGI (Common Gateway
Interface) 1405

CGI script 1405, 1465
chance 200
changes in server-side data 1405
Changing a property in the code

view editor 128
Changing a property value at run

time 130
Changing property BackColor

47
Char array 636
char primitive data type 196
char promotions 194
Char structure 633, 661
char variable 73
Char.IsDigit method 661
Char.IsLetter method 661
Char.IsLetterOrDigit

method 661
Char.IsLower method 663
Char.IsPunctuation

method 663
Char.IsSymbol method 663
Char.IsUpper method 663
Char.IsWhiteSpace method

663
Char.ToLower method 663
Char.ToUpper method 663
Char’s static character-

testing methods and case-
conversion methods 661

character 758, 1352
character class 669
Character classes 669
character constant 634
character entity reference 28
character set 73, 92, 758, 1351
character string 64
Characters property of class

AxAgent 748
Charles Goldfarb 887
CharMethods.cs 661
checkbox 476, 488, 498, 1406,

1466
CheckBox class 498

checkbox label 498
CheckBox properties and events

498
CheckBoxes property of class

ListView 553
CheckBoxes property of class

TreeView 548
CheckBoxTest.cs 499
checked attribute 1409, 1469
checked context 466
checked operator 466
Checked property 498, 502
Checked property of class

MenuItem 524
Checked property of class

TreeNode 549
CheckedChanged event 499,

502
CheckedIndices property of

class CheckedListBox
540

CheckedItems property of
class CheckedListBox
540

CheckedListBox and a
ListBox used in a program
to display a user selection
541

CheckedListBox and List-
Box used in a program to
display a user selection 541

CheckedListBox class 521,
534, 539

CheckedListBox properties,
methods and events 540

CheckedListBoxTest.cs
541

CheckState property 498
CheckStateChanged event

499
Chemical Markup Language

(CML) 25
 725
ChessGame.cs 725
 723
ChiefMonster™ 1301
Child class for MDI

demonstration 574
child element 841, 843, 1169
child node 547, 847
child window minimized 568
Child.cs 574
choice element of form tag

1241
choice element of menu tag

1241

1528 Index

<choice> tag 1242

circle 1450

Circle class contains an x-y
coordinate and a radius 351

Circle class marked up with
XML comments 1333

Circle class that inherits from
class Point 385

Circle2 class that inherits from
class Point 355

Circle2 class that inherits from
class Point2 397

Circle3 class that inherits from
class Point2 359

Circle3 class that inherits from
class Point3 421

Circle3.cs 421

Circle4 class that inherits from
class Point3 but does not
use protected data 364

Circle5 class inherits from
class Point3 and overrides
a finalizer method 374

CircleTest class marked up
with XML comments 1336

CircleTest demonstrates class
Circle functionality 354

CircleTest3 demonstrates
class Circle3
functionality 360

CircleTest4 demonstrates
class Circle4
functionality 366

circular buffer 616, 627

circular hotspot 1418, 1478

CircularBuffer.cs 617

circumference 92

CityWeather.cs 1085

clarity 2

class 11, 22, 62, 179, 282

Class average program with
counter-controlled repetition
107

Class Control layout properties
487

Class Control properties and
methods 485

class definition 62, 71, 284, 1338

Class FrmInheritance, which
inherits from class Form,
contains a button (Learn
More) 575

Class FrmVisualTest, which
inherits from class Visu-
alForm.FrmInher-
itance, contains an
additional button 577

class hierarchy 383, 392
class keyword 62, 124
class library 13, 344
class name 62
class scope 213, 290
class-scope variable hidden by

method-scope variable 290
class that stores equation

information 1093
class that stores weather

information about a city
1085

Class View (Visual Studio .NET)
333

"class-wide" information 312
Class-average program with

sentinel-controlled
repetition 112

Classes that derive from class
Brush 690

classes to implement abstract data
types 327

clear element 1248
Clear method of class Array

1188
Clear method of class

ArrayList 1189
Clear method of class Tree-

NodeCollection 549
Clear method of DataSet 930
Clear method of Hashtable

1204
clearDigits element 1248,

1249
click a button 488
Click event of class MenuItem

523, 525
Clicker 4 1261
clicking the mouse 34, 70
client 6, 326
client interacting with server and

Web server. Step 2: The
HTTP response, HTTP/1.0
200 OK 951

Client portion of a client/server
stream-socket connection
1114

client tier 953
Client.cs 1087, 1114, 1132
client/server chat 1111
client/server computing 6

ClipRectangle property of
class PaintEventArgs
578, 579

clock 580
ClockUserControl.cs 580
close a file 788
Close button icon 53
Close method of class Form 478
Close method of class Socket

1109, 1119
Close method of class Stream-

Reader 788
Close method of class

TcpClient 1110, 1111
closed polygon 708
CloseFigure method of class

GraphicsPath 715
closing a project 38
closing brace (}) 114
CLR (Common Language

Runtime) 18
CLS (Common Language

Specification) 18
CML (Chemical Markup

Language) 25
CNN.com 987
COBOL (COmmon Business

Oriented Language) 10, 19,
1431

Code generated by the IDE for
lblWelcome 127

code reuse 1185
code value 1352
code-behind file 949, 1015
Code-behind file for a page that

displays the Web server’s
time 955

Code-behind file for a page that
updates the time every
minute 955

Code-behind file for page
demonstrating the AdRo-
tator class 973

Code-behind file for the guest
book application 1009

Code-behind file for the log in
page for authors application
1016

Code-behind file for the page that
allows a user to choose an
author 1023

code-behind file for the
reservation page 1079

Code-behind file for the word
generator page 979

Index 1529

Code-behind file for
WebForm1.aspx
generated by Visual Studio
.NET 964

code-behind file in Web services
1042

Code-behind file that writes
cookies to the client 991

coercion of arguments 193
coin-tossing 201, 234
col element 1403, 1460
colgroup element 1402, 1403,

1460
Collapse method of class

TreeNode 549
collapse node 547
collapsed code 125
collapsing a tree 39
Collect method of GC 316, 377
collection 1185
collection class 1185
Collegegrads.com 1302
collision detection 722
Color 689
color constant 689
color manipulation 687
Color methods and properties

689
Color property of class Color-

Dialog 693
Color structure 686, 688
Color structure members 689
ColorDialog class 693
ColorDialog used to change

background and text color
693

cols attribute 1408, 1421, 1465,
1480

colspan attribute 1403, 1460
column 897, 898, 1398
column heading 1400
column number 906
Columns collection 1013
COM (Component Object Model)

28, 1362, 1364
COM component 28, 1363
COM limitation 1363
ComboBox class 476, 521, 542
ComboBox demonstration 543
ComboBox properties and events

543
ComboBox used to draw a

selected shape 544
ComboBoxTest.cs 544
comma (‚) 149

comma in a for structure header
149

comma-separated list of
arguments 73, 74, 75, 144,
181, 186

command-and-control system 591
command prompt 60, 64
Commands property of interface

749
comment 83
comment (//) 61, 73, 1377, 1432
comment at the end of each line 83
Comment constant of

enumeration XmlNode-
Type 849

comments in HTML 1377
commercial application 757
CommissionWorker class

inherits from class
Employee 406

COmmon Business Oriented
Language (COBOL) 10

Common Form properties and
events 478

Common Gateway Interface
(CGI) 1405, 1463

Common Language Runtime
(CLR) 18, 449, 463

Common Language Specification
(CLS) 18

Common Programming Error 12
Common Runtime Library proxy

1364
Commonly used Math class

methods 182
CompareTo method of

IComparable 1178
CompareTo method of structure

Char 664
compilation error 1312
compile-time error 61
compile, debug setting 1314
compiler 7
Compiler error messages

generated from overloaded
methods 225

compiler optimization 402
compiling 1146
complete representation of a

program 110, 116
complex curve 715
complex number class 430
complex type 873
complexity theory 222
ComplexNumber.cs 430
complexType element 873

component 8, 477
Component Object Model (COM)

28, 1362, 1364
Component Pascal progamming

language 19
Components and controls for

Windows Forms 477
composition 22, 290, 306, 344,

346
compound statement 104, 114
comprehensive job sites 1290
computation 3
computational complexity 259
computer 3
computer program 3
computer programmer 3
Computing the sum of the

elements of an array 242
Concat method of class String

647
Concat Shared method 648
Concat static method 648
concatenation of strings 83
concrete class 392
concurrency 591
concurrent producer and consumer

threads 607
concurrent programming 591
concurrent threads 607
condition 80
condition variable 614
conditional AND 162
conditional expression 101, 286
conditional operator (?:) 101,

123, 160
conditional OR operator 162
conference element 1249
Confusing the equality operator

== with the assignment
operator = 81

Connect method of class
TcpListener 1110

connect to a database 921
connected lines 708
connection 1108
connection attempt 1110
connection between client and

server terminates 1111
connection to a server 1110, 1138
ConnectionConnection

property of OleDbCom-
mand 928

connectionless service 1108
connectionless transmission with

datagrams 1120, 1140

1530 Index

connection-oriented, streams-
based transmission 1120,
1140

connector symbol 98
consistent state 289, 298
console application 60
Console class 64, 760
console window 60, 66, 606, 615
Console windows with tabs and

without tabs 1224
Console.ReadLine method

73
Console.Write method 66
Console.WriteLine method

64
const and readonly class

member demonstration 318
const keyword 22, 242, 317
const variable 156
constant 317
constant integral value 152
constant variable 156, 242
constituent controls 579
constrained version of a linked list

1160
constructor 286, 292, 377, 1338
consume method 601
consumer 615
consumer thread 601
consuming a Web service 1046
contact.html 1381, 1386,

1440, 1445
container 476, 478
Container class for chess pieces

723
container elements 841
Contains method of class

ArrayList 1189, 1194
Contains method of class

Stack 1198
ContainsKey method of

Hashtable 1204
content attribute of meta

element 871, 955, 1478
context-sensitive help 43
contiguous memory location 237
continue statement in a for

structure 21, 158, 159
ContinueTest.cs 159
control 20, 36, 475, 477
control boundary 579
Control class 484, 579
control layout 38
control layout and properties 484
Control property 514
control structure 97, 99, 140, 171

control structures in iteration 222
control structures in recursion 222
control variable 140, 142, 144
control variable final value 140
control variable inital value 140
control variable name 140
controlling expression 152
controls 40
control-structure nesting 99
control-structure stacking 99, 166
ControlToValidate

property of class Regu-
larExpressionVali-
dator 979

converge on a base case 216
Convert class of namespace

System 193
Converting a binary number to

decimal 1281
Converting a hexadecimal number

to decimal 1282
converting an integral value to a

floating-point value 195
Converting an octal number to

decimal 1281
cookie 987, 988, 989, 996

deletion 988
domain 997
expiration 988
expiration date 988
Expires property 988
header 988

CookieContainer class 1066,
1067

Cookies being read from a client in
an ASP .NET application
995

Cookies getting created in an ASP
.NET Web application 991

Cookies property of Request
class 996

Cookies recieved in an ASP .NET
Web application 995

Cooljobs.com 1303
coordinate system 686, 687
coordinates (0, 0) 686
coords element 1418, 1477
Copy method of class Array

1185
Copy method of class File 761
copy of an argument 197
copyright 28
CopyTo method of class String

636
CORDA Technologies 1217
corporate culture 1293, 1296

correctness of input values 250
Cos method of class Math 182
cosine 182
count attribute if prompt

element 1241
Count property of class

ArrayList 1194
Count property of Hashtable

1204
counter 106, 108, 110
counter-controlled repetition 106,

107, 113, 116, 140, 142, 222
counter variable 152
Counter-controlled repetition with

the for structure 142
Counter-controlled repetition with

while structure 141
Counts property of HttpSes-

sionState class 1003,
1006

CPU (Central Processing Unit) 4
craps program 207
Create and write to a sequential-

access file 777
Create method of class File

761
create new classes from existing

class definitions 284
CreateDirectory method of

class Directory 762
CreateInstance method of

class Array 1188
CreateRandomAccess-

File.cs 799
CreateSequentialAc-

cessFile.cs 777
CreateText method of class

File 761
creating a child form to be added

to an MDI form 567
Creating a new Windows

application 45
Creating a Panel with scrollbars

496
Creating an ASP.NET Web

Application in Visual Studio
960

creating comment Web pages
1339

creating data types 327
Creating files for random-access

file-processing applications
799

Credit-inquiry program 788
CreditInquiry.cs 788
Crystal Decisions 1513

Index 1531

Crystal Reports 1513
Crystal Reports Designer 1515
CSS (Cascading Style Sheets) 15,

27, 1235
CSS2 1235
Ctrl key 511
Current property of

IEnumerator 1194
current time 580
CurrentPageIndex property

1027
CurrentPageIndex property

of a DataGrid control
1027

CurrentThread static
Thread property 595

CurrentValue event of class
CheckedListBox 541

Curriculum progamming language
19

cursor 64, 66
curve 715
custom control 578, 579
Custom control added to a Form

583
Custom control added to the

ToolBox 582
Custom control added to the Tool-

Box 582
Custom control creation 579, 582
Custom-control creation 582
Examples

Custom-control creation 582
customization 988
customize an application 40
Customize Toolbox 1364
Customize Toolbox dialog

selecting an ActiveX control
1364

Customize Toolbox... option in
Visual Studio .NET 581

customize Visual Studio .NET 35,
38

customizing the Toolbox 733
CustomValidator class 1015,

1020
Cyan static property of

structure Color 689
cylinder 398
Cylinder class inherits from

class Circle4 and
overrides method Area 368

Cylinder class inherits from
class Circle4 and
overrides method Area 368

Cylinder2 class inherits from
class Circle2 398

Cylinder3 class inherits class
Circle3 423

Cylinder3.cs 423

D
D formatting code 151
dangling-else problem 103
DarkBlue static property of

structure Color 697
DarkGray static property of

structure Color 689
Dash member of enumeration

DashStyle 715
DashCap enumeration 715
DashCap property of class Pen

715
DashStyle enumeration 715
DashStyle property of class

Pen 715
data 3
data abstraction 326
data entry 69
data hiding 285
Data hierarchy 759
data hierarchy 758
data in support of actions 326
data independence 16
data manipulation 717
data member 282, 292
Data menu 38
data representation of an abstract

data type 326
data structure 22, 26, 237, 285,

1146
data tier 952
data type 73
database 896, 1375, 1431
Database information input into a

DataGrid 1023
database management system

(DBMS) 759, 896
database table 897
datagram 1120
DataGrid class 921, 928
DataGrid control 1013, 1027
DataSet class 920, 938
DataSource property of a Da-

taGrid control 1013
DataTable class 1013
data-type attribute 881
date and time 580

Date class encapsulates day,
month and year information
306

DateTime structure 580
DBCS (double byte character set)

1353
DBMS (database management

system) 759
DB2 897
Dead thread state 593
deadlock 600, 601
debug configuration setting 1314
Debug menu 38, 1315
Debug sample program 1313
Debug toolbar 1318
DebugClass.cs 1325
DebugExample.cs 1313
debugger 1313
debugging 1027, 1312, 1377, 1432
Debugging methods 1322
debugging, begin 1315
debugging, call stack 1322
debugging, step into 1323
debugging, step out 1323
debugging, step over 1318
decendant node 847
decimal digit 758
decimal primitive data type 149,

196
decimal promotions 194
decision symbol 80, 98, 100
DeckOfCards.cs 665
declaration 72, 105, 186
declaration space of a class 213
declare each variable on a separate

line 73
declaring arrays 240
decreasing order 257
decrement expression 144
decrement of loop 140
decrement operator, -- 121, 122
default constructor 293, 348
default font 697
default namespace 846, 847
Default namespaces

demonstration 846
default package 288
default properties 126
default setting 1258
default sorting order is ascending

909
default statement 152
defaultnamespace.xml

846, 846
definite repetition 107

1532 Index

Definitions of TreeNode and
Tree for a binary search
tree 1170

degree 704
deitel:BooksType 873
deitel@deitel.com 3
del element 1446
delegate 425
Delegate class 426
delegate reference 483
delegate, create new 484
DELETE FROM 905, 919
Delete method of class

Directory 762
Delete method of class File

761
DELETE statement 919
DeleteCommand property of

OleDbAdapter 927
DeleteDialog.cs 830
deletion 1149
delimit 840
Demomstrating the ArrayList

class 1189
Demonstrating keyboard events

513
Demonstrating order in which

constructors and destructors
are called 376

demonstrating ref and out
parameters 198, 452

Demonstrating the bitwise AND,
bitwise inclusive OR,
bitwise exclusive OR and
bitwise complement
operators 1501

Demonstrating the linked list 1155
Demonstrating the logical

operators 164
Demonstrating window auto-hide

41
Demonstrating XML namespaces

844
Demonstration of methods that

draw lines, rectangles and
ellipses 702

dequeue operation of queue 327,
1165

derived class 125, 343, 344, 346
DESC 909, 910
descending order 259
Description column 1339
Description property of a

WebMethod attribute 1052

Description property of a
WebService attribute
1051

deselected state 501
Deserialize method of class

BinaryFormatter 782
design mode 52, 53
Design mode of Web Form

designer 962
design units 696
design view of a Web service 1054
destructor 312
destructor method 312
Details of Click event 483
diacritic 1352
dialog 36, 68, 70
diameter 92
diamond symbol 98, 100, 105,

145, 155, 177
dice game 207
dice-rolling program 244
Dice.com 1299
digit 73
direct-access files 794
direct base class 343
directive in ASP .NET page 954
 762
Directory class methods

(partial list) 762
DirectoryInfo class 559, 761
DISCO (Discovery file) 1054,

1447, 1450
.disco file extension 1057
disconnected 920
discovery (DISCO) files 1054,

1447, 1450
discovery file 1054
disk 3, 13
disk I/O completion 440
disk space 1148
dismiss (hide) a dialog 70
Display Color Settings 1253
Display member of

enumeration
GraphicsUnit 696

display output 68
Display Settings 1251
displaying a line of text 64
displaying a phrase 61
displaying data on the screen 85
Displaying multiple lines in a

dialog 68
displaying numeric data 243
displaying numeric data

graphically 243

Displaying the bit representation
of an integer 1498

DisplayLogoForm.cs 718
DisplayQueryResults.cs

928
distributed computing 6, 1041
diversity 1297
divide-and-conquer approach 21,

179, 182
divide by zero 111, 446
DivideByZeroException

class 446
DivideByZeroTest.cs 443
division assignment operator (/=)

121
division by zero is undefined 327
D-link 1217
DLL (dynamic link library) 22,

1362, 1364, 1368, 1369
.dll file 1368
"DLL hell" 1362
DNS (domain name server) 950
DNS lookup 950
do/while flowchart 157
do/while repetition structure 21,

98, 143, 156, 167, 171
dock control 486
Dock property 487
docking a control 486
docking demonstration 487
DockPadding property 487
document 61
Document member of

enumeration Graphic-
sUnit 696

Document Object Model (DOM)
847

Document Style and Semantics
Specification Language
(DSSSL) 16

document type 954, 1376
Document Type Definition (DTD)

865, 866, 868
Dogfriendly.com 1303
DOM (Document Object Model)

847
DOM parser 847
DOM structure of an XML

document illustrated by a
class 851

domain name server (DNS) 950
Domain property of Http-

Cookie class 997
dot (.) operator 70, 181, 290, 313,

347
double 73

Index 1533

double-byte character set (DBCS)
1353

Double class 464
double-clicking 34
double primitive data type 112,

114, 197
double promotions 194
double quotes ("") 64, 67, 844
double-selection structure 98, 117,

168, 170
double-subscripted array 265, 266
Double-subscripted array with

three rows and four columns
266

DoWhileLoop.cs 156
down-arrow 38, 47
drag 42
drag and drop 479
draw on control 579
draw shapes 685
DrawArc method of class

Graphics 705
DrawArcs.cs 705
DrawEllipse method of class

Graphics 547, 702
drawing a line 701
drawing a rectangle 701
drawing an oval 701
DrawLine method of class

Graphics 702, 708
DrawPie method of class

Graphics 547, 705
DrawPolygon method of class

Graphics 708
DrawPolygons.cs 708
DrawRectangle method of

class Graphics 547, 701,
702

DrawShapes.cs 712
DrawStarsForm.cs 715
DrawString method of Class

Graphics 693
DrawString method of class

Graphics 697
drop-down list 476, 542
DropDown style for ComboBox

544
DropDownList class 1015
DropDownList style for

ComboBox 544
DropDownStyle property of

class ComboBox 543, 544
DSSSL (Document Style and

Semantics Specification
Language) 16

DTD (Document Type Definition)
865, 868

.dtd file extension 868
DTD for a business letter 866
DTD repository 871
dummy value 109
duplicate elimination 1177
duplicate of datagram 1120
duration 212
dynamic content 9
dynamic data structures 1146
dynamic help 42
Dynamic Help window 42, 44
dynamic link library (.dll) 69
dynamic link library (DLL) 22,

329, 332, 1362, 1364, 1368,
1369

dynamic memory allocation 1148,
1149

E
E formatting code 151
e-mail (electronic mail) 14
EagleEyes 1250
EBNF (Extended Backus-Naur

Form) grammar 866
echo a packet back to a client 1120
ECMA (European Computer

Manufacturer’s Association)
18

ECMAScript 977
Edit menu 38
Edit menu in Internet Explorer 69
editable list 544
efficient (Unicode design basis)

1351
Eiffel progamming language 19
eights position 1277
eLance.com 1300
electronic devices with two stable

states 757
element 237, 873, 1375
Element constant of

enumeration XmlNode-
Type 848

!ELEMENT element 866
element of chance 200
element type declaration 866
elements 840
ElementType 871
eliminate resource leaks 450
Ellipse bounded by a rectangle

704
else statement 101
eltOnly attribute 871

emacs text editor 1376, 1431
Emacspeak 1217
e-mail (electronic mail) 14, 1109,

1441
e-mail anchor 1382, 1441
embedded parentheses 77
employee 390
Employee class encapsulates

employee name, birthday
and hire date 308

EmployeesTest class tests the
Employee class hierarchy
412

empty case 154
empty element 844, 1443, 1445
EMPTY keyword 867
empty statement (;) 84, 104, 157
Enabled property 485
Enabled property of a trace

element 1028
EnabledViewState attribute

954
EnableSession property of a

WebMethod attribute 1065
EnableSessionState

attribute 954
encapsulate 281
encapsulation 402
encoding 1350
encoding declaration 1243
encoding scheme 28
encrypt 1020
end of data entry 109
end-of-file marker 759
end of session message 1244,

1247
end tag 840, 1433
EndElement constant of

enumeration XmlNode-
Type 849

EndsWith method of class
String 641

Enlarged icons in the development
window 1219

Enlarging icons using the Cus-
tomize feature 1219

enqueue operation of queue 327,
1165

EnsureCapacity method of
class StringBuilder
652

Enter (or Return) key 64, 71
Enter method of class Monitor

599, 607, 614, 615, 626
entity

& 867

1534 Index

< 867
entity reference 867, 1445
entry point 289
entry point of a control structure

166
entry point of a program 63, 66
entry point of control structure 99
entry-level position 1290
<enumerate> tag 1242
enumerator 1194
envelope (SOAP) 16
environment variable 1405
equal likelihood 203
Equality and relational operators

81
“equals equals” (the == operator)

81
Equals method of class String

638
Equation.cs 1093
Error 148
error handling 74
error-processing code 441
Error property of class Con-

sole 759
ErrorMessage property 978

in a Web Form 1020
escape character 918
escape sequence \n 67, 73
European Computer

Manufacturer’s Association
(ECMA) 18

Event 481
event 23, 185, 479
event argument 481
event driven 479
event-driven process 688
event-driven programming 2
event handler 185, 1247
event handler, create 481
event handler, documentation 481
event handler, register 483
event handler, remove 484
Event-handling model using

delegates 479
Examples

Event-handling model using
delegates 479

event handling model 479
Event icon 42
event multicasting 484
events at an interval 580
Events section of the Properties

window 480
Events window in Visual

Studio.NET 480

eWork® Exchange 1300
examination-results problem 118
Examples

 532
A binary search tree

containing 12 values 1169
A graphical representation of a

binary tree 1169
A graphical representation of

the InsertAtBack
operation 1158

A graphical representation of
the InsertAtFront
operation 1158

A graphical representation of
the RemoveFromBack
operation 1160

A graphical representation of
the RemoveFromFront
operation 1159

A picture with links anchored
to an image map 1416

A portion of a Shape class
hierarchy 347

Abstract class Employee
definition 404

Abstract CShape base class
394

Abstract Shape base class
394

Accessing and displaying a
database’s data 921

Accessing private class
members from client code
generates syntax errors 291

ActiveX COM control
integration in Visual Basic
.NET 1365

Acts designed to ensure
Internet access for people
with disabilities 1214

Add Reference dialog 70
Adding a new label to the form

48
Addition program to add two

values entered by the user 72
Addition.cs 72
AddressBook.cs 930
AdRotator class

demonstrated on a Web form
972
AdRotator.aspx 972
AdRotator.aspx.cs 973
AdRotator-
Information.xml 974

Examples
AdvertisementFile used

in AdRotator example 974
Agent.cs 742
Airline Reservation Web

service 1076
An illustration of font metrics

699
Analysis.cs 118
Anchoring demonstration 486
Animation of a series of

images 720
Append methods of class
StringBuilder 655

Application that writes an
XML representation of a
DataSet to a file 939

Application with accessibility
features 1226

Arc-method demonstration
705
ArrayListTest.cs 1189
ArrayReference-
Test.vb 254

ASCX code for the header
1015

ASPX file for the guest book
application 1007

ASPX file that allows a user to
select an author from a drop-
down list 1021

ASPX file that presents a list
of programming languages
989

ASPX file that takes ticket
information 1078

ASPX listing for the guest
book page 1007

ASPX page that displays book
information 994

ASPX page that displays the
Web server’s time 953

ASPX page with tracing
turned off 1028

Assembly TimeLibrary
used from class
AssemblyTest 333
Authors table of books

database 898
Authors.aspx 1021
Authors.aspx.cs 1023
Average1.cs 107
Average2.cs 112
BankUI.cs 772
Base class for GUIs in our file-

processing applications 772

Index 1535

Examples
Binary search of a sorted array

262
Binary search tree 1176
BinaryTreeLibrary.cs

1170, 1178
BitArrayTest.cs 1508
BitOperations.cs 1501
BitShift.cs 1505
BizTalk markup using an offer

Schema 885
BizTalk terminologies 885
Blackjack game that uses
Blackjack Web service
1067
Blackjack Web service

1063
Blackjack.cs 1067
Blackjack-
Service.asmx.cs 1063
book.xsd 872
bookxdrfail.xml 876
bookxsd.xml 872
bookxsdfail.xml 876
Boss class inherits from class
Employee 405
break statement in a for

structure 158
BreakTest.cs 158
Bubble sort using delegates

426
Bubble-sort Form application

427
BubbleSortForm.cs 427
Business letter DTD 866
Button properties and events

490
Buttons for message dialogs

148
C# program for examination-

results problem 118
C#’s view of an n-byte file 760
Calculating compound interest

with for 149
Calculating factorials with a

recursive method 217
CallXML elements 1248
CallXML example that reads

three ISBN values 1245
Card class 664
Card dealing and shuffling

simulation 665
Card.cs 664

Examples
CCircle5 class inherits from

class CPoint3 and
overrides a finalizer method
374

Centering the text in the label
50

Changing a property in the
code view editor editor 128

Changing a property value at
run time 130
Char’s static character-

testing methods and case-
conversion methods 661

Character classes 669
CharMethods.cs 661
CheckBox properties and

events 498
CheckBoxTest.cs 499
CheckedListBox and
ListBox used in a program
to display a user selection
541
CheckedListBox

properties, methods and
events 540
CheckedList-
BoxTest.cs 541

Chess-game code 725
ChessGame.cs 725
ChessPiece.cs 723
Child class for MDI

demonstration 574
Child.cs 574
Circle class contains an x-y

coordinate and a radius 351
Circle class marked up with

XML comments 1333
Circle class that inherits

from class Point 385
Circle2 class that inherits

from class Point 355
Circle2 class that inherits

from class Point2 397
Circle3 class that inherits

from class Point2 359
Circle3 class that inherits

from class Point3 421
Circle3.cs 421
Circle4 class that inherits

from class Point3 but does
not use protected data
364
CircleTest class marked

up with XML comments
1336

Examples
CircleTest demonstrates

class Circle functionality
354
CircleTest3 demonstrates

class Circle3 functionality
360
CircleTest4 demonstrates

class Circle4 functionality
366
CircularBuffer.cs 617
CityWeather.cs 1085
Class average program with

counter-controlled repetition
107

Class Control layout
properties 487

Class Control properties
and methods 485

Class FrmInheritance,
which inherits from class
Form, contains a button
(Learn More) 575

Class FrmVisualTest,
which inherits from class
VisualForm.Frm-
Inheritance, contains an
additional button 577

Class that stores equation
information 1093

Class that stores weather
information about a city 1085

Class-average program with
sentinel-controlled repetition
112

Classes that derive from class
Brush 690

Client portion of a client/
server stream-socket
connection 1114
Client.cs 1087, 1114,

1132
ClockUserControl.cs

580
Code generated by the IDE for
lblWelcome 127

Code-behind file for a page
that displays the Web
server’s time 955

Code-behind file for page
demonstrating the
AdRotator class 973

Code-behind file for the guest
book application 1009

1536 Index

Examples
Code-behind file for the log in

page for authors application
1016

Code-behind file for the page
that allows a user to choose
an author 1023

Code-behind file for the
reservation page 1079

Code-behind file for the word
generator page 979

Code-behind file that writes
cookies to the client 991
Color 689
Color structure members 689
ColorDialog used to

change background and text
color 693

COM DLL component in
Visual Basic.NET 1369
ComboBox demonstration

543
ComboBox properties and

events 543
ComboBox used to draw a

selected shape 544
ComboBoxTest.cs 544
CommissionWorker class

inherits from class
Employee 406

Common Form properties and
events 478

Complex XHTML table 1460
ComplexNumber.cs 430
Components and controls for

Windows Forms 477
Computing the sum of the

elements of an array 242
Concat static method

648
Console windows with tabs

and without tabs 1224
contact.html 1381, 1386,

1440, 1445
Container class for chess

pieces 723
continue statement in a
for structure 21, 158, 159
ContinueTest.cs 159
Cookies being read from a

client in an ASP .NET
application 995

Cookies getting created in an
ASP .NET Web application
991

Examples

Cookies recieved in an ASP
.NET Web application 995

Counter-controlled repetition
with the for structure 142

Counter-controlled repetition
with while structure 141

Create and write to a
sequential-access file 777

CreateRandom-
AccessFile.cs 799

CreateSequential-
AccessFile.cs 777

Creating a new Windows
application 45

Creating a Panel with
scrollbars 496

Creating files for random-
access file-processing
applications 799

Credit-inquiry program 788

CreditInquiry.cs 788

Custom control added to a
Form 583

Custom control added to the
ToolBox 582

Custom control creation 579

Cylinder class inherits from
class Circle4 and
overrides method Area 368

Cylinder class inherits from
class Circle4 and
overrides method Area 368

Cylinder2 class inherits
from class Circle2 398

Cylinder3 class inherits
class Circle3 423

Cylinder3.cs 423

Data hierarchy 759

Database information input
into a DataGrid 1023

Date class encapsulates day,
month and year information
306

Debug sample program 1313

DebugClass.cs 1325

DebugExample.cs 1313

Debugging methods 1322

DeckOfCards.cs 665

Default namespaces
demonstration 846

DeleteDialog.cs 830

Examples
DeleteDialogForm class

enables users to remove
records from files in
transaction-processor case
study 830

Demonstrating keyboard
events 513

Demonstrating order in which
constructors and destructors
are called 376

Demonstrating ref and out
parameters 198, 452

Demonstrating that finally
blocks always execute 452

Demonstrating the bitwise
AND, bitwise inclusive OR,
bitwise exclusive OR and
bitwise complement
operators 1501

Demonstrating the linked list
1155

Demonstrating the logical
operators 164

Demonstrating window auto-
hide 41

Demonstrating XML
namespaces 844

Demonstration of methods that
draw lines, rectangles and
ellipses 702

Details of Click event 483
Directory class methods

(partial list) 762
Displaying multiple lines in a

dialog 68
Displaying the bit

representation of an integer
1498
DisplayLogoForm.cs

718
DisplayQuery-
Results.cs 928
DivideByZeroTest.cs

443
do/while repetition structure

156
docking demonstration 487
DOM structure of an XML

document illustrated by a
class 851
DoWhileLoop.cs 156
DrawArcs.cs 705
DrawPolygons.cs 708
DrawShapes.cs 712
DrawStarsForm.cs 715

Index 1537

Examples
DTD for a business letter 866
Dynamic Help window 44
Ellipse bounded by a rectangle

704
Employee class encapsulates

employee name, birthday and
hire date 308
EmployeesTest class tests

the Employee class
hierarchy 412

Enlarged icons in the
development window 1219

Enlarging icons using the
Customize feature 1219

Equality and relational
operators 81
Equation.cs 1093
Events section of the Proper-
ties window 480

Exception handlers for
FormatException and
DivideByZero-
Exception 443
Exception properties and

demonstrating stack
unwinding 458

Execute SQL statements on a
database 928

Execution of the Welcome1
program 66

Expanded and checked menus
522
File class methods (partial

list) 761
FileSearch.cs 766
FileTest.cs 762
First program in C# 60
Flowcharting a typical for

repetition structure 146
Flowcharting the do/while

repetition structure 157
Font class read-only

properties 696
Font window 49
FontFamily class used to

obtain font-metric
information 699
FontFamily methods that

return font-metric
information 699
Fonts and s 697
ForCounter.cs 142
ForEach.vb 272
Form including radio buttons

and drop-down lists 1469

Examples
Form including textareas,

password boxes and
checkboxes 1406

Form with sizing handles 47
form.html 1463
form2.html 1466
form3.html 1469
Framed Web site with a nested

frameset 1423, 1484
GDI+ coordinate system.

Units are measured in pixels
687
Generator.asmx.cs

1095
Generator.aspx 977
Generator.aspx.cs 979
Generator.html 984
GetHashCode method

demonstration 642
Graphical representation of a

linked list 1149
Graphics methods for

drawing arcs 705
Graphics methods for

drawing polygons 708
Graphics methods that draw

lines, rectangles and ovals
702
GroupBox properties 495
GroupBoxPanel-
Example.cs 496

Handling a divide-by-zero
exception 443
HashtableTest.cs 1200
Header elements h1 through
h6 1379, 1437
header.html 1379, 1437
hello.xml 1243
Hierarchical boss method/

worker method relationship
180

Home page written in
VoiceXML 1236
HourlyWorker class

inherits from class
Employee 410

HTML and ECMAScript sent
to the client browser 984
HugeInteger Web service

1046
HugeInteger.asmx.cs

1046
ìbiztalkmarkup.xml

885
Icons for message dialogs 148

Examples
IDE in run mode, with the

running application in the
foreground 52

IDE showing program code for
a simple program 125

Image Collection Editor
window for an ImageList
component 554

Image resizing 718
Image with links anchored to

an image map 1476
ImageHeader.ascx 1015
Important methods of class
HttpCookie 997
index.html 1480
index2.html 1484
Indexers provide subscripted

access to an object’s
members 320

Inheritance examples 345, 346
Inheritance hierarchy for

university Community-
Members 346

Initializing element arrays in
three different ways 240

Initializing multidimensional
arrays 267

Inserting and aligning the
picture box 50, 51

Inserting special characters
into HTML 1386

Inserting special characters
into XHTML 1445
Interfaces2Test.cs

424
InterfacesTest.cs 417
isbn.xml 1245
IShape interface provides

methods Area and Volume
and property Name 419

Keyboard events, delegates
and event arguments 512
KeyDemo.cs 513
Label in position with its
Text property set 48
Label properties 489
LabelTextBoxButton-
Test.cs 490
LayoutMdi enumeration

values 570
letter.xml 842
letter2.xml 867
Linear search of an array 260
LinesRectangles-
Ovals.cs 702

1538 Index

Examples
LinkedListLibrary.cs

1151
Linking to an e-mail address

1440
Linking to an email address

1381
Linking to other Web pages

1380, 1438
LinkLabel properties and

events 531
LinkLabels used to link to

a folder, a Web page and an
application 532
LinkLabelTest.cs 532
links.html 1380, 1388,

1438, 1473
List of Form events 482
list.html 1389, 1448
ListBox and
CheckedListBox on a
form 535
ListBox on an ASPX page

994
ListBox properties, methods

and events 535
ListBox used in a program

to add, remove and clear
items 537
ListBoxTest.cs 537
Listing for namespace.xml

844
ListTest.cs 1155
ListView displaying files

and folders 555
ListView properties and

events 553
ListViewTest.cs 555
Log in Web Form 1013
Login.aspx 1013
Login.aspx.cs 1016
LogoAnimator.cs 720
main.html 1377, 1432,

1478
main.vxml 1236
MainMenu and MenuItem

properties and events 524
Manipulating the Anchor

property of a control 487
Math tutor application 1098
MDI parent and MDI child

events and properties 567
MDI parent window and MDI

child windows 566
MediaPlayerTest.cs

733

Examples
Memory location diagram 75
MenuItem property MdiL-
ist example 569

Menus used for changing text
font and color 525
MenuTest.cs 525
MethodDebug-
Example.cs 1322

Microsoft Agent
demonstration 742

Microsoft Schema file that
contains structure to which
bookxdr.xml conforms.
871

Minimized and maximized
child windows 568

Miscellaneous String
methods Replace,
ToLower,ToUpper,Trim
and ToString 649

Modifying a database 930
Mouse events, delegates and

event arguments 509
nav.html 1384, 1443, 1482
NegativeNumber-
Exception.cs 463

Nested and ordered lists in
HTML 1389

Nested and ordered lists in
XHTML 1448

New Project dialog 36
New Text property value

reflected in design mode 129
NewDialog.cs 827
NewDialogForm class

enables users to create
records in transaction-
processor case study 827

News article formatted with
XML 839

Object debugging example
1325

Operators checked and
unchecked, and handling
arithmetic overflow 467
OptionPage.aspx.cs

991
Options supplied on an ASPX

page 989, 997
OptionsPage.aspx 989,

997
OptionsPage.aspx.cs

999
Overflow.cs 467

Examples
Overloaded constructor

demonstration 295
Overloaded constructors

provide flexible object-
initialization options 293
Painter.cs 510
Panel properties 495
Passing an array reference

using ByVal and ByRef
with an array 254

Passing arrays and individual
array elements to methods
251
PathNavigator.cs 858
Paths used to draw stars on a

form 715
Peedy calculating the total 742
Peedy flying animation 739
Peedy introducing himself

when the window opens 737
Peedy recounting the order

741
Peedy repeating the user’s

request for anchovies as an
additional topping 741

Peedy repeating the user’s
request for Seattle-style pizza
740

Peedy waiting for speech input
740

Peedy’s reaction when he is
clicked 738
Person class implements
IAge interface 415

Picture with links anchored to
an image map 1416
picture.html 1382, 1441,

1476
PictureBox properties and

events 507
PictureBoxTest.cs 507
PieceWorker class inherits

from class Employee 408
Placing images in HTML files

1382
Placing images in XHTML

files 1441
Point class represents an x-y

coordinate pair 348, 384
Point marked up with XML

comments 1331
Point2 class inherits from

abstract class Shape 395

Index 1539

Examples
Point2 class represents an x-

y coordinate pair as pro-
tected data 357
Point2 class represents an x-

y coordinate pair as
protected data 357
Point3 class implements

interface IShape 420
Point3 class uses properties

to manipulate its private
data 362
Point3.cs 420
Point4 base class contains

constructors and finalizer 372
PointTest class

demonstrates class Point
functionality 350

Polygon-drawing
demonstration 708

Positive and negative arc
angles 705

Precedence and associativity
chart 166

Precedence of arithmetic
operators 78
PrintBits.cs 1498
Printing on multiple lines with

a single statement 67
Printing on one line with

separate statements 67
Producer and consumer

threads accessing a circular
buffer 617

Producer and consumer
threads accessing a shared
object with synchronization
607

Producer and consumer
threads accessing a shared
object with syncronization
607

Producer and consumer
threads accessing a shared
object without
synchronization 602

Producer and consumer
threads accessing a shared
object without
syncronization 602

Program that demonstrates
class Array 1186

Program that prints histograms
243

Program to display hidden text
in a password box 490

Examples
Program to simulate the game

of craps 208
Programmer-defined
Maximum method 188

Project properties dialog 582
Properties demonstration for

class Time3 301
Properties of class Control

related to accessibility 1225
Properties window 43, 49
Properties.cs 458
Publication page of Deitel and

Associates’ VoiceXML page
1238

Publication page of Deitel’s
VoiceXML page 1238
publications.vxml

1238
Quantifiers used regular

expressions 672
QueueInheritance-
Library.cs 1166
QueueTest.cs 1167
RadioButton properties

and events 502
RadioButtonsTest.cs

502
Random-access file with

fixed-length records 795
RandomAccess-
Record.cs 795

Reading records from random-
access files sequentially 807

Reading sequential-access
files 784
ReadRandomAccess-
File.cs 807
ReadSequential-
AccessFile.cs 784

Receiving temperature and
weather data from a Web
service 1087
Recommendations-
Page.aspx 994, 1003

RecommendationsPage.aspx.c
s 1004
Recommendations-
Page.aspx.cs 995

Record for random-access file-
processing applications 795

Record for sequential-access
file-processing applications
774
Record.cs 774

Examples

Record-transaction class for
the transaction-processor
case study 812

Recursive evaluation of 5! 217

Recursively generating
Fibonacci numbers 219

Regex methods Replace
and Split 677

Regex methods Replace
and Split 677

RegexMatches.cs 669

RegexSubstitution.cs
677

Regular expression used to
determine file types 766

Regular expressions checking
birthdays 669

Relational-database structure
of an Employee table 897

Removing tabs from Visual
Studio environment 1223

Reservation.asmx.cs
1076

Rolling dice in a windows
application 203

Sample data for the program of
Fig. 17.9 783

Sample Internet Explorer
window with GUI
components 476

Saving a document to a file
1340

Schema-validation example
874

Scoping example 213

SDI and MDI forms 566

Searching for characters and
substrings in Strings 643

Selecting the Build Com-
ment Web Pages from
Tools menu 1339

Self-referential class objects
linked together 1148

Server portion of a client/
server stream-socket
connection 1111

Server side of client/server
Tic-Tac-Toe program 1126
Server.cs 1111, 1120

Server-side portion of
connectionless client/server
computing 1120

1540 Index

Examples
Session data read by an ASP

.NET Web application to
provide recommendations for
the user 1004

Session information displayed
in a ListBox 1003

Sessions are created for each
user in an ASP .NET Web
application 999

Sessions created for each user
in an ASP .NET Web
application 999

Set of recursive calls to
method Fibonacci 221

Setting the form’s Text
property 46

Setting the project location 46
Shapes drawn on a form 712
Shifted random integers 201
ShowColors.cs 690
Sieve of Eratosthenes 1508
Simple Class Library 332
Simple form with hidden fields

and a text box 1463
Simple program as it executes

45
Simple student-poll analysis

program 248
SimpleEvent-
Example.cs 481

Simulating rolling 12 six-sided
dice 205

SOAP Request for the
HugeInteger Web service
1045

Solution Explorer window
40

Some basic GUI components
476

Some common escape
sequences 68

Some methods of class
ArrayList 1189

Sorting an array with bubble
sort 257
sorting.xsl 879
sports.xml 864
SQL query keywords 905
SquareRootTest.cs 464
StackComposition class

encapsulates functionality of
class List 1164
StackComposition-
Library.cs 1164

Examples
StackInheritance

extends class Lis 1161
StackInheritance-
Library.cs 1161
StackInheritance-
Test.cs 1162
StackTest.cs 1195
Start Page in Visual Studio

.NET 35
StartDialog.cs 817
StartDialogForm class

enables users to access dialog
boxes associated with various
transactions 817
StartsWith and Ends-
With methods 641
static member

demonstration 315
static members are

accessible to all objects of a
clas 314
Static method Concat

648
String constructors 635
string formatting codes 151
String indexer, Length

properties and CopyTo
method 636
String methods Replace,
ToLower, ToUpper and
Trim 649
String methods Replace,
ToLower,ToUpper,Trim
and ToString 649
String test to determine

equality 639
StringBuilder class

constructors 651
StringBuilder size

manipulation 653
StringBuilder text

insertion and removal 658
StringBuilder text

replacement 659
StringBuilder’s
AppendFormat method
656
StringBuilder-
Append.cs 655
StringBuilderAppend-
Format.cs 656
StringBuilder-
Constructor.cs 651
StringBuilder-
Features.cs 653

Examples
StringBuilderInsert-
Remove.cs 658
StringBuilder-
Replace.cs 659
StringCompare.cs 639
StringConstructor.cs

635
StringHashCode.cs 642
StringIn-
dexMethods.cs 643
StringMethods.cs 636
StringMiscellaneous2
.cs 649
StringStartEnd.cs 641
SubConcatination.cs

648
SubString.cs 646
Substrings generated from
Strings 646
Sum.cs 147
Summation using for 147
SwitchTest.cs 152
Synchronized.cs 607
Syntax error generated from

overloaded methods 225
System.Drawing

namespace’s classes and
structures 686

Tabbed pages in Visual Studio
.NET 560
TabControl properties and

events 561
TabControl used to display

various font settings 562
TabControl with
TabPages example 561

Table optimized for screen
reading using attribute
headers 1232
table1.html 1457
table2.html 1460
TableDisplay.cs 921
TabPages added to a Tab-
Control 561
TemperatureServer

Web service 1082
Temperature-
Server.asmx.cs 1082
Test2 demonstrates

polymorphism in Point-
Circle-Cylinder hierarchy
400

Index 1541

Examples
Test3 uses interfaces to

demonstrate polymorphism
in Point-Circle-Cylinder
hierarchy 424

Testing class Cylinder 370
TextBox properties and

events 489
TextToSpeech.cs 1226
this reference demonstration

311
this reference used

implicitly and explicitly to
enable an object to
manipulate its own data and
invoke its own 310

Thread life cycle 593
thread-priority scheduling 596
Threads sleeping and printing

596
ThreadTester.cs 596
TicketReser-
vation.aspx 1078
TicketReser-
vation.aspx.cs 1079
Time1 abstract data type

represents the time in 24-hour
format 283
Time1.cs 283
Tool tip demonstration 39
Toolbox window 41
Transaction.cs 812
Transaction-
Processor.cs 816
Transaction-
ProcessorForm class
runs the transaction-
processor application 816
TransformTest.cs 882
Tree structure for Fig. 18.1

847
Tree.cs 416
TreeNode Editor 550
TreeNode properties and

methods 549
TreeTest.java 1174
TreeTestLibrary.cs

1182
TreeView displaying a

sample tree 548
TreeView properties and

events 548
TreeView used to display

directories 550
TreeViewDirectory-
StructureTest.cs 550

Examples
Truth table 161
Tutor.cs 1098
Unordered lists in HTML 1388
Unordered lists in XHTML

1447
Unsynchronized.cs 602
UpdateDialog.cs 822
User-defined exception

classes 464
Using <meta> and
<DOCTYPE> 1418

Using a PictureBox to
display images 507

Using an abstract data type
287

Using arrays to eliminate a
switch structure 245

Using CheckBoxes to change
font styles 499

Using class Stack-
Inheritance 1162

Using default namespaces 846
Using For Each/Next
with an array 272

Using GroupBoxes and
Panels to arrange Buttons
496

Using images as link anchors
1384, 1443

Using inheritance to create a
queue 1167

Using internal hyperlinks to
make your pages more
navigable 1413, 1473

Using meta to provide
keywords and a description
1478

Using operator overloading
433

Using overloaded methods
223

Using RadioButtons to set
message-window options
502

Using the HugeInteger
Web service 1057

Using the mouse to draw on a
form 510

Using the Properties
window to set a property
value 127

Using the Stack class 1195
UsingArray.cs 1186
UsingExceptions.cs

452

Examples
UsingFontMetrics.cs

699
UsingFonts.cs 697
UsingHugeInteger-
Service.cs 1057
UsingMDI.cs 571
UsingTabs.cs 562
Validate.cs 672
Validating user information

using regular expressions 672
ValidationTest.cs 874
Validators used in a Web Form

that generates possible letter
combinations from a phone
number 977

Viewing the tracing
information for a project
1029

Visual Inheritance through the
Form Designer 577

Visual Studio .NET
environment after a new
project has been created 37

Visual Studio .NET menu bar
38

Visual Studio .NET Menu
Designer 523

Visual Studio .NET menu
summary 38
VisualInheritance.cs

575
VisualInheritance-
Test.cs 577

VoiceXML tags 1242
Web controls demonstration

967
Web service that generates

random equations 1095
Web site using two frames:

navigational and content
1420, 1480
WebControls.aspx 967
Welcome.aspx 1007
Welcome.aspx.cs 1009
Welcome1.cs 60
Welcome2.cs 67
Welcome3.cs 67
Welcome4.cs 68
WhileCounter.cs 141
Windows Form Designer

generated code expanded 126
Windows Form Designer

generated code reflecting
new property values 128

1542 Index

Examples
Windows Media Player

demonstration 733
withheaders.html 1232
withoutheaders.html

1231
WriteRandomAccess-
File.cs 802

Writing records to random-
access files 802

XHTML document displayed
in the left frame of Fig. 5.9.
1482

XHTML documentation of
class Circle 1340

XHTML documentation of
method Area method of
class Circle 1341

XHTML table 1457
XHTML table without

accessibility modifications
1231

XML document containing
book information 878

XML document referencing its
associated DTD 867

XML document that conforms
to W3C XML Schema. 872

XML document that describes
various sports 864

XML document that does not
conform to XSD schema 876

XML documentation
generated by Visual Studio
.NET 1341

XML file containing Ad-
Rotator information 974

XML file that does not
conform to the Schema in
Fig. 18.17 876

XML namespaces
demonstration 844

XML to mark up a business
letter 842

XML used to mark up an
article 839

XML Validator displaying an
error message 870

XML Validator used to
validate an XML document
869
XmlDom.cs 851
XmlNodeReader used to

iterate through an XML
document 848
XmlReaderTest.cs 848

Examples
XMLWriter.cs 939
XPath expressions and

descriptions 865
XPathNavigator class

used to navigate selected
nodes 858

XSD Schema document to
which bookxsd.xml
conforms 872

XSL document that transforms
sorting.xml into
XHTML. 879

XSL style sheet applied to an
XML document 882

exception 23, 249, 439
Exception class 442, 448, 451,

457
exception handler 439, 442, 446,

448
Exception handlers for Format-

Exception and Divide-
ByZeroException 443

Exception library class 23
Exception properties and

demonstrating stack
unwinding 458

exception thrown within a
SyncBlock 626

Exclamation 148
.exe extension 69
Execute SQL statements on a

database 928
ExecuteNonQuery method of

OleDbCommand 938
Execution of the Welcome1

program 66
execution stack 1160
exhausting memory 219
Exists method of class

Directory 762
Exit method of class

Application 529, 539
Exit method of class Environ-

ment 1119
Exit method of class Monitor

599, 607, 626
Exit method of Monitor 615,

616
exit point of a control structure

166
exit point of control structure 99
<exit> tag 1242
Exp method of class Math 182
Expand method of class Tree-

Node 549

expand node 547
expand tree 39
ExpandAll method of class

TreeNode 549
Expanded and checked menus 522
expanded code 126
Experience.com 1302
Expires property of a cookie

988
Expires property of Http-

Cookie class 997
explicit conversion 115, 193
explicit relationships between data

841
exponential “explosion” of calls

222
exponential method 182
exponentiation 77, 182
exponentiation operator 150
expose a method 1052
exposing a Web service method

1041
expression 1316
Extended Backus-Naur Form

(EBNF) grammar 866, 870
extensibility 15
Extensible HyperText Markup

Language (XHTML) 15, 25,
28, 1431

extensible language 287
Extensible Linking Language

(XLink) 16
Extensible Markup Language

(XML) 15, 1042
Extensible Stylesheet Language

(XSL) 16, 844, 877
Extensible Stylesheet Language

Transformation (XSLT) 25
external DTD 868
external help 43
Extra Keyboard Help 1257

F
F formatting code 151
F1 help key 43
factorial 176, 216
fall through 154
false 100
falsity 80
fatal logic error 104
fault-tolerant program 439
favorites 1339
FCL (Framework Class Library)

12, 18, 20, 27, 179, 327
Fibonacci series 219, 221

Index 1543

field 282, 758, 897, 898
FIFO (first-in, first-out) 327
file 758
file as a collection of bytes 758
 761
File class methods (partial list)

761
File menu 38, 69
file-position 788
file-position pointer 788
file processing 757
file synchronization 17
FileAccess enumeration 782
FileName property of class

AxMediaPlayer 735
file-processing programs 760
files 757
FileSearch.cs 766
FileStream class 760, 781, 787
FileTest.cs 762
Fill method of class Graphics

717
Fill method of

OleDbAdapter 928
<filled> tag 1242
FillEllipse method of class

Graphics 547, 702
FillPie method of class

Graphics 547, 705
FillPolygon method of class

Graphics 708
FillRectange method of class

Graphics 547, 693, 701,
702

final value of control variable 140,
141, 143, 146

Finalize method 372
finalizer 312
finally block 442, 450
find 38
firewall 1045
First program in C# 60
first refinement 116
first-in, first-out (FIFO) data

structure 327, 1165
FirstNode property of class

TreeNode 549
five-pointed star 715
fixed-length records 794
flag value 109
FlipDog.com 1291
float primitive data type 73, 196
float promotions 194
floating-point division 115
floating-point number 113
Floor method of class Math 182

flow of control 85, 105, 114
flowchart 21, 97, 100
flowchart of for statement 145
flowchart reducible to the simplest

flowchart 170
flowchart symbol 166
Flowcharting a double-selection

if/else structure 101
Flowcharting a single-selection

if structure 100
Flowcharting a typical for

repetition structure 146
Flowcharting C#’s sequence

structure 97
Flowcharting the do/while

repetition structure 157
Flowcharting the switch

multiple-selection structure
155

Flowcharting the while
repetition structure 106

FlowLayout 963
flowline 97, 100
Focus method 477, 485
Focused property 485
font 686, 696
Font class 686, 697
Font class read-only properties

696
font control 696
font descent 698
font height 698
font leading 698
font manipulation 687
font metrics 698
font name 697
Font property 49, 485, 500
font size 49, 697
font style 49, 499, 697
Font window 49
FontFamily class 686, 699
FontFamily class used to

obtain font-metric
information 699

FontFamily methods that
return font-metric
information 699

FontFamily property of class
Font 696

Fonts and FontStyles 697
FontStyle enumeration 697
for flowchart 146
for repetition structure 21, 98,

142, 143, 144, 145, 146, 150,
167, 171

for structure header 143, 144,
149

ForCounter.cs 142
foreach repitition structure 98,

171
ForEach.vb 272
ForeColor property 485
foreign key 904
form 37, 476, 1398, 1403, 1457,

1462
Form array 983
form background color 47
Form class 124, 478
Form Close method 478
form element 1241, 1242, 1405,

1463
Form including textareas,

password boxes and
checkboxes 1406

form input 1413
Form properties and events 478
Form property IsMdiCon-

tainer 566
form title bar 46
Form with sizing handles 47
format 75
format attribute 1249
Format menu 38
Format method of String 286
format specifications 286
format string 286, 657
FormatException class 445,

446
formatting code 151
forming structured programs 166
forms 1021
forms authentication 1020
FormsAuthentication class

1020
FORmula TRANslator (Fortran)

10
Fortran (FORmula TRANslator)

progamming language 10,
19, 1431

forward slash (/) 840, 1443
ForwardDiagonal member of

enumeration LinearGra-
dientMode 714

fractional result 114
frame 1234, 1420, 1479
frame element 1422, 1482
Framed Web site with a nested

frameset 1423, 1484
frameset document type 1479
frameset element 1421, 1422

1544 Index

Framework Class Library (FCL)
12, 18, 20, 27, 179, 327

FreeBSD operating system 18
Freedom Scientific 1248
FROM 905, 909, 910, 911, 913
FromArgb method of structure

Color 689
FromImage method of class

Graphics 714
FromName method 689
FullName property 559
FullPath property of class

TreeNode 549
fully qualified name 913
function 62
functionalization 3
Futurestep.com 1297

G
G formatting code 151
G property of structure Color 690
gallery.yahoo.com 1441
game-playing 200
game-playing program 200
garbage collection 312, 592
garbage collector 312, 372, 636
garbage-collector thread 592
Gates, Bill 8
GC class 316
GDI+ (Graphics Device

Interface+) 24, 685
 687
general path 715
Generator.asmx.cs 1095
Generator.aspx 977
Generator.aspx.cs 979
Generator.html 984
Genie Microsoft Agent

character 736
get accessor 291, 297, 298, 301
Get method of class BitArray

1510
get request type 1248, 1464
GetCellAscent method of

class FontFamily 699
GetCellDescent method of

class FontFamily 699
GetCreationTime method of

class Directory 762
GetCreationTime method of

class File 761
GetCurrentDirectory

method 508
getDigits element 1247

GetDirectories method of
class Directory 552, 762

GetDirectories method of
class DirectoryInfo
559

GetEmHeight method of class
FontFamily 699

GetEnumerator method of
ArrayList 1194

GetEnumerator method of
Hashtable 1204

GetFiles method of class Di-
rectory 762

GetFiles method of class Di-
rectoryInfo 559

GetHashCode method
demonstration 642

GetHashCode method of class
Object 1200

GetHashCode of class String
642

GetItemChecked method of
class CheckedListBox
540

GetLastAccessTime method
of class Directory 762

GetLastAccessTime method
of class File 761

GetLastWriteTime method
of class Directory 762

GetLastWriteTime method
of class File 761

GetLineSpacing method of
class FontFamily 699

GetNodeCount method of class
TreeNode 549

GetSelected method of class
ListBox 536

GetStream method of class
Socket 1110

GetXml method of DataSet
938

global scope 213
global variable 313, 1244
Globally Unique Identifier

(GUID) 1367
glyph 1352
golden mean 219
golden ratio 219
Good Programming Practice 12
Gosling, James 9
goto elimination 97
goto statement 97, 168, 1248
<goto> tag 1242
<grammar> tag 1242
graph information 243

Graphical representation of a
linked list 1149

graphical representation of an
algorithm 97

graphical user interface (GUI) 23,
37, 69, 475

Graphics class 544, 685, 687,
697, 701, 714, 715, 717

graphics context 687
Graphics Device Interface+

(GDI+) 24, 685
Graphics Interchange Format

(GIF) 1441
Graphics methods for drawing

arcs 705
Graphics methods for drawing

polygons 708
Graphics methods that draw

lines, rectangles and ovals
702

Graphics property of class
PaintEventArgs 579

GraphicsPath class 715
GraphicsUnit structure 696
Gray static property of

structure Color 689
“grayed-out” 485
greatest common divisor (GCD)

235
greedy quantifier 671
Green project 9
Green static property of

structure Color 689
GridLayout 963
GridLayout and FlowLay-

out illustration 965
GROUP BY 905
group of related fields 758
GroupBox 495
GroupBox Controls property

495
GroupBox properties 495
GroupBox properties and events

495
GroupBoxPanelExam-

ple.cs 496
guest book 1006
Guest-book application GUI 1007
GUI (Graphical User Interface) 23
GUI component 69, 475, 476
GUI event-handling 298
GUID (Globally Unique

Identifier) 1367
Gunning Fog Index 1218, 1266

Index 1545

H
h1 header element 1379, 1380,

1436
h6 header element 1379, 1436
HailStorm Web services 18
handle event 480
handling errors 74
hardware 3
“has-a” relationship 344
hash code 642
hash table 642
Hashtable class 1091, 1185,

1199
HashtableTest.cs 1200
Haskell progamming language 19
HatchBrush class 690, 711
HatchStyle enumeration 690
head 1146, 1433
head element 954, 1378, 1433
head of a queue 1165
head section 1433
header 1379, 1436
header cell 1400, 1459
header element 1436
header.html 1379, 1437
headers attribute 1232, 1234
headers element 27
Headhunter.net 1298
height attribute 1383, 1441,

1442
Height property of class Font

696
Hejlsberg, Anders 9
Hello World CallXML example

1243
help filter 42
Help menu 38, 42
help‚ context-sensitive 43
help‚ dynamic 42
help‚ external 43
help‚ internal 43
helper method 285, 1176
Henter-Joyce 1248, 1265
hex code 1387
hexadecimal (base16) number

system 176
hexadecimal value 1446
hidden

element 987
field 987

hidden input elements 1405
hide an internal data

representation 327
Hide method of class Form 478,

485

hiding implementation 180, 290,
326

hierarchical boss method/worker
method relationship 180

hierarchy 841
hierarchy diagram 345
hierarchy of shapes 390
high-level language 6, 7
high-order bit 1498
Highest ThreadPriority

enumeration member 594
Hire.com 1297
HireAbility.com 1299
Hirediversity.com 1296
histogram 243
hit count 1320
Hoare, C. A. R. 599
home page 1376
Home Page Reader (HPR) 1218
Home page written in VoiceXML

1236
horizontal coordinate 686
horizontal rule 28, 1447
horizontal tab 68
host 950
hostname 950
hot key 522
HotDispatch.com 1299
HotJobs.com 1294, 1298
hotspot 1416, 1476
hotwired.lycos.com/

webmonkey/00/50/
index2a.html 1451

HourlyWorker class inherits
from class Employee 410

HPR (Home Page Reader) 1218
hr element 1388, 1447
href attribute 1381, 1385, 1416,

1439, 1475
.htm (html file extension) 1376
.html (html file name extension)

1376
.html (XHTML file name

extension) 1431
HTML (HyperText Markup

Language) 14, 15, 25, 26, 28,
949, 950, 1375, 1431

form 988, 1006
HTML element 1015

HTML and ECMAScript sent to
the client browser 984

HTML comment 1377
HTML control 966
HTML document 28
html element 954, 1433
HTML frame 28

HTML-Kit 1376
HTML list 28
HTML mode of Web Form

designer 963
HTML recommendation 1376
HTML source code 1376
HTML table 28
HTML tag 950, 1375
HTTP (HyperText Transfer

Protocol) 20, 950, 1248
HTTP being used with firewalls

1045
HTTP GET request 1043
HTTP header 952
HTTP method 951
HTTP POST request 1043
HTTP transaction 951
http://www.w3.org/

2001/XMLSchema URI
873

HttpCookie class 994, 996, 997
Domain property 997
Expires property 997
Name property 996, 997
Path property 997
Secure property 997
Value property 996, 997

HttpCookie properties 997
HttpCookieCollection 996
HttpSession class 1003

SessionID property 1003
HttpSessionState class 997,

999, 1002, 1003, 1006
Counts property 1003, 1006
IsNewSession property

1003
IsReadOnly property 1003
Keys property 1003, 1006
SessionID property 1003
Timeout property 1003

HttpSessionState
properties 1003

HugeInteger Web service
1046

HugeInteger.asmx.cs 1046
hyperlink 950, 1380, 1385, 1438
HyperText Markup Language

(HTML) 14, 25, 26, 949,
950, 1431

HyperText Transfer Protocol
(HTTP) 20, 950

HyTime 16

I
I/O completion 595

1546 Index

IAgentCtlCharacter
interface 742, 748, 749

IAgentCtlUserInput
interface 750

ìbiztalkmarkup.xml 885
IBM (International Business

Machines) 5
IBM Corporation 1351
IBM Personal Computer 5
IComparable interface 1177,

1178
IComponent interface 477
icon 38
Icons for message dialogs 148
IDE (integrated development

environment) 9, 20, 23, 34
IDE in run mode, with the running

application in the foreground
52

IDE showing program code for a
simple program 125

IDE’s toolbox and La-
belScrollbar properties
1365

identifier 62
IDictionaryEnumerator

interface 1204
IE (Internet Explorer) 35, 475,

532, 841, 1431, 1442
IEEE 754 floating-point 196, 197
IEnumerator interface 1194,

1204
if selection structure 80, 83, 98,

100, 113, 152, 167, 170
<if> tag (<if>…</if>) 1242
if/else selection structure 21,

98, 100, 117, 152, 167, 170
ignoring array element zero 249
IIS (Internet Information Services)

950
IL (Intermediate Language) 18
image anchor 1413
Image Collection Editor 553
Image Collection Editor

window for an ImageList
component 554

image hyperlink 1385, 1444
image map 28, 1416, 1418, 1477
Image property 51, 507
 718
ImageHeader.ascx 1015
ImageIndex property of class

ListViewItem 553
ImageIndex property of class

TreeNode 549
ImageList class 553

ImageList collection 548
ImageList property of class

TabControl 561
ImageList property of class

TreeView 548
images in Web pages 1382, 1441
ImageUrl attribute 974
img element 27, 1217, 1385,

1418, 1441, 1442, 1444
Immediate window 1318
immutable String 636
implement an interface 419
implementation 282, 290
implementation-dependent code

290
implementation of a class hidden

from its clients 289
implicit conversion 115, 193
implicitly sealed method 402
#IMPLIED flag 867
Important methods of class Ht-

tpCookie 997
Impressions attribute 974
In property of class Console

759
Inch member of enumeration

GraphicsUnit 696
Inclusive Technology 1261
increasing order 257
increment and decrement

operators 121
increment expression 144, 159
increment of a for structure 145
increment of control variable 141,

143, 146
increment of loop 140
increment operator, ++ 121
indefinite postponement 595
indefinite repetition 109
indentation 99
indentation convention 101
indentation in if statements 84
indentation techniques 63, 85
Indenting each level of a nested

list in code 1391
Index event of class

CheckedListBox 541
Index property of class Menu-

Item 524
index.html 1376
indexer 636
indexer for class Hashtable

1091
indexer property 319

Indexers provide subscripted
access to an object’s
members 320

IndexOf method of class Array
1188

IndexOf method of class
ArrayList 1189, 1194

IndexOf method of class
String 643, 646

IndexOfAny method of class
String 643

IndexOutOfRangeExcep-
tion class 249, 448

indirect base class 345
infinite loop 105, 109, 114, 144,

158, 219, 1125
infinite recursion 219, 222
infinity symbol 904
Information 148
information hiding 282, 326, 402
information parameter 840
information tier 952
Informix 897
inherit from class Control 579
inherit from Windows Form

control 579
inherit implementation 437
inherit interface 392, 437
inheritance 22, 282, 284, 290, 343,

346, 377, 383, 419
Inheritance examples 345
inheritance hierarchy 345, 393
Inheritance hierarchy for

university Communi-
tyMembers 346

Inheritance hierarchy for
university Communi-
tyMembers 346

inheritance with exceptions 448
inheriting interface versus

inheriting implementation
437

Inherits attribute of ASP .NET
page 954

Init event 957
initial set of classes 282
initial value of control variable

140, 143, 146
initialization at the beginning of

each repetition 119
initialization phase 112
initialization section of the for

structure 149
initialize instance variables 289
initializer list 242, 266
initializers 292

Index 1547

initializing arrays 240
initializing double-subscripted

arrays in declarations 267
Initializing element arrays in three

different ways 240
Initializing multidimensional

arrays 267
inlining code 402
inner block 213
inner for structure 243, 259
INNER JOIN 905, 913
InnerException property of

Exception 457, 461
innermost pair of parentheses 77
innermost set of square brackets

249
inorder traversal of a binary tree

1170
input 37
input data from the keyboard 476
input device 4
input element 1405, 1406, 1465
input unit 4
input/output 760
input/output blocking 595
input/output operation 98
input/output request 594
inputting data from the keyboard

85
INRIA (Institut National de

Recherche en Informatique
et Automatique) 15

insert an item into a container
object 285

INSERT INTO 905, 917
Insert method of class Array-

List 1189
Insert Separator option 523
INSERT statement 917
InsertCommand property of

OleDbAdapter 927
Inserting and aligning the picture

box 50
inserting separators in a menu 523
insertion point 1149
instance of a built-in type 282
instance of a user-defined type 282
instance variable 212, 284, 292,

297, 309, 348, 351, 1338
“instant-access” application 794
instantiate (or create) objects 282
Institut National de Recherche en

Informatique et
Automatique (INRIA) 15

int primitive data type 73, 112,
196

int promotions 194
Int32.Parse method 75, 114
integer division 77, 114, 115
integer mathematics 326
integer quotient 77
integer value 73
integral data type 196, 466
integrated development

environment (IDE) 9, 20, 34
intelligent agent 1291
IntelliSense 129
interactions among objects 326
interactive animated character 24,

736
interface 185, 283, 291, 414, 415,

418, 419, 897
interface definition 1338
interface keyword 414
Interfaces2Test.cs 424
InterfacesTest.cs 417
Intermediate Language (IL) 18
internal data representation 327
internal help 43
internal hyperlink 28, 1413, 1416,

1473, 1475
internal member access

modifier 347
International Business Machines

(IBM) 5
Internet 14, 15
Internet Explorer (IE) 35, 475,

532, 841, 1431, 1442
Internet Explorer window 69
Internet Information Services (IIS)

950
Internet Protocol (IP) 14
Internet Protocol Addresses (IP

Address) 1108
Internet Service Provider (ISP)

1405, 1465
Internshipprograms.com

1302
interpreter 7
Interrupt method of class

Thread 594
Interval property of class

Timer 580
InterviewSmart™ 1303
intranet 11, 12, 13
Invalidate method of class

Control 688
InvalidCastException

388, 389
InvalidOperationExcep-

tion 1198
Invoke 1043

invoking a method 180, 181
invoking a method of a Web

service from a Web browser
1044

IP (Internet Protocol) address 14,
950, 1108

IPAddress class 1110
IPEndPoint class 1110
“is-a” relationship 344, 388, 391,

419
IsAccessible property of

class Control 1226, 1230
isbn attribute 881
IsDigit method of class Char

661
IsEmptyElement Property

of XmlNodeReader 854
IShape interface provides

methods Area and Volume
and property Name 419

IsLetter method of class Char
661

IsLetterOrDigit method of
class Char 661

IsLower method of class Char
663

IsMdiChild property of class
Form 567

IsMdiContainer property of
class Form 566, 567

IsNewSession property of
HttpSessionState
class 1003

ISP (Internet Service Provider)
1405, 1465

IsPostBack property of class
Page 983

IsPunctuation method of
class Char 663

IsReadOnly property of Ht-
tpSessionState class
1003

IsSymbol method of class Char
663

IsUpper method of class Char
663

IsValid property of Server-
ValidateEventArgs
class 1020

IsWhiteSpace method of class
Char 663

Italic member of enumeration
FontStyle 697

Italic property of class Font
696

1548 Index

ItemActivate event of class
ListView 554

ItemCheck event of class
CheckedListBox 540

ItemCheckEventArgs event
of class CheckedList-
Box 541

Items property of class
ComboBox 543

Items property of class
ListBox 535

Items property of class
ListView 554

ItemSize property of class
TabControl 561

iteration 222
iteration of a for loop 249
iteration of a loop 140, 144, 159
iterative 219
iterative binary search 262
iterator 394, 1194
iterator class 394

J
Jacopini, G. 97, 170
jagged array 265, 266, 268
Java Development Kit (Java SDK

1.3) 1236
Java progamming language 19
JAWS (Job Access with Sound)

1248, 1265
job 4
jobfind.com 1294
Jobs.com 1295
JobsOnline.com 1298
Join method of class Thread

594, 627
joining tables 904
Joint Photographic Experts Group

(JPEG) 1441
JScript scripting language 19
JSML 1265
JustCJobs.com 1299
JustComputerJobs.com

1299
JustJavaJobs.com 1290,

1299

K
Keio University 15
Kemeny, John 8
key code 514
key data 514
key event 511, 512

key value 260, 514, 1177
key, modifier 511
keyboard 3, 5, 71, 475
Keyboard events, delegates and

event arguments 512
KeyDemo.cs 513
KeyDown event 512
KeyEventArgs properties 512
KeyPress event 512
KeyPressEventArgs

properties 512
Keys property of HttpSes-

sionState class 1003,
1006

KeyUp event 512
keyword 62, 98
Koenig, Andrew 439
Kurtz, Thomas 8

L
label 48, 49, 69, 71, 475, 476, 488
Label class 488
Label in position with its Text

property set 48
Label properties 489
labels in a switch structure 152
LabelTextBoxButton-

Test.cs 490
LAN (local area network) 6
language attribute 954
language independence 19
language interoperability 10, 19
LargeImageList property of

class ListView 553
LastChild property of XmlN-

ode 855, 857
last-in, first-out (LIFO) data

structure 1160
LastIndexOf method of class

Array 1188
LastIndexOf method of class

String 643, 646
LastIndexOfAny method of

class String 643
last-in-first-out (LIFO) 326
LastNode property of class

TreeNode 549
Latin World 1297
layout control 38, 484
layout windows 38
LayoutMdi enumeration 570
LayoutMdi enumeration values

570
LayoutMdi method of class

Form 567, 570

LayoutMdi.ArrangeIcons
570

LayoutMdi.Cascade 570
LayoutMdi.TileHorizon-

tal 570
LayoutMdi.TileVertical

570
lazy quantifier 671
leaf node in a binary search tree

1169, 1175
left brace ({) 63, 71
left child 1169
left-shift assignment operator

(<<=) 1508
left-shift operator (<<) 1496,

1497, 1498, 1504
left subtree 1169, 1175, 1210
left-to-right evaluation 79
length of an array 238
Length property of class

BitArray 1508
Length property of class

String 636, 637
Length property of class

StringBuilder 652
letter 758
letter.dtd 866, 866
letter.xml 842
letter2.xml 867
level of nesting 168, 1391
level of refinement 110, 112
level-order binary tree traversal

1177
lexicographical comparison 638
 (list item) tag 1389, 1447
lifetime of an identifier 212
LIFO (last-in, first-out) 326
LIKE 908, 909, 911
likelihood 203
line 685
linear collection 1148
linear data structure 1168
linear search 260, 261, 278
Linear search of an array 260
LinearGradientBrush class

690, 711, 714
LinearGradientMode

enumeration 714
linearized 1231
LinesRectanglesOv-

als.cs 702
link 1148, 1169
link element in VoiceXML 1242
link for a self-referential class

1147
link one Web page to another 1413

Index 1549

<link> tag 1242
LinkArea property of class

LinkLabel 531
LinkBehavior property of

class LinkLabel 531
LinkButton 1027
LinkClicked event of class

LinkLabel 530, 532
LinkColor property of class

LinkLabel 531
linked document 1380
linked list 26, 285, 394, 1146,

1148, 1149
linked list in sorted order 1149
LinkedListLibrary.cs

1151
LinkLabel class 521, 530
LinkLabel properties and

events 531
LinkLabel used to link to a

folder, a Web page and an
application 532

LinkLabels used to link to a
folder, a Web page and an
application 532

LinkLabelTest.cs 532
Links property of class Lin-

kLabel 531
links.html 1380, 1388, 1438
links2.html 1447
LinkVisited property of class

LinkLabel 531
Linux operating system 5, 6
list 476
List of Form events 482
list, editable 544
list.html 1389, 1448
ListBox and CheckedList-

Box on a form 535
ListBox class 521, 534
ListBox on an ASPX page 994
ListBox properties, methods

and events 535
ListBox used in a program to

add, remove and clear items
537

ListBox Web control 1003
ListBoxTest.cs 537
Listing for namespace.xml

844
ListTest.cs 1155
ListView class 553
ListView displaying files and

folders 555
ListView properties and events

553

ListViewTest.cs 555
literal String objects 634
live-code approach 2
Load event 478
Load method of XMLDocument

850
Load method of XslTrans-

form 882
local area network (LAN) 6
local dialog 1241
local variable 181, 212
local variable is destroyed 252
local variable of a method 290
local variables of a method 213,

309
localhost 1119
localization 1350
Locals window 1317
local-variable declaration space

213
location in the computer’s

memory 75
Location property 487
lock keyword 600, 614, 615, 625
locking objects 599
Log in Web Form 1013
Log method of class Math 182
logarithm 182
logarithmic calculation 21
logging feature 1244
logic element 1247
logic error 73, 104, 109, 111, 250,

1313
logical AND operator (&&) 160,

162
logical decision 3
logical exclusive OR 163
logical negation (!) 160, 163
logical NOT operator (!) 160, 163
logical operator 21, 160, 163
logical OR operator (||) 160, 161,

162
logical unit 3
Login.aspx 1013
Login.aspx.cs 1016
loginUrl 1021
Logo language 277
 720
long primitive data type 196
long promotions 194
long-term retention of data 757
longdesc attribute 1217
Look and Feel Observation 12
loop 109
loop body 144, 156

loop-continuation condition 141,
142, 143, 144, 146, 152, 156,
158, 159

loop counter 140
loop-terminating condition 250
loopback IP address 1119
looping process 117
Lovelace, Ada 11
low-order bit 1498
lowercase 62
lowercase letter 62, 73, 105
Lowest ThreadPriority

enumeration member 594
lvalue 238
Lynx 1234

M
m-by-n array 265
machine dependent 6
machine language 6
MacOS operating system 6
Magenta static property of

structure Color 689
magnetic disk 757
magnetic tape 757
mailto: URL 1382, 1439
Main method 63, 66, 72, 83, 108,

142, 581
Main thread of execution 595
main.html 1377, 1432
MainMenu and MenuItem

properties and events 524
MainMenu class 522, 523
MainMenu properties 524
MainMenu properties and events

524
maintainability 1146
maintenance of software 12
making decisions 85
manipulating array elements 240
Manipulating the Anchor

property of a control 487
“manufacturing” section of the

computer 4
many-to-many relationship 905
map element 1416, 1477
marked for garbage collection 313
markup 950
markup language 28, 1375, 1431
Massachusetts Institute of

Technology (MIT) 15
match 879
Match class 633, 669, 672
match the selection criteria 906
MatchCollection class 669

1550 Index

matching left and right braces 75
Math class 21, 150, 1096
Math class methods 181
Math tutor application 1098
math tutor application 1098
Math.Abs method 182
Math.Ceiling method 182
Math.Cos method 182
Math.E constant 181
Math.Exp method 182
Math.Floor method 182
Math.Log method 181, 182
Math.Max method 182, 193
Math.Min method 182
Math.PI constant 181
Math.Pow method 182
Math.Sin method 182
Math.Sqrt method 181, 182,

188
Math.Tan method 182
mathematical formula 839
Mathematical Markup Language

(MathML) 25
MathML (Mathematical Markup

Language) 25
Max method of class Math 182,

193
maxDigits attribute 1247
MaxDropDownItems property

of class ComboBox 542,
543

MaximumSize property 488
maxlength attribute 1406,

1465
maxOccurs attribute 871, 873
maxTime attribute 1247, 1248
MaxValue constant of Int32

466
maze traversal 279
MBAFreeAgent.com 1300
MBCS (multi-byte character set)

1353
MDI (multiple document

interface) 23, 565
MDI form 567
MDI parent and MDI child events

and properties 567
MDI parent window and MDI

child windows 566
Examples

MDI parent-window class 571
MDI parent window class 571
MDI parent-window class 571
MDI title bar 567
MdiChildActivate event of

class Form 567

MdiChildren property of class
Form 567

MdiList property of class
MenuItem 569

MdiParent property of class
Form 567

mean (average) 78
MediaPlayerTest.cs 733
member 1338
member access modifier 284
member access modifier

private 285
member access modifier public

284
member access operator 347
member tag 1346
Members column 1339
memory 3, 4, 13
memory consumption 1185
memory leak 312, 449
memory location 249
Memory location diagram 75
memory unit 4
MemoryStream class 760
menu 37, 69, 475, 521
menu access shortcut 522
menu access shortcut, create 523
menu bar 69, 71, 475
menu bar in Visual Studio .NET

37
Menu Designer in VS .NET 522
menu item 522
menu separator 523
<menu> tag 1241, 1242
menu, ellipsis convention 523
MenuItem properties 524
MenuItem property MdiList

example 569
MenuItems property of class

MainMenu 524
MenuItems property of class

MenuItem 524
MenuMerge enumeration 568
MenuMerge.Add 568
MenuMerge.MergeItems 568
MenuMerge.Remove 568
MenuMerge.Replace 568
Menus used for changing text font

and color 525
Menus used to change text font

and color 525
MenuTest.cs 525
Mercury programming language

19
Merge records from Tables 912

MergeItems member of
enumeration MenuMerge
568

MergeOrder property of class
MenuItem 524, 568

MergeType property of class
MenuItem 524, 568

Merlin Microsoft Agent
character 736

Message 461
message box 21, 1313
message dialog 147
message dialog buttons 147
message dialog icons 147
Message property of class

Exception 447, 451, 457
MessageBox class 68, 70, 243
MessageBoxButton.Abor-

tRetryIgnore 148
MessageBoxButton.OK 148
MessageBoxButton.OK-

Cancel 148
MessageBoxButton.

RetryCancel 148
MessageBoxButton.YesNo

148
MessageBoxButton.Yes-

NoCancel 148
MessageBoxButtons class

147
MessageBoxIcon class 147
MessageBoxIcon.Error 148
MessageBoxIcon.

Exclamation 148
MessageBoxIcon.

Information 148
MessageBoxIcon.

Question 148
meta element 955, 1418, 1420,

1478, 1479
method 62, 63, 171, 179
method = "get" 1405, 1464
method = "post" 1405, 1464
method attribute 1248, 1405,

1463
method body 187
method call 180
method call operator 185
method call stack 457
method definition 63
method Factorial 216
method header 186
method overloading 223
MethodDebugExample.cs

1322

Index 1551

microprocessor chip technology
13

Microsoft 1351
Microsoft Agent 24, 736, 742
Microsoft Agent Character Editor

736
Microsoft Agent Control 2.0

742
Microsoft Agent demonstration

742
Microsoft Intermediate Language

(MSIL) 18, 66
Microsoft Internet Explorer

accessibility options 1262
Microsoft Linguistic Sound

Editing Tool 736
Microsoft Magnifier 1251
Microsoft Narrator 1258, 1261
Microsoft .NET 16
Microsoft On-Screen Key-

board 1261, 1262
Microsoft SansSerif font 697
Microsoft Schema file that

contains structure to which
bookxdr.xml conforms.
871

Microsoft Serif font 697
Microsoft SQL Server 897
Microsoft Windows 95/98 60
Microsoft Windows NT/2000 60
middle array element 261
middle tier 953
MIDI (Musical Instrument Digital

Interface) 733
Millimeter member of

enumeration Graphic-
sUnit 696

MIME (Multipurpose Internet
Mail Extensions) 952, 988

Min method of class Math 182
minimized and maximized child

window 568
Minimized and maximized child

windows 568
MinimumSize property 488
minOccurs attribute 871, 873
minus sign (-) 841
MIT (Massachusetts Institute of

Technology) 15
MIT’s Project Mac 13
mixed-type expression 194
modal dialog 776
mode attribute 1021
model attribute 871
modifier key 511
modify a variable at run time 1317

Modifying a database 930
modularizing a program with

methods 182
module 179
modules in C# 179
modulus assignment operator (%=)

121
modulus operator (%) 76, 77
Monitor class 592, 594, 595,

599, 607, 614, 615
monolithic excecutable 1362
Monster.com 1290, 1294,

1298, 1300
Moore’s Law 13
More Windows... option in

Visual Studio .NET 569
Morse code 1144

Motion Pictures Experts Group
(MPEG) 733

mouse 3, 475
Mouse Button Settings 1258
mouse click 509
mouse cursor 70, 1253
mouse event 509
Mouse events, delegates and event

arguments 509
mouse move 509
mouse pointer 39, 40, 70
mouse press 509
Mouse Speed dialog 1259
mouse, drag 42
MouseDown event 509
MouseEventArgs class 509
MouseEventArgs properties

509
MouseHover event 509, 1226
MouseKeys 1257
MouseLeave event 509
MouseMove event 509
MouseUp event 509
Move method of class

Directory 762

Move method of class File 761
MoveNext of IEnumerator

1194
MoveTo method of interface

IAgentCtlCharacter
750

MPEG format 733
MS-DOS prompt 60
mscorlib.dll 69
MSDN documentation 147

msdn.microsoft.com/
downloads/samples/
Internet/xml/
xml_validator/sam-
ple.asp 868

MSIL (Microsoft Intermediate
Language) 18, 66

MSN.com 987
msxml parser 841
multi-tier application 952
multi-byte character set (MBCS)

1353
multicast delegate 426
multicast event 479, 484
MulticastDelegate class

426, 479
MultiColumn property of class

ListBox 535
multidimensional array 237, 265
MultiExtended value of Se-

lectionMode 534
multilevel priority queue 594
MultiLine property of class

TabControl 489, 561
multimedia 733
multiple document interface

(MDI) 23, 565
multiple inheritance 343
multiple-subscripted array 265,

266
multiple-line comment (/* */) 61
multiple-selection structure 98,

152, 170
multiplication assignment

operator (*=) 121
multiplicative operators: *, / and

% 115
multiprogramming 5
Multipurpose Internet Mail

Extensions (MIME) 952,
988

MultiSelect property of class
ListView 553, 554

MultiSimple value of Se-
lectionMode 534

multitasking 11
multithread safe 1150
multithreading 11, 24, 591
Musical Instrument Digital

Interface (MIDI) 733
mutual exclusion 501
mutually exclusive options 501
MySQL 897

1552 Index

N
N 151
n-tier application 952
name attribute 873, 1405, 1465
name attribute of member tag

1346
name attribute of meta element

955
name node-set function 881
name of a control variable 140
name of a variable 75
name of an attribute 1433
Name property of class Font 493,

696
Name property of HttpCookie

class 996, 997
Name property of structure

Color 693
named constant 242
namespace 62, 68, 284, 288, 844
namespace keyword 328
namespace prefix 844, 847
namespace prefix xsd 873
Namespace property of a Web-

Service attribute 1051
namespace.xml 844, 844
NamespaceURI 856
naming collision 328, 844
NaN constant of class Double

464
Narrator reading Notepad text

1261
narrowing conversion 193
natural logarithm 182
nav.html 1384, 1443
NavigateUrl attribute 974
navigation bar 1015
navigational frame 1420, 1480
negative arc angles 705
negative infinity 446
NegativeNumberExcep-

tion.cs 463
nested tags 1422
nested block 213
nested building block 170
nested control structure 116, 155,

168
nested element 840, 1434
nested for loop 243, 267, 268,

269
nested frameset element 1424,

1483, 1484
nested if structure 103
nested if/else structure 102,

265

nested list 1389, 1391, 1448
nested parentheses 77
nested within a loop 117
nesting 171
nesting rule 168
.NET initiative 16
.NET-compliant language 19
.NET component 1363
.NET Framework 18, 180
.NET Framework Class Library

27, 62, 79, 179, 591
.NET Languages 19
.NET platform 9
Netscape Communicator 1431
network address 1108
network message arrival 440
networking 757
NetworkStream class 1110
new operator 239, 287, 311, 1148,

1185
New Project dialog 36
new project in Visual Studio .NET

38
New Text property value

reflected in design mode 129
NewDialog.cs 827
NewDialogForm class enables

users to create records in
transaction-processor case
study 827

newline character (\n) 62, 67, 73
News article formatted with XML

839
NewValue event of class

CheckedListBox 541
next attribute of choice

element 1241
Next method of class Random

201, 1097
NextNode property of class

TreeNode 549
no-argument constructor 293, 295
node 547
node, child 547
node, expand and collapse 547
node, parent 547
node, root 547
Nodes property of class Tree-

Node 549
Nodes property of class Tree-

View 548
node-set function 881
noframes element 1422, 1423,

1482
nondestructive 76

None value of Selection-
Mode 534

nonfatal logic error 104
nonlinear data structures 1148
nonprimitive data type array 250
nonrecursive method call 223
nonvalidating XML parser 865
NOT operator (logical) 160, 163
not-selected state 501
Notepad text editor 530, 1376,

1431
noun 11
Now property of structure Da-

teTime 580
n-tier application 6
null reference 212, 1147
NullReferenceException

448
Number systems Appendix 1275

O
Oberon programming language 19
object 8, 11, 281, 282
object-based programming (OBP)

2, 282
Object Browser (Visual Studio

.NET) 333
Object class 284, 401, 642
Object debugging example 1325
object of a derived class 383
object of a derived class is

instantiated 371
object orientation 281
object oriented 282
object-oriented programming

(OOP) 2, 8, 11, 282, 343,
383

object passed by reference 282
object primitive data type 197
"object speak" 281
"object think" 281
object-oriented programming 844
objects constructed “inside out”

377
OBP (object-based programming)

282
occurence indicator 866
octal (base8) 176
Ocularis 1250
.OCX file 1363, 1364
”off-by-one error” 143, 239
OK 148
OK button on a dialog 70
OKCancel 148
ol (ordered list) tag 1392

Index 1553

OleDbCommand class 920
OleDbConnection class 920
OleDbDataAdapter class 920
OleDbDataReader class 1020
one-based counting 143
one comparison in the binary

search algorithm 262
one-dimensional array 265
one statement per line 84
one-to-many relationship 904
One value of SelectionMode

534
one’s complement (~) 1283, 1496,

1504
ones position 1277
onHangup element 1247
OnInit method 957
online contracting service 1300
online guest book 1006
online recruiting 1292
onMaxSilence element 1247
OnPaint method from class

Control 578, 579, 687
On-Screen Keyboard 1261
onTermDigit element 1247
OOP (object-oriented

programming) 2, 8, 11, 282,
343, 383

Open method of class File 761
open-source software 5
open technology 839
opened 760
OpenFileDialog class 783,

788
opening a project 38
OpenRead method of class File

761
OpenRead method of class

WebClient 1085
OpenText method of class File

761
OpenWrite method of class

File 761
operand 74
operating system 5
operations of an abstract data type

327
operator = 74
operator == 83
operator keyword 432
operator overloading 430
operator precedence 77
operator precedence chart 27, 115
Operator precedence chart

Appendix 1273

Operators checked and un-
checked, and handling
arithmetic overflow 467

optical disk 757
optimization 151
OptionPage.aspx.cs 991
Options supplied on an ASPX

page 989, 997
OptionsPage.aspx 989, 997
OptionsPage.aspx.cs 999
Or method of class BitArray

1508
OR operator (boolean logical

exclusive) 160
OR operator (boolean logical

inclusive) 160
OR operator (logical) 160, 161
Oracle 897
Oracle Corporation 1351
Orange static property of

structure Color 689
order attribute 882
ORDER BY 905, 909, 910, 911
Order in which constructors and

destructors are called 376
ordered 897
ordered list 1448, 1450
ordered list element 1392
ordering of records 905
out keyword 198
out-of-line transfer of control 403
out-of-range array subscript 440,

448
Out property of class Console

759
outer block 213
outer for structure 259, 269
outer set of square brackets 249
OutOfMemoryException

1148
output 37, 64, 67
output cursor 64, 66
output device 4
output directory 581
output file 581
output unit 4
oval symbol 98
overflow 440, 466
Overflow.cs 467
OverflowException class

466
overhead of recursion 222
overlapped building block 170
overload resolution 224
overloaded constructor 292

Overloaded constructor
demonstration 295

Overloaded constructors provide
flexible object-initialization
options 293

overloaded method 223
overloading 223, 366
overridden 344
override keyword 393
Oz programming language 19

P
p (paragraph) element 1378, 1434
packet 1108
Page class 957, 983, 999

Session property 999
trace property 1028

page content 1378
page layout software 633
page tracing 1027
Page_Unload method 958
<%@Page…%> directive 954
PageIndexChange event 1027
PageIndexChange event for a

DataGrid control 1027
pageLayout property of

ASP.NET page 963
PagerStyle property 1027
PagerStyle property of a Da-

taGrid control 1027
PageSize property 1027
PageSize property of a Data-

Grid control 1027
Paint 559
Paint Shop Pro 1441
Painter.cs 510
PaintEventArgs class 578,

687
PaintEventArgs properties

579
palette 47
palindrome 278
Palo Alto Research Center

(PARC) 8
panel 476
Panel class 495, 686
Panel Controls property 495
Panel properties 495
Panel properties and events 495
panel with scrollbars 496
parallelogram 344
param tag 1338
parameter 181, 185
parameter-list 186

1554 Index

PARC (Palo Alto Research
Center) 8

parent element 841
parent menu 522
parent node 547, 847, 1169, 1209
parentheses () 77
parentheses “on the same level” 78
Parse method 75, 114
parsed character data 867
parser 841, 846
partition 279
partitioning step 278, 279
Pascal programming language 10,

19
Pascal, Blaise 10
pass-by-reference 197
pass-by-value 197
pass of a sorting algorithm 257
passing an array element 250
Passing an array reference using

ByVal and ByRef with an
array 254

passing an array to a method 250
Passing arrays and individual

array elements to methods
251

password box 1406, 1466
password textbox 488
PasswordChar property of

TextBox class 488, 489
paste 38
Path property of HttpCookie

class 997
path to a resource 950
PathGradientBrush class

711
PathNavigator.cs 858
Paths used to draw stars on a form

715
pattern matching 908
pattern of 1s and 0s 758
payroll system 390, 758
#PCDATA flag 867
Peedy calculating the total 742
Peedy flying animation 739
Peedy introducing himself when

the window opens 737
Peedy recounting the order 741
Peedy repeating the user’s request

for anchovies as an
additional topping 741

Peedy repeating the user’s request
for Seattle-style pizza 740

Peedy the ParrotMicrosoft
Agent character 736

Peedy waiting for speech input
740

Peedy’s reaction when he is
clicked 738

Peek method of class Stack
1198

Pen class 685, 689, 701
percent sign (%) is the modulus

operator 76
Performance Tip 12
performing a calculation 85
Perl progamming language 19
permission settings 554
persistent data 757
persistent information 987
Person class implements IAge

interface 415
personal computer 3
personal computing 5
personalization 987
PhotoShop Elements 1441
PhysicalApplication-

Path property of Request
class 1006

“pick off” each digit 93
picture box 49, 507
picture.html 1382, 1441
PictureBox class 507, 570
PictureBox properties and

events 507
PictureBoxTest.cs 507
PieceWorker class inherits

from class Employee 408
Pig Latin 683
pin a window 40
Pink static property of

structure Color 689
pixel 1441
Pixel member of enumeration

GraphicsUnit 696
platform independence 17, 19
play element 1249
Play method of interface

IAgentCtlCharacter
748

playback, choppy 592
player thread 592
plus sign (+) 841
plus sign (+) occurence indicator

866
Point class represents an x-y

coordinate pair 348, 384
Point marked up with XML

comments 1331
point-of-sale system 794
Point structure 686

Point2 class inherits from
abstract class Shape 395

Point2 class represents an x-y
coordinate pair as pro-
tected data 357

Point3 class implements
interface IShape 420

Point3 class uses properties to
manipulate its private
data 362

Point3.cs 420
Point4 base class contains

constructors and finalizer
372

PointTest class demonstrates
class Point functionality
350

poker 683
Polygon-drawing demonstration

708
polymorphic processing of related

errors 448
polymorphic programming 390,

394
polymorphic screen manager 391
polymorphism 22, 156, 282, 378,

383, 388, 391, 393, 403
polymorphism as an alternative to

switch logic 437
polynomial 79, 80
pool of threads 1110
Pop method of class Stack

1194, 1195
pop stack operation 1160
popping off a stack 326
port number 1108, 1109
portability 19, 1353
Portability Tip 12
portable 839
porting 19
position number 237
positional notation 1277
Positional value 1278
Positional values in the decimal

number system 1278
 705
positive and negative arc angles

705
positive infinity 446
post request type 1248, 1464
postback 983
postdecrement 121, 145
postincrement 121, 123, 145
postorder traversal of a binary tree

1170

Index 1555

Pow method of class Math 150,
151, 182, 1096

power 182
Precedence and associativity chart

166
Precedence and associativity of

the operators discussed so
far in this book 123, 239

precedence chart 78, 115
precedence chart Appendix 1273
precedence of arithmetic operators

78, 123, 239
precedence rule 77
predecrement 121
predicate method 285, 1150
preincrement 121, 123, 145
premature program termination

249
preorder traversal of a binary tree

1170
prepackaged data structures 1185
presentation logic 953
presentation of a document 1375,

1431
previous statement, variable in

1317
PrevNode property of class

TreeNode 549
primary interop assembly 1367
primary key 897, 904
primary memory 4
prime number 1508
primitive (or built-in) data-type

194, 196, 212
primitive data type 73
primitive data types are initialized

to null 212
Princeton Review 1302
print a line of text 64
print spooling 1165
PrintBits.cs 1498
printing a project 38
Printing on multiple lines with a

single statement 67
Printing on one line with separate

statements 67
Priority property of class

Thread 595
privacy invasion 987
privacy protection 987
private member access

modifier 284, 285, 291, 297
Private members of a base

class 346
probability 201

procedural programming language
11, 282

procedure for solving a problem
95

Process class 531
processing instruction 878
processing instruction target 878
processing instruction value 878
processing phase 112
processing unit 3
produce method 601
producer 615
Producer and consumer threads

accessing a circular buffer
617

producer and consumer threads
accessing a circular buffer
617

Producer and consumer threads
accessing a shared object
with synchronization 607

producer and consumer threads
accessing a shared object
with syncronization 607

Producer and consumer threads
accessing a shared object
without synchronization 602

producer and consumer threads
accessing a shared object
without syncronization 602

producer thread 601
producer/consumer relationship

601
productivity 13
program 3
program construction principles

140
program control 60, 96
program development 60
program development process 326
program development tool 120
program execution stack 1160
program in the general 437
program termination 249
Program that demonstrates class

Array 1186
Program that prints histograms

243
Program to display hidden text in a

password box 490
Program to simulate the game of

craps 208
program, break execution 1318
program, suspend 1313
programmer 3
programmer-defined class 62

Examples
Programmer-defined control

that displays the current time
580

Programmer-defined control that
displays the current time 580

Programmer-defined Maximum
method 188

programmer-defined method 180
programmer-defined type 282
project 36
Project Mac 13
Project menu of VIsual Studio

38, 283
Project properties dialog 582
project, Windows control library

581
promotion 115, 987
prompt 73, 114
prompt element in VoiceXML

1241
<prompt> tag 1242
Properties demonstration for class

Time3 301
Properties of class Control

related to accessibility 1225
Properties window 42, 43, 46,

49, 126, 963
Properties window on a Web Page

1028
Properties.cs 458
property 42
property definition 291
property for a form or control 42
property of an object 11, 20
Proposed Recommendation 15
Protected 347
protection 1021
proxy 1364
proxy class for Web services 1046,

1053, 1054
pseudocode 21, 96, 99, 105, 107,

110, 111, 118
pseudocode algorithm 111
pseudocode if/else structure

101
pseudocode statement 105
pseudo-random number 201
public interface 285
public keyword 405
public member access modifier

284, 285
public member of a derived

class 346
public method 286

1556 Index

public operation encapsulated in
an object 290

public service 285
public static members 313
Publication page of Deitel and

Associates’ VoiceXML page
1238

publishers table of books
database 898, 899

publishing a Web service 1046
Pulse method of class Monitor

594, 600, 607
Pulse method of Monitor 615
PulseAll method of class Mon-

itor 594, 600
Push method of class Stack

1194
push stack operation 1160
pushing into a stack 326
PWS (Personal Web Server) 1405
Pythagorean Triples 177
Python progamming language 19

Q
quantifier 671
Quantifiers used in regular

expressions 672
Quantifiers used regular

expressions 672
quantum 594
quantum expiration 593
query 896, 898
query a database 921
Question 148
question mark (?) occurence

indicator 866
queue 26, 285, 327, 1146, 1165
Queue class 1185
QueueInheritance extends

class List 1166
QueueInheritanceLi-

brary.cs 1166
QueueTest.cs 1167
quicksort 278

R
R property of structure Color 689
RAD (rapid applications

development) 9, 23, 327
radian 182
radio 1409, 1469
radio button 488, 501
radio button group 501

radio buttons, using with
TabPage 565

RadioButton class 498, 501
RadioButton properties and

events 502
RadioButtonsTest.cs 502
RadioCheck property of class

MenuItem 524, 530
RAM (Random Access Memory)

4
random-access file 25, 757, 794,

807, 827
random access memory (RAM) 4
Random class 200, 1097
random number generation 664,

683
Random-access file with fixed-

length records 795
RandomAccessRecord.cs

795
rapid application development

(RAD) 9, 23, 327
rapid applications development

(RAD) 327
RCW (Runtime Callable

Wrapper) 1368
RDBMS (relational database

management system) 952
RDK (Redistribution Kit) 1249
Read method 876
Read method of class Console

760
Read method of class Network-

Stream 1110
read-only text 488
readability 61, 62, 1218, 1266,

1432
ReadByte method of class Net-

workStream 1110
 807, 784
ReadLine method of class Con-

sole 73, 760
readonly keyword 22, 317
ReadOnly property 489
 807, 784
ReadString method of class

BinaryReader 1119
ReadXml method of DataSet

938
Ready thread state 593
real number 73
receive a connection 1118
receive data from a server 1119
Receive method of class

Socket 1109

Receive method of class
UdpClient 1120, 1125

ReceiveFrom method of class
Socket 1109

receiving an array through a
method call 250

“receiving” section of the
computer 4

receiving temperature and weather
data from a Web service
1087

recent project 34
reclaim memory 316
reclaiming dynamically allocated

memory 592
recognizing clients 987
Recommendation-

sPage.aspx 994, 1003
Recommendation-

sPage.aspx.cs 995,
1004

record 758, 897, 903
Record for random-access file-

processing applications 795
Record for sequential-access file-

processing applications 774
record key 758, 794
record set 898
record size 794
Record.cs 774
recordAudio element 1249
Record-transaction class for the

transaction-processor case
study 812

Recruitsoft.com 1297
Rectangle structure 685, 686,

702, 714
rectangle symbol 98, 100, 105,

145, 155, 166
rectangular array 265
rectangular hotspot 1418, 1477
recursion 553
recursion overhead 222
recursion step 216, 220
recursion vs. iteration 222
recursive call 216, 220, 221
Recursive evaluation of 5! 217
recursive method 21, 215, 218
recursive method Factorial

216
recursive program 221
recursive searching 278
recursive step 278
recursive version of the binary

search 260

Index 1557

recursive version of the linear
search 260

Recursively generating Fibonacci
numbers 219

red circle, solid 1314, 1319
Red static property of

structure Color 689
Redistribution Kit (RDK) 1249
redundant parentheses 79
ref keyword 198
reference 1338
reference manipulation 1146
reference to a new object 287
reference type 196
referring to a base-class object

with a base-class reference
389

referring to a base-class object
with a derived-class
reference 390

referring to a derived-class object
with a base-class reference
390

referring to a derived-class object
with a derived-class
reference 389

refinement process 110
Regex class 633, 669, 670
Regex methods Replace and

Split 677
Regex methods Replace and

Split 677
RegexMatches.cs 669
RegexSubstitution.cs 677
regional invalidation 722
register event handler 483
<%@Register…%> directive

1015
Registering an ActiveX control

1363
RegSvr32 utility 1363, 1367
regular expression 765
 766
Regular expressions checking

birthdays 669
Regular member of

enumeration FontStyle
697

“reinventing the wheel” 62
relational database 896
relational database management

system (RDBMS) 952
relational database model 897
relational database table 897
Relational-database structure of an

Employee table 897

relative positioning 963
release a lock 614, 615
release resource 450
release the lock 626
remainder 77
remarks tag 1338
remote machine 1041
Remote Procedure Call (RPC) 16,

1041
Remove member of enumeration

MenuMerge 568
Remove Method if TreeNode-

Collection 853
Remove method of class Array-

List 1189, 1193
Remove method of class

StringBuilder 658
Remove method of class Tree-

NodeCollection 549
Remove method of Hashtable

1204
RemoveAt method of class Ar-

rayList 1189
RemoveRange method of class

ArrayList 1189
Removing tabs from Visual Studio

environment 1223
renaming code files in Visual

Studio .NET 66
renders 952
repetition 167, 170, 171
repetition control structure 97, 98,

99, 105, 110
repetition structure 21
repetition structure for iteration

222
Replace member of

enumerationMenuMerge
568

Replace method of class Regex
677, 678

Replace method of class
String 648, 649

Replace method of class
StringBuilder 659

Report Expert 1514
Request class 1006

Cookies property 996
PhysicalApplication-
Path property 1006

request for proposal 1300
Request object 983, 996
RequiredFieldValidator

class 979
Reservation.asmx.cs 1076
reserved word 62

reserving memory 240
Reset of IEnumerator 1194
resolution 686
resource leak 311, 441, 449
Response.Write 1027
responses to a survey 247, 249
Restart button 1318
result of an uncaught exception

442
result set 898, 906
result tree 877
Results of combining two bits with

the bitwise AND operator
(&) 1497

Results of combining two bits with
the bitwise exclusive OR
operator (^) 1498

Results of combining two bits with
the bitwise inclusive OR
operator (|) 1497

results of invoking a Web service
method from a Web browser
1044

resume 1291, 1296
Resume method of class Thread

594
resume-filtering software 1296
resumption model of exception

handling 442
rethrow an exception 456
RetryCancel 148
return from a method 180
return statement 185, 186, 188,

216
return-value-type 186
returning an object from a Web-

service method 1097
returns tag 1338, 1339
reusability 1146
reusable component 344
reusable software component 12,

13, 40, 328
reuse 62
Reverse method of class Array

1188
RGB values 688, 689
Richards, B. Martin 7
right brace (}) 63, 71, 114
right child 1169
right-shift assignment operator

(>>=) 1508
right-shift operator (>>) 1496,

1497, 1504
right subtree 1169, 1176
RightToLeft property of class

MainMenu 524

1558 Index

“rise-and-shine algorithm” 95
Ritchie, Dennis 7
Robby the Robot Microsoft

Agent character 736
robust application 74, 439
Rolling dice in a windows

application 203
root element 840, 868
root node 547, 847, 1169
root node, create 547
RotateTransform method of

class Graphics 717
round 182
Round member of enumeration

DashCap 715
round-robin 594
rounding 77
rounding error 195
row 897
rows attribute (textarea)

1408, 1465
rows to be retrieved 905
rowspan attribute (tr) 1403,

1460
RPC (Remote Procedure Call) 16,

1041
RPG progamming language 19
Rule of Entity Integrity 903, 904
Rule of Referential Integrity 904
rules of operator precedence 77
Run command in Windows 531
run element 1248
Run menu 52
run mode 52
run-time exception 448
run-time logic error 73
Runnable thread state 593
running an application 531
Running thread state 593, 596
Runtime Callable Wrapper

(RCW) 1368

S
Salary.com 1302
 783
Sample Internet Explorer window

with GUI components 476
SaveFileDialog class 776
Saving a document to a file 1340
sbyte primitive data type 196
sbyte promotions 194
scalar quantities 250
scalars 250
scaling 201
scaling factor 201

scheduling 594
Schema 865, 869
schema element 873
schema repository 871
Schemas property of

XmlSchemaCollec-
tion 876

Schema-validation example 874
Scheme progamming language 19
scope 212, 290
scope (block) 213
scope (class) 213
scope (global) 213
scope of a variable 144
scope of an identifier 212
Scoping example 213
screen 3, 4, 5
screen cursor 68
screen-manager program 391
screen reader 1217, 1230, 1248,

1258, 1263
script 1357, 1433
scrollbar 475, 476
scrollbar and window border size

dialog 1252
scrollbar in panel 496
SDI (single document interface)

565
SDI and MDI forms 566
SDK (Software Development Kit)

1249
sealed 402
search engine 1378, 1418, 1434,

1478
search key 260
searching 259, 260, 1146
Searching for characters and

substrings in Strings 643
searching technique 237
second-degree polynomial 79, 80
second refinement 117
secondary storage 4, 13
secondary storage device 757
sector 705
Secure property of Http-

Cookie class 997
secure protocol 997
seed 201
SeekOrigin enumeration 806
SeekOrigin.Begin constant

806
SELECT 898, 905, 906, 907, 908,

909, 910, 911, 913
select 898, 905
select all fields from a table 906
Select Case logic 390

SelectCommand property of
OleDbAdapter 927

selected attribute 1473
selected state 501
SelectedImageIndex

property of class Tree-
Node 549

SelectedIndex property of
class ComboBox 543

SelectedIndex property of
class ListBox 535

SelectedIndex property of
class TabControl 562

SelectedIndexChanged
event of class ComboBox
543

SelectedIndexChanged
event of class ListBox 536

SelectedIndexChanged
event of class TabControl
562

SelectedIndices property of
class ListBox 535

SelectedItem property of
class ComboBox 543

SelectedItem property of
class ListBox 535

SelectedItem property of
class ListView 554

SelectedNode property of
class TreeView 549

SelectedTab property of class
TabControl 562

selecting 34
Selecting the Build Comment

Web Pages from Tools
menu 1339

selection 167, 168, 170
selection control structure 21, 97,

98, 99
selection criteria 906
selection structure for recursion

222
SelectionMode enumeration

534
SelectionMode property of

class CheckedListBox
540

SelectionMode property of
class ListBox 534, 535

SelectionMode.MultiEx-
tended 534

SelectionMode.Multi-
Simple 534

SelectionMode.None 534
SelectionMode.One 534

Index 1559

self-documenting 73
self-referential class 1146, 1148
Self-referential class objects

linked together 1148
Self-referential object 1147
semicolon (;) 64, 73, 84, 104
send data to a server 1119
Send method of class Socket

1109
Send method of class

UdpClient 1120, 1125
sendEvent element 1248
SendTo method of class Socket

1109
sentinel-controlled repetition 109,

110, 111, 114
sentinel value 109, 114
separator bar 523
separator, menu 523
sequence 167, 170, 171, 1168
sequence control structure 97, 99,

110
sequence element 873
sequence of items 1148
sequence structure 21
sequence type 1450
sequential-access file 757, 759,

776, 794, 827
sequential execution 96
sequential file 25
Serializable attribute 771
SerializationException

784
Serialize method of class Bi-

naryFormatter 782
serialized object 771
server 6
server Internet address 1119
server port number 1119
Server portion of a client/server

stream-socket connection
1111

Server side of client/server Tic-
Tac-Toe program 1126

Server.cs 1111, 1120
Server-side portion of

connectionless client/server
computing 1120

ServerValidate event of
CustomValidator class
1015, 1020

ServerValidateEven-
tArgs class 1020

IsValid property 1020
Value property 1020

service 291

service description for a Web
service 1042, 1043

session 1243
session attribute 1248
Session data read by an ASP .NET

Web application to provide
recommendations for the
user 1004

session ID 987
Session information displayed in a

ListBox 1003
session item 1002
Session property of Page class

999
session tracking 987
sessionID 1243
SessionID property of Ht-

tpSessionState class
1003

Sessions are created for each user
in an ASP .NET Web
application 999

Sessions created for each user in
an ASP .NET Web
application 999

session-tracking 988
set accessor 291, 297, 298, 301
Set Automatic Timeouts 1258,

1259
SET keyword 918
SET keyword 918
Set method of class BitArray

1508
Set of recursive calls to method

Fibonacci 221
SetAll method of class

BitArray 1510
setAttribute method of

interface HttpSession
1002

SetAuthCookie method of
FormAuthenication
class 1020

SetDataBinding method of
DataGrid 928

Setting the form’s Text property
46

Setting the project location 46
SGML (Standard Generalized

Markup Language) 14
shape class hierarchy 346, 347,

381
Shapes 712
Shapes drawn on a form 712
shared buffer 601, 615
shared library 1362

shared memory 601
shift 201
Shift key 511
Shift property 514
Shifted random integers 201
“shipping” section of the computer

4
short primitive data type 196
short promotions 194
short-circuit evaluation 162
shortcut key 522, 1221
Shortcut key creation 1223
Shortcut property of class

MenuItem 524
shortcuts with the & symbol 522
Show method 485
Show method of class Form 567,

574
Show method of class Message-

Box 70, 147
Show method of interface

IAgentCtlCharacter
748

Show Next Statement button
1318

Show of class Form 478
 690
ShowDialog method of class

OpenFileDialog 783,
788

ShowDialog method of class
SaveFileDialog 776

ShowShortcut property of
class MenuItem 525

ShowSounds 1255, 1257
sibling 1169
sibling node 547, 847
side effect 162, 221
Sieve of Eratosthenes 1508
signal value 109
signature 224, 225, 366
silicon chip 3
Simple Class Library 332
simple condition 160
Examples

Simple event-handling
example using visual
programming 481

Simple event-handling example
using visual programming
481

Simple Object Access Protocol
(SOAP) 10, 16, 20, 1041,
1043

Simple program as it executes 45

1560 Index

Simple student-poll analysis
program 248

Simple style for ComboBox 544
SimpleEventExample.cs

481
simplest flowchart 168, 169
Simula 67 programming language

8
simulate coin tossing 234
Simulating rolling 12 six-sided

dice 205
simulation 200
Sin method of class Math 182
sine 182
single document interface (SDI)

565
single-entry/single-exit control

structure 99, 100, 166, 167
single inheritance 343
single-line comment 61, 73, 75
single-quote character (’) 844
single-selection structure 98, 170
single-subscripted array 265, 266
singlecast delegate 426
single-clicking with left mouse

button 34
single-quote character 908
sinking a large value 259
SixFigureJobs 1301
size attribute (input) 1406,

1465
size of a variable 75
Size property of class Font 488,

696
SizeInPoints property of

class Font 696
SizeMode property 507
sizing handle 47
sizing handle, disabled 47
sizing handle, enabled 47
Sleep method of class Thread

594, 595, 606
sleeping thread 595
small circle symbol 98, 155
SmallImageList property of

class ListView 554
Smalltalk programming language

8, 19
SMIL (Synchronized Multimedia

Integration Language) 25,
1250

“sneakernet” 6
SOAP (Simple Object Access

Protocol) 10, 16, 20, 1041,
1043

SOAP encoding rule 16

SOAP envelope 1045
SOAP request 1045
SOAP Request for the HugeIn-

teger Web service 1045
socket 1107
Socket class 1118
software 3
software component 17
Software Development Kit (SDK)

1249
Software Engineering

Observation 12
software reusability 12, 182, 290,

328, 343
Solaris 6
solid arc 705
solid polygon 708
solid rectangle 702
SolidBrush class 693, 697, 701
solution 36
Solution Explorer after adding

a Web reference to a project
1057

Solution Explorer in Visual
Studio .NET 39, 574

Solution Explorer window 40,
1367

Solution Explorer window for
project WebTime 961

solution, debug setting 1314
Some basic GUI components 476
Some common escape sequences

68
Some methods of class ArrayL-

ist 1189
Sort method of class Array

1185
Sort method of class

ArrayList 1189
Sort property 1027
Sort property in DataView

class 1027
sorted array 1150
Sorted property of class Com-

boBox 543
Sorted property of class List-

Box 535
SortedList class 1185
sorting 257, 1146
sorting a large array 259
Sorting an array with bubble sort

257
sorting schemes 257
sorting technique 237
sorting.xml 878
sorting.xsl 879

SoundSentry 1254
source code 1339
source-code form 1376, 1431
source tree 877
space character 62
spacing convention 63
span attribute 955, 1460
spawning 1109
special character 62, 634, 1387,

1405, 1445, 1446
special symbol 758
speech device 1459
speech recognition 24, 1250, 1265
speech recognition engine 736
speech synthesis 24, 1250, 1265
speech synthesizer 1250, 1442
spiral 219
split a statement 70
Split method of class Regex

677, 678
spooling 1165
sports.xml 864
SQL (Structured Query Language)

896, 898, 905
SQL keywords 905
SQL query keywords 905
SQL statement 898
Sqrt method of class Math 182,

188, 464
square 344, 1450
square brackets in a query 906
square root 182
SquareRootTest.cs 464
src attribute (img) 1385, 1441,

1444
Src file 1015
stack 26, 234, 285, 326, 1160
stack 1160
Stack class 1185, 1194
stack unwinding 443, 458
StackComposition class

encapsulates functionality of
class List 1164

StackCompositionLi-
brary.cs 1164

stacking 171
stacking rule 168
StackInheritance extends

class List 1161
StackInheritanceLi-

brary.cs 1161
StackInheritanceT-

est.cs 1162
StackTest.cs 1195
StackTrace property of

Exception 457, 458, 461

Index 1561

standard character 1405
standard error 760
Standard Generalized Markup

Language (SGML) 14
standard input 759
Standard ML language 19
standard output object 64, 760
standard reusable component 344
standard time format 288
start a multiline comment (/*) 61
Start button 52
Start method of class Process

531
Start method of class

TcpListener 1109
Start method of class Thread

593, 598
Start Page 34
Start Page in Visual Studio

.NET 35
start tag 598, 840, 843, 1433
StartDialog.cs 817
StartDialogForm class

enables users to access
dialog boxes associated with
various transactions 817

Started thread state 593, 615
starting angle 704
StartsWith and EndsWith

methods 641
StartsWith method of class

String 641
startup project 39
starvation 595
state button 498
stateless protocol 987
statement 64
statement terminator (;) 64
static constructor 312
static duration 212
static entities 237
static keyword 312, 313, 315,

316, 317, 318
static member demonstration

315
static members are accessible

to all objects of a clas 314
static method 70, 150
static method cannot access

non-static class members
313

Static method Concat 648
static variable 313
Step Into button 1323
Step Out button 1323
Step Over button 1318

StickyKeys 1255
Stop Debugging button 1318,

1320
Stopped thread state 593, 594, 627
straight line 715
straight-line form 77
Stream class 760
stream input/output 757
stream of bytes 759
stream of input 109
stream socket 1125
StreamReader class 760
streams 1108
streams-based transmission 1120,

1140
StreamWriter class 760
Strikeout member of

enumeration FontStyle
697

Strikeout property of class
Font 696

string 24, 64
String class 286, 405, 406, 633
String Collection Editor in

Visual Studio .NET 536
string concatenation 83
string constant 634
String constructors 635
string formatting codes 151
String indexer 638
String indexer, Length

properties and CopyTo
method 636

String Length property, the
CopyTo method and Str-
Reverse function 636

string literal 64, 634
String methods Replace,

ToLower, ToUpper,
Trim and ToString 649

string of characters 64
string primitive data type 72,

197
String test to determine equality

639
String testing for equality 639
StringBuilder class 633, 651
StringBuilder class

constructors 651
StringBuilder size

manipulation 653
StringBuilder text insertion

and removal 658
StringBuilder text

replacement 659

StringBuilder’s Append-
Format method 656

StringBuilderAppend.cs
655

StringBuilderAppend-
Format.cs 656

StringBuilderConstruc-
tor.cs 651

StringBuilderFea-
tures.cs 653

StringBuilderInser-
tRemove.cs 658

StringBuilderRe-
place.cs 659

StringCompare.cs 639
StringConstructor.cs 635
StringHashCode.cs 642
StringIndexMethods.cs

643
StringMethods.cs 636
StringMiscellaneous2.c

s 649
StringStartEnd.cs 641
strong element 1438
strongly typed language 196
Stroustrup, Bjarne 8, 439
struct keyword 661
structure 661
structured programming 2, 10, 11,

21, 85, 97, 140, 159, 171,
326

Structured Query Language (SQL)
896, 898, 905

structured systems analysis and
design 11

style sheet 841, 1262, 1433
sub element 1387, 1446
sub-initializer list 266
subarray 261
subclass 125
SubConcatination.cs 648
<subdialog> tag 1242
submenu 522
submit attribute 1248
submit data to a server 1406
submit input 1406
subscript 238, 249, 266, 1387,

1446
subscription-based software 18
Substring method of class

String 646
SubString.cs 646
Substrings generated from

Strings 646
subtraction assignment operator

(-=) 121

1562 Index

Success property of Match 671
sum function 882
Sum.cs 147
summarizing responses to a survey

247
summary attribute 1234, 1459
summary tag 1338
Summation using for 147
Sun Microsystems, Inc. 1351
sup element 1446
superclass 125
supercomputer 3
superscript 1387, 1446
suspend a program 1313
Suspend method of class

Thread 594
Suspended thread state 594
sweep 704
switch logic 156
switch selection structure 21,

98, 152, 155, 167, 170
SwitchTest.cs 152
Sybase, Inc. 897, 1351
symbol 1350
SyncBlock 599, 614
synchronization 599, 601, 607
synchronized 1150
Synchronized Multimedia

Integration Language
(SMIL) 1250

Synchronized.cs 607
synchronous error 440
syntax error 64, 66, 105
syntax error in HTML 1376
system caret 1263
SYSTEM flag 868
System namespace 62, 284, 633
system service 1109
System.Collections

namespace 1160, 1185
System.Data namespace 26,

920
System.Data.OleDb

namespace 920
System.Data.Sqlclient

namespace 920
System.Drawing namespace

685, 686, 712
 686
System.Draw-

ing.Drawing2D
namespace 685, 715

System.GC.WaitForPend-
ingFinalizers method
317

System.IO namespace 760

System.Net namespace 1067
System.Runtime.Serial-

ization.Format-
ters.Binary namespace
782

System.Text namespace 633
System.Text.RegularEx-

pressions namespace
633, 669

System.Threading
namespace 591

System.Web namespace 957
System.Web.Security

namespace 1020
System.Web.UI namespace

957
System.Web.UI.WebCon-

trols namespace 957
System.Windows.Forms 69
System.Windows.Forms

namespace 68, 69, 124, 147,
478

System.Xml namespace 847
System.Xml.Xsl namespace

882
SystemException class 448,

463

T
tab 68
tab character 62
tab order 1225
tab stop 68, 1225
Tabbed pages in Visual Studio

.NET 560
tabbed window 37
TabControl class 560
TabControl properties and

events 561
TabControl used to display

various font settings 562
TabControl with TabPages

example 561
TabControl with TabPages

example 561
TabControl, adding a

TabPage 561
TabCount property of class

TabControl 562
TabIndex property of class

Control 485, 1230
table 897, 1231, 1232, 1375, 1398,

1431
table body 1459
table column 897

table data 1459
table element 265, 1399, 1459
table head element 1459
table in which record will be

updated 918, 919
table of values 265
Table optimized for screen reading

using attribute headers
1232

table row 1459
TableDisplay.cs 921
TabPage class 560
TabPage, add to TabControl

560
TabPage, using radio buttons

565
TabPages added to a TabCon-

trol 561
TabPages added to a TabCon-

trol 561
TabPages property of class

TabControl 562
TabStop property 485
TabStop property of class Con-

trol 1230
tabular format 240
tag 950, 1338, 1375
tag name 1015
tag prefix 955
tail of a queue 1165
Tan method of class Math 182
tangent 182
target = "_blank" 1483
target = "_self" 1483
target = "_top" 1483
target ="_blank" 1422
target ="_parent" 1422
target ="_self" 1422
target ="_top" 1422
targetNamespace attribute

873
targetSessions attribute

1249
task 4
Task List window 1312
tbody (table body) element

1400, 1459
TCP (Transmission Control

Protocol) 1108
TCP/IP (Transmission Control

Protocol/Internet Protocol)
14

TcpClient class 1110
TcpListener class 1108, 1109
td element 1459
TEI (Text Encoding Initiative) 16

Index 1563

telephone system 1120
TemperatureServer Web

service 1082
TemperatureServ-

er.asmx.cs 1082
TempFileCollection class

852
temporary data storage 757
temporary value 114
termDigits attribute 1247,

1249
terminal 5
terminating right brace (}) of a

block 213
termination 249
termination housekeeping 312
termination model of exception

handling 442
termination phase 112
termination test 222
ternary operator (?:) 101
Test2 demonstrates

polymorphism in Point-
Circle-Cylinder hierarchy
400

Test3 uses interfaces to
demonstrate polymorphism
in Point-Circle-Cylinder
hierarchy 424

Testing and Debugging Tip 12
Testing class Cylinder 370
text 736
text-based browser 1442
text box 1465
Text constant of enumeration

XmlNodeType 849
text editor 64, 633, 1376, 1431
text element 1243, 1247
Text Encoding Initiative (TEI) 16
text field 69, 71
text file 847
Text property 48, 485, 493
Text property of class LinkLa-

bel 531
Text property of class Menu-

Item 525
Text property of class Tree-

Node 549
TextAlign property 485
textarea 1406
textarea element 1408, 1465,

1466
text-based browser 1384, 1400
TextBox class 260, 475, 476,

488

TextBox properties and events
489

TextChanged event 489
TextReader class 760
text-to-speech (TTS) 1225, 1243,

1258
text-to-speech engine 736
TextToSpeech.cs 1226
TextureBrush class 690, 711,

715
TextWriter class 760
tfoot (table foot) element 1460
th (table header column) element

1232, 1459
The Diversity Directory 1297
The National Business and

Disability Council (NBDC)
1297

thead (table head) tag 1400,
1459

this keyword 309, 313
this reference demonstration

311
this reference used implicitly

and explicitly to enable an
object to manipulate its own
data and invoke its own
method 310

Thompson, Ken 7
Thread class 592, 1118
Thread life cycle 593
thread life cycle 593
thread of execution 591
Examples

Thread-priority scheduling
596

Thread-priority scheduling 596
thread-priority scheduling 596
thread scheduling 606
thread state 592
thread state Dead 593
thread state Ready 593
thread state Runnable 593
thread state Running 593, 596
thread state Started 593
thread state Stopped 593, 594, 627
thread state Suspended 594
thread state Unstarted 593
thread state WaitSleepJoin 594,

595, 600
thread synchronization 599
ThreadAbortException 593
ThreadPriority enumeration

594, 595
Threads sleeping and printing 596
threads sleeping and printing 596

ThreadStart delegate 593,
596, 599

ThreadTester.cs 596
three-dimensional application 717
Three-tier architecture 952
throughput 5
throw an exception 442, 446
throw point 442, 457
throw statement 451
Tick event of class Timer 580,

722
TicketReservation.aspx

1078
TicketReservation.as-

px.cs 1079
Tic-Tac-Toe 1125
tightly packed binary tree 1177
TileHorizontal value in

LayoutMdi enumeration
570

TileVertical value in Lay-
outMdi enumeration 570

time and date 580
Time class 22
Time1 abstract data type

represents the time in 24-
hour format 283

Time1.cs 283
timeout 1258
timeout attribute of prompt

element 1241
Timeout property of Ht-

tpSessionState class
1003

timer 580
Timer class 720
timesharing 5, 11
timeslicing 594
title

element 881
title bar 37, 46, 52, 1434
title bar string 147
title bar, MDI parent and child 567
title element 950, 1234, 1378,

1434
title of a document 1433
titles table of books database

898, 901
.tlb file 1368
ToggleKeys 1256
ToInt32 method of Convert

445, 446
ToLongTimeString method

of structure ToLong-
TimeString 580

1564 Index

ToLower method of class Char
663

ToLower method of class
String 648, 649

Tool tip demonstration 39
toolbar 38
toolbar icon 38
Toolbox 20, 963
Toolbox window 41
Tools menu 38
tooltip 39, 974
top 109, 116
top-down, stepwise refinement 3,

21, 109, 112, 116
top tier 953
ToString method of class

Decimal 413
ToString method of class

String 461, 650
ToString method of class

StringBuilder 652, 654
ToString method of Object

349
ToUpper method of class Char

663
ToUpper method of class

String 648, 649
Towers of Hanoi 234
tr (table row) element 1400, 1459
Trace class 1028

Warn method 1028
Write property 1028

trace element in a Web.con-
fig file 1028

Trace property 26
trace property of Page class

1028
trace.axd file 1028
TraceContext class 1028
tracing 1027
Tracing enabled on a page 1029
Tracing information for a project

1029
track 1250
tracking customers 987
trademark symbol 28
transaction-processing system 794
 812, 816
transfer of control 96
Transform method of Xsl-

Transform 882
TransformTest.cs 882
TranslateTransform

method of class Graphics
715

translation step 6

translator program 7
Transmission Control Protocol/

Internet Protocol (TCP/IP)
14

trapezoid 344
traverse a tree 1176
tree 26, 547, 1168
tree structure 841
Tree structure for article.xml

847
Tree structure for Fig. 18.1 847
Tree.cs 416
TreeNode class 549
TreeNode Editor 550
TreeNode Editor in VS .NET

547
TreeNode properties and

methods 549
TreeTest.cs 1182
TreeTest.java 1174
TreeView 521
TreeView class 547
TreeView displaying a sample

tree 548
TreeView properties and events

548
TreeView used to display

directories 550
TreeViewDirectory-

StructureTest.cs 550
trigger an event 476
trigonometric calculation 21
trigonometric cosine 182
trigonometric sine 182
trigonometric tangent 182
trillion-instruction-per-second

computers 3
Trim method of class String

648
trim method of string 858
TrimToSize method of class

ArrayList 1189, 1194
true 100
truncate 77, 114
truth 80
truth table 161
truth table for operator ! (logical

NOT) 163
truth table for the && (logical

AND) operator 161
try block 442, 446
try block expires 442
TTS (text-to-speech) engine 1243
Turtle Graphics 277
Tutor.cs 1098

two-dimensional data structure
1168

two-dimensional shape 685
two’s complement 1284
twos position 1277
type = "hidden" 1405
type = "password" 1409
type = "radio" 1409
type = "reset" 1406
type = "submit" 1406
type = "text" 1406
type attribute 873, 1405, 1450,

1465
Type class 1230
type of a variable 75
typesetting system 633

U
U+yyyy (Unicode notational

convention) 1352
UDDI (Universal Description,

Discovery, and Integration)
1054

UDP 1108
UdpClient class 1120
uint primitive data type 196
uint promotions 194
ul element 1447
ulong primitive data type 196
ulong promotions 194
unambiguous (Unicode design

basis) 1351
unary cast operator 114
unary operator 115, 163
UnauthorizedAccessEx-

ception class 552
unbounded value 873
unchecked context 466
unchecked operator 466
Underline member of

enumeration FontStyle
697

Underline property of class
Font 696

underscore (_) 62
undo 38
uneditable text or icons 476
Unicode 73, 196, 197
Unicode character 758
Unicode character set 93, 634
Unicode Consortium 1351
Unicode Standard design basis 28,

1350, 1351
Uniform Resource Identifier

(URI) 845

Index 1565

uninitialized local variable 109
unique class name 328
Univac 1108 14
universal (Unicode design

principle) 1351
universal data access 17
Universal Description, Discovery,

and Integration (UDDI)
1054

Universal Resource Locator
(URL) 845

universal time format 284, 286,
288

UNIX operating system 5, 6, 7
Unload event 958
unmanaged resource 958
unnecessary parentheses 79
unordered list element (ul) 1388,

1389, 1447
Unstarted thread state 593
unstructured flowchart 170
Unsynchronized.cs 602
UPDATE 905, 918
UPDATE query 1075
UpdateCommand property of

OleDbAdapter 927
 822
updating a database 1405
upper-left corner of a GUI

component 686
uppercase 62
uppercase letter 73
URI (Uniform Resource

Identifier) 845
URL (Uniform Resource Locator)

950, 987
URL (Universal Resource

Locator) 845
usemap attribute 1478
UseMnemonic property of class

LinkLabel 531
user agent 1217, 1263
user control 1015
User Datagram Protocol (UDP)

1108
user-defined method 180
user-defined type 282
user interface 953
user interface event 219
UserControl class 579
user-defined exception class 462
userInput of class

_AgentEvents_Comman
dEvent 750

ushort primitive data type 196
ushort promotions 194

Using a PictureBox to display
images 507

Using an abstract data type 287
Using arrays to eliminate a

switch structure 245
Using CheckBoxes to change

font styles 499
Using class StackInher-

itance 1162
Using default namespaces 846
using directive 62, 69
using elements of an array as

counters 244
Using For Each/Next with

an array 272
Using GroupBoxes and Panels

to arrange Buttons 496
Using inheritance to create a

queue 1167
Using internal hyperlinks to make

pages more navigable 1413,
1473

Using meta to provide keywords
and a description 1478

using operator overloading 433
Using overloaded methods 223
using parentheses to force the

order of evaluation 77
Using RadioButtons to set

message-window options
502

Using string indexer, Length
property and CopyTo
method 636

using temperature and weather
data 1087

using the HugeInteger Web
service 1057

Using the mouse to draw on a form
510

Using the Properties window
to set a property value 127

Using the Stack class 1195
UsingArray.cs 1186
UsingExceptions.cs 452
UsingFontMetrics.cs 699
UsingFonts.cs 697
UsingHugeIntegerSer-

vice.cs 1057
UsingMDI.cs 571
UsingTabs.cs 562
UTF-8 1351
UTF-16 1351
UTF-32 1351
utility method 285
\uyyyy unicode format 1356

V
valid 865
valid identifier 62
Validate.cs 672
Validating user information using

regular expressions 672
validating XML parser 865
validation service 1435
ValidationExpression

property of class Regu-
larExpressionVali-
dator 979

ValidationTest.cs 874
validator 976
validator.w3.org 1376,

1435, 1451
validator.w3.org/file-

upload.html 1435
Validators used in a Web Form

that generates possible letter
combinations from a phone
number 977

validity 866
validity checking 298
valign = "middle" 1403
valign attribute (th) 1403,

1462
value attribute 1248, 1249,

1405, 1406, 1465
value of a variable 75
value of an attribute 1433
Value property of HttpCook-

ie class 996, 997
Value property of Server-

ValidateEventArgs
class 1020

value tag 1338
value types 196
VALUES 917
ValueType class 661
<var> tag (<var>…</var>)

1242
var attribute 1247, 1248
variable 72, 75, 282
variable name 75
variable reference 123
variable scope 144
variable size 75
variable type 75
variable value 75
variable, in previous statement

1317
variable, modify at run time 1317
Vault.com 1293
version 879

1566 Index

version attribute of xml
declaration 1243

version parameter of xml tag
840

vertex 1478
vertical alignment formatting

1403
vertical coordinate 686
vi text editor 1376, 1431
ViaVoice 1217, 1235
video clip 591
video game 201
View menu in Internet Explorer

38, 69
View property of class List-

View 554
Viewing the tracing information

for a project 1029
__VIEWSTATE hidden input

986
ViewStateEnabled attribute

986
virtual directory 950
virtual key code 514
virtual memory operating system

11
Visible property 485
VisitedLinkColor property

of class LinkLabel 531
Visual Basic .NET 19
Visual C++ .NET 19
Visual Inheritance through the

Form Designer 577
visual programming 20, 478
Visual Studio .NET 20, 34
Visual Studio .NET Class View

333
Visual Studio .NET Debugger 27
Visual Studio .NET environment

after a new project has been
created 37

Visual Studio .NET-generated
console application 65, 493

Visual Studio .NET menu bar 38
Visual Studio .NET Menu De-

signer 523
Visual Studio .NET menu

summary 38
Visual Studio .NET Object

Browser 333
Visual Studio accessibility

guidelines 1218
Visual Studio creating and linking

a virtual directory for the
WebTime project folder 961

VisualInheritance.cs 575

VisualInheritanceT-
est.cs 577

vocabulary 16, 844
Voice Server SDK 1.0 1236
Voice settings window 1261
voice synthesis 1235
VoiceXML 25, 27, 1235, 1236,

1241, 1250, 1265
VoiceXML tags 1242
void return-value-type 186
volatile memory 4
Voxeo (www.voxeo.com) 1243,

1244
Voxeo Account Manager 1244
.vsdisco file extension 1057
<vxml> tag 1242

W
W3C (World Wide Web

Consortium) 15, 27, 887,
1450

W3C host 15
W3C Recommendation 15, 872,

1431
W3C XML Schema 869
WAI (Web Accessiblity Initiative)

27, 1216
WAI Quick Tip 1216
wait element 600, 1249
Wait method of class Monitor

594, 607, 614, 615
WaitForPendingFinaliz-

ers method of class GC 317
waiting line 1146
waiting thread 615
WaitSleepJoin thread state 594,

595, 600
“walk” past end of an array 249
walk the list 1159
“warehouse” section of the

computer 4
Warn method of Trace class

1028
WAV file format 733
Web 28
Web Accessibility Initiative

(WAI) 27, 1264
Web-based application

development 949
Web Content Accessibility

Guidelines 1.0 1216, 1218,
1231, 1235

Web Content Accessibility
Guidelines 2.0 (Working
Draft) 1216

Web control 26, 949
Web controls commonly used in

ASP.NET applications 966
Web controls demonstration 967
Web Form 26, 949, 988, 999, 1027

Properties window 1028
Web Form page 949
Web Forms menu in the Tool-

box 962
Web reference 1053
Web reference selection and

description 1056
Web server 950, 1109, 1405,

1432, 1462
Web server/Client interaction.

Step 1: The GET request,
GET /books/down-
loads.htm HTTP/1.0
951

Web service 17, 26, 1041
Web Service Description

Language (WSDL) 1042
Web-service method 1041
Web service that generates

random equations 1095
Web Services 328
Web services located on local-

host 1056
Web site 2
Web site using two frames:

navigational and content
1420, 1480

Web user control 1015
Web.config namespace 1020,

1028
WebClient class 1085
WebControl class 957
WebControls.aspx 967
WebHire 1294
WebMethod attribute 1041,

1043, 1052
WebService attribute 1051
WebService class 1052
WebTime.aspx 953
WebTime.aspx.cs 955
WebTime.html 958
Welcome.aspx 1007
Welcome.aspx.cs 1009
Welcome1.cs 60
Welcome2.cs 67
Welcome3.cs 67
Welcome4.cs 68
well-formed document 865
WHERE 905, 906, 907, 908, 909,

911, 918, 919

Index 1567

while repetition structure 21, 98,
105, 109, 113, 114, 141, 143,
144, 167, 171

WhileCounter.cs 141
White static property of

structure Color 689
whitespace character 62, 64, 650,

669
widening conversion 193
widget 475
width attribute 1383, 1441,

1442, 1459
width of text input 1406
width-to-height ratio 1442, 1383
Wiltamuth, Scott 9
Win32 API (Windows 32-bit

Application Programming
Interface) 8

window auto-hide 40
window gadget 475
window layout 38
window tab 37
Windows 2000 6, 27
Windows 32-bit Application

Programming Interface
(Win32 API) 8

Windows 95/98 60
Windows application 36, 60
Windows control library 581
Windows Control Library

project 771
Windows Explorer 532
Windows Form 23, 476
Windows Form Designer

generated code expanded
126

Windows Form Designer
generated code reflecting
new property values 128

Windows Forms proxy 1364
Windows Media Player 733
Windows Media Player

demonstration 733
Windows menu 38
Windows NT/2000 60
Windows Registry 1363
Windows Wave file format

(WAV) 733
Windows XP 6
WinForms 476
wire format 1043
wire protocol 1043
wireless application protocol

(WAP) 1299
Wireless Markup Language

(WML) 25

WirelessResumes.com 1299
Wirth, Nicklaus 10
WML (Wireless Markup

Language) 25
word character 669
word processor 633, 643
Wordpad 1431
Working Draft 15
WorkingSolo.com 1300
workstation 6
World Wide Web (WWW) 3, 14,

15, 27, 475, 591
World Wide Web Consortium

(W3C) 15, 27, 839, 887,
1264

Write method of class Binary-
Writer 1119

Write method of class Console
66, 760

Write method of class Net-
workStream 1110

Write property of Trace class
1028

WriteByte method of class
NetworkStream 1110

WriteLine method 1313
WriteLine method of class

Console 64, 760
WriteRandomAccess-

File.cs 802
WriteXml method of DataSet

938
Writing records to random-access

files 802
WSDL (Web Service Description

Language) 1042
WWW (World Wide Web) 3, 14,

27
www.advantagehir-

ing.com 1297
www.advisorteam.net/

AT/User/kcs.asp 1297
www.biztalk.com 887
www.careerpower.com 1302
www.chami.com/html-kit

1376
www.chiefmonster.com

1301
www.deitel.com 2, 3, 29,

1376, 1439
www.elsop.com/wrc/

h_comput.htm 29
www.etest.net 1297
www.ework.com 1300
www.execunet.com 1301
www.jasc.com 1441

www.jobfind.com 1295
www.jobtrak.com 1298
www.microsoft.com 29
www.microsoft.com/net

18
www.mindexchange.com

1297
www.nationjob.com 1301
www.netvalley.com/in-

tval.html 29
www.prenhall.com/dei-

tel 3, 29
www.recruitsoft.com/

process 1297
www.review.com 1302
www.sixfigurejobs.com

1301
www.unicode.org 1353
www.voxeo.com (Voxeo) 1243,

1244
www.w3.org 15, 29
www.w3.org/2000/10/

XMLSchema 873
www.w3.org/History.ht-

ml 29
www.w3.org/markup 1431
www.w3.org/TR/xhtml1

1451
www.w3.org/XML/Schema

872
www.w3.org/XML/Sche-

ma.html 868
www.w3schools.com/xht-

ml/default.asp 1451
www.webhire.com 1294
www.xhtml.org 1451
www.yahoo.com 1381

X
x-axis 686
x-coordinate 686
Xalan XSLT processor 877
XBRL (Extensible Business

Reporting Language) 25
Xerces parser 841
XHTML (Extensible HyperText

Markup Language) 15, 25,
27, 1431

XHTML comment 1432
XHTML documentation of class

Circle 1340
XHTML documentation of

method Area method of
class Circle 1341

XHTML form 1462

1568 Index

XHTML Recommendation 1264,
1451

XHTML table without
accessibility modifications
1231

XLink (Extensible Linking
Language) 16

XML (Extensible Markup
Language) 15, 20, 25, 839,
1042

XML comment 1330
XML declaration 840
XML document containing book

information 878
XML document referencing its

associated DTD 867
XML document that conforms to a

Microsoft Schema document
870

XML document that conforms to
W3C XML Schema. 872

XML document that describes
various sports 864

XML document that does not
conform to XSD schema 876

XML documentation 1331
XML documentation comment

1330
XML documentation generated by

Visual Studio .NET 1341
XML file containing AdRotator

information 974
.xml file extension 841
XML file that does not conform to

the Schema in Fig. 18.17 876
XML GL (XML Guidelines) 1235
XML Guidelines (XML GL) 1235
xml namespace 844
XML namespaces demonstration

844
XML node 841, 847
XML parser 841
XML processors 841
XML root 841
XML Schema 25, 844, 870, 872
XML serialization 1092
XML tag 840
XML to mark up a business letter

842
XML used to mark up an article

839
XML Validator 868
XML Validator displaying an

error message 870
XML Validator used to validate an

XML document 869

XML.com 888
XML.org 887
XML4J parser 841
XML-Data Reduced 870
XmlDeclaration constant of

enumeration XmlNode-
Type 849

XmlDom.cs 851
XmlNodeReader class 848
XmlNodeReader used to iterate

through an XML document
848

XmlNodeType enumeration 849
xmlns attribute 845, 847
XmlReader class 848
XmlReaderTest.cs 848
XmlValidatingReader class

873
XMLWriter.cs 939
Xor method of class BitArray

1496, 1508
XPath expression 857, 858, 890
XPath expressions and

descriptions 865
XPathNavigator class used to

navigate selected nodes 858
XPathNodeIterator Class

858
.xsd extension 872
XSD Schema document to which

bookxsd.xml conforms.
872

xsd:date 873
xsd:double 873
xsd:int 873
xsd:string 873
xsd:time 873
xsl

template 879
XSL (Extensible Stylesheet

Language) 16, 844, 877
XSL document that transforms

sorting.xml into
XHTML 879

XSL specification 887
XSL style sheet applied to an

XML document 882
XSL variable 882
XSLT (Extensible Stylesheet

Language Transformation)
25

XSLT processor 877
XsltArgumentList class 882
XslTransform class 882
x-y coordinate 1418, 1478

Y
y-axis 686
y-coordinate 686
Yahoo! 1295
yellow 688
yellow arrow 1315
Yellow static property of

structure Color 689
YesNo 148
YesNoCancel 148

Z
zero-based counting 143, 242
zeroth element 238

