Thlnklng
C#

Larry O’Brien
and
Bruce Eckel

Thlnklng
C#

Larry O’Brien
and
Bruce Eckel

Prentice Hall
& Upper Saddle River, New Jersey 07458

EEEEEEEE

Dedlcatlon

who makes me hap

Overview

Preface: Computer Language

: Those Who Can, Code

1

2: Introduction to Objects 19
3: Hello, Objects 49
4: Controlling Program Flow 87
5: Initialization and Cleanup 149
6: Hiding the Implementation 199
7: Reusing Classes 219
8: Interfaces and Implementation 261
9: Coupling and Cohesion 315
10: Collecting Your Objects 349
11: Error Handling with Exceptions 439
12: I/Oin C# 473
13: Reflection and Attributes 511
14: Programming Windows Forms 547
15: GDI+ Overview 659
16: Multithreaded Programming 711
17: XML 773
18: Web Programming 824
A: C# for Visual Basic Programmers 879
B: C# for Java Programmers 883
C: Test-First Programming with NUnit 887

D: Programming the Pocket PC 895
E: C# programming guidelines 903
F: Resources 015
Concordance 917
Class, Method, Property Cross-Reference 921

Index

929

What's Inside

Inheritance: Reusing the
Preface: Computer &

INterfacecoovvveeeevveeeennereennns 27
Language Is-a vs. is-like-a relationships 311
Prerequisites......ccccceveevueenuennne. 2 Interchangeable objects with
Learning C#cccocevvvivinninncnnes 3 polymorphism..........ceeveeen.e. 32
GOalS ceoeeeeiiieeeeeeee e, 4 Abstract base classes and interfaces3y
Online documentation............. 5 Object landscapes and lifetimes3y
EXErCISES ...eeeveueereeeenreeeeieennnee, 5 Collections and iterators 38
Source code....couuuueeninieeeieneaannnns 5 The singly rooted hierarchy......... 40
Coding standards..................... 7 Collection libraries and support for
C# and .NET versions.............. 8 easy collection usecoceeveueruenee. 41
Seminars and mentoring......... 8 The housekeeping dilemma: who
EITOTS .ccvviiiieieeeeeee e, 8 should clean up?......c.ocovewereuenennn. 42
Note on the cover design.......... 8 Exception handling: dealing
Acknowledgments 9 With eITOTS ..ooveeeviieeiiieieenenne 43
1: Those Who Can, Code 1I\,/Iult'1thread1ng 44
) (SIS 51153 0 & R 45
Software eCONOMICS..........cvee. 3 Remote objectscccceeeueennee. 46
C# and the Internet 4 SumMmary.....cceveeinnneenneenns 46
Static SIteS ..oeevererrieriereerienereeeene
DyDamic SHeSc.uuevereveeeemecrmcrnennne 5 3: HeHO, ObjeCtS
PEEr-10-PEETeonervrreeeereeesreenenene You manipulate objects with
Web services... references.......ceveeeeeeesvennnen. 49
SECUTILY .eeveeenrerrerverreeereeenaeennes You must create all the objects50
Analysis, design, and Extreme Where storage lives
Programming..........c.cocoeveenenc. 7 ATTAYS N C# oo
Strategies for transition........... 9 Special case: value types............... 52
Management obstacles.......... 10 You never need to destroy an
Return on investment................... 11 Obj (<o TN 53
SUMMATY...ccoeerierrenriirierienreenee 17 SCOPING vvvvvvrererrerrreresersesssssenesens 53

Scope of objects -y
Creating new data types: classss

Fields, properties, and methods...55
Methods, arguments, and
return values..........cceevveenveennee 58

The argument listc.cccevennee. 59
Attributes and meta-behavior6o

2: Introduction to Objects
The progress of abstraction...19
An object has an interface 22
The hidden implementation.. 24
Reusing the implementation. 26

Delegates......cccevverveererneenvennen. 61

Properties......ccceeeeeeeeeeceennnen. 62
Creating new value types....... 63
Enumerations..........cceceevveveenennnen. 64

Compiling and running

Fine-tuning compilation................ 75

The Common Language Runtime.75
Comments and embedded

documentation
Documentation Comments.......... 80
Documentation example.............. 82
Coding style

4: Controlling Program Flow

Using C#operators................. 87
Precedence 87
Assignmentc..coceeeeeeenienenenne. 88
Aliasing during method calls........ 89
Aliasing and object state............... 90
Aliasing and the ref keyword....... 92
Beyond aliasing with out............. 95
Mathematical operators............... 98

Unary minus and plus operators100
Auto increment and decrement. 100

Relational operators101

Testing object equivalence......... 102
Logical operatorscc.cecceueuene 103
Short-circuiting.........ccceveevevuenene 104
Bitwise operatorsc..cccceeeeuee. 105
Shift operators ... 106
Ternary if-else operator............... 111
The comma operator................... 112

Common pitfalls when using

OPETALOTS....cvevereneenereeeeerereeene 113
Casting operatorsc..ccccceuee.e. 113
Literals

Promotion

C# has sizeofc.ccceouvvevenueenne 116
C#’S PreproCessor........coeeveevennee. 116
Precedence revisited................... 118
A compendium of operators....... 118

Execution control

The comma operator................... 136

break and continue................. 136

5: Initialization and Cleanup

Guaranteed initialization with
the constructor
Method overloading ...

Distinguishing overloaded methodsi54

Overloading with primitives....... 155
Overloading on return values..... 159
Default constructors................... 159
The this keyword

Calling constructors from
CONSIIUCOTS .ceenvieeieeeeeeeeeene 164
The meaning of static................ 165

Cleanup: finalization and
garbage collection
What are destructors for?........... 167

Instead of a destructor, implement
IDisposable.Dispose()......... 168

Destructors, IDisposable, and the

using keyword.........cccceceeeenennee. 173
How a garbage collector works...174
Member initialization........... 176
Specifying initialization 178
Constructor initialization............ 179
Array initialization............... 185
The params method modifier.. 189
Multidimensional arrays............ 190
What a difference a rectangle makes194
SUMMArY.....ccceevveeereneeeeneneen. 195
EXErcises ...cccovvvveeeeeeeeeeeinnnnns 196
6: Hiding the
Implementation
Organizing with namespaces200
Creating unique names.............. 202
Using #define to change behavior204
C#’s access specifiers........... 206
public: interface access 206
internalccoeevvevrennenen. 207

private: you can’t touch that!...208

protected.............ccccoeeeenennnne. 210
Interface and implementation211
Class access.......cocvveeerveennenn. 213
SUMMATY...eevveereeeeerennerneeeeeees 215
EXErCiSesceevuvereveievueencreenans 217

7: Reusing Classes

Composition syntax............. 220
Inheritance syntax............... 223
Initializing the base class........... 225
Combining composition and
inheritance.......ccoocveeeeenveneene. 229

Guaranteeing proper cleanup....230
Choosing composition vs.

inheritance........ccceceeeeveennene 234
protected 235
Incremental development ... 236
Upcasting

Why “upcasting”?...

Explicit overloading only............ 239
The const and readonly
keywords......cccceveeeveeeeceennen.

Sealed classes

Emphasize virtual functions 254
Initialization and class loading255

Initialization with inheritance....255

8: Interfaces and

Implementation
Upcasting revisited.............. 262
Forgetting the object type 263
The twist .cccveveeveeeeieeecieenee,

Method-call binding
Producing the right behavior266

Extensibility......ccccceeveevienienennnene 270
Static methods cannot be
virtual.....ccceeeeevveeeeeineeeeennen. 274
Overriding vs. overloading .. 276
Operator overloading 278

Multiargument operator

overloading 282
Explicit and implicit type
CONVETSIONS ...veeveerereereerreenrennnens 283
Operator overloading design
guidelines.......coceeeeerereeneneneennnse. 28
Abstract classes and metho%gg5
Constructors and
polymorphism...................... 289
Order of constructor calls.......... 290
Behavior of polymorphic methods
inside constructors..........ceeuveenees 292
Designing with inheritance .294
Pure inheritance vs. extension...295
Downcasting and run-time type

identificationccceeveeeveecveennes 298
Interfaces

“Multiple inheritance” in C#...... 305

Extending an interface with Introduction to data structures380
inheritance Queues and stacks 381
Summary.......ccceeeevveecveeennenn. ArrayList

. . Dictionaries......cccccceeeeeeennnn..
9: Couphng and C_OheSIOn Hashtable...........................&
Software as architecture vs. ListDicti
. istDictionary...
SOftware arChlteCture 315 SortedListcccccoevvnnerreennnn.

What is software architecture?317
Simulation architectures:

always taught, rarely used... 318
Client/server and n-tier

String specialists.......ccccecereeenne

One key, multiple values 392

Customizing hashcode providers394
String specialists:

architectures' 318 StringCollection and
Layered architectures.......... 322 StringDictionary 396
Problem-solving architectures323 Container disadvantage:
Dispatching architectures.... 323 UNKNOWN tYPe .eovvevveererennnenne 397

“Not really object-oriented” 324 Using CollectionBase to make

Couph.ng type-conscious collections......... 399
Cohesionccccceecveecveesnnnne. IEnumerators. 401
Design is as design does Custom indexers.................. 403
First, do no harm................. Custom enumerators & data
Write boring code................. StIUCEUTES .o 406
Mak.e names rr‘leaningful """ 340 Sorting and searching Lists 413
Limit complexity................ 341 From collections to arrays... 414
Mak? stuff as private as Persistent data with ADO.NET421
POSSIDIE ..o, 343 Getting a handle on data with
Coupling, cohesion, and design DataSetccooeveeererenenccnenne 422
18 4<) 016 (T 344 Connecting to a database 425
Summary 345 Fast reading with IDataReader428
EXErciSescuveeeeeeeeeeeeeveennnns 346 CRUD with ADO.NET 430
10: Collecting Your Objects Update and delete.................. 349

ATTAYS v, 349 The object-relational impedance

Arrays are first-class objects....... 351 mismatch ..o, 434

The Array class........ccceeverevennnne. 355 ;igi?:g """""""""""""""" 332

Array’s static methods.............. 355 o mm oo

Array element comparisons....... 358 11: Error H andling Wlth

What? No bubbles?.................... 360 EX c eptl ons

Unsafe arrayscocceeeeveeeeneenne. 362 Basic exceptions

Get things right... .cc.cocoveneneenee. 366 .

... then get them fast 368 Exception arguments....

Catching an exception
AITay SUMMATY ...eeeernreereneeennns 375 8 P 443

The try blocK......ccccoeveverenuennne. 443 Regular expressionsce.... 499

Exception handlers..................... 443 Checking capitalization style......504
Supertype matching................... 444 SUMMAry......cceeeveeereeeereeeennne 508
Exceptions have a helplink........ 444 EXErcisescccceeevuveereevuneennnne 508
Creating your own exceptions445 g .
C#’s lac%(};)f checked exciptions451 13: Reflection and Attributes
Catching any exception.............. 452 The need for RTTI ...
Rethrowing an exception........... 453 The Type objectccccceeerueeenenne.
Elevating the abstraction level... 453 Checking before a cast................ 517
Standard C# exceptions....... 455 RTTI S}‘Intax e 523
Performing cleanup with Reflection: run-time class
information.......cceevveeeennnen. 525

What’s finally for?..................... 457 Adding meta-information with

Finally and using.................... 461 attributes ...ooceevevveevenenieerenienene
Pitfall: the lost exception 462 Attributes are just classes
CONSLIUCLOTSvevevneneeerenee 464 Specifying an attribute’s targets.528
Exception matching _____________ 468 Attribute arguments.........ccueuee. 529
Exception guidelines.................. 469 The Global Assembly Cache....... 532
SUMMATY......orrererererererenens 470 Designing with attributes........... 537
EXEICISES ..vvovverevenrerrereereenenn. 470 Beyond objects with aspects.......543
SUMMAry......cceeevvvereeeerenennnne 543
12: 1/0in C# EXEICiSesoouevvveveveennas A543
Fﬂi’ dl.)lrecu.)ry’ and Path 473 14: Programming Windows
irectory listerccceeveennne 473
Checking for and creating Forms
QHTECOTIES «erevveerrreeeereeeeesseeeeee Delegates.........cccoevvireruennne 548
Isolated stores....... Designing With Delegates ... 550
Input and output Multicast delegates.............. 552
Types of Stream 479 Eventsccevvveeeveeeeeeeeeeeeneeenn 555
Text and binary Recursive traps.......cocoeveevueienne 558
Working with different sources .480 The genesis of Windows Forms561
Fun with CryptoStreams........ 482 Creating a Form 562
BinaryReader and GUI architectures563
BinaryWriter 486 Using the Visual Designer ... 563
StreamReader and Form-Event-Control............ 570
StreamWriter...........o...oo..... 491 Presentation-Abstraction-
Random access with Seek....494 Controlceeeveeeecerrerereennene 573
Standard I/O........cccccveeuen.e. 495 Model-View-Controller 577

Reading from standard input 496
Redirecting standard I/O
Debugging and Tracing..............

Constant resources 591
What about the XP look?..... 593
Fancy buttons..............c........ 596
TOOIIPS .vevveeveeieeneenienienns 599
Displaying and editing text..600
Linking texXt......ccceeeevverrvennne 604
Checkboxes and
RadioButtons................... 606
List, Combo, and
CheckedListBoxes........... 609
Multiplane displays with the
Splitter control 615
TreeView and ListView... 616
ListView......ccccecveeeneenen. 618
1CON VIEWS...ovueenieieneeieieneeene 618
Details VIEW ...c..ceveveeeieienenenne. 618
Using the clipboard and drag
and drop.....cccceeeveecveerreesneenne 622
Clipboard........ccceververveerereneenene 622
Drag and dropc.cceceeeeveennenen. 624
Data-bound controls............ 634
Editing data from bound
(167118 (o) KT 639
MENUS ...cevvvvvrrerrrreneenneennnnnnnns 646
Standard dialogs.........c........ 650
Usage-centered design 653
SUMMATY...ccccovrereeeerranenrnnnne 654
EXErcisesccoovvveeereeeeeeecennnnns 655

15: GDI+ Overview

Your canvas: the Graphics

ClaSS .uvveeeeeeeeeeeeeeeeeereeeeenne 659
Understanding repaints....... 661
Control: paint thyself......... 662
Scaling and transforms........ 665
Filling regions..........ccceeuue... 672
Non-rectangular windows... 677
Matrix transforms................ 678
Hit detection........ccecueeunennne. 686
Fonts and textccceeuennne. 688

Printing......ccecceeeeveeeevvenennenn. 690

Bitmaps....ccceceeeeeeeeenneenniennne 692

Rich clients with interop698
COM Interop and the

WebBrowser control........ 698
COM Interop challenges...... 701
Non-COM Interop 702
Summary.......ccceeeeeeeeeeneeennn. 707
EXErciSescccceevvvveeeeeivvenennns 708

16: Multithreaded

Programming
Responsive user interfaces... 711
.NET’s threading model........ 714

Running a thread.........ccccceceeueenne 716
Waiting for a thread to complete 717
Multiple threads in action.......... 719
Threading for a responsive interfacey21

Interrupting a sleeping Thread 724

Thread.Join() waits for
another thread to end.......... 727
Sharing limited resources.... 729

Improperly accessing resources.730
Using Monitor to prevent
COILISIONS ..vveeereerrecnreerreere e, 735
lock blocks — a shortcut for using
Monitor...........ccceeeeeeveecveeseennns 741
Monitoring static value types.....748
The Monitor is not “stack-proof” 751

Cross-process synchronization with

659

17: XML,

Deadlocks......ccueeeveeeneeennee. 753
Not advised: Suspend() and

Resume()....cooveveeeeeeieennnn. 760
Threads and collections....... 765
Summary......ccceeeeveeeeeieeennne 769
EXErcises ...cceevvvvevvveeeeeeeeennns 770
XML structurecceceeeveneee 774
XML as a stream.................. 775
XML as atree.......ccceeeeeeunnee.. 777

Writing XML......ccccceeveueennen. 778

XML serialization 783
Deserializing XML............... 789

Can'’t serialize cycles 789
Schemas......cccceevvveeeevuveeeennnes 796
ADO and XML.......cooeen.e.n. 798
XPath navigation.................. 801

An XPath explorer........c..ccceeuee. 807
Transforming a document... 815
SUMMATY....cceereeeiernineeennnne 821
EXEercisesccceevveeeecvenennnne 822

18: Web Programming

Identifying a machine.......... 824
SOCKELS ..ceeevveereeeireeereeeeen, 826

Whois for ZoneAlarm................. 826

Receiving incoming connections833
Serving multiple clients.............. 837
Communicating with Microsoft
MESSENEET ...cuvveeuverreecerenrennneenns 841
Creating and receiving HTTP
TeqUESES c..oovuiiiiiiiiicice 852
Asynchronous Web requests 858
From Web programming to
Web Services......cceevervennnene 864
Insanely simple Web services.... 865
Maintaining state...........cccce....... 868
Web services vs. Web APIs........ 868

Consuming Web services........... 872

Modifying XML returns 874
SUMMAry.....cceeevvuverreeeeeenannns 876
EXErciSescccceeevvveeeeruveenenn. 877

A: C# for Visual Basic
Programmers

B: C# for Java Programmers

C: Test-First Programming
with NUnit

D: Programming the Pocket
PC

E: C# programming

guidelines
Designcoceeeeeeeeereenieeiene 903
Implementation................... 910

F: Resources

NET Software.......ccccccen..... 915
Non-.NET BooKs.......ccuuee..... 915
Concordance

Class, Method, Property
Cross-Reference

Index

Preface: Computer
Language

C# is a language, and like all languages, therefore a way of
thinking. Languages channel us down particular avenues
of thought, make certain ideas as obvious as a grand
concourse and others as confusing and mysterious as a
back alley. Different computer languages facilitate
different things; there are computer languages that
facilitate graphics programming and others that are best
for text manipulation, many that excel in data
relationships, and several whose raison d’étre is pure
performance. C# is a language for professional
programming. The ideas that it facilitates, the capabilities
that it makes easy, are those that lead to the rapid
development of robust, scalable programs that deliver
client value and are easily modifiable.

You can’t look at C# as just a list of keywords that must be memorized to get a
clean compile or as a conveyor belt for calling library functions. You must look at
it as an interlocking set of features that support the efficient creation of object-
oriented, high-quality programs. And to understand C# in this way, you must
understand both its strengths and its weaknesses, and how they relate to the best
practices that are known for developing software and the challenges that remain.
This book discusses programming as a profession, not as an academic discipline,
and the pragmatic use of C# and the .NET Framework SDK. Thus, the chapters
present their features based on what we the authors believe to be the core issues
of the subject and the way in which C# addresses those issues.

A chapter in Thinking in C# should take you to the point where you can take
charge of your own further education by whatever means you find most
constructive. For some topics, you may find the background provided by the book
sufficient and concern yourself only with fleshing out the details of the .NET

library classes and methods in the area. Hopefully, some topics will excite your
interest and you will seek out a deeper understanding of the underlying
principles.

Every chapter in this book is worthy of book-length discussion and Thinking in
C# necessarily glosses over many issues. Rather than hide these decisions in
academic rhetoric, this book tries to make explicit the subjective opinions of the
authors, Larry O’Brien and Bruce Eckel. Additionally, neither of us is in the
employ of Microsoft! and both of us are fairly jaded when it comes to languages,
frameworks, and implementations. We do not hesitate to criticize design
decisions with which we disagree nor do we pause when it comes to crediting
Java as an important influence as both a marketing and technical influence on C#
and .NET. Both of us have been programming since the 1970s and writing and
teaching on these subjects since the ’80s, so our opinions may be judged
incorrect, but we come to those opinions by experience.

Prerequisites

This book assumes that you have some programming familiarity: you understand
that a program is a collection of statements, the idea of a
subroutine/function/macro, control statements such as “if” and looping
constructs such as “while,” etc. However, you might have learned this in many
places, such as programming with Microsoft Office’s Visual Basic for Applications
or working with a tool like Perl. As long as you’ve programmed to the point where
you feel comfortable with the basic ideas of programming, you'll be able to work
through this book.

The book will be easiest for Visual Basic, Delphi, or Java programmers. Visual
Basic programmers will be familiar with many library names and several of the
programming models, Delphi programmers will recognize in C# the influence of
Anders Hejlsberg, and Java programmers will find the hardest thing about
moving to C# is getting used to a different naming convention. If you don’t have a
background in those languages, don’t count yourself out, although naturally it
means that you will be required to expend a little more effort.

This book does not assume that you’re familiar with object-oriented
programming (OOP) and the first half of the book can be seen as an extended
tutorial on object-oriented programming at least as much as a tutorial on C# per
se. No formal background in computer science is expected.

I Larry has been paid to write technical white papers for Microsoft.

it

Thinking in C# www.ThinkingIn.NET

Although references will often be made to language features in other languages
such as C++ and Java, these are not intended to be insider comments, but instead
to help all programmers put C# in perspective with those languages. All good
programmers are polyglots and the greatest value proposition of the NET
Framework is that it supports multiple languages.

Learning C#

Picasso is reputed to have said “Computers are worthless; they can only give you
answers.” The same could be said of books. No book can teach you C#
programming, because programming is a creative process. The only way to learn
any language is to use it in a variety of situations, to gradually internalize it as you
solve increasingly difficult problems with it. To learn C#, you must start
programming in C#.

This is not to say that the best way to learn C# is on the job. For one thing,
companies don’t typically allow programmers to work in a language in which they
have no experience. More significantly, your job is to deliver value to your
customers, not to learn the nuances of C# and the .NET Framework.

For many people, seminars are the best environment for rapid learning. There
are many reasons for this: the interactions with the teachers and fellow students,
the explicit dedication of several days to achieving specific educational goals, or
just being out of the office and away from email and meetings. One of the authors
(Bruce) has been teaching object-oriented programming in multiday seminars
since 1989. The structure of this book is highly influenced by those experiences.

As the chair of the C++ and Java tracks at the Software Development conference,
Bruce discovered that speakers tended to give the typical audience too many
topics at once. Sometimes this was because they were striving to present an
example that was “realistic” and therefore unfocused. Other times it stemmed
from a fear of underserving the more experienced in the audience. Over the years,
Bruce developed many presentations, iteratively developing a scope and sequence
for teaching object-oriented programming in a language-specific manner. This
curriculum has been the core of many products: books, CD-ROMs, and seminars
for a variety of languages including C++, Java, and, now, C#.

There are three notable characteristics of this curriculum:

¢ It has a broad scope, from fundamental topics such as “how does one
compile a program?” to professional challenges such as thread-safe
design

Preface: Computer Language i1

It is outcome-oriented: the goal is to give the learner the basic skills for
professional object-oriented development in the language

It is dependent on the learner’s active engagement with the samples and
exercises

Although this book is influenced by the seminars and books that preceded it, it is
not just seminar notes. More than anything, the book is designed to serve the
solitary reader who is struggling with a new programming language.

Goals

Like its immediate predecessor Thinking in Java, this book is structured around
the process of teaching the language. In particular, the structure is based on the
way the language can be taught in seminars. Chapters in the book correspond to
what experience has taught is a good lesson during a seminar. The goal is to get
bite-sized pieces that can be taught in a reasonable amount of time, followed by
exercises that are feasible to accomplish in a classroom situation.

The goals of this book are to:

1.

Present the material one simple step at a time so that you can easily
digest each concept before moving on.

Use examples that are as simple and short as possible. This generally
prevents “real world” problems, but it’s better to understand every detail
of an example rather than being impressed by the scope of the problem it
solves.

Carefully sequence the presentation of features so that you aren’t seeing
something that you haven’t been exposed to. Of course, this isn’t always
possible; in those situations, a brief introductory description is given.

Give a pragmatic understanding of the topic, rather than a
comprehensive reference. There is an information importance hierarchy,
and there are some facts that 95 percent of programmers will never need
to know and that just confuse people and add to their perception of the
complexity of the language. To take an example from C#, if you
memorize the operator precedence table on page 118, you can write
clever code. But if you need to think about it, it will also confuse the
reader/maintainer of that code. So forget about precedence, and use
parentheses when things aren’t clear.

Keep each section focused enough so that the range of topics covered is
digestible. Not only does this keep the audience’s minds more active and

w

Thinking in C# www.MindView.net

involved during a hands-on seminar, but it gives the reader a chance to
tackle the book within the busy time constraints that we all struggle with.

6. Provide you with a solid foundation so that you can understand the
issues well enough to move on to more difficult coursework and books.

Online documentation

The .NET Framework SDK (a free download from Microsoft) comes with
documentation in Windows Help format. So the details of every namespace,
class, method, and property referenced in this book can be rapidly accessed
simply by working in the Index tab. These details are usually not discussed in the
examples in this book, unless the description is important to understanding the
particular example.

Exercises

Exercises are a critical step to internalizing a topic; one often believes that one
“gets” a subject only to be humbled doing a “simple exercise.” Most exercises are
designed to be easy enough that they can be finished in a reasonable amount of
time in a classroom situation while the instructor observes, making sure that all
the students are absorbing the material. Some exercises are more advanced to
prevent boredom for experienced students.

The first half of the book includes a series of exercises that are designed to be
tackled by iterative and incremental effort—the way that real software is
developed. The second half of the book includes open-ended challenges that
cannot be reduced to code in a matter of hours and code, but rather are intended
to challenge the learner’s synthesis and evaluation skills2.

Source code

All the source code for this book is available as copyrighted freeware, distributed
as a single package, by visiting the Web site www.ThinkingIn.Net. To make sure
that you get the most current version, this is the official site for distribution of the
code and the electronic version of the book. You can find mirrored versions of the
electronic book and the code on other sites (some of these sites are found at
www.ThinkingIn.Net), but you should check the official site to ensure that the

2 Professional educators should contact the authors for a curriculum including pre- and
post test evaluation criteria and sample solutions.

Preface: Computer Language v

mirrored version is actually the most recent edition. You may distribute the code
in classroom and other educational situations.

The primary goal of the copyright is to ensure that the source of the code is
properly cited, and to prevent you from republishing the code in print media
without permission. (As long as the source is cited, using examples from the book
in most media is generally not a problem.)

In each source code file you will find a reference to the following copyright notice:

//:! :Copyright.txt

Copyright ©2002 Larry O'Brien

Source code file from the 1st edition of the book
"Thinking in C#." All rights reserved EXCEPT as
allowed by the following statements:

You can freely use this file

for your own work (personal or commercial),
including modifications and distribution in
executable form only. Permission is granted to use
this file in classroom situations, including its
use in presentation materials, as long as the book
"Thinking in C#" is cited as the source.

Except in classroom situations, you cannot copy
and distribute this code; instead, the sole
distribution point is http://www.ThinkingIn.Net
(and official mirror sites) where it is

freely available. You cannot remove this

copyright and notice. You cannot distribute
modified versions of the source code in this
package. You cannot use this file in printed

media without the express permission of the
author. Larry O’Brien makes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or implied
warranty of any kind, including any implied
warranty of merchantability, fitness for a
particular purpose or non-infringement. The entire
risk as to the quality and performance of the
software is with you. Larry O’Brien, Bruce Eckel, and the
publisher shall not be liable for any damages
suffered by you or any third party as a result of
using or distributing software. In no event will

vi

Thinking in C# www.ThinkingIn.NET

Larry O’Brien, Bruce Eckel or the publisher be liable for
any lost revenue, profit, or data, or for direct,
indirect, special, consequential, incidental, or

punitive damages, however caused and regardless of

the theory of liability, arising out of the use of

or inability to use software, even if Larry O’Brien, Bruce
Eckel and the publisher have been advised of the
possibility of such damages. Should the software

prove defective, you assume the cost of all

necessary servicing, repair, or correction. If you

think you've found an error, please submit the

correction using the form you will find at
www.ThinkingIn.Net. (Please use the same

form for non-code errors found in the book.)

/17~

You may use the code in your projects and in the classroom (including your
presentation materials) as long as the copyright notice that appears in each
source file is retained.

Coding standards

In the text of this book, identifiers (function, variable, and class names) are set in
bold. Most keywords are also set in bold, except for those keywords that are used
so much that the bolding can become tedious, such as “class.” Important
technical terms (such as coupling) are set in italics the first time they are used.

The coding style used in this book is highly constrained by the medium. Pixels are
cheap; paper isn’t. The subject of source-code formatting is good for hours of hot
debate, so suffice it to say that the formatting used in this book is specific to the
goals of the book. Since C# is a free-form programming language, you and your
teammates can use whatever style you decide is best for you.

The programs in this book are files that are included by the word processor in the
text, directly from compiled files. Thus, the code files printed in the book should
all work without compiler errors. The errors that should cause compile-time error
messages are commented out with the comment //! so they can be easily
discovered and tested using automatic means. Errors discovered and reported to
the author will appear first in the distributed source code and later in updates of
the book (which will also appear on the Web site www.ThinkingIn.Net).

Preface: Computer Language vit

C#

and .NET versions

All of the code in this book compiles and runs with Microsoft’s NET Framework
1.1.4322and Microsoft’s Visual C# .NET Compiler 7.10.2215.1, which were
released in the Fall of 2002.

Seminars and mentoring

Bruce Eckel’s company MindView provides a wide variety of learning
experiences, ranging from multiday in-house and public seminars to get-
togethers whose goal is to facilitate the “hallway conversations” that are so often
the place in which great leaps in understanding and innovation take place. Larry
O’Brien teaches seminars, but is more often engaged as a direct mentor and
active participant in programming projects. You can sign up for an occasional
announcement newsletter on upcoming C# and .NET learning experiences at
www.ThinkingIn.Net.

Errors

No matter how many tricks a writer uses to detect errors, some always creep in
and these often leap off the page for a fresh reader.

If you discover anything you believe to be an error, please send an email to
corrections@ThinkingIn.Net with a description of the error along with your
suggested correction. If necessary, include the original source file and note any
suggested modifications. Your help is appreciated.

Note on the cover design

The cover of Thinking in C# portrays a kelp bass (Paralabrax clathratus), a
vermilion rockfish (Sebastes miniatus), and a trio of kelp greenling
(Hexagrammos decagrammus), three species that might be encountered while
SCUBA diving in California’s kelp forests. Like programming, SCUBA diving is an
activity dependent on technology. Just as the real joy of SCUBA diving does not
reside in the technology but in the realm the technology opens, so too is it with
computer programming. Yes, you must become familiar with a technology and
some principles that may seem arcane at first, but eventually these things become
second nature and a world that cannot be appreciated by non-practitioners opens
up to you.

People who have splashed around with a mask, snorkeled off a sandy beach, and
watched Shark Week on The Discovery Channel have little or no concept of the
great privilege it is to enter a realm only recently available to humanity. People

viil

Thinking in C# www.MindView.net

who just use computers to send email, play videogames, and surf the Internet are
missing their opportunity to actively participate in the opening of a great
intellectual frontier.

Acknowledgments
(by Larry O’Brien)

First, I have to thank Bruce Eckel for entrusting me to work with the Thinking
In... structure. Without this proven framework, it would have been folly to
attempt a work of this scope on a brand-new programming language.

I'm going to exercise my first-time book author’s perquisite to reach back in time
to thank J.D. Hildebrand, Regina Ridley, and Don Pazour for hiring a blatantly
unqualified hacker with a penchant for Ultimate Frisbee and giving me the
greatest programming job in the world — Product Review Editor of Computer
Language magazine. For half a decade I had the ridiculous privilege of being able
to ask many of the brightest and most interesting people in the software
development industry to explain things in terms that I could understand. It
would be folly to try to begin to list the writers, readers, editors, speakers, and
students to whom I am indebted, but I have to thank P.J. Plauger and Michael
Abrash for demonstrating a level of readability and technical quality that is
inspiring to this day and Stan Kelly-Bootle for his trail-blazing work in
developing a programmer’s lifestyle worthy of emulation (e.g., at your 7oth
birthday party there should be an equal mix of language designers, patrons of the
symphony, and soccer hooligans).

Alan Zeichick urged me to write a book on C#, a display of considerable faith
considering the number of times I have missed deadlines on 1,000-word articles
for him. Claudette Moore and Debbie McKenna of Moore Literary Agency were
tremendously helpful in representing me and Paul Petralia of Prentice Hall
always agreed that the quality of the book took precedence over schedule
pressure. Mark Welsh’s commitment to the book even after his internship ended
is something for future employers to note.

A draft of the book was made available on the Internet and was downloaded on
the order of 100,000 times. The integrated Backtalk system that allowed
paragraph-by-paragraph feedback from readers was developed by Bruce and
allowed far more people than can be listed to contribute to the book. The
contributions of Bob Desinger, Michel Lamsoul, and Edward Tanguay were
especially beneficial. Reg Charney and members of the Silicon Valley C/C++
User’s Group contributed greatly to the discussion of deterministic finalization, a

Preface: Computer Language ix

subject also frequently visited on DevelopMentor’s excellent .NET and C#
discussion lists and the GotDotNet.com forums.

Eric Gunnerson of Microsoft’s C# team gave enormously valuable feedback,
particularly in areas speaking to the intent of the language designers; if the book
is unfair to C# or Microsoft or misstates reasoning, the fault lies solely in the
authors’ pig-headedness. It is an open secret that Microsoft’s public relations
firm of Waggener Edstrom is one of the keys to Microsoft’s success; Sue Schmitz’s
responsiveness during the writing of this book was stellar even by WaggEd'’s high
standards.

C.J. Villa, Ben Rafter, and Ken Bannister pointedly ignored the times when I let
book issues interfere with my work. I too often bore my non-programming
friends with tales of technical drama, but Chris Brignetti and Sarah Winarske
have been especially stoic over the years. Dave Sieks has kept me laughing since
fifth grade, where he demonstrated prior art that should invalidate U.S. patent
number 6,368,227. Finally, I have to thank the crew of the diveboat FeBrina for
reminding me that technology is just a way to get to the good stuff.

Thinking in C# www.ThinkingIn.NET

1: Those Who Can,
Code

Computer programming is tremendous fun. Like music, it
is a skill that derives from an unknown blend of innate
talent and constant practice. Like drawing, it can be
shaped to a variety of ends — commerecial, artistic, and
pure entertainment. Programmers have a well-deserved
reputation for working long hours but are rarely credited
with being driven by creative fevers. Programmers talk
about software development on weekends, vacations, and
over meals not because they lack imagination, but because
their imagination reveals worlds that others cannot see.

Programming is also a skill that forms the basis of one of the few professions that
is consistently in high demand, pays fairly well, allows for flexibility in location
and working hours, and which prides itself on rewarding merit, not
circumstances of birth. Not every talented programmer is employed, women are
under-represented in management, and development teams are not color-blind
utopias. But on the whole, software development is a very good career choice.

Coding, the line-by-line development of precise instructions for the machine to
execute, is and will always be the core activity of software development. We can
say this with certainty because no matter what happens in terms of specification
languages, probabilistic inference, and computer intelligence, it will always be
painstaking work to remove the ambiguity from a statement of client value.
Ambiguity itself is enormously valuable to humans (“That’s beautiful!” “You can’t
miss the turn-off,” “With liberty and justice for all”) and software development,
like crafting legal documents, is a task where the details are necessarily given a
prominence that is quite the opposite of how people prefer to communicate.

This is not to say that coding will always consist of writing highly structured lines
of text. The Uniform Modeling Language (UML), which specifies the syntax and
semantics of a number of diagrams appropriate to different software

development tasks, is expressive enough that one could code in it. But doing so is
hugely inefficient when compared to writing lines of text. On the other hand, a
single UML diagram can clarify in a moment structural and temporal
relationships that would take minutes or hours to comprehend with a text editor
or a debugger. It is a certainty that as software systems continue to grow in
complexity, no single representation will prove universally efficient. But the task
of removing ambiguity, task-by-task, step-by-step, will always be a time-
consuming, error-prone process whose efficiency is reliant on the talents of one
Or more programimers.

There is more to professional software development than writing code. Computer
programs are among the most complex structures ever constructed by humanity
and the challenges of communicating desires and constraints, prioritizing effort,
managing risk, and above all, maintaining a working environment that attracts
the best people and brings forth their greatest efforts... well, software project
management takes a rare combination of skills, skills that are perhaps rarer than
the skills associated with coding. All good programmers discover this eventually
(almost always sooner rather than later) and the best programmers inevitably
develop strong opinions about the software development process and how it is
best done. They become team leads and architects, engineering managers and
CTOs, and as these elite programmers challenge themselves with these tasks,
they sometimes forget about or dismiss as trivial the challenges that arise
between the brackets of a function.

This book stops at the screen edge. That isn’t a judgment that issues of modeling
and process and teamwork aren’t as important as the task of coding; we the
authors know that these things are at least as important to the development of
successful products as coding. But so is marketing. The tasks that are discussed
in this book, the concerns of professional coding, are not often written about in a
language-specific manner.

One reason that the concerns of coding (as opposed to the mere details of coding)
are rarely discussed in a language-specific way is that it is almost impossible to
assume anything about the background of a person choosing to program in C#.
C# has a lot of appeal to younger programmers, as it is the simplest (and
potentially free!) route to the full capabilities of the broadest range of computers,
while older programmers will find in C# the ideal opportunity to mitigate the risk
of obsolescence while maintaining (and, after the initial learning period,

1 All programs in this book can be written, compiled, and run with tools that are available
for no charge from Microsoft and others. See http://www.ThinkingIn.Net/tools.html

Thinking in C# www.ThinkingIn. NET

increasing) productivity. Java programmers sick of the complexity of J2EE or
frustrated by the lack of OS integration will be thrilled by the productivity of the
.NET Framework while Visual Basic programmers have in C# the ideal
opportunity to move into the mainstream of languages derived from the C syntax.
C# could even be a good stepping stone towards Java for those programmers
who wish to maintain the widest possible base of expertise.

Since it’s impossible for us to assume anything about your background, we
instead assume several things about your skills and motivation. This book
constantly shifts the level of discourse from details to theory and back down to
details, a technique that is patently inappropriate for some learners. Rapid shifts
of abstraction levels are part and parcel of software development, however. Most
programmers can relate to the experience of a high-flying business meeting with
discussion of “synergy” and “new paradigms” and “money dripping from the
ceiling” being suddenly interrupted by a programmer who skeptically says “Now
wait a second...” and says something incomprehensible to non-programmers.
Then some other programmer says something equally incomprehensible in
response. This “speaking in binary” goes back and forth for a minute or so and
the skeptical programmer suddenly rocks back and declares to the
businesspeople: “Oh, you don’t even get how huge this is!”

This is not a book about shortcuts and getting by, it is a book about tackling hard
problems in a professional manner. In keeping with that, Thinking in C#
accelerates the pace of discussion throughout the book. An issue that earlier in
the book was the subject of pages and pages of discussion may be referred to off-
handedly or even go unremarked in later chapters. By the time you're using C#
to develop Web Services professionally, you must be able to discuss object-
oriented design at the level in which it is presented in that chapter.

To understand why C# and .NET succeed at a programming level, though, it’s
important to understand how they succeed at the business level, which means
discussing the economics of software development.

Software economics

Ever since Alan Turing introduced the concept of a universal computer and then
John von Neumann the idea of a stored program, software developers have
struggled to balance the symbol-manipulating power of increasing levels of
abstraction with the physical constraints of speed, storage, and transmission-
channel capacity of the machine at hand. There are people still alive who can talk
about reading the output of the most sophisticated computer in existence by
holding a cardboard ruler up to an oscilloscope and judging the signal as either a

Chapter 1: Those Who Can, Code 3

one or a zero. As recently as the early 1980s, the coolest computers in widespread
circulation (the DEC PDP series) could be programmed by flipping switches on a
panel, directly manipulating chip-level signals. And until the 1990s, it was
inconceivable for a PC programmer to be unfamiliar with a wide range of
interrupt requests and the memory addresses of various facilities.

Between the mid-1960s, when the IBM 360 was released and Gordon Moore
formulated his famous law that transistor density in a given area would continue
to double every 18 months, the cost of a single processing instruction has
decreased by approximately 99.99%. This has totally inverted the economics of
programming. Where once it made sense for the programmer to work with a
mental model of the computer’s internal representation and to sacrifice
development time for execution efficiency, now it makes sense for the computer
to be given a model corresponding to the programmer’s internal representation
of the task, even if that representation is not ideally efficient.

Today, the quality of a programming language can be judged by how easily one
can express the widest variety of problems and solutions. By that standard,
object-oriented, imperative programming languages absolutely dominate the
world of software development. An imperative language is one in which a series
of commands is given to the computer: do this, then do that, then do this other
thing. The imperative may seem like the “natural” way to program computers in
that it corresponds to our mental model of how computers work, but as discussed
above, this is no longer a very good reason to embrace a programming language.
Think about how easy some problems are to solve with a spreadsheet, which can
be viewed as a form of non-imperative programming. However, imperative
programming is deeply ingrained in the mainstream zeitgeist and is unlikely to be
dethroned anytime soon.

C# and the Internet

Since the mid-'90s, the world of programming has been transformed. Prior to the
explosive growth of the Internet, most programs were written for either internal
consumption within an organization or were “shrink-wrapped” applications that
provided some type of generic service for a faceless customer. With the rise of the
Web, though, a vast amount of programming effort has shifted to directly
delivering value to the customer. Value on the Web takes many forms: lower
prices (although the days of below-wholesale costs and free giveaways seem to
have passed), convenience, access to greater inventory, customization,
collaboration, and timeliness are just some of the true values that can be derived
from Web-based services.

4 Thinking in C# www.MindView.net

Static sites

Even the simplest business site requires some programming to handle Web form
input. While these can often be handled by a scripting language such as Perl, Perl
doesn’t integrate into a Windows-based server as well as it does into UNIX (many
Perl scripts downloadable from the Web assume the availability of various UNIX
facilities such as sendmail). The .Net Frameworks IHttpHandler class allows
a straightforward and clean method of creating simple form-handlers while also
providing a path towards much more sophisticated systems with complex
designs.

Dynamic sites

ASP.NET is a complete system for creating pages whose contents dynamically
change over time and is ideal for eCommerce, customer-relations management,
and other types of highly dynamic Web sites. The idea of “active server pages”
which combine programming commands and HTML-based display commands
was originally perceived as a bridge between Web designers trained in graphic
arts and the more disciplined world of programming. Instead, server-page
programming evolved into a for-programmers technology that is now widely used
as the model for complete Web solutions.

Server-page programming, like Visual Basic’s form-based programming model,
facilitates the intertwining of display and business-logic concerns. This book
promotes the view that such intertwining is ill-advised for non-trivial solutions.
This doesn’t mean that ASP.NET and Visual Basic are poor languages; quite the
opposite, it means that their programming models are so flexible that doing great
work in them actually requires more understanding and discipline than is
required with C#.

Peer-to-peer

One of the last dot-com technology-hype-of-the-month phrases was peer-to-peer
(also known as P2P, which had the hype advantage of being the same acronym as
one of the last business-hype-of-the-month phrases path-to-profitability).
Ironically, P2P is the type of architecture that one would expect from the phrase
World Wide “Web.” In a P2P architecture, services are created in two steps: peer
resources are discovered by some form of centralized server (even if the server is
not under the legal control of the coordinating organization) and then the peers
are connected for resource sharing without further mediation.

C# and .NET have strong facilities for the creation of P2P systems, as such
systems require the creation of rich clients, sophisticated servers, and facilities
for creating robust resource-sharing systems. P2P is tainted by the prevalence of

Chapter 1: Those Who Can, Code 5

file-sharing systems, but programs such as SETI@Home and Folding@Home
demonstrate the potential for grid computing, which can bring staggering
amounts of computation to bear on challenging problems.

Web services

The value that has been created from a foundation of HTML is astonishing. The
value that will be created from the far more flexible and expressive Extensible
Markup Language (XML) will out-strip everything that has gone before (maybe
not in terms of stock prices and company valuations, but in actual productivity
and efficiency, there is no question). Web Services deliver value by standard Web
protocols and XML-based data representation that does not concern itself with
how it is displayed (Web Services are headless).

Web Services are the raison d’étre of Microsoft’s entire .NET strategy, which is
considerably broader than “just” the biggest update in programming APIs in a
decade. .NET is wrongly interpreted by many business writers as an attempt by
Microsoft to introduce itself as a central mediator in over-the-Web transactions.
The reality is simpler; Microsoft wants to own the operating systems on all Web-
connected devices, even as the type and number of such devices skyrocket. The
more that computers shift from performing primarily computational tasks
towards communication and control tasks, the more that Web Services have to
offer, and Microsoft has always understood that operating system dominance is
controlled by software development.

The .NET strategy is an across-the-board shift towards a post-desktop reality for
Microsoft and software development. The .NET Framework, which combines an
abstraction of the underlying hardware with comprehensive Application
Programming Interfaces (APIs), proposes to developers that “write once, run
anywhere” is an anachronistic view that promotes the concept of a component
running on a computer. The .NET strategy recognizes that rich clients (“rich
clients” meaning non-server applications that are responsible for computing
more than simply their display and input functions) operating on a variety of
devices, high-performance servers, and new applications running on the not-to-
be-abandoned desktop “legacy” machines are not separate markets at all, but
rather are components that all software applications will necessarily have to
address. Even if programmers begin with a browser-based client for their Web
Service (or, for that matter, even if programmers develop a Windows-based rich
client for a Java-based Web Service), part of the .NET strategy is to make it
unfailingly easy to extend the value on another device: a rich client on the
PocketPC or 3G phone or a high-performance database in a backend rack. Web
protocols will connect all these devices, but the value is in the information, which

Thinking in C# www.ThinkingIn. NET

will flow via Web Services. If .NET is the most expedient way to develop Web
Services, Microsoft will inevitably gain marketshare across the whole spectrum of
devices.

Security

The quality of Microsoft’s programming is often judged unfairly. No operating
system but Windows is judged by what esoteric hardware configurations it
doesn’t run on and Microsoft Office may take up a disconcerting amount of disk
space to install, but it’s reliable and capable enough to monopolize the business
world. But where Microsoft has legitimately goofed up is in security. It’s bad
enough that Microsoft generally makes security an all-or-nothing decision
(“Enable macros, yes or no?” “Install this control (permanently), yes or no?”) but
the fact that they give you no data for that all-or-nothing decision (“Be sure that
you trust the sender!”) is unforgiveable. When you consider the number of files
that have been transferred on and off the average computer and the lack of
sophistication of many users, the only thing that’s surprising is how rare truly
devastating attacks have been.

The .NET Framework SDK includes a new security model based on fine-grained
permissions for such things as accessing the file system or the network and digital
signatures based on public-key cryptography and certificate chains. While
Microsoft’s stated goal of “trustworthy computing” goes beyond security and will
require significant modifications in both their operating systems and, perhaps
even more critically, directly in Microsoft Office and Outlook, the NET
Framework SDK provides sophisticated components which one can imagine
giving rise to a much more secure computing environment.

Analysis, design, and Extreme
Programming

Only about a fourth of professional software is developed on time?. This is due to
many reasons, including a quirk in programmers’ psychology that can only be
described as “irrational over-confidence.” The most significant contributors to
time-and-cost overruns, though, are failures in the discovery and description of

2 This is a rough figure, but widely supported. Capers Jones, Barry Boehm, and Steve
McConnell are trustworthy names in the area of software project economics, which
otherwise is dominated by conjecture and anecdote.

Chapter 1: Those Who Can, Code 7

users’ needs and the negotiation of software features to answer those needs.
These processes are called, respectively, analysis and design3.

Cost-and-time overruns are driven by a few underlying truths:

Software project estimation is done haphazardly
Communication is fraught with misunderstanding

Needs change over time

* & o o

It is difficult to visualize and understand the interactions of complex
software systems

¢ People tend to advocate the things in which they’ve already invested
¢ Computers do what you say, not what you mean

On a practical basis, overruns occur because all sorts of assumptions about scope,
personnel, and system behavior get turned into some kind of rough plan that is
then converted into a formal commitment by wishful thinking, financial
imperatives, and a Machiavellian calculation to exploit the common wisdom that
“no one can predict software costs” to avoid responsibility down the line.

In a small program that is only a few thousand lines of code, these issues don’t
play a major role and the majority of the total effort is expended on software
construction (detailed design, coding, unit testing, and debugging). In larger
programs (and many corporations have codebases of several hundred thousand
or even millions of lines of code), the costs of analysis, design, and integrating the
new code into the old (expensive because of unexpected side-effects) have
traditionally outstripped the costs of construction.

Recently, the programming world has been shaken by a set of practices that
basically turn big projects into a series of small projects. These Extreme
Programming (XP4) practices emphasize very close collaboration and
dramatically reduced product lifecycles (both in the scope of features released
and the time between releases). XP’s most famous and controversial practice is
“pair programming,” in which two programmers literally share a monitor and
keyboard, reversing the stereotype of the lone programmer entranced with his or

3 It is often helpful to distinguish between high-level design that is likely to have meaning
to the user and low-level design that consists of the myriad technical decisions that are
made by the programmer but which would be incomprehensible to the user.

4 Not to be confused in any way with Windows XP.

Thinking in C# www.MindView.net

her singular work5. Where traditional software releases have been driven by 12-,
18-, and 24-month release cycles, XP advocates propose 2- and 4-week release
cycles.

C#, .NET, and Visual Studio .NET do not have any special support for either
Extreme Programming or more formal methodologies. Both authors’ experiences
make us strong advocates of XP or XP-like methods and as this book is
unabashedly subjective and pragmatic, we advocate XP practices such as unit
testing throughout. Appendix C, “Test-First Programming with NUnit,” describes
a popular unit-testing framework for .NET.

Strategies for transition

Here are some guidelines to consider when making the transition to .NET and
C#:

1. Training

The first step is some form of education. Remember the company’s investment in
code, and try not to throw everything into disarray for six to nine months while
everyone puzzles over how interfaces work. Pick a small group for indoctrination,
preferably one composed of people who are curious, work well together, and can
function as their own support network while they’re learning C# and .NET.

An alternative approach that is sometimes suggested is the education of all
company levels at once, including overview courses for strategic managers as well
as design and programming courses for project builders. This is especially good
for smaller companies making fundamental shifts in the way they do things, or at
the division level of larger companies. Because the cost is higher, however, some
may choose to start with project-level training, do a pilot project (possibly with
an outside mentor), and let the project team become the teachers for the rest of
the company.

2. Low-risk project

Try a low-risk, low-complexity project first and allow for mistakes. The failure
rate of first-time object-oriented programs is approximately 50%°. Once you've
gained some experience, you can either seed other projects from members of this

5 Unfortunately for XP, a lot of programmers embrace the stereotype and are not
interested or willing to share their keyboards.

6 Software Assessments, Benchmarks, and Best Practices, Capers Jones, 2000, Addison-
Wesley (ISBN: 0-201-48542-7).

Chapter 1: Those Who Can, Code 9

first team or use the team members as a .NET technical support staff. This first
project may not work right the first time, so it should not be mission-critical for
the company. It should be simple, self-contained, and instructive; this means that
it should involve creating classes that will be meaningful to the other
programmers in the company when they get their turn to learn C# and .NET.

3. Model from success

Seek out examples of good object-oriented design before starting from scratch.
There’s a good probability that someone has solved your problem already, and if
they haven'’t solved it exactly you can probably apply what you’ve learned about
abstraction to modify an existing design to fit your needs. This is the general
concept of design patterns, covered in Thinking in Patterns with Java,
downloadable at www.BruceEckel.com.

4. Use existing class libraries

The primary economic motivation for switching to OOP is the easy use of existing
code in the form of class libraries (in particular, the .NET Framework SDK
libraries, which are covered throughout this book). The shortest application
development cycle will result when you can create and use objects from off-the-
shelf libraries. However, some new programmers don’t understand this, are
unaware of existing class libraries, or, through fascination with the language,
desire to write classes that may already exist. Your success with OOP, .NET, and
C# will be optimized if you make an effort to seek out and reuse other people’s
code early in the transition process.

5. Don’t rewrite existing code in C#

It is almost always a mistake to rewrite existing, functional code. There are
incremental benefits, especially if the code is slated for reuse. But chances are you
aren’t going to see the dramatic increases in productivity that you hope for in
your first few projects unless that project is a new one. C# and .NET shine best
when taking a project from concept to reality. If you must integrate with existing
code, use COM Interop or PInvoke (both discussed in Chapter 15) or, if you need
even more control, write bridging code in Managed C++.

Management obstacles

If you're a manager, your job is to acquire resources for your team, to overcome
barriers to your team’s success, and in general to try to provide the most
productive and enjoyable environment so your team is most likely to perform
those miracles that are always being asked of you. Moving to .NET has benefits in
all three of these categories, and it would be wonderful if it didn’t cost you

10

Thinking in C# www.ThinkingIn. NET

anything as well. Although moving to .NET should ultimately provide a
significant return on investment, it isn’t free.

The most significant challenge when moving to any new language or API is the
inevitable drop in productivity while new lessons are learned and absorbed. C# is
no different. The everyday syntax of the C# language does not take a great deal of
time to understand; a programmer familiar with a procedural programming
language should be able to write simple mathematical routines by the end of a
day of study. The .NET Framework SDK contains hundreds of namespaces and
thousands of classes, but is well-structured and architected: this book should be
adequate to guide most programmers through the most common features of the
most important namespaces and give readers the knowledge required to rapidly
discover additional capabilities in these areas.

The mindset of object-oriented programming, on the other hand, usually takes
several months to “kick in,” even when the learner is regularly exposed to good
OOP code. This is not to say that the programmer cannot be productive before
this, but the benefits associated with OOP (ease of testing, reuse, and
maintenance) usually will not begin to accrue for several months at best. Worse,
if the programmer does not have an experienced OOP programmer as a mentor,
their OOP skills will often plateau very early, well before their potential is
reached. The real difficulty of this situation is that the new OOP programmer will
not know that they have fallen short of the mark they could have achieved.

Return on investment

C# and the .NET Framework have significant benefits, both direct and in the area
of risk management, that should provide a significant return on investment
within a year. However, as these are new technologies and because business
software productivity is an area of maddeningly little concrete research, ROI
calculations must be made on a company-by-company or even person-by-person
basis and necessarily involve significant assumptions.

The return you will get on your investment will be in the form of software
productivity: your team will be able to deliver more user value in a given period of
time. But no programming language, development tool, or methodology can
change a bad team into a good team. For all the fuss about everything else,
software productivity can be broken down into two factors: team productivity and
individual productivity.

Team productivity is always limited by communication and coordination
overhead. The amount of interdependence between team members working on a
single module is proportional to the square of the team size (the actual value is

Chapter 1: Those Who Can, Code 11

(N2-N) / 2). As Figure 1-1 illustrates, a team of 3 has just 3 avenues of
communication, a team of 4 has 6 such avenues, and a team of 8 has a whopping
28 channels of communication.

Figure 1-1 Communication paths increase faster than nodes

By the time you get beyond a small handful of programmers, this communication
overhead becomes such a burden that progress becomes deadlocked. Almost all
software project managers recognize this (or at least acknowledge it) and attempt
to divide the project tasks into mutually independent tasks, for instance, breaking
an 8-person team into two independent 4-person teams as shown in Figure 1-2.

Figure 1-2 A single point of communication to each sub-team

This is a nice idea, but is difficult to achieve in practice, because it requires that
each small group has a person talented enough to communicate and coordinate
all their group’s needs and mediate all incoming requests for information. More
commonly, the best that can be accomplished is that people with such talents end
up as “firewalls” for the group working on the most critical piece of functionality:

Error! Objects cannot be created from editing field codes.

Figure 1-3 "Gurus" often become supernodes within a large team

12

Thinking in C# www.MindView.net

But that is not a particularly scalable solution. In the real world, the incremental
benefit of adding programmers to a team diminishes rapidly even in the best-
managed organization.

Individual productivity, on the other hand, has two unusual characteristics:
individual programmer productivity varies by an order of magnitude, while
excellent programmers are significantly rarer than terrible programmers. The
very best programmers are more than twice as productive as average
programmers and ten times as productive as the worst professional programmers
(and because of the communication overhead of a team, this actually understates
the contribution of excellent programmers).

: -

Figure 1-4 Great programmers are rarer than terrible ones

So the software management challenge is creating an efficient team of better-
than-median programmers. That sounds straight from Management Platitudes
101, but it actually leads to two of the three critical questions in your ROI
calculation:

¢ Is moving to C# going to contribute to team and individual productivity?

¢ Is moving to C# going to help attract and retain better-than-median
programmers?

The third critical question in ROI is:
¢ Does moving to C# open new markets or close existing ones?

Let’s take a look at each of those in turn:

Chapter 1: Those Who Can, Code 13

Productivity comparable (but higher) than Visual
Basic or Java

Given identical libraries, it would be difficult at first glance to tell a C# program
from a Java one. The languages have highly similar syntaxes and C# and Java
solutions to a given problem are likely to have highly similar structures.

The two major Java language features missing from C# are inner classes and
checked exceptions. The primary use of Java’s inner classes is to handle events,
for which C# has delegate types; pragmatically, neither of these is a significant
contributor to overall productivity. Similarly, checked exceptions are a minor
burden to productivity, although some say they make a large contribution to
software quality (later, we’ll argue that checked exceptions do not make a great
contribution to quality).

The only other significant non-library facility in Java is the object model of
Enterprise JavaBeans. The four types of EJBs (stateless and stateful session
beans, entity beans, and message-driven beans) provide system-level support for
four needs common to enterprise systems: stateful and stateless synchronous
calls, persistence, and asynchronous message-handling. While .NET provides
support for all these needs, it does so in a more direct way than J2EE. J2EE
introduces significant steps for distinguishing between remote and home
interfaces, generating implementations, and locating, instantiating, and
“narrowing” remote interfaces. While some of these steps are done only once and
therefore have little long-term effect on productivity, generating EJB
implementations can very significantly slow the build process from seconds to
minutes, undercutting one of Java’s significant value propositions. As far as
enterprise development goes, C# has a significant advantage at the compiler
level.

In the broad spectrum of programming languages, though, the similarities
between C# and Java are far greater than their differences and their language-
level productivities are certainly very close. Of course, there’s far more to
productivity than language-level concerns, and Java and C# do not share
identical libraries. One can expect to see significant productivity differences
based on the scope and quality of libraries. Here, one must balance the broad
number of Java libraries available commercially and for free download on the
Internet with the slew of COM components available to C# programmers. One
can download a complete mailserver in Java or one can use COM Interop to
program Outlook; which has “higher productivity” is a function of the
programming task at hand. In general, though, C# appears to be poised to

14

Thinking in C# www.ThinkingIn. NET

challenge Java in the marketplace as the most productive language for teams
building significant business applications.

One of us (Larry) has had significant experience participating and leading teams
of Java developers in corporate environments, developing software for both
internal and external consumption. It is Larry’s belief that C# and .NET provide
across-the-board productivity advantages over Java, especially when compared to
J2EE and J2ME.

The development of high-quality reusable components (components approaching
zero-defect level) is the most significant contributor to software productivity
other than individual talent, while the development of low-quality reusable
components is the most significant detractor from productivity (Jones, 2000).
C# does not, by itself, guarantee the creation of high-quality reusables, but it does
facilitate all of the key ingredients, which includes a heavy emphasis on the
software engineering principles of high cohesion and low coupling. The most
important quality, a fanatical devotion to defect detection and removal, is an
organizational challenge.

Visual Basic has traditionally been the highest productivity environment for the
rapid development of smaller Windows programs. Visual Basic facilitates the
creation of programs whose internal structure mirrors the graphical structure of
the program; the visual forms comprising the interface are associated with the
coding for program logic. Certainly it’s been possible to break away from this
structure, but a decade of experience with Visual Basic has proved that a great
deal of value can be delivered with a programming language that isn’t overly
concerned with emphasizing “computer science-y” topics but rather emphasizes
the shortest cycle between thought, code, and prototype.

As programs grow in size, the proportion of effort devoted to the user interface
tends to decrease and the previously mentioned issues of reuse, coupling, and
cohesion control productivity. Visual Basic’s productivity advantage compared to
fully object-oriented languages has disappeared in larger programs. Now, with
Visual Basic .NET’s full support for object-orientation, that’s no longer an issue.
Early reports of NET uptake show VB.NET and C# “splitting the field” in terms
of adoption. While VB.NET will certainly be successful, it is more verbose than
the C-derived syntax of C#. Since the languages have similar capabilities
(sharing, as they do, the Common Language Infrastructure, and neither having
dramatic extensions to the object-oriented imperative programming model), a C#
programmer will likely be able produce equivalent functionality in fewer lines of
code than a Visual Basic .NET programmer. Since the rate of lines of code
produced is fairly constant across programming languages (although that rate

Chapter 1: Those Who Can, Code 15

varies greatly between individuals), C# should have higher productivity than
VB.NET.

Good, but not great, performance

C# code is compiled to a Common Intermediate Language (CIL) which is further
transformed into machine-code at load-time. This just-in-time compilation
model leads to code that runs without interpretation, but introduces two
inefficiencies: an expensive loading procedure and an inability of the
programmer to exploit processor knowledge. Neither of these is significant for
most programmers, although elite device-driver and game programmers will
likely stick with their C and C++ compilers. On the other hand, the just-in-time
model provides — at least in theory — an opportunity for the JIT to produce
processor-specific code that can run faster than general code. There are also
interesting opportunities for profile-guided optimization.

More significantly for performance, C# uses a managed heap and a managed
threading model that greatly reduce defects at the potential cost of some
performance (because the runtime must run code to solve the general problem,
while an elite C programmer would be able to develop a solution fine-tuned to the
specifics of the task at hand). The very significant reduction in tasks associated
with memory management contributes to C#’s productivity, while its
performance remains acceptable for the vast majority of applications.
Interestingly, C# has two characteristics (rectangular arrays and the ability to
turn off array range checking) that have the potential for significantly increasing
number-crunching speed, but casual benchmarking shows C# to remain very
comparable to Java for these types of calculations. At the time of writing,
rectangular arrays actually run slightly slower than jagged arrays, apparently
because jagged array optimizations have already been implemented in the just-
in-time compiler.

Low tool cost

It is possible to develop in C# with command-line tools that Microsoft makes
available for free (in fact, this book advocates that programmers learn C# using
these free tools in order to avoid confusing the language and its libraries from the
facilities of Microsoft’s Visual Studio .NET programming environment).
Microsoft’s Internet Information Server Webserver is bundled with their
professional operating systems. One can use Microsoft Access to learn database
programming with ADO.NET. A subscription to MSDN Universal, which provides
the entire gamut of Microsoft development tools and servers, costs less than
$3,000, which is approximately the fully-burdened cost of a programmer for one
week.

16

Thinking in C# www.MindView.net

The new new thing

Part of the psychology of programming is a desire to work with what is perceived
as “the latest technology.” The flip side of this coin is a fear of having one’s skills
become obsolescent, a reasonable fear in an industry that routinely undergoes
huge transformations in “essential skills” every 5-6 years and has a significant
prejudice against hiring older workers; David Packard’s warning that “to remain
static is to lose ground,” has been taken to heart by generations of computer
programmers. C# is the last best chance for procedural programmers to move to
object orientation, while .NET provides an infrastructure that is flexible enough
to embrace multiple programming paradigms as they emerge. So even if C# and
.NET were only “just” as good as alternative existing languages and platforms, the
best programmers are going to be attracted to opportunities to investigate these
new Microsoft technologies.

A challenge for .NET, though, is the large population of second-tier programmers
who may be convinced by politics or marketing not to give .NET a chance. To win
the hearts and minds of the programming community, Microsoft must forego
soundbite attacks and make the case that .NET is a tent big enough to hold closed
and open source, individual and team development, and pragmatic and
experimental programming techniques.

Access to new platforms

As discussed previously, the .NET strategy involves many more platforms beyond
the desktop PC. The .NET Framework SDK directly contains capabilities
appropriate for server development, while the .NET Compact Framework SDK
makes programming for handhelds and other devices similarly easy. DirectX 9
will contain .NET-programmable libraries, while the TabletPC’s unique features
can also be accessed by C#. In addition to Microsoft’s efforts to move .NET onto
new platforms, the Mono project (www.go-mono.com) has brought C# to Linux.

Summary

The people who should be programmers are those who would program whether it
was a profession or not. The fact is, though, that it is not just a profession, but
one that plays an increasingly important role in the economy. Being a
professional computer programmer involves understanding the economic role of
information, computers, programmers, and software development “in the large.”
Unfortunately, an understanding of software development economics is not
widespread in the business world and to be honest, neither is it widespread in the
programming world itself. So a lot of effort is wasted in wild goose chases, fads,
and exercises in posterior covering.

Chapter 1: Those Who Can, Code 17

C# and the .NET Framework are the products of several underlying trends. The
cost of available processing power relative to the labor cost of programming has
been decreasing since the invention of computers. Into the 1970s, programmers
had to compete for access to every clock cycle. This gave birth to the classic
approaches to programming, both in terms of technology and, even more
significantly, in terms of programmer psychology. Even in those days labor issues
often drove project costs, but today, time and labor are by far the chief
determinants of what can and cannot be programmed.

In the 1990s, the increasing power and interconnectedness of the machines on
which software was developed and delivered combined to create significant
macroeconomic effects. Even though one of these effects was a speculative
bubble, other effects included real advances in the productivity across broad
sectors of the economy and the rise of a new channel for delivering business
value. The majority of business programming effort for the foreseeable future will
be involved with delivering value via the Internet.

Analysis and design have also shifted in response to these factors. Analysis, the
process of discovering the problem, and high-level design, the plan for solving the
problem, are significant challenges for larger software systems. But recently, the
tide of public opinion has held that the best way to solve these and other
challenges of large-scale development are best handled by tackling them as a
series of small projects, delivering value incrementally.

This fits with many studies of software productivity, which show that iterative
development, an emphasis on quality assurance, and attention to program
structure are important contributors to software success.

The C# programming language and the .NET Framework are ideally suited for
the new realities of software development, but moving to C#, especially for
programmers without a background in object orientation, is not without costs.
Basically, object orientation does not pay off immediately or even on the first
project. A new way of thinking about software and design needs to be internalized
by the programmers; a good software manager will recognize that a positive
return-on-investment requires an investment.

Thinking in C# www.ThinkingIn. NET

2: Introduction to
Objects

This chapter is background and supplementary material.
Many people do not feel comfortable wading into object-
oriented programming without understanding the big
picture first.

Thus, there are many concepts that are introduced here to give you a solid
overview of OOP. However, many other people don’t get the big picture concepts
until they’ve seen some of the mechanics first; these people may become bogged
down and lost without some code to get their hands on. If you're part of this latter
group and are eager to get to the specifics of the language, feel free to jump past
this chapter—skipping it at this point will not prevent you from writing programs
or learning the language. However, you will want to come back here eventually to
fill in your knowledge so you can understand why objects are important and how
to design with them.

We'll go into great detail on the specifics of object-orientation in the first half of
this book, but this chapter will introduce you to the basic concepts of OOP,
including an overview of development methods. This chapter, and this book,
assume that you have had experience in a procedural programming language,
although not necessarily Visual Basic.

The progress
of abstraction

All programming languages provide abstractions. Since to a computer everything
but chip operations, register contents, and storage is an abstraction (even input
and output are “just” side-effects associated with reading or writing values into
particular locations), the ease with which abstractions are created and
manipulated is quite important! It can be argued that the complexity of the
problems you’re able to solve is directly related to the kind and quality of
abstraction. By “kind” we mean, “What is it that you are abstracting?” Assembly
language is a small abstraction of the underlying machine. The early imperative

19

languages that followed (such as Fortran, BASIC, and C) were abstractions of
assembly language. These languages are big improvements over assembly
language, but their primary abstraction still requires you to think in terms of the
structure of the computer rather than the structure of the problem you are trying
to solve. The programmer must establish the association between the machine
model (in the “solution space,” which is the place where you're modeling that
problem, such as a computer) and the model of the problem that is actually being
solved (in the “problem space,” which is the place where the problem exists). The
effort required to perform this mapping, and the fact that it is extrinsic to the
programming language, produces programs that are difficult to write and
expensive to maintain, and as a side effect created the entire “programming
methods” industry.

The alternative to modeling the machine is to model the problem you’re trying to
solve. Early languages such as LISP and APL chose particular views of the world
(“All problems are ultimately lists” or “All problems are algorithmic,”
respectively). PROLOG casts all problems as chains of true-or-false statements.
Languages have been created for constraint-based programming and for
programming exclusively by manipulating graphical symbols. Each of these
approaches is a good solution to the particular class of problem they’re designed
to solve, but when you step outside of that domain they become awkward.

The object-oriented approach goes a step further by providing tools for the
programmer to represent elements in the problem space. This representation is
general enough that the programmer is not constrained to any particular type of
problem. We refer to the elements in the problem space and their representations
in the solution space as “objects.” (Of course, you will also need other objects that
don’t have problem-space analogs.) The idea is that the program is allowed to
adapt itself to the lingo of the problem by adding new types of objects, so when
you read the code describing the solution, you're reading words that also express
the problem. This is a more flexible and powerful language abstraction than what
we’ve had before. Thus, OOP allows you to describe the problem in terms of the
problem, rather than in terms of the computer where the solution will run.
There’s still a connection back to the computer, though. Each object looks quite a
bit like a little computer; it has a state, and it has operations that you can ask it to
perform. However, this doesn’t seem like such a bad analogy to objects in the real
world—they all have characteristics and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first successful
object-oriented language and one of the languages upon which C# is based. These
characteristics represent a pure approach to object-oriented programming:

20

Thinking in C# www.MindView.net

1. Everything is an object. Think of an object as a fancy variable; it
stores data, but you can “make requests” to that object, asking it to
perform operations on itself. In theory, you can take any conceptual
component in the problem you're trying to solve (dogs, buildings,
services, etc.) and represent it as an object in your program.

2. A program is a bunch of objects telling each other what
to do by sending messages. To make a request of an object, you
“send a message” to that object. More concretely, you can think of a
message as a request to call a function that belongs to a particular object.

3. Each object has its own memory made up of other
objects. Put another way, you create a new kind of object by making a
package containing existing objects. Thus, you can build complexity in a
program while hiding it behind the simplicity of objects.

4. Every object has a type. Using the parlance, each object is an
instance of a class, in which “class” is synonymous with “type.” The most
important distinguishing characteristic of a class is “What messages can
you send to it?”

5. All objects of a particular type can receive the same
messages. This is actually a loaded statement, as you will see later.
Because an object of type “circle” is also an object of type “shape,” a circle
is guaranteed to accept shape messages. This means you can write code
that talks to shapes and automatically handle anything that fits the
description of a shape. This substitutability is one of the most powerful
concepts in OOP.

Booch offers an even more succinct description of an object:
An object has state, behavior and identity

This means that an object can have internal data (which gives it state), methods
(to produce behavior), and each object can be uniquely distinguished from every
other object — to put this in a concrete sense, each object has a unique address in
memory?.

1This is actually a bit restrictive, since objects can conceivably exist in different machines
and address spaces, and they can also be stored on disk. In these cases, the identity of the
object must be determined by something other than memory address, for instance, a
Uniform Resource Indicator (URI).

Chapter 2: Introduction to Objects 21

An object has an interface

Aristotle was probably the first to begin a careful study of the concept of type; he
spoke of “the class of fishes and the class of birds.” The idea that all objects, while
being unique, are also part of a class of objects that have characteristics and
behaviors in common was used directly in the first object-oriented language,
Simula-67, with its fundamental keyword class that introduces a new type into a
program.

Simula, as its name implies, was created for developing simulations such as the
classic “bank teller problem.” In this, you have a bunch of tellers, customers,
accounts, transactions, and units of money—a lot of “objects.” Objects that are
identical except for their state during a program’s execution are grouped together
into “classes of objects” and that’s where the keyword class came from. Creating
abstract data types (classes) is a fundamental concept in object-oriented
programming. Abstract data types work almost exactly like built-in types: You
can create variables of a type (called objects or instances in object-oriented
parlance) and manipulate those variables (called sending messages or requests;
you send a message and the object figures out what to do with it). The members
(elements) of each class share some commonality: every account has a balance,
every teller can accept a deposit, etc. At the same time, each member has its own
state, each account has a different balance, each teller has a name. Thus, the
tellers, customers, accounts, transactions, etc., can each be represented with a
unique entity in the computer program. This entity is the object, and each object
belongs to a particular class that defines its characteristics and behaviors.

So, although what we really do in object-oriented programming is create new
data types, virtually all object-oriented programming languages use the “class”
keyword. C# has some data types that are not classes, but in general, when you
see the word “type” think “class” and vice versaZ.

Since a class describes a set of objects that have identical characteristics (data
elements) and behaviors (functionality), a class is really a data type because a
floating point number, for example, also has a set of characteristics and
behaviors. The difference is that a programmer defines a class to fit a problem
rather than being forced to use an existing data type that was designed to
represent a unit of storage in a machine. You extend the programming language
by adding new data types specific to your needs. The programming system

2 Some people make a distinction, stating that type determines the interface while class is
a particular implementation of that interface.

22

Thinking in C# www.ThinkingIn. NET

welcomes the new classes and gives them all the care and type-checking that it
gives to built-in types.

The object-oriented approach is not limited to building simulations. Whether or
not you agree that any program is a simulation of the system you’re designing,
the use of OOP techniques can easily reduce a large set of problems to a simple
solution.

Once a class is established, you can make as many objects of that class as you like,
and then manipulate those objects as if they are the elements that exist in the
problem you are trying to solve. Indeed, one of the challenges of object-oriented
programming is to create a one-to-one mapping between the elements in the
problem space and objects in the solution space.

But how do you get an object to do useful work for you? There must be a way to
make a request of the object so that it will do something, such as complete a
transaction, draw something on the screen, or turn on a switch. And each object
can satisfy only certain requests. The requests you can make of an object are
defined by its interface, and the type is what determines the interface. A simple
example might be a representation of a light bulb:

Type Name Light
on()
Off()
Interface Brighten()
Dim()

Figure 2-1 An object has an interface

Light 1t = new Light();
1t.0n () ;

The interface establishes what requests you can make for a particular object.
However, there must be code somewhere to satisfy that request. This, along with
the hidden data, comprises the implementation. From a procedural
programming standpoint, it’s not that complicated. A type has a function
associated with each possible request, and when you make a particular request to
an object, that function is called. This process is usually summarized by saying

Chapter 2: Introduction to Objects 23

that you “send a message” (make a request) to an object, and the object figures
out what to do with that message (it executes code).

Here, the name of the type/class is Light, the name of this particular Light
object is It, and the requests that you can make of a Light object are to turn it on,
turn it off, make it brighter, or make it dimmer. You create a Light object by
defining a “reference” (It) for that object and calling new to request a new object
of that type. To send a message to the object, you state the name of the object and
connect it to the message request with a period (dot). From the standpoint of the
user of a predefined class, that’s pretty much all there is to programming with
objects.

The diagram shown above follows the format of the Unified Modeling Language
(UML). Each class is represented by a box, with the type name in the top portion
of the box, any data members that you care to describe in the middle portion of
the box, and the member functions (the functions that belong to this object,
which receive any messages you send to that object) in the bottom portion of the
box. Often, only the name of the class and the public member functions are
shown in UML design diagrams, and so the middle portion is not shown. If you're
interested only in the class name, then the bottom portion doesn’t need to be
shown, either.

This book will gradually present more and more UML diagrams of different
types, introducing them as appropriate for specific needs. As was mentioned
earlier, the UML is a language at least as complicated as C# itself, but Thinking
in UML would be a very different book from this one3. The diagrams in this book
do not always comply with the letter of the UML specification and are drawn with
the sole goal of clarifying the main text.

The hidden implementation

It is helpful to break up the playing field into class creators (those who create
new data types) and client programmers (the class consumers who use the data
types in their applications). The goal of the client programmer is to collect a
toolbox full of classes to use for rapid application development. The goal of the
class creator is to build a class that exposes only what’s necessary to the client
programmer and keeps everything else hidden. Why? Because if it’s hidden, the
client programmer can’t use it, which means that the class creator can change the
hidden portion at will without worrying about the impact on anyone else. The

3 Thinking in UML doesn’t exist!

24

Thinking in C# www.MindView.net

hidden portion usually represents the tender insides of an object that could easily
be corrupted by a careless or uninformed client programmer, so hiding the
implementation reduces program bugs. The concept of implementation hiding
cannot be overemphasized.

In any relationship it’s important to have boundaries that are respected by all
parties involved. When you create a library, you establish a relationship with the
client programmer, who is also a programmer, but one who is putting together an
application by using your library, possibly to build a bigger library.

If all the members of a class are available to everyone, then the client
programmer can do anything with that class and there’s no way to enforce rules.
Even though you might really prefer that the client programmer not directly
manipulate some of the members of your class, without access control there’s no
way to prevent it. Everything’s naked to the world.

So the first reason for access control is to keep client programmers’ hands off
portions they shouldn’t touch—parts that are necessary for the internal
machinery of the data type but not part of the interface that users need in order
to solve their particular problems. This is actually a service to users because they
can easily see what’s important to them and what they can ignore.

The second reason for access control is to allow the library designer to change the
internal workings of the class without worrying about how it will affect the client
programmer. For example, you might implement a particular class in a simple
fashion to ease development, and then later discover that you need to rewrite it in
order to make it run faster. If the interface and implementation are clearly
separated and protected, you can accomplish this easily.

C# uses five explicit keywords to set the boundaries in a class: public, private,
protected, internal, and protected internal. Their use and meaning are
quite straightforward. These access specifiers determine who can use the
definitions that follow. public means the following definitions are available to
everyone. The private keyword, on the other hand, means that no one can access
those definitions except you, the creator of the type, inside member functions of
that type. private is a brick wall between you and the client programmer. If
someone tries to access a private member, they’ll get a compile-time error.
protected acts like private, with the exception that an inheriting class has
access to protected members, but not private members. Inheritance will be
introduced shortly. internal is often called “friendly”—the definition can be
accessed by other classes in the same assembly (a DLL or EXE file used to
distribute .NET classes) as if it were public, but is not accessible to classes in
different assemblies. protected internal allows access by classes within the

Chapter 2: Introduction to Objects 25

same assembly (as with internal) or by inheriting classes (as with protected)
even if the inheriting classes are not within the same assembly.

C#’s default access, which comes into play if you don’t use one of the
aforementioned specifiers, is internal for classes and private for class
members.

Reusing the implementation

Once a class has been created and tested, it should (ideally) represent a useful
unit of code. It turns out that this reusability is not nearly so easy to achieve as
many would hope; it takes experience and insight to produce a good design. But
once you have such a design, it begs to be reused. Code reuse is one of the
greatest advantages that object-oriented programming languages provide.

The simplest way to reuse a class is to just use an object of that class directly, but
you can also place an object of that class inside a new class. We call this “creating
a member object.” Your new class can be made up of any number and type of
other objects, in any combination that you need to achieve the functionality
desired in your new class. Because you are composing a new class from existing
classes, this concept is called composition (or more generally, aggregation).
Composition is often referred to as a “has-a” relationship, as in “a car has an
engine.”

Car Engine

Figure 2-2: A Car has an Engine

(The above UML diagram indicates composition with the filled diamond, which
states the Engine is contained within the car. We will typically use a simpler
form: just a line, without the diamond, to indicate an association.4)

Composition comes with a great deal of flexibility. The member objects of your
new class are usually private, making them inaccessible to the client
programmers who are using the class. This allows you to change those members
without disturbing existing client code. You can also change the member objects
at run-time, to dynamically change the behavior of your program. Inheritance,

4 This is usually enough detail for most diagrams, and you don’t need to get specific about
whether you're using aggregation or composition.

26

Thinking in C# www.ThinkingIn. NET

which is described next, does not have this flexibility since the compiler must
place compile-time restrictions on classes created with inheritance.

Because inheritance is so important in object-oriented programming it is often
highly emphasized, and the new programmer can get the idea that inheritance
should be used everywhere. This can result in awkward and overly complicated
designs. Instead, you should first look to composition when creating new classes,
since it is simpler and more flexible. If you take this approach, your designs will
be cleaner. Once you’ve had some experience, it will be reasonably obvious when
you need inheritance.

Inheritance:
Reusing the interface

By itself, the idea of an object is a convenient tool. It allows you to package data
and functionality together by concept, so you can represent an appropriate
problem-space idea rather than being forced to use the idioms of the underlying
machine. These concepts are expressed as fundamental units in the programming
language by using the class keyword.

It seems a pity, however, to go to all the trouble to create a class and then be
forced to create a brand new one that might have similar functionality. It’s nicer if
we can take the existing class, clone it, and then make additions and
modifications to the clone. This is effectively what you get with inheritance, with
the exception that if the original class (called the base or super or parent class) is
changed, the modified “clone” (called the derived or inherited or sub or child
class) also reflects those changes.

Base

!

Derived

Figure 2-3: Derived is a type of Base

(The arrow in the above UML diagram points from the derived class to the base
class. As you will see, there can be more than one derived class.)

Chapter 2: Introduction to Objects 27

A type does more than describe the constraints on a set of objects; it also has a
relationship with other types. Two types can have characteristics and behaviors in
common, but one type may contain more characteristics than another and may
also handle more messages (or handle them differently). Inheritance expresses
this similarity between types using the concept of base types and derived types. A
base type contains all of the characteristics and behaviors that are shared among
the types derived from it. You create a base type to represent the core of your
ideas about some objects in your system. From the base type, you derive other
types to express the different ways that this core can be realized.

For example, a trash-recycling machine sorts pieces of trash. The base type is
“trash,” and each piece of trash has a weight, a value, and so on, and can be
shredded, melted, or decomposed. From this, more specific types of trash are
derived that may have additional characteristics (a bottle has a color) or
behaviors (an aluminum can may be crushed, a steel can is magnetic). In
addition, some behaviors may be different (the value of paper depends on its type
and condition). Using inheritance, you can build a type hierarchy that expresses
the problem you’re trying to solve in terms of its types.

A second example is the classic “shape” example, perhaps used in a computer-
aided design system or game simulation. The base type is “shape,” and each
shape has a size, a color, a position, and so on. Each shape can be drawn, erased,
moved, colored, etc. From this, specific types of shapes are derived (inherited):
circle, square, triangle, and so on, each of which may have additional
characteristics and behaviors. Certain shapes can be flipped, for example. Some
behaviors may be different, such as when you want to calculate the area of a
shape. The type hierarchy embodies both the similarities and differences between
the shapes.

28

Thinking in C# www.MindView.net

Shape

Color

Draw()
Erase()
Move()

| |

Circle Square Triangle

Figure 2-4: All subtypes share the same behavior names

Casting the solution in the same terms as the problem is tremendously beneficial
because you don’t need a lot of intermediate models to get from a description of
the problem to a description of the solution. With objects, the type hierarchy is
the primary model, so you go directly from the description of the system in the
real world to the description of the system in code. Indeed, one of the difficulties
people have with object-oriented design is that it’s too simple to get from the
beginning to the end. A mind trained to look for complex solutions is often
stumped by this simplicity at first.

When you inherit from an existing type, you create a new type. This new type
contains not only all the members of the existing type (although the private ones
are hidden away and inaccessible), but more important, it duplicates the interface
of the base class. That is, all the messages you can send to objects of the base
class you can also send to objects of the derived class. Since we know the type of a
class by the messages we can send to it, this means that the derived class is the
same type as the base class. In the previous example, “a circle is a shape.” This
type equivalence via inheritance is one of the fundamental gateways in
understanding the meaning of object-oriented programming.

Since both the base class and derived class have the same interface, there must be
some implementation to go along with that interface. That is, there must be some
code to execute when an object receives a particular message. If you simply
inherit a class and don’t do anything else, the methods from the base-class

Chapter 2: Introduction to Objects 29

interface come right along into the derived class. That means objects of the
derived class have not only the same type, they also have the same behavior,
which isn’t particularly interesting.

You have two ways to differentiate your new derived class from the original base
class. The first is quite straightforward: You simply add brand new functions to
the derived class. These new functions are not part of the base class interface.
This means that the base class simply didn’t do as much as you wanted it to, so
you added more functions. This simple and primitive use for inheritance is, at
times, the perfect solution to your problem. However, you should look closely for
the possibility that your base class might also need these additional functions.
This process of discovery and iteration of your design happens regularly in
object-oriented programming.

Shape

Color

Draw()
Erase()
Move()

A
/\

| | |
Circle Square Triangle

FlipVertical()
FlipHorizontal()

Figure 2-5: Derived classes may extend the base interface

Although inheritance may sometimes imply that you are going to add new
functions to the interface, that’s not necessarily true. The second and more
important way to differentiate your new class is to change the behavior of an
existing base-class function. This is referred to as overriding that function.

30

Thinking in C# www.ThinkingIn. NET

Shape

Color

Draw()
Erase()
Move()
A

i

Circle Square | | Triangle

Draw() Draw() Draw()
Erase() Erase() Erase()

Figure 2-6: The name of the behavior is constant, the behavior itself may vary

To override a function, you simply create a new definition for the function in the
derived class. You're saying, “I'm using the same interface function here, but I
want it to do something different for my new type.”

Is-a vs. is-like-a relationships

There’s a certain debate that can occur about inheritance: Should inheritance
override only base-class functions (and not add new member functions that
aren’t in the base class)? This would mean that the derived type is exactly the
same type as the base class since it has exactly the same interface. As a result, you
can exactly substitute an object of the derived class for an object of the base class.
This can be thought of as pure substitution, and it’s often referred to as the
substitution principle. In a sense, this is the ideal way to treat inheritance. We
often refer to the relationship between the base class and derived classes in this
case as an is-a relationship, because you can say “a circle is a shape.” A test for
inheritance is to determine whether you can state the is-a relationship about the
classes and have it make sense.

There are times when you must add new interface elements to a derived type,
thus extending the interface and creating a new type. The new type can still be
substituted for the base type, but the substitution isn’t perfect because your new
functions are not accessible from the base type. This can be described as an is-
like-a relationship; the new type has the interface of the old type but it also
contains other functions, so you can’t really say it’s exactly the same. For
example, consider an air conditioner. Suppose your house is wired with all the
controls for cooling; that is, it has an interface that allows you to control cooling.

Chapter 2: Introduction to Objects 31

Imagine that the air conditioner breaks down and you replace it with a heat
pump, which can both heat and cool. The heat pump is-like-an air conditioner,
but it can do more. Because the control system of your house is designed only to
control cooling, it is restricted to communication with the cooling part of the new
object. The interface of the new object has been extended, and the existing system
doesn’t know about anything except the original interface.

Thermostat Controls Cooling System
LowerTemperature() Cool()
/\
Air Conditioner Heat Pump
Cool() Cool()
Heat()

Figure 2-7: HeatPump is like a CoolingSystem, but is this the best solution?

Of course, once you see this design it becomes clear that the base class “cooling
system” is not general enough, and should be renamed to “temperature control
system” so that it can also include heating—at which point the substitution
principle will work. However, the diagram above is an example of what can
happen in design and in the real world.

When you see the substitution principle it’s easy to feel like this approach (pure
substitution) is the only way to do things, and in fact it is nice if your design
works out that way. But you’ll find that there are times when it’s equally clear that
you must add new functions to the interface of a derived class. With inspection
both cases should be reasonably obvious.

Interchangeable objects

with polymorphism

When dealing with type hierarchies, you often want to treat an object not as the
specific type that it is, but instead as its base type. This allows you to write code
that doesn’t depend on specific types. In the shape example, functions
manipulate generic shapes without respect to whether they’re circles, squares,
triangles, or some shape that hasn’t even been defined yet. All shapes can be
drawn, erased, and moved, so these functions simply send a message to a shape
object; they don’t worry about how the object copes with the message.

32

Thinking in C# www.MindView.net

Such code is unaffected by the addition of new types, and adding new types is the
most common way to extend an object-oriented program to handle new
situations. For example, you can derive a new subtype of shape called pentagon
without modifying the functions that deal only with generic shapes. This ability to
extend a program easily by deriving new subtypes is important because it greatly
improves designs while reducing the cost of software maintenance.

There’s a problem, however, with attempting to treat derived-type objects as their
generic base types (circles as shapes, bicycles as vehicles, cormorants as birds,
etc.). If a function is going to tell a generic shape to draw itself, or a generic
vehicle to steer, or a generic bird to move, the compiler cannot know at compile-
time precisely what piece of code will be executed. That’s the whole point—when
the message is sent, the programmer doesn’t want to know what piece of code will
be executed; the draw function can be applied equally to a circle, a square, or a
triangle, and the object will execute the proper code depending on its specific
type. If you don’t have to know what piece of code will be executed, then when
you add a new subtype, the code it executes can be different without requiring
changes to the function call. Therefore, the compiler cannot know precisely what
piece of code is executed, so what does it do? For example, in the following
diagram the BirdController object just works with generic Bird objects, and
does not know what exact type they are. This is convenient from
BirdController’s perspective because it doesn’t have to write special code to
determine the exact type of Bird it’s working with, or that Bird’s behavior. So
how does it happen that, when Move() is called while ignoring the specific type
of Bird, the right behavior will occur (a Goose runs, flies, or swims, and a
Penguin runs or swims)?

BirdController Bird
Relocate() Move()
/ A

/\
What happens when T
Move()is called?

Goose Penguin
Move() Move()

Figure 2-8: Late binding is the primary twist in OOP

The answer is the primary twist in object-oriented programming: the language
does not make a function call in the traditional sense. The function call generated
by a non-OOP language causes what is called early binding, a term you may not
have heard before because you've never thought about it any other way. It means

Chapter 2: Introduction to Objects 33

the compiler generates a call to a specific function name, and the linker resolves
this call to the absolute address of the code to be executed. In OOP, the program
cannot determine the address of the code until run-time, so some other scheme is
necessary when a message is sent to a generic object.

To solve the problem, object-oriented languages use the concept of late binding.
When you send a message to an object, the code being called isn’t determined
until run-time. The compiler does ensure that the function exists and performs
type checking on the arguments and return value (languages such as Visual Basic
in which this isn’t true are said to have weak typing or latent typing), but it
doesn’t know the exact code to execute.

To perform late binding, C# uses a special bit of code in lieu of the absolute call.
This code calculates the address of the function body, using information stored in
the object (this process is covered in great detail in Chapter 7). Thus, each object
can behave differently according to the contents of that special bit of code. When
you send a message to an object, the object actually does figure out what to do
with that message.

In C#, you can choose whether a language method call is early- or late-bound. By
default, they are early-bound. To take advantage of polymorphism, methods must
be defined in the base class using the virtual keyword and implemented in
inheriting classes with the override keyword.

Consider the shape example. The family of classes (all based on the same uniform
interface) was diagrammed earlier in this chapter. To demonstrate
polymorphism, we want to write a single piece of code that ignores the specific
details of type and talks only to the base class. That code is decoupled from type-
specific information, and thus is simpler to write and easier to understand. And,
if a new type—a Hexagon, for example—is added through inheritance, the code
you write will work just as well for the new type of Shape as it did on the existing
types. Thus, the program is extensible.

If you write a method in C# (as you will soon learn how to do):

void DoStuff (Shape s) {
s.Erase();
//

s.Draw () ;

34

Thinking in C# www.ThinkingIn. NET

This function speaks to any Shape, so it is independent of the specific type of
object that it’s drawing and erasing. If in some other part of the program we use
the DoStuff() function:

Circle ¢ = new Circle();
Triangle t = new Triangle();
Line 1 = new Line();

DoStuff (c);

DoStuff (t);

DoStuff(1l);

The calls to DoStuff() automatically work correctly, regardless of the exact type
of the object.

This is actually a pretty amazing trick. Consider the line:

| Dostuff(c);

What’s happening here is that a Circle is being passed into a function that’s
expecting a Shape. Since a Circle is a Shape it can be treated as one by
DoStuff(). That is, any message that DoStuff() can send to a Shape, a Circle
can accept. So it is a completely safe and logical thing to do.

We call this process of treating a derived type as though it were its base type
upcasting. The name cast is used in the sense of casting into a mold and the up
comes from the way the inheritance diagram is typically arranged, with the base
type at the top and the derived classes fanning out downward. Thus, casting to a
base type is moving up the inheritance diagram: “upcasting.”

Chapter 2: Introduction to Objects 35

Shape

Circle Square Triangle

Figure 2-9: A subtype can be upcast to its base type(s)

An object-oriented program contains some upcasting somewhere, because that’s
how you decouple yourself from knowing about the exact type you're working
with. Look at the code in DoStuff():

s.Erase();
//

s.Draw () ;

Notice that it doesn’t say “If you're a Circle, do this, if you're a Square, do that,
etc.” If you write that kind of code, which checks for all the possible types that a
Shape can actually be, it’s messy and you need to change it every time you add a
new kind of Shape. Here, you just say “You're a shape, I know you can Erase()
and Draw() yourself, do it, and take care of the details correctly.”

What’s impressive about the code in DoStuff() is that, somehow, the right thing
happens. Calling Draw() for Circle causes different code to be executed than
when calling Draw() for a Square or a Line, but when the Draw() message is
sent to an anonymous Shape, the correct behavior occurs based on the actual
type of the Shape. This is amazing because, as mentioned earlier, when the C#
compiler is compiling the code for DoStuff(), it cannot know exactly what types
it is dealing with. So ordinarily, you’d expect it to end up calling the version of
Erase() and Draw() for the base class Shape, and not for the specific Circle,
Square, or Line. And yet the right thing happens because of polymorphism. The
compiler and run-time system handle the details; all you need to know is that it
happens, and more important how to design with it. When you send a message to
an object, the object will do the right thing, even when upcasting is involved.

36

Thinking in C# www.MindView.net

Abstract base classes
and interfaces

Often in a design, you want the base class to present only an interface for its
derived classes. That is, you don’t want anyone to actually create an object of the
base class, only to upcast to it so that its interface can be used. This is
accomplished by making that class abstract using the abstract keyword. If
anyone tries to make an object of an abstract class, the compiler prevents them.
This is a tool to enforce a particular design.

You can also use the abstract keyword to describe a method that hasn’t been
implemented yet—as a stub indicating “here is an interface function for all types
inherited from this class, but at this point I don’t have any implementation for it.”
An abstract method may be created only inside an abstract class. When the
class is inherited, that method must be implemented, or the inheriting class
becomes abstract as well. Creating an abstract method allows you to put a
method in an interface without being forced to provide a possibly meaningless
body of code for that method.

The interface keyword takes the concept of an abstract class one step further
by preventing any function definitions at all. The interface is a very handy and
commonly used tool, as it provides the perfect separation of interface and
implementation. In addition, you can combine many interfaces together, if you
wish, whereas inheriting from multiple regular classes or abstract classes is not
possible.

Object landscapes and lifetimes

Technically, OOP is just about abstract data typing, inheritance, and
polymorphism, but other issues can be at least as important. The remainder of
this section will cover these issues.

One of the most important factors is the way objects are created and destroyed.
Where is the data for an object and how is the lifetime of the object controlled?
There are different philosophies at work here. C++ takes the approach that
control of efficiency is the most important issue, so it gives the programmer a
choice. For maximum run-time speed, the storage and lifetime can be determined
while the program is being written, by placing the objects on the stack (these are
sometimes called automatic or scoped variables) or in the static storage area.
This places a priority on the speed of storage allocation and release, and control
of these can be very valuable in some situations. However, you sacrifice flexibility
because you must know the exact quantity, lifetime, and type of objects while
you're writing the program. If you are trying to solve a more general problem

Chapter 2: Introduction to Objects 37

such as computer-aided design, warehouse management, or air-traffic control,
this is too restrictive.

The second approach is to create objects dynamically in a pool of memory called
the heap. In this approach, you don't know until run-time how many objects you
need, what their lifetime is, or what their exact type is. Those are determined at
the spur of the moment while the program is running. If you need a new object,
you simply make it on the heap at the point that you need it. Because the storage
is managed dynamically, at run-time, the amount of time required to allocate
storage on the heap is significantly longer than the time to create storage on the
stack. (Creating storage on the stack is often a single assembly instruction to
move the stack pointer down, and another to move it back up.) The dynamic
approach makes the generally logical assumption that objects tend to be
complicated, so the extra overhead of finding storage and releasing that storage
will not have an important impact on the creation of an object. In addition, the
greater flexibility is essential to solve the general programming problem.

C# uses the second approach exclusively, except for value types, which will be
discussed shortly. Every time you want to create an object, you use the new
keyword to build a dynamic instance of that object. With languages that allow
objects to be created on the stack, the compiler determines how long the object
lasts and can automatically destroy it. However, if you create it on the heap the
compiler has no knowledge of its lifetime. In a language like C++, you must
determine programmatically when to destroy the object, which can lead to
memory leaks if you don’t do it correctly (and this is a common problem in C++
programs). The .NET runtime provides a feature called a garbage collector that
automatically discovers when an object is no longer in use and destroys it. A
garbage collector is much more convenient because it reduces the number of
issues that you must track and the code you must write. More important, the
garbage collector provides a much higher level of insurance against the insidious
problem of memory leaks (which has brought many a C++ project to its knees).

The rest of this section looks at additional factors concerning object lifetimes and
landscapes.

Collections and iterators

If you don’t know how many objects you're going to need to solve a particular
problem, or how long they will last, you also don’t know how to store those
objects. How can you know how much space to create for those objects? You
can’t, since that information isn’t known until run-time.

38

Thinking in C# www.ThinkingIn. NET

The solution to most problems in object-oriented design seems flippant: you
create another type of object. The new type of object that solves this particular
problem holds references to other objects. Of course, you can do the same thing
with an array, which is available in most languages. But there’s more. This new
object, generally called a container (also called a collection), will expand itself
whenever necessary to accommodate everything you place inside it. So you don’t
need to know how many objects you're going to hold in a container. Just create a
container object and let it take care of the details.

Fortunately, a good OOP language comes with a set of containers as part of the
package. In C++, it’s part of the Standard C++ Library and is sometimes called
the Standard Template Library (STL). Object Pascal has containers in its Visual
Component Library (VCL). Smalltalk has a very complete set of containers. Like
Java, C# also has containers in its standard library. In some libraries, a generic
container is considered good enough for all needs, and in others (C#, for
example) the library has different types of containers for different needs: a vector
(called an ArrayList in C#), queues, hashtables, trees, stacks, etc.

All containers have some way to put things in and get things out; there are
usually functions to add elements to a container, and others to fetch those
elements back out. But fetching elements can be more problematic, because a
single-selection function is restrictive. What if you want to manipulate or
compare a set of elements in the container instead of just accessing a single
element?

The solution is an enumerator, which is an object whose job is to select the
elements within a container and present them to the user of the iterator. As a
class, it also provides a level of abstraction. This abstraction can be used to
separate the details of the container from the code that’s accessing that container.
The container, via the enumerator, is abstracted to be simply a sequence. The
enumerator allows you to traverse that sequence without worrying about the
underlying structure—that is, whether it’s an ArrayList, a Hashtable, a Stack,
or something else. This gives you the flexibility to easily change the underlying
data structure without disturbing the code in your program.

From a design standpoint, all you really want is a sequence that can be
manipulated to solve your problem. If a single type of sequence satisfied all of
your needs, there’d be no reason to have different kinds. There are two reasons
that you need a choice of containers. First, containers provide different types of
interfaces and external behavior. A stack has a different interface and behavior
than that of a queue, which is different from that of a dictionary or a list. One of
these might provide a more flexible solution to your problem than the other.

Chapter 2: Introduction to Objects 39

Second, different containers have different efficiencies for certain operations. But
in the end, remember that a container is only a storage cabinet to put objects in.
If that cabinet solves all of your needs, it doesn’t really matter how it is
implemented (a basic concept with most types of objects).

The singly rooted hierarchy

One of the issues in OOP that has become especially prominent since the
introduction of C++ is whether all classes should ultimately be inherited from a
single base class. In C# (as with virtually all other OOP languages) the answer is
“yes” and the name of this ultimate base class is simply object. It turns out that
the benefits of the singly rooted hierarchy are many.

All objects in a singly rooted hierarchy have an interface in common, so they are
all ultimately the same type. The alternative (provided by C++) is that you don’t
know that everything is the same fundamental type. From a backward-
compatibility standpoint this fits the model of C better and can be thought of as
less restrictive, but when you want to do full-on object-oriented programming
you must then build your own hierarchy to provide the same convenience that’s
built into other OOP languages. And in any new class library you acquire, some
other incompatible interface will be used. It requires effort (and possibly multiple
inheritance) to work the new interface into your design. Is the extra “flexibility”
of C++ worth it? If you need it—if you have a large investment in C—it’s quite
valuable. If you're starting from scratch, other alternatives such as C# can often
be more productive.

All objects in a singly rooted hierarchy (such as C# provides) can be guaranteed
to have certain functionality. You know you can perform certain basic operations
on every object in your system. A singly rooted hierarchy, along with creating all
objects on the heap, greatly simplifies argument passing (one of the more
complex topics in C++).

A singly rooted hierarchy makes it much easier to implement a garbage collector
(which is conveniently built into C#). The necessary support can be installed in
the base class, and the garbage collector can thus send the appropriate messages
to every object in the system. Without a singly rooted hierarchy and a system to
manipulate an object via a reference, it is difficult to implement a garbage
collector.

Since C# guarantees that run-time type information is available in all objects,
you’ll never end up with an object whose type you cannot determine. This is
especially important with system level operations, such as exception handling,
and to allow greater flexibility in programming.

40

Thinking in C# www.MindView.net

Collection libraries and support for easy

collection use

Because a container is a tool that you'll use frequently, it makes sense to have a
library of containers that are built in a reusable fashion, so you can take one off
the shelf and plug it into your program. .NET provides such a library, which
should satisfy most needs.

Downcasting vs. templates/generics

To make these containers reusable, they hold the one universal type in .NET that
was previously mentioned: object. The singly rooted hierarchy means that
everything is an object, so a container that holds objects can hold anything.
This makes containers easy to reuse.

To use such a container, you simply add object references to it, and later ask for
them back. But, since the container holds only objects, when you add your object
reference into the container it is upcast to object, thus losing its identity. When
you fetch it back, you get an object reference, and not a reference to the type that
you put in. So how do you turn it back into something that has the useful
interface of the object that you put into the container?

Here, the cast is used again, but this time you’re not casting up the inheritance
hierarchy to a more general type, you cast down the hierarchy to a more specific
type. This manner of casting is called downcasting. With upcasting, you know,
for example, that a Circle is a type of Shape so it’s safe to upcast, but you don’t
know that an object is necessarily a Circle or a Shape so it’s hardly safe to
downcast unless you know that’s what you're dealing with.

It’s not completely dangerous, however, because if you downcast to the wrong
thing you’ll get a run-time error called an exception, which will be described
shortly. When you fetch object references from a container, though, you must
have some way to remember exactly what they are so you can perform a proper
downcast.

Downcasting and the run-time checks require extra time for the running
program, and extra effort from the programmer. Wouldn’t it make sense to
somehow create the container so that it knows the types that it holds, eliminating
the need for the downcast and a possible mistake? The solution is parameterized
types, which are classes that the compiler can automatically customize to work
with particular types. For example, with a parameterized container, the compiler
could customize that container so that it would accept only Shapes and fetch only
Shapes.

Chapter 2: Introduction to Objects 41

Parameterized types are an important part of C++, partly because C++ has no
singly rooted hierarchy. In C++, the keyword that implements parameterized
types is “template.” .NET currently has no parameterized types since it is possible
for it to get by—however awkwardly—using the singly rooted hierarchy. However,
there is no doubt that parameterized types will be implemented in a future
version of the .NET Framework.

The housekeeping dilemma:
who should clean up?

Each object requires resources in order to exist, most notably memory. When an
object is no longer needed it must be cleaned up so that these resources are
released for reuse. In simple programming situations the question of how an
object is cleaned up doesn’t seem too challenging: you create the object, use it for
as long as it’s needed, and then it should be destroyed. It’s not hard, however, to
encounter situations that are more complex.

Suppose, for example, you are designing a system to manage air traffic for an
airport. (The same model might also work for managing crates in a warehouse, or
a video rental system, or a kennel for boarding pets.) At first it seems simple:
make a container to hold airplanes, then create a new airplane and place it in the
container for each airplane that enters the air-traffic-control zone. For cleanup,
simply delete the appropriate airplane object when a plane leaves the zone.

But perhaps you have some other system to record data about the planes,
possibly data that doesn’t require such immediate attention as the main
controller function. Maybe it’s a record of the flight plans of all the small planes
that leave the airport. So you have a second container of small planes, and
whenever you create a plane object you also put it in this second container if it’s a
small plane. Then some background process performs operations on the objects
in this container during idle moments.

Now the problem is more difficult: how can you possibly know when to destroy
the objects? When you're done with the object, some other part of the system
might not be. This same problem can arise in a number of other situations, and in
programming systems (such as C++) in which you must explicitly delete an object
when you’re done with it this can become quite complex.

With C#, the garbage collector is designed to take care of the problem of releasing
the memory (although this doesn’t include other aspects of cleaning up an
object). When the garbage collector runs (which can happen at any time), it can
tell which objects are no longer in use, and it automatically releases the memory
for that object. This (combined with the fact that all objects are inherited from

42

Thinking in C# www.ThinkingIn. NET

the single root class object and that you can create objects only one way, on the
heap) makes the process of programming in C# much simpler than programming
in C++. You have far fewer decisions to make and hurdles to overcome.

Garbage collectors vs. efficiency and flexibility

If all this is such a good idea, why didn’t they do the same thing in C++? Well of
course there’s a price you pay for all this programming convenience, and that
price is run-time overhead. As mentioned before, in C++ you can create objects
on the stack, and in this case they’re automatically cleaned up (but you don’t have
the flexibility of creating as many as you want at run-time). Creating objects on
the stack is the most efficient way to allocate storage for objects and to free that
storage. Creating objects on the heap can be much more expensive. Always
inheriting from a base class and making all function calls polymorphic also exacts
a small toll. But the garbage collector is a particular problem because you never
quite know when it’s going to start up or how long it will take. This means that
there’s an inconsistency in the rate of execution of a C# program, so you can’t use
it in certain situations, such as when the rate of execution of a program is
uniformly critical. (These are generally called real-time programs, although not
all real-time programming problems are this stringent.)

The designers of the C++ language, trying to woo C programmers (and most
successfully, at that), did not want to add any features to the language that would
impact the speed or the use of C++ in any situation where programmers might
otherwise choose C. This goal was realized, but at the price of greater complexity
when programming in C++. C# is much simpler to use than C++, but the trade-
off is in efficiency and sometimes applicability. For a significant portion of
programming problems, however, C# is the superior choice.

Exception handling:
dealing with errors

Since programming languages were created, error handling has been one of the
most difficult issues. Because it’s so hard to design a good error handling scheme,
many languages simply ignore the issue, passing the problem on to library
designers who come up with halfway measures that can work in many situations
but can easily be circumvented, generally by just ignoring them. A major problem
with most error handling schemes is that they rely on programmer vigilance in
following an agreed-upon convention that is not enforced by the language. If the
programmer is not vigilant—often the case if they are in a hurry—these schemes
can easily be forgotten.

Chapter 2: Introduction to Objects 43

Exception handling wires error handling directly into the programming language
and sometimes even the operating system. An exception is an object that is
“thrown” from the site of the error and can be “caught” by an appropriate
exception handler designed to handle that particular type of error. It’s as if
exception handling is a different, parallel path of execution that can be taken
when things go wrong. And because it uses a separate execution path, it doesn’t
need to interfere with your normally executing code. This makes that code
simpler to write since you aren’t constantly forced to check for errors. In
addition, a thrown exception is unlike an error value that’s returned from a
function or a flag that’s set by a function in order to indicate an error condition—
these can be ignored. An exception cannot be ignored, so it’s guaranteed to be
dealt with at some point. Finally, exceptions provide a way to reliably recover
from a bad situation. Instead of just exiting you are often able to set things right
and restore the execution of a program, which produces much more robust
programs.

It’s worth noting that exception handling isn’t an object-oriented feature,
although in object-oriented languages the exception is normally represented with
an object. Exception handling existed before object-oriented languages.

Multithreading

A fundamental concept in computer programming is the idea of handling more
than one task at a time. Many programming problems require that the program
be able to stop what it’s doing, deal with some other problem, and then return to
the main process. The solution has been approached in many ways. Initially,
programmers with low-level knowledge of the machine wrote interrupt service
routines and the suspension of the main process was initiated through a
hardware interrupt. Although this worked well, it was difficult and nonportable,
so it made moving a program to a new type of machine slow and expensive.

Sometimes interrupts are necessary for handling time-critical tasks, but there’s a
large class of problems in which you’re simply trying to partition the problem
into separately running pieces so that the whole program can be more responsive,
or often just simpler to create and understand. Within a program, these
separately running pieces are called threads, and the general concept is called
multithreading. A common example of multithreading is the user interface. By
using threads, a user can press a button and get a quick response rather than
being forced to wait until the program finishes its current task.

Ordinarily, threads are just a way to allocate the time of a single processor. But if
the operating system supports multiple processors, each thread can be assigned

44

Thinking in C# www.MindView.net

to a different processor and they can truly run in parallel. One of the convenient
features of multithreading at the language level is that the programmer doesn’t
need to worry about whether there are many processors or just one. The program
is logically divided into threads and if the machine has more than one processor
and can allocate the hardware as a “processor pool,” then the program runs faster
without any special adjustments.

All this makes threading sound pretty simple. There is a catch: shared resources.
If you have more than one thread running that’s expecting to access the same
resource you have a problem. For example, two processes can’t simultaneously
send information to a printer. To solve the problem, resources that can be shared,
such as the printer, must be locked while they are being used. So a thread locks a
resource, completes its task, and then releases the lock so that someone else can
use the resource.

C#’s threading is built into the language, which makes a complicated subject
much simpler. The threading is supported on an object level, so one thread of
execution is represented by one object. C# also provides limited resource locking.
It can lock the memory of any object (which is, after all, one kind of shared
resource) so that only one thread can use it at a time. This is accomplished with
the lock keyword. Other types of resources must be locked explicitly by the
programmer, typically by creating an object to represent the lock that all threads
must check before accessing that resource.

Persistence

When you create an object, it exists as long as you need it, but it ceases to exist
when the program terminates. While this makes sense at first, there are
situations where it would be incredibly useful if an object could be created during
one program run and then be transported across program and computer
boundaries or be brought back into its fully-formed existence the next time the
program is run. One way of doing this is to create a database table whose columns
correspond to the fields of the object and write code that maps an object’s state to
a single record in the database. Another way is to use XML to represent the
persistent state of the object. C# has two serialization schemes; one based on a
binary representation of the object and the other that uses XML. The XML
scheme, while a little more work to implement than the binary one, can mediate
between objects and XML documents, which in turn can be stored in files,
transmitted over the Internet, or can themselves be mapped into database files.

Chapter 2: Introduction to Objects 45

Remote objects

While databases and serialization are fine for persisting data, an increasing
number of programs are written to cooperate with other programs by the use of
remote procedure calls (RPC). Where persistence allows you to store and retrieve
the state of your objects, RPC adds behavior. As Booch defined it above, an object
has state, behavior, and identity, so a distributed object-oriented system needs
those three things as well. .NET supports two types of distributed object-oriented
programming:

¢ _.NET Remoting is an efficient “native” architecture in which objects have
identity inside application domains that may or may not be on the local
machine.

¢ Web Services uses an XML-based RPC mechanism that uses familiar
Universal Resource Identifiers (URISs) to define identity. Essentially,
when a remote method call is made with SOAP as the format and HTTP
as the medium, you’ve got a Web Service.While the XML-RPC is not as
efficient on a call-by-call basis as binary .NET Remoting, Web Services
are not confined to the .NET platform and are therefore the subject of a
broader range of development efforts.

Obviously, the coordination of multiple machines and the transfer of critical data
over the vast, unpredictable, and uncontrollable Internet is no small task. The
triumph of .NET is that each of the capabilities mentioned (object-orientation,
threading, collections, and so forth) are coordinated to facilitate just this type of
development. Although Web Services are not confined to the .NET platform, the
.NET Framework provides such significant productivity advantages to this
cutting-edge development challenge that its success is a foregone conclusion.

Summary

Computers have no common sense. Every detail that is necessary to describe and
solve a problem must be made explicit by programmers. But to reason about
problems, humans need to put aside the details and concentrate on the abstract
“big picture.” The history of computer programming can be seen as a process of
discovering better ways to organize details while keeping the abstract big picture
in focus.

One route of discovery focused on data abstraction as the key to tackling large
problems. Database programming languages are based on discovering the
common and unique elements of data in the problem and use the transformation
of input data into output data as the leading principle that will give them a
bearing on a problem and its possible solution. Another line of attack focused on

46

Thinking in C# www.ThinkingIn. NET

behavior as the major challenge. Structured programming uses behavior as the
primary structural element and emphasizes the discovery of common functions.

Object-oriented programming takes the stand that both data and behavior are
equally important. Logically related data and behavior are grouped together in
program elements called types. All instances of a given type have the same
behavior, but may have different data. Integers are a type that can be added and
subtracted, strings are a type that can be appended to other strings, and dogs are
a type that barks at strangers. 47 and 23 are two instances of the integer type, “E
pluribus unum” and “With Liberty and Justice for All” are two instances of the
string type, and Lassie and Rin Tin Tin are two instances of the dog type.

The most common form of type is the class. An instance of a particular class is
called an object. Object-oriented programming consists of defining the behavior
of classes and creating objects and filling them with data. Naturally, this data will
be instances of particular types, and the data in these instances will themselves
be instances of yet other types, and so on. So an object-oriented program consists
of a web of inter-related objects.This sounds confusing, but it turns out to be a
very natural way to talk about problems and their solutions.

Classes can be related by a special “is-a” relationship called inheritance. A class
that inherits from another class starts with all the characteristics of the ancestor
class and can add data or change behavior. Since a dog is a type of mammal and
all mammals have warm blood, the Dog class could descend from Mammal.
The data and behavior relating to warm-bloodedness would be in the Mammal
class, the data and behavior relating to barking at strangers in the Dog class.
Once this was done, programmers and domain experts developing a veterinary
application could talk about a problem and solution relating to body temperature
by speaking of the different characteristics of Mammals and Reptiles, rather
than focusing exclusively on either a data characteristic (the blood temperature)
or a behavioral characteristics (panting versus basking).

The programmer of a class can choose whether its methods (the functions that
specify behavior) may or must be overridden by descendant classes. This aids the
ability of programmers and domain experts to isolate and discuss the different
abstractions in a problem. One can speak of, say, the overall procedure for an
online checkout without going into the details of credit-card versus corporate-
account payments. Conversely, one can implement a credit-card authorization or
a corporate-account debit safe in the knowledge that they can only be accessed
according to a defined interface.

The collection classes and database model of .NET make it easier to structure the
web of inter-related objects that make up an OOP solution. Similarly, the

Chapter 2: Introduction to Objects 47

underlying framework takes care of managing memory and low-level threading
issues, which are notoriously prone to disasters resulting from missed details.
These facilities do cost some amount of performance compared to what can be
done by a skilled programmer “coding to the metal,” but this inherent penalty is
lower than most people think. Poor performance is most often the result of
inefficient design, and C# and object-orientation facilitate efficient design.

Over the years, the “typical” programming project has changed from a specialized
calculation for a tolerant scientist to an information management task for a busy
professional. The challenge to today’s programmers is not often the efficient
expression of a sophisticated mathematical model, but is more often the rapid
delivery of business value to clients in a world where the definition of value is
itself subject to rapid change. Perhaps the single greatest benefit of object-
orientation is that it facilitates communication between programmers and clients
by providing a framework in which the domain experts’ natural way of speaking
can lead to program structure.

48

Thinking in C# www.MindView.net

3: Hello, Objects

Although it is based on C++, C# is more of a “pure”
object-oriented language.

Both C++ and C# are hybrid languages, but in C# the designers felt that the
hybridization was not as important as it was in C++. A hybrid language allows
multiple programming styles; the reason C++ is hybrid is to support backward
compatibility with the C language. Because C++ is a superset of the C language, it
includes many of that language’s undesirable features, which can make some
aspects of C++ overly complicated.

The C# language assumes that you want to do only object-oriented programming.
This means that before you can begin you must shift your mindset into an object-
oriented world (unless it’s already there). The benefit of this initial effort is the
ability to program in a language that is simpler to learn and to use than many
other OOP languages. In this chapter we’ll see the basic components of a C#
program and we’ll learn that everything in C# is an object, even a C# program.

You manipulate objects
with references

Each programming language has its own means of manipulating data. Sometimes
the programmer must be constantly aware of what type of manipulation is going
on. Are you manipulating the object directly, or are you dealing with some kind of
indirect representation (a pointer in C or C++) that must be treated with a special
syntax?

All this is simplified in C#. You treat everything as an object, so there is a single
consistent syntax that you use everywhere. Although you treat everything as an
object, the identifier you manipulate is either a variable representing the value
itself or a “reference” to an object. You might imagine the latter as a television
(the object) with your remote control (the reference). As long as you're holding
this reference, you have a connection to the television, but when someone says
“change the channel” or “lower the volume,” what you’re manipulating is the
reference, which in turn modifies the object. If you want to move around the

49

room and still control the television, you take the remote/reference with you, not
the television.

Also, the remote control can stand on its own, with no television. That is, just
because you have a reference doesn’t mean there’s necessarily an object
connected to it. So if you want to hold a television, you create a Television
reference:

Television t;

But here you've created only the reference, not an object. If you decided to send a
message to t at this point, you’ll get an error because t isn’t actually attached to
anything (there’s no television).

You must create

all the objects

When you create a reference, you want to connect it with a new object. You do so,
in general, with the new keyword. new says, “Make me a new one of these
objects.” So you can say:

Remote myRemote = new Remote (lastChannelWatched);

Not only does this mean “Make me a new Remote,” but it also gives information
about how to make the Remote by supplying some initial context.

Of course, you would have had to have programmed a Remote type for this code
to work. In fact, that’s the fundamental activity in C# programming: creating new
types that represent the problem and solution to the task at hand. Learning how
to do that, and gaining a familiarity with the plethora of preexisting classes in the
.NET Framework Library is what you’ll be learning about in the rest of this book.

Where storage lives

It’s useful to visualize some aspects of how things are laid out while the program
is running, in particular how memory is arranged. There are six different places
to store data:

1. Registers. This is the fastest storage because it exists in a place different
from that of other storage: inside the processor. However, the number of
registers is severely limited, so registers are allocated by the JIT compiler
according to its needs. You don’t have direct control, nor do you see any
evidence in your programs that registers even exist.

50

Thinking in C# www.ThinkingIn. NET

2. The stack. This lives in the general RAM (random-access memory) area,
but has direct support from the processor via its stack pointer. The stack
pointer is moved down to create new memory and moved up to release
that memory. This is an extremely fast and efficient way to allocate
storage, second only to registers. The C# just-in-time compiler must
know, while it is creating the program, the exact size and lifetime of all
the data that is stored on the stack, because it must generate the code to
move the stack pointer up and down. This constraint places limits on the
flexibility of your programs, so while some C# storage exists on the
stack—in particular, value types (explained shortly) and references to
objects —C# objects themselves are not placed on the stack.

3. The heap. This is a general-purpose pool of memory (also in the RAM
area) where all C# objects live. The nice thing about the heap is that,
unlike the stack, the compiler doesn’t need to know how much storage it
needs to allocate from the heap or how long that storage must stay on the
heap. Thus, there’s a great deal of flexibility in using storage on the heap.
Whenever you need to create an object, you simply write the code to
create it using new, and the storage is allocated on the heap when that
code is executed. Of course there’s a price you pay for this flexibility: it
takes more time to allocate heap storage than it does to allocate stack
storage.

4. Static storage. “Static” is used here in the sense of “in a fixed location”
(although it’s also in RAM). Static storage contains data that is available
for the entire time a program is running. You can use the static keyword
to specify that a particular element of an object is static, but C# objects
themselves are never placed in static storage.

5. Constant storage. Constant values are often placed directly in the
program code, which is safe since they can never change. Sometimes
constants are cordoned off by themselves so that they can be optionally
placed in read-only memory (ROM).

6. Non-RAM storage. If data lives completely outside a program it can
exist while the program is not running, outside the control of the
program. The two primary examples of this are serialized objects, in
which objects are turned into streams of bytes, generally to be sent to
another process or machine, and persistent objects, in which the objects
are placed on disk so they will hold their state even when the program is
terminated. The trick with these types of storage is turning the objects
into something that can exist on the other medium, can be resurrected

Chapter 2: Hello, Objects 51

into a regular RAM-based object when necessary, and which still
provides for correct behavior when a new version of the object is
released. .NET Remoting provides for serialization in a number of ways
and which makes huge strides towards addressing the problem of
versioning. Future versions of .NET might provide even more complete
solutions for persistence, such as support for database-style queries on
stored objects.

Arrays in C#

Virtually all programming languages support arrays. Using arrays in C and C++ is
perilous because those arrays are only blocks of memory. If a program accesses
the array outside of its memory block or uses the memory before initialization
(common programming errors) there will be unpredictable results.

One of the primary goals of C# is safety, so many of the problems that plague
programmers in C and C++ are not repeated in C#. A C# array is guaranteed to
be initialized and cannot be accessed outside of its range. The range checking
comes at the price of having a small amount of memory overhead on each array
as well as verifying the index at run-time, but the assumption is that the safety
and increased productivity is worth the expense.

When you create an array of objects, you are really creating an array of
references, and each of those references is automatically initialized to a special
value with its own keyword: null. When C# sees null, it recognizes that the
reference in question isn’t pointing to an object. You must assign an object to
each reference before you use it, and if you try to use a reference that’s still null,
the problem will be reported at run-time. Thus, typical array errors are prevented
in C#.

You can also create an array of value types (which will be described next). Again,
the compiler guarantees initialization because it zeroes the memory for that
array.

Arrays will be covered in detail in later chapters.

Special case: value types

Unlike “pure” object-oriented languages such as Smalltalk, C# does not insist
that every variable must be an object. While the performance of most systems is
not determined by a single factor, the allocation of many small objects can be
notoriously costly. A story goes that in the early 1990s, a manager decreed that
his programming team switch to Smalltalk to gain the benefits of object-
orientation; an obstinate C programmer immediately ported the application’s

52

Thinking in C# www.MindView.net

core matrix-manipulating algorithm to Smalltalk. The manager was pleased with
this surprisingly cooperative behavior, as the programmer made sure that
everyone knew that he was integrating the new Smalltalk code that very
afternoon and running it through the stress test before making it the first
Smalltalk code to be integrated into the production code. Twenty-four hours
later, when the matrix manipulation had not completed, the manager realized
that he’d been had, and never spoke of Smalltalk again.

When Java became popular, many people predicted similar performance
problems. However, Java has “primitive” types for integers and characters and so
forth and many people have found that this has been sufficient to make Java
appropriate for almost all performance-oriented tasks. C# goes a step beyond;
not only are values (rather than classes) used for basic numeric types, developers
can create new value types in the form of enumerations (enums) and structures
(structs).

Value types can be transparently converted to and from object references via a
process known as “boxing.” This is a nice advantage of C# over Java, where
turning a primitive type into an object reference requires an explicit method call.
Boxing is described in more detail on Page 65.

You never need to
destroy an object

In most programming languages, the concept of the lifetime of a variable
occupies a significant portion of the programming effort. How long does the
variable last? If you are supposed to destroy it, when should you? Confusion over
variable lifetimes can lead to a lot of bugs, and this section shows how C# greatly
simplifies the issue by doing all the cleanup work for you.

Scoping

Most procedural languages have the concept of scope. This determines both the
visibility and lifetime of the names defined within that scope. In C, C++, and C#,
scope is determined by the placement of curly braces {}. So for example:

{
int x = 12;
/* only x available */
{
int g = 96;
/* both x & q available */

Chapter 2: Hello, Objects 53

}
/* only x available */
/* q “out of scope” */

}

A variable defined within a scope is available only to the end of that scope.

Indentation makes C# code easier to read. Since C# is a free-form language, the
extra spaces, tabs, and carriage returns do not affect the resulting program.

Note that you cannot do the following, even though it is legal in C and C++:

{
int x = 12;
{
int x = 96; /* illegal */

}

The compiler will announce that the variable x has already been defined. Thus
the C and C++ ability to “hide” a variable in a larger scope is not allowed because
the C# designers thought that it led to confusing programs.

Scope of objects

C# objects do not have the same lifetimes as value types such as structs. When
you create a C# object using new, it hangs around past the end of the scope. Thus
if you use:

{
Television t = new Television|();
} /* end of scope */

the reference t vanishes at the end of the scope. However, the Television object
that t was pointing to is still occupying memory. In this bit of code, there is no
way to access the object because the only reference to it is out of scope. In later
chapters you’ll see how the reference to the object can be passed around and
duplicated during the course of a program.

It turns out that because objects created with new stay around for as long as you
want them, a whole slew of C++ programming problems simply vanish in C#. The
hardest problems seem to occur in C++ because you don’t get any help from the
language in making sure that the objects are available when they're needed. And
more important, in C++ you must make sure that you destroy the objects when
you’re done with them.

54

Thinking in C# www.ThinkingIn. NET

That brings up an interesting question. If C# leaves the objects lying around,
what keeps them from filling up memory and halting your program? This is
exactly the kind of problem that would occur in C++. Here is where a bit of magic
happens. The .NET runtime has a garbage collector, which looks at all the
objects that were created with new and figures out which ones are not being
referenced anymore. Then it releases the memory for those objects, so the
memory can be used for new objects. This means that you never need to worry
about reclaiming memory yourself. You simply create objects, and when you no
longer need them they will go away by themselves. This eliminates a certain class
of programming problem: the so-called “memory leak,” in which a programmer
forgets to release memory.

Creating new
data types: class

If everything is an object, what determines how a particular class of object looks
and behaves? Put another way, what establishes the type of an object? You might
expect there to be a keyword called “type,” and that certainly would have made
sense. Historically, however, most object-oriented languages have used the
keyword class to mean “I'm about to tell you what a new type of object looks
like.” The class keyword (which is so common that it will not be emboldened
throughout this book) is followed by the name of the new type. For example:

| class ATypeName { /* class body goes here */ }

This introduces a new type, so you can now create an object of this type using
new:

| ATypeName a = new ATypeName () ;

In ATypeName, the class body consists only of a comment (the stars and
slashes and what is inside, which will be discussed later in this chapter), so there
is not too much that you can do with it. In fact, you cannot tell it to do much of
anything (that is, you cannot send it any interesting messages) until you define
some methods for it.

Fields, properties, and methods

When you define a class, you can put three types of elements in your class: data

members (sometimes called fields), member functions (typically called methods),
and properties. A data member is an object of any type that you can communicate
with via its reference. It can also be a value type (which isn’t a reference). If it is a
reference to an object, you must initialize that reference to connect it to an actual

Chapter 2: Hello, Objects 55

object (using new, as seen earlier) in a special function called a constructor
(described fully in Chapter 4). If it is a primitive type you can initialize it directly
at the point of definition in the class. (As you’ll see later, references can also be
initialized at the point of definition.)

Each object keeps its own storage for its data members; the data members are not
shared among objects. Here is an example of a class with some data members:

public class DataOnly {
public int i;
public float f;
public bool b;
private string s;

}

This class doesn’t do anything, but you can create an object:

DataOnly d = new DataOnly () ;

Both the classname and the fields except s are preceded by the word public. This
means that they are visible to all other objects. You can assign values to data
members that are visible, but you must first know how to refer to a member of an
object. This is accomplished by stating the name of the object reference, followed
by a period (dot), followed by the name of the member inside the object:

objectReference.member
For example:
d.i = 47;

d.f =1.1;
d.b = false;

However, the string s field is marked private and is therefore not visible to any
other object (later, we’ll discuss other access modifiers that are intermediate
between public and private). If you tried to write:

d.s = "asdf";

you would get a compile error. Data hiding seems inconvenient at first, but is so
helpful in a program of any size that the default visibility of fields is private.

It is also possible that your object might contain other objects that contain data
you’d like to modify. For this, you just keep “connecting the dots.” For example:

myPlane.leftTank.capacity = 100;

56

Thinking in C# www.MindView.net

The DataOnly class cannot do much of anything except hold data, because it has
no member functions (methods). To understand how those work, you must first
understand arguments and return values, which will be described shortly.

Default values for value types

When a value type is a member of a class, it is guaranteed to get a default value if
you do not initialize it:

Value type Size in bits Default
bool 4 false
char 8 ‘\uoooo’ (null)
byte, sbyte 8 (byte)o
short, ushort 8 (short)o
int, uint 32)
long, ulong 64 oL
float 8 o.of
double 64 o.od
decimal 96 o
string 160 minimum “ (empty)
object géel;llilgirgum null

Note carefully that the default values are what C# guarantees when the variable is
used as a member of a class. This ensures that member variables of primitive
types will always be initialized (something C++ doesn’t do), reducing a source of
bugs. However, this initial value may not be correct or even legal for the program
you are writing. It’s best to always explicitly initialize your variables.

This guarantee doesn’t apply to “local” variables—those that are not fields of a
class. Thus, if within a function definition you have:

int x;

you must have an appropriate value to x before you use it. If you forget, C#
definitely improves on C++: you get a compile-time error telling you the variable
might not have been initialized. (Many C++ compilers will warn you about
uninitialized variables, but in C# these are errors.)

The previous table contains some rows with multiple entries, e.g., short and
ushort. These are signed and unsigned versions of the type. An unsigned version

Chapter 2: Hello, Objects 57

of an integral type can take any value between 0 and 2Pitsize-1while a signed
version can take any value between -2bitsize-1to obitsize-1_1,

Methods, arguments,

and return values

Up until now, the term function has been used to describe a named subroutine.
The term that is more commonly used in C# is method, as in “a way to do
something.” If you want, you can continue thinking in terms of functions. It’s
really only a syntactic difference, but from now on “method” will be used in this
book rather than “function.”

Methods in C# determine the messages an object can receive. In this section you
will learn how simple it is to define a method.

The fundamental parts of a method are the name, the arguments, the return type,
and the body. Here is the basic form:

returnType MethodName (/* Argument list */) {
/* Method body */
}

The return type is the type of the value that pops out of the method after you call
it. The argument list gives the types and names for the information you want to
pass into the method. The method name and argument list together uniquely
identify the method.

Methods in C# can be created only as part of a class. A method can be called only
for an object,! and that object must be able to perform that method call. If you try
to call the wrong method for an object, you’ll get an error message at compile
time. You call a method for an object by naming the object followed by a period
(dot), followed by the name of the method and its argument list, like this:
objectName.MethodName(arg1, arg2, arg3). For example, suppose you
have a method F() that takes no arguments and returns a value of type int.
Then, if you have an object called a for which F() can be called, you can say this:

int x = a.F();

The type of the return value must be compatible with the type of x.

1 static methods, which you’ll learn about soon, can be called for the class, without an
object.

58

Thinking in C# www.ThinkingIn. NET

This act of calling a method is commonly referred to as sending a message to an
object. In the above example, the message is F() and the object is a. Object-
oriented programming is often summarized as simply “sending messages to
objects.”

The argument list

The method argument list specifies what information you pass into the method.
As you might guess, this information—like everything else in C#—takes the form
of objects. So, what you must specify in the argument list are the types of the
objects to pass in and the name to use for each one. As in any situation in C#
where you seem to be handing objects around, you are actually passing
references. The type of the reference must be correct, however. If the argument is
supposed to be a string, what you pass in must be a string.

Consider a method that takes a string as its argument. Here is the definition,
which must be placed within a class definition for it to be compiled:

int Storage(string s) {
return s.Length * 2;

}

This method tells you how many bytes are required to hold the information in a
particular string. (Each char in a string is 16 bits, or two bytes, long, to
support Unicode characters2.)The argument is of type string and is called s.
Once s is passed into the method, you can treat it just like any other object. (You
can send messages to it.) Here, the Length property is used, which is one of the
properties of strings; it returns the number of characters in a string.

You can also see the use of the return keyword, which does two things. First, it
means “leave the method, I'm done.” Second, if the method produces a value, that
value is placed right after the return statement. In this case, the return value is
produced by evaluating the expression s.Length * 2.

You can return any type you want, but if you don’t want to return anything at all,
you do so by indicating that the method returns void. Here are some examples:

| boolean Flag() { return true; }

2 The bit-size and interpretation of chars can actually be manipulated by a class called
Encoding and this statement refers to the default “Unicode Transformation Format, 16-
bit encoding form” or UTF-16. Other encodings are UTF-8 and ASCII, which use 8 bits to
define a character.

Chapter 2: Hello, Objects 59

float NaturallLogBase() { return 2.718f; }
void Nothing() { return; }
void Nothing2 () {}

When the return type is void, then the return keyword is used only to exit the
method, and is therefore unnecessary when you reach the end of the method. You
can return from a method at any point, but if you've given a non-void return type
then the compiler will force you (with error messages) to return the appropriate
type of value regardless of where you return.

At this point, it can look like a program is just a bunch of objects with methods
that take other objects as arguments and send messages to those other objects.
That is indeed much of what goes on, but in the following chapter you’ll learn
how to do the detailed low-level work by making decisions within a method. For
this chapter, sending messages will suffice.

Attributes

and meta-behavior

The most intriguing low-level feature of the .NET Runtime is the attribute, which
allows you to specify arbitrary meta-information to be associated with code
elements such as classes, types, and methods. Attributes are specified in C# using
square brackets just before the code element. Adding an attribute to a code
element doesn’t change the behavior of the code element; rather, programs can
be written which say “For all the code elements that have this attribute, do this
behavior.” The most immediately powerful demonstration of this is the
[WebMethod] attribute which within Visual Studio .NET is all that is necessary
to trigger the exposure of that method as a Web Service.

Attributes can be used to simply tag a code element, as with [WebMethod], or
they can contain parameters that contain additional information. For instance,
this example shows an XMLElement attribute that specifies that, when
serialized to an XML document, the FlightSegment][] array should be created
as a series of individual FlightSegment elements:

[XmlElement (
ElementName = "FlightSegment")]
public FlightSegment[] flights;

Attributes will be explained in Chapter 13 and XML serialization will be covered
in Chapter 17.

60

Thinking in C# www.MindView.net

Delegates

In addition to classes and value types, C# has an object-oriented type that
specifies a method signature. A method’s signature consists of its argument list
and its return type. A delegate is a type that allows any method whose signature
is identical to that specified in the delegate definition to be used as an “instance”
of that delegate. In this way, a method can be used as if it were a variable —
instantiated, assigned to, passed around in reference form, etc. C++
programmers will naturally think of delegates as being quite analogous to
function pointers.

In this example, a delegate named BluffingStrategy is defined:

delegate void BluffingStrategy (PokerHand x);

public class BlackBart{
public void SnarlAngrily(PokerHand y){ .. }
public int AnotherMethod (PokerHand z){ .. }
}
public class SweetPete(
public void YetAnother () { .. }
public static void SmilePleasantly(PokerHand z){ .. }

}

The method BlackBart.SnarlAngrily() could be used to instantiate the
BluffingStrategy delegate, as could the method
SweetPete.SmilePleasantly(). Both of these methods do not return anything
(they return void) and take a PokerHand as their one-and-only parameter—the
exact method signature specified by the BluffingStrategy delegate.

Neither BlackBart. AnotherMethod() nor SweetPete.YetAnother() can
be used as BluffingStrategys, as these methods have different signatures than
BluffingStrategy. BlackBart.AnotherMethod() returns an int and
SweetPete.YetAnother() does not take a PokerHand argument.

Instantiating a reference to a delegate is just like making a reference to a class:
BluffingStrategy bs =
new BluffingStrategy(SweetPete.SmilePleasantly);

The left-hand size contains a declaration of a variable bs of type delegate
BluffingStrategy. The right-hand side specifies a method; it does not actually
call the method SweetPete.SmilePleasantly().

Chapter 2: Hello, Objects 61

To actually call the delegate, you put parentheses (with parameters, if
appropriate) after the variable:

bs(); //equivalent to: SweetPete.SmilePleasantly ()

Delegates are a major element in programming Windows Forms, but they
represent a major design feature in C# and are useful in many situations.

Properties

Fields should, essentially, never be available directly to the outside world.
Mistakes are often made when a field is assigned to; the field is supposed to store
a distance in metric not English units, strings are supposed to be all lowercase,
etc. However, such mistakes are often not found until the field is used at a much
later time (like, say, when preparing to enter Mars orbit). While such logical
mistakes cannot be discovered by any automatic means, discovering them can be
made easier by only allowing fields to be accessed via methods (which, in turn,
can provide additional sanity checks and logging traces).

C# allows you to give your classes the appearance of having fields directly
exposed but in fact hiding them behind method invocations. These Property
fields come in two varieties: read-only fields that cannot be assigned to, and the
more common read-and-write fields. Additionally, properties allow you to use a
different type internally to store the data from the type you expose. For instance,
you might wish to expose a field as an easy-to-use bool, but store it internally
within an efficient BitArray class (discussed in Chapter 9).

Properties are specified by declaring the type and name of the Property, followed
by a bracketed code block that defines a get code block (for retrieving the value)
and a set code block. Read-only properties define only a get code block (it is
legal, but not obviously useful, to create a write-only property by defining just
set). The get code block acts as if it were a method defined as taking no
arguments and returning the type defined in the Property declaration; the set
code block acts as if it were a method returning void that takes an argument
named value of the specified type. Here’s an example of a read-write property
called PropertyName of type MyType.

//MyClass.cs
//Demonstrates a property
class MyClass {

MyType myInternalReference;

//Begin property definition

62

Thinking in C# www.ThinkingIn. NET

public MyType PropertyName {
get {
//logic
return myInternalReference;

set{
//logic
myInternalReference = value;

}
//End of property definition
}// (Not intended to compile - MyType does not exist)

To use a Property, you access the name of the property directly:

myClassInstance.MyProperty = someValue; //Calls "set"
MyType t = myClassInstance.MyProperty; //Calls "get"

One of the most common rhetorical questions asked by Java advocates is “What’s
the point of properties when all you have to do is have a naming convention such
as Java’s getPropertyName() and setPropertyName()? It’s needless
complexity.” The C# compiler in fact does create just such methods in order to
implement properties (the methods are called get_ PropertyName() and
set_PropertyName()). This is a theme of C# — direct language support for
features that are implemented, not directly in Microsoft Intermediate Language
(MSIL — the “machine code” of the .NET runtime), but via code generation. Such
“syntactic sugar” could be removed from the C# language without actually
changing the set of problems that can be solved by the language; they “just” make
certain tasks easier. Properties make the code a little easier to read and make
reflection-based meta-programming (discussed in Chapter 13) a little easier. Not
every language is designed with ease-of-use as a major design goal and some
language designers feel that syntactic sugar ends up confusing programmers. For
a major language intended to be used by the broadest possible audience, C#’s
language design is appropriate; if you want something boiled down to pure
functionality, there’s talk of LISP being ported to .NET.

Creating new value types

In addition to creating new classes, you can create new value types. One nice
feature that C# enjoys is the ability to automatically box value types. Boxing is the
process by which a value type is transformed into a reference type and vice versa.
Value types can be automatically transformed into references by boxing and a

Chapter 2: Hello, Objects 63

boxed reference can be transformed back into a value, but reference types cannot
be automatically transformed into value types.

Enumerations

An enumeration is a set of related values: Up-Down, North-South-East-West,
Penny-Nickel-Dime-Quarter, etc. An enumeration is defined using the enum
keyword and a code block in which the various values are defined. Here’s a
simple example:

enum UpOrDown{ Up, Down }

Once defined, an enumeration value can be used by specifying the enumeration
type, a dot, and then the specific name desired:

UpOrDown coinFlip = UpOrDown.Up;

The names within an enumeration are actually numeric values. By default, they
are integers, whose value begins at zero. You can modify both the type of storage
used for these values and the values associated with a particular name. Here’s an
example, where a short is used to hold different coin values:

enum Coin: short({
Penny = 1, Nickel = 5, Dime = 10, Quarter = 25
}

Then, the names can be cast to their implementing value type:
short change = (short) (Coin.Penny + Coin.Quarter);
This will result in the value of change being 26.

It is also possible to do bitwise operations on enumerations that are given
compatible:

enum Flavor/{
Vanilla = 1, Chocolate = 2, Strawberry = 4, Coffee = 8

.etc...
Flavor conePref = Flavor.Vanilla | Flavor.Coffee;

Structs

A struct (short for “structure”) is very similar to a class in that it can contain
fields, properties, and methods. However, structs are value types and are created
on the stack (see page 50); you cannot inherit from a struct or have your struct

64

Thinking in C# www.MindView.net

inherit from any class (although a struct can implement an interface), and
structs have limited constructor and destructor semantics.

Typically, structs are used to aggregate a relatively small amount of logically
related fields. For instance, the Framework SDK contains a Point structure that
has X and Y properties. Structures are declared in the same way as classes. This
example shows what might be the start of a struct for imaginary numbers:

struct ImaginaryNumber {
double real;
public double Real{
get { return real; }
set { real = value; }

double i;
public double I{
get { return i; }

set { 1 = value; }

}

Boxing and Unboxing

The existence of both reference types (classes) and value types (structs, enums,
and primitive types) is one of those things that object-oriented academics love to
sniff about, saying that the distinction is too much for the poor minds that are
entering the field of computer programming. Nonsense. As discussed previously,
the key distinction between the two types is where they are stored in memory:
value types are created on the stack while classes are created on the heap and are
referred to by one or more stack-based references (see Page 50).

To revisit the metaphor from that section, a class is like a television (the object
created on the heap) that can have one or more remote controls (the stack-based
references), while a value-type is like a thought: when you give it to someone,
you are giving them a copy, not the original. This difference has two major
consequences: aliasing (which will be visited in depth in Chapter 4) and the lack
of an object reference. As was discussed on Page 49, you manipulate objects with
a reference: since value types do not have such a reference, you must somehow
create one before doing anything with a value type that is more sophisticated
than basic math. One of C#’s notable advantages over Java is that C# makes this
process transparent.

Chapter 2: Hello, Objects 65

The processes called boxing and unboxing wrap and unwrap a value type in an
object. Thus, the int primitive type can be boxed into an object of the class
Int32, a bool is boxed into a Boolean, etc. Boxing and unboxing happen
transparently between a variable declared as the value type and its equivalent
class type. Thus, you can write code like the following:

bool valueTypel = true;
Boolean referenceTypel = b; //Boxing
bool valueType2 = referenceTypel; //Unboxing

The utility of boxing and unboxing will become more apparent in Chapter 10’s
discussion of collection classes and data structures, but there is one value type for
which the benefits of boxing and unboxing become apparent immediately: the
string.

Strings and formatting

Strings are probably the most manipulated type of data in computer programs.
Sure, numbers are added and subtracted, but strings are unusual in that their
structure is of so much interest: we search for substrings, change the case of
letters, construct new strings from old strings, and so forth. Since there are so
many operations that one wishes to do on strings, it is obvious that they must be
implemented as classes. Strings are incredibly common and are often at the heart
of the innermost loops of programs, so they must be as efficient as possible, so it
is equally obvious that they must be implemented as stack-based value types.
Boxing and unboxing allow these conflicting requirements to coexist: strings are
value types, while the String class provides a plethora of powerful methods.

The single-most used method in the String class must be the Format method,
which allows you to specify that certain patterns in a string be replaced by other
string variables, in a certain order, and formatted in a certain way. For instance,
in this snippet:

string w "world";

string s = String.Format ("Hello, {0}", w);

The value of s would be “Hello, world”, as the value of the variable w is
substituted for the pattern { 0 }. Such substitutions can be strung out
indefinitely:

string h = "hello";
string w = "world";
string hw = "how";
string r = "are";

66

Thinking in C# www.ThinkingIn. NET

string u = "you";
string g = "?";
string s = String.Format ("{0} {1}, {2} {3} {4}{5}"

; h, w, hw, r, u, q);
gives s the value of “hello world, how are you?”. This variable substitution pattern
will be used often in this book, particularly in the Console.WriteLine()
method that is used to write strings to the console.

Additionally, .NET provides for powerful formatting of numbers, dates, and
times. This formatting is locale-specific, so on a computer set to use United States
conventions, currency would be formatted with a ‘$’ character, while on a
machine configured for Europe, the ‘€’ would be used (as powerful a library as it
is, it only formats the string, it cannot do the actual conversion calculation
between dollars and euros!). A complete breakdown of the string formatting
patterns is beyond the scope of this book, but in addition to the simple variable
substitution pattern shown above, there are two number-formatting patterns that
are very helpful:

double doubleValue = 123.456;

Double doubleObject = doubleValue; //Boxed

string s = doubleObject.ToString ("####.4#"); //Unboxed
string s2 = doubleObject.ToString ("0000.0"); //Unboxed

Again, this example relies on boxing and unboxing to transparently convert, first,
the doubleValue value type into the doubleObject object of the Double class.
Then, the ToString() method, which supports string formatting patterns,
creates two String objects which are unboxed into string value types. The value
of s is “123.5” and the value of s2 is “0123.5”. In both cases, the digits of the
boxed Double object (that has the value 123.456) are substituted for the ‘#’ and
‘0’ characters in the formatting pattern. The ‘#’ pattern does not output the non-
significant o in the thousands place, while the ‘0’ pattern does. Both patterns,
with only one character after the decimal point, output a rounded value for the
number.

Building a C# program
There are several other issues you must understand before seeing your first C#
program.

Name visibility
A problem in any programming language is the control of names. If you use a
name in one module of the program, and another programmer uses the same

Chapter 2: Hello, Objects 67

name in another module, how do you distinguish one name from another and
prevent the two names from “clashing?” In C this is a particular problem because
a program is often an unmanageable sea of names. C++ classes (on which C#
classes are based) nest functions within classes so they cannot clash with function
names nested within other classes. However, C++ still allowed global data and
global functions, and the class names themselves could conflict, so clashing was
still possible. To solve this problem, C++ introduced namespaces using
additional keywords.

In C#, the namespace keyword is followed by a code block (that is, a pair of
curly brackets with some amount of code within them). Unlike Java, there is no
relationship between the namespace and class names and directory and file
structure. Organizationally, it often makes sense to gather all the files associated
with a single namespace into a single directory and to have a one-to-one
relationship between class names and files, but this is strictly a matter of
preference. Throughout this book, our example code will often combine multiple
classes in a single compilation unit (that is, a single file) and we will typically not
use namespaces, but in professional development, you should avoid such space-
saving choices.

Namespaces can, and should, be nested. By convention, the outermost
namespace is the name of your organization, the next the name of the project or
system as a whole, and the innermost the name of the specific grouping of
interest. Here’s an example:

namespace ThinkingIn {
namespace CSharp {
namespace Chap2 {
//class and other type declarations go here

}

Since namespaces are publicly viewable, they should start with a capital letter
and then use “camelcase” capitalization (for instance, ThinkingIn).

Namespaces are navigated using dot syntax: ThinkingIn.CSharp.Chap2 may
even be declared in this manner:

namespace ThinkingIn.CSharp.Chap2{ .. }

68

Thinking in C# www.MindView.net

Using other components

Whenever you want to use a predefined class in your program, the compiler must
know how to locate it. The first place the compiler looks is the current program
file, or assembly. If the assembly was compiled from multiple source code files,
and the class you want to use was defined in one of them, you simply use the
class.

What about a class that exists in some other assembly? You might think that
there ought to just be a place where all the assemblies that are used by all the
programs on the computer are stored and the compiler can look in that place
when it needs to find a class. But this leads to two problems. The first has to do
with names; imagine that you want to use a class of a particular name, but more
than one assembly uses that name (for instance, probably a lot of programs
define a class called User). Or worse, imagine that you’re writing a program, and
as you're building it you add a new class to your library that conflicts with the
name of an existing class.

To solve this problem, you must eliminate all potential ambiguities. This is
accomplished by telling the C# compiler exactly what classes you want using the
using keyword. using tells the compiler to recognize the names in a particular
namespace, which is just a higher-level organization of names. The .NET
Framework SDK has more than 100 namespaces, such as System.Xml and
System.Windows.Forms and Microsoft.Csharp. By adhering to some
simple naming conventions, it is highly unlikely that name clashes will occur and,
if they do, there are simple ways to remove the ambiguity between namespaces.

Java and C++ programmers should understand that namespaces and using are
different than import or #include. Namespaces and using are strictly about
naming concerns at compile-time, while Java’s import statement relates also to
finding the classes at run-time, while C++’s #include moves the referenced text
into the local file.

The second problem with relying on classes stored in a different assembly is the
threat that the user might inadvertently replace the version your class needs with
another version of the assembly with the same name but with different behavior.
This was the root cause of the Windows problem known as “DLL Hell.” Installing
or updating one program would change the version of some widely-used shared
library.

To solve this problem, when you compile an assembly that depends on another,
you can embed into the dependent assembly a reference to the strong name of
the other assembly. This name is created using public-key cryptography and,

Chapter 2: Hello, Objects 69

along with infrastructure support for a Global Assembly Cache that allows for
assemblies to have the same name but different versions, gives .NET an excellent
basis for overcoming versioning and trust problems. An example of strong
naming and the use of the GAC begins on Page 532.

The static keyword

Ordinarily, when you create a class you are describing how objects of that class
look and how they will behave. You don’t actually get anything until you create an
object of that class with new, and at that point data storage is created and
methods become available.

But there are two situations in which this approach is not sufficient. One is if you
want to have only one piece of storage for a particular piece of data, regardless of
how many objects are created, or even if no objects are created. The other is if you
need a method that isn’t associated with any particular object of this class. That
is, you need a method that you can call even if no objects are created. You can
achieve both of these effects with the static keyword. When you say something is
static, it means that data or method is not tied to any particular object instance
of that class. So even if you've never created an object of that class you can call a
static method or access a piece of static data. With ordinary, non-static data
and methods you must create an object and use that object to access the data or
method, since non-static data and methods must know the particular object they
are working with. Of course, since static methods don’t need any objects to be
created before they are used, they cannot directly access non-static members or
methods by simply calling those other members without referring to a named
object (since non-static members and methods must be tied to a particular
object).

Some object-oriented languages use the terms class data and class methods,
meaning that the data and methods exist for any and all objects of the class.

To make a data member or method static, you simply place the keyword before
the definition. For example, the following produces a static data member and
initializes it:

class StaticTest {

public static int i = 47;
}

Now even if you make two StaticTest objects, there will still be only one piece of
storage for StaticTest.i. Both objects will share the same i. Consider:

StaticTest stl = new StaticTest();

70

Thinking in C# www.ThinkingIn. NET

| StaticTest st2 = new StaticTest () ;

At this point, both st1 and st2 have access to the same ‘47’ value of StaticTest.i
since they refer to the same piece of memory.

To reference a static variable, you use the dot-syntax, but instead of having an
object reference on the left side, you use the class name.

| staticTest.i++;

The ++ operator increments the variable. At this point, both st1 and st2 would
see StaticTest.i as having the value 48.

Similar logic applies to static methods. You refer to a static method using
ClassName.Method(). You define a static method in a similar way:

class StaticFun {
public static void Incr() { StaticTest.i++; }

}
You can see that the StaticFun method Incr() increments the static data i.

While static, when applied to a data member, definitely changes the way the data
is created (one for each class vs. the non-static one for each object), when
applied to a method it’s not so dramatic. An important use of static for methods
is to allow you to call that method without creating an object. This is essential, as
we will see, in defining the Main() method that is the entry point for running an
application.

Like any method, a static method can create or use named objects of its type, so
a static method is often used as a “shepherd” for a flock of instances of its own
type.

Putting it all together

Let’s write a program. It starts by printing a string, and then the date, using the
DateTime class from the .NET Framework SDK. Note that an additional style of
comment is introduced here: the °//’, which is a comment until the end of the
line:

//:c03:HelloDate.cs
using System;

namespace ThinkingIn.CSharp.Chap03{
public class HelloDate {

Chapter 2: Hello, Objects 71

public static void Main () {
Console.WriteLine ("Hello, it's: ");
Console.WriteLine (DateTime.Now) ;

}
Y/ /e~

At the beginning of each program file, you place using statements to bring in the
namespaces of any classes you’ll need for the code in that file.

If you are working with the downloaded .NET Framework SDK, there is a
Microsoft Help file that can be accessed with ms-
help://ms.netframeworksdk, if using Visual Studio .NET, there is an
integrated help system. If you navigate to ms-
help://MS.NETFrameworkSDK/cpref/html/frirfSystem.htm, you’ll see
the contents of the System namespace. One of them is the Console class. If you
open this subject and then click on Console.Members, you'll see a list of public
properties and methods. In the case of the Console class, all of them are marked
with an “S” indicating that they are static.

One of the static methods of Console is WriteLine(). Since it’s a static
method, you don’t need to create an object to use it. Thus, if you've specified
using System; you can write Console.WriteLine("Something") whenever
you want to print something to the console. Alternately, in any C# program, you
can specify the fully qualified name
System.Console.WriteLine("Something") even if you have not written
using System.

Every program must have what’s called an entry point, a method which starts up
things. In C#, the entry point is always a static method called Main(). Main()
can be written in several different ways:

static void Main(){ .. }
static void Main(string[] args){ .. }
static int Main(){ .. }
static int Main(string[] args){ .. }

If you wish to pass in parameters from the command-line to your program, you
should use one of the forms that takes an array of command-line arguments.
args[o] will be the first argument after the name of the executable.

Traditionally, programs return zero if they ran successfully and some other
integer as an error code if they failed. C#’s exceptions are infinitely superior for
communicating such problems, but if you are writing a program that you wish to

72

Thinking in C# www.MindView.net

program with batch files (which pay attention to the return value of a program),
you may wish to use the version of Main() that returns an integer.

The line that prints the date illustrates the behind-the-scenes complexity of even
a simple object-oriented call:

| Console.WriteLine (DateTime.Now) ;

Consider the argument: if you browse the documentation to the DateTime
structure, you’ll discover that it has a static property Now of type DateTime. As
this property is read, the .NET Runtime reads the system clock, creates a new
DateTime value to store the time, and returns it. As soon as that property get
finishes, the DateTime struct is passed to the static method WriteLine() of
the Console class. If you use the helpfile to go to that method’s definition, you'll
see many different overloaded versions of WriteLine(), one which takes a
bool, one which takes a char, etc. You won'’t find one that takes a DateTime,
though.

Since there is no overloaded version that takes the exact type of the DateTime
argument, the runtime looks for ancestors of the argument type. All structs are
defined as descending from type ValueType, which in turn descends from type
object. There is not a version of WriteLine() that takes a ValueType for an
argument, but there is one that takes an object. It is this method that is called,
passing in the DateTime structure.

Back in the documentation for WriteLine(), it says it calls the ToString()
method of the object passed in as its argument. If you browse to
Object.ToString(), though, you’'ll see that the default representation is just the
fully qualified name of the object. But when run, this program doesn’t print out
“System.DateTime,” it prints out the time value itself. This is because the
implementers of the DateTime class overrode the default implementation of
ToString() and the call within WriteLine() is resolved polymorphically by
the DateTime implementation, which returns a culture-specific string
representation of its value to be printed to the Console.

If some of that doesn’t make sense, don’t worry — almost every aspect of object-
orientation is at work within this seemingly trivial example.

Compiling and running

To compile and run this program, and all the other programs in this book, you
must first have a command-line C# compiler. We strongly urge you to refrain
from using Microsoft Visual Studio .NET’s GUI-activated compiler for compiling
the sample programs in this book. The less that is between raw text code and the

Chapter 2: Hello, Objects 73

running program, the more clear the learning experience. Visual Studio .NET
introduces additional files to structure and manage projects, but these are not
necessary for the small sample programs used in this book. Visual Studio .NET
has some great tools that ease certain tasks, like connecting to databases and
developing Windows Forms, but these tools should be used to relieve drudgery,
not as a substitute for knowledge. The one big exception to this is the
“IntelliSense” feature of the Visual Studio .NET editor, which pops up
information on objects and parameters faster than you could possibly search
through the .NET documentation.

A command-line C# compiler is included in Microsoft’s .NET Framework SDK,
which is available for free download at msdn.microsoft.com/downloads/ in the
“Software Development Kits” section. A command-line compiler is also included
within Microsoft Visual Studio .NET. The command-line compiler is csc.exe.
Once you've installed the SDK, you should be able to run c¢se from a command-
line prompt.

In addition to the command-line compiler, you should have a decent text editor.
Some people seem satisfied with Windows Notepad, but most programmers
prefer either the text editor within Visual Studio.NET (just use File/Open... and
Save... to work directly with text files) or a third-party programmer’s editor. All
the code samples in this book were written with Visual SlickEdit from MicroEdge
(another favorite is Computer Solution Inc.’s $35 shareware UltraEdit).

Once the Framework SDK is installed, download and unpack the source code for
this book (you can find it at www.ThinkingIn.net). This will create a subdirectory
for each chapter in the book. Move to the subdirectory co3 and type:

csc HelloDate.cs

You should see a message that specifies the versions of the C# compiler and .NET
Framework that are being used (the book was finished with C# Compiler version

7.10.2215.1 and .NET Framework version 1.1.4322). There should be no warnings
or errors; if there are, it’s an indication that something went wrong with the SDK

installation and you need to investigate those problems.

On the other hand, if you just get your command prompt back, you can type:

HelloDate

and you’ll get the message and the date as output.

This is the process you can use to compile and run each of the programs in this
book. A source file, sometimes called a compilation unit, is compiled by esc into

74

Thinking in C# www.ThinkingIn. NET

a .NET assembly. If the compilation unit has a Main(), the assembly will default
to have an extension of .exe and can be run from the command-line just as any
other program.

Fine-tuning compilation

An assembly may be generated from more than one compilation unit. This is
done by simply putting the names of the additional compilation units on the
command-line (csc FirstClass.cs SecondClass.cs etc.). You can modify the
name of the assembly with the /out: argument. If more than one class has a
Main() defined, you can specify which one is intended to be the entry point of
the assembly with the /main: argument.

Not every assembly needs to be a stand-alone executable. Such assemblies should
be given the /target:library argument and will be compiled into an assembly
with a .DLL extension.

By default, assemblies “know of” the standard library reference mscorlib.dll,
which contains the majority of the .NET Framework SDK classes. If a program
uses a class in a namespace not within the mscorlib.dll assembly, the
/reference: argument should be used to point to the assembly.

The Common Language Runtime

You do not need to know this. But we bet you're curious.

The .NET Framework has several layers of abstraction, from very high-level
libraries such as Windows Forms and the SOAP Web Services support, to the core
libraries of the SDK:

Windows Web = =

. Web Forms
Forms Services

ADO.NET and XML Classes

Abstraction

Base Framework Classes
(mscorlib.dll)

Common Language Runtime

Figure 3-1: The layered architecture of the NET Framework

Everything in this diagram except the Common Language Runtime (CLR) is
stored on the computer in Common Intermediate Language (CIL, sometimes

Chapter 2: Hello, Objects 75

referred to as Microsoft Intermediate Language, or MSIL, or sometimes just as
IL), a very simple “machine code” for an abstract computer.

The C# compiler, like all .NET language compilers, transforms human-readable
source code into CIL, not the actual opcodes of any particular CPU. An assembly
consists of CIL, metadata describing the assembly, and optional resources. We’ll
discuss metadata in detail in Chapter 13 while resources will be discussed in
Chapter 14.

The role of the Common Language Runtime can be boiled down to “mediate
between the world of CIL and the world of the actual platform.” This requires
several components:

—

Common Type System

Security CIL Compiler
Class Memory Management
Loader Including
Garbage Collection

Execution Support

mzZ~Ta»
RvNoNe)

Figure 3-2: “Below” the level of CIL, all .NET languages are similar

Different CPUs and languages have traditionally represented strings in different
ways and numeric types using values of different bit-lengths. The value
proposition of .NET is “Any language, one platform” (in contrast with Java’s
value proposition of “Any platform, one language.”) In order to assure that all
languages can interoperate seamlessly .NET provides a uniform definition of

76

Thinking in C# www.MindView.net

several basic types in the Common Type System. Once “below” this level, the
human-readable language in which a module was originally written is irrelevant.

The next three listings show the transformation of a simple method from C# to
CIL to Pentium machine code.

public
int
for

}

}

class Simple{

static void Main () {
sum = 0;
(int 1 = 0; 1 < 5; i++){

sum += 1i;

Console.WriteLine (sum) ;

becomes in CIL:

.method public hidebysig static void Main() cil managed{

.entrypoint

// Code size 25 (0x19)

.maxstack 2

.locals init (int32 V_O,
int32 Vv 1)

IL 0000: 1dc.i4.0

IL 0001: stloc.0

IL 0002: 1dc.i4.0

IL 0003: stloc.l

IL 0004: br.s IL 000e

IL 0006: 1ldloc.O

IL 0007: 1ldloc.1

IL 0008: add

IL 0009: stloc.0

IL 000a: 1ldloc.1l

IL 000b: 1ldc.i4.1l

IL 000c: add

IL 000d: stloc.l1l

IL 000e: 1ldloc.1

IL 000f: 1dc.i4.5

IL 0010: Dblt.s IL 0006

IL 0012: 1dloc.0

IL 0013: call

void [mscorlib]Console::WriteLine (int32)

Chapter 2: Hello, Objects 77

IL 0018: ret
} // end of method Simple::Main

that becomes in Pentium assembly language:

00000000 push ebp

00000001 mov ebp, esp

00000003 sub esp, 8

00000006 push edi

00000007 push esi

00000008 =xor esi,esi

0000000a =xor edi, edi

0000000c xor esi,esi

; for(int 1 = 0; 1 < 5; 1i++){
0000000e =xor edi, edi

00000010 nop

00000011 Jmp 00000016

; sum += 1;

00000013 add esi,edi

; for(int 1 = 0; 1 < 5; 1i++){
00000015 inc edi

00000016 cmp edi, 5

00000019 31 00000013

H Console.WriteLine (sum) ;
0000001b mov ecx,esi

0000001d call dword ptr ds:[042125C8h]

; }
00000023 nop

00000024 pop esi
00000025 pop edi
00000026 mov esp, ebp
00000028 pop ebp

00000029 ret

Security restrictions are implemented at this level in order to make it extremely
difficult to bypass. To seamlessly bypass security would require replacing the
CLR with a hacked CLR, not impossible to conceive, but hopefully beyond the
range of script kiddies and requiring an administration-level compromise from
which to start. The security model of .NET consists of checks that occur at both
the moment the class is loaded into memory and at the moment that possibly-
restricted operations are requested.

Thinking in C# www.ThinkingIn. NET

Although CIL is not representative of any real machine code, it is not interpreted.
After the CIL of a class is loaded into memory, as methods in the class are
executed, a Just-In-Time compiler (JIT) transforms it from CIL into machine
language appropriate to the native CPU. One interesting benefit of this is that it’s
conceivable that different JIT compilers might become available for different
CPUs within a general family (thus, we might eventually have an Itanium JIT, a
Pentium JIT, an Athlon JIT, etc.).

The CLR contains a subsystem responsible for memory management inside what
is called “managed code.” In addition to garbage collection (the process of
recycling memory), the CLR memory manager defragments memory and
decreases the span of reference of in-memory references (both of which are
beneficial side effects of the garbage collection architecture).

Finally, all programs require some basic execution support at the level of thread
scheduling, code execution, and other system services. Once again, at this low
level, all of this support can be shared by any .NET application, no matter what
the originating programming language.

The Common Language Runtime, the base framework classes within mscorlib.dll,
and the C# language were submitted by Microsoft to the European Computer
Manufacturers Association (ECMA) were ratified as standards in late 2001; in
late 2002, a subcommittee of the International Organization for Standardization
cleared the way for similar ratification by ISO. The Mono Project (www.go-
mono.com) is an effort to create an Open Source implementation of these
standards that includes Linux support.

Comments and embedded
documentation

There are two types of comments in C#. The first is the traditional C-style
comment that was inherited by C++. These comments begin with a /* and
continue, possibly across many lines, until a */. Note that many programmers
will begin each line of a continued comment with a ¥, so you’ll often see:

/* This is a comment

* that continues

* across lines

*/

Remember, however, that everything inside the /* and */ is ignored, so there’s no
difference in saying:

Chapter 2: Hello, Objects 79

/* This is a comment that
continues across lines */

The second form of comment also comes from C++. It is the single-line comment,
which starts at a // and continues until the end of the line. This type of comment
is convenient and commonly used because it’s easy. You don’t need to hunt on the
keyboard to find / and then * (instead, you just press the same key twice), and
you don’t need to close the comment. So you will often see:

// this is a one-line comment

Documentation Comments

One of the thoughtful parts of the C# language is that the designers didn’t
consider writing code to be the only important activity—they also thought about
documenting it. Possibly the biggest problem with documenting code has been
maintaining that documentation. If the documentation and the code are separate,
it becomes a hassle to change the documentation every time you change the code.
The solution seems simple: link the code to the documentation. The easiest way
to do this is to put everything in the same file. To complete the picture, however,
you need a special comment syntax to mark special documentation, and a tool to
extract those comments and put them in a useful form. This is what C# has done.

Comments that begin with /// can be extracted from source files by running cse
/doc:OutputFile. XML. Inside the comments you can place any valid XML tags
including some tags with predefined meanings discussed next. The resulting
XML file is interpreted in certain ways inside of Visual Studio .NET or can be
styled with XSLT to produce a Web page or printable documentation. If you don’t
understand XML, don’t worry about it; you’ll become much more familiar with it
in Chapter 14!

If you run

csc /doc:HelloDate.xml HelloDate.cs

The resulting XML will be:

<?xml version="1.0"7?>
<doc>
<assembly>
<name>HelloDate</name>

</assembly>
<members>
</members>

</doc>

8o

Thinking in C# www.MindView.net

The XML consists of a “doc” element, which is for the assembly named
“HelloDate” and which doesn’t have any documentation comments.

Tag Suggested Use

<sumimary> A brief overview of the code element

</summary>

<remarks> This is used for a more comprehensive discussion of the
</remarks> element’s intended behavior.

<param One of these tags should be written for each argument to a

name="name">

method; the value of the name attribute specifies which

</param> argument. The description should include any preconditions
associated with the argument. Preconditions are what the
method requires of its arguments so that the method can
function correctly. For instance, a precondition of a square
root function might be that the input integer be positive.
Methods that return anything other than void should have
one of these tags. The contents of the tag should describe
<returns> :
what about the return value can be guaranteed. Can it be
</returns>
null? Does it always fall within a certain range? Is it always in
a certain state? etc.
Every exception that is explicitly raised within the method’s
body should be documented in a tag such as this (the type of
. the exception should be the value of the cref attribute). To
<exception
o N the extent possible, the circumstances which give rise to the
cref="type"> . . .)
. exception being thrown should be detailed. Because of C#’s
</exception>
exception model (discussed in Chapter 11), special attention
should be paid to making sure that these comments are
consistently and uniformly written and maintained.
<permission This tag describes the security permissions that are required
cref="type"> for the type. The cref attribute is optional, but if it exists, it
</permission> should refer to a PermissionSet associated with the type.
<example> The <example> tag should contain a description of a sample
<c></e> use of the code element. The <c¢> tag is intended to specify an
<code></code> inline code element while the <code> tag is intended for

Chapter 2: Hello, Objects

81

</example>

multiline snippets.

<see cref="other">

These tags are intended for cross references to other code

</see> elements or other documentation fragments. The <see> tag
<seealso is intended for inline cross-references, while the <seealso>
cref="other"> tag is intended to be broken out into a separate “See Also”
</seealso> section.
<value> Every externally visible property within a class should be
</value> documented with this tag.

This empty tag is used when commenting a method to
<paramref

name="arg"/>

indicate that the value of the name attribute is actually the
name of one of the method’s arguments.

<list

type=

[bullet | number |
table]>
<listheader>
<term></term>
<description>
</description>
</listheader>
<item>
<term></term>
<description>
</description>
</item>

</list>

Intended to provide a hint to the XML styler on how to
generate documentation.

<para></para>

Intended to specify separate paragraphs within a description
or other lengthy text block

Documentation example
Here’s the HelloDate C# program, this time with documentation comments

added:

//:c03:HelloDate2.cs

using System;

namespace ThinkingIn.CSharp.Chap03{

82

Thinking in C# wwuw.ThinkingIn. NET

///<summary>Shows doc comments</summary>
///<remarks>The documentation comments within C#
///are remarkably useful, both within the Visual
///Studio environment and as the basis for more
///significant printed documentation</remarks>
public class HelloDate2 {

///<summary>Entry point</summary>
///<remarks>Prints greeting to

/// <paramref name="args[0]"/>, gets a

/// <see cref="System.DateTime">DateTime</see>
/// and subsequently prints it</remarks>
///<param name="args">Command-line should have a
///single name. All other args will be ignored

///</param>
public static void Main(string[] args) {
Console.WriteLine ("Hello, {0} it's: ", args[0]);

Console.Writeline (DateTime.Now) ;

}
Y/ /e~

When csc extracts the data, it is in this form:

<?xml version="1.0"?>
<doc>
<assembly>
<name>HelloDate</name>
</assembly>
<members>
<member
name="T:ThinkingIn.CSharp.Chap03.HelloDate2">
<summary>Shows doc comments</summary>
<remarks>The documentation comments within C#
are remarkably useful, both within the Visual
Studio environment and as the basis for more
significant printed documentation</remarks>
</member>
<member
name="M:ThinkingIn.CSharp.Chap03.HelloDate2.Main (System.S3Str
ing[])">

<summary>Entry point</summary>

Chapter 2: Hello, Objects 83

<remarks>Prints greeting to

<paramref name="args[0]"/>, gets a

<see cref="T:System.DateTime">DateTime</see>
and subsequently prints it</remarks>

<param name="args">Command-line should have a
single name. All other args will be ignored
</param>

</member>
</members>
</doc>

The first line of the HelloDate2.cs file uses a convention that will be used
throughout the book. Every compilable sample begins with a comment followed
by a ‘.’ the chapter number, another colon, and the name of the file that the
example should be saved to. The last line also finishes with a comment, and this
one indicates the end of the source code listing, which allows it to be
automatically extracted from the text of this book and checked with a compiler.
This convention supports a tool which can automatically extract and compile
code directly from the “source” Word document.

Coding style

The unofficial standard in C# is to capitalize the first letter of all publicly visible
code elements except for parameters. If the element name consists of several
words, they are run together (that is, you don’t use underscores to separate the
names), and the first letter of each embedded word is capitalized, such as:

class AllTheColorsOfTheRainbow { //

This same style is also used for the parts of the class which are intended to be
referred to by others (method names and properties). For internal parts fields
(member variables) and object reference names, the accepted style is just as it is
for classes except that the first letter of the identifier is lowercase. For example:

class AllTheColorsOfTheRainbow {
int anIntegerRepresentingColors;
public void ChangeTheHueOfTheColor (int newHue) {
//
}
//
}

Of course, you should remember that the user must also type all these long
names, so be merciful. Names, whitespace, and the amount of commenting in a

84

Thinking in C# www.MindView.net

listing are an area where book authors must follow the dictates of paper cost and
tight margins, so please forgive those situations when the listings in this book
don’t always follow our own guidelines for clarity.

Summary

In this chapter you have seen enough of C# programming to understand how to
write a simple program, and you have gotten an overview of the language and
some of its basic ideas. However, the examples so far have all been of the form
“do this, then do that, then do something else.” What if you want the program to
make choices, such as “if the result of doing this is red, do that; if not, then do
something else”? The support in C# for this fundamental programming activity
will be covered in the next chapter.

Exercises

1.

Following the HelloDate.cs example in this chapter, create a “hello,
world” program that simply prints out that statement. You need only a
single method in your class (the “Main” one that gets executed when the
program starts). Remember to make it static. Compile the program with
csc and run it from the command-line.

Find the code fragments involving ATypeName and turn them into a
program that compiles and runs.

Turn the DataOnly code fragments into a program that compiles and
runs.

Modify Exercise 3 so that the values of the data in DataOnly are
assigned to and printed in Main().

Write a program that includes and calls the Storage() method defined
as a code fragment in this chapter.

Turn the sample code that defines the BluffingStrategy delegate and
use the method SweetPete.SmilePleasantly() to instantiate the
delegate into a program that compiles and runs.

Create a program that defines a Coin enumeration as described in the
text and adds up a variety of coin types.

Write a program that performs multiplication using the
ImaginaryNumber struct defined in the text.

Chapter 2: Hello, Objects 85

10.

11.

12.

13.
14.

15.

16.

17.

Turn the StaticFun code fragments into a working program.

Write a program that prints three arguments taken from the command
line. To do this, you'll need to index into the command-line array of
strings, using the static void Main(string[] args) form for your
entry point.

Turn the AllTheColorsOfTheRainbow example into a program that
compiles and runs.

Find the code for the second version of HelloDate.cs, which is the
simple comment documentation example. Execute esc /doc on the file
and view the results with your XML-aware Web browser.

Add an HTML list of items to the documentation in Exercise 12.

Take the program in Exercise 1 and add comment documentation to it.
Extract this comment documentation and view it with your Web browser.

You have been approached by an android manufacturer to develop the
control system for a robotic servant. Describe a party in object-oriented
terms. Use abstractions such as Food so that you can encompass the
entire range of data and behavior between drawing up the invitation list
to cleaning up the house afterward.

Take the Food abstraction from Exercise 15 and describe it more fully in
terms of classes and types. Use inheritance in at least two places.
Constrain your model to the data and behaviors appropriate to the
robotic butler.

Choose one of the classes developed in Exercise 16 that requires some
complex behavior (perhaps an item that needs baking or the purchase of
exotic ingredients). List the classes that would be required to collaborate
to accomplish the complex behavior. For instance, if the behavior was
lighting candles on a cake, the classes might include Candle, Cake, and
Match.

86

Thinking in C# www.ThinkingIn. NET

4. Controlling
Program Flow

Like a sentient creature, a program must manipulate its
world and make choices during execution.

In C# you manipulate objects and data using operators, and you make choices
with execution control statements. The statements used will be familiar to
programmers with Java, C++, or C backgrounds, but there are a few that may
seem unusual to programmers coming from Visual Basic backgrounds.

Using C#operators

An operator takes one or more arguments and produces a new value. The
arguments are in a different form than ordinary method calls, but the effect is the
same. You should be reasonably comfortable with the general concept of
operators from your previous programming experience. Addition (+), subtraction
and unary minus (-), multiplication (*), division (/), and assignment (=) all work
much the same in any programming language.

All operators produce a value from their operands. In addition, an operator can
change the value of an operand. This is called a side effect. The most common use
for operators that modify their operands is to generate the side effect, but you
should keep in mind that the value produced is available for your use just as in
operators without side effects.

Operators work with all primitives and many objects. When you program your
own objects, you will be able to extend them to support whichever primitives
make sense (you'll find yourself creating ‘+’ operations far more often than ‘/’
operations!) The operators ‘=", ‘=="and ‘!=’", work for all objects and are a point
of confusion for objects that we’ll deal with in #reference#.

Precedence

Operator precedence defines how an expression evaluates when several operators
are present. C# has specific rules that determine the order of evaluation. The
easiest one to remember is that multiplication and division happen before

87

addition and subtraction. Programmers often forget the other precedence rules,
so you should use parentheses to make the order of evaluation explicit. For
example:

a=x+y - 2/2 + z;

has a very different meaning from the same statement with a particular grouping
of parentheses:

a=x+ (y - 2)/(2 + z);

Assignment

Assignment is performed with the operator =. It means “take the value of the
right-hand side (often called the rvalue) and copy it into the left-hand side (often
called the lvalue). An rvalue is any constant, variable or expression that can
produce a value, but an lvalue must be a distinct, named variable. (That is, there
must be a physical space to store a value.) For instance, you can assign a constant
value to a variable (A = 43), but you cannot assign anything to constant value—it
cannot be an lvalue. (You can’t say 4 = A;.)

Assignment of primitives is quite straightforward. Since the primitive holds the
actual value and not a reference to an object, when you assign primitives you
copy the contents from one place to another. For example, if you say A = B for
primitives, then the contents of B are copied into A. If you then go on to modify
A, B is naturally unaffected by this modification. As a programmer, this is what
you’ve come to expect for most situations.

When you assign objects, however, things change. Whenever you manipulate an
object, what you’re manipulating is the reference, so when you assign “from one
object to another” you're actually copying a reference from one place to another.
This means that if you say C = D for objects, you end up with both C and D
pointing to the object that, originally, only D pointed to. The following example
will demonstrate this.

Here’s the example:

//:c03:Assignment.cs
using System;

class Number {
public int i;

public class Assignment {

88

Thinking in C# www.MindView.net

public static void Main () {
Number nl = new Number();
Number n2 = new Number();
nl.i = 9;
n2.1 = 47;
Console.WriteLine (
"l: nl.i: " + nl.i + ", n2.i: " + n2.1i);
nl = n2;
Console.WriteLine (
"2: nl.i: " + nl.i + ", n2.i: " + n2.1i);
nl.i = 27;
Console.WriteLine (
"3: nl.i: " + nl.i + ", n2.i: " + n2.i);
}
Y// /i~

i

The Number class is simple, and two instances of it (n1 and n2) are created
within Main(). The i value within each Number is given a different value, and
then n2 is assigned to n1, and n1 is changed. In many programming languages
you would expect n1 and n2 to be independent at all times, but because you've
assigned a reference here’s the output you’ll see:

l: nl.i: 9, n2.i: 47
2: nl.i: 47, n2.i: 47
3: nl.i: 27, n2.i: 27

Changing the n1 object appears to change the n2 object as well! This is because
both n1 and n2 contain the same reference, which is pointing to the same object.
(The original reference that was in n1 that pointed to the object holding a value of
9 was overwritten during the assignment and effectively lost; its object will be
cleaned up by the garbage collector.)

This phenomenon is called aliasing and it’s a fundamental way that C# works
with objects. But what if you don’t want aliasing to occur in this case? You could
forego the assignment and say:

| nl.i = n2.1i;

This retains the two separate objects instead of tossing one and tying n1 and n2
to the same object, but you’ll soon realize that manipulating the fields within
objects is messy and goes against good object-oriented design principles.

Aliasing during method calls

Aliasing will also occur when you pass an object into a method:

Chapter 4: Controlling Program Flow 89

//:c04:PassObject.cs

using System;

class Letter {
public char c;

public class PassObject {
static void f (Letter y) {
y.c = 'z';

public static void Main () {
Letter x = new Letter();

x.c = 'a';
Console.WriteLine("1: x.c: " + x.c);
£(x);
Console.WriteLine("2: x.c: " + x.c);
}
Y/ /e~

In many programming languages, the method F() would appear to be making a
copy of its argument Letter y inside the scope of the method. But once again a
reference is being passed so the line

y.c = 'z';

is actually changing the object outside of F(). The output shows this:

Aliasing and object state

Methods actually receive copies of their arguments, but since a copy of a
reference points to the same thing as the original, aliasing occurs. In this
example, Viewer objects fight over control of a television set. Although each
viewer receives a copy of the reference to the Television, when they change the
state of the Television, everyone has to live with the results:

//:c04:ChannelBattle.cs
//Shows aliasing in method calls
using System;

class Television {

90

Thinking in C# www.ThinkingIn. NET

int channel = 2;
internal int Channel/{
get { return channel;}
set {
Console.WriteLine ("Everyone sees {0}", value);
channel = value;

class Viewer {
static Random rand = new Random() ;
int preferredChannel = rand.Next (13);

static int counter = 0;
int viewerId = counter++;

void ChangeChannel (Television tv) {
Console.WriteLine (
"Viewer {0} doesn't like {1}, switch to {2}",
viewerId, tv.Channel, preferredChannel);
tv.Channel = preferredChannel;

public static void Main () {
Viewer v0 = new Viewer();
Viewer vl = new Viewer();
Viewer v2 = new Viewer();

Television tv = new Television();

v0.ChangeChannel (tv) ;

v1.ChangeChannel (tv) ;

v2.ChangeChannel (tv) ;

}

Y// /e~
The Television object has a property called Channel. The int channel
represents the Television object’s state. Everyone watching that particular
Television watches the same channel; all references to a particular object are
dependent on that object’s state.

A Viewer object has an int value that is the preferredChannel. A particular
viewer’s preferredChosen is determined randomly by a Random object that

Chapter 4: Controlling Program Flow 91

is static and therefore shared by all Viewers (as described in Chapter 2).
Similarly, there is a static int counter that is shared by all Viewers and an int
viewerld that is particular to an individual. As static variables, rand and
counter can be said to contribute to the class’s shared state, while
preferredChannel and viewerld determine the Viewer’s object’s state (more
accurately called the object state or instance state to distinguish it from the
class’s shared state).

The Viewer.Main() method creates 3 Viewer objects. Before the first Viewer
is created, the Viewer class state is initialized, setting the counter variable to
zero. Every time a Viewer is created, it sets its viewerld variable to the value of
the counter and increments the counter; the object state of each Viewer reads
from and then modifies the class state of the Viewer type.

After the Viewers have been created, we create a single Television object,
which when it’s created is tuned to Channel 2. A reference to that Television
object is handed to each of the Viewers in turn by way of a call to
Viewer.ChangeChannel(). Although each viewer receives a copy of the
reference to the Television, the copy always points to the same Television.
Everyone ends up watching the same channel as the state of the Television is
manipulated.

One of the cardinal rules of object-oriented programming is to distribute state
among objects. It is possible to imagine storing the current channel being
watched as a static variable in the Viewer class or for the Television to keep a
list of Viewers and their preferred channels. But when programming (and
especially when changing a program you haven’t seen in a while) often the
hardest thing is knowing the precise state that your class is in when a particular
line is executed. Generally, it’s easier to modify classes that don’t have complex
state transitions.

Aliasing and the ref keyword

Since object-oriented programming is mostly concerned with objects, and objects
are always manipulated by references, the fact that methods are passed copies of
their arguments doesn’t matter: a copy of a reference refers to the same thing as
the original reference. However, with C#’s value types, such as primitive number
types, structs, and enumes, it matters a lot. This program is almost identical to
the previous example, but this time we have an Mpg3Player defined not as a
class, but as a struct.

//:c04:Mp3Player.cs
//Demonstrates value types dont alias

92

Thinking in C# www.MindView.net

using System;

struct Mp3Player {
int volume;
internal int Volume({
get { return volume;}
set {
volume = value;
Console.WriteLine (
"Volume set to {0} ", volume);

class Viewer ({
static Random rand = new Random() ;

int preferredVolume = rand.Next (10);
static int counter = 0;
int viewerId = counter++;

void ChangeVolume (Mp3Player p) {
Console.WriteLine (
"Viewer {0} doesn't like {1}, switch to {2}",
viewerId, p.Volume, preferredvVolume) ;
p.Volume = preferredvVolume;

public static void Main () {
Viewer v0 = new Viewer();
Viewer vl = new Viewer () ;
Viewer v2 = new Viewer();

Mp3Player p = new Mp3Player();
v0.ChangeVolume (p) ;
v1.ChangeVolume (p) ;
v2.ChangeVolume (p) ;
}
Y/ /e~

Mp3Player is a value type, so when Viewer.ChangeVolume() receives a
copy (as is normally the case with arguments), the state of the copy is
manipulated, not the state of the original Mp3Player. Every Viewer receives a

Chapter 4: Controlling Program Flow 93

copy of the Mp3Player’s original state, with the volume at zero. The output of
the program is:

Viewer 0 doesn't like 0, switch to 6
Volume set to 6
Viewer 1 doesn't like 0, switch to O
Volume set to O
Viewer 2 doesn't like 0, switch to 5
Volume set to 5

C#’s ref keyword passes, not a copy of the argument, but a reference to the
argument. If the argument is itself a reference (as when the variable is
referencing an object), the reference to the reference still ends up manipulating
the same object. But when the argument is a value type, it makes a lot of
difference. To use the ref keyword, you must add it to both the argument list
inside the method you are creating as well as use it as a prefix during the call.
Here’s the above example, with ref added:

//:c04:Mp3Player2.cs
//Demonstrates value types dont alias
using System;

struct Mp3Player {
int volume;
internal int Volume({
get { return volume;}
set {
volume = value;
Console.WriteLine (
"Volume set to {0} ", volume);

class Viewer ({
static Random rand = new Random() ;

int preferredvVolume = rand.Next (10);
static int counter = 0;
int viewerId = counter++;

void ChangeVolume (ref Mp3Player p) {

94

Thinking in C# www.ThinkingIn. NET

Console.WriteLine (
"Viewer {0} doesn't like {1}, switch to {2}",
viewerId, p.Volume, preferredvVolume);
p.Volume = preferredVolume;

public static void Main () {
Viewer v0 = new Viewer();
Viewer vl = new Viewer();
Viewer v2 = new Viewer();

Mp3Player p = new Mp3Player();
v0.ChangeVolume (ref p);
v1l.ChangeVolume (ref p);
v2.ChangeVolume (ref p);
}
Y/ /e~

The changes are in the lines:

void ChangeVolume (ref Mp3Player p){ .. }

v0.ChangeVolume (ref p);

Now when run, each Viewer receives a reference to the original Mp3Player,
whose state changes from call to call:

Viewer 0 doesn't like 0, switch to 1
Volume set to 1
Viewer 1 doesn't like 1, switch to 7
Volume set to 7
Viewer 2 doesn't like 7, switch to 4
Volume set to 4

Beyond aliasing with out

Usually, when you calling a method that will manipulate the state of objects, you
have references to preexisting objects and you rely on aliasing. If you need to
create a new object inside a method, the preferred way of returning a reference to
it for use in the outside world is to return it as the method’s return value:

Sandwich MakeASandwich (Bread slicel, Bread slice?2,
Meat chosenMeat, Lettuce lettuce) {
Sandwich s = new Sandwich () ;
s.TopSlice

slicel;

Chapter 4: Controlling Program Flow 95

s.BottomSlice = slice2;
..etc..
return s;

}

However, if you need a method that returns more than one object (which is rare,
since a method should do one thing), and you can’t initialize the objects before
the call, you can use C#’s out keyword. Usually, C#’s compiler will not allow you
to use references that you have declared but not initialized. The out keyword,
though, tells the compiler that the initialization of those variables is the
responsibility of the called method.

To use out, you put it in the argument list of the method and prefix the reference
in the actual call.

//:c04:BreadDissector.cs
using System;

class Bread {

}

class Meat {

}

class Lettuce {

}

class Sandwich {
internal Sandwich () {
topSlice = new Bread();
bottomSlice = new Bread();
meat = new Meat ()
lettuce = new Lettuce();

Bread topSlice, bottomSlice;
internal Bread TopSlice{
get { return topSlice;}
}
internal Bread BottomSlice({
get { return bottomSlice;}

Meat meat;

96

Thinking in C# www.MindView.net

internal Meat Meat({
get { return meat;}

}

Lettuce lettuce;

internal Lettuce Lettuce{
get { return lettuce;}

class Dissector {
void Split(
Sandwich s, out Bread sl, out Bread s2,
out Meat m, out Lettuce 1) {
sl = s.TopSlice;

s2 = s.BottomSlice;
m = s.Meat;
1 = s.Lettuce;

public static void Main () {
Sandwich s = new Sandwich () ;
Bread bl, b2;
Meat m;
Lettuce 1;
Dissector d = new Dissector();
d.Split (s, out bl, out b2, out m, out 1);
Console.WriteLine (
"{0} {1} {2} {3}", bl, b2, m, 1, b2);
}
Y/ /e~

The Sandwich class constructs its constituent components (two pieces of
Bread, some Meat, and some Lettuce) during the Sandwich() constructor
call. Each of these components is available in a property field of the Sandwich
and that’s normally how you’d get them, one at a time. However, the
Dissector.Split() method might be more convenient in some circumstances.
Although the Dissector.Split() method itself accesses the components one by
one, all of the arguments marked with out are initialized within
Dissector.Split(). The Dissector.Main() declares and initializes a
Sandwich but just declares references to the components. If
Dissector.Main() did not call Dissector.Split(), the compiler would not

Chapter 4: Controlling Program Flow 97

allow the last line of Dissector.Main(), saying that the variables b1, b2, m,
and 1 were not initialized. The line

d.Split(s, out bl, out b2, out m, out 1);

tells the compiler to delegate the initialization responsibility to
Dissector.Split(). Since Dissector.Split() fulfills the initialization
responsibility, the method runs fine, “returning” four objects.

Mathematical operators

The basic mathematical operators are the same as the ones available in most
programming languages: addition (+), subtraction (-), division (/), multiplication
(*) and modulus (%, which produces the remainder from integer division).
Integer division truncates, rather than rounds, the result.

C# also uses a shorthand notation to perform an operation and an assignment at
the same time. This is denoted by an operator followed by an equal sign, and is
consistent with all the operators in the language (whenever it makes sense). For
example, to add 4 to the variable x and assign the result to x, use: x += 4.

This example shows the use of the mathematical operators:

//:c04:MathOps.cs
using System;

public class MathOps {
///Prints a string and an int:
static void PInt(String s, int i) {
Console.WriteLine(s + " =" + 1i);

//Shorthand to print a string and a float
static void PDouble (String s, double f) {
Console.WriteLine(s + " =" + f);

public static void Main () {
//Create a random number generator,
//seeds with current time by default
Random rand = new Random() ;
int i, j, k;
//get a positive random number less than
//the specified maximum

98

Thinking in C# www.ThinkingIn. NET

J = rand.Next (100) ;
k = rand.Next (100);

PInt ("3j",3); PInt("k",k);

i=3 + k; PInt("j + k", 1);
i =3 - k; PInt("j - k", 1i);
i=%X/ 3j; PInt("k / 3", 1i);
i =% * 3j; PInt("k * 3", 1i);

//Limits i to a positive number less than j
i=%k % j; PInt("k & 3", 1i);

§ %= k; PInt("3 %= k", 3);

//Floating-point number tests:

double u, v, w;

v = rand.NextDouble () ;

w= rand.NextDouble()

PDouble ("v", v); PDouble("w",w);

u = v + w; PDouble("v + w", u);
u = v - w; PDouble("v - w", u);
u = v * w; PDouble("v * w", u);
u =v / w; PDhouble("v / w", u);

//the following also works for
//char, byte, short, int, long,
//and float

A\

u += v; PDouble("u += v", u);
u -= v; PDouble("u -= v", u);
u *= v; PDouble("u *= v", u);
u /= v; PDouble("u /= v", u);

}
Y/ /e~

The first thing you will see are some shorthand methods for printing: the Prt()
method prints a String, the PInt() prints a String followed by an int and the
PDouble() prints a String followed by a double. Of course, they all ultimately
end up using Console.WriteLine(), but these methods are slightly more
space-efficient for the cramped margin of a book.

To generate numbers, the program first creates a Random object. Because no
arguments are passed during creation, C# uses the current time as a seed for the
random number generator. The program generates a number of different types of
random numbers with the Random object simply by calling the methods: Next
() and NextDouble() (you can also call NextLong() or Next(int)).

Chapter 4: Controlling Program Flow 99

Unary minus and plus operators

The unary minus (-) and unary plus (+) are the same operators as binary minus
and plus. The compiler figures out which use is intended by the way you write the
expression. For instance, the statement

| X = —ay

has an obvious meaning. The compiler is able to figure out:
| X = a * -b;

but the reader might get confused, so it is clearer to say:
| x=a* (-0);

The unary minus produces the negative of the value. Unary plus provides
symmetry with unary minus, although it doesn’t have any effect.

Auto increment and decrement

C#, like C, is full of shortcuts. Shortcuts can make code much easier to type, and
either easier or harder to read.

Two of the nicer shortcuts are the increment and decrement operators (often
referred to as the auto-increment and auto-decrement operators). The decrement
operator is -- and means “decrease by one unit.” The increment operator is ++
and means “increase by one unit.” If a is an int, for example, the expression ++a
is equivalent to (a = a + 1). Increment and decrement operators produce the
value of the variable as a result.

There are two versions of each type of operator, often called the prefix and postfix
versions. Pre-increment means the ++ operator appears before the variable or
expression, and post-increment means the ++ operator appears after the variable
or expression. Similarly, pre-decrement means the -- operator appears before the
variable or expression, and post-decrement means the -- operator appears after
the variable or expression. For pre-increment and pre-decrement, (i.e., ++a or
--a), the operation is performed and the value is produced. For post-increment
and post-decrement (i.e. a++ or a--), the value is produced, then the operation is
performed. As an example:

//:c04:AutolInc.cs
using System;

public class AutolInc {
public static void Main () {

100 Thinking in C# www.MindView.net

prt("i: " + i)
prt("++i: " + ++i); //Pre-increment
prt("i++: " + i++); //Post-increment
prt("i: " + 1i);
prt("--i: " + --i); //Pre-increment
prt("i--: " + i--); //Post-increment
prt("i: " + i)

static void prt(String s) {
Console.WritelLine(s) ;
}
Y// /i~

The output for this program is:

You can see that for the prefix form you get the value after the operation has been
performed, but with the postfix form you get the value before the operation is
performed. These are the only operators (other than those involving assignment)
that have side effects. (That is, they change the operand rather than using just its
value.)

The increment operator is one explanation for the name C++, implying “one step
beyond C.” As for C#, the explanation seems to be in music, where the #
symbolizes “sharp” — a half-step “up’.”

Relational operators

Relational operators generate a boolean result. They evaluate the relationship
between the values of the operands. A relational expression produces true if the
relationship is true, and false if the relationship is untrue. The relational

1 Michael Lamsoul has wittily suggested that the # in C# may also be a geometric pun on
the ++ in C++, that the sharp looks like a square of + operators.

Chapter 4: Controlling Program Flow 101

operators are less than (<), greater than (>), less than or equal to (<=), greater
than or equal to (>=), equivalent (==) and not equivalent (!=). Equivalence and
nonequivalence work with all built-in data types, but the other comparisons
won’t work with type bool.

Testing object equivalence

The relational operators == and != also work with all objects, but their meaning
often confuses the first-time C# programmer. Here’s an example:

//:c04:EqualsOperator.cs
using System;
class MyInt {

Int32 i;

public MyInt (int 7j) {

i=73;

}
//Demonstrates handle inequivalence.
public class EqualsOperator {
public static void Main () {
MyInt ml = new MyInt (47);
MyInt m2 = new MyInt (47);
Console.WriteLine ("ml == m2: "
+ (ml == m2));
}
Y/ /)~

The expression System.Console.WriteLine(m1 == m2) will print the result
of the bool comparison within it. Surely the output should be true, since both
MylInt objects have the same value. But while the contents of the objects are the
same, the references are not the same and the operators == and != compare
object references. So the output is actually false. Naturally, this surprises people
at first.

What if you want to compare the actual contents of an object for equivalence? For
objects in a well-designed class library (such as the .NET framework), you just
use the equivalence operator == that has been specially overridden in many
classes to get the desired behavior. Unfortunately, you won’t learn about
overriding until Chapter 7, but being aware of the way ‘==’ behaves might save
you some grief in the meantime.

102 Thinking in C# www.ThinkingIn. NET

Logical operators

Each of the logical operators AND (&&), OR (||) and NOT (!) produces a bool
value of true or false based on the logical relationship of its arguments. This
example uses the relational and logical operators:

//:c04:Bool.cs

using System;

// Relational and logical operators.

public class Bool {

public static void Main () {

Random rand = new Random{() ;
int i = rand.Next (100);
int j = rand.Next (100);

Prt ("1 =" + 1);

Pre("j = "o+ 3);

Prt ("i > is "™ + (1 > 3));
Pre("i < § is " + (1 < 3));
Prt ("1 >= 3 is " + (i >= 3));
Prt("i <= 3 is " + (i <= 3));
Prt("i == j is " + (i == 3J));
Prt("i !'= 3 is " + (i !'= 3));

// Treating an int as a boolean is
// not legal C#

//V Prt("i && J is " + (1 && J));
/7Y Pre("i o] 3 is "+ (1])
//V Prt("!i is " + !i);

Prt (" (i < 10) && (j < 10) is "
+ ((1 < 10) && (3 < 10)));
Prt (" (i < 10) || (jJ < 10) is "
+ ((1 < 10) I (3 <10))):

static void Prt(String s) {
Console.WritelLine(s) ;
}
Y// /i~

You can apply AND, OR, or NOT to bool values only. You can’t use a non-bool
as if it were a bool in a logical expression as you can in some other languages.
You can see the failed attempts at doing this commented out with a //! comment

Chapter 4: Controlling Program Flow 103

marker. The subsequent expressions, however, produce bool values using
relational comparisons, then use logical operations on the results.

One output listing looked like this:

= 85

4

J is true
J is false

AN Vo

Vv
I

is true

AN
Il

is false

! is true
0) && (j < 10) is false

10) || (3 < 10) is true

]
]
J is false
]
1

AN A

i
J
i
i
i
i
i
i
(1
(i

Note that a bool value is automatically converted to an appropriate text form if
it’s appended to a string.

You can replace the definition for int in the above program with any other
primitive data type except bool. Be aware, however, that the comparison of
floating-point numbers is very strict. A number that is the tiniest fraction
different from another number is still “not equal.” A number that is the tiniest bit
above zero is still nonzero.

Short-circuiting

When dealing with logical operators you run into a phenomenon called “short
circuiting.” This means that the expression will be evaluated only until the truth
or falsehood of the entire expression can be unambiguously determined. As a
result, all the parts of a logical expression might not be evaluated. Here’s an
example that demonstrates short-circuiting:

//:c04:ShortCircuit.cs

// Demonstrates short-circuiting behavior.
// with logical operators.

using System;

public class ShortCircuit {
static bool Testl (int val) {
Console.WriteLine ("Testl (" + wval + ")");
Console.WriteLine ("result: " + (val < 1));
return val < 1;

104 Thinking in C# www.MindView.net

static bool Test2 (int wval) {
Console.WriteLine ("Test2 (" + val + ")");
Console.WriteLine ("result: " + (val < 2));
return val < 2;
}
static bool Test3(int wval) {
Console.WriteLine ("Test3 (" + val + ")");
Console.WriteLine ("result: " + (val < 3));
return val < 3;
}
public static void Main () {
if (Testl (0) && Test2(2) && Test3(2))
Console.WritelLine ("expression is true");
else
Console.WritelLine ("expression is false");
}
Y /)~

Each test performs a comparison against the argument and returns true or false.
It also prints information to show you that it’s being called. The tests are used in
the expression:

| if(testl(0) s&& test2(2) &s& test3(2))

You might naturally think that all three tests would be executed, but the output
shows otherwise:

Ttestl (0)

result: true

Ttest2 (2)

result: false
expression is false

The first test produced a true result, so the expression evaluation continues.
However, the second test produced a false result. Since this means that the
whole expression must be false, why continue evaluating the rest of the
expression? It could be expensive. The reason for short-circuiting, in fact, is
precisely that; you can get a potential performance increase if all the parts of a
logical expression do not need to be evaluated.

Bitwise operators

There are only 10 types of people in this world: those that understand binary and
those that don’t. C#’s bitwise operators are for those that do. You use the bitwise

Chapter 4: Controlling Program Flow 105

operators to manipulate individual bits in an integral primitive data type. Bitwise
operators perform boolean algebra on the corresponding bits in the two
arguments to produce the result.

The bitwise operators come from C’s low-level orientation; you were often
manipulating hardware directly and had to set the bits in hardware registers.
Although most application and Web Service developers will not be using the
bitwise operators much, developers for PocketPCs, set-top boxes, and the XBox
often need every bit-twiddling advantage they can get.

The bitwise AND operator (&) produces a one in the output bit if both input bits
are one; otherwise it produces a zero. The bitwise OR operator (|) produces a one
in the output bit if either input bit is a one and produces a zero only if both input
bits are zero. The bitwise EXCLUSIVE OR, or XOR (*), produces a one in the
output bit if one or the other input bit is a one, but not both. The bitwise NOT (~,
also called the ones complement operator) is a unary operator; it takes only one
argument. (All other bitwise operators are binary operators.) Bitwise NOT
produces the opposite of the input bit—a one if the input bit is zero, a zero if the
input bit is one.

The bitwise operators and logical operators use the same characters, so it is
helpful to have a mnemonic device to help you remember the meanings: since
bits are “small,” there is only one character in the bitwise operators.

Bitwise operators can be combined with the = sign to unite the operation and
assignment: &=, |= and ~ = are all legitimate. (Since ~ is a unary operator it
cannot be combined with the = sign.)

The bool type is treated as a one-bit value so it is somewhat different. You can
perform a bitwise AND, OR and XOR, but you can’t perform a bitwise NOT
(presumably to prevent confusion with the logical NOT). For bools the bitwise
operators have the same effect as the logical operators except that they do not
short circuit. Also, bitwise operations on bools include an XOR logical operator
that is not included under the list of “logical” operators. You're prevented from
using bools in shift expressions, described next.

Shift operators

The shift operators also manipulate bits. They can be used solely with primitive,
integral types. The left-shift operator (<<) produces the operand to the left of the
operator shifted to the left by the number of bits specified after the operator
(inserting zeroes at the lower-order bits). The signed right-shift operator (>>)
produces the operand to the left of the operator shifted to the right by the number

106

Thinking in C# www.ThinkingIn. NET

of bits specified after the operator. The signed right shift >> uses sign extension:
if the value is positive, zeroes are inserted at the higher-order bits; if the value is
negative, ones are inserted at the higher-order bits. (C# does not have unsigned
shifts, but thas unsigned datatypes for such situations.)

If you shift a char, byte, or short, it will be promoted to int before the shift
takes place, and the result will be an int. Only the five low-order bits of the right-
hand side will be used. This prevents you from shifting more than the number of
bits in an int. If you're operating on a long, you'll get a long result. Only the six
low-order bits of the right-hand side will be used so you can’t shift more than the
number of bits in a long.

Shifts can be combined with the equal sign (<<= or >>=). The lvalue is replaced
by the lvalue shifted by the rvalue.

Here’s an example that demonstrates the use of all the operators involving bits:

//:c04:BitManipulation.cs
using System;

public class BitManipulation {
public static void Main () {
Random rand = new Random() ;
int i = rand.Next();
int j = rand.Next();
PBinInt ("-1", -1);
PBinInt ("+1", +1);

int maxpos = Int32.MaxValue;
PBinInt ("maxpos", maxpos);
int maxneg = Int32.MinValue;

PBinInt ("maxneg", maxneqg);

"

PBinInt ("i", 1i);

PBinInt ("~i", ~i);

PBinInt ("-1i", -1i);

PBinInt ("3", 3J);

PBinInt ("i & j", i & J);
PBinInt ("1 | 3", i | 3J);
PBinInt ("1 ~ 3", i ~ 3J);
PBinInt ("i << 5", i << 5);
PBinInt ("i >> 5", i >> 5);
PBinInt (" (~i) >> 5", (~1) >> 5);

long 1 high bits = rand.Next();

Chapter 4: Controlling Program Flow 107

1 high bits <<= 32;

long 1 = 1 high bits + rand.Next();
long m high bits = rand.Next();
m_high bits <<=32;

long m = m _high bits + rand.Next();
PBinLong ("-1L", -1L);

PBinLong ("+1L", +1L);

long 11 = Int64.MaxValue;

PBinLong ("maxpos", 11);

long 1lln = Int64.MinValue;

maxneg", 1ln);

PBinLong ("1 high bltS" 1 high bits);
PBinLong ("1", 1);

PBinLong ("~1", ~1);

n

PBinLong

(

(

(

(
PBinLong ("-1", -1);
PBinLong ("m high bits", m high bits);
PBinLong ("m", m);
PBinLong ("1 & m", 1 & m);
PBinLong ("1 | m", 1 | m);
PBinLong ("1 * m", 1 ~ m);
PBinLong ("1 << 5", 1 << 5);
PBinLong ("1 >> 5", 1 >> 5);
PBinLong (" (~1) >> 5", (~1) >> 5);

}
static void PBinInt (String s, int 1) {
Console.WriteLine (

s + ", int: " + i + ", binary: ");
Console.Write (" ")
for (int j = 31; 3 >=0; j--)

if (((1 << 3) & i) !'=0)

Console.Write ("1") ;
else
Console.Write ("0");
Console.WriteLine () ;

static void PBinLong(String s, long 1) {
Console.WriteLine (
s + ", long: " + 1 + ", binary: ");
Console.Write (" ")
for (int 1 = 63; i >=0; i--)

108

Thinking in C#

www.MindView.net

if (((1L << 1) & 1) != 0)
Console.Write ("1");
else
Console.Write ("0") ;
Console.WriteLine () ;
}
Y/ /e~

The two methods at the end, PBinInt() and PBinLong() take an int or a
long, respectively, and print it out in binary format along with a descriptive
string. You can ignore the implementation of these for now.

You’ll note the use of Console.Write() instead of Console.WriteLine(). The
Write() method does not emit a new line, so it allows you to output a line in
pieces.

As well as demonstrating the effect of all the bitwise operators for int and long,
this example also shows the minimum, maximum, +1 and -1 values for int and
long so you can see what they look like. Note that the high bit represents the
sign: 0 means positive and 1 means negative. The output looks like this:

-1, int: -1, binary:
11111111111111111111111111111111
+1, int: 1, binary:
00000000000000000000000000000001
maxpos, int: 2147483647, binary:
01111111111111111111111111111111
maxneg, int: -2147483648, binary:
10000000000000000000000000000000
i, int: 1177419330, binary:
01000110001011011111111001000010
~i, int: -1177419331, binary:
10111001110100100000000110111101
-i, int: -1177419330, binary:
10111001110100100000000110111110
j, int: 886693932, binary:
00110100110110011110000000101100
i & j, int: 67756032, binary:
00000100000010011110000000000000
i] j, int: 1996357230, binary:
01110110111111011111111001101110
j, int: 1928601198, binary:
01110010111101000001111001101110

A

i

Chapter 4: Controlling Program Flow 109

i << 5, int: -977287104, binary:
11000101101111111100100001000000
i >> 5, int: 36794354, binary:
00000010001100010110111111110010
(~1i) >> 5, int: -36794355, binary:
11111101110011101001000000001101
-1L, long: -1, binary:

1111111112111114212121114222114¢42111111111111111111111111111111111
11111
+1L, long: 1, binary:

000
00001
maxpos, long: 9223372036854775807, binary:

011
11111
maxneqg, long: -9223372036854775808, binary:

100
00000
1 high bits, long: 4654972597212020736, binary:

01000000100110011100100011101010000000000000000000000000000
00000
1, long: 4654972598829014295, binary:

01000000100110011100100011101010011000000110000101011101000
10111
~1, long: -4654972598829014296, binary:

10111111011001100011011100010101100111111001111010100010111
01000
-1, long: -4654972598829014295, binary:

10111111011001100011011100010101100111111001111010100010111
01001
m high bits, long: 468354230734815232, binary:

Thinking in C# www.ThinkingIn. NET

00000110011111111110110110110001000000000000000000000000000
00000
m, long: 468354231158705547, binary:

00000110011111111110110110110001000110010100010000001101100
01011
1 & m, long: 7257463942286595, binary:

00000000000110011100100010100000000000000100000000001101000
00011
1 | m, long: 5116069366045433247, binary:

01000110111111111110110111111011011110010110010101011101100
11111
1 ~ m, long: 5108811902103146652, binary:

01000110111001100010010101011011011110010010010101010000100
11100
1 << 5, long: 1385170572852044512, binary:

00010011001110010001110101001100000011000010101110100010111
00000
1 >> 5, long: 145467893713406696, binary:

00000010000001001100111001000111010100110000001100001010111
01000
(~1) >> 5, long: -145467893713406697, binary:

11111101111110110011000110111000101011001111110011110101000
10111

The binary representation of the numbers is referred to as signed two’s
complement.

Ternary if-else operator

This operator is unusual because it has three operands. It is truly an operator
because it produces a value, unlike the ordinary if-else statement that you’ll see in
the next section of this chapter. The expression is of the form:

| boolean-exp ? valueO : valuel

Chapter 4: Controlling Program Flow 111

If boolean-exp evaluates to true, valueo is evaluated and its result becomes the
value produced by the operator. If boolean-exp is false, valuei is evaluated and
its result becomes the value produced by the operator.

Of course, you could use an ordinary if-else statement (described later), but the
ternary operator is much terser. Although C (where this operator originated)
prides itself on being a terse language, and the ternary operator might have been
introduced partly for efficiency, you should be somewhat wary of using it on an
everyday basis—it’s easy to produce unreadable code.

The conditional operator can be used for its side effects or for the value it
produces, but in general you want the value since that’s what makes the operator
distinct from the if-else. Here’s an example:

static int Ternary(int i) {
return i < 10 2?2 i * 100 : i * 10;

}

You can see that this code is more compact than what you’d need to write without
the ternary operator:

static int Alternative (int 1) {
if (1 < 10)
return i1 * 100;
else
return 1 * 10;

}

The second form is easier to understand, and doesn’t require a lot more typing.
So be sure to ponder your reasons when choosing the ternary operator — it’s
generally only warranted when you’re setting a variable to one of two
straightforward values:

int ternaryResult = i < 10 2 i * 100 : i * 10;

The comma operator

The comma is used in C and C++ not only as a separator in function argument
lists, but also as an operator for sequential evaluation. The sole place that the
comma operator is used in C# is in for loops, which will be described later in this
chapter.

112

Thinking in C# www.MindView.net

Common pitfalls when
using operators

One of the pitfalls when using operators is trying to get away without parentheses
when you are even the least bit uncertain about how an expression will evaluate.
This is still true in C#.

An extremely common error in C and C++ looks like this:

while(x = y) {
//
}

The programmer was trying to test for equivalence (==) rather than do an
assignment. In C and C++ the result of this assignment will always be true if y is
nonzero, and you’ll probably get an infinite loop. In C#, the result of this
expression is not a bool, and the compiler expects a bool and won’t convert
from an int, so it will conveniently give you a compile-time error and catch the
problem before you ever try to run the program. So the pitfall never happens in
C#. (The only time you won'’t get a compile-time error is when x and y are bool,
in which case x = y is a legal expression, and in the above case, probably an
€error.)

A similar problem in C and C++ is using bitwise AND and OR instead of the
logical versions. Bitwise AND and OR use one of the characters (& or |) while
logical AND and OR use two (&& and |]). Just as with = and ==, it’s easy to type
just one character instead of two. In C#, the compiler again prevents this because
it won’t let you cavalierly use one type where it doesn’t belong.

Casting operators

The word cast is used in the sense of “casting into a mold.” C# will automatically
change one type of data into another when appropriate. For instance, if you
assign an integral value to a floating-point variable, the compiler will
automatically convert the int to a float. Casting allows you to make this type
conversion explicit, or to force it when it wouldn’t normally happen.

To perform a cast, put the desired data type (including all modifiers) inside
parentheses to the left of any value. Here’s an example:

void Casts () {
int i = 200;
long alLongVar = (long)i;
long anotherLongVar = (long)200;

Chapter 4: Controlling Program Flow 113

}

As you can see, it’s possible to perform a cast on a numeric value as well as on a
variable. In both casts shown here, however, the cast is superfluous, since the
compiler will automatically promote an int value to a long when necessary.
However, you are allowed to use superfluous casts to make a point or to make
your code more clear. In other situations, a cast may be essential just to get the
code to compile.

In C and C++, casting can cause some headaches. In C#, casting is safe, with the
exception that when you perform a so-called narrowing conversion (that is,
when you go from a data type that can hold more information to one that doesn’t
hold as much) you run the risk of losing information. Here the compiler forces
you to do a cast, in effect saying “this can be a dangerous thing to do—if you want
me to do it anyway you must make the cast explicit.” With a widening conversion
an explicit cast is not needed because the new type will more than hold the
information from the old type so that no information is ever lost.

C# allows you to define casts between any logically exchangeable objects and
comes with prewritten casts for the numeric value types. To convert one to the
other there must be special methods. (You'll find out later in this book that
objects can be cast within a family of types without the need to write special
casting code; an Oak can be cast to a Tree and vice-versa, but not to a foreign
type such as a Rock unless you write an explicit Tree-to-Rock conversion.)

Literals

Ordinarily when you insert a literal value into a program the compiler knows
exactly what type to make it. Sometimes, however, the type is ambiguous. When
this happens you must guide the compiler by adding some extra information in
the form of characters associated with the literal value. The following code shows
these characters:

//:c04:Literals.cs
using System;

public class Literals {

//'char ¢ = 0Oxffff; // max char hex value
byte b = 0x7f; // max byte hex value
short s = Ox7fff; // max short hex value
int i1 = 0x2f; // Hexadecimal (lowercase)
int 12 = O0X2F; // Hexadecimal (uppercase)

// Hex also works with long.

114

Thinking in C# www.ThinkingIn. NET

long nl = 200L; // long suffix

long n2 = 2001; // long suffix - generates warning
long n3 = 200;

//!' long 16(200); // not allowed

float f1 = 1;

float f2 = 1F; // float suffix
float f3 = 1f; // float suffix
float f4 = le-45f; // 10 to the power
float £f5 = le+9f; // float suffix
double dl = 1d; // double suffix
double d2 = 1D; // double suffix
double d3 = 47e47d; // 10 to the power
}///:~ (Non-executable code snippet)

Hexadecimal (base 16), which works with all the integral data types, is denoted by
a leading ox or 0X followed by 0—9 and a—f either in upper or lowercase. If you
try to initialize a variable with a value bigger than it can hold (regardless of the
numerical form of the value), the compiler will give you an error message. Notice
in the above code the maximum possible hexadecimal values for char, byte, and
short. If you exceed these, the compiler will automatically make the value an int
and tell you that you need a narrowing cast for the assignment. You’ll know
you’ve stepped over the line.

A trailing character after a literal value establishes its type. Upper or lowercase L
means long, upper or lowercase F means float and upper or lowercase D means
double.

Exponents use a notation that some find rather dismaying: 1.39 e-47f. In science
and engineering, ‘e’ refers to the base of natural logarithms, approximately 2.718.
(A more precise double value is available in C# as Math.E.) This is used in
exponentiation expressions such as 1.39 x e47, which means 1.39 x 2.71847.
However, when FORTRAN was invented they decided that e would naturally
mean “ten to the power,” which is an odd decision because FORTRAN was
designed for science and engineering and one would think its designers would be
sensitive about introducing such an ambiguity. At any rate, this custom was
followed in C, C++ and now C#. So if you’re used to thinking in terms of e as the
base of natural logarithms, you must do a mental translation when you see an
expression such as 1.39 e-47f in C#; it means 1.39 X 1047.

Note that you don’t need to use the trailing character when the compiler can
figure out the appropriate type. With

| long n3 = 200;

Chapter 4: Controlling Program Flow 115

there’s no ambiguity, so an L after the 200 would be superfluous. However, with

| float f4 = le-47f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so without the
trailing f it will give you an error telling you that you must use a cast to convert
double to float.

Promotion

You'll discover that if you perform any mathematical or bitwise operations on
primitive data types that are smaller than an int (that is, char, byte, or short),
those values will be promoted to int before performing the operations, and the
resulting value will be of type int. So if you want to assign back into the smaller
type, you must use a cast. (And, since you’re assigning back into a smaller type,
you might be losing information.) In general, the largest data type in an
expression is the one that determines the size of the result of that expression; if
you multiply a float and a double, the result will be double; if you add an int
and a long, the result will be long.

C# has sizeof

The sizeof() operator satisfies a specific need: it tells you the number of bytes
allocated for data items. The most compelling need for sizeof() in C and C++ is
portability. Different data types might be different sizes on different machines, so
the programmer must find out how big those types are when performing
operations that are sensitive to size. For example, one computer might store
integers in 32 bits, whereas another might store integers as 16 bits. Programs
could store larger values in integers on the first machine. As you might imagine,
portability is a huge headache for C and C++ programmers. In C#, this most
common use of sizeof() is not relevant, but it can come into play when interfacing
with external data structures or when you’re manipulating blocks of raw data and
you’re willing to forego convenience and safety for every last bit of speed (say, if
you’re writing a routine for processing video data). The sizeof() operator is only
usable inside unsafe code (see page 368).

C#'s preprocessor

C#’s preprocessing directives should be used with caution. Preprocessing is, as
the name implies, something that happens before the human-readable code is
transformed into the Common Intermediate Language that is the NET
equivalent of machine code. C# does not actually have a separate preprocessing
step that runs prior to compilation but the form and use of these statements is
intended to be familiar to C and C++ programmers.

116 Thinking in C# www.MindView.net

While there’s no harm in the #region directives, which are simply outlining
clues to the Visual Studio .NET IDE, the other directives support conditional
compilation, which allows a single codebase to generate multiple binary outputs.
Preprocessing directives such as #if, #else, #elif, and #endif modify the code
that is seen by the compiler. The variables that control which #if...#else block
will be compiled may be modified on the compiler command-line, and therein
lies the challenge. You essentially are defining different programs; at best, each
preprocessor variant must be tested separately, at worst, incorrect behavior arises
in some variants, a needed change is made only in one variant, etc.

The most common use of conditional compilation is to remove debugging
behavior from a shipping product; this is done by defining a symbol on the
compilation command-line, and using the #if, #endif, #else, and #elif
directives to create conditional logic depending on the existence or absence of
one or more such symbols. Here’s a simple example:

//:c04:CondComp.cs
//Demonstrates conditional compilation

class CondComp{
public static void Main () {
#if DEBUG
Console.WriteLine ("Debug behavior");
#endif
}
Y/ /e~

If CondComp is compiled with the command-line csc /define:Debug
CondComp.cs it will print the line; if with a straight csc CondComp.cs, it
won’t. While this seems like a reasonable idea, in practice it often leads to
situations where a change is made in one conditional branch and not in another,
and the preprocessor leaves no trace in the code of the compilation options; in
general, it’s a better idea to use a readonly bool for such things. A reasonable
compromise is to use the preprocessor directives to set the values of variables
that are used to change runtime behavior:

//:c04:MarkedCondComp.cs
//Demonstrates conditional compilation
using System;

class CondComp {
static readonly bool DEBUG =
#1if DEBUG

Chapter 4: Controlling Program Flow 117

true;
felse

#endif

if

}
Y/ /e~

false;

public static void Main () {
(DEBUG)
Console.WriteLine ("Debug behavior");

In MarkedCondComp, if a problem arose, a debugger or logging facility would
be able to read the value of the DEBUG bool, thus allowing the maintenance
programmers to determine the compilation commands that lead to the
troublesome behavior. The trivial disadvantages of this model are the slight
penalty of a runtime comparison and the increase in the assembly’s size due to
the presence of the debugging code.

Precedence revisited

Operator precedence is difficult to remember, but here is a helpful mnemonic :
“Ulcer Addicts Really Like C# A Lot.”

Mnemonic | Operator type Operators
Ulcer Unary + - 4
Addicts ?}fii%meﬁc (and *)%+- << >>
Really Relational ><>=<===!=
Like Logical (and bitwise) | && || & | *
C# Conditional (ternary) A>B?X:Y
A Lot Assignment = (and compound

assignment like *=)

Of course, with the shift and bitwise operators distributed around the table it is
not a perfect mnemonic, but for non-bit operations it works.

A compendium of operators

The following example shows which primitive data types can be used with
particular operators. Basically, it is the same example repeated over and over, but

118

Thinking in C#

www.ThinkingIn. NET

using different primitive data types. The file will compile without error because

the lines that would cause errors are commented out with a //!.

//:c04:A110ps.cs
namespace c03{
using System;
// Tests all the operators on all the
// primitive data types to show which
// ones are accepted by the C# compiler.

public class AllOps {
// To accept the results of a boolean test:
void F(bool b) {}
void BoolTest (bool x, bool y) {
// Arithmetic operators:
[/ x = x *oy;

/1Y x =%/ y;
/] x = x % y;
/]! x X + y;
[/ = x - y;
/] x++;

/) x—-;

/) x = +y;
/] x = —y;

// Relational and logical:
/7Y F(x > y);
//V F(x >= y);

//V F(x < y);
//V F(x <= vy);
F(x == vy);

F(x !'=vy);
F(ly);

X = X && y;
x=x |1y

// Bitwise operators:
/] x = ~y;

X =X & y;

x =x | y;

x =x " vy;

/]! x = x << 1;
/] x = x >> 1;

Chapter 4: Controlling Program Flow

119

/)Y x = x >>> 1;
// Compound assignment:

/) x 4= y;

/I x -=y;

/1Y x F=y;

/) x /= y;

/0 % %= y;

//) x <<= 1;

/] x >>= 1;

/)0 % >>>= 1;

X &= y;

x "=y

x |=y;

// Casting:

//' char ¢ = (char)x;
//! byte B = (byte)x;
//! short s = (short)x;
//!) int 1 = (int)x;

//!' long 1 = (long)x;
//' float £ = (float)x;

//' double d = (double)x;

}

void CharTest (char x, char y) {
// Arithmetic operators:

x = (char) (x * y);
X (char) (x / vy);
X (char) (x % vy);
X (char) (x + vy);
x = (char) (x - y);
X++;

X==;

x = (char)+y;

x = (char)-y;

// Relational and logical:
F(x > vy);

F(x >= vy);

F(x < y);

F(x <= vy);

F(x == vy);

F(x !'=vy);

/7Y F(lx);

120 Thinking in C# www.MindView.net

//V F(x && y);

/7Y F(x 1 oy);

// Bitwise operators:
x= (char)~y;

x = (char) (x & y);
x = (char) (x | y):
x = (char) (x " vy);
x = (char) (x << 1);
x = (char) (x >> 1);
// Compound assignment:
X +=vy;

X —-= y;

X *=vy;

x /=vy;

X %= Yy;

x <<= 1;

X >>= 1;

X &= y;

x "= vy;

x |=y;

// Casting:

//! bool b = (bool)x;
byte B = (byte) x;
short s = (short)x;
int 1 = (int)x;
long 1 = (long)x;
float £ = (float)x;

double d = (double)x;

}

void ByteTest (byte x, byte y) {
// Arithmetic operators:
x = (byte) (x* y);

X (byte) (x / v):
x = (byte) (x % y);
x = (byte) (x + vy);
x = (byte) (x - y);
X++;

X==;

x = (byte)+ y;

x = (byte)- y;

// Relational and logical:

Chapter 4: Controlling Program Flow 121

}

F(x > vy);

F(x >=vy);

F(x < vy);

F(x <= vy);

F(x == vy);

F(x !=vy);

//) F(Ix);

//) F(x && y);

/7Y F(x 1 oy)

// Bitwise operators:
x = (byte)~y;

x = (byte) (x & y);
X (byte) (x | vy)s
X (byte) (x ~ vy);
X (byte) (x << 1);
x = (byte) (x >> 1);
// Compound assignment:
X +=vy;

X -= y;

X *=y;

X /=y;

X %= y;

X <<= 1;

x >>= 1;

X &= y;

x "= y;

x |=y;

// Casting:

//! bool b = (bool)x;
char ¢ = (char)x;
short s = (short)x;
int i = (int)x;
long 1 = (long)x;
float £ = (float)x;

double d = (double)x;

void ShortTest (short x, short y)

// Arithmetic operators:
x = (short) (x * vy);
x = (short) (x / y);
(short) (x % vy);

X

{

122

Thinking in C#

www.ThinkingIn. NET

x = (short) (x + y);
x = (short) (x - vy);
X++;

X==;

x = (short)+y;

X = (short)-y;

// Relational and logical:
F(x > vy);

F(x >=vy);

F(x < y);

F(x <= vy);

F(x == vy);

F(x !'=vy);

//V F(!x);

//) F(x && y);

/7Y F(x 1] y)

// Bitwise operators:
X = (short)~y;

x = (short) (x & v);
x = (short) (x | vy);
x = (short) (x ~ vy);
x = (short) (x << 1);
x = (short) (x >> 1);
// Compound assignment:
X +=vy;

X -= y;

X *=y;

X /=y;

X %= y;

x <<= 1;

x >>= 1;

X &= y;

x "= y;

X |=y;

// Casting:

//! bool b = (bool)x;
char ¢ = (char)x;
byte B = (byte)x;
int i = (int)x;

long 1 = (long)x;
float £ = (float)x;

Chapter 4: Controlling Program Flow 123

double d = (double)x;

}

void IntTest (int x, int y) {
// Arithmetic operators:
X = xX *y;

= x

+ oo
KKK

X
= X
X

|
=

x = +ty;

X = -y;

// Relational and logical:
F(x > vy);

X >=vy);

x < vy);

i
A
Il
=

x =
F(x !
/Y F(IR);

/7 F(x && y);

/7Y F(x || y);

// Bitwise operators:
X = ~y;

X & y;
=x | y;
X
b

’

Il
b
A

’

Il
X

~yi

<< 1;

= x >> 1;

/ Compound assignment:
+= y;

XXX X X X X X X X N X X X XX
|
Il
=

124 Thinking in C# www.MindView.net

}

// Casting:
//! bool b = (bool)x;

char ¢ = (char)x;
byte B = (byte) x;
short s = (short)x;
long 1 = (long)x;
float £ = (float)x;

double d = (double)x;

void LongTest (long x, long vy)

// Arithmetic operators:
X = xX *y;

x =x/y;

X =x % y;

X X + y;

X =X - y;
x++;

X==;

x = +y;

X = -y;

// Relational and logical:
F(x > vy);

F(x >= vy);
F(x < y);

F(x <= vy);

F(x == vy);

F(x !'=vy);

/7Y F(lx);
//V F(x && y);
/7Y F(x || y);
// Bitwise operators:
X = ~y;

X X & y;

x =x | y;

x =x " vy;

X = x << 1;

X = x >> 1;
// Compound assignment:

X += y;
X —-= y;
x *=vy;

{

Chapter 4: Controlling Program Flow

125

}

X /=Y;

X %= y;

x <<= 1;

x >>= 1;

X &= y;

x "=y

x |=y;

// Casting:

//' bool b = (bool)x;
char ¢ = (char)x;
byte B = (byte) x;
short s = (short)x;
int i = (int)x;
float £ = (float)x;

double d = (double)x;

void FloatTest (float x, float y)

// Arithmetic operators:

X =x * y;
x=x/Yy;
X =x % y;
X =X + vy;
X =X - y;
X++;

X==;

X = +y;

X = -y;

// Relational and logical:
F(x > vy);
F(x >= y);
F(x < y);
F(x <= vy);
F(x == vy);
F(x = y);
//V F(Ix);

//V F(x && y);

/7Y FE(x 1] y)

// Bitwise operators:
/] x = ~y;

//) x = x & y;

/Y x o= x| y;

126

Thinking in C#

www.ThinkingIn. NET

A

//) x = x v
//) x = x << 1;
//) x = x >> 1;

//Vx o= x >>> 1;
// Compound assignment:

X +=vy;

X -= y;

X *=y;

x /= y;

X %= y;

/] x <<= 1;

/] x >>=1;

/] x >>>=1;

/] x &= y;

/] x M=y

/1Y% I=y;

// Casting:

//! bool b = (bool)x
char ¢ = (char)x
byte B = (byte)x;
short s = (short)x
int 1 = (int)x
long 1 = (long)x;

double d = (double)x

}

void DoubleTest (double x, double y) {
// Arithmetic operators:
X = xX *vy;

yi

yi

Y

N

= X

~

XX X
+ oo

x = +ty;

X = -y;

// Relational and logical:

F(x > vy);
F(x >= y);
F(x <y)
F(x <=);

Chapter 4: Controlling Program Flow 127

F(x == vy);

F(x !'=vy);

//V F(!x);

/7 F(x && y);
/7Y F(x || y);
// Bitwise operators:
/) x = ~y;

/]l x = x & y;
/] x x | y;
/% x Ny
/]! x x << 1;
/]! x x >> 1;

/] x = x >>> 1;
// Compound assignment:

X t=y;
X —= y,'
x *=y;
X /=y;
X %= Yy;
/] x <<= 1;
/] x >>=1;
/)0 % >>>= 1;
/) x &= y;
//) x N=y;
[/ x |= y;
// Casting:
//' bool b = (bool)x;
char ¢ = (char)x;
byte B = (byte) x;
short s = (short)x;
int i = (int)x;
long 1 = (long)x;
float £ = (float)x;
}
}
}///:~ (non-executable code snippet)

Note that bool is quite limited. You can assign to it the values true and false,
and you can test it for truth or falsehood, but you cannot add booleans or perform
any other type of operation on them.

128 Thinking in C# www.MindView.net

In char, byte, and short you can see the effect of promotion with the arithmetic
operators. Each arithmetic operation on any of those types results in an int
result, which must be explicitly cast back to the original type (a narrowing
conversion that might lose information) to assign back to that type. With int
values, however, you do not need to cast, because everything is already an int.
Don’t be lulled into thinking everything is safe, though. If you multiply two ints
that are big enough, you'll overflow the result. The following example
demonstrates this:

//:c04:0verFlow.cs
using System;
public class Overflow {

public static void Main () {
int big = Ox7fffffff; // max int value
Console.WriteLine ("big = " + biqg);
int bigger = big * 4;
Console.WritelLine ("bigger = " + bigger);

bigger = checked(big * 4);
//! Console.WriteLine ("never reached");
}
Y// /i~

The output of this is:

big = 2147483647
bigger = -4

Unhandled Exception: System.OverflowException: Exception of
type System.OverflowException was thrown.
at Overflow.Main ()

If a potentially overflowing mathematical operation is not wrapped in the
checked() keyword, you will get no errors or warnings from the compiler, and
no exceptions at run-time. (Exceptions have all of Chapter 11 devoted to them.)

Compound assignments do not require casts for char, byte, or short, even
though they are performing promotions that have the same results as the direct
arithmetic operations. On the other hand, the lack of the cast certainly simplifies
the code.

You can see that, with the exception of bool, any primitive type can be cast to any
other primitive type. Again, you must be aware of the effect of a narrowing
conversion when casting to a smaller type, otherwise you might unknowingly lose
information during the cast.

Chapter 4: Controlling Program Flow 129

Execution control

C# uses all of C’s execution control statements, so if you've programmed with C
or C++ then most of what you see will be familiar. Most procedural programming
languages have some kind of control statements, and there is often overlap
among languages. In C#, the keywords include if-else, while, do-while, for,
foreach, and a selection statement called switch. C# jumping keywords are
break, continue, goto (yes, goto), and return.

true and false

All conditional statements use the truth or falsehood of a conditional expression
to determine the execution path. An example of a conditional expression is A ==
B. This uses the conditional operator == to see if the value of A is equivalent to
the value of B. The expression returns true or false. Any of the relational
operators you've seen earlier in this chapter can be used to produce a conditional
statement. Note that C# doesn’t allow you to use a number as a bool, even
though it’s allowed in C and C++ (where truth is nonzero and falsehood is zero)
and in Visual Basic (where truth is zero and falsehood non-zero). If you want to
use a non-bool in a bool test, such as if(a), you must first convert it to a bool
value using a conditional expression, such as if(a != 0).

if-else
The if-else statement is probably the most basic way to control program flow.
The else is optional, so you can use if in two forms:
if (Boolean-expression)
statement
or
if (Boolean-expression)

statement
else

statement

The conditional must produce a bool result. The statement means either a
simple statement terminated by a semicolon or a compound statement, which is a
group of simple statements enclosed in braces. Any time the word “statement” is
used, it always implies that the statement can be simple or compound.

As an example of if-else, here is a test() method that will tell you whether a
guess is above, below, or equivalent to a target number:

130 Thinking in C# www.ThinkingIn. NET

//:c04:1fElse.cs
using System;

public class IfElse {
static int Test (int testval, int target) {
int result = 0;
if (testval > target)
result = +1;
else if (testval < target)
result = -1;
else
result = 0; // Match
return result;
}
public static void Main () {
Console.WriteLine (Test (10, 5));
Console.WriteLine (Test (5, 10));
Console.WriteLine (Test (5, 5));
}
Y// /i~

It is conventional to indent the body of a control flow statement so the reader
might easily determine where it begins and ends.

return

The return keyword has two purposes: it specifies what value a method will
return (if it doesn’t have a void return value) and it causes that value to be
returned immediately. The test() method above can be rewritten to take
advantage of this:

//:c04:1fElse2.cs
using System;

public class IfElse2 {
static int Test (int testval, int target) {

if (testval > target)
return 1;

else if (testval < target)
return -1;

else
return 0; // Match

Chapter 4: Controlling Program Flow 131

public static void Main () {

Console.WriteLine (Test (10, 5));
Console.WriteLine (Test (5, 10));

Console.WriteLine (Test (5, 5));
}
Y// /i~

Although this code has two else’s, they are actually unnecessary, because the
method will not continue after executing a return. It is good programming
practice to have as few exit points as possible in a method; a reader should be
able to see at a glance the “shape” of a method without having to think “Oh!
Unless something happens in this conditional, in which case it never gets to this
other area.” After rewriting the method so that there’s only one exit point, we can
add extra functionality to the method and know that it will always be called:

//:c04:1fElse3.cs
using System;

public class IfElse3 {

int result = 0; //Match
if (testval > target)

result = 1;
else if (testval < target)
result = -1;

return result;

}

public static void Main () {

Console.WriteLine (Test (5, 5));
}
Y /)~

Iteration

static int Test (int testval, int target)

Console.WriteLine (Test (10, 5));
Console.WriteLine (Test (5, 10));

{

Console.WriteLine ("All paths pass here");

while, do-while, and for control looping and are sometimes classified as
iteration statements. A statement repeats until the controlling Boolean-

expression evaluates to false. The form for a while loop is

while (Boolean-expression)
statement

132 Thinking in C#

www.MindView.net

The Boolean-expression is evaluated once at the beginning of the loop and again
before each further iteration of the statement.

Here’s a simple example that generates random numbers until a particular
condition is met:

//:c04:WhileTest.cs
using System;
// Demonstrates the while loop.
public class WhileTest {
public static void Main () {
Random rand = new Random() ;
double r = 0;
while (r < 0.99d) {
r = rand.NextDouble () ;
Console.WriteLine (x);

}
Y/ /e~

This uses the static method NextDouble() in the Random class, which
generates a double value between o and 1. (It includes o0, but not 1.) The
conditional expression for the while says “keep doing this loop until the number
is 0.99 or greater.” Each time you run this program you’ll get a different-sized list
of numbers.

do-while

The form for do-while is

do
statement
while (Boolean-expression) ;

The sole difference between while and do-while is that the statement of the do-
while always executes at least once, even if the expression evaluates to false the
first time. In a while, if the conditional is false the first time the statement never
executes. In practice, do-while is less common than while.

for

A for loop performs initialization before the first iteration. Then it performs
conditional testing and, at the end of each iteration, some form of “stepping.” The
form of the for loop is:

Chapter 4: Controlling Program Flow 133

for(initialization; Boolean-expression; step)
statement

Any of the expressions initialization, Boolean-expression or step can be empty.
The expression is tested before each iteration, and as soon as it evaluates to false
execution will continue at the line following the for statement. At the end of each
loop, the step executes.

for loops are usually used for “counting” tasks:

//:c04:ListCharacters.cs

using System;

// Demonstrates "for" loop by listing
// all the ASCII characters.

public class ListCharacters {

public static void Main () {
for (char ¢ = (char) 0; ¢ < (char) 128; c++)
if (c != 26) // ANSI Clear screen
Console.WriteLine ("value: " + (int)c +
" character: " + c);
}
Y// /i~

Note that the variable ¢ is defined at the point where it is used, inside the control
expression of the for loop, rather than at the beginning of the block denoted by
the open curly brace. The scope of ¢ is the expression controlled by the for.

Traditional procedural languages like C require that all variables be defined at the
beginning of a block so when the compiler creates a block it can allocate space for
those variables. In C#, you can spread your variable declarations throughout the
block, defining them at the point that you need them. This allows a more natural
coding style and makes code easier to understand.

You can define multiple variables within a for statement, but they must be of the
same type:

for(int i = 0, jJ = 1;
i <10 && j§ !'= 11;
it+, J++)
/* body of for loop */;
The int definition in the for statement covers both i and j. The ability to define

variables in the control expression is limited to the for loop. You cannot use this
approach with any of the other selection or iteration statements.

134 Thinking in C# www.ThinkingIn. NET

foreach

C# has a specialized iteration operator called foreach. Unlike the others,
foreach does not loop based on a boolean expression. Rather, it executes a block
of code on each element in an array or other collection. The form for foreach is:

foreach (type loopVariable in collection) {
statement

}

The foreach statement is a terse way to specify the most common type of loop
and does so without introducing potentially confusing index variables. Compare
the clarity of foreach and for in this example:

//:c04:ForEach.cs
using System;

class ForEach {
public static void Main () {
string[] months = {"January", "February",
"March", "April"}; //etc
string[] weeks = {"1lst", "2nd", "3rd", "4th"};
string[] days = {"Sunday", "Monday",
"Tuesday", "Wednesday"}; //etc

foreach(string month in months)
foreach(string week in weeks)
foreach(string day in days)
Console.WriteLine ("{0} {1} week {2}",
month, week, day);
for (int month = 0;
month < months.Length;
month++) {
for (int week = 0;
week < weeks.Length;
week++) |
for (int day = 0;
day < days.Length;
day++) |
Console.WriteLine (
"{0} {1} week {2}",
months [month], weeks[week],days[day]):

Chapter 4: Controlling Program Flow 135

}
Y /)~

Another advantage of foreach is that it performs an implicit typecast on objects
stored in collections, saving a few more keystrokes when objects are stored not in
arrays, but in more complex data structures. We'll cover this aspect of foreach in
Chapter 10.

The comma operator

Earlier in this chapter we stated that the comma operator (not the comma
separator, which is used to separate definitions and function arguments) has
only one use in C#: in the control expression of a for loop. In both the
initialization and step portions of the control expression you can have a number
of statements separated by commas, and those statements will be evaluated
sequentially. The previous bit of code uses this ability. Here’s another example:

//:c04:ListCharacters2.cs
using System;
public class CommaOperator {
public static void Main () {
for (int 1 =1, j =1 + 10; 1 < 5;
i++, J =1 * 2) {
Console.WriteLine("i= " + 1 + " =" + 7J);

}
Y/ /e~

Here’s the output:

1

L e e
o

,4
Il
BSw N e
Il
@ o W

-
Il

J
]
]
]

You can see that in both the initialization and step portions the statements are
evaluated in sequential order. Also, the initialization portion can have any
number of definitions of one type.

break and continue

Inside the body of any of the iteration statements you can also control the flow of
the loop by using break and continue. break quits the loop without executing

Thinking in C# www.MindView.net

the rest of the statements in the loop. continue stops the execution of the
current iteration and goes back to the beginning of the loop to begin the next
iteration.

This program shows examples of break and continue within for and while
loops:

//:c04:BreakAndContinue.cs
// Demonstrates break and continue keywords.
using System;

public class BreakAndContinue {

public static void Main () {
int 1 = 0;
for (1 = 0; 1 < 100; i++) {
if (i == 74) break; // Out of for loop
if (1 % 9 != 0) continue; // Next iteration

Console.WriteLine (1) ;
}
i=0;
// BAn "infinite loop":
while (true) {

i++;

int § = i * 27;

if (j == 1269) break; // Out of loop

if (1 % 10 != 0) continue; // Top of loop

Console.WriteLine (i) ;

}
Y/ /e~

In the for loop the value of i never gets to 100 because the break statement
breaks out of the loop when i is 74. Normally, you’d use a break like this only if
you didn’t know when the terminating condition was going to occur. The
continue statement causes execution to go back to the top of the iteration loop
(thus incrementing i) whenever i is not evenly divisible by 9. When it is, the value
is printed.

The second portion shows an “infinite loop” that would, in theory, continue
forever. However, inside the loop there is a break statement that will break out
of the loop. In addition, you’ll see that the continue moves back to the top of the
loop without completing the remainder. (Thus printing happens in the second
loop only when the value of i is divisible by 10.) The output is:

Chapter 4: Controlling Program Flow 137

0

9

18
27
36
45
54
63
72
10
20
30
40

The value o0 is printed because 0 % 9 produces 0.

A second form of the infinite loop is for(;;). The compiler treats both
while(true) and for(;;) in the same way, so whichever one you use is a matter
of programming taste. (Often, people from C backgrounds think for(;;) is
clearer, although while(true) certainly seems more universal.)

The infamous goto

The goto keyword has been present in programming languages from the
beginning. Indeed, goto was the genesis of program control in assembly
language: “if condition A, then jump here, otherwise jump there.” If you read the
assembly code that is ultimately generated by virtually any compiler, you’ll see
that program control contains many jumps. However, a goto is a jump at the
source-code level, and that’s what brought it into disrepute. If a program will
always jump from one point to another, isn’t there some way to reorganize the
code so the flow of control is not so jumpy? goto fell into true disfavor with the
publication of the famous 1968 letter “Go To Statement Considered Harmful” by
Edsger Dijkstra (http://www.acm.org/classics/oct95/). Dijkstra (who passed
away shortly before this book went to press) argued that when you have a jump,
the context that created the program state becomes difficult to visualize. Since
then, goto-bashing has been a popular sport, with advocates of the cast-out
keyword scurrying for cover.

As is typical in situations like this, the middle ground is the most fruitful. The
problem is not the use of goto, but the overuse of goto or, indeed, any statement
that makes it difficult to say “When this line is reached, the state of the system is
necessarily such-and-such.” The best way to write code that makes system state
easy to determine is to minimize cyclomatic complexity, which is a fancy way of

Thinking in C# www.ThinkingIn.NET

saying “use as few selection and jump statements as possible.” Cyclomatic
complexity is the measure of the number of possible paths through a block of
code.

Chapter 4: Controlling Program Flow 139

class Cyclomatic{
public void simple() {

int x = 0;

int y = x;

int z =y + y;
System.Console.WritelLine (z);

public int alsoSimple (int x) {

int v = x;
return y + y;

public void oneLoop (int x) {

System.Console.WriteLine (“"Begin”)
for(int y = x; y < 10; y++){
int z = x + y;
System.Console.WriteLine(z);

}

System.Console.WriteLine ("Done"

public void twoExits () {

Random r = new Random() ;

int x = r.Next();

if(x $ 2 == 0){
System.Console.WriteLine ("Even")
return;

}
System.Console.WriteLine ("Odd") ;

public void twoLoop () {

int x = 1;
for(int yv = x; y < 10; y++){
for(int z = x + y; z < 6; z++)
System.Console.WriteLine (

}

System.Console.WriteLine ("Done"

public void spaghetti() {
int 1 = 0;
for(i = 0; 1 < 100; i++) {

}

if (i == 74) break;
if(i $ 9 != 0) continue;
System.Console.WriteLine (1) ;

i = 0;
while (true) {
i++;
int 3 = 1 * 27;
if (3 == 1269) break;
if(i % 10 != 0) continue;

System.Console.WriteLine (1) ;

2
:
-4
:

140

Thinking in C#

www.MindView.net

In the figure on the previous page, the methods simple() and alsoSimple()
have a cyclomatic complexity of 1; there is only a single path through the code. It
does not matter how long the method is, whether the method creates objects, or
even if the method calls other, more complex, methods (if those methods have
high complexity, so be it; it doesn’t affect the complexity of the method at hand).
This simplicity is reflected in the control graph shown: a single line showing the
direction of execution towards the exit point.

The method oneLoop() is slightly more complex. No matter what its input
parameter, it will print out “Begin” and assign x to y at the very beginning of the
for loop. That’s the first edge on its control graph (to help align with the source
code, the figure shows a single “edge” as a straight length of code and a curving
jump). Then, it may continue into the loop, assign z and print it, increment y, and
loop; that’s the second edge. Finally, at some point, y will be equal to 10 and
control will jump to the end of the method. This is the third edge, as marked on
the figure. Method twoExits() also has a cyclomatic complexity of 3, although its
second edge doesn’t loop, but exits.

The next method, twoLoops(), hardly seems more complex than oneLoop(), but if
you look at its control graph, you can count five distinct edges. Finally, we see a
visual representation of what programmers call “spaghetti code.” With a
cyclomatic complexity of 12, spaghetti() is about as complex as a method should
ever be. Once a method has more than about six conditional and iteration
operators, it starts to become difficult to understand the ramifications of any
changes. In the 1950s, the psychologist George Miller published a paper that said
that “Seven plus or minus two” is the limit of our “span of absolute judgment.”
Trying to keep more than this number of things in our head at once is very error-
prone. Luckily, we have this thing called “writing” (or, in our case, coding C#)
which allows us to break the problem of “absolute judgment” into successive sub-
problems, which can then be treated as units for the purpose of making higher-
level judgments. Sounds like computer programming to me!

(The paper points out that by increasing the dimension of visual variables, we
can achieve astonishing levels of discrimination as we do, say, when we recognize
a friend we’ve not seen in years while rushing through an airport. It’s interesting
to note that computer programming hardly leverages this capacity at all. You can
read the paper, which anticipates exactly the sort of thinking and choice-making
common to programming, at http://www.well.com/user/smalin/miller.html.)

In C#, goto can be used to jump within a method to a label. A label is an
identifier followed by a colon, like this:

| 1abeli:

Chapter 4: Controlling Program Flow 141

Although it’s legal to place a label anywhere in a method, the only place where it’s
a good idea is right before an iteration statement. And the sole reason to put a
label before an iteration is if you're going to nest another iteration or a switch
inside it. That’s because while break and continue interrupt only the loop that
contains them, goto can interrupt the loops up to where the label exists. Here is
an example of the use and abuse of goto:

//:c04:Goto.cs
// Using Goto
using System;

public class Goto {
public static void Main () {
int 1 = 0;
Random rand = new Random{() ;
outer: //Label before iterator
for (; true ;) { // infinite loop
Console.WriteLine ("Prior to inner loop");
inner: // Another label
for (; 1 < 10; 1i++) {
Console.WriteLine ("1 =" + 1);
if (1 ==7) |
Console.WritelLine ("goto outer");
i++; // Otherwise i never
// gets incremented.
goto outer;
}
if (1 == 8) |
Console.WritelLine ("goto inner");
i++; //Otherwise i never
//gets incremented
goto inner;
}
double d = rand.NextDouble () ;
if (1 == 9 && d < 0.6) {
Console.WriteLine ("Legal but terrible");
goto badIdea;
}
Console.WriteLine ("Back in the loop");
if (1 == 9)
goto bustOut;

142

Thinking in C# www.ThinkingIn. NET

}
bustOut:
Console.WriteLine ("Exit loop");
if (rand.NextDouble() < 0.5) {
goto spaghettiJump;
}
badIdea:
Console.WriteLine ("How did I get here?");
goto outer;
spaghettiJump:
Console.WriteLine ("Don't ever, ever do this.");
}
y /1 e

Things start out appropriately enough, with the labeling of the two loops as
outer and inner. After counting to 7 and getting lulled into a false sense of
security, control jumps out of both loops, and re-enters following the outer label.
On the next loop, control jumps to the inner label. Then things get weird: if the
random number generator comes up with a value less than 0.6, control jumps
downwards, to the label marked badIdea, the method prints “How did I get
here?” and then jumps all the way back to the outer label. On the next run
through the inner loop, i is still equal to 9 but, eventually, the random number
generator will come up with a value that will skip the jump to badIdea and print
that we're “back in the loop.” Then, instead of using the for statement’s
terminating condition, we decide that we're going to jump to the bustOut label.
We do the programmatic equivalent of flipping a coin and either “fall through”
into the badIdea area (which, of course, jumps us back to outer) or jump to the
spaghettiJump label.

So why is this code considered so terrible? For one thing, it has a high cyclomatic
complexity — it’s just plain confusing. Also, note how much harder it is to
understand program flow when one can’t rely on brackets and indenting. And to
make things worse, let’s say you were debugging this code and you placed a
breakpoint at the line Console.WriteLine ("How did I get

here?") . When the breakpoint is reached, there is no way, short of examining
the output, for you to determine whether you reached it from the jump from the
inner loop or from falling through from the immediately preceding lines (in this
case, the program’s output is sufficient to this cause, but in the real world of
complex systems, GUIs, and Web Services, it never is). As Dijkstra put it, “it
becomes terribly hard to find a meaningful set of coordinates in which to describe
the process progress.”

Chapter 4: Controlling Program Flow 143

By “coordinates” Dijkstra meant a way to know the path by which a system
arrived in its current state. It’s only with such a path in hand that one can debug,
since challenging defects only become apparent sometime after the mistake has
been made. (It is, of course, common to make mistakes immediately or just
before the problem becomes apparent, but such mistakes aren’t hard to root out
and correct.) Dijkstra went on to say that his criticism was not just about goto,
but that all language constructs “should satisfy the requirement that a
programmer independent coordinate system can be maintained to describe the
process in a helpful and manageable way.” We'll revisit this concern when
speaking of the way that C# and the .NET framework handle exceptions (obeying
the requirement) and threading (which doesn’t).

switch

The switch is sometimes classified as a selection statement. The switch
statement selects from among pieces of code based on the value of an integral
expression. Its form is:

switch (integral-selector) {

case integral-valuel : statement; break;
case integral-value2 : statement; return;
case integral-value3 : statement; continue;
case integral-valued4 : statement; throw exception;
case integral-value5 : statement;
goto external-label;
case integral-value6 : //No statements
case integral-value7 : statement;

goto case integral-value;
//
default: statement; break;

}

Integral-selector is an expression that produces an integral value. The switch
compares the result of integral-selector to each integral-value. If it finds a
match, the corresponding statement (simple or compound) executes. If no match
occurs, the default statement executes.

You will notice in the above definition that each case ends with some kind of
jump statement. The first one shown, break, is by far the most commonly used.
Note that goto can be used in both the form discussed previously, which jumps
to an arbitrary label in the enclosing statement block, and in a new form, goto
case, which transfers control to the specified case block.

144 Thinking in C# www.MindView.net

Unlike Java and C++, each case block, including the default block, must end in a
jump statement. There is no “fall-through,” although if a selector contains no
statements at all, it may immediately precede another selector. In the definition,
this is seen at the selector for integral-value6, which will execute the statements
in integral-value7’s case block.

The switch statement is a clean way to implement multi-way selection (i.e.,
selecting from among a number of different execution paths), but it requires a
selector that evaluates to a predefined type such as int, char, or string, or to an
enumeration. For other types, you must use either a series of if statements, or
implement some kind of conversion to one of the supported types. More
generally, a well-designed object-oriented program will generally move a lot of
control switching away from explicit tests in code into polymorphism (which we’ll
get to in Chapter 8).

Here’s an example that creates letters randomly and determines whether they're
vowels or consonants:

//:c04:VowelsAndConsonants.cs
//Demonstrates the switch statement.
using System;
public class VowelsAndConsonants {
public static void Main () {
Random rand = new Random() ;
for (int i = 0; 1 < 100; 4i++) {
char ¢ = (char) (rand.Next('a','z' + 1));
Console.WriteLine(c + ": ");
switch (c) {
'

case 'a
case 'e'
case 'i'
case 'o'
case 'u':

Console.WriteLine ("vowel") ;
break;

case 'y':
Console.WritelLine ("Sometimes a vowel");
break;

default:
Console.WriteLine ("consonant");

break;

Chapter 4: Controlling Program Flow 145

}
Y/ /e~

Since chars can be implicitly promoted to ints, Random.Next(int lowerBound,
int upperBound) can be used to return values in the appropriate ASCII range.

Summary

This chapter concludes the study of fundamental features that appear in most
programming languages: calculation, operator precedence, type casting, and
selection and iteration. Now you’re ready to begin taking steps that move you
closer to the world of object-oriented programming. The next chapter will cover
the important issues of initialization and cleanup of objects, followed in the
subsequent chapter by the essential concept of implementation hiding.

Exercises

1. There are two expressions in the section labeled “precedence” early in
this chapter. Put these expressions into a program and demonstrate that
they produce different results.

2. Put the methods Ternary() and Alternative() into a working
program.

Write a program that prints values from one to 100.

4. Modify Exercise 3 so that the program exits by using the break keyword
at value 47. Try using return instead.

5. Write a function that takes two string arguments, and uses all the bool
comparisons to compare the two strings and print the results. In
Main(), call your function with some different string objects.

6. Write a program that generates 25 random int values. For each value, use
an if-else statement to classify it as greater than, less than or equal to a
second randomly-generated value.

7. Modify Exercise 6 so that your code is surrounded by an “infinite” while
loop. It will then run until you interrupt it from the keyboard (typically
by pressing Control-C).

146 Thinking in C# www.ThinkingIn. NET

8. Write a program that uses two nested for loops and the modulus operator
(%) to detect and print prime numbers (integral numbers that are not
evenly divisible by any other numbers except for themselves and 1).

9. Modify the solution to Exercise 8 so that it uses a foreach statement to
test every integer between 2 and 10000 for primality.

10. Create a switch statement that prints a message for each case, and put
the switch inside a for loop that tries each case. Put a break after each
case and test it, then remove the breaks and see what happens.

11. Referring back to Exercises 15-17, write a program that “performs” the
complex behavior from exercise 1-17 by writing to the Console a
description of the behavior and the class doing it. Modify your previous
classes as necessary to accommodate the task.

12. On alarge piece of paper or whiteboard, draw a box with the name of
each class used in exercise 11 (one will be Console). One class will
contain the Main() method that is the entry point to your program.
Place a coin on that class. Go through the program you wrote for Exercise
11 line-by-line, tracing the execution of your program by moving the coin
into the class that is responsible for that line. As you “visit” a class, write
the name of the method called or property accessed in the box. The coin
should “visit” every class that is collaborating to accomplish the task.

13. Repeat Exercises 1-17, 11, and 12 (describe a complex behavior,
implement it, and trace execution on a diagram). Choose a behavior that
uses at least two of the classes used in the first go-round. Are some
classes being burdened with all the work, while other classes turn out to
be unnecessary? If so, can you see a way to restructure the classes so that
the work is more evenly distributed? Are there any methods that are used
in both solutions that have several lines of code in common? If so,
eliminate this common code by refactoring it into a private method.
Confirm that the program you wrote for Exercise 11 continues to work!

Chapter 4: Controlling Program Flow 147

5: Initialization
and Cleanup

An object-oriented solution consists of a “web” of
connected objects describing the problem and a route to a
solution. Like database programming, object-oriented
programming involves the creation of a system structure
that, although necessarily a digital will-o’-wisp, seems
very tangible. As more and more systems have been built
over the years, it has turned out that two of the most
error-prone tasks are the initialization and cleanup of the
objects that make up the system structure.

Many C bugs occur when the programmer forgets to initialize a variable. This is
especially true with libraries when users don’t know how to initialize a library
component, or even that they must. Cleanup is a special problem because it’s easy
to forget about an element when you're done with it, since it no longer concerns
you. Thus, the resources used by that element are retained and you can easily end
up running out of resources (most notably, memory).

C++ introduced the concept of a constructor and a destructor, special methods
automatically called when an object is created and destroyed. C# has these
facilities, and in addition has a garbage collector that automatically releases
memory resources when they’re no longer being used. This chapter examines the
issues of initialization and cleanup, and their support in C#.

Guaranteed initialization with the
onstructor

You can imagine creating a method called Initialize() for every class you write.

The name is a hint that it should be called before using the object. Unfortunately,
this means the user must remember to call the method. In C#, the class designer

can guarantee initialization of every object by providing a special method called a
constructor. If a class has a constructor, C# automatically calls that constructor

149

when an object is created, before users can even get their hands on it. So
initialization is guaranteed.

The next challenge is what to name this method. There are two issues. The first is
that any name you use could clash with a name you might like to use as a member
in the class. The second is that because the compiler is responsible for calling the
constructor, it must always know which method to call. The C++ solution seems
the easiest and most logical, so it’s also used in C#: the name of the constructor is
the same as the name of the class. It makes sense that such a method will be
called automatically on initialization.

Here’s a simple class with a constructor:

//:c05:SimpleConstructor.cs
using System;

// Demonstration of a simple constructor.
public class Rock {
public Rock() { // This is the constructor
Console.WriteLine ("Creating Rock");

public class SimpleConstructor {
public static void Main () {
for (int 1 = 0; 1 < 10; i++)
new Rock() ;
}
Y// /i~

Now, when an object is created:

| new Rock () ;

storage is allocated and the constructor is called. It is guaranteed that the object
will be properly initialized before you can get your hands on it.

Note that the name of the constructor must match the name of the class exactly.

Like any method, the constructor can have arguments to allow you to specify how
an object is created. The above example can easily be changed so the constructor
takes an argument:

| //:c05:SimpleConstructor2.cs

150 Thinking in C# www.ThinkingIn. NET

using System;

// Demonstration of a simple constructor.
public class Rock2 {
public Rock2 (int i) { // This is the constructor
Console.WriteLine ("Creating Rock number: " + i);

public class SimpleConstructor {
public static void Main () {
for (int 1 = 0; 1 < 10; 1i++)
new Rock2 (1) ;
}
Y// /i~

Constructor arguments provide you with a way to provide parameters for the
initialization of an object. For example, if the class Tree has a constructor that
takes a single integer argument denoting the height of the tree, you would create
a Tree object like this:

| Tree t = new Tree(12); // 12-foot tree

If Tree(int) is your only constructor, then the compiler won'’t let you create a
Tree object any other way.

Constructors eliminate a large class of problems and make the code easier to
read. In the preceding code fragment, for example, you don’t see an explicit call
to some initialize() method that is conceptually separate from definition. In
C#, definition and initialization are unified concepts—you can’t have one without
the other.

The constructor is an unusual type of method because it has no return value. This
is distinctly different from a void return value, in which the method is declared
explicity as returning nothing. With constructors you are not given a choice of
what you return; a constructor always returns an object of the constructor’s type.
If there was a declared return value, and if you could select your own, the
compiler would somehow need to know what to do with that return value.
Accidentally typing a return type such as void before declaring a constructor is a
common thing to do on a Monday morning, but the C# compiler won’t allow it,
telling you “member names cannot be the same as their enclosing type.”

Chapter 5: Initialization & Cleanup 151

Method overloading

One of the important features in any programming language is the use of names.
When you create an object, you give a name to a region of storage. A method is a
name for an action. By using names to describe your system, you create a
program that is easier for people to understand and change. It’s a lot like writing
prose—the goal is to communicate with your readers.

You refer to all objects and methods by using names. Well-chosen names make it
easier for you and others to understand your code.

A problem arises when mapping the concept of nuance in human language onto a
programming language. Often, the same word expresses a number of different
meanings—it’s overloaded. This is useful, especially when it comes to trivial
differences. You say “wash the shirt,” “wash the car,” and “wash the dog.” It
would be silly to be forced to say, “shirtWash the shirt,” “carWash the car,” and
“dogWash the dog” just so the listener doesn’t need to make any distinction about
the action performed. Most human languages are redundant, so even if you miss
a few words, you can still determine the meaning. We don’t need unique
identifiers—we can deduce meaning from context.

Most programming languages (C in particular) require you to have a unique
identifier for each function. So you could not have one function called print()
for printing integers and another called print() for printing floats—each
function requires a unique name.

In C# and other languages in the C++ family, another factor forces the
overloading of method names: the constructor. Because the constructor’s name is
predetermined by the name of the class, there can be only one constructor name.
But what if you want to create an object in more than one way? For example,
suppose you build a class that can initialize itself in a standard way or by reading
information from a file. You need two constructors, one that takes no arguments
(the default constructor, also called the no-arg constructor), and one that takes a
string as an argument, which is the name of the file from which to initialize the
object. Both are constructors, so they must have the same name—the name of the
class. Thus, method overloading is essential to allow the same method name to
be used with different argument types. And although method overloading is a
must for constructors, it’s a general convenience and can be used with any
method.

Here’s an example that shows both overloaded constructors and overloaded
ordinary methods:

152 Thinking in C# www.MindView.net

//:c05:0verLoading.cs

// Demonstration of both constructor
// and ordinary method overloading.
using System;

class Tree {
int height;
public Tree () {
Prt ("Planting a seedling");
height = 0;
}
public Tree(int 1) {
Prt ("Creating new Tree that is "
+ i + " feet tall");
height = i;
}
internal void Info() {
Prt ("Tree is " + height
+ " feet tall"):;
}
internal void Info(string s) {
Prt(s + ": Tree is "
+ height + " feet tall");
}
static void Prt(string s) {
Console.WriteLine (s);

public class Overloading {

public static void Main () {
for (int 1 = 0; 1 < 5; i++) {
Tree t = new Tree(i);
t.Info();

t.Info ("overloaded method");
}
// Overloaded constructor:
new Tree();
}
Y /)~

Chapter 5: Initialization & Cleanup 153

A Tree object can be created either as a seedling, with no argument, or as a plant
grown in a nursery, with an existing height. To support this, there are two
constructors, one that takes no arguments and one that takes the existing height.

You might also want to call the info() method in more than one way: for
example, with a string argument if you have an extra message you want printed,
and without if you have nothing more to say. It would seem strange to give two
separate names to what is obviously the same concept. Fortunately, method
overloading allows you to use the same name for both.

Distinguishing overloaded methods

If the methods have the same name, how can C# know which method you mean?
There’s a simple rule: each overloaded method must take a unique list of
argument types.

If you think about this for a second, it makes sense: how else could a programmer
tell the difference between two methods that have the same name, other than by
the types of their arguments?

Even differences in the ordering of arguments are sufficient to distinguish two
methods although you don’t normally want to take this approach, as it produces
difficult-to-maintain code:

//:c05:0verLoadingOrder.cs

// Overloading based on the order of
// the arguments.

using System;

public class OverloadingOrder ({
static void Print(string s, int i) {
Console.WriteLine (
"string: " 4+ s + ", int: " + 1);
}
static void Print(int i, string s) {
Console.WriteLine (
"int: " + 1 + ", string: " + s);
}
public static void Main () {
Print ("string first", 11);
Print (99, "Int first");
}
Y /)~

154 Thinking in C# www.ThinkingIn. NET

The two Print() methods have identical arguments, but the order is different,
and that’s what makes them distinct.

Overloading with primitives

A primitive can be automatically promoted from a smaller type to a larger one
and this can be slightly confusing in combination with overloading. The following

example demonstrates what happens when a primitive is handed to an

overloaded method:

//:c05:PrimitiveOverloading.cs

// Promotion of primitives and overloading.

using System;

public class PrimitiveOverloading {

// boolean can't be automatically converted

static void Prt(string s) {
Console.WritelLine (s);

void F1
void F1
void F1
void F1
void F1
void F1
void F1

void F2(
void F2(
void F2 (int x) { Prt("F2(int)");}
void F2(
void F2(
(

void F2

void F3
void F3
void F3
void F3
void F3

void

(char x) { Prt("Fl(char)");}
(byte x) { Prt("Fl(byte)");}
(short x) { Prt("Fl(sho)",
(int x) { Prt("F1l(int) ;)

(long x) { Prt("Fl(long)") }
(float x) { Prt("Fl(float)");
(double x) { Prt("F1l (double)'
byte x) { Prt("F2(byte)" ,}
short x) { Prt("FZ(short

long x) { Prt("F2(long)");}
float x) { Prt("F2(float)")

double x) { Prt("F2(double)"

(short x) { Prt("F3(short)")
(int x) { Prt("F3(int)");}

(long x) { Prt("F3(long)");}
(float x) { Prt("F3(float)")
(

double x) { Prt("F3(double)"

F4 (int x) { Prt("F4(int)");}

4 }

}
")}

I }

i}

)i}

7}

7}
)i}

Chapter 5: Initialization & Cleanup

155

void F4 (long x) { Prt("F4(long)");}
void F4 (float x) { Prt("F4(float)"™);}
void F4 (double x) { Prt("F4 (double)");}

void F5(long x) { Prt("F5(long)");}
void F5(float x) { Prt("F5(float)");}
void F5(double x) { Prt ("F5(double)");}

void F6(float x) { Prt("Fo6(float)"™);}
void F6 (double x) { Prt("Fo6 (double)");}

void F7(double x) { Prt("F7(double)");}

void TestConstVal () {
Prt ("Testing with 5");

}
void TestChar () {
char x = 'x';
Prt ("char argument:");

}
void TestByte () {
byte x = 0;
Prt ("byte argument:");

}
void TestShort () {
short x = 0;
Prt ("short argument:");

}
void TestInt ()
int x = 0;
Prt ("int argument:");

}
void TestLong() {
long x = 0;
Prt ("long argument:");

F1(5);F2(5);F3(5);F4(5);F5(5);F6(5);F7(5);

Fl1(x);F2(x);F3(x);F4(x);F5(x);F0(x);F7(x);

F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);

Fl(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);

F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);

F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);

156 Thinking in C#

www.MindView.net

}
void TestFloat () {
float x = 0;
Prt ("Float argument:");
F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
}
void TestDouble () {
double x = 0;
Prt ("double argument:");
F1(x);F2(x);F3(x);F4(x);F5(x);F6(x);F7(x);
}
public static void Main () {
PrimitiveOverloading p =
new PrimitiveOverloading();
.TestConstVal();
.TestChar () ;
.TestByte () ;
.TestShort () ;
.TestInt () ;
.TestLong () ;
.TestFloat();
.TestDouble () ;

s ' 'O ' ' 'O T T

}
Y /)~

If you view the output of this program, you’ll see that the constant value 5 is
treated as an int, so if an overloaded method is available that takes an int it is
used. In all other cases, if you have a data type that is smaller than the argument
in the method, that data type is promoted. char produces a slightly different
effect, since if it doesn’t find an exact char match, it is promoted to int.

What happens if your argument is bigger than the argument expected by the
overloaded method? A modification of the above program gives the answer:

//:c05:Demotion.cs
// Demotion of primitives and overloading.
using System;

public class Demotion {
static void Prt(string s) {
Console.WriteLine (s);

Chapter 5: Initialization & Cleanup 157

void F1

void F1

void F1

void F1

void F1

void F1

void F1

void
void
void
void
void
void

F2
F2
F2
F2
F2
F2

void F3

void F3

void F3

void F3

void F3

void
void
void
void

void
void
void

F4
F4
F4
F4

ES5
F5

F5 (short x)

(char x) { Prt("F1l(char)");}
(byte x) { Prt("Fl(byte)");}
(short x) { Prt("F1l(short)");
(int x) { Prt("Fl(int)");}
(long x) { Prt("Fl(long)"™);}
(float x) { Prt("Fl(float)");
(double x) { Prt ("F1l (double)'
(char x) { Prt("F2(char)");}
(byte x) { Prt("F2(byte)");}
(short x) { Prt("F2(short)");
(int x) { Prt("F2(int)");}
(long x) { Prt("F2(long)");}
(float x) { Prt("F2(float)");
(char x) { Prt("F3(char)");}
(byte x) { Prt("F3(byte)");}
(short x) { Prt("F3(short)"):;
(int x) { Prt("F3(int)"):;}
(long x) { Prt("F3(long)");}
(char x) { Prt("F4 (char)");}
(byte x) { Prt("F4 (byte)");}
(short x) { Prt("F4(shor y")
(int x) { Prt("F4 (int) ;)
(char x) { Prt("F5(char) 5}
(byte x) { Prt("FS(byte)") }

{ Prt("F5(short)");

}

}
)i

}

}

}

i}

}

}

void F6(char x) { Prt("Fo6(char)"):;}

void F6(byte x) { Prt("F6(byte)");}

void F7(char x) { Prt("F7(char)");}

void TestDouble () {
double x = 0;
Prt ("double argument:");
Fl(x);F2((float)x);F3((long)x);F4((int)x);
F5((short)x) ;F6((byte)x);F7((char)x);

Thinking in C#

www.ThinkingIn. NET

}
public static void Main () {
Demotion p = new Demotion();
p.TestDouble () ;
}
Y /1)~

Here, the methods take narrower primitive values. If your argument is wider then
you must cast to the necessary type using the type name in parentheses. If you
don’t do this, the compiler will issue an error message.

You should be aware that this is a narrowing conversion, which means you
might lose information during the cast. This is why the compiler forces you to do
it—to flag the narrowing conversion.

Overloading on return values

It is common to wonder “Why only class names and method argument lists? Why
not distinguish between methods based on their return values?” For example,
these two methods, which have the same name and arguments, are easily
distinguished from each other:

void f£() {}
int £() {}

This works fine when the compiler can unequivocally determine the meaning
from the context, as in int x = f(). However, you can call a method and ignore
the return value; this is often referred to as calling a method for its side effect
since you don’t care about the return value but instead want the other effects of
the method call. So if you call the method this way:

| £0;

how can C# determine which f() should be called? And how could someone
reading the code see it? Because of this sort of problem, you cannot use return
value types to distinguish overloaded methods.

Default constructors

As mentioned previously, a default constructor (a.k.a. a “no-arg” constructor) is
one without arguments, used to create a “vanilla object.” If you create a class that
has no constructors, the compiler will automatically create a default constructor
for you. For example:

//:c05:DefaultConstructor.cs
class Bird {

Chapter 5: Initialization & Cleanup 159

int 1i;

public class DefaultConstructor {
public static void Main () {
Bird nc = new Bird(); // default!
}
Y// /i~

The line

| new Bird();

creates a new object and calls the default constructor, even though one was not
explicitly defined. Without it we would have no method to call to build our object.
However, if you define any constructors (with or without arguments), the
compiler will not synthesize one for you:

class Bush {
Bush (int i) {}
Bush (double d) {}
}

Now if you say:

| new Bush () ;

the compiler will complain that it cannot find a constructor that matches. It’s as if
when you don’t put in any constructors, the compiler says “You are bound to need
some constructor, so let me make one for you.” But if you write a constructor, the
compiler says “You’ve written a constructor so you know what you're doing; if you
didn’t put in a default it’s because you meant to leave it out.”

The this keyword

If you have two objects of the same type called a and b, you might wonder how it
is that you can call a method f() for both those objects:

class Banana { void f(int i) { /* ... */ } }
Banana a = new Banana (), b = new Banana();
a.f(l);

b.f(2);

If there’s only one method called f(), how can that method know whether it’s
being called for the object a or b?

160 Thinking in C# www.MindView.net

To allow you to write the code in a convenient object-oriented syntax in which
you “send a message to an object,” the compiler does some undercover work for
you. There’s a secret first argument passed to the method f(), and that argument
is the reference to the object that’s being manipulated. So the two method calls
above become something like:

Banana.f (a,1l);
Banana.f (b, 2);

This is internal and you can’t write these expressions and get the compiler to
interchange them with a.f()-style calls, but it gives you an idea of what’s
happening.

Suppose you're inside a method and you’d like to get the reference to the current
object. Since that reference is passed secretly by the compiler, there’s no
identifier for it. However, for this purpose there’s a keyword: this. The this
keyword produces a reference to the object the method has been called for. You
can treat this reference just like any other object reference. Keep in mind that if
you’re calling a method of your class from within another method of your class,
you don’t need to use this; you simply call the method. The current this
reference is automatically used for the other method. Thus you can say:

class Apricot {

int id;
void pick() { /* ... */ }
void pit() { pick(); id; /* ... */ }

}

Inside pit(), you could say this.pick() or this.id but there’s no need to. The
compiler does it for you automatically. The this keyword is used only for those
special cases in which you need to explicitly use the reference to the current
object (Visual Basic programmers may recognize the equivalent of the VB
keyword me). For example, it’s often used in return statements when you want
to return the reference to the current object:

//:c05:Leaf.cs
// Simple use of the "this" keyword.
using System;

public class Leaf {

int 1 = 0;
Leaf Increment () {
i++;

return this;

Chapter 5: Initialization & Cleanup 161

}

void Print () {

Console.WriteLine("i = " + 1i);
}
public static void Main () {
Leaf x = new Leaf();
x.Increment () .Increment () .Increment () .Print () ;
}
y /)~

Because increment() returns the reference to the current object via the this
keyword, multiple operations can easily be performed on the same object.

Another place where it’s often used is to allow method parameters to have the
same name as instance variables. Previously, we talked about the value of
overloading methods so that the programmer only had to remember the one,
most logical name. Similarly, the names of method parameters and the names of
instance variables may also have a single logical name. C# allows you to use the
this reference to disambiguate method variables (also called “stack variables™)
from instance variables. For clarity, you should use this capability only when the
parameter is going to either be assigned to the instance variable (such as in a
constructor) or when the parameter is to be compared against the instance
variable. Method variables that have no correlation with same-named instance
variables are a common source of lazy defects:

//:c05:Name.cs
using System;

class Name {
string givenName;
string surname;
public Name (string givenName, string surname) {
this.givenName = givenName;
this.surname = surname;

public bool perhapsRelated(string surname) {
return this.surname == surname;

public void printGivenName () {
/* Legal, but unwise */

162

Thinking in C# www.ThinkingIn. NET

string givenName = "method variable";
Console.WriteLine ("givenName is: " + givenName) ;
Console.WriteLine (

"this.givenName is: " + this.givenName) ;

public static void Main () {
Name vanGogh = new Name ("Vincent", "van Gogh");
vanGogh.printGivenName () ;
bool b = vanGogh.perhapsRelated ("van Gogh");
if (b) |
Console.WriteLine ("He's a van Gogh.");

}
Y/ /e~

In the constructor, the parameters givenName and surname are assigned to
the similarly-named instance variables and this is quite appropriate — calling the
parameters inGivenName and inSurname (or worse, using parameter names
such as firstName or lastName that do not correspond to the instance
variables) would require explaining in the documentation. The
perhapsRelated() method shows the other appropriate use — the surname
passed in is to be compared to the instance’s surname. The this.surname ==
surname comparison in perhapsRelated() might give you pause, because
we’ve said that in general, the == operator compares addresses, not logical
equivalence. However, the string class overloads the == operator so that it can
be used for logically comparing values.

Unfortunately, the usage in printGivenName() is also legal. Here, a variable
called givenName is created on the stack; it has nothing to do with the instance
variable also called givenName. It may be unlikely that someone would
accidentally create a method variable called givenName, but you’d be amazed at
how many name, id, and flags one sees over the course of a career! It’s another
reason why meaningful variable names are important.

Sometimes you’ll see code where half the variables begin with underscores and
half the variables don’t:

| foo = bar;

The intent is to use the prefix to distinguish between method variables that are
created on the stack and go out of scope as soon as the method exits and variables
that have longer lifespans. This is a bad idiom. For one thing, its origin had to do

Chapter 5: Initialization & Cleanup 163

with visibility, not storage, and C# has explicit and infinitely better visibility
specifiers. For another, it’s used inconsistently — almost as many people use the
underscores for stack variables as use them for instance variables.

Sometimes you see code that prepends an ‘m’ to member variables names:

foo = mBar;

This isn’t quite as bad as underscores. This type of naming convention is an
offshoot of a C naming idiom called “Hungarian notation,” that prefixes type
information to a variable name (so strings would be strFoo). This is a great idea
if you're programming in C and everyone who has programmed Windows has
seen their share of variables starting with ‘h’, but the time for this naming
convention has passed. One place where this convention continues is that
interfaces (a type of object that has no implementation, discussed at length in
Chapter 8) in the .NET Framework SDK are typically named with an initial “I”
such as IAccessible.

If you want to distinguish between method and instance variables, use this:

foo = this.Bar;

It’s object-oriented, descriptive, and explicit.

Calling constructors from constructors

When you write several constructors for a class, there are times when you’d like
to call one constructor from another to avoid duplicating code. In C#, you can
specify that another constructor execute before the current constructor. You do
this using the ‘:’ operator and the this keyword.

Normally, when you say this, it is in the sense of “this object” or “the current
object,” and by itself it produces the reference to the current object. In a
constructor name, a colon followed by the this keyword takes on a different
meaning: it makes an explicit call to the constructor that matches the specified
argument list. Thus you have a straightforward way to call other constructors:

//:c05:Flower.cs
// Calling constructors with ": this."
using System;

public class Flower {
int petalCount = 0;
string s = "null";
Flower (int petals) {

Thinking in C# www.MindView.net

petalCount = petals;
Console.WriteLine (
"Constructor w/ int arg only, petalCount= "
+ petalCount);
}
Flower (string ss) {
Console.WriteLine (

"Constructor w/ string arg only, s=" + ss);
s = ss;
}
Flower (string s, int petals) : this(petals)

//', this(s) <- Can't call two base constructors!

{
this.s = s; // Another use of "this"
Console.WriteLine ("string & int args");

}

Flower () : this("hi", 47) {
Console.WriteLine (
"default constructor (no args)"):;
}
void Print () {
Console.WriteLine (
"petalCount = " + petalCount + " s = "+ s);

}
public static void Main () {
Flower x = new Flower();
X.Print () ;
}
Y// /e~

The constructor Flower(String s, int petals) shows that, while you can call
one constructor using this, you cannot call two.

The meaning of static

With the this keyword in mind, you can more fully understand what it means to
make a method static. It means that there is no this for that particular method.
You cannot call non-static methods from inside static methods (although the
reverse is possible), and you can call a static method for the class itself, without
any object. In fact, that’s primarily what a static method is for. It’s as if you're
creating the equivalent of a global function (from C). Except global functions are

Chapter 5: Initialization & Cleanup 165

not permitted in C#, and putting the static method inside a class allows it access
to other static methods and static fields.

Some people argue that static methods are not object-oriented since they do
have the semantics of a global function; with a static method you don’t send a
message to an object, since there’s no this. This is probably a fair argument, and
if you find yourself using a lot of static methods you should probably rethink your
strategy. However, statics are pragmatic and there are times when you genuinely
need them, so whether or not they are “proper OOP” should be left to the
theoreticians. Indeed, even Smalltalk has the equivalent in its “class methods.”

Cleanup: finalization and
garbage collection

Programmers know about the importance of initialization, but often forget the
importance of cleanup. After all, who needs to clean up an int? But with libraries,
simply “letting go” of an object once you’re done with it is not always safe. Of
course, C# has the garbage collector to reclaim the memory of objects that are no
longer used. Now consider a very unusual case. Suppose your object allocates
“special” memory without using new. The garbage collector knows only how to
release memory allocated with new, so it won’t know how to release the object’s
“special” memory. To handle this case, C# provides a method called a destructor
that you can define for your class. The destructor, like the constructor, shares the
class name, but is prefaced with a tilde:

class MyClass{
public MyClass () { //Constructor }
public ~MyClass(){ //Destructor }
}

C++ programmers will find this syntax familiar, but this is actually a dangerous
mimic — the C# destructor has vastly different semantics, as youll see. Here’s
how it’s supposed to work. When the garbage collector is ready to release the
storage used for your object, it will first call the object’s destructor, and only on
the next garbage-collection pass will it reclaim the object’s memory. So if you
choose to use the destructor, it gives you the ability to perform some important
cleanup at the time of garbage collection.

This is a potential programming pitfall because some programmers, especially
C++ programmers, because in C++ objects always get destroyed in a
deterministic manner, whereas in C# the call to the destructor is non-
deterministic. Since anything that needs special attention can’t just be left around

166 Thinking in C# www.ThinkingIn. NET

to be cleaned up in a non-deterministic manner, the utility of C#’s destructor is
severely limited. Or, put another way:

Clean up after yourself.

If you remember this, you will stay out of trouble. What it means is that if there is
some activity that must be performed before you no longer need an object, you
must perform that activity yourself. For example, suppose that you open a file
and write stuff to it. If you don’t explicitly close that file, it might not get properly
flushed to the disk until the program ends.

You might find that the storage for an object never gets released because your
program never nears the point of running out of storage. If your program
completes and the garbage collector never gets around to releasing the storage for
any of your objects, that storage will be returned to the operating system en
masse as the program exits. This is a good thing, because garbage collection has
some overhead, and if you never do it you never incur that expense.

What are destructors for?

A third point to remember is:

Garbage collection is only about memory.

That is, the sole reason for the existence of the garbage collector is to recover
memory that your program is no longer using. So any activity that is associated
with garbage collection, most notably your destructor method, must also be only
about memory and its deallocation. Valuable resources, such as file handles,
database connections, and sockets ought to be managed explicitly in your code,
without relying on destructors.

Does this mean that if your object contains other objects, your destructor should
explicitly release those objects? Well, no—the garbage collector takes care of the
release of all object memory regardless of how the object is created. It turns out
that the need for destructors is limited to special cases, in which your object can
allocate some storage in some way other than creating an object. But, you might
observe, everything in C# is an object so how can this be?

It would seem that C# has a destructor because of its support for unmanaged
code, in which you can allocate memory in a C-like manner. Memory allocated in
unmanaged code is not restored by the garbage collection mechanism. This is the
one clear place where the C# destructor is necessary: when your class interacts
with unmanaged code that allocates memory, place the code relating to cleaning
up that memory in the destructor.

Chapter 5: Initialization & Cleanup 167

After reading this, you probably get the idea that you won’t be writing destructors
too often. Good. Destructors are called non-deterministically (that is, you cannot
control when they are called), but valuable resources are too important to leave to
happenstance.

The garbage collector is guaranteed to be called when your program ends, so you
may include a “belts-and-suspender” last-chance check of any valuable resources
that your object may wish to clean up. However, if the check ever finds the
resource not cleaned up, don’t pat yourself on the back — go in and fix your code
so that the resource is cleaned up before the destructor is ever called!

Instead of a destructor, implement
IDisposable.Dispose()

The majority of objects don’t use resources that need to be cleaned up. So most of
the time, you don’t worry about what happens when they “go away.” But if you do
use a resource, you should write a method called Close() if the resource
continues to exist after your use of it ends or Dispose() otherwise. Most
importantly, you should explicitly call the Close() or Dispose() method as
soon as you no longer require the resource. This is just the principle of cleaning
up after yourself.

If you rely on the garbage collector to manage resources, you can count on
trouble:

//:c05:ValuableResource.cs
using System;
using System.Threading;

class ValuableResource {
public static void Main () {
useValuableResources () ;
Console.WriteLine (
"Valuable resources used and discarded");

Thread.Sleep (10000) ;
Console.WriteLine ("10 seconds later...");
//You would think this would be fine
ValuableResource vr = new ValuableResource () ;

static void useValuableResources () {
for (int i = 0; 1 < MAX_RESOURCES; i+4+) |

168

Thinking in C# www.MindView.net

ValuableResource vr =
new ValuableResource () ;

static int idCounter;
static int MAX_RESOURCES = 10;

static int INVALID ID = -1;
int id;
ValuableResource () {
if (idCounter == MAX RESOURCES) {

Console.WriteLine (
"No resources available");
id = INVALID ID;
} else {
id = idCounter++;
Console.WriteLine (
"Resource[{0}] Constructed", id);

}

~ValuableResource () {

if (id == INVALID ID) {
Console.WriteLine ("Things are awry!");
} else {
idCounter--;

Console.WriteLine (
"Resource[{0}] Destructed", id);

}
Y/ /e~

In this example, the first thing that happens upon entering Main() is the
useValuableResources() method is called. This is straightforward — the
MAX_RESOURCES number of ValuableResource objects are created and
then immediately allowed to “go away.” In the ValuableResource()
constructor, the static idCounter variable is checked to see if it equals the
MAX_RESOURCES value. If so, a “No resources available” message is written
and the id of the ValuableResource is set to an invalid value (in this case, the
idCounter is the source of the “scarce” resource which is “consumed” by the id
variable). The ValuableResource destructor either outputs a warning message
or decrements the idCounter (thus, making another “resource” available).

Chapter 5: Initialization & Cleanup 169

When useValuableResources() returns, the system pauses for 10 seconds
(we’ll discuss Thread.Sleep() in great detail in Chapter 16), and finally a new
ValuableResource is created. It seems like that should be fine, since those created
in useValuableResources() are long gone. But the output tells a different

story:

Resource
Resource
Resource
Resource
Resource
Resource
Resource
Resource
Resource
Resource

Valuable resources used and discarded

Constructed
Constructed
Constructed
Constructed
Constructed
Constructed
Constructed
Constructed
Constructed
Constructed

10 seconds later...

No resources available

Things are awry!

Resource[9
Resource
Resource
Resource
Resource

[8
[7
[6
[5
Resource[4
Resource[3
Resource[2
Resource[1l
[0

Resource

Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed

Even after ten seconds (an eternity in computing time), no id’s are available and
the final attempt to create a ValuableResource fails. The Main() exits
immediately after the “No resources available!” message is written. In this case,
the CLR did a garbage collection as the program exited and the
~ValuableResource() destructors got called. In this case, they happen to be
deleted in the reverse order of their creation, but the order of destruction of
resources is yet another “absolutely not guaranteed” characteristic of garbage

collection.

Worse, this is the output if one presses Ctl-C during the pause:

Resource [0]

Constructed

Thinking in C#

www.ThinkingIn. NET

Resource[l] Constructed
Resource[2] Constructed
Resource[3] Constructed
Resource[4] Constructed
Resource[5] Constructed
Resource[6] Constructed
Resource[7] Constructed
Resource[8] Constructed
Resource[9] Constructed
Valuable resources used and discarded
~C

D:\tic\chap4>

That’s it. No cleanup. If the valuable resources were, say, network sockets or
database connections or files or, well, anything that actually had any value, they’d
be lost until you reboot (or some other process manages to restore their state by
brute force, as can happen with files).

//:c05:ValuableResource2.cs
using System;
using System.Threading;

class ValuableResource {
static int idCounter;
static int MAX RESOURCES = 10;
static int INVALID ID = -1;
int id;

ValuableResource () {

if (idCounter == MAX RESOURCES) {
Console.WriteLine ("No resources available");
id = INVALID ID;

} else {
id = idCounter++;
Console.WriteLine (

"Resource[{0}] Constructed", id);

public void Dispose () {
idCounter--;

Console.WriteLine (

Chapter 5: Initialization & Cleanup 171

"Resource[{0}] Destructed", id);
if (id == INVALID ID) {
Console.WriteLine ("Things are awry!");
}
GC.SuppressFinalize (this);

~ValuableResource () {
this.Dispose();

public static void Main () {
UseValuableResources () ;
Console.WriteLine (

"Valuable resources used and discarded");

Thread.Sleep (10000) ;
Console.WriteLine ("10 seconds later...");
//This is fine
ValuableResource vr = new ValuableResource () ;

static void UseValuableResources () {
for (int 1 = 0; 1 < MAX RESOURCES; i+4+) |
ValuableResource vr = new ValuableResource () ;
vr.Dispose();

}
Y/ /e~

We’ve moved the code that was previously in the destructor into a method called
Dispose(). Additionally, we’ve added the line:

| GC.SuppressFinalize (this);

Which tells the Garbage Collector (the GC class object) not to call the destructor
during garbage collection. We’ve kept the destructor, but it does nothing but call
Dispose(). In this case, the destructor is just a safety-net. It remains our
responsibility to explicitly call Dispose(), but if we don’t and it so happens that
the garbage collector gets first up, then our bacon is pulled out of the fire. Some
argue this is worse than useless -- a method which isn’t guaranteed to be called
but which performs a critical function.

172 Thinking in C# www.MindView.net

When ValuableResources2 is run, not only are there no problems with running
out of resources, the idCounter never gets above zero!

The title of this section is: Destructors,
IDisposable, and the using keywordInstead of
a destructor, implement IDisposable.Dispose(),
but none of the examples actually implement
this interface.

We've said that releasing valuable resources is the only task other than memory
management that needs to happen during clean up. But we’ve also said that the
call to the destructor is non-deterministic, meaning that the only guarantee about
when it will be called is “before the application exits.” So the main use of the
destructor is as a last chance to call your Dispose() method, which is where you
should do the cleanup.

Why is Dispose() the right method to use for special cleanup? Because the C#
language has a way to guarantee that the IDisposable.Dispose() method is
called, even if something unusual happens. The technique uses object-oriented
inheritance, which won’t be discussed until Chapter 7. Further, to illustrate it, we
need to throw an Exception, a technique which won’t be discussed until Chapter
11! Rather than put off the discussion, though, it’s important enough to present
the technique here.

To ensure that a “cleanup method” is called as soon as possible:
1. Declare your class as implementing IDisposable
2. Implement public void Dispose()
3. Place the vulnerable object inside a using() block

The Dispose() method will be called on exit from the using block. We’re not
going to go over this example in detail, since it uses so many as-yet-unexplored
features, but the key is the block that follows the using() declaration. When you
run this code, you'll see that the Dispose() method is called, then the code
associated with the program leaving Main(), and only then will the destructor
be called!

//:c05:UsingCleanup.cs
using System;

class UsingCleanup : IDisposable {

Chapter 5: Initialization & Cleanup 173

public static void Main () {

try{
UsingCleanup uc = new UsingCleanup() ;
using (uc) {

throw new NotImplementedException () ;

}

}catch (NotImplementedException) {
Console.WriteLine ("Exception ignored");

}

Console.WritelLine ("Leaving Main()");

UsingCleanup () {
Console.WriteLine ("Constructor called");

public void Dispose () {
Console.WriteLine ("Dispose called");

~UsingCleanup () {
Console.WriteLine ("Destructor called");
}
Y// /i~

How a garbage collector works

If you come from a programming language where allocating objects on the heap
is expensive, you may naturally assume that C#’s scheme of allocating all
reference types on the heap is expensive. However, it turns out that the garbage
collector can have a significant impact on increasing the speed of object creation.
This might sound a bit odd at first—that storage release affects storage
allocation—but it means that allocating storage for heap objects in C# can be
nearly as fast as creating storage on the stack in other languages.

For example, you can think of the C++ heap as a yard where each object stakes
out its own piece of turf. This real estate can become abandoned sometime later
and must be reused. In C#, the managed heap is quite different; it’s more like a
conveyor belt that moves forward every time you allocate a new object. This
means that object storage allocation is remarkably rapid. The “heap pointer” is
simply moved forward into virgin territory, so it’s effectively the same as C++’s
stack allocation. (Of course, there’s a little extra overhead for bookkeeping but it’s

174

Thinking in C# www.ThinkingIn. NET

nothing like searching for storage.) Yes, you heard right — allocation on the
managed heap is faster than allocation within a C++-style unmanaged heap.

Now you might observe that the heap isn’t in fact a conveyor belt, and if you treat
it that way you’ll eventually start paging memory a lot (which is a big
performance hit) and later run out. The trick is that the garbage collector steps in
and while it collects the garbage it compacts all the objects in the heap so that
you’ve effectively moved the “heap pointer” closer to the beginning of the
conveyor belt and further away from a page fault. The garbage collector
rearranges things and makes it possible for the high-speed, infinite-free-heap
model to be used while allocating storage.

To understand how this works, you need to get a little better idea of the way the
Common Language Runtime garbage collector (GC) works. Garbage collection in
the CLR (remember that memory management exists in the CLR “below” the
level of the Common Type System, so this discussion equally applies to programs
written in Visual Basic .NET, Eiffel .NET, and Python .NET as to C# programs) is
based on the idea that any nondead object must ultimately be traceable back to a
reference that lives either on the stack or in static storage. The chain might go
through several layers of objects. Thus, if you start in the stack and the static
storage area and walk through all the references you’ll find all the live objects. For
each reference that you find, you must trace into the object that it points to and
then follow all the references in that object, tracing into the objects they point to,
etc., until you've moved through the entire web that originated with the reference
on the stack or in static storage. Each object that you move through must still be
alive. Note that there is no problem with detached self-referential groups—these
are simply not found, and are therefore automatically garbage. Also, if you trace
to an object that has already been walked to, you do not have to re-trace it.

Having located all the “live” objects, the GC starts at the end of the managed heap
and shifts the first live object in memory to be directly adjacent to the
penultimate live object. This pair of live objects is then shifted to the next live
object, the three are shifted en masse to the next, and so forth, until the heap is
compacted.

Obviously, garbage collection is a lot of work, even on a modern, high-speed
machine. In order to improve performance, the garbage collector refines the basic
approach described here with generations.

The basic concept of generational garbage collection is that an object allocated
recently is more likely to be garbage than an object which has already survived
multiple passes of the garbage collector. So instead of walking the heap all the
way from the stack or static storage, once the GC has run once, the collector may

Chapter 5: Initialization & Cleanup 175

assume that the previously compacted objects (the older generation) are all valid
and only walk the most recently allocated part of the heap (the new generation).

Garbage collection is a favorite topic of researchers, and there will undoubtedly
be innovations in GC that will eventually find their way into the field. However,
garbage collection and computer power have already gotten to the stage where
the most remarkable thing about GC is how transparent it is.

Member initialization

C# goes out of its way to guarantee that variables are properly initialized before
they are used. In the case of variables that are defined locally to a method, this
guarantee comes in the form of a compile-time error. So if you say:

void F () {
int i;
i++;
}
you’ll get an error message that says that i is an unassigned local variable. Of
course, the compiler could have given i a default value, but it’s more likely that
this is a programmer error and a default value would have covered that up.
Forcing the programmer to provide an initialization value is more likely to catch a
bug.

If a primitive is a data member of a class, however, things are a bit different.
Since any method can initialize or use that data, it might not be practical to force
the user to initialize it to its appropriate value before the data is used. However,
it’s unsafe to leave it with a garbage value, so each primitive data member of a
class is guaranteed to get an initial value. Those values can be seen here:

//:c05:InitialValues.cs
// Shows default initial values.
using System;

class Measurement {

bool t;
char c;
byte b;
short s;
int i;

long 1;
float f£f;

Thinking in C# www.MindView.net

double d;

internal void Print () {
Console.WriteLine (

"Data type Initial value\n" +
"bool "+t 4+ "\n" +
"char "+ c + "] "+ (int)c +"\n"+
"byte "+ b+ "\n" +
"short "+ s + "\n" +
"int "+ i+ "\n" +
"long "4+ 1+ "\n" +
"float "+ £ 4+ "\n" +
"double "+ d);

public class InitialValues {

public static void Main () {
Measurement d = new Measurement () ;
d.Print () ;
/* In this case you could also say:
new Measurement () .print () ;
*/
}
Y /)~
The output of this program is:
Data type Initial value
boolean Ffalse
char [10
byte 0
short 0
int 0
long 0
float 0.0
double 0.0

The char value is a zero, which prints as a space.

You'll see later that when you define an object reference inside a class without
initializing it to a new object, that reference is given a special value of null (which
is a C# keyword).

Chapter 5: Initialization & Cleanup 177

You can see that even though the values are not specified, they automatically get
initialized. So at least there’s no threat of working with uninitialized variables.

Specifying initialization

What happens if you want to give a variable an initial value? One direct way to do
this is simply to assign the value at the point you define the variable in the class.
Here the field definitions in class Measurement are changed to provide initial
values:

class Measurement ({
bool b = true;
char ¢ = 'x';
byte B = 47;
short s = 0Oxff;
int i = 999;
long 1 = 1;
float £ = 3.14f;
double d = 3.14159;
/...

You can also initialize nonprimitive objects in this same way. If Depth is a class,
you can insert a variable and initialize it like so:

class Measurement {
Depth o = new Depth();
boolean b = true;

/]

If you haven’t given o an initial value and you try to use it anyway, you’ll get a
run-time error called an exception (covered in Chapter 11).

You can even call a static method to provide an initialization value:

class CInit {

int 1 = InitI();

/...

static int InitI(O){ //..}
}

This method can have arguments, but those arguments cannot be instance
variables. Java programmers will note that this is more restrictive than Java’s
instance initialization, which can call non-static methods and use previously
instantiated instance variables.

Thinking in C# www.ThinkingIn. NET

This approach to initialization is simple and straightforward. It has the limitation
that every object of type Measurement will get these same initialization values.
Sometimes this is exactly what you need, but at other times you need more
flexibility.

Constructor initialization

The constructor can be used to perform initialization, and this gives you greater
flexibility in your programming since you can call methods and perform actions
at run-time to determine the initial values. There’s one thing to keep in mind,
however: you aren’t precluding the automatic initialization, which happens
before the constructor is entered. So, for example, if you say:

class Counter {
int i;
Counter () { i = 7; }
/]

then i will first be initialized to o, then to 7. This is true with all the primitive
types and with object references, including those that are given explicit
initialization at the point of definition. For this reason, the compiler doesn’t try to
force you to initialize elements in the constructor at any particular place, or
before they are used—initialization is already guaranteed®.

Order of initialization

Within a class, the order of initialization is determined by the order that the
variables are defined within the class. The variable definitions may be scattered
throughout and in between method definitions, but the variables are initialized
before any methods can be called—even the constructor. For example:

//:c05:0rderOfInitialization.cs
// Demonstrates initialization order.
using System;

// When the constructor is called to create a
// Tag object, you'll see a message:
class Tag {

internal Tag(int marker) {

1In contrast, C++ has the constructor initializer list that causes initialization to occur
before entering the constructor body, and is enforced for objects. See Thinking in C++, 2md
edition (available at www.BruceEckel.com).

Chapter 5: Initialization & Cleanup 179

Console.WriteLine ("Tag (" + marker + ")");

class Card {
Tag tl = new Tag(l); // Before constructor
internal Card() {
// Indicate we're in the constructor:
Console.WriteLine ("Card()");
t3 = new Tag(33); // Reinitialize t3
}
Tag t2 = new Tag(2); // After constructor
internal void F () {
Console.WriteLine ("F()");
}
Tag t3 = new Tag(3); // At end

public class OrderOfInitialization {
public static void Main () {
Card t = new Card();
t.F(); // Shows that construction is done
}
Y /)~

In Card, the definitions of the Tag objects are intentionally scattered about to
prove that they’ll all get initialized before the constructor is entered or anything
else can happen. In addition, t3 is reinitialized inside the constructor. The output
is:

)

Thus, the t3 reference gets initialized twice, once before and once during the
constructor call. (The first object is dropped, so it can be garbage-collected later.)
This might not seem efficient at first, but it guarantees proper initialization—
what would happen if an overloaded constructor were defined that did not
initialize t3 and there wasn’t a “default” initialization for t3 in its definition?

180 Thinking in C# www.MindView.net

Static data initialization

When the data is static the same thing happens; if it’s a primitive and you don’t
initialize it, it gets the standard primitive initial values. If it’s a reference to an
object, it’s null unless you create a new object and attach your reference to it.

If you want to place initialization at the point of definition, it looks the same as
for non-statics. There’s only a single piece of storage for a static, regardless of
how many objects are created. But the question arises of when the static storage
gets initialized. An example makes this question clear:

//:c05:StaticInitialization.cs

// Specifying initial values in a
// class definition.

using System;

class Bowl {
internal Bowl (int marker) {
Console.WriteLine ("Bowl (" + marker + ")");
}
internal void F (int marker) {
Console.WriteLine ("F (" + marker + ")");

class Table {

static Bowl bl = new Bowl (1l);

internal Table () {
Console.WriteLine ("Table()");
b2.F (1) ;

}

internal void F2(int marker) {
Console.WriteLine ("F2 (" + marker + ")");

}

static Bowl b2 = new Bowl (2);

class Cupboard {
Bowl b3 = new Bowl (3);
static Bowl b4 = new Bowl (4);
internal Cupboard() {
Console.WriteLine ("Cupboard()");

Chapter 5: Initialization & Cleanup 181

bd.F(2);
}
internal void F3(int marker) {
Console.WriteLine ("F3 (" + marker + ")");
}
static Bowl b5 = new Bowl (5);

public class StaticInitialization {
public static void Main () {
Console.WriteLine (
"Creating new Cupboard() in main");
new Cupboard();
Console.WriteLine (
"Creating new Cupboard() in main");
new Cupboard() ;
t2.F2(1);
t3.F3(1);
}
static Table t2 = new Table();
static Cupboard t3 = new Cupboard();
Y /)~

Bowl allows you to view the creation of a class, and Table and Cupboard
create static members of Bowl scattered through their class definitions. Note
that Cupboard creates a non-static Bowl b3 prior to the static definitions.
The output shows what happens:

Bowl (1)

Bowl (2)

Table ()

fF (1)

Bowl (4)

Bowl (5)

Bowl (3)

Cupboard ()

fF(2)

Creating new Cupboard() in main
Bowl (3)

Cupboard ()

fF(2)

Creating new Cupboard() in main

182 Thinking in C# www.ThinkingIn. NET

Bowl (3)
Cupboard ()

fF (2)

£2F2 (1)
£3F3 (1)

The static initialization occurs only if it’s necessary. If you don’t create a Table
object and you never refer to Table.b1 or Table.b2, the static Bowl b1 and b2
will never be created. However, they are initialized only when the first Table
object is created (or the first static access occurs). After that, the static objects
are not reinitialized.

The order of initialization is statics first, if they haven’t already been initialized
by a previous object creation, and then the non-static objects. You can see the
evidence of this in the output.

It’s helpful to summarize the process of creating an object. Consider a class called

Dog:

1.

The first time an object of type Dog is created, or the first time a static
method or static field of class Dog is accessed, the C# runtime must
locate the assembly in which Dog’s class definition is stored.

As the Dog class is loaded (creating a Type object, which you’ll learn
about later), all of its static initializers are run. Thus, static
initialization takes place only once, as the Type object is loaded for the
first time.

When you create a new Dog(), the construction process for a Dog
object first allocates enough storage for a Dog object on the heap.

This storage is wiped to zero, automatically setting all the primitives in
that Dog object to their default values (zero for numbers and the
equivalent for bool and char) and the references to null.

Any initializations that occur at the point of field definition are executed.

Constructors are executed. As you shall see in Chapter 7, this might
actually involve a fair amount of activity, especially when inheritance is
involved.

Static constructors

C# allows you to group other static initializations inside a special “static
constructor.” It looks like this:

Chapter 5: Initialization & Cleanup 183

class Spoon {
static int i;
static Spoon () {
i = 47;
}
/]
}

This code, like other static initializations, is executed only once, the first time
you make an object of that class or the first time you access a static member of
that class (even if you never make an object of that class). For example:

//:c05:StaticConstructor.cs

// Explicit static initialization
// with static constructor

using System;

class Cup {
internal Cup (int marker) {
Console.WriteLine ("Cup (" + marker + ")");
}
internal void F (int marker) {
Console.WriteLine("f(" + marker + ")");

class Cups {
internal static Cup cl;
static Cup c2;
static Cups () {
Console.WriteLine (

"Inside static Cups () constructor");
cl = new Cup(1l);
c2 = new Cup(2);
}
Cups () {
Console.WriteLine ("Cups()");

public class ExplicitStatic {
public static void Main () {

Thinking in C# www.MindView.net

Console.WriteLine ("Inside Main()"):;
Cups.cl.F(99); // (1)
}
// static Cups x = new Cups(); // (2)
// static Cups y = new Cups(); // (2)
Y /)~

The static constructor for Cups run when either the access of the static object
c1 occurs on the line marked (1), or if line (1) is commented out and the lines
marked (2) are uncommented. If both (1) and (2) are commented out, the static
constructor for Cups never occurs. Also, it doesn’t matter if one or both of the
lines marked (2) are uncommented; the static initialization only occurs once.

Array initialization
Initializing arrays in C is error-prone and tedious. C++ uses aggregate
initialization to make it much safer2. C# has no “aggregates” like C++, since
everything is an object in C#. It does have arrays, and these are supported with
array initialization.

An array is simply a sequence of either objects or primitives, all the same type
and packaged together under one identifier name. Arrays are defined and used
with the square-brackets indexing operator []. To define an array you simply
follow your type name with empty square brackets:

| int[] al;

This is a little different from C and C++, but is a sensible improvement, since it
says that the type is “an int array.”

The compiler doesn’t allow you to tell it how big the array is. This brings us back
to that issue of “references.” All that you have at this point is a reference to an
array, and there’s been no space allocated for the array. To create storage for the
array you must write an initialization expression. For arrays, initialization can
appear anywhere in your code, but you can also use a special kind of initialization
expression that must occur at the point where the array is created. This special
initialization is a set of values surrounded by curly braces. The storage allocation
(the equivalent of using new) is taken care of by the compiler in this case. For
example:

2 See Thinking in C++, 2" edition for a complete description of C++ aggregate
initialization.

Chapter 5: Initialization & Cleanup 185

| int[] a1l =1¢(1, 2, 3, 4, 5 };

So why would you ever define an array reference without an array?
| int[] a2;

Well, it’s possible to assign one array to another in C#, so you can say:
| az = al;

What you're really doing is copying a reference, as demonstrated here:

//:c05:Arrays.cs
// Arrays of primitives.
using System;

public class Arrays {

public static void Main () {

int[] al = { 1, 2, 3, 4, 5};

int[] a2;

a2 = al;

for (int i = 0; 1 < a2.Length; i++)
az2[i]l++;

for (int 1 = 0; i1 < al.Length; i++)
Console.WriteLine ("al[" + i + "] =" + alf[i]);

}
Y /)~

You can see that a1 is given an initialization value while a2 is not; a2 is assigned
later—in this case, to another array.

There’s something new here: all arrays have a property (whether they’re arrays of
objects or arrays of primitives) that you can query—but not change—to tell you
how many elements there are in the array. This member is Length. Since arrays
in C#, as in Java and C, start counting from element zero, the largest element you
can index is Length - 1. If you go out of bounds, C and C++ quietly accept this
and allow you to stomp all over your memory, which is the source of many
infamous bugs. However, C# protects you against such problems by causing a
run-time error (an exception, the subject of Chapter 11) if you step out of bounds.
Of course, checking every array access costs time and code, which means that
array accesses might be a source of inefficiency in your program if they occur at a
critical juncture. Sometimes the JIT can “precheck” to ensure that all index
values in a loop will never exceed the array bounds, but in general, array access
pays a small performance price. By explicitly moving to “unsafe” code (discussed
in Chapter 10), bounds checking can be turned off.

186 Thinking in C# www.ThinkingIn. NET

What if you don’t know how many elements you're going to need in your array
while you’re writing the program? You simply use new to create the elements in
the array. Here, new works even though it’s creating an array of primitives (new
won'’t create a nonarray primitive):

//:c05:ArrayNew.cs
// Creating arrays with new.
using System;

public class ArrayNew {
static Random rand = new Random() ;

public static void Main () {
int[] a;
a = new int[rand.Next (20) + 1];
Console.WriteLine ("length of a = " + a.Length);
for (int i = 0; 1 < a.Length; i++)
Console.WriteLine ("a[" + 1 + "] =" + af[i]):

}
/1]~

Since the size of the array is chosen at random, it’s clear that array creation is
actually happening at run-time. In addition, you’ll see from the output of this
program that array elements of primitive types are automatically initialized to
“empty” values. (For numerics and char, this is zero, and for bool, it’s false.)

If you're dealing with an array of nonprimitive objects, you must always use new.
Here, the reference issue comes up again because what you create is an array of
references. Consider the wrapper type IntHolder, which is a class and not a
primitive:

//:c05:ArrayClassObj.cs
// Creating an array of nonprimitive objects.
using System;

class IntHolder {
int i;
internal IntHolder (int i) {
this.i = i;

public override string ToString () {

Chapter 5: Initialization & Cleanup 187

return i.ToString();

public class ArrayClassObj {
static Random rand = new Random() ;

public static void Main () {
IntHolder[] a = new IntHolder[rand.Next (20) + 11];
Console.WriteLine ("length of a = " + a.lLength);
for (int 1 = 0; i < a.Length; 1i++) {
al[i] = new IntHolder (rand.Next (500)) ;
Console.WriteLine ("a[" + 1 + "] =" + a[il);
}
}
Y /)~

Here, even after new is called to create the array:

| IntHolder[] a = new IntHolder[rand.Next (20) + 1];

it’s only an array of references, and not until the reference itself is initialized by
creating a new IntHolder object is the initialization complete:

| ali] = new IntHolder (rand.Next (500));

If you forget to create the object, however, you’ll get an exception at run-time
when you try to read the empty array location.

The IntHolder method ToString() is marked with the override keyword.
This will be discussed in more detail later, but the short explanation is that this is
an object-oriented refinement of a ToString() method defined in some class
that is an “ancestor” to IntHolder (in fact, the ToString() method is defined in
the class Object, which is the ancestor to all classes).

It’s also possible to initialize arrays of objects using the curly-brace-enclosed list.
There are two forms:

//:c05:ArrayInit.cs
// Array initialization.

class IntHolder {

int 1i;
internal IntHolder (int i) {
this.i = 1i;

188 Thinking in C# www.MindView.net

public class ArrayInit {
public static void Main () {
IntHolder[] a = {
new IntHolder (1),
new IntHolder (2),
new IntHolder (3),
}i
IntHolder[] b = new IntHolder[] {
new IntHolder (1),
new IntHolder (2),
new IntHolder (3),
}i
}
Y /)~

This is useful at times, but it’s more limited since the size of the array is
determined at compile-time. The final comma in the list of initializers is optional.
(This feature makes for easier maintenance of long lists.)

The params method modifier

An unusual use of arrays is C#’s params method argument modifier. This
modifier, when applied to the last parameter of a method, specifies that the
method can be called with any number of arguments of the specified type. In this
case, a Burger can be created with any number of beef patties:

//:c05:Burger.cs
using System;

class Patty {
}
class Burger {
Burger (bool cheese, params Patty[] patties) {
foreach (Patty p in patties) {
if (cheese) {

Console.WriteLine ("Cheeseburger!");
} else {
Console.WriteLine ("Hamburger!");

Chapter 5: Initialization & Cleanup 189

}

Console.WriteLine ("You want fries with that?");

public static void Main () {
Burger noMeat = new Burger (false);
Burger petite = new Burger (false, new Patty());
//Double cheeseburger
Burger doubleDouble =
new Burger (true, new Patty (), new Patty());
//Heart attack
Burger fourByFour =
new Burger (true, new Patty(), new Patty(),
new Patty (), new Patty()):;
}
Y// /i~

The interesting part is in Burger.Main(), which shows the Burger constructor
being called with various amounts of Pattys (even no patties).

The params modifier is how the String.Format() method and
Console.WriteLine() allow us to write lines such as:

String.Format ("f{0}c{1}t{2}{3}{4}s1l{5}"
,'a','e','i','O','u','y'),‘
Multidimensional arrays

C# allows you to easily create multidimensional arrays:

//:c05:MultiDimArray.cs
// Creating multidimensional arrays.
using System;

class IntHolder {

int 1i;
internal IntHolder (int i) {
this.i = 1i;
}
public override string ToString() {

return i.ToString();

190

Thinking in C# www.ThinkingIn. NET

public class MultiDimArray {
static Random rand = new Random() ;

static void Prt(string s) {
Console.WriteLine (s) ;

public static void Main () {

int[,] al = {
{1, 2, 3,1},
{ 4, 5, 6,1},

}i

Prt("al.Length = " + al.Length);

Prt (" == " + al.GetLength(0)
+ " * " + al.GetLength(l));

for (int i = 0; 1 < al.GetLength(0); i++)
for (int j = 0; j < al.GetlLength(l); Jj++)

Prt("al[™ + 1 + "," + 3

+ "1 ="+ alli, J1);
// 3-D rectangular array:
int[,,] a2 = new int[2, 2, 4];

for (int i = 0; 1 < a2.GetLength(0); i++)
for (int j = 0; j < a2.Getlength(l); Jj++)
for (int k = 0; k < a2.Getlength(2);
k++)
Prt ("a2[" + i + ", "
+ 9+ ","
+ "1 ="+ a2[i,j,kl);
// Jagged array with varied-Length vectors:

int[][][] a3 = new int[rand.Next(7) + 11[]11[]:
for (int 1 = 0; 1 < a3.Length; i++) {
a3[i] = new int[rand.Next(5) + 1]11[];
for (int j = 0; j < a3[i].Length; J++)
a3[1i][J] = new int[rand.Next(5) + 1];

}
for (int i = 0; i < a3.Length; i++)
for (int j = 0; j < a3[i].Length; j++)
for (int k = 0; k < a3[i][j].Length;

Chapter 5: Initialization & Cleanup 191

k++)
Prt ("a3[" + 1 + "] ["
+ 3 + "I [" + Kk
+ "] ="+ a3[i1[31[k]);
// Array of nonprimitive objects:
IntHolder([,] a4 = {
{ new IntHolder(l), new IntHolder(2)},
{ new IntHolder (3), new IntHolder(4)},
{ new IntHolder (5), new IntHolder(6)},
}i
for (int i = 0; i1 < a4d4.GetLength(0); i++)
for (int j = 0; j < a4d.GetLength(l); j++)
Prt("ad[" + 1 + "," + 3
+ "] ="+ a4dli,j1);
IntHolder[][] ab5;
ab5 = new IntHolder([3][];
for (int 1 = 0; i < ab5.Length; 1i++) {
a5[i] = new IntHolder[3];
for (int j = 0; j < ab5[i].Length; j++) {
ab5[1i][j] = new IntHolder (i*j);

for (int 1 = 0; i1 < a5.GetLength(0); i++) {
for (int j = 0; j < a5[i].Length; J++) {

Prt("aS[" + i+ "1[" + J
+ "] ="+ a5[il[3]);
}
}
}
Y /1)~
The code used for printing uses Length so that it doesn’t depend on fixed array
sizes.

The first example shows a multidimensional rectangular array of primitives.
You delimit each vector in the array with curly braces:

int[,] al = {
{1, 2, 3, },
{ 4, 5, 6, },
bi
Each comma in the index moves you into the next level of the array.

192 Thinking in C# www.MindView.net

The second example shows a three-dimensional rectangular array allocated with
new. Here, the whole array is allocated at once:

| int[,,] a2 = new int[2, 2, 4];

In a rectangular array, each vector that makes up the array is a fixed size, and
therefore the array is itself a fixed size, in this case, an array of precisely the size
needed to hold 16 (2 * 2 * 4) integers.

The third example shows a different type of array, a jagged array in which each
vector in the arrays that make up the matrix can be of any length:

int[][][] a3 = new int[rand.Next(7) + 11[]1[];
for(int i = 0; i < a3.Length; i++) {
a3[i] = new int[rand.Next(5)]1[];
for(int j = 0; j < a3[i].Length; J++)
a3[i][J] = new int[rand.Next(5)];
}

The first new creates an array with a random-length first element and the rest
undetermined. The second new inside the for loop fills out the elements but
leaves the third index undetermined until you hit the third new.

You will see from the output that array values are automatically initialized to zero
if you don’t give them an explicit initialization value.

You can deal with arrays of nonprimitive objects in a similar fashion, which is
shown in the fourth example, demonstrating the ability to collect many new
expressions with curly braces:

IntHolder[,] a4 = {
{ new IntHolder(l), new IntHolder(2)},
{ new IntHolder (3), new IntHolder (4)},
{ new IntHolder (5), new IntHolder (6)},
}i
The fifth example shows how an array of nonprimitive objects can be built up
piece by piece:

IntHolder[][] ab;
a5 = new IntHolder[3][];
for(int 1 = 0; i < ab.length; i++) {

a5[i] = new IntHolder[3];
for(int j = 0; j < a5[i].length; j++)
a5[i][j] = new IntHolder (i*j);

Chapter 5: Initialization & Cleanup 193

| }

The i*j is just to put an interesting value into the IntHolder.

What a difference a rectangle makes

The addition of rectangular arrays to C# is one of a few different language
features that have the potential to make C# a great language for numerically
intensive computing. With jagged arrays (arrays of the form Object[][1), it’s
impossible for an optimizer to make assumptions about memory allocation. A
jagged array may have multiple rows pointing to the same base array, unallocated
rows, and cross-references.

double[5] [] myArray = new double[5][];
myArray[0] = new double[2];
myArray[l] = myArray[0];
myArray[2] = new double[l];
myArray[4] = new double[4];
myArray[5][[o] [1] [2] [3] [4]

Figure 5-1: Jagged arrays can have complex relationships to physical memory

A rectangular array, on the other hand, is a contiguous block:

double myArray[5,4] = new double[5,4];

myArray[5,4] y ’

Figure 5-2: Rectangular arrays are contiguous blocks of memory

As you can see from Figures 5-1 and 5-2, jagged arrays are best thought of as
“references to references” while a rectangular array can be safely thought of as a

194 Thinking in C# www.ThinkingIn. NET

“grid of references.” Since physical RAM is not a grid at all, but continuous, a
rectangular array is really a single contiguous chunk of memory. Jagged arrays
are more flexible in terms of efficiently storing references without having to copy
them back and forth, but rectangular arrays are perhaps a tiny bit easier to
initialize and use. In addition, several optimizing techniques are harder to do
with jagged arrays than with rectangular. When researchers at IBM added
rectangular arrays to Java, they speeded up some numerical benchmarks by
factors close to 50! So far, the C# optimizer doesn’t take advantage of such
possibilities, although it does run somewhat faster than Java on Cholesky
multiplication3.

Summary

This seemingly elaborate mechanism for initialization, the constructor, should
give you a strong hint about the critical importance placed on initialization in the
language. As Stroustrup was designing C++, one of the first observations he made
about productivity in C was that improper initialization of variables causes a
significant portion of programming problems. These kinds of bugs are hard to
find, and similar issues apply to improper cleanup. Because constructors allow
you to guarantee proper initialization and cleanup (the compiler will not allow an
object to be created without the proper constructor calls), you get complete
control and safety.

In C++, destruction is quite important because objects created with new must be
explicitly destroyed. In C#, the garbage collector automatically releases the
memory for all objects, so the equivalent cleanup method in C# isn’t necessary
much of the time. In cases where you don’t need destructor-like behavior, C#’s
garbage collector greatly simplifies programming, and adds much-needed safety
in managing memory. However, the garbage collector does add a run-time cost,
the expense of which is difficult to put into perspective because of the other
performance ramifications of the IL and CLR approach to binary files.

Because of the guarantee that all objects will be constructed, there’s actually more
to the constructor than what is shown here. In particular, when you create new
classes using either composition or inheritance the guarantee of construction also

3 The original article is The Ninja Project, Moreira et al., Communications of the ACM
44(10), Oct 2001. For more on C# performance, including a port of some of the
benchmarks used by Moreira from Java to C#, see http://www.ThinkingIn.Net
/performance.html

Chapter 5: Initialization & Cleanup 195

holds, and some additional syntax is necessary to support this. You'll learn about
composition, inheritance, and how they affect constructors in future chapters.

Exercises

1.

10.

Create a class with a default constructor (one that takes no arguments)
that prints a message. Create an object of this class.

Add an overloaded constructor to Exercise 1 that takes a string argument
and prints it along with your message.

Create an array of object references of the class you created in Exercise 2,
but don’t actually create objects to assign into the array. When you run
the program, notice whether the initialization messages from the
constructor calls are printed.

Complete Exercise 3 by creating objects to attach to the array of
references.

Create an array of string objects and assign a string to each element.
Print the array using a foreach loop.

Create a class called Dog with an overloaded Bark() method. This
method should be overloaded based on various primitive data types, and
print different types of barking, howling, etc., depending on which
overloaded version is called. Write a Main() that calls all the different
versions.

Modify Exercise 6 so that two of the overloaded methods have two
arguments (of two different types), but in reversed order relative to each
other. Verify that this works.

Create a class without a constructor, and then create an object of that
class in Main() to verify that the default constructor is automatically
synthesized.

Create a class with two methods. Within the first method, call the second
method twice: the first time without using this, and the second time
using this.

Create a class with a destructor that prints a message. In Main(), create
an object of your class. Explain the behavior of your program.

Thinking in C# www.MindView.net

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Modify Exercise 11 so that the object is created within a method other
than Main(). Modify your class so that it implements IDisposable and
the Dispose() method is called before Main() exits.

Create a class called Tank that can be filled and emptied, and has a
death condition that it must be empty when the object is cleaned up.
Write a Dispose() that verifies this death condition. In Main(), test
the possible scenarios that can occur when your Tank is used.

Create a class containing an int and a char that are not initialized, and
print their values to verify that C# performs default initialization.

Create a class containing a declared but uninitialized String reference.
Demonstrate that this reference is initialized by C# to null.

Create a class with a string field that is initialized at the point of
definition, and another one that is initialized by the constructor. What is
the difference between the two approaches?

Create a class with a static string field that is initialized at the point of
definition, and another one that is initialized by a static constructor. Add
a static method that prints both fields and demonstrates that they are
both initialized before they are used.

Write a method that creates and initializes a two-dimensional array of
double. The size of the array is determined by the arguments of the
method, and the initialization values are a range determined by
beginning and ending values that are also arguments of the method.
Create a second method that will print the array generated by the first
method. In Main() test the methods by creating and printing several
different sizes of arrays.

Repeat Exercise 17 for a three-dimensional array.

Comment the line marked (1) in StaticConstructor.cs and verify that
the static constructor is not called. Now uncomment one of the lines
marked (2) and verify that the static constructor is called. Now
uncomment the other line marked (2) and verify that static construction
only occurs once.

Referring back to the robotic party servant exercises from previous
chapters, describe the initialization and cleanup required for each of your
classes. Find at least one class that represents a “valuable resource” for
the party that is not in infinite supply.

Chapter 5: Initialization & Cleanup 197

21.

22,

23.

24.

For the “valuable resource” discovered in exercise 20, implement the
Dispose() method of the class. Write a program that creates and
consumes this resource and demonstates proper cleanup.

Try to find and implement a class in the party domain that requires static
initialization.

Try to find and implement a class in the party domain that uses an array
initialization

You should now have at least 5 programs in the party domain. Eliminate
common code by refactoring them into utility functions. Confirm that all
programs in the party domain continue to function!

Thinking in C# www.ThinkingIn. NET

6: Hiding the
Implementation

A primary consideration in object-oriented design is
“separating the things that change from the things that
stay the same.”

This is particularly important for libraries. The user (client programmer) of that
library must be able to rely on the part they use, and know that they won’t need to
rewrite code if a new version of the library comes out. On the flip side, the library
creator must have the freedom to make modifications and improvements with the
certainty that the client programmer’s code won’t be affected by those changes.

This can be achieved through convention. For example, the library programmer
must agree to not remove existing methods when modifying a class in the library,
since that would break the client programmer’s code. The reverse situation is
thornier, however. In the case of a data member, how can the library creator
know which data members have been accessed by client programmers? This is
also true with methods that are only part of the implementation of a class, and
not meant to be used directly by the client programmer. But what if the library
creator wants to rip out an old implementation and put in a new one? Changing
any of those members might break a client programmer’s code. Thus the library
creator is in a strait jacket and can’t change anything.

To solve this problem, C# provides access specifiers to allow the library creator to
say what is available to the client programmer and what is not. The levels of
access control from “most access” to “least access” are public, protected
internal, protected, internal, and private. From the previous paragraph you
might think that, as a library designer, you’ll want to keep everything as “private”
as possible, and expose only the methods that you want the client programmer to
use. This is exactly right, even though it’s often counterintuitive for people who
program in other languages (especially C) and are used to accessing everything
without restriction. By the end of this chapter you should be convinced of the
value of access control in C#.

199

The concept of a library of components and the control over who can access the
components of that library is not complete, however. There’s still the question of
how the components are bundled together into a cohesive library unit. This is
controlled by the namespace keyword for creating related names and by
bundling related classes into assemblies. The access specifiers are affected by
whether a class is in the same assembly or in a separate assembly. Before we
discuss assemblies though, we need to learn about namespaces. Then you’ll be
able to understand the complete meaning of the access specifiers and move onto
multiple assemblies.

Organizing with namespaces

A namespace is what you get when you use the using keyword to bring in the
classes named in n entire library, such as

| using System.Collections;

This makes visible to your code the entire System.Collections library that’s part of
the standard .NET Framework SDK distribution. Since, for example, the class
ArrayList is in System.Collections, you can now either specify the full name
System.Collections.ArrayList (which you can do without the using
statement), or you can simply say ArrayList (because of the using).

Namespaces exist to insulate related classes so that they can see each other, but
non-related classes cannot see all of the classes. A method F() inside a class A
will not clash with an F() that has the same signature (argument list) in class B.
But what about the class names? Suppose you create a Stack class that is
installed on a machine that already has a Stack class that’s written by someone
else? With C# and the Internet, this can happen without the user knowing it,
since class assemblies can be downloaded automatically in the process of running
a .NET program.

This potential clashing of names is why it’s important to have complete control
over the name spaces in C#, and to be able to create a completely unique name
regardless of the constraints of the Internet.

So far, most of the examples in this book have existed in a single file and have
been designed for local use, and haven’t bothered with namespaces. (In this case
the class name is placed in the “default namespace.”) This is certainly an option,
and for simplicity’s sake this approach will be used whenever possible throughout
the rest of this book. However, if you're planning to create libraries or programs
that are friendly to other C# programs on the same machine, you must think
about preventing class name clashes.

200 Thinking in C# www.MindView.net

When you create a source-code file for C#, it’s commonly called a compilation
unit (sometimes a translation unit). By convention, each compilation unit has a
name ending in .cs. A compilation unit in C# may contain as many types as
desired. The compiler (csc.exe) translates one or more compilation unit into an
assembly. An assembly consists of some number of public classes that are
available for use by other assemblies and some amount of non-visible support
classes.

In contrast with Java, C# does not enforce a strict correspondence between
compilation units, public classes, namespaces, and assemblies. However, it is
generally a good idea to:

¢ Restrict a compilation unit to a single namespace
+ Put only one public class in a single compilation unit

¢ Put the compilation units for a single namespace in a single source
directory

These are good ideas for a couple of different reasons. For one thing, once a
program gets to a medium size and has, say, a few dozen thousand lines of code,
even the very fast C# compiler takes a significant amount of time to recompile
everything. Second, the compilation unit is the natural unit of source code
control and testing. While it’s possible to create systems that are intelligent about
merging disparate changes and only testing changed classes, these are by far
more complex and error-prone than systems that are based on simply comparing
the timestamps on the compilation unit files!

Just because you’ve created a class in a namespace and compiled it into an
assembly does not automatically make it available to other software. For instance,
if you write:

namespace MyNamespace{
public class MyClass({
//..etc..

}
and save it to a file MyClass.cs, you would compile with:

| csc /target:library MyClass.cs

which would create an assembly called MyClass.DLL. To use this assembly
from another compilation unit, you would write something of this form:

| using MyNamespace;

Chapter 6: Hiding the Implementation 201

namespace MyNewNamespace {
class MyNewClass({
//Class referenced in "using"
MyClass ¢ = new MyClass{();
//.. etc ..

}

but you would have to compile MyNewClass.cs with an explicit reference to the
assembly in which MyClass is stored:

csc /reference:MyClass.dll MyNewClass.cs

Otherwise you would receive a compilation error that “The type or namespace
‘MyNamespace’ could not be found.”

In addition, when the first object of type MyNewClass is created at runtime, it
must be able to find the MyClass.dll assembly. The easiest way to do this is to
place a copy of MyClass.dll in the same directory as the assembly that contains
MyNewClass. One of the greatest differences between .NET and previous
versions of Windows is support for “XCOPY deployment.” This means that,
except for niceties like creating shortcuts and items on the Start menu, you can
deploy a .NET application simply by copying files.

Creating unique names

You might observe that if you wanted your library assembly MyClass.dll to be
used by two or more applications, XCOPY deployment might not be the best
solution. It would be better if you installed your library into some location that
both applications (heck, all applications) automatically checked. As a Windows
user, this would naturally make you think of the Registry and subdirectories of
the Windows directory.

If you are a Windows programmer, you will also be aware of the problems this
can raise. What if another company ships an assembly named MyClass.dll or
someone accidentally copies an old version on top of your most recent one? These
are the causes of “DLL Hell,” that Windows condition in which installing a new
application causes problems in others.

To avoid DLL Hell, .NET provides an entirely new system of sharing assemblies.
This system has two components: qunique names based on public-key
cryptography and a set of sub-directories known as the Global Assembly Cache
(GAC). Each deployed version of the assembly gets its own unique identity; the

202

Thinking in C# www.ThinkingIn. NET

system-level tools that manipulate the GAC assure that uniquely identified
assemblies do not overwrite one another. In addition, the choice to use
cryptography to create the unique names means that, in addition, the tools can
guarantee the integrity of the bits in the assembly. The process by which
assemblies are signed and installed into the GAC is covered in Chapter 13.

While cryptographically verified strong names assure binary stability, you should
still strive to create unique namespaces to aid in the organization of your work.
The naming convention for namespaces is
CompanyName.ProjectName.SubSystemName. For instance, you might
create your own ArrayList in a Collections subsystem:

//compiled with csc /target:library
using System;
namespace Thinkingin.CSharp.Collections({
public class ArrayList{
public ArrayList () {
Console.WriteLine
("ThinkingIn.CSharp.Collections.ArrayList");

}

The second file must reference this namespace before use:

using Thinkingin.CSharp.Collections;

namespace usesanother(
class UsesSpecialized{
public static void Main () {

ArraylList al = new ArrayList();

//Can still explicitly reference other

System.Collections.ArrayList reallList =
new System.Collections.ArrayList();

reallist.Add(
"Oh! It's a real collection class!");

}

The compiler requires both a using statement in the source code and a
/reference switch on the command-line to bring in libraries that are not in
mscorlib.dll (“Microsoft .NET Core Libraries”). The referenced assembly must

Chapter 6: Hiding the Implementation 203

be in the path both at compile time and at runtime (unless it is loaded from the
GAC, as described in Chapter 13).

Collisions

What happens if two libraries are imported via using and they include the same
names? For example, suppose a program does this:

using ThinkingIn.CSharp.Collections;
using System.Collections;

Since System.Collections also contains an ArrayList class, this causes a
potential collision. However, as long as the collision does not actually occur,
everything is OK — this is good because otherwise you might end up doing a lot of
typing to prevent collisions that would never happen.

The collision does occur if you now try to make an ArrayList:

| ArrayList al = new ArrayList();

Which ArrayList class does this refer to? The compiler can’t know, and the
reader can’t know either. So the compiler complains and forces you to
disambiguate the reference. If you want a standard .NET ArrayList, for
example, you must say:

System.Collections.ArraylList al =
new System.Collections.ArrayList();

This (along with the assembly references specified at the command-line)
completely specifies which class you mean; the compiler can allow both using
statements to coexist.

Using #define to change behavior

A compilation feature that C# shares with C is the ability to change the behavior
of the compiler based on meta-commands embedded in the code or specified as
part of the compiler’s command-line. A common use for this feature is to enable
or disable debugging code. During development, debugging code that performs
costly verification or informational output is enabled; when release nears, it is
disabled. Here’s an example:

//:c06:TestDebug.cs

// Demonstrating conditional compilation.

// Comment or uncomment the following to change behavior:
#define DEBUG

using System;

204 Thinking in C# www.MindView.net

using System.Diagnostics;

public class Assert {

private static void PErr(string s) {
Console.WritelLine(s) ;

}

[Conditional ("DEBUG")]

public static void True (bool exp) {
if (!exp) PErr ("Assertion failed");

}

[Conditional ("DEBUG")]

public static void False (bool exp) {
if (exp) PErr ("Assertion failed");

}

[Conditional ("DEBUG")]

public static void True (bool exp, string msg) {
if (!'exp) PErr(msqg);

}

[Conditional ("DEBUG")]

public static void False (bool exp, string msg) {
if (exp) PErr (msqg);

public class TestDebug {

public static void Main () {
Assert.True ((2 + 2) == 5);
Assert.False((1 + 1) == 2);
Assert.True((2 + 2) == 5, "2 + 2 == 5");
Assert.False((1 + 1) == 2, "1 +1 != 2");

}
Yo/~

By commenting or uncommenting #define DEBUG, you change your code from
the debug version to the production version. This technique can be used for any

kind of conditional code.

The use of some kind of #define DEBUG and an Assert class is so common
that .NET has built-in support for just this behavior. If you compile with DEBUG
defined, either by putting #define DEBUG in your code or by compiling with

csc /d:DEBUG, the Microsoft enables the Debug class in the
System.Diagnostics namespace, which includes an Assert method. The

Chapter 6: Hiding the Implementation

205

Debug.Assert() raises a dialog box, which is fine for manual debugging, but
not very helpful for automated testing. Additionally, the Debug class and a
companion Trace class (enabled by defining TRACE) have methods that output
strings to a set of TraceListeners. TraceListeners can be used to send data to
the system’s event logs, the console, or custom sinks. We’ll cover the use of these
classes in Chapter 12.

C#'s access specifiers

When used, the C# access specifiers public, internal, protected, protected
internal and private are placed in front of each definition for each member in
your class, whether it’s a field, method, or property. Each access specifier controls
the access for only that particular definition. This is a distinct contrast to C++, in
which the access specifier controls all the definitions following it until another
access specifier comes along.

One way or another, everything has some kind of access specified for it. Even
when not specified, each program component has a default access:

Element Default Access
enum and interface public
Non-nested Class and struct internal

All type members (methods, properties,

fields, ete.) private

In the following sections, you’ll learn all about the various types of access,
starting with the default access.

public: interface access

When you use the public keyword, it means that the member declaration that
immediately follows public is available to everyone, in particular to the client
programmer who uses the library. Suppose you define a namespace dessert
containing the following compilation unit:

//:c06:dessert:Cookie.cs

//Compile with

//csc /target:library Cookie.cs /out:dessert.dll
// Creates a library.

using System;

206 Thinking in C# www.ThinkingIn. NET

namespace Dessert{
public class Cookie {
public Cookie() {
Console.WriteLine ("Cookie constructor");
}
void Bite() { Console.WriteLine("Bite"); }
}
Y// /i~

Now if you create a program that uses Cookie:

//:c06:Dinner.cs

//Compile with

//csc /reference:Dessert.dll Dinner.cs
// Uses the library.

using Dessert;

using System;

public class Dinner {

public Dinner () {

Console.WriteLine ("Dinner constructor");

}

public static void Main () {

Cookie x = new Cookie();
//' x.Bite(); // Can't access

}

Y/ /e~

you can create a Cookie object, since its constructor is public and the class is
public. (We'll look more at the concept of a public class later.) However, the
Bite() member is inaccessible inside Dinner.cs since Bite() is private.

internal

What if you give no access specifier at all, as in all the examples before this
chapter? The default access for a type is internal, which is sometimes referred to
as “friendly.” It means that all the other classes in the current assembly have
access to the internal member, but to all the classes outside of this assembly the
member appears to be private.

Internal access allows you to group related classes together in an assembly so
that they can easily create each other. When you put classes together in an
assembly you “own” the code in that package. It makes sense that only code you
own should have internal access to other code you own. You could say that

Chapter 6: Hiding the Implementation 207

internal access gives a meaning or a reason for grouping classes together in an
assembly. In many languages the way you organize your definitions in files can be
willy-nilly, but in C# you’re compelled to organize them in a sensible fashion. In
addition, you’ll probably want to exclude classes that shouldn’t have access to the
classes being defined in the current assembly.

The class controls which code has access to its members. There’s no magic way to
“break in.” Code from another assembly can’t show up and say, “Hi, I'm a friend
of Bob’s!” and expect to see the protected, internal, protected internal, and
private members of Bob. The only way to grant access to a member is to:

1. Make the member public. Then everybody, everywhere, can access it.

2. Make the member internal by leaving off any access specifier if it’s a
class or by adding the internal keyword if it’s a method or property, and
put the other classes in the same assembly. Then the other classes can
access the member.

3. Asyou’ll see in Chapter 7, when inheritance is introduced, an inherited
class can access a protected member as well as a public member (but
not private members). It can access internal members only if the two
classes are in the same assembly. But don’t worry about that now. The
same goes for protected internal, which allows access from an
inherited member or from other classes in the assembly.

4. Expose the member via public properties that read and change the
value. This is the most civilized approach in terms of OOP, and it is
fundamental to C#, as you'll see in Chapter 7.

private: you can’t touch that!

The private keyword means that no one can access that member except that
particular class, inside methods of that class. Other classes in the same assembly
cannot access private members, so it’s as if you're even insulating the class
against yourself. On the other hand, it’s not unlikely that an assembly might be
created by several people collaborating, so private allows you to freely change
that member without concern that it will affect another class in the same
assembly. The default access type for the internals of a type is private.

The default internal access for types and private for type members generally
provide an adequate amount of hiding; remember, an internal member is
inaccessible to the user of the assembly. This is nice, since the default access is
the normal amount of caution you will use (and the one that you’ll get if you
forget to add any access control). Thus, you’ll typically think about access for the

208 Thinking in C# www.MindView.net

members that you explicitly want to make public for the client programmer, and
as a result, you might not initially think you’ll use the private keyword often
since it’s tolerable to get away without it. (This is a distinct contrast with C++.)
However, it turns out that the consistent use of private is very important,
especially where multithreading is concerned. (As you’ll see in Chapter 16.)

Here’s an example of the use of private:

//:c06:IceCream.cs
// Demonstrates "private" keyword.
using System;

class Sundae {

private Sundae () {
Console.WritelLine ("private methods cannot be called"
+ " from methods not defined in class");
}
static internal Sundae MakeSundae () {
Console.WriteLine ("Sundae.MakeSundae () calls private");

return new Sundae ()

public class IceCream {

public static void Main () {
//! Sundae x = new Sundae();
Sundae x = Sundae.MakeSundae () ;
}
y /)~

This shows an example in which private comes in handy: you might want to
control how an object is created and prevent someone from directly accessing a
particular constructor (or all of them). In the example above, you cannot create a
Sundae object via its constructor; instead you must call the MakeSundae()
method to do it for you.

Any method that you're certain is only a “helper” method for that class should be
kept private, to ensure that you don’t accidentally use it elsewhere in the
package and thus prohibit yourself from changing or removing the method.
Keeping a method private guarantees that you retain this option.

The same is true for a private field inside a class. Unless you must expose the
underlying implementation (which is a much rarer situation than you might

Chapter 6: Hiding the Implementation 209

think), you should keep all fields private. However, just because a reference to
an object is private inside a class doesn't mean that some other object can't have
a public reference to the same object via other routes; if a public property
returns a reference to a private object, the client can manipulate it freely.

protected

The protected access specifier requires a jump ahead to understand. First, you
should be aware that you don’t need to understand this section to continue
through this book up through inheritance (Chapter 7). But for completeness, here
is a brief description and example using protected.

The protected keyword deals with a concept called inheritance, which takes an
existing class and adds new members to that class without touching the existing
class, which we refer to as the base class. You can also change the behavior of
existing members of the class. To inherit from an existing class, you add a colon
and the name of the class from which it inherits, like this:

class Foo : Bar {

The rest of the class definition looks the same.

If you create a new assembly and you inherit from a class in another assembly,
the only members you have access to are the public members of the original
assembly. (Of course, if you perform the inheritance in the same assembly, you
have the normal namespace access to all the internal members.) Sometimes the
creator of the base class would like to take a particular member and grant access
to derived classes but not the world in general. That’s what protected does. If
you refer back to the file Cookie.cs, the following class cannot access the
internal member:

//:c06:ChocolateChip.cs

//Compile with:

// csc /reference:Dessert.dll ChocolateChip.cs
// Can't access internal member

// in parent class in another namespace.

using System;

using Dessert;

public class ChocolateChip : Cookie {
public ChocolateChip() {
Console.WriteLine ("ChocolateChip constructor");

}

public static void Main () {

Thinking in C# www.ThinkingIn.NET

ChocolateChip x = new ChocolateChip();
//!' x.Bite(); // Still can't access bite
}
y /)~

One of the interesting things about inheritance is that if a method Bite() exists
in class Cookie, then it also exists in any class inherited from Cookie. But since
Bite() is internal to a foreign assembly, it’s unavailable to us in this one. Of
course, you could make Bite() public, but then everyone would have access and
maybe that’s not what you want. If we change the class Cookie as follows:

public class Cookie {
public Cookie() {
Console.WritelLine ("Cookie constructor");
}
protected void Bite() {
Console.WriteLine ("bite");

}

then Bite() no longer provides internal access within the Dessert assembly,
but it is now accessible to anyone inheriting from Cookie. However, it is not
public. If you wish to keep Bite() so that it still has internal access within the
Dessert assembly and also have it accessible from inherited classes, you can
declare it protected internal.

Interface and implementation

Access control is often referred to as implementation hiding. Wrapping data and
methods within classes in combination with implementation hiding is often
called encapsulation'. The result is a data type with characteristics and
behaviors.

Access control puts boundaries within a data type for two important reasons. The
first is to establish what the client programmers can and can’t use. You can build
your internal mechanisms into the structure without worrying that the client
programmers will accidentally treat the internals as part of the interface that they
should be using.

This feeds directly into the second reason, which is to separate the interface from
the implementation. If the structure is used in a set of programs, but client

1 However, other people refer to implementation hiding alone as encapsulation.

Chapter 6: Hiding the Implementation 211

programmers can’t do anything but send messages to the public interface, then
you can change anything that’s not public (e.g., internal, protected,
protected internal, or private) without requiring modifications to client code.

We’re now in the world of object-oriented programming, where a class is actually
describing “a class of objects,” as you would describe a class of fishes or a class of
birds. Any object belonging to this class will share these characteristics and
behaviors. The class is a description of the way all objects of this type will look
and act.

In the original OOP language, Simula-67, the keyword class was used to describe
a new data type. The same keyword has been used for most object-oriented
languages. This is the focal point of the whole language: the creation of new data
types that are more than just boxes containing data and methods.

The class is the fundamental OOP concept.

For clarity, you might prefer a style of creating classes that puts the public
members at the beginning, followed by the protected, internal, and private
members. The advantage is that the user of the class can then read down from the
top and see first what’s important to them (the public members, because they
can be accessed outside the file), and stop reading when they encounter the non-
public members, which are part of the internal implementation:

public class X {
public void Publ() { /* . . . */ }

public void Pub2() { /* . . . */ }
public void Pub3() { /* . . . */ }
private void privl() { /* . . . */ }
private void priv2() { /* . . . */ }
private void priv3() { /* . . . */ }

private int i;
//
}

This will make it only partially easier to read because the interface and
implementation are still mixed together. That is, you still see the source code—
the implementation—because it’s right there in the class. In addition, the
comment documentation somewhat lessens the importance of code readability by
the client programmer. Displaying the interface to the consumer of a class is
really the job of the class browser, a tool whose job is to look at all the available
classes and show you what you can do with them (i.e., what members are

Thinking in C# www.MindView.net

available) in a useful fashion. Microsoft’s Visual Studio .NET is the first, but not
the only, tool to provide a class browser for C#.

Class access

In C#, the access specifiers can also be used to determine which classes within a
library will be available to the users of that library. If you want a class to be
available to a client programmer, you place the public keyword somewhere
before the opening brace of the class body. This controls whether the client
programmer can even create an object of the class.

To control the access of a class, the specifier must appear before the keyword
class. Thus you can say:

| public class Widget {

Now if the name of your library is Mylib any client programmer can access
Widget by saying

using Mylib;
Widget w;

What if you’ve got a class inside Mylib that you’re just using to accomplish the
tasks performed by Widget or some other public class in Mylib? You don’t
want to go to the bother of creating documentation for the client programmer,
and you think that sometime later you might want to completely change things
and rip out your class altogether, substituting a different one. To give you this
flexibility, you need to ensure that no client programmers become dependent on
your particular implementation details hidden inside Mylib. To accomplish this,
you just leave the public keyword off the class, in which case it becomes
internal. (That class can be used only within that assembly.)

Note that a class cannot be private (that would make it accessible to no one but
the class), or protected. So you have only two choices for class access: internal
or public. If you don’t want anyone else to have access to that class, you can
make all the constructors private, thereby preventing anyone but you, inside a
static member of the class, from creating an object of that class2. Here’s an
example:

| //:c06:Lunch.cs

2 You can also do it by inheriting (Chapter 7) from that class.

Chapter 6: Hiding the Implementation 213

// Demonstrates class access specifiers.
// Make a class effectively private
// with private constructors:

class Soup {
private Soup () {}

// (1) Allow creation via static method:

public static Soup MakeSoup () {
return new Soup();

}

// (2) Create a static object and

// return a reference upon request.

// (The "Singleton" pattern):

private static Soup psl = new Soup();

public static Soup Access() {
return psl;

}

public void F() {}

class Sandwich { // Uses Lunch
void F() { new Lunch(); }

// Only one public class allowed per file:

public class Lunch {
void Test () {

// Can't do this! Private constructor:

//!Soup privl = new Soup/();
Soup priv2 = Soup.MakeSoup () ;
() :

Sandwich f1 = new Sandwich ()
Soup.Access () .F();
}
Y /)~

Up to now, most of the methods have been returning either void or a primitive

type, so the definition:

public static Soup Access () {
return psl;

214

Thinking in C#

www.ThinkingIn. NET

might look a little confusing at first. The word before the method name (Access)
tells what the method returns. So far this has most often been void, which means
it returns nothing. But you can also return a reference to an object, which is what
happens here. This method returns a reference to an object of class Soup.

The class Soup shows how to prevent direct creation of a class by making all the
constructors private. Remember that if you don’t explicitly create at least one
constructor, the default constructor (a constructor with no arguments) will be
created for you. By writing the default constructor, it won’t be created
automatically. By making it private, no one can create an object of that class.
But now how does anyone use this class? The above example shows two options.
First, a static method is created that creates a new Soup and returns a reference
to it. This could be useful if you want to do some extra operations on the Soup
before returning it, or if you want to keep count of how many Soup objects to
create (perhaps to restrict their population).

The second option uses what’s called a design pattern, which is covered in
Thinking in Patterns with Java, downloadable at www.BruceEckel.com. This
particular pattern is called a Singleton because it allows only a single object to
ever be created. The object of class Soup is created as a static private member
of Soup, so there’s one and only one, and you can’t get at it except through the
public method Aaccess().

As previously mentioned, if you don’t put an access specifier for class access it
defaults to internal. This means that an object of that class can be created by
any other class in the assembly, but not outside the assembly. However, if a
static member of that class is public, the client programmer can still access that
static member even though they cannot create an object of that class.

Summary

In any relationship it’s important to have boundaries that are respected by all
parties involved. When you create a library, you establish a relationship with the
user of that library—the client programmer—who is another programmer, but
one putting together an application or using your library to build a bigger library.

Without rules, client programmers can do anything they want with all the
members of a class, even if you might prefer they don’t directly manipulate some
of the members. Everything’s naked to the world.

This chapter looked at how classes are built to form libraries: first, the way a
group of classes is packaged within a library, and second, the way the class
controls access to its members.

Chapter 6: Hiding the Implementation 215

It is estimated that a C programming project begins to break down somewhere
between 50K and 100K lines of code because C has a single “name space” so
names begin to collide, causing an extra management overhead. In C#, the
namespace keyword, the assembly referencing scheme, and the using keyword
give you complete control over names, so the issue of name collision is easily
avoided.

There are two reasons for controlling access to members. The first is to keep
users’ hands off tools that they shouldn’t touch: tools that are necessary for the
internal machinations of the data type, but not part of the interface that users
need to solve their particular problems. So making methods and fields private is
a service to users because they can easily see what’s important to them and what
they can ignore. It simplifies their understanding of the class.

The second and most important reason for access control is to allow the library
designer to change the internal workings of the class without worrying about how
it will affect the client programmer. You might build a class one way at first, and
then discover that restructuring your code will provide much greater speed. If the
interface and implementation are clearly separated and protected, you can
accomplish this without forcing the users to rewrite their code.

Access specifiers in C# give valuable control to the creator of a class. The users of
the class can clearly see exactly what they can use and what to ignore. More
important, though, is the ability to ensure that no user becomes dependent on
any part of the underlying implementation of a class. If you know this as the
creator of the class, you can change the underlying implementation with the
knowledge that no client programmer will be affected by the changes because
they can’t access that part of the class.

When you have the ability to change the underlying implementation, you can not
only improve your design later, but you also have the freedom to make mistakes.
No matter how carefully you plan and design you’ll make mistakes. Knowing that
it’s relatively safe to make these mistakes means you’ll be more experimental,
you’ll learn faster, and you’ll finish your project sooner.

The public interface to a class is what the user does see, so that is the most
important part of the class to get “right” during analysis and design. Even that
allows you some leeway for change. If you don’t get the interface right the first
time, you can add more methods, as long as you don’t remove any that client
programmers have already used in their code.

216

Thinking in C# www.MindView.net

Exercises

1.

10.

Write a program that creates an ArrayList object without explicitly
importing System.Collections.

In the section labeled “the library unit,” turn the code fragments
concerning MyNamespace into a compiling and running pair of
assemblies (a library assembly and an executable assembly).

In the section labeled “Collisions,” take the code fragments and turn
them into a program, and verify that collisions do in fact occur.

Compile TestDebug.cs with Debug defined and not. Confirm that the
behavior is different due to the preprocessed directives.

Create a class with public, private, protected, and internal data
members and method members. Create an object of this class and see
what kind of compiler messages you get when you try to access all the
class members. Be aware that classes in the same assembly are part of the
“default” package.

Create a class with internal properties and methods. Compile it into a
library assembly. Create another class that attempts to read the data and
compile it into an executable assembly. Observe the behavior. Compile
both classes into a single executable assembly and observe the behavior.

Change the class Cookie as specified in the section labeled “protected:
‘sort of friendly.” Verify that Bite() is not public.

In the section titled “Class access” you'll find code fragments describing
Mylib and Widget. Create this library, then create a Widget in a class
that is not part of the Mylib package.

Following the form of the example Lunch.cs, create a class called
ConnectionManager that manages a fixed array of Connection
objects. The client programmer must not be able to explicitly create
Connection objects, but can only get them via a static method in
ConnectionManager. When the ConnectionManager runs out of
objects, it returns a null reference. Test the classes in Main().

Referring back to the party domain exercises from earlier chapters,
divide the domain into several logical namespaces.

Chapter 6: Hiding the Implementation 217

11.

12,

13.

Divide a large sheet of paper with the namespaces you developed in
exercise 10. Place the classes that you have developed into their
appropriate namespace. Using the programs that you have written, trace
execution with a coin.

If the coin accesses a method or property in the same class, mark the
method or property as private.

If the coin accesses method or property in a class within its namespace,
mark the method or data as internal.

When the coin crosses namespace boundaries, it necessarily must be
accessing something public.

Modify your code according to this exercise. Compile each namespace
into a separate assembly. Confirm that all your programs still work!

Taking the diagram developed in the previous exercise as a start, create a
new diagram that lists just the public classes, methods, and properties in
your party domain. Compare the readability of this diagram with the
complete diagram.

With the diagrams from the two previous exercises available, implement
a program in one of the namespaces that you haven’t concentrated on.
You should find that you need to access classes in other namespaces.
Eliminate common code and confirm that all your programs continue to
work. Are the diagrams helpful? Is one more helpful than the other?
Why?

218

Thinking in C# www.ThinkingIn. NET

/. Reusing Classes

One of the most compelling features about object
orientation is code reuse. Studies have shown that high-
quality reusable components can be the second-most
important factor to productivity (only the order-of-
magnitude difference in productivity between the best
and worst programmers counts more). Conversely, trying
to work with low-quality reusable components is the
greatest detractor from productivity. In other words, the
quality of the libraries that you use to build your solutions
has an enormous influence on software success.

Like everything in C#, the key to software quality lies in the object-oriented class.
You reuse code by creating new classes, but instead of creating them from
scratch, you use existing classes that someone has already built and debugged.

The trick is to use the classes without soiling the existing code. In this chapter
you’ll see two ways to accomplish this. The first is quite straightforward: You
simply create objects of your existing class inside the new class. This is called
composition, because the new class is composed of objects of existing classes.
You're simply reusing the functionality of the code, not its form.

The second approach is more subtle. It creates a new class as a type of an existing
class. You literally take the form of the existing class and add code to it without
modifying the existing class. This magical act is called inheritance, and the
compiler does most of the work. Inheritance is one of the cornerstones of object-
oriented programming.

It turns out that much of the syntax and behavior are similar for both
composition and inheritance (which makes sense because they are both ways of
making new types from existing types). In this chapter, you’ll learn about these
code reuse mechanisms.

219

Composition syntax

Until now, composition has been used quite frequently. You simply place object
references inside new classes. For example, suppose you’d like an object that
holds several string objects, a couple of primitives, and an object of another
class. For the non-value types, you put references inside your new class, but you
define the objects directly:

//:c07:SprinklerSystem.cs
// Composition for code reuse.
using System;

class WaterSource {
private string s;

internal WaterSource () {
Console.WritelLine ("WaterSource()") ;
s = "Constructed";
}
public override string ToString() { return s;}

public class SprinklerSystem {
private string valvel, valve2, valve3, valve4;
WaterSource source;

int i;

float f;

void Print () {
Console.WriteLine ("valvel = " + valvel);
Console.WriteLine ("valve2 = " + valve2);
Console.WriteLine ("valve3 = " + valve3);
Console.WriteLine ("valved = " + valved);
Console.WriteLine("i = " + 1i);
Console.WriteLine("f =" + f);
Console.WriteLine ("source = " + source);

}
public static void Main () {
SprinklerSystem x = new SprinklerSystem() ;
X.Print () ;
}
Y /)~

220 Thinking in C# www.MindView.net

At first glance, you might assume—C# being as safe and careful as it is—that the
compiler would automatically construct objects for each of the references in the
above code; for example, calling the default constructor for WaterSource to
initialize source. The output of the print statement is in fact:

valvel =

valve?2

valve3
valved =
i=20
f =0
source =

Value types that are fields in a class are automatically initialized to zero, as noted
in Chapter 5. But the object references are initialized to null, and if you try to call
methods for any of them you’ll get an exception. It’s actually pretty good (and
useful) that you can still print them out without throwing an exception.

It makes sense that the compiler doesn’t just create a default object for every
reference because that would incur unnecessary overhead in many cases. If you
want the references initialized, you can do it:

1. At the point the objects are defined. This means that they’ll always be
initialized before the constructor is called.

2. In the constructor for that class.

3. Right before you actually need to use the object. This is often called lazy
initialization. It can reduce overhead in situations where the object
doesn’t need to be created every time.

All three approaches are shown here:

//:c07:Bath.cs
// Constructor initialization with composition.
using System;

class Soap {
private string s;
internal Soap() {
Console.WriteLine ("Soap()");
s = "Constructed";
}

public override string ToString() { return s;}

Chapter 7: Reusing Classes 221

public class Bath {
private string

// Initializing at point of definition:

sl = "Happy",
sz = "Happy",
s3,
Soap castille;
int 1i;

float toy;
Bath () {

s4;

Console.WriteLine ("Inside Bath()"):;
// Initializing inside the constructor

s3 = "Joy";
i = 47;
toy = 3.14f;
castille = new Soap/();

}

void Print () {
// Delayed initialization:
if (s4 == null)

s4 = "Joy";

Console.WriteLine("sl = " + sl);
Console.WriteLine ("s2 = " + s2);
Console.WriteLine("s3 = " + s3);
Console.WriteLine ("s4 = " + s4);
Console.WriteLine ("1 = " + 1i);
Console.WriteLine ("toy = " + toy);
Console.WritelLine ("castille ="

}

public static void Main () {
Bath b = new Bath();
b.Print () ;

}

Y /)~

+ castille);

Note that in the Bath constructor a statement is executed before any of the
initializations take place. When you don’t initialize at the point of definition,
there’s still no guarantee that you’ll perform any initialization before you send a
message to an object reference—except for the inevitable run-time exception.

222

Thinking in C#

www.ThinkingIn. NET

Here’s the output for the program:

Inside Bath ()

Soap ()

sl = Happy

s2 = Happy

s3 = Joy

s4 = Joy

i = 47

toy = 3.14

castille = Constructed

When Print() is called it fills in s4 so that all the fields are properly initialized
by the time they are used.

Inheritance syntax

Inheritance is an integral part of C# (and OOP languages in general). It turns out
that you’re always doing inheritance when you create a class, because unless you
explicitly inherit from some other class, you implicitly inherit from C#’s standard
root class object.

The syntax for composition is obvious, but to perform inheritance there’s a
distinctly different form. When you inherit, you say “This new class is like that
old class.” You state this in code by giving the name of the class as usual, but
before the opening brace of the class body, put a colon followed by the name of
the base class. When you do this, you automatically get all the data members and
methods in the base class. Here’s an example:

//:c07:Detergent.cs

///Compile with: "/main:Detergent"
// Inheritance syntax & properties.
using System;

internal class Cleanser {

private string s = "Cleanser";
public void Append(string a) { s += a;}
public void Dilute() { Append(" dilute()");}
public void Apply () { Append(" apply()"):}
virtual public void Scrub() { Append(" scrub()");}
public void Print() { Console.WriteLine (s);}
public static void Main () {

Cleanser x = new Cleanser();

Chapter 7: Reusing Classes223

x.Dilute(); x.RApply(); x.Scrub();
X.Print () ;

internal class Detergent : Cleanser {
// Change a method:
override public void Scrub() {
Append (" Detergent.scrub()");
base.Scrub(); // Call base-class version
}
// Add methods to the interface:

public void Foam() { Append(" Foam()");}
// Test the new class:
new public static void Main () {
Detergent x = new Detergent();
.Dilute();

X
x.Apply () ;
x.Scrub () ;
x.Foam() ;
X.Print () ;
Console.WritelLine ("Testing base class:");
Cleanser.Main () ;
}
Y /)~

This demonstrates a number of features. First, both Cleanser and Detergent
contain a Main() method. You can create a Main() for each one of your
classes, but if you do so, the compiler will generate an error, saying that you are
defining multiple entry points. You can choose which Main() you want to have
associated with the assembly by using the /Main:Classname switch. Thus, if you
compile the above with csc Detergent.cs /Main:Cleanser, the output will be:

| Cleanser dilute () apply () scrub()

While if compiled with ese Detergent.cs /Main:Detergent, the result is:

Cleanser dilute () apply () Detergent.scrub() scrub() Foam/()
Testing base class:
Cleanser dilute() apply() scrub()

This technique of putting a Main() in each class can sometimes help with
testing, when you just want to write a quick little program to make sure your
methods are working the way you intend them to. But for general testing

224 Thinking in C# www.MindView.net

purposes, you should use a unit-testing framework (see Appendix C). You don’t
need to remove the Main() when you're finished testing; you can leave it in for
later testing.

Here, you can see that Detergent.Main() calls Cleanser.Main() explicitly,
passing it the same arguments from the command line (however, you could pass
it any string array).

It’s important that all of the methods in Cleanser are public. Remember that if
you leave off any access specifier the member defaults to private, which allows
access only to the very class in which the field or method is defined. So to plan for
inheritance, as a general rule leave fields private, but make all methods public.
(protected members also allow access by derived classes; you'll learn details on
what this means later.) Of course, in particular cases you must make
adjustments, but this is a useful guideline.

Note that Cleanser has a set of methods in its interface: Append(), Dilute(),
Apply(), Serub(), and Print(). Because Detergent is derived from
Cleanser it automatically gets all these methods in its interface, even though you
don’t see them all explicitly defined in Detergent. You can think of inheritance,
then, as reusing the interface. (The implementation also comes with it, but that
part isn’t the primary point.)

As seen in Scrub(), it’s possible to take a method that’s been defined in the base
class and modify it. In this case, you might want to call the method from the base
class inside the new version. But inside Serub() you cannot simply call

Scrub(), since that would produce a recursive call, which isn’t what you want.
To solve this problem C# has the keyword base that refers to the “base class”
(also called the “superclass”) from which the current class has been inherited.
Thus the expression base.Scrub() calls the base-class version of the method
Scrub().

When inheriting you’re not restricted to using the methods of the base class. You
can also add new methods to the derived class exactly the way you put any
method in a class: just define it. The method Foam() is an example of this.

In Detergent.Main() you can see that for a Detergent object you can call all
the methods that are available in Cleanser as well as in Detergent (i.e.,
Foam()).

Initializing the base class

Since there are now two classes involved—the base class and the derived class—
instead of just one, it can be a bit confusing to try to imagine the resulting object

Chapter 7: Reusing Classes225

produced by a derived class. From the outside, it looks like the new class has the
same interface as the base class and maybe some additional methods and fields.
But inheritance doesn’t just copy the interface of the base class. When you create
an object of the derived class, it contains within it a subobject of the base class.
This subobject is the same as if you had created an object of the base class by
itself. It’s just that, from the outside, the subobject of the base class is wrapped
within the derived-class object.

Of course, it’s essential that the base-class subobject be initialized correctly and
there’s only one way to guarantee that: perform the initialization in the
constructor, by calling the base-class constructor, which has all the appropriate
knowledge and privileges to perform the base-class initialization. C#
automatically inserts calls to the base-class constructor in the derived-class
constructor. The following example shows this working with three levels of
inheritance:

//:c07:Cartoon.cs
// Constructor calls during inheritance.
using System;

internal class Art {
protected Art() {
Console.WriteLine ("Art constructor");

internal class Drawing : Art {
protected Drawing() {
Console.WriteLine ("Drawing constructor");

internal class Cartoon : Drawing {
protected Cartoon() {
Console.WriteLine ("Cartoon constructor");
}
public static void Main () {
Cartoon x = new Cartoon();
}
y /)~

The output for this program shows the automatic calls:

226 Thinking in C# www.ThinkingIn. NET

Art constructor
Drawing constructor
Cartoon constructor

You can see that the construction happens from the base “outward,” so the base
class is initialized before the derived-class constructors can access it.

Even if you don’t create a constructor for Cartoon(), the compiler will
synthesize a default constructor for you that calls the base class constructor.

Constructors with arguments

The above example has default constructors; that is, they don’t have any
arguments. It’s easy for the compiler to call these because there’s no question
about what arguments to pass. If your class doesn’t have default arguments, or if
you want to call a base-class constructor that has an argument, you must
explicitly write the calls to the base-class constructor using the base keyword and
the appropriate argument list:

//:c07:Chess.cs
// Inheritance, constructors and arguments.
using System;

public class Game {
internal Game (int 1) {
Console.WritelLine ("Game constructor");

public class BoardGame : Game {
internal BoardGame (int 1) : base (i) {
Console.WritelLine ("BoardGame constructor");

public class Chess : BoardGame {
internal Chess () : base(1l1l) {
Console.WriteLine ("Chess constructor");
}
public static void Main () {
Chess x = new Chess();
}
Y/ /i~

Chapter 7: Reusing Classes 227

If you don’t call the base-class constructor in BoardGame(), the compiler will
complain that it can’t find a constructor of the form Game().

Catching base constructor exceptions

As just noted, the compiler forces you to place the base-class constructor call
before even the body of the derived-class constructor. As you'll see in Chapter 11,
this also prevents a derived-class constructor from catching any exceptions that
come from a base class. This can be inconvenient at times.

//:c07:Dome.cs
using System;

class Dome {
public Dome () {
throw new InvalidOperationException();

class Brunelleschi : Dome ({
public Brunelleschi () {
Console.WriteLine ("Ingenious Vaulting");

public static void Main () {
try {
new Brunelleschi () ;
} catch (Exception ex) {
Console.WritelLine (ex) ;

}
Y/ /e~

prints:

System.InvalidOperationException: Operation is not valid
due to the current state of the object.

at Dome..ctor ()

at Brunelleschi.Main ()

228 Thinking in C# www.MindView.net

Combining composition
and inheritance

It is very common to use composition and inheritance together. The following
example shows the creation of a more complex class, using both inheritance and
composition, along with the necessary constructor initialization:

//:c07:PlaceSetting.cs
// Combining composition & inheritance.
using System;

class Plate {
internal Plate(int 1) {
Console.WritelLine ("Plate constructor");

class DinnerPlate : Plate {
internal DinnerPlate(int i) : base (i) {
Console.WritelLine ("DinnerPlate constructor");

class Utensil {
internal Utensil (int 1) {
Console.WritelLine ("Utensil constructor");

class Spoon : Utensil {
internal Spoon(int i) : base (i) {
Console.WriteLine ("Spoon constructor");

class Fork : Utensil {
internal Fork(int 1) : base (i) {
Console.WritelLine ("Fork constructor");

Chapter 7: Reusing Classes229

class Knife : Utensil {
internal Knife(int 1) : base (i) {
Console.WriteLine ("Knife constructor");

// A cultural way of doing something:
class Custom {
internal Custom(int i) {
Console.WriteLine ("Custom constructor");

class PlaceSetting : Custom {
Spoon sp;
Fork frk;
Knife kn;
DinnerPlate pl;
PlaceSetting(int i) : base(i + 1) {
sp = new Spoon (i + 2);
frk = new Fork(i + 3);
kn = new Knife(i + 4);
pl = new DinnerPlate(i + 5);
Console.WritelLine ("PlaceSetting constructor");
}
public static void Main () {
PlaceSetting x = new PlaceSetting(9);
}
Y// /i~

While the compiler forces you to initialize the base classes, and requires that you
do it right at the beginning of the constructor, it doesn’t watch over you to make
sure that you initialize the member objects, so you must remember to pay
attention to that.

Guaranteeing proper cleanup

You may recall from Chapter 5 that although C# has a destructor, we said that the
proper way to guarantee that an object cleans up after itself involved the
IDisposable interface, implementing the method Dispose(), and wrapping
the “valuable resource” in a using block. At the time, we deferred a discussion of
how it worked, but with an understanding of inheritance, it starts to becomes

230 Thinking in C# www.ThinkingIn. NET

clear. (Although understanding how the using block works will require an
understanding of Exceptions, which is coming in Chapter 11.)

Consider an example of a computer-aided design system that draws pictures on
the screen:

//:c07:CADSystem.cs
// Ensuring proper cleanup.
using System;

class Shape : IDisposable {
internal Shape(int i) {
Console.WriteLine ("Shape constructor");
}
public virtual void Dispose () {
Console.WriteLine ("Shape disposed");

class Circle : Shape {
internal Circle(int 1) : base (i) {
Console.WriteLine ("Drawing a Circle");
}
public override void Dispose () {
Console.WriteLine ("Erasing a Circle");
base.Dispose () ;

class Triangle : Shape {
internal Triangle(int 1) : base(i) {
Console.WritelLine ("Drawing a Triangle");
}
public override void Dispose () {
Console.WriteLine ("Erasing a Triangle");
base.Dispose () ;

class Line : Shape {
private int start, end;
internal Line (int start, int end) : base(start) {

Chapter 7: Reusing Classes 231

this.start = start;
this.end = end;
Console.WritelLine ("Drawing a Line: "

+ start + ", " + end);
}
public override void Dispose () {
Console.WritelLine ("Erasing a Line: "
+ start + ", " + end);

base.Dispose() ;

class CADSystem : Shape {
private Circle c;
private Triangle t;
private Line[] lines = new Line[10];
CADSystem(int i) : base(i + 1) {
for (int 3 = 0; j < 10; Jj++)
lines([j] = new Line(j, j*3j);
c = new Circle(1l);
t = new Triangle(1l);
Console.WriteLine ("Combined constructor");
}
public override void Dispose () {
Console.WriteLine ("CADSystem.Dispose()");
// The order of cleanup is the reverse
// of the order of initialization
t.Dispose();
c.Dispose() ;
for (int i = lines.Length - 1; i >= 0; i--)
lines[i] .Dispose();
base.Dispose() ;
}
public static void Main () {
CADSystem x = new CADSystem(47);
using (x) {
// Code and exception handling...
}
Console.WriteLine ("Using block left");
}
Y// /i~

232 Thinking in C# www.MindView.net

Everything in this system is some kind of Shape (which itself is a kind of object
since it’s implicitly inherited from the root class and which implements an
interface called IDisposable). Each class redefines Shape’s Dispose() method
in addition to calling the base-class version of that method using base. The
specific Shape classes—Circle, Triangle and Line—all have constructors that
“draw,” although any method called during the lifetime of the object could be
responsible for doing something that needs cleanup. Each class has its own
Dispose() method to restore nonmemory things back to the way they were
before the object existed.

In Main(), you can see the using keyword in action. A using block takes an
IDisposable as an argument. When execution leaves the block (even if an
exception is thrown), IDisposable.Dispose() is called. But because we have
implemented Dispose() in Shape and all the classes derived from it,
inheritance kicks in and the appropriate Dispose() method is called. In this
case, the using block has a CADSystem. Its Dispose() method calls, in turn,
the Dispose() method of the objects which comprise it.

Note that in your cleanup method you must also pay attention to the calling order
for the base-class and member-object cleanup methods in case one subobject
depends on another. In general, you should follow the same form that is imposed
by a C++ compiler on its destructors: First perform all of the cleanup work
specific to your class, in the reverse order of creation. (In general, this requires
that base-class elements still be viable.) Then call the base-class Dispose
method, as demonstrated here.

There can be many cases in which the cleanup issue is not a problem; you just let
the garbage collector do the work. But when you must do it explicitly, diligence
and attention is required.

Order of garbage collection

There’s not much you can rely on when it comes to garbage collection. The
garbage collector may not be called until your program exits. If it is called, it can
reclaim objects in any order it wants. It’s best to not rely on garbage collection for
anything but memory reclamation. If you have “valuable resources” which need
explicit cleanup, always initialize them as late as possible, and dispose of them as
soon as you can.

Chapter 7: Reusing Classes233

Choosing composition
vs. inheritance

Both composition and inheritance allow you to place subobjects inside your new
class. You might wonder about the difference between the two, and when to
choose one over the other.

Composition is generally used when you want the features of an existing class
inside your new class, but not its interface. That is, you embed an object so that
you can use it to implement functionality in your new class, but the user of your
new class sees the interface you've defined for the new class rather than the
interface from the embedded object. For this effect, you embed private objects
of existing classes inside your new class.

Sometimes it makes sense to allow the class user to directly access the
composition of your new class, that is, to make the member objects public. The
member objects use implementation hiding themselves, so this is a safe thing to
do. When the user knows you’re assembling a bunch of parts, it makes the
interface easier to understand. A Car object is a good example:

//:c07:Car.cs
// Composition with public objects.

public class Engine {
public void Start() {}
public void Rev () {}
public void Stop () {}

public class Wheel {
public void Inflate(int psi) {}

public class Window {
public void Rollup() {}
public void Rolldown () {}

public class Door {
public Window window = new Window () ;
public void Open () {}

234 Thinking in C# www.ThinkingIn. NET

public void Close() {}

public class Car {
public Engine engine = new Engine();
public Wheel[] wheel = new Wheel[4];
public Door left = new Door(),
right = new Door(); // 2-door
public Car ()
for (int i = 0; 1 < 4; i++)

—~

wheel[i] = new Wheel () ;
}
public static void Main () {
Car car = new Car();

car.left.window.Rollup () ;
car.wheel[0].Inflate(72);
}
Y /)~

Because the composition of a car is part of the analysis of the problem (and not
simply part of the underlying design), making the members public assists the
client programmer’s understanding of how to use the class and requires less code
complexity for the creator of the class. However, keep in mind that this is a
special case and that in general you should make fields private.

When you inherit, you take an existing class and make a special version of it. In
general, this means that you're taking a general-purpose class and specializing it
for a particular need. With a little thought, you'll see that it would make no sense
to compose a car using a vehicle object—a car doesn’t contain a vehicle, it is a
vehicle. The is-a relationship is expressed with inheritance, and the has-a
relationship is expressed with composition.

protected

Now that you've been introduced to inheritance, the keyword protected finally
has meaning. In an ideal world, private members would always be hard-and-fast
private, but in real projects there are times when you want to make something
hidden from the world at large and yet allow access for members of derived
classes. The protected keyword is a nod to pragmatism. It says “This is private
as far as the class user is concerned, but available to anyone who inherits from
this class.”

Chapter 7: Reusing Classes235

The best tack to take is to leave the data members private—you should always
preserve your right to change the underlying implementation. You can then allow
controlled access to inheritors of your class through protected methods:

//:c07:0rc.cs
// The protected keyword.

public class Villain {
private int i;
protected int Read() { return 1i;}
protected void Set(int ii) { 1 = 1ii;}
public Villain(int ii) { 1 = 1ii;}
public int Value(int m) { return m*i;}

public class Orc : Villain {
private int j;
public Orc(int jj) :base(33) { 3 = 3j;}
public void Change (int x) { Set(x);}

} ///:~ (non-executable code snippet)

You can see that Change() has access to Set() because it’s protected.

Incremental development

One of the advantages of inheritance is that it supports incremental development
by allowing you to introduce new code without causing bugs in existing code. This
also isolates new bugs inside the new code. By inheriting from an existing,
functional class and adding data members and methods (and redefining existing
methods), you leave the existing code—that someone else might still be using—
untouched and unbugged. If a bug happens, you know that it’s in your new code,
which is much shorter and easier to read than if you had modified the body of
existing code.

It’s rather amazing how cleanly the classes are separated. You don’t even need the
source code for the methods in order to reuse the code. This is true for both
inheritance and composition.

It’s important to realize that program development is an incremental process,
just like human learning. You can do as much analysis as you want, but you still
won’t know all the answers when you set out on a project. You’ll have much more
success—and more immediate feedback—if you start out to “grow” your project as

236 Thinking in C# www.MindView.net

an organic, evolutionary creature, rather than constructing it all at once like a
glass-box skyscraper.

Although inheritance for experimentation can be a useful technique, at some
point after things stabilize you need to take a new look at your class hierarchy
with an eye to collapsing it into a sensible structure. Remember that underneath
it all, inheritance is meant to express a relationship that says “This new class is a
type of that old class.” Your program should not be concerned with pushing bits
around, but instead with creating and manipulating objects of various types to
express a model in the terms that come from the problem space.

Upcasting

The most important aspect of inheritance is not that it provides methods for the
new class. It’s the relationship expressed between the new class and the base
class. This relationship can be summarized by saying “The new class is a type of
the existing class.”

This description is not just a fanciful way of explaining inheritance—it’s
supported directly by the language. As an example, consider a base class called
Instrument that represents musical instruments, and a derived class called
‘Wind. Because inheritance means that all of the methods in the base class are
also available in the derived class, any message you can send to the base class can
also be sent to the derived class. If the Instrument class has a Play() method,
so will Wind instruments. This means we can accurately say that a Wind object
is also a type of Instrument. The following example shows how the compiler
supports this notion:

//:c07:Wind.cs
// Inheritance & upcasting.

public class Instrument {
public void play() {}
static internal void tune (Instrument i) {

//
i.play();

// Wind objects are instruments
// because they have the same interface:
public class Wind : Instrument {

Chapter 7: Reusing Classes237

public static void Main () {
Wind flute = new Wind();
Instrument.tune (flute); // Upcasting
}
Y /)~

What’s interesting in this example is the Tune() method, which accepts an
Instrument reference. However, in Wind.Main() the Tune() method is
called by giving it a Wind reference. Given that C# is particular about type
checking, it seems strange that a method that accepts one type will readily accept
another type, until you realize that a Wind object is also an Instrument object,
and there’s no method that Tune() could call for an Instrument that isn’t also
in Wind. Inside Tune(), the code works for Instrument and anything derived
from Instrument, and the act of converting a Wind reference into an
Instrument reference is called upcasting.

Why “upcasting”?

The reason for the term is historical, and based on the way class inheritance
diagrams have traditionally been drawn: with the root at the top of the page,
growing downward. (Of course, you can draw your diagrams any way you find
helpful.) The inheritance diagram for Wind.java is then:

Instrument

!

Wind

Figure 7-1: Traditionally, base classes are drawn higher on the page.

Casting from derived to base moves up on the inheritance diagram, so it’s
commonly referred to as upcasting. Upcasting is always safe because you're going
from a more specific type to a more general type. That is, the derived class is a
superset of the base class. It might contain more methods than the base class, but
it must contain at least the methods in the base class. The only thing that can
occur to the class interface during the upcast is that it can lose methods, not gain
them. This is why the compiler allows upcasting without any explicit casts or
other special notation.

You can also perform the reverse of upcasting, called downcasting, but this
involves a dilemma that is the subject of Chapter 12.

Thinking in C# www.ThinkingIn. NET

Composition vs. inheritance revisited

In object-oriented programming, the most likely way that you’ll create and use
code is by simply packaging data and methods together into a class, and using
objects of that class. You'll also use existing classes to build new classes with
composition. Less frequently, you’ll use inheritance. So although inheritance gets
a lot of emphasis while learning OOP, it doesn’t mean that you should use it
everywhere you possibly can. On the contrary, you should use it sparingly, only
when it’s clear that inheritance is useful. One of the clearest ways to determine
whether you should use composition or inheritance is to ask whether you'll ever
need to upcast from your new class to the base class. If you must upcast, then
inheritance is necessary, but if you don’t need to upcast, then you should look
closely at whether you need inheritance. The next chapter (polymorphism)
provides one of the most compelling reasons for upcasting, but if you remember
to ask “Do I need to upcast?” you’ll have a good tool for deciding between
composition and inheritance.

Explicit overloading only

Some of C#’s most notable departures from the object-oriented norm are the
barriers it places on the road to overloading functionality. In most object-
oriented languages, if you have classes Fork and Spoon that descend from
Utensil, a base method GetFood, and two implementations of it, you just declare
the method in the base and have identical signatures in the descending classes:

Utensil
+GetFood()
{ \
Fork Spoon
+GetFood() +GetFood()

Figure 77-2: Fork and Spoon overload Utensil.GetFood()

In Java, this would look like:

class Utensil{
public void GetFood(){ //..}

Chapter 7: Reusing Classes239

class Fork extends Utensil({
public void GetFood() {
System.out.println ("Spear");

class Spoon extends Utensil({
public void GetFood() {
System.out.println ("Scoop") ;

}

In C#, you have to jump through a bit of a hoop; methods for which overloading
is intended must be declared virtual and the overloading method must be
declared as an override. To get the desired structure would look like this:

class Utensil{
public virtual void GetFood(){ //..}

class Fork extends Utensil({
public override void GetFood() {
Console.WriteLine ("Spear");

class Spoon extends Utensil{
public override void GetFood() {
Console.WriteLine ("Scoop");

}

This is a behavior that stems from Microsoft’s experience with “DLL Hell” and
thoughts about a world in which object-oriented components are the building
blocks of very large systems. Imagine that you are using Java and using a third-
party “Kitchen” component that includes the base class of Utensil, but you
customize it to use that staple of dorm life — the Spork. But in addition to
implementing GetFood(), you add a dorm-like method Wash():

//Spork.java
class Spork extends Utensil/{

240 Thinking in C# www.MindView.net

public void GetFood () {
System.out.println (“Spear OR Scoop!”);

public void Wash () {
System.out.println (“Wipe with napkin”);

}

Of course, since Wash isn’t implemented in Utensil, you could only “wash” a
spork (which is just as well, considering the unhygienic nature of the
implementation). So the problem happens when the 3rd-party Kitchen
component vendor releases a new version of their component, and this time
they’ve implemented a method with an identical signature to the one you wrote:

//Utensil.java Qversion: 2.0
class Utensil{
public void GetFood(){ //.. }
public void Wash () {
myDishwasher.add (this) ;
//etc..

}

The vendor has implemented a Wash() method with complex behavior
involving a dishwasher. Given this new capability, people programming with
Utensil v2 will have every right to assume that once Wash() has been called, all
Utensils will have gone through the dishwasher. But in languages such as Java,
the Wash() method in Spork will still be called!

~ ﬁ

Figure 77-3: Late binding can cause undesired behavior if the base type changes

Chapter 7: Reusing Classes 241

It may seem highly unlikely that a new version of a base class would “just
happen” to have the same name as an end-user’s extension, but if you think about
it, it’s actually kind of surprising it doesn’t happen more often, as the number of
logical method names for a given category of base class is fairly limited.

In C#, the behavior in Client’s WashAll() method would work exactly the way
clients expect, with Utensil’s dishwasher Wash() being called for all utensils in
myUtensils, even if one happens to be a Spork.

Now let’s say you come along and start working on Spork again after upgrading to
the version of Utensil that has a Wash() method. When you compile Spork.cs,
the compiler will say:

warning CS0108: The keyword new is required on
'Spork.Wash () ' because it hides inherited member
'Utensil.Wash ()"’

At this point, calls to Utensil.Wash() are resolved with the dishwasher
washing method, while if you have a handle to a Spork, the napkin-wiping wash
method will be called.

//:c07:Utensil.cs
using System;

class Utensil {
public virtual void GetFood() {}
public void Wash () {
Console.WriteLine ("Washing in a dishwasher");

class Fork : Utensil {
public override void GetFood() {
Console.WriteLine ("Spear");

class Spork : Utensil {
public override void GetFood() {
Console.WriteLine ("Spear OR Scoop!");

public void Wash () {

242 Thinking in C# www.ThinkingIn. NET

Console.WriteLine ("Wipe with napkin");

class Client {
Utensil[] myUtensils;

Client () {
myUtensils = new Utensil[2];
myUtensils[0] = new Spork();
myUtensils[1l] = new Fork();

}
public void WashAll () {
foreach (Utensil u in myUtensils) {
u.Wash () ;

public static void Main () {
Client ¢ = new Client();
c.WashAll () ;
Spork s = new Spork();
s.Wash () ;
}
Y// /i~

results in the output:

Washing in a dishwasher
Washing in a dishwasher

Wipe with napkin

In order to remove the warning that Spork.Wash() is hiding the newly minted
Utensil.Wash(), we can add the keyword new to Spork’s declaration:

| public new void Wash(){ //.. etc

It’s even possible for you to have entirely separate method inheritance
hierarchies by declaring a method as new virtual. Imagine that for version 3 of
the Kitchen component, they've created a new type of Utensil, Silverware,
which requires polishing after cleaning. Meanwhile, you’ve created a new kind of
Spork, a SuperSpork, which also has overridden the base Spork.Wash()
method.

The code looks like this:

Chapter 7: Reusing Classes243

//:c07:Utensil2.cs
using System;

class Utensil {
public virtual void GetFood() {}
public virtual void Wash () {
Console.WriteLine ("Washing in a dishwasher");

class Silverware : Utensil {
public override void Wash () {
base.Wash () ;
Console.WriteLine ("Polish with silver cleaner");

class Fork : Silverware {
public override void GetFood() {
Console.WriteLine ("Spear");

class Spork : Silverware {
public override void GetFood() {
Console.WriteLine ("Spear OR Scoop!");

public new virtual void Wash () {
Console.WriteLine ("Wipe with napkin");

class SuperSpork : Spork {
public override void GetFood() {
Console.WriteLine ("Spear AND Scoop");

public override void Wash () {
base.Wash () ;

244 Thinking in C# www.MindView.net

Console.WritelLine ("Polish with shirt");

class Client {
Utensil[] myUtensils;

Client () {
myUtensils = new Utensil[3];
myUtensils[0] = new Spork();

new Fork();

0
myUtensils[1]
2 new SuperSpork() ;

myUtensils[2]
}
public void WashAll () {
foreach (Utensil u in myUtensils) {
u.Wash();

}

Console.WriteLine ("All Utensils washed") ;

public static void Main () {
Client ¢ = new Client();
c.WashAll () ;
Spork s = new SuperSpork():;
s.Wash () ;
}
Y// /i~

Now, all of our Utensils have been replaced by Silverware and, when
Client.WashAll() is called, Silverware.Wash() overloads

Utensil.Wash(). (Note that Silverware.Wash() calls Utensil.Wash()
using base.Wash(), in the same manner as base constructors can be called.) All
Utensils in Client’s myUtensils array are now washed in a dishwasher and
then polished. Note the declaration in Spork:

| public new virtual void Wash(){ //etc }

and the declaration in the newly minted SuperSpork class:

| public override void Wash(){ //etc. }

When the Client class has a reference to a Utensil such as it does in WashAll()
(whether the concrete type of that Utensil be a Fork, a Spoon, or a Spork), the
Wash() method resolves to the appropriate overloaded method in Silverware.
When, however, the client has a reference to a Spork or any Spork-subtype, the

Chapter 7: Reusing Classes245

Wash() method resolves to whatever has overloaded Spork’s new virtual
Wash(). The output looks like this:

Washing in a dishwasher
Polish with silver cleaner
Washing in a dishwasher
Polish with silver cleaner
Washing in a dishwasher
Polish with silver cleaner
All Utensils washed

Wipe with napkin

Polish with shirt

And this UML diagram shows the behavior graphically:

Client -myUtensils Utensil (30)
>
+WashAll() 1 « [*GetFood()
. . +Wash()
: ’ : Silverware.Wash() overloads
I || Utensil.Wash() and is used by
: I | Client.WashAll(). -
| | ; Silverware
I | h
! oo b
: +Wash()
I
I
I
|
: -S Spork Fork Spoon
|
: * +new Wash()
: Superspork.Wash() overloads
I new Spork.Wash() which is used
: when Client has a reference
: to a Spork or a subtype
I
I
I
|

s SuperSpork

+Wash()

Figure 7-4: C#’s binding model allows fine-tuned control of late-binding

Let’s say that you wanted to create a new class SelfCleansingSuperSpork,
that overloaded both the Wash() method as defined in Utensil and the
Wash() method as defined in Spork. What could you do? You cannot create a
single method name that overrides both base methods. As is generally the case,

Thinking in C# wwuw.ThinkingIn. NET

when faced with a hard programming problem, the answer lies in design, not
language syntax. Follow the maxim: boring code, interesting results.

One of the first things that jumps out when considering this problem is that the
inheritance hierarchy is getting deep. What we’re proposing is that a
SelfCleaningSuperSpork is-a SuperSpork is-a Spork is-a Silverware is-a
Utensil is-an object. That’s six levels of hierarchy — one more than Linnaeus
used to classify all living beings in 1735! It’s not impossible for a design to have
this many layers of inheritance, but in general, one should be dubious of
hierarchies of more than two or three levels below object.

Bearing in mind that our hierarchy is getting deep, we might also notice that our
names are becoming long and unnatural — SelfCleaningSuperSpork. While
coming up with descriptive names without getting cute is one of the harder tasks
in programming — Execute(), Run(), and Query() are bad, but I've heard a
story of a variable labeled riplvb because it’s initial value happened to be 0x723,
or decimal 1827, the year Ludwig van Beethoven died. Something’s wrong when a
class name becomes a hodge-podge of adjectives. In this case, our names are
being used to distinguish between two different properties — the shape of the
Utensil (Fork, Spoon, Spork, and SuperSpork) and the cleaning behavior
(Silverware, Spork, and SelfCleaningSuperSpork).

This is a clue that our design would be better using composition rather than
inheritance. As is very often the case, we discover that one of the “vectors of
change” is more naturally structural (the shape of the utensil) and that another is
more behavioral (the cleaning regimen). We can try out the phrase “A utensil has
a cleaning regimen,” to see if it sounds right, which indeed it does:

Utensil -myCleaningRegiment |CleaningRegimen

>

1 1

Figure 7-5: Refactoring the design

When a Utensil is constructed, it has a handle to a particular type of cleaning
regimen, but its Wash method doesn’t have to know the specific subtype of
CleaningRegimen it is using;:

Chapter 7: Reusing Classes247

Wash(){

}

myCleaningRegimen.Wash();

N
\
AN

Utensil

-myCleaningRegimen [CleaningRegimen

&>

+Wash()

1

1 [*Wash()
WipeWithNapkin Dishwash

SelfClean

Figure 77-6: The Strategy design pattern

This is called the Strategy Pattern and it is, perhaps, the most important of all

the design patterns.
Wash(){
myCleaningRegimen.Wash();
}
T
|
1
Utensil -myCleaningRegimen [CleaningRegimen
&>
+Wash() 1 1 +Wash()
Spoon Fork Spork WipeWithNapkin Dishwash SelfClean
T

Figure 77-7: Manipulating CleaningRegimens on a per-Utensil basis

This is what the code would look like:

//:c07:Utensil3.cs
using System;

class Utensil {

248

Thinking in C#

www.MindView.net

CleaningRegimen myCleaningRegimen;
internal Utensil (CleaningRegimen reg) {
myCleaningRegimen = reg;

void Wash () {
myCleaningRegimen.Wash () ;

internal virtual void GetFood () {

}

class Fork : Utensil {
Fork () : base(new Dishwash()) {}

internal override void GetFood() {
Console.WriteLine ("Spear food");

class Spoon : Utensil {
Spoon () : base(new Dishwash()) {}
internal override void GetFood() {
Console.WriteLine ("Scoop food");

class Spork : Utensil {
Spork () : base(new WipeWithNapkin()) {}
internal override void GetFood() {
Console.WriteLine ("Spear or scoop!");

abstract class CleaningRegimen {
internal abstract void Wash () ;

class Dishwash : CleaningRegimen {
internal override void Wash () {

Chapter 7: Reusing Classes249

Console.WritelLine ("Wash in dishwasher");

class WipeWithNapkin : CleaningRegimen {
internal override void Wash () {
Console.WriteLine ("Wipe with napkin");
}
Y// /i~

At this point, every type of Utensil has a particular type of CleaningRegimen
associated with it, an association which is hard-coded in the constructors of the
Utensil subtypes (i.e., public Spork() : base(new WipeWithNapkin())).
However, you can see how it would be a trivial matter to totally decouple the
Utensil’s type of CleaningRegimen from the constructor — you could pass in
the CleaningRegimen from someplace else, choose it randomly, and so forth.

With this design, one can easily achieve our goal of a super utensil that combines
multiple cleaning strategies:

class SuperSpork : Spork({

CleaningRegimen secondRegimen;

public SuperSpork: super (new Dishwash()) {
secondRegimen = new NapkinWash() ;

}

public override void Wash () {
base.Wash () ;
secondRegimen.Wash () ;

}

In this situation, the SuperSpork now has two CleaningRegimens, the normal
myCleaningRegimen and a new secondRegimen. This is the type of
flexibility that you can hope to achieve by favoring aggregation over inheritance.

Our original challenge, though, involved a 31 party Kitchen component that
provided the basic design. Without access to the source code, there is no way to
implement our improved design. This is one of the things that makes it hard to
write components for reuse — “fully baked” components that are easy to use out
of the box are often hard to customize and extend, while “construction kit”
components that need to be assembled typically can sometimes take a long time
to learn.

250 Thinking in C# www.ThinkingIn. NET

The const and readonly keywords

We know a CTO who, when reviewing code samples of potential programmers,
scans for numeric constants in the code — one strike and the resume goes in the
trash. We’re happy we never showed him any code for calendar math, because we
don’t think NUMBER_OF_DAYS_IN_WEEK is clearer than 7. Nevertheless,
application code often has lots of data that never changes and C# provides two
choices as to how to embody them in code.

The const keyword can be applied to value types: sbyte, byte, short, ushort, int,
uint, long, ulong, float, double, decimal, bool, char, string, structs and enums.
const fields are evaluated at compile-time, allowing for marginal performance
improvements. For instance:

//Number of milliseconds in a day
const long MS PER DAY = 1000 * 60 * 60 * 24;

will be replaced at compile time with the single value 86,400,000 rather than
triggering three multiplications every time it is used.

The readonly keyword is more general. It can be applied to any type and is
evaluated once — and only once — at runtime. Typically, readonly fields are
initialized at either the time of class loading (in the case of static fields), or at the
time of instance initialization for instance variables. It’s not necessary to limit
readonly fields to values that are essentially constant; you may use a readonly
field for any data that, once assigned, should be invariant — a person’s name or
social security number, a network address or port of a host, etc.

readonly does not make an object immutable. When applied to a non-value-
type object, readonly locks only your reference to the object, not the state of the
object itself. Such an object can go through whatever state transitions are
programmed into it — properties can be set, it can change its internal state based
on calculations, etc. The only thing you can’t do is change the reference to the
object. This can be seen in this example, which demonstrates readonly.

//:c07:Composition.cs
using System;
using System.Threading;

public class ReadOnly {
static readonly DateTime
timeOfClassLoad = DateTime.Now;
readonly DateTime

Chapter 7: Reusing Classes 251

timeOfInstanceCreation = DateTime.Now;
public ReadOnly () {
Console.WriteLine (
"Class loaded at {0}, Instance created at {1}",
timeOfClassLoad, timeOfInstanceCreation);

//used in second part of program
static readonly ReadOnly ro = new ReadOnly();
public int id;
public int Id{
get{ return id;}
set{ id = value;}

public static void Main () {
for (int 1 = 0; 1 < 10; 1i++) {
new ReadOnly () ;
Thread.Sleep (1000) ;
}
//Can change member
ro.Id = 5;
Console.WritelLine (ro.Id);
//! Compiler says "a static readonly field
//cannot be assigned to"
//ro = new ReadOnly();
}
Y/ /e~

In order to demonstrate how objects created at different times will have different
fields, the program uses the Thread.Sleep() method from the Threading
namespace, which will be discussed at length in Chapter 16. The class ReadOnly
contains two readonly fields — the static TimeOfClassLoad field and the
instance variable timeOfInstanceCreation. These fields are of type
DateTime, which is the basic .NET object for counting time. Both fields are
initialized from the static DateTime property Now, which represents the system
clock.

When the Main creates the first ReadOnly object and the static fields are
initialized as discussed previously, TimeOfClassLoad is set once and for all.
Then, the instance variable field timeOfInstanceCreation is initialized.
Finally, the constructor is called, and it prints the value of these two fields to the

252 Thinking in C# www.MindView.net

console. Thread.Sleep(1000) is then used to pause the program for a second
(1,000 milliseconds) before creating another ReadOnly. The behavior of the
program until this point would be no different if these fields were not declared as
readonly, since we have made no attempt to modify the fields.

That changes in the lines below the loop. In addition to the readonly DateTime
fields, we have a static readonly ReadOnly field labeled ro (the class
ReadOnly contains a reference to an instance of ReadOnly —the Singleton
design pattern again). We also have a property called Id, but note that it is not
readonly.

(As areview of the discussion in Chapter 5, you should be able to figure out how
the values of ro’s timeOfClassLoad and timeOfInstanceCreation will relate
to the first ReadOnly created in the Main loop.)

Although the reference to ro is read only, the line ro.Id = 5; demonstrates how it
is possible to change the state of a readonly reference. What we can’t do,
though, is shown in the commented-out lines in the example — if we attempt to
assign to ro, we'll get a compile time error.

The advantage of readonly over const is that const’s compile-time math is
immutable. If a class PhysicalConstants had a public const that set the speed of
light to 300,000 kilometers per second and another class used that for compile-
time math:

const long KILOMETERS IN A LIGHT YEAR = PhysicalConstants.C
* 3600 * 24 * DAYS PER YEAR

the value of KILOMETERS_IN_A LIGHT_YEAR will be based on the 300,000
value, even if the base class is updated to a more accurate value such as 299,792.
This will be true until the class that defined
KILOMETERS_IN_A_LIGHT_YEAR is recompiled with access to the
updated PhysicalConstants class. If the fields were readonly though, the value
for KILOMETERS IN_ A LIGHT_YEAR would be calculated at runtime,
and would not need to be recompiled to properly reflect the latest value of C.
Again, this is one of those features which may not seem like a big deal to many
application developers, but whose necessity is clear to Microsoft after a decade of
“DLL Hell.”

Sealed classes

The readonly and const keywords are used for locking down values and
references that should not be changed. Because one has to declare a method as
virtual in order to be overridden, it is easy to create methods that will not be

Chapter 7: Reusing Classes253

modified at runtime. Naturally, there is a way to specify that an entire class be
unmodifiable. When a class is declared as sealed, no one can derive from it.

There are two main reasons to make a class sealed. A sealed class is more
secure from intentional or unintentional tampering. Additionally, virtual
methods executed on a sealed class can be replaced with direct function calls,
providing a slight performance increase.

//:c07:Jurassic.cs
// Sealing a class

class SmallBrain {

}

sealed class Dinosaur {

internal int i = 7;

internal int j = 1;

SmallBrain x = new SmallBrain();
internal void F() {}

//! class Further : Dinosaur {}
// error: Cannot extend sealed class 'Dinosaur'

public class Jurassic {

public static void Main () {
Dinosaur n = new Dinosaur () ;
n.F();
n.i = 40;
n.j++;
}
Y/ /e~

Defining the class as sealed simply prevents inheritance—nothing more.
However, because it prevents inheritance, all methods in a sealed class are
implicitly non-virtual, since there’s no way to override them.

Emphasize virtual functions

It can seem sensible to make as few methods as possible virtual and even to
declare a class as sealed. You might feel that efficiency is very important when
using your class and that no one could possibly want to override your methods
anyway. Sometimes this is true.

254 Thinking in C# www.ThinkingIn. NET

But be careful with your assumptions. In general, it’s difficult to anticipate how a
class can be reused, especially a general-purpose class. Unless you declare a
method as virtual, you prevent the possibility of reusing your class through
inheritance in some other programmer’s project simply because you couldn’t
imagine it being used that way.

Initialization and
class loading

In more traditional languages, programs are loaded all at once as part of the
startup process. This is followed by initialization, and then the program begins.
The process of initialization in these languages must be carefully controlled so
that the order of initialization of statics doesn’t cause trouble. C++, for example,
has problems if one static expects another static to be valid before the second
one has been initialized.

C# doesn’t have this problem because it takes a different approach to loading.
Because everything in C# is an object, many activities become easier, and this is
one of them. As you will learn more fully in the next chapter, the compiled code
for a set of related classes exists in their own separate file, called an assembly.
That file isn’t loaded until the code is needed. In general, you can say that “Class
code is loaded at the point of first use.” This is often not until the first object of
that class is constructed, but loading also occurs when a static field or static
method is accessed.

The point of first use is also where the static initialization takes place. All the
static objects and the static code block will be initialized in textual order (that
is, the order that you write them down in the class definition) at the point of
loading. The statics, of course, are initialized only once.

Initialization with inheritance

It’s helpful to look at the whole initialization process, including inheritance, to get
a full picture of what happens. Consider the following code:

//:c07:Beetle.cs
// The full process of initialization.
using System;

class Insect {
int 1 = 9;
internal int j;

Chapter 7: Reusing Classes 255

internal Insect () {
Pre("i ="+ 1+ ", 3 ="+ 7);
J = 39;
}
static int x1 =
Prt ("static Insect.xl initialized");
internal static int Prt(string s) {
Console.WriteLine (s);
return 47;

class Beetle : Insect {
int k = Prt("Beetle.k initialized"):
Beetle () {
Prt("k = " + k);
Pre("j = " o+ 3);

}
static int x2 =
Prt ("static Beetle.x2 initialized");

public static void Main () {
Prt ("Beetle constructor");
Beetle b = new Beetle();
}
y /)~

The output for this program is:

static Insect.xl initialized
static Beetle.x2 initialized
Beetle constructor

Beetle.k initialized

i=9, 3 =0

k = 47

3 = 39

The first thing that happens when you run Beetle is that you try to access
Beetle.Main() (a static method), so the loader goes out and finds the compiled
code for the Beetle class (this happens to be in an assembly called Beetle.exe).
In the process of loading it, the loader notices that it has a base class (that’s what
the colon after class Beetle says), which it then loads. This will happen whether

256 Thinking in C# www.MindView.net

or not you're going to make an object of that base class. (Try commenting out the
object creation to prove it to yourself.)

If the base class has a base class, that second base class would then be loaded,
and so on. Next, the static initialization in the root base class (in this case,
Insect) is performed, and then the next derived class, and so on. This is
important because the derived-class static initialization might depend on the base
class member being initialized properly.

At this point, the necessary classes have all been loaded so the object can be
created. First, all the primitives in this object are set to their default values and
the object references are set to null—this happens in one fell swoop by setting
the memory in the object to binary zero. Then, the base-class fields are initialized
in textual order, followed by the fields of the object. After the fields are initialized,
the base-class constructor will be called. In this case the call is automatic, but you
can also specify the base-class constructor call (by placing a color after the
Beetle() constructor and then saying base()). The base class construction goes
through the same process in the same order as the derived-class constructor.
Finally, the rest of the body of the constructor is executed.

Summary

Both inheritance and composition allow you to create a new type from existing
types. Typically, however, you use composition to reuse existing types as part of
the underlying implementation of the new type, and inheritance when you want
to reuse the interface. Since the derived class has the base-class interface, it can
be upcast to the base, which is critical for polymorphism, as you’ll see in the next
chapter.

Despite the strong emphasis on inheritance in object-oriented programming,
when you start a design you should generally prefer composition during the first
cut and use inheritance only when it is clearly necessary. Composition tends to be
more flexible. In addition, by using the added artifice of inheritance with your
member type, you can change the exact type, and thus the behavior, of those
member objects at run-time. Therefore, you can change the behavior of the
composed object at run-time.

Although code reuse through composition and inheritance is helpful for rapid
project development, you'll generally want to redesign your class hierarchy before
allowing other programmers to become dependent on it. Your goal is a hierarchy
in which each class has a specific use and is neither too big (encompassing so
much functionality that it’s unwieldy to reuse) nor annoyingly small (you can’t
use it by itself or without adding functionality).

Chapter 7: Reusing Classes 257

Exercises

1.

10.

11.

12.

Create two classes, A and B, with default constructors (empty argument
lists) that announce themselves. Inherit a new class called C from A, and
create a member of class B inside C. Do not create a constructor for C.
Create an object of class C and observe the results.

Modify Exercise 1 so that A and B have constructors with arguments
instead of default constructors. Write a constructor for C and perform all
initialization within C’s constructor.

Create a simple class. Inside a second class, define a field for an object of
the first class. Use lazy initialization to instantiate this object.

Inherit a new class from class Detergent. Override Scrub() and add a
new method called Sterilize().

Take the file Cartoon.cs and comment out the constructor for the
Cartoon class. Explain what happens.

Take the file Chess.cs and comment out the constructor for the Chess
class. Explain what happens.

Prove that default constructors are created for you by the compiler.

Prove that the base-class constructors are (a) always called, and (b) called
before derived-class constructors.

Create a base class with only a nondefault constructor, and a derived
class with both a default and nondefault constructor. In the derived-class
constructors, call the base-class constructor.

Create a class called Root that contains an instance of each of classes
(that you also create) named Component1, Component2, and
Component3. Derive a class Stem from Root that also contains an
instance of each “component.” All classes should have default
constructors that print a message about that class.

Modify Exercise 10 so that each class only has nondefault constructors.

Add a proper hierarchy of Dispose() methods to all the classes in
Exercise 11.

258

Thinking in C# wwuw.ThinkingIn. NET

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Create a class with a method that is overloaded three times. Inherit a new
class, add a new overloading of the method, and show that all four
methods are available in the derived class.

In Car.cs add a Service() method to Engine and call this method in
Main().

Create a class inside a namespace. Your class should contain a
protected method and a protected internal method. Compile this
class into a library assembly. Write a new class that tries to call these
methods; compile this class into an executable assembly (you'll need to
reference the library assembly while compiling, of course). Explain the
results. Now inherit from your first class and call the protected and
protected internal methods from this derived class. Compile this
derived class into its own assembly and explain the resulting behavior.

Create a class called Amphibian. From this, inherit a class called Frog.
Put appropriate methods in the base class. In Main(), create a Frog
and upcast it to Amphibian, and demonstrate that all the methods still
work.

Modify Exercise 16 so that Frog overrides the method definitions from
the base class (provides new definitions using the same method
signatures). Note what happens in Main().

Create a class with a method that is not defined as virtual. Inherit from
that class and attempt to override that method.

Create a sealed class and attempt to inherit from it.

Prove that class loading takes place only once. Prove that loading may be
caused by either the creation of the first instance of that class, or the
access of a static member.

In Beetle.cs, inherit a specific type of beetle from class Beetle,
following the same format as the existing classes. Trace and explain the
output.

Find a way where inheritance can be used fruitfully in the party domain.
Implement at least one program that solves a problem by upcasting.

Draw a UML class diagram of the party domain, showing inheritance and
composition. Place classes that interact often near each other and classes
in different namespaces far apart or even on separate pieces of paper.

Chapter 7: Reusing Classes259

Consider the task of ensuring that all guests are given a ride home by
someone sober or given a place to sleep over. Add classes, namespaces,
methods, and data as appropriate.

24. Consider how you would approach the tasks that you have solved in the
party domain in the programming language other than C#, with which
you are most familiar. Fill in this Venn diagram comparing aspects of the
C# approach with how you would do it otherwise:

Unique to C# Unique to other

+ Are there aspects unique to one approach that you see as having a major
productivity impact?
¢ What are some important aspects that both approaches share?

260 Thinking in C# www.MindView.net

8: Interfaces and
Implementation

Polymorphism is the next essential feature of an object-
oriented programming language after data abstraction. It
allows programs to be developed in the form of
interacting agreements or “contracts” that specify the
behavior, but not the implementation, of classes.

Polymorphism provides a dimension of separation of interface from
implementation, to decouple what from how. Polymorphism allows improved
code organization and readability as well as the creation of extensible programs
that can be “grown” not only during the original creation of the project but also
when new features are desired.

Encapsulation creates new data types by combining characteristics and
behaviors. Implementation hiding separates the interface from the
implementation by making the details private. This sort of mechanical
organization makes ready sense to someone with a procedural programming
background. But polymorphism deals with decoupling in terms of types. In the
last chapter, you saw how inheritance allows the treatment of an object as its own
type or its base type. This ability is critical because it allows many types (derived
from the same base type) to be treated as if they were one type, and a single piece
of code to work on all those different types equally. The polymorphic method call
allows one type to express its distinction from another, similar type, as long as
they’re both derived from the same base type. This distinction is expressed
through differences in behavior of the methods that you can call through the base
class.

In this chapter, you’ll learn about polymorphism (also called dynamic binding or
late binding or run-time binding) starting from the basics, with simple examples
that strip away everything but the polymorphic behavior of the program.

261

Upcasting revisited

In Chapter 7 you saw how an object can be used as its own type or as an object of
its base type. Taking an object reference and treating it as a reference to its base
type is called upcasting, because of the way inheritance trees are drawn with the
base class at the top.

You also saw a problem arise, which is embodied in the following:

//:c08:Music.cs
// Inheritance & upcasting.
using System;

public class Note {
private int value;
private Note (int val) { value = val;}
public static Note
MIDDLE C = new Note(0),

C _SHARP = new Note (1),
B FLAT = new Note (2);
} // Etc.

public class Instrument {
public virtual void Play(Note n) {
Console.WriteLine ("Instrument.Play()");

// Wind objects are instruments
// because they have the same interface:
public class Wind : Instrument {
// Redefine interface method:
public override void Play(Note n) {
Console.WriteLine ("Wind.Play()");

public class Music {
public static void Tune (Instrument i) {
//
i.Play(Note.MIDDLE C);

262 Thinking in C# www.ThinkingIn. NET

public static void Main () {
Wind flute = new Wind();
Tune (flute); // Upcasting
}
Y /)~

The method Music. Tune() accepts an Instrument reference, but also
anything derived from Instrument. In Main(), you can see this happening as a
Wind reference is passed to Tune(), with no cast necessary. This is acceptable;
the interface in Instrument must exist in Wind, because Wind is inherited
from Instrument. Upcasting from Wind to Instrument may “narrow” that
interface, but it cannot make it anything less than the full interface to
Instrument.

Forgetting the object type

This program might seem strange to you. Why should anyone intentionally forget
the type of an object? This is what happens when you upcast, and it seems like it
could be much more straightforward if Tune() simply takes a Wind reference
as its argument. This brings up an essential point: If you did that, you’d need to
write a new Tune() for every type of Instrument in your system. Suppose we
follow this reasoning and add Stringed and Brass instruments:

//:c08:Music2.cs
// Overloading instead of upcasting.
using System;

class Note {
private int value;
private Note(int val) { value = val;}
public static readonly Note
MIDDLE C = new Note(0),
C_SHARP = new Note(1l),
B FLAT = new Note(2);
} // Etc.

class Instrument ({
internal virtual void Play(Note n) {
Console.WriteLine ("Instrument.Play()");

class Wind : Instrument ({

Chapter 8: Interfaces and Implementation 263

internal override void Play(Note n) {
Console.WriteLine ("Wind.Play()");

class Stringed Instrument ({
internal override void Play(Note n) {

class Brass Instrument ({
internal override void Play(Note n) {
Console.WriteLine ("Brass.Play()");

public class Music2 {
internal static void Tune (Wind 1) {
i.Play(Note.MIDDLE C);
}
internal static void Tune (Stringed 1)
i.Play(Note.MIDDLE_C);
}
internal static void Tune (Brass 1) {
i.Play(Note.MIDDLE C);
}
public static void Main () {
Wind flute = new Wind () ;
Stringed violin = new Stringed();
Brass frenchHorn = new Brass();
Tune (flute); // No upcasting
Tune (violin) ;
Tune (frenchHorn) ;
}
Y /)~

Console.WriteLine ("Stringed.Play()");

This works, but there’s a major drawback: You must write type-specific methods
for each new Instrument class you add. This means more programming in the
first place, but it also means that if you want to add a new method like Tune() or
a new type of Instrument, you've got a lot of work to do. Add the fact that the

264 Thinking in C#

www.MindView.net

compiler won’t give you any error messages if you forget to overload one of your
methods and the whole process of working with types becomes unmanageable.

Wouldn’t it be much nicer if you could just write a single method that takes the
base class as its argument, and not any of the specific derived classes? That is,
wouldn’t it be nice if you could forget that there are derived classes, and write
your code to talk only to the base class?

That’s exactly what polymorphism allows you to do. However, most programmers
who come from a procedural programming background have a bit of trouble with
the way polymorphism works.

The twist

The difficulty with Music.cs can be seen by running the program. The output is
Wind.Play(). This is clearly the desired output, but it doesn’t seem to make
sense that it would work that way. Look at the Tune() method:

public static void tune (Instrument i) {
//
i.Play (Note.MIDDLE C);

}

It receives an Instrument reference. So how can the compiler possibly know
that this Instrument reference points to a Wind in this case and not a Brass or
Stringed? The compiler can’t. To get a deeper understanding of the issue, it’s
helpful to examine the subject of binding.

Method-call binding

Connecting a method call to a method body is called binding. When binding is
performed before the program is run (by the compiler and linker, if there is one),
it’s called early binding. You might not have heard the term before because it has
never been an option with procedural languages. C compilers have only one kind
of method call, and that’s early binding.

The confusing part of the above program revolves around early binding because
the compiler cannot know the correct method to call when it has only an
Instrument reference.

The solution is called late binding, which means that the binding occurs at run-
time based on the type of object. Late binding is also called dynamic binding or
run-time binding. When a language implements late binding, there must be some
mechanism to determine the type of the object at run-time and to call the

Chapter 8: Interfaces and Implementation 265

appropriate method. That is, the compiler still doesn’t know the object type, but
the method-call mechanism finds out and calls the correct method body. The
late-binding mechanism varies from language to language, but you can imagine
that some sort of type information must be installed in the objects.

Obviously, since there’s additional behavior at runtime, late binding is a little
more time-consuming than early binding. More importantly, if a method is early
bound and some other conditions are met, an optimizing compiler may decide
not to make a call at all, but instead to place a copy of the method’s source code
directly into the source code where the call occurs. Such inlining may cause the
resulting binary code to be a little larger, but can result in significant
performance increases in tight loops, especially when the called method is small.
Additionally, the contents of an early-bound method can be analyzed and
additional optimizations that can never be safely applied to late-bound methods
(such as aggressive code motion optimizations) may be possible. To give you an
idea, a 2001 study! showed Fortran-9o running several times as fast as, and
sometimes more than an order of magnitude faster than, Java on a series of
math-oriented benchmarks (the authors’ prototype performance-oriented Java
compiler and libraries gave dramatic speedups).Larry ported some of the
benchmarks to C# and was disappointed to see results that were very comparable
to Java performance?.

All methods declared as virtual or override in C# use late binding, otherwise,
they use early binding (confirm). This is an irritation but not a big burden. There
are two scenarios: either you know that you're going to override a method later
on, in which case it’s no big deal to add the keyword, or you discover down the
road that you need to override a method that you hadn’t planned on overriding,
which is a significant enough design change to justify a re-examination and
recompilation of the base class’ code! The one thing you can’t do is change the
binding from early-bound to late-bound in a component for which you can’t
perform a recompile because you don’t have the source code.

Producing the right behavior

Once you know that virtual method binding in C# happens polymorphically via
late binding, you can write your code to talk to the base class and know that all
the derived-class cases will work correctly using the same code. Or to put it

1 The Ninja Project, Moreira et al., Communications of the ACM 44(10), Oct 2001.

2 For details, see http://www.ThinkingIn.Net

266 Thinking in C# www.ThinkingIn. NET

another way, you “send a message to an object and let the object figure out the
right thing to do.”

The classic example in OOP is the “shape” example. This is commonly used
because it is easy to visualize, but unfortunately it can confuse novice
programmers into thinking that OOP is just for graphics programming, which is
of course not the case.

The shape example has a base class called Shape and various derived types:
Circle, Square, Triangle, etc. The reason the example works so well is that it’s
easy to say “a circle is a type of shape” and be understood. The inheritance
diagram shows the relationships:

Cast "up" the /,\ Shape
inheritance i Draw()
diagram i Erase()
i
i
i
i
i Circle Square Triangle
Circle Draw() Draw() Draw()
Handle Erase() Erase() Erase()

Figure 8-1: Upcasting to Shape
The upcast could occur in a statement as simple as:

| Shape s = new Circle();

Here, a Circle object is created and the resulting reference is immediately
assigned to a Shape, which would seem to be an error (assigning one type to
another); and yet it’s fine because a Circle is a Shape by inheritance. So the
compiler agrees with the statement and doesn’t issue an error message.

Suppose you call one of the base-class methods (that have been overridden in the
derived classes):

| s.Draw () ;

Chapter 8: Interfaces and Implementation 267

Again, you might expect that Shape’s Draw() is called because this is, after all,
a Shape reference—so how could the compiler know to do anything else? And yet
the proper Circle.Draw() is called because of late binding (polymorphism).

The following example puts it a slightly different way:

//:c08:Shapes.cs
// Polymorphism in C#
using System;
public class Shape {
internal virtual void Draw() {}
internal virtual void Erase () {}
}
class Circle : Shape {
internal override void Draw () {
Console.WriteLine ("Circle.Draw()");
}
internal override void Erase() {
Console.WritelLine ("Circle.Erase()");
}
}
class Square : Shape {
internal override void Draw () {
Console.WriteLine ("Square.Draw()");
}
internal override void Erase() {
Console.WriteLine ("Square.Erase()");
}
}
class Triangle : Shape {
internal override void Draw () {
Console.WriteLine ("Triangle.Draw()");
}
internal override void Erase () {
Console.WriteLine ("Triangle.Erase()");
}
}

268 Thinking in C# www.MindView.net

public class Shapes {
static Random rand = new Random() ;

public static Shape RandShape () {
switch (rand.Next(3)) {
case 0: return new Circle

()
case 1l: return new Square();
case 2: return new Triangle();
default: return null;
}

}

public static void Main () {
Shape[] s = new Shapel9];
// Fill up the array with shapes:
for (int i = 0; i < s.Length;i++)

s[i] = RandShape();

// Make polymorphic method calls:
foreach (Shape aShape in s)
aShape.Draw () ;

}

YIS e~

The base class Shape establishes the common interface to anything inherited
from Shape—that is, all shapes can be drawn and erased. The derived classes
override these definitions to provide unique behavior for each specific type of
shape.

The main class Shapes contains a static method RandShape() that produces
a reference to a randomly-selected Shape object each time you call it. Note that
the upcasting happens in the return statements, each of which takes a reference
to a Circle, Square, or Triangle and sends it out of the method as the return
type, Shape. So whenever you call this method you never get a chance to see
what specific type it is, since you always get back a plain Shape reference.

Main() contains an array of Shape references filled through calls to
RandShape(). At this point you know you have Shapes, but you don’t know
anything more specific than that (and neither does the compiler). However, when
you step through this array and call Draw() for each one, the correct type-
specific behavior magically occurs, as you can see from one output example:

Circle.Draw /()
Triangle.Draw ()
Circle.Draw ()

Chapter 8: Interfaces and Implementation 269

Circle.Draw (
Circle.Draw (
Square.Draw (

Square.Draw (
Square.Draw (

)

)

)
Triangle.Draw ()

)

)

Of course, since the shapes are all chosen randomly each time, your runs will
have different results. The point of choosing the shapes randomly is to drive
home the understanding that the compiler can have no special knowledge that
allows it to make the correct calls at compile-time. All the calls to Draw() are
made through dynamic binding.

Extensibility

Now let’s return to the musical instrument example. Because of polymorphism,
you can add as many new types as you want to the system without changing the
Tune() method. In a well-designed OOP program, most or all of your methods
will follow the model of Tune() and communicate only with the base-class
interface. Such a program is extensible because you can add new functionality by
inheriting new data types from the common base class. The methods that
manipulate the base-class interface will not need to be changed at all to
accommodate the new classes.

Consider what happens if you take the instrument example and add more
methods in the base class and a number of new classes. Here’s the diagram:

270 Thinking in C# www.ThinkingIn. NET

Instrument

void Play()
String What()
void Adjust()

Wind

Percussion

Stringed

void Play()
String What()
void Adjust()

void Play()
String What()
void Adjust()

void Play()
String What()
void Adjust()

Woodwind

void Play()
String What()

Brass

void Play()
void Adjust()

Figure 8-2: Despite increased complexity, old code works

All these new classes work correctly with the old, unchanged Tune() method.
Even if Tune() is in a separate file and new methods are added to the interface
of Instrument, Tune() works correctly without recompilation. Here is the
implementation of the above diagram:

//:c08:Music3.cs
// An extensible program.
using System;

class Instrument ({
public virtual void Play () {
Console.WriteLine ("Instrument.Play()");
}
public virtual string What () {

Chapter 8: Interfaces and Implementation 271

return "Instrument";

}
public virtual void Adjust () {}

class Wind : Instrument ({
public override void Play () {
Console.WriteLine ("Wind.Play()");
}
public override string What () { return "Wind";}
public override void Adjust () {}

class Percussion : Instrument {
public override void Play () {
Console.WritelLine ("Percussion.Play()");
}
public override string What () {
return "Percussion";}
public override void Adjust () {}

class Stringed : Instrument {
public override void Play () {
Console.WriteLine ("stringed.Play()");
}
public override string What () { return "Sstringed";}
public override void Adjust () {}

class Brass : Wind {
public override void Play () {
Console.WriteLine ("Brass.Play()");
}
public override void Adjust() {
Console.WriteLine ("Brass.Adjust()");

class Woodwind : Wind {
public override void Play () {

272 Thinking in C# www.MindView.net

Console.WriteLine ("Woodwind.Play()");

}

public override string What () { return "Woodwind";}

public class Music3 {
// Doesn't care about type, so new types
// added to the system still work right:
static void Tune (Instrument i) {
//
i.Play();
}
static void TuneZAll (Instrument[] e) {
foreach (Instrument i in e)

Tune (1) ;

}

public static void Main () {
Instrument[] orchestra = new Instrument[5];
int i = 0;
// Upcasting during addition to the array:
orchestra[i++] = new Wind();
orchestra[i++] = new Percussion();
orchestra[i++] = new Stringed();
orchestra[i++] = new Brass{();
orchestra[i++] = new Woodwind () ;

TuneAll (orchestra) ;
}
Y /)~

Technically you don’t need those methods (in this or any of the later Music
examples), but I think it gets confusing — especially later on when you get into
abstract classes and interfaces. They can also be used to make the point that not
all virtual methods need to be overridden, but if you leave the examples as they
are, at least point it out, because otherwise it leaves the reader wondering why
you chose to do that.The new methods are What(), which returns a String
reference with a description of the class, and Adjust(), which provides some
way to adjust each instrument.

In Main(), when you place something inside the Instrument array you
automatically upcast to Instrument.

Chapter 8: Interfaces and Implementation 273

You can see that the Tune() method is blissfully ignorant of all the code changes
that have happened around it, and yet it works correctly. This is exactly what
polymorphism is supposed to provide. Your code changes don’t cause damage to
parts of the program that should not be affected. Put another way, polymorphism
is one of the most important techniques that allow the programmer to “separate
the things that change from the things that stay the same.”

Static methods cannot be virtual

As you know, there is a difference between a class (the type) and an object (an
instance of that class). Data and methods can either be associated with the class
(static data and methods) or with individual objects (“instance” data and
methods). Unfortunately, polymorphism does not work with static methods.
This is not a logical consequence of object orientation, it is a result of how
polymorphism is implemented.

Take sound equipment, where there are several types of components (CD players
and so forth) that you might own. Each type of component has a number of
channels that is characteristic: all CdPlayers have two channels and all Dolby
decoders have “5+1” channels. On the other hand, adjusting the sound is
something that is done polymorphically to individual components: the ways you
can adjust the tone from CD players are different than the ways you can adjust a
home theater tuner, but when an adjustment is done, it applies to this particular
CdPlayer or DolbyDecoder, not to every instance of the class.

According to our discussion of polymorphism, it would seem logical that the way
one would declare these two methods in the base class would be:

virtual static void SayChannel () { .. }
virtual void AdjustSound(){ .. }
And then we would override them in subtypes with:

override static void SayChannel (){ .. }
override void AdjustSound(){ .. }

But the compiler refuses to compile static methods marked virtual. Instead, we
have to write code such as this:

//:c08:StaticNonPolymorphism.cs
//No polymorphism of static methods
using System;

class SoundEquipment {

274 Thinking in C# www.ThinkingIn. NET

//! static virtual void GetChannels () {
internal static void SayChannels () {
Console.WriteLine ("I don't know how many");

internal virtual void AdjustSound () {
Console.WriteLine ("No default adjustment");

public static void Main () {
SoundEquipment [] components =
{ new CdPlayer (), new DolbyDecoder() };
foreach (SoundEquipment ¢ in components) {
//! Console.WritelLine (c.GetChannels())
SoundEquipment.SayChannels () ;
c.AdjustSound() ;

’

class CdPlayer: SoundEquipment {
//!static override void SayChannels () {
static new void SayChannels () {
Console.WriteLine (
"All CD players have 2 channels");

internal override void AdjustSound () {
Console.WriteLine ("Adjusting total volume");

class DolbyDecoder : SoundEquipment {
//! static override void SayChannels () {
static new void SayChannels () {
Console.WriteLine (
"All DolbyDecoders have 5+1 channels");

internal override void AdjustSound () {
Console.WriteLine ("Adjusting effects channel");

Chapter 8: Interfaces and Implementation 275

}
Y/ /e~

The SoundEquipment.Main() method creates a CdPlayer and a
DolbyDecoder and upcasts the result into a SoundEquipment][] array. It
then calls the static SoundEquipment.SayChannels() method and the
virtual SoundEquipment.AdjustSound() method. The
SoundEquipment.AdjustSound() virtual method call works as we desire,
late-binding to our particular CdPlayer and DolbyDecoder objects, but the
SoundEquipment.SayChannels() does not. The output is:

I don't know how many
Adjusting total volume
I don't know how many
Adjusting effects channel

The many benefits of overriding method calls are simply not available to static
methods. The way that virtual method calls are implemented requires a reference
to this and the hassle of a different implementation is great enough that the lack
of static virtual methods is allowed to pass.

Overriding vs. overloading

Let’s take a different look at the first example in this chapter. In the following
program, the interface of the method Play() is changed in the process of
overriding it, which means that you haven’t overridden the method, but instead
overloaded it. The compiler allows you to overload methods so it gives no
complaint. But the behavior is probably not what you want. Here’s the example:

//:c08:WindError.cs
// Accidentally changing the interface.
using System;

public class NoteX ({
public const int
MIDDLE C = 0, C SHARP = 1, C FLAT = 2;

public class InstrumentX {
public void Play(int NoteX) {
Console.WriteLine ("InstrumentX.Play()");

276 Thinking in C# www.MindView.net

public class WindX : InstrumentX {
// OOPS! Changes the method interface:
public void Play (NoteX n) {
Console.WriteLine ("WindX.Play (NoteX n)");

public class WindError {
public static void Tune (InstrumentX i) {
//
i.Play (NoteX .MIDDLE C);
}
public static void Main () {
WindX flute = new WindX();
Tune (flute); // Not the desired behavior!
}
Y /)~

There’s another confusing aspect thrown in here. In InstrumentX, the Play()
method takes an int that has the identifier NoteX. That is, even though NoteX
is a class name, it can also be used as an identifier without complaint. But in
WindX, Play() takes a NoteX reference that has an identifier n. (Although you
could even say Play(NoteX NoteX) without an error.) Thus it appears that the
programmer intended to override Play() but mistyped the method a bit. The
compiler, however, assumed that an overload and not an override was intended.
Note that if you follow the standard C# naming convention, the argument
identifier would be noteX (lowercase ‘n’), which would distinguish it from the
class name.

In Tune, the InstrumentX i is sent the Play() message, with one of NoteX’s
members (MIDDLE_ C) as an argument. Since NoteX contains int definitions,
this means that the int version of the now-overloaded Play() method is called,

and since that has not been overridden the base-class version is used.

The output is:

| InstrumentX.Play ()

This certainly doesn’t appear to be a polymorphic method call. Once you
understand what’s happening, you can fix the problem fairly easily, but imagine
how difficult it might be to find the bug if it’s buried in a program of significant
size.

Chapter 8: Interfaces and Implementation 277

Operator overloading

In C#, you can override and overload operators (e.g., ‘+’, ‘/’, etc.). Some people do
not like operator overloading, arguing that operator overloading is confusing for
relatively little benefit. Certainly it’s true that you should think twice before
overloading an operator; operators carry a lot of baggage in terms of expected
behavior and, when used, have a tendency to be overlooked in future code
reviews. When thought out, though, operator overloading definitely makes code
easier to read and write.

To overload an operator, you declare a static method that takes, as its first
argument, a reference to your type. For unary operators, which apply to a single
operator, this is the only argument that you need and the return type of the
method must be the same type. The keyword operator alerts the compiler that
you're creating an overloaded function. This example overloads the ‘++’ unary
operator:

//:c08:Life.cs
//Demonstrates unary operator overloading
using System;

enum LifeState {
Birth, School, Work, Death
}s

class Life {
LifeState state;

Life () {
state = LifeState.Birth;
}
public static Life operator ++(Life 1) {
if (l.state != LifeState.Death) {
l.state++;
} else {
Console.WriteLine ("Still dead.");
}

return 1;

public static void Main () {
Life myLife = new Life();

278 Thinking in C# www.ThinkingIn. NET

for (int i = 0; 1 < 4; i++) {
Console.WriteLine (myLife.state);
//Following call uses operator overloading
myLife++;

}

Y/ /e~

First, we specify the gamut of possible LifeStates3 and, in the Life()
constructor, we set the local LifeState to LifeState.Birth. The next line:

| public static Life operator ++(Life 1)

overloads the ++ operator so that it moves inexorably forward until the Life is in
LifeState.Death.

Although the first argument and the return type must be the same as the class in
which the operator is overloaded, if you overload an operator in a class from
which others descend, you can return objects of different subtypes:

//:c08:Canines.cs
//Demonstrates polymorphic operator overloading
using System;

class Canine {
public virtual void Speak() {}

public virtual Canine Grow(){ return this;}

public static void Main () {
Canine ¢ = new Puppy();

c.Speak();
ct++;
c.Speak () ;
c++;
c.Speak();

public static Canine operator++ (Canine c) {

return c.Grow () ;

3 At least according to the band The Godfathers.

Chapter 8: Interfaces and Implementation 279

class Puppy : Canine {
public override void Speak () {
Console.WriteLine ("Yip!");

public override Canine Grow () {
return new Dog();

class Dog : Canine {
public override void Speak () {
Console.WriteLine ("Whoof!");

public override Canine Grow () {
Console.WritelLine ("Already fully grown");
return this;
}
Y// /i~

The ++ operator is overloaded within the Canine class, from which Puppy and
Dog descend. If the argument to the ++ operator is a Canine that happens to be
a Puppy, the call to ¢.Grow() will be resolved by Puppy.Grow(), which
returns a Dog.

Figure 8-3 illustrates this program’s behavior with a UML Sequence Diagram.
While class diagrams are helpful for illustrating the static structure of a collection
of classes, sequence diagrams are helpful when talking about the dynamic
behavior of a set of objects. A sequence diagram is read from the top downward,
as time increases. Objects of interest are arranged horizontally, with each object’s
lifespan denoted by a vertical dashed line. A method call is represented by an
arrow pointing to the receiving object and the duration of the method call is
represented by a thin box on the object’s lifeline. Return values are shown using
dashed lines. This diagram uses a non-standard convention by showing the
names of virtual method calls in italic.

280 Thinking in C# www.MindView.net

Main() c : Canine this : Canine this : Puppy this : Dog

1 void Speak() 1

void Speak()

- operator ++()

Canine Grow() .
Canine Grow()

the new Dog
thenew Dog | | — — — "] .

void Speak() | void Speak()

operator ++() |

— 1

Canine Grow()

Canine Grow()

sameDog | |I<< — — — — ‘ ‘

T \ \ \

Figure 8-3: Virtual calls to Canine.Grow() and Speak()

The first time Canine.Main() calls the virtual Canine.Speak() method, it is
resolved by the Canine this, which at this point is a Puppy. Similarly, when the
++ operator is called, its first argument is a Canine which happens to be a
Puppy. Thus, the call in operator++ to Canine.Grow() is resolved by the
Puppy.Grow() override. Puppy.Grow() creates a new Dog object and
returns a reference to it. Since the Puppy is no longer referenced, it is now
eligible for garbage collection, as indicated on the diagram by the end of the
Puppy’s object lifeline.

If you look at the Main() method, you'll see that there is no assignment of the
results of the ++ operator. Rather, the Canine referenced by the ¢ variable has

Chapter 8: Interfaces and Implementation 281

changed from a reference to a Puppy to a reference to a Dog as part of the
application of the ++ operator; you can see how this might be surprising to
someone just viewing the Main() method and why the logic of an overloaded
operator should be apparent. After the Puppy reference has been changed into a
Dog reference by the first application of the ++ operator, subsequent calls to the
virtual method Canine.Speak() will be resolved by Dog.Speak(), as will be
virtual calls to Canine.Grow(). The diagram illustrates these behaviors, too.

Multiargument operator overloading

Binary operators are those which take two arguments. One of the two arguments
must be the type of the containing class, the other argument can be of any type,
allowing full overloading. This example allows either Fans or Players to be
added to an Arena.

//:c08:Arena.cs
//Demonstrates binary operator overloading
using System;

class Arena {
public static Arena
operator+ (Arena a, Player p){
a.AddPlayer (p) ;
return a;

public static Arena
operator+ (Arena a, Fan f){
a.AddFan (f) ;
return a;

void AddPlayer (Player p) {
Console.WriteLine ("Player added");

void AddFan (Fan f) {
Console.WritelLine ("Fan added") ;

public static void Main () {
Arena a = new Arenal();

282 Thinking in C# www.ThinkingIn. NET

Fan £ = new Fan();
//Normal form
a=a + f£;

Player p = new Player():;
//Also works
a += p;

class Player {

}

class Fan {

Y/ /e~

The + operator is overloaded twice; both are static operator methods that take
an Arena as the first argument. One overload accepts a Player as the second
argument, and the other takes a Fan object. s are similar; they call an instance
method, Arena.AddFan() or Arena.AddPlayer() on their Arena argument
and return the result.

The static Arena.Main() method creates an Arena and a Fan and uses the
normal form a = a + fto add the Fan. Then, Main() creates a Player and uses
a +=p to add it; in C#, +=is not an atomic operator but is simply a combination
of the addition and assignment operators (a subtlety that will be revisited in
Chapter 16’s discussion of threading).

Explicit and implicit type conversions

Among the most common uses of operator overloading is implementing
conversions between types. If it is impossible for data to be lost during the
conversion, the conversion can be specified as implicit and the conversion will
not require a cast. If, on the other hand, data may be lost, the conversion should
be marked as explicit, and a client programmer attempting the conversion will
need to make a cast.

The operator that one overloads for a conversion is of the form:

public static implicitOrExplicit
operator TypeConvertedTo (TypeConvertedFrom) {..}

Chapter 8: Interfaces and Implementation 283

where implicitOrExplicit is either implicit or explicit. Although it’s easy
enough to cast the value of an enum to an int, we can remove even that burden
from users of the Day class in this example:

//:c08:DayOfWeek.cs
using System;

class Day {
enum dow {
Sunday = 0, Monday = 1, Tuesday = 2,
Wednesday = 3, Thursday = 4, Friday = 5,
Saturday = 6

dow dayOfWeek;
dow DayOfWeek({
get { return dayOfWeek;}

Day (int 1) {
dayOfWeek = (dow) (i1 % 7);

public static explicit operator Day (int i) {
Day d = new Day (i) ;
return d;

//Returns 0 (Sun) - 6 (Fri)
public static implicit operator int (Day d) {
return (int) d.DayOfWeek;

public static void Main () {
//Calls explicit operator Day (int 1)
Day d = (Day) 24;
Console.WritelLine (d.DayOfWeek) ;
//Calls implicit operator int (Day d)
int iOfWeek = d;
Console.WritelLine (i0OfWeek) ;

284 Thinking in C# www.MindView.net

}
Y/ /e~

The Day class overloads the cast from an int into a Day. Because some data is
lost in the conversion (the int is converted by modulo arithmetic), the conversion
is marked as explicit. Conversely, since no data is lost converting from Day to
int, that overload is marked as implicit. Both overloads are demonstrated in
Day.Main() and, although a cast is needed to convert an int into a Day, none is
needed for the reverse.

Operator overloading design guidelines

If an operator overload’s meaning isn’t obvious, you shouldn’t use operator
overloading. Overloading the ++ operator to mean “Increase the object’s age” is
not obvious and is a bad design choice. As a matter of fact, coming up with
“obvious” operator overloads is so difficult that it’s the primary argument against
operator overloading — 90% of the discussions of operator overloading use
imaginary numbers as their example because imaginary numbers are one of the
few types that clearly pass the “obvious” test.

Operator overloading is not guaranteed to exist in all .NET languages. This means
that you must either forego the possibility that your class will be used by a
language other than C# (a choice that undermines .NET’s fundamental value
proposition) or create an equivalent named method that exposes the functionality
for other languages.

A general design principle is that classes should have symmetric interfaces. This
means that methods will often be paired with their logical opposites: if you write
an On() method, you should write an Off(), TurnRight() implies a
TurnLeft(), etc.. Most operators have an opposite, so if you overload + (the
plus operator), you should overload - (the minus operator).

Abstract classes
and methods

In all the instrument examples, the methods in the base class Instrument were
always “dummy” methods. If these methods are ever called, you've done
something wrong. That’s because the intent of Instrument is to create a
common interface for all the classes derived from it.

The only reason to establish this common interface is so it can be expressed
differently for each different subtype. It establishes a basic form, so you can say
what’s in common with all the derived classes. Another way of saying this is to

Chapter 8: Interfaces and Implementation 285

call Instrument an abstract base class (or simply an abstract class). You create
an abstract class when you want to manipulate a set of classes through this
common interface. All derived-class methods that match the signature of the
base-class declaration will be called using the dynamic binding mechanism.
(However, as seen in the last section, if the method’s name is the same as the base
class but the arguments are different, you've got overloading, which probably
isn’t what you want.)

If you have an abstract class like Instrument, objects of that class almost always
have no meaning. That is, Instrument is meant to express only the interface,
and not a particular implementation, so creating an Instrument object makes
no sense, and you’ll probably want to prevent the user from doing it. This can be
accomplished by making all the methods in Instrument print error messages,
but that delays the information until run-time and requires reliable exhaustive
testing on the user’s part. It’s always better to catch problems at compile-time.

C# provides a mechanism for doing this called the abstract method4. This is a
method that is incomplete; it has only a declaration and no method body. Here is
the syntax for an abstract method declaration:

| abstract void F{();

A class containing abstract methods is called an abstract class. If a class contains
one or more abstract methods, the class must be qualified as abstract.
(Otherwise, the compiler gives you an error message.)

There’s no need to qualify abstract methods as virtual, as they are always
resolved with late binding.

If an abstract class is incomplete, what is the compiler supposed to do when
someone tries to instantiate an object of that class? It cannot safely create an
object of an abstract class, so you get an error message from the compiler. This
way the compiler ensures the purity of the abstract class, and you don’t need to
worry about misusing it.

If you inherit from an abstract class and you want to make objects of the new
type, you must provide method definitions for all the abstract methods in the
base class. If you don’t (and you may choose not to), then the derived class is also
abstract and the compiler will force you to qualify that class with the abstract
keyword.

4 For C++ programmers, this is the analogue of C++’s pure virtual function.

286 Thinking in C# www.ThinkingIn. NET

It’s possible to create a class as abstract without including any abstract
methods. This is useful when you’ve got a class in which it doesn’t make sense to
have any abstract methods, and yet you want to prevent any instances of that
class.

The Instrument class can easily be turned into an abstract class. Only some of
the methods will be abstract, since making a class abstract doesn’t force you to
make all the methods abstract. Here’s what it looks like:

abstract Instrument

abstract void Play();
string What() { /* ... */ }
abstract void Adjust();

Wind

Percussion

Stringed

void Play()
string What()
void Adjust()

void Play()
string What()
void Adjust()

void Play()
string What()
void Adjust()

Woodwind

Brass

void Play()
string What()

void Play()
void Adjust()

Figure 8-4: Abstract classes provide shared behavior, but cannot be instantiated

Here’s the orchestra example modified to use abstract classes and methods:

//:c08:Musicd.cs
// An extensible program.
using System;

Chapter 8: Interfaces and Implementation 287

abstract class Instrument {
public abstract void Play();
public virtual string What () {
return "Instrument";
}
public abstract void Adjust();

class Wind : Instrument {
public override void Play () {
Console.WriteLine ("Wind.Play()");
}
public override string What () { return "Wind";}

public override void Adjust () {}

class Percussion : Instrument ({
public override void Play () {
Console.WriteLine ("Percussion.Play()");
}
public override string What () {

return "Percussion";}
public override void Adjust () {}

class Stringed : Instrument {
public override void Play () {
Console.WritelLine ("stringed.Play()");
}
public override string What() { return "Sstringed";}

public override void Adjust () {}

class Brass : Wind {
public override void Play () {
Console.WriteLine ("Brass.Play()");
}
public override void Adjust () {
Console.WriteLine ("Brass.Adjust()");

288 Thinking in C# www.MindView.net

class Woodwind : Wind {
public override void Play () {
Console.WritelLine ("Woodwind.Play()");

}

public override string What () { return "Woodwind";}

public class Music3 {
// Doesn't care about type, so new types
// added to the system still work right:
static void Tune (Instrument 1) {
//
i.Play();
}
static void TuneAll (Instrument[] e) {
foreach (Instrument i in e)

Tune (1) ;

}

public static void Main () {
Instrument[] orchestra = new Instrument[5];
int 1 = 0;
// Upcasting during addition to the array:
orchestral[i++] = new Wind() ;
orchestra[i++] = new Percussion|();
orchestral[i++] = new Stringed();
orchestral[i++] = new Brass():;
orchestra[i++] = new Woodwind();

TuneAll (orchestra) ;

}
Y /)~

You can see that there’s really no change except in the base class.

It’s helpful to create abstract classes and methods because they make the
abstractness of a class explicit, and tell both the user and the compiler how it was
intended to be used.

Constructors and polymorphism

As usual, constructors are different from other kinds of methods. This is also true
when polymorphism is involved. Even though constructors are not polymorphic

Chapter 8: Interfaces and Implementation 289

(although you can have a kind of “virtual constructor,” as you will see in Chapter
13), it’s important to understand the way constructors work in complex
hierarchies and with polymorphism. This understanding will help you avoid
unpleasant entanglements.

Order of constructor calls

The order of constructor calls was briefly discussed in Chapter 7, but that was
before polymorphism was introduced.

A constructor for the base class is always called in the constructor for a derived
class, chaining up the inheritance hierarchy so that a constructor for every base
class is called. This makes sense because the constructor has a special job: to see
that the object is built properly. A derived class has access to its own members
only, and not to private members of the base class. Only the base-class
constructor has the proper knowledge and access to initialize its own elements.
Therefore, it’s essential that all constructors get called, otherwise the entire object
wouldn’t be consistently constructed. That’s why the compiler enforces a
constructor call for every portion of a derived class. It will silently call the default
constructor if you don’t explicitly call a base-class constructor in the derived-class
constructor body. If there is no default constructor, the compiler will complain.
(In the case where a class has no constructors, the compiler will automatically
synthesize a default constructor.)

Let’s take a look at an example that shows the effects of composition, inheritance,
and polymorphism on the order of construction:

//:c08:Sandwich.cs
// Order of constructor calls.
using System;

public class Meal {

internal Meal () { Console.WriteLine ("Meal ()");}

public class Bread {
internal Bread() { Console.WriteLine ("Bread()");}

public class Cheese {
internal Cheese () { Console.WriteLine ("Cheese()");}

200 Thinking in C# www.ThinkingIn. NET

public class Lettuce {
internal Lettuce(){ Console.WriteLine ("Lettuce()");}

public class Lunch : Meal {
internal Lunch() { Console.WriteLine ("Lunch()");}

public class PortableLunch : Lunch {
internal PortableLunch () {
Console.WritelLine ("PortableLunch()");

public class Sandwich : PortableLunch {
Bread b = new Bread():;
Cheese ¢ = new Cheese();

Lettuce 1 = new Lettuce();

internal Sandwich () {
Console.WriteLine ("Sandwich()");

}

public static void Main () {

new Sandwich () ;
}
Y /)~

This example creates a complex class out of other classes, and each class has a
constructor that announces itself. The important class is Sandwich, which
reflects three levels of inheritance (four, if you count the implicit inheritance

from object) and three member objects. When a Sandwich object is created in
Main(), the output is:

Bread()
Cheese ()
Lettuce ()
Meal ()

Lunch ()
PortableLunch ()
Sandwich ()

This means that the order of constructor calls for a complex object is as follows:

1. Member initializers are called in the order of declaration.

Chapter 8: Interfaces and Implementation 201

2. The base-class constructor is called. This step is repeated recursively
such that the root of the hierarchy is constructed first, followed by the
next-derived class, etc., until the most-derived class is reached.

3. The body of the derived-class constructor is called.

The order of the constructor calls is important. When you inherit, you know all
about the base class and can access any public, protected, or internal
members of the base class. This means that you must be able to assume that all
the members of the base class are valid when you're in the derived class. In a
normal method, construction has already taken place, so all the members of all
parts of the object have been built. Inside the constructor, however, you must be
able to assume that all members that you use have been built. The only way to
guarantee this is for the base-class constructor to be called first. Then when
you’re in the derived-class constructor, all the members you can access in the
base class have been initialized. “Knowing that all members are valid” inside the
constructor is also the reason that, whenever possible, you should initialize all
member objects (that is, objects placed in the class using composition) at their
point of definition in the class (e.g., b, ¢, and 1 in the example above). If you
follow this practice, you will help ensure that all base class members and member
objects of the current object have been initialized. Unfortunately, this doesn’t
handle every case, as you will see in the next section.

Behavior of polymorphic methods
inside constructors

The hierarchy of constructor calls brings up an interesting dilemma. What
happens if you're inside a constructor and you call a dynamically bound method
of the object being constructed? Inside an ordinary method you can imagine what
will happen—the dynamically bound call is resolved at run-time because the
object cannot know whether it belongs to the class that the method is in or some
class derived from it. For consistency, you might think this is what should happen
inside constructors.

This is not exactly the case. If you call a dynamically bound method inside a
constructor, the overridden definition for that method is used. However, the
effect can be rather unexpected, and can conceal some difficult-to-find bugs.

Conceptually, the constructor’s job is to bring the object into existence (which is
hardly an ordinary feat). Inside any constructor, the entire object might be only
partially formed—you can know only that the base-class objects have been
initialized, but you cannot know which classes are inherited from you. A
dynamically bound method call, however, reaches “outward” into the inheritance

292 Thinking in C# www.MindView.net

hierarchy. It calls a method in a derived class. If you do this inside a constructor,
you call a method that might manipulate members that haven’t been initialized
yet—a sure recipe for disaster.

You can see the problem in the following example:

//:c08:PolyConstructors.cs

// Constructors and polymorphism

// don't produce what you might expect.
using System;

abstract class Glyph {
protected abstract void Draw () ;
internal Glyph() {

Console.WriteLine ("Glyph () before draw()");
Draw () ;
Console.WriteLine ("Glyph() after draw()");

class RoundGlyph : Glyph {
int radius = 1;
int thickness;
internal RoundGlyph (int r) {
radius = r;
thickness = 2;
Console.WriteLine ("RoundGlyph.RoundGlyph(), "
+ "radius = {0} thickness ={1}",
+ radius, thickness);
}
protected override void Draw () {
Console.WriteLine ("RoundG