

Pro C# 2005
and the
.NET 2.0 Platform

■ ■ ■

Andrew Troelsen

4193FM.qxd 8/14/05 2:41 PM Page i

Pro C# 2005 and the .NET 2.0 Platform

Copyright © 2005 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN: 1-59059-419-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Gavin Smyth
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher and Project Manager: Grace Wong
Copy Edit Manager: Nicole LeClerc
Copy Editors: Nicole LeClerc, Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor and Artist: Kinetic Publishing Services, LLC
Proofreader: Nancy Sixsmith
Indexers: Kevin Broccoli and Dan Mabbutt
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

4193FM.qxd 8/14/05 2:41 PM Page ii

I would like to dedicate this book to my mother, Mary Troelsen. Mom,
thanks for all of your support over the years and the years to come.
Oh yeah, and thanks for not busting my chops when I came home

with the red Mohawk.
Luv ya,
Pooch

4193FM.qxd 8/14/05 2:41 PM Page iii

4193FM.qxd 8/14/05 2:41 PM Page iv

Contents at a Glance

About the Author. xxxiii

About the Technical Reviewer . xxxv

Acknowledgments . xxxvii

Introduction . xxxix

PART 1 ■ ■ ■ Introducing C# and the
.NET Platform

CHAPTER 1 The Philosophy of .NET . 3

CHAPTER 2 Building C# Applications . 33

PART 2 ■ ■ ■ The C# Programming Language
CHAPTER 3 C# Language Fundamentals . 65

CHAPTER 4 Object-Oriented Programming with C# . 139

CHAPTER 5 Understanding Object Lifetime . 179

CHAPTER 6 Understanding Structured Exception Handling . 197

CHAPTER 7 Interfaces and Collections. 221

CHAPTER 8 Callback Interfaces, Delegates, and Events . 255

CHAPTER 9 Advanced C# Type Construction Techniques . 289

CHAPTER 10 Understanding Generics . 321

PART 3 ■ ■ ■ Programming with .NET Assemblies
CHAPTER 11 Introducing .NET Assemblies . 347

CHAPTER 12 Type Reflection, Late Binding, and Attribute-Based Programming 391

CHAPTER 13 Processes, AppDomains, Contexts, and CLR Hosts 425

CHAPTER 14 Building Multithreaded Applications . 449

CHAPTER 15 Understanding CIL and the Role of Dynamic Assemblies 477

v

4193FM.qxd 8/14/05 2:41 PM Page v

PART 4 ■ ■ ■ Programming with the .NET Libraries
CHAPTER 16 The System.IO Namespace . 517

CHAPTER 17 Understanding Object Serialization . 545

CHAPTER 18 The .NET Remoting Layer . 565

CHAPTER 19 Building a Better Window with System.Windows.Forms 605

CHAPTER 20 Rendering Graphical Data with GDI+ . 649

CHAPTER 21 Programming with Windows Forms Controls . 699

CHAPTER 22 Database Access with ADO.NET . 759

PART 5 ■ ■ ■ Web Applications and XML
Web Services

CHAPTER 23 ASP.NET 2.0 Web Pages and Web Controls . 829

CHAPTER 24 ASP.NET 2.0 Web Applications . 889

CHAPTER 25 Understanding XML Web Services . 919

INDEX . 955

4193FM.qxd 8/14/05 2:41 PM Page vi

Contents

About the Author. xxxiii

About the Technical Reviewer . xxxv

Acknowledgments . xxxvii

Introduction . xxxix

PART 1 ■ ■ ■ Introducing C# and the .NET
Platform

■CHAPTER 1 The Philosophy of .NET . 3

Understanding the Previous State of Affairs . 3
Life As a C/Win32 API Programmer . 3
Life As a C++/MFC Programmer . 4
Life As a Visual Basic 6.0 Programmer . 4
Life As a Java/J2EE Programmer . 4
Life As a COM Programmer . 5
Life As a Windows DNA Programmer . 5

The .NET Solution. 6
Introducing the Building Blocks of the .NET Platform

(the CLR, CTS, and CLS) . 6
The Role of the Base Class Libraries . 7

What C# Brings to the Table. 7
Additional .NET-Aware Programming Languages . 8

Life in a Multilanguage World . 9
An Overview of .NET Assemblies . 10
Single-File and Multifile Assemblies . 11
The Role of the Common Intermediate Language . 11

Benefits of CIL. 13
Compiling CIL to Platform-Specific Instructions. 14

The Role of .NET Type Metadata . 14
The Role of the Assembly Manifest . 15
Understanding the Common Type System . 15

CTS Class Types . 16
CTS Structure Types . 16
CTS Interface Types . 17
CTS Enumeration Types . 17
CTS Delegate Types . 17

vii

4193FM.qxd 8/14/05 2:41 PM Page vii

CTS Type Members. 18
Intrinsic CTS Data Types. 18

Understanding the Common Language Specification . 19
Ensuring CLS Compliance . 20

Understanding the Common Language Runtime . 20
The Assembly/Namespace/Type Distinction . 22

Accessing a Namespace Programmatically . 24
Referencing External Assemblies . 25

Using ildasm.exe . 26
Viewing CIL Code . 27
Viewing Type Metadata. 28
Viewing Assembly Metadata. 28

Deploying the .NET Runtime . 29
The Platform-Independent Nature of .NET. 29
Summary . 31

■CHAPTER 2 Building C# Applications . 33

Installing the .NET Framework 2.0 SDK. 33
The C# Command-Line Compiler (csc.exe) . 34

Configuring the C# Command-Line Compiler . 34
Configuring Additional .NET Command-Line Tools. 35

Building C# Applications Using csc.exe . 36
Referencing External Assemblies . 37
Compiling Multiple Source Files with csc.exe . 38
Referencing Multiple External Assemblies . 39

Working with csc.exe Response Files . 39
The Default Response File (csc.rsp) . 40

The Command-Line Debugger (cordbg.exe) . 40
Debugging at the Command Line. 41

Building .NET Applications Using TextPad . 41
Enabling C# Keyword Coloring . 42
Configuring the *.cs File Filter . 43
Hooking Into csc.exe . 43
Associating Run Commands with Menu Items. 44
Enabling C# Code Snippets . 45

Building .NET Applications Using SharpDevelop . 46
Learning the Lay of the Land: SharpDevelop . 47
The Project and Classes Scouts . 47
The Assembly Scout . 48
Windows Forms Designers . 49

Building .NET Applications Using Visual C# 2005 Express 50

■CONTENTSviii

4193FM.qxd 8/14/05 2:41 PM Page viii

The Big Kahuna: Building .NET Applications Using Visual Studio 2005. 51
Learning the Lay of the Land: Visual Studio 2005 52
The Solution Explorer Utility . 52
The Class View Utility . 53
The Code Definition Window . 54
The Object Browser Utility . 54
Integrated Support for Code Refactoring . 55
Code Expansions and Surround with Technology 57
The Visual Class Designer . 57
Object Test Bench . 60
The Integrated Help System . 60

A Partial Catalogue of Additional .NET Development Tools 61
Summary . 62

PART 2 ■ ■ ■ The C# Programming Language

■CHAPTER 3 C# Language Fundamentals . 65

The Anatomy of a Simple C# Program. 65
Variations on the Main() Method . 66
Processing Command-Line Arguments . 67
Specifying Command-Line Arguments with Visual Studio 2005 68

An Interesting Aside: The System.Environment Class . 68
Defining Classes and Creating Objects . 69

The Role of Constructors . 70
Is That a Memory Leak? . 72
Defining an “Application Object” . 72

The System.Console Class . 73
Basic Input and Output with the Console Class . 73
Formatting Console Output. 74
.NET String Formatting Flags . 75

Establishing Member Visibility . 76
Establishing Type Visibility . 78

Default Values of Class Member Variables. 78
Default Values and Local Variables. 79

Member Variable Initialization Syntax . 79
Defining Constant Data . 80

Referencing Constant Data . 81
Defining Read-Only Fields . 82

Static Read-Only Fields . 83
Understanding the static Keyword . 83

Static Methods . 84
Static Data . 84

■CONTENTS ix

4193FM.qxd 8/14/05 2:41 PM Page ix

Static Constructors . 86
Static Classes . 88

Method Parameter Modifiers . 89
The Default Parameter-Passing Behavior. 89
The out Modifier . 90
The ref Modifier . 90
The params Modifier . 91

Iteration Constructs . 92
The for Loop . 92
The foreach Loop . 93
The while and do/while Looping Constructs . 93

Decision Constructs and the Relational/Equality Operators 94
The if/else Statement . 94
The switch Statement . 95

Understanding Value Types and Reference Types . 96
Value Types, References Types, and the Assignment Operator 97
Value Types Containing Reference Types . 99
Passing Reference Types by Value . 101
Passing Reference Types by Reference . 102
Value and Reference Types: Final Details. 103

Understanding Boxing and Unboxing Operations . 104
Some Practical (Un)Boxing Examples. 105
Unboxing Custom Value Types . 106

Working with .NET Enumerations . 107
The System.Enum Base Class . 109

The Master Class: System.Object . 110
The Default Behavior of System.Object . 112

Overriding Some Default Behaviors of System.Object 113
Overriding System.Object.ToString() . 114
Overriding System.Object.Equals() . 114
Overriding System.Object.GetHashCode() . 115
Testing the Overridden Members . 116
Static Members of System.Object . 117

The System Data Types (and C# Shorthand Notation) . 117
Experimenting with Numerical Data Types. 120
Members of System.Boolean . 120
Members of System.Char . 121
Parsing Values from String Data . 121
System.DateTime and System.TimeSpan . 122

The System.String Data Type . 123
Basic String Operations . 123
Escape Characters . 124
Working with C# Verbatim Strings . 125

■CONTENTSx

4193FM.qxd 8/14/05 2:41 PM Page x

The Role of System.Text.StringBuilder. 126
.NET Array Types . 127

Arrays As Parameters (and Return Values) . 128
Working with Multidimensional Arrays . 128
The System.Array Base Class. 130

Understanding C# Nullable Types . 131
Working with Nullable Types . 132
The ?? Operator . 133

Defining Custom Namespaces . 133
A Type’s Fully Qualified Name . 134
Defining using Aliases . 136
Creating Nested Namespaces . 137
The “Default Namespace” of Visual Studio 2005. 138

Summary . 138

■CHAPTER 4 Object-Oriented Programming with C# . 139

Understanding the C# Class Type . 139
Understanding Method Overloading . 141
Self-Reference in C# Using this . 142
Defining the Public Interface of a Class . 143

Reviewing the Pillars of OOP . 145
Encapsulation . 145
Inheritance . 145
Polymorphism . 146

The First Pillar: C#’s Encapsulation Services . 147
Enforcing Encapsulation Using Traditional Accessors

and Mutators . 148
Another Form of Encapsulation: Class Properties 149
Internal Representation of C# Properties . 151
Controlling Visibility Levels of Property get/set Statements. 153
Read-Only and Write-Only Properties. 153
Static Properties . 153

The Second Pillar: C#’s Inheritance Support . 154
Controlling Base Class Creation with base. 156
Regarding Multiple Base Classes . 157
Keeping Family Secrets: The protected Keyword. 157
Preventing Inheritance: Sealed Classes . 158

Programming for Containment/Delegation . 159
Nested Type Definitions . 160

The Third Pillar: C#’s Polymorphic Support . 162
The virtual and override Keywords. 162
Revisiting the sealed Keyword . 164

■CONTENTS xi

4193FM.qxd 8/14/05 2:41 PM Page xi

Understanding Abstract Classes. 164
Enforcing Polymorphic Activity: Abstract Methods 165
Member Hiding . 169

C# Casting Rules . 170
Determining the “Type of” Employee . 172
Numerical Casts . 172

Understanding C# Partial Types . 173
Documenting C# Source Code via XML . 174

XML Code Comment Format Characters . 176
Transforming XML Code Comments. 177

Summary . 177

■CHAPTER 5 Understanding Object Lifetime . 179

Classes, Objects, and References . 179
The Basics of Object Lifetime . 180

The CIL of new . 181
The Role of Application Roots . 182
Understanding Object Generations . 184
The System.GC Type . 185

Forcing a Garbage Collection . 186
Building Finalizable Objects . 188

Overriding System.Object.Finalize() . 189
Detailing the Finalization Process. 191

Building Disposable Objects. 191
Reusing the C# using Keyword . 192

Building Finalizable and Disposable Types . 194
A Formalized Disposal Pattern . 194

Summary . 196

■CHAPTER 6 Understanding Structured Exception Handling 197

Ode to Errors, Bugs, and Exceptions . 197
The Role of .NET Exception Handling. 198

The Atoms of .NET Exception Handling . 199
The System.Exception Base Class . 199

The Simplest Possible Example . 200
Throwing a Generic Exception . 202
Catching Exceptions . 203

Configuring the State of an Exception . 204
The TargetSite Property . 204
The StackTrace Property . 205
The HelpLink Property . 206
The Data Property. 206

■CONTENTSxii

4193FM.qxd 8/14/05 2:41 PM Page xii

System-Level Exceptions (System.SystemException) . 208
Application-Level Exceptions (System.ApplicationException) 208

Building Custom Exceptions, Take One . 209
Building Custom Exceptions, Take Two . 210
Building Custom Exceptions, Take Three . 210

Processing Multiple Exceptions . 212
Generic catch Statements . 213
Rethrowing Exceptions . 214
Inner Exceptions . 214

The Finally Block . 215
Who Is Throwing What? . 216
The Result of Unhandled Exception . 217
Debugging Unhandled Exceptions Using Visual Studio 2005 218
Summary . 219

■CHAPTER 7 Interfaces and Collections . 221

Defining Interfaces in C# . 221
Implementing an Interface in C# . 222
Contrasting Interfaces to Abstract Base Classes . 224
Invoking Interface Members at the Object Level . 224

Obtaining Interface References: The as Keyword 225
Obtaining Interface References: The is Keyword 225

Interfaces As Parameters . 226
Interfaces As Return Values . 228
Arrays of Interface Types . 228
Understanding Explicit Interface Implementation . 229

Resolving Name Clashes . 231
Building Interface Hierarchies . 232

Interfaces with Multiple Base Interfaces . 233
Implementing Interfaces Using Visual Studio 2005 . 234
Building Enumerable Types (IEnumerable and IEnumerator). 235

Understanding C# Iterator Methods . 237
Building Cloneable Objects (ICloneable) . 238

A More Elaborate Cloning Example . 240
Building Comparable Objects (IComparable) . 242

Specifying Multiple Sort Orders (IComparer) . 245
Custom Properties, Custom Sort Types . 246

The Interfaces of the System.Collections Namespace 247
The Role of ICollection . 248
The Role of IDictionary . 248
The Role of IDictionaryEnumerator. 249
The Role of IList . 249

■CONTENTS xiii

4193FM.qxd 8/14/05 2:41 PM Page xiii

The Class Types of System.Collections . 249
Working with the ArrayList Type . 250
Working with the Queue Type. 251
Working with the Stack Type . 252

System.Collections.Specialized Namespace . 253
Summary . 254

■CHAPTER 8 Callback Interfaces, Delegates, and Events 255

Understanding Callback Interfaces . 255
Understanding the .NET Delegate Type . 259
Defining a Delegate in C# . 259
The System.MulticastDelegate and System.Delegate Base Classes 262
The Simplest Possible Delegate Example . 263

Investigating a Delegate Object . 264
Retrofitting the Car Type with Delegates . 266

Enabling Multicasting . 268
A More Elaborate Delegate Example . 270

Delegates As Parameters . 271
Analyzing the Delegation Code. 274

Understanding Delegate Covariance . 275
Understanding C# Events . 277

Events Under the Hood . 278
Listening to Incoming Events . 279
Simplifying Event Registration Using Visual Studio 2005 280
A “Prim-and-Proper” Event . 281

Understanding C# Anonymous Methods . 282
Accessing “Outer” Variables. 284

C# Method Group Conversions. 285
Summary . 286

■CHAPTER 9 Advanced C# Type Construction Techniques 289

Building a Custom Indexer . 289
A Variation of the Garage Indexer . 291

Internal Representation of Type Indexers. 292
Indexers: Final Details . 293
Understanding Operator Overloading. 293
Overloading Binary Operators . 294

And What of the += and –+ Operators? . 295
Overloading Unary Operators . 296
Overloading Equality Operators . 296
Overloading Comparison Operators . 297

■CONTENTSxiv

4193FM.qxd 8/14/05 2:41 PM Page xiv

The Internal Representation of Overloaded Operators. 298
Interacting with Overloaded Operators from

Overloaded Operator–Challenged Languages . 299
Final Thoughts Regarding Operator Overloading . 301
Understanding Custom Type Conversions . 301

Recall: Numerical Conversions . 301
Recall: Conversions Among Related Class Types 301

Creating Custom Conversion Routines. 302
Additional Explicit Conversions for the Square Type 304

Defining Implicit Conversion Routines . 304
The Internal Representation of Custom Conversion Routines 306
The Advanced Keywords of C# . 307

The checked Keyword . 307
The unchecked Keyword . 309
Working with Pointer Types . 310
The sizeof Keyword . 316

C# Preprocessor Directives . 316
Specifying Code Regions . 317
Conditional Code Compilation . 318

Summary . 319

■CHAPTER 10 Understanding Generics . 321

Revisiting the Boxing, Unboxing, and System.Object Relationship 321
The Problem with (Un)Boxing Operations . 322

Type Safety and Strongly Typed Collections. 323
Boxing Issues and Strongly Typed Collections . 325

The System.Collections.Generic Namespace . 326
Examining the List<T> Type . 327

Creating Generic Methods . 329
Omission of Type Parameters . 330

Creating Generic Structures (or Classes) . 332
The default Keyword in Generic Code . 333

Creating a Custom Generic Collection . 334
Constraining Type Parameters Using where. 335
The Lack of Operator Constraints. 338

Creating Generic Base Classes . 339
Creating Generic Interfaces . 340
Creating Generic Delegates . 341

Simulating Generic Delegates Under .NET 1.1. 342
A Brief Word Regarding Nested Delegates. 343

Summary . 343

■CONTENTS xv

4193FM.qxd 8/14/05 2:41 PM Page xv

PART 3 ■ ■ ■ Programming with .NET Assemblies

■CHAPTER 11 Introducing .NET Assemblies . 347

The Role of .NET Assemblies . 347
Assemblies Promote Code Reuse. 347
Assemblies Establish a Type Boundary . 348
Assemblies Are Versionable Units. 348
Assemblies Are Self-Describing . 348
Assemblies Are Configurable . 348

Understanding the Format of a .NET Assembly . 349
The Win32 File Header . 349
The CLR File Header . 350
CIL Code, Type Metadata, and the Assembly Manifest 351
Optional Assembly Resources . 352
Single-File and Multifile Assemblies. 352

Building and Consuming a Single-File Assembly. 354
Exploring the Manifest . 357
Exploring the CIL. 358
Exploring the Type Metadata . 358
Building a C# Client Application . 359
Building a Visual Basic .NET Client Application . 360
Cross-Language Inheritance in Action . 362

Building and Consuming a Multifile Assembly. 362
Exploring the ufo.netmodule File . 364
Exploring the airvehicles.dll File . 364
Consuming a Multifile Assembly . 364

Understanding Private Assemblies. 365
The Identity of a Private Assembly . 365
Understanding the Probing Process . 366
Configuring Private Assemblies . 366
Configuration Files and Visual Studio 2005 . 368
Introducing the .NET Framework 2.0 Configuration Utility. 369

Understanding Shared Assemblies . 371
Understanding Strong Names. 371
Strongly Naming CarLibrary.dll. 373
Assigning Strong Names Using Visual Studio 2005 374
Installing/Removing Shared Assemblies to/from the GAC 374
The Role of Delayed Signing. 375

Consuming a Shared Assembly . 376
Exploring the Manifest of SharedCarLibClient . 378

■CONTENTSxvi

4193FM.qxd 8/14/05 2:41 PM Page xvi

Configuring Shared Assemblies . 378
Freezing the Current Shared Assembly . 379
Building Shared Assembly Version 2.0.0.0. 379
Dynamically Redirecting to Specific Versions of

a Shared Assembly . 381
Revisiting the .NET Framework 2.0 Configuration Utility 382

Investigating the Internal Composition of the GAC . 382
Understanding Publisher Policy Assemblies . 384

Disabling Publisher Policy. 385
Understanding the <codeBase> Element . 385
The System.Configuration Namespace . 387
The Machine Configuration File . 388
The Assembly Binding “Big Picture” . 388
Summary . 389

■CHAPTER 12 Type Reflection, Late Binding, and Attribute-Based
Programming . 391

The Necessity of Type Metadata . 391
Viewing (Partial) Metadata for the EngineState Enumeration 392
Viewing (Partial) Metadata for the Car Type . 393
Examining a TypeRef . 394
Documenting the Defining Assembly . 394
Documenting Referenced Assemblies . 394
Documenting String Literals . 395

Understanding Reflection . 395
The System.Type Class. 396
Obtaining a Type Reference Using System.Object.GetType() 397
Obtaining a Type Reference Using System.Type.GetType() 397
Obtaining a Type Reference Using typeof() . 398

Building a Custom Metadata Viewer . 398
Reflecting on Methods . 398
Reflecting on Fields and Properties . 398
Reflecting on Implemented Interfaces . 399
Displaying Various Odds and Ends . 399
Implementing Main(). 399
Reflecting on Method Parameters and Return Values 401

Dynamically Loading Assemblies. 402
Reflecting on Shared Assemblies. 404
Understanding Late Binding. 406

The System.Activator Class . 406
Invoking Methods with No Parameters . 407
Invoking Methods with Parameters . 407

■CONTENTS xvii

4193FM.qxd 8/14/05 2:41 PM Page xvii

Understanding Attributed Programming . 408
Attribute Consumers . 408
Applying Predefined Attributes in C# . 409
Specifying Constructor Parameters for Attributes 411
The Obsolete Attribute in Action . 411
C# Attribute Shorthand Notation. 411

Building Custom Attributes. 412
Applying Custom Attributes . 413
Restricting Attribute Usage. 414

Assembly-Level (and Module-Level) Attributes . 415
The Visual Studio 2005 AssemblyInfo.cs File . 415

Reflecting on Attributes Using Early Binding . 416
Reflecting on Attributes Using Late Binding. 417
Putting Reflection, Late Binding, and Custom Attributes

in Perspective . 418
Building an Extendable Application . 419

Building CommonSnappableTypes.dll . 419
Building the C# Snap-In . 420
Building the Visual Basic .NET Snap-In . 420
Building an Extendable Windows Forms Application 421

Summary . 424

■CHAPTER 13 Processes, AppDomains, Contexts, and CLR Hosts 425

Reviewing Traditional Win32 Processes. 425
An Overview of Threads . 426

Interacting with Processes Under the .NET Platform. 427
Enumerating Running Processes . 429
Investigating a Specific Process. 430
Investigating a Process’s Thread Set . 430
Investigating a Process’s Module Set. 432
Starting and Stopping Processes Programmatically 434

Understanding .NET Application Domains . 435
Enumerating a Process’s AppDomains. 436
Programmatically Creating New AppDomains . 437
Programmatically Unloading AppDomains . 439

Understanding Object Context Boundaries . 440
Context-Agile and Context-Bound Types . 441
Defining a Context-Bound Object . 442
Inspecting an Object’s Context . 442

Summarizing Processes, AppDomains, and Context . 444

■CONTENTSxviii

4193FM.qxd 8/14/05 2:41 PM Page xviii

Hosting the Common Language Runtime . 444
Side-by-Side Execution of the CLR . 445
Loading a Specific Version of the CLR . 446
Additional CLR Hosts . 447

Summary . 447

■CHAPTER 14 Building Multithreaded Applications . 449

The Process/AppDomain/Context/Thread Relationship 449
The Problem of Concurrency and the Role of

Thread Synchronization. 450
A Brief Review of the .NET Delegate . 451
The Asynchronous Nature of Delegates. 453

The BeginInvoke() and EndInvoke() Methods . 453
The System.IAsyncResult Interface . 453

Invoking a Method Asynchronously . 454
Synchronizing the Calling Thread. 455
The Role of the AsyncCallback Delegate . 456
The Role of the AsyncResult Class . 457
Passing and Receiving Custom State Data . 458

The System.Threading Namespace . 459
The System.Threading.Thread Class . 460

Obtaining Statistics About the Current Thread . 460
The Name Property. 461
The Priority Property . 462

Programmatically Creating Secondary Threads. 462
Working with the ThreadStart Delegate . 463
Working with the ParameterizedThreadStart Delegate 465
Foreground Threads and Background Threads . 466

The Issue of Concurrency. 467
Synchronization Using the C# lock Keyword . 469
Synchronization Using the System.Threading.Monitor Type 471
Synchronization Using the System.Threading.Interlocked Type 471
Synchronization Using the [Synchronization] Attribute 472

Programming with Timer Callbacks . 473
Understanding the CLR ThreadPool . 475
Summary . 476

■CHAPTER 15 Understanding CIL and the Role of
Dynamic Assemblies . 477

Reflecting on the Nature of CIL Programming . 477
Examining CIL Directives, Attributes, and Opcodes . 478

The Role of CIL Directives. 478
The Role of CIL Attributes . 479

■CONTENTS xix

4193FM.qxd 8/14/05 2:41 PM Page xix

The Role of CIL Opcodes . 479
The CIL Opcode/CIL Mnemonic Distinction . 479

Pushing and Popping: The Stack-Based Nature of CIL 480
Understanding Round-trip Engineering . 481

The Role of CIL Code Labels. 483
Interacting with CIL: Modifying an *.il File . 484
Compiling CIL Code Using ilasm.exe . 485
Compiling CIL Code Using SharpDevelop. 486
Compiling CIL Code Using ILIDE# . 486
The Role of peverify.exe . 487

Understanding CIL Directives and Attributes . 487
Specifying Externally Referenced Assemblies in CIL 488
Defining the Current Assembly in CIL. 488
Defining Namespaces in CIL. 489
Defining Class Types in CIL . 489
Defining and Implementing Interfaces in CIL . 490
Defining Structures in CIL. 491
Defining Enums in CIL . 491
Compiling the CILTypes.il file . 491

.NET Base Class Library, C#, and CIL Data Type Mappings. 492
Defining Type Members in CIL . 493

Defining Field Data in CIL . 493
Defining Type Constructors in CIL . 494
Defining Properties in CIL . 494
Defining Member Parameters. 495

Examining CIL Opcodes . 495
Considering the .maxstack Directive . 497
Declaring Local Variables in CIL . 498
Mapping Parameters to Local Variables in CIL. 498
The Hidden this Reference . 499
Representing Iteration Constructs in CIL . 499

Building a .NET Assembly with CIL . 500
Building CILCars.dll. 500
Building CILCarClient.exe . 503

Understanding Dynamic Assemblies . 504
Exploring the System.Reflection.Emit Namespace 505
The Role of the System.Reflection.Emit.ILGenerator 506
Emitting a Dynamic Assembly . 506
Emitting the Assembly and Module Set . 508
The Role of the ModuleBuilder Type. 509
Emitting the HelloClass Type and the String Member Variable 510
Emitting the Constructors . 511
Emitting the HelloWorld() Method. 512
Using the Dynamically Generated Assembly . 512

■CONTENTSxx

4193FM.qxd 8/14/05 2:41 PM Page xx

A Brief Word Regarding System.CodeDOM . 513
Summary . 514

PART 4 ■ ■ ■ Programming with the .NET Libraries

■CHAPTER 16 The System.IO Namespace . 517

Exploring the System.IO Namespace . 517
The Directory(Info) and File(Info) Types . 518

The Abstract FileSystemInfo Base Class . 519
Working with the DirectoryInfo Type . 519

The FileAttributes Enumeration . 521
Enumerating Files with the DirectoryInfo Type. 521
Creating Subdirectories with the DirectoryInfo Type 522

Working with the Directory Type . 523
Working with the DriveInfo Class Type. 524
Working with the FileInfo Class . 525

The FileInfo.Create() Method . 526
The FileInfo.Open() Method . 527
The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods. 528
The FileInfo.OpenText() Method . 528
The FileInfo.CreateText() and FileInfo.AppendText() Methods 528

Working with the File Type . 529
New .NET 2.0 File Members . 530

The Abstract Stream Class. 531
Working with FileStreams. 532

Working with StreamWriters and StreamReaders . 533
Writing to a Text File . 534
Reading from a Text File . 535
Directly Creating StreamWriter/StreamReader Types 536

Working with StringWriters and StringReaders . 536
Working with BinaryWriters and BinaryReaders . 538
Programmatically “Watching” Files . 540
Performing Asynchronous File I/O . 542
Summary . 543

■CHAPTER 17 Understanding Object Serialization . 545

Understanding Object Serialization . 545
The Role of Object Graphs . 546

Configuring Objects for Serialization . 547
Public Fields, Private Fields, and Public Properties 548

■CONTENTS xxi

4193FM.qxd 8/14/05 2:41 PM Page xxi

Choosing a Serialization Formatter . 548
The IFormatter and IRemotingFormatting Interfaces 549
Type Fidelity Among the Formatters . 550

Serializing Objects Using the BinaryFormatter . 550
Deserializing Objects Using the BinaryFormatter. 551

Serializing Objects Using the SoapFormatter. 552
Serializing Objects Using the XmlSerializer . 553

Controlling the Generated XML Data . 553
Persisting Collections of Objects . 555
Customizing the Serialization Process . 556

A Deeper Look at Object Serialization . 557
Customizing Serialization Using ISerializable. 558
Customizing Serialization Using Attributes. 560

Versioning Serializable Objects . 561
Summary . 563

■CHAPTER 18 The .NET Remoting Layer . 565

Defining .NET Remoting . 565
The .NET Remoting Namespaces. 566
Understanding the .NET Remoting Framework . 567

Understanding Proxies and Messages . 567
Understanding Channels. 568
Revisiting the Role of .NET Formatters . 569
All Together Now! . 569
A Brief Word Regarding Extending the Default Plumbing 570

Terms of the .NET Remoting Trade . 570
Object Marshaling Choices: MBR or MBV?. 570
Activation Choices for MBR Types: WKO or CAO? 572
Stateful Configuration of WKO Types: Singleton or Single Call? 573
Summarizing the Traits of MBR Object Types . 574

Basic Deployment of a .NET Remoting Project . 574
Building Your First Distributed Application . 575

Building the General Assembly . 575
Building the Server Assembly. 576
Building the SimpleRemoteObjectClient.exe Assembly 577
Testing the Remoting Application . 578

Understanding the ChannelServices Type . 578
Understanding the RemotingConfiguration Type . 580
Revisiting the Activation Mode of WKO Types . 581
Deploying the Server to a Remote Machine . 582
Leveraging the TCP Channel . 582
A Brief Word Regarding the IpcChannel . 583

■CONTENTSxxii

4193FM.qxd 8/14/05 2:41 PM Page xxii

Remoting Configuration Files . 584
Building Server-Side *.config Files. 584
Building Client-Side *.config Files . 585

Working with MBV Objects. 586
Building the General Assembly . 586
Building the Server Assembly . 587
Building the Client Assembly . 588

Understanding Client-Activated Objects . 590
The Lease-Based Lifetime of CAO/WKO-Singleton Objects 592

The Default Leasing Behavior . 592
Altering the Default Lease Characteristics . 594
Server-Side Lease Adjustment . 595
Client-Side Lease Adjustment . 596

Server-Side (and Client-Side) Lease Sponsorship . 596
Alternative Hosts for Remote Objects . 597

Hosting Remote Objects Using a Windows Service 597
Hosting Remote Objects Using IIS . 601

Asynchronous Remoting . 602
The Role of the [OneWay] Attribute . 604

Summary . 604

■CHAPTER 19 Building a Better Window with
System.Windows.Forms . 605

Overview of the System.Windows.Forms Namespace 605
Working with the Windows Forms Types . 606

Building a Main Window by Hand. 607
Honoring the Separation of Concerns . 608

The Role of the Application Class . 609
Fun with the Application Class . 609
The System.EventHandler Delegate . 611

The Anatomy of a Form . 611
The Functionality of the Control Class . 612

Fun with the Control Class . 614
Responding to the MouseMove Event . 615
Determining Which Mouse Button Was Clicked . 616
Responding to Keyboard Events. 617

The Functionality of the Form Class. 618
The Life Cycle of a Form Type . 619

Building Windows Applications with Visual Studio 2005 621
Enabling the Deprecated Controls . 623
Dissecting a Visual Studio 2005 Windows Forms Project 623
Handling Events at Design Time. 625
The Program Class . 625
Autoreferenced Assemblies . 626

■CONTENTS xxiii

4193FM.qxd 8/14/05 2:41 PM Page xxiii

Working with MenuStrips and ContextMenuStrips . 626
Adding a TextBox to the MenuStrip . 629
Creating a Context Menu . 630
Checking Menu Items. 632

Working with StatusStrips . 633
Designing the Menu System. 634
Designing the StatusStrip. 634
Working with the Timer Type . 637
Toggling the Display . 638
Displaying the Menu Selection Prompts . 639
Establishing a “Ready” State . 639

Working with ToolStrips . 639
Working with ToolStripContainers. 643

Building an MDI Application . 646
Building the Parent Form . 646
Building the Child Form . 647
Spawning Child Windows . 647

Summary . 648

■CHAPTER 20 Rendering Graphical Data with GDI+. 649

A Survey of the GDI+ Namespaces . 649
An Overview of the System.Drawing Namespace . 650
The System.Drawing Utility Types . 651

The Point(F) Type . 651
The Rectangle(F) Type . 652
The Region Class . 653

Understanding the Graphics Class . 653
Understanding Paint Sessions . 655

Invalidating the Form’s Client Area. 656
Obtaining a Graphics Object Outside of a Paint Event Handler 657
Regarding the Disposal of a Graphics Object. 658

The GDI+ Coordinate Systems. 659
The Default Unit of Measure. 660
Specifying an Alternative Unit of Measure . 661
Specifying an Alternative Point of Origin . 662

Defining a Color Value . 663
The ColorDialog Class. 664

Manipulating Fonts. 665
Working with Font Families . 666
Working with Font Faces and Font Sizes . 667
Enumerating Installed Fonts . 669
The FontDialog Class . 671

Survey of the System.Drawing.Drawing2D Namespace 672

■CONTENTSxxiv

4193FM.qxd 8/14/05 2:41 PM Page xxiv

Working with Pens . 673
Working with Pen Caps. 675

Working with Brushes . 677
Working with HatchBrushes . 678
Working with TextureBrushes. 679
Working with LinearGradientBrushes. 681

Rendering Images . 682
Dragging and Hit Testing the PictureBox Control . 684

Hit Testing Rendered Images . 687
Hit Testing Nonrectangular Images . 688

Understanding the .NET Resource Format. 691
The System.Resources Namespace. 691
Programmatically Creating an *.resx File. 692
Building the *.resources File. 693
Binding the *.resources File into a .NET Assembly 693
Working with ResourceWriters . 694
Generating Resources using Visual Studio 2005 694
Programmatically Reading Resources . 697

Summary . 698

■CHAPTER 21 Programming with Windows Forms Controls 699

The World of Windows Forms Controls . 699
Adding Controls to Forms by Hand. 700

The Control.ControlCollection Type. 701
Adding Controls to Forms Using Visual Studio 2005 . 702
Working with the Basic Controls . 703

Fun with Labels . 704
Fun with TextBoxes. 705
Fun with MaskedTextBoxes . 707
Fun with Buttons. 709
Fun with CheckBoxes, RadioButtons, and GroupBoxes 711
Fun with CheckedListBoxes . 714
Fun with ListBoxes . 715
Fun with ComboBoxes . 716

Configuring the Tab Order . 718
The Tab Order Wizard . 718

Setting the Form’s Default Input Button. 719
Working with More Exotic Controls . 719

Fun with MonthCalendars. 719
Fun with ToolTips . 721
Fun with TabControls . 722
Fun with TrackBars . 724
Fun with Panels . 726

■CONTENTS xxv

4193FM.qxd 8/14/05 2:41 PM Page xxv

Fun with the UpDown Controls. 727
Fun with ErrorProviders . 729
Fun with TreeViews. 731
Fun with WebBrowsers . 736

Building Custom Windows Forms Controls . 737
Creating the Images . 739
Building the Design-Time UI. 739
Implementing the Core CarControl . 740
Defining the Custom Events . 741
Defining the Custom Properties . 741
Controlling the Animation . 743
Rendering the Pet Name. 743

Testing the CarControl Type . 743
Building a Custom CarControl Form Host . 744
The Role of the System.ComponentModel Namespace. 746

Enhancing the Design-Time Appearance of CarControl 746
Defining a Default Property and Default Event. 748
Specifying a Custom Toolbox Bitmap . 748

Building Custom Dialog Boxes . 750
The DialogResult Property . 751
Understanding Form Inheritance . 752

Dynamically Positioning Windows Forms Controls . 754
The Anchor Property . 755
The Dock Property . 755
Table and Flow Layout . 756

Summary . 758

■CHAPTER 22 Database Access with ADO.NET . 759

A High-Level Definition of ADO.NET . 759
The Two Faces of ADO.NET . 760

Understanding ADO.NET Data Providers . 760
Microsoft-Supplied Data Providers. 762
Select Third-Party Data Providers . 763

Additional ADO.NET Namespaces . 763
The System.Data Types . 764

The Role of the IDbConnection Interface . 765
The Role of the IDbTransaction Interface . 765
The Role of the IDbCommand Interface . 766
The Role of the IDbDataParameter and IDataParameter Interfaces. 766
The Role of the IDbDataAdapter and IDataAdapter Interfaces. 767
The Role of the IDataReader and IDataRecord Interfaces 767

Abstracting Data Providers Using Interfaces . 768
Increasing Flexibility Using Application Configuration Files. 769

■CONTENTSxxvi

4193FM.qxd 8/14/05 2:41 PM Page xxvi

The .NET 2.0 Provider Factory Model . 770
Registered Data Provider Factories . 771
A Complete Data Provider Factory Example. 772

The <connectionStrings> Element . 774
Installing the Cars Database . 775

Connecting to the Cars Database from Visual Studio 2005 776
Understanding the Connected Layer of ADO.NET . 778

Working with Connection Objects. 779
Working with .NET 2.0 ConnectionStringBuilders 780
Working with Command Objects . 781

Working with Data Readers . 782
Obtaining Multiple Result Sets Using a Data Reader 784

Modifying Tables Using Command Objects . 784
Inserting New Records . 786
Deleting Existing Records. 787
Updating Existing Records . 787

Working with Parameterized Command Objects . 788
Specifying Parameters Using the DbParameter Type. 788

Executing a Stored Procedure Using DbCommand . 790
Asynchronous Data Access Under .NET 2.0 . 792
Understanding the Disconnected Layer of ADO.NET . 793
Understanding the Role of the DataSet . 794

Members of the DataSet. 794
Working with DataColumns . 796

Building a DataColumn . 797
Enabling Autoincrementing Fields . 797
Adding a DataColumn to a DataTable. 798

Working with DataRows . 798
Understanding the DataRow.RowState Property 799

Working with DataTables . 800
Working with .NET 2.0 DataTableReaders . 802

Persisting DataSets (and DataTables) As XML . 803
Binding DataTables to User Interfaces . 804

Programmatically Deleting Rows . 806
Applying Filters and Sort Orders. 807
Updating Rows . 809

Working with the DataView Type . 810
Working with Data Adapters. 811

Filling a DataSet Using a Data Adapter. 812
Mapping Database Names to Friendly Names . 813

Updating a Database Using Data Adapter Objects. 813
Setting the InsertCommand Property . 814
Setting the UpdateCommand Property. 815
Setting the DeleteCommand Property . 815

■CONTENTS xxvii

4193FM.qxd 8/14/05 2:41 PM Page xxvii

Autogenerating SQL Commands Using CommandBuilder Types. 816
Multitabled DataSets and DataRelation Objects . 817

Navigating Between Related Tables . 820
We’re Off to See the (Data) Wizard. 822

Strongly Typed DataSets. 823
The Autogenerated Data Component . 824

Summary . 825

PART 5 ■ ■ ■ Web Applications and XML Web
Services

■CHAPTER 23 ASP.NET 2.0 Web Pages and Web Controls 829

The Role of HTTP . 829
Understanding Web Applications and Web Servers . 830

Working with IIS Virtual Directories . 831
The ASP.NET 2.0 Development Server . 832

The Role of HTML. 832
HTML Document Structure . 833
HTML Form Development . 833
Building an HTML-Based User Interface . 834

The Role of Client-Side Scripting . 836
A Client-Side Scripting Example. 836
Validating the default.htm Form Data. 837

Submitting the Form Data (GET and POST) . 837
Building a Classic ASP Page. 838

Responding to POST Submissions . 839
Problems with Classic ASP. 840

Major Benefits of ASP.NET 1.x . 840
Major Enhancements of ASP.NET 2.0 . 841

The ASP.NET 2.0 Namespaces . 841
The ASP.NET Web Page Code Model . 842

Working with the Single-File Page Model . 843
Working with the Code-behind Page Model . 847

Details of an ASP.NET Website Directory Structure . 851
The Role of the Bin folder . 852
The Role of the App_Code Folder . 853

The ASP.NET 2.0 Page Compilation Cycle . 853
Compilation Cycle for Single-File Pages. 853
Compilation Cycle for Multifile Pages. 854

The Inheritance Chain of the Page Type. 855
The System.Web.UI.Page Type . 856

■CONTENTSxxviii

4193FM.qxd 8/14/05 2:41 PM Page xxviii

Interacting with the Incoming HTTP Request. 857
Obtaining Brower Statistics . 858
Access to Incoming Form Data. 858
The IsPostBack Property. 859

Interacting with the Outgoing HTTP Response . 859
Emitting HTML Content. 860
Redirecting Users . 861

The Life Cycle of an ASP.NET Web Page . 861
The Role of the AutoEventWireUp Attribute . 862
The Error Event . 863

Understanding the Nature of Web Controls . 865
Qualifying Server-Side Event Handling. 865
The AutoPostBack Property . 866

The System.Web.UI.Control Type . 866
Enumerating Contained Controls . 867
Dynamically Adding (and Removing) Controls . 869

Key Members of the System.Web.UI.WebControls.WebControl Type 870
Categories of ASP.NET Web Controls . 871

A Brief Word Regarding System.Web.UI.HtmlControls 871
Building a Simple ASP.NET 2.0 Website . 872

Working with Master Pages . 872
Defining the Default.aspx Content Page. 875
Designing the Inventory Content Page . 877
Designing the Build a Car Content Page . 881

The Role of the Validation Controls . 883
The RequiredFieldValidator. 885
The RegularExpressionValidator . 886
The RangeValidator. 886
The CompareValidator . 887
Creating Validation Summaries . 887

Summary . 888

■CHAPTER 24 ASP.NET 2.0 Web Applications . 889

The Issue of State. 889
ASP.NET State Management Techniques . 891
Understanding the Role of ASP.NET View State . 891

Demonstrating View State . 892
Adding Custom View State Data . 893
A Brief Word Regarding Control State . 894

The Role of the Global.asax File . 894
The Global Last Chance Exception Event Handler 896
The HttpApplication Base Class . 897

■CONTENTS xxix

4193FM.qxd 8/14/05 2:41 PM Page xxix

Understanding the Application/Session Distinction . 897
Maintaining Application-Level State Data . 898
Modifying Application Data. 899
Handling Web Application Shutdown . 900

Working with the Application Cache . 901
Fun with Data Caching . 901
Modifying the *.aspx File . 903

Maintaining Session Data. 906
Additional Members of HttpSessionState. 908

Understanding Cookies . 909
Creating Cookies. 909
Reading Incoming Cookie Data . 911

Configuring Your ASP.NET Web Application Using Web.config 912
Enabling Tracing via <trace> . 913
Customizing Error Output via <customErrors> . 914
Options for Storing State via <sessionState> . 915
The ASP.NET 2.0 Site Administration Utility . 916

Configuration Inheritance . 917
Summary . 918

■CHAPTER 25 Understanding XML Web Services . 919

The Role of XML Web Services . 919
Benefits of XML Web Services . 919
Defining an XML Web Service Client . 920
The Building Blocks of an XML Web Service . 921
Previewing XML Web Service Discovery . 921
Previewing XML Web Service Description . 921
Previewing the Transport Protocol . 922

The .NET XML Web Service Namespaces . 922
Examining the System.Web.Services Namespace. 922

Building an XML Web Service by Hand . 923
Testing Your XML Web Service Using WebDev.WebServer.exe 924
Testing Your Web Service Using IIS . 925
Viewing the WSDL Contract . 925

The Autogenerated Test Page. 925
Providing a Custom Test Page . 925

Building an XML Web Service Using Visual Studio 2005 926
Implementing the TellFortune() Web Method . 928

The Role of the WebService Base Class. 929
Understanding the [WebService] Attribute . 929

The Effect of the Namespace and Description Properties 930
The Name Property. 930

■CONTENTSxxx

4193FM.qxd 8/14/05 2:41 PM Page xxx

Understanding the [WebServiceBinding] Attribute. 931
Ignoring BP 1.1 Conformance Verification . 932
Disabling BP 1.1 Conformance Verification . 932

Understanding the [WebMethod] Attribute. 932
Documenting a Web Method via the Description Property. 932
Avoiding WSDL Name Clashes via the MessageName Property 933
Building Stateful Web Services via the EnableSession Property 933

Exploring the Web Service Description Language (WSDL) 935
Defining a WSDL Document . 936
The <types> Element . 937
The <message> Element. 938
The <portType> Element . 938
The <binding> Element . 939
The <service> Element . 939

Revisiting the XML Web Service Wire Protocols . 940
HTTP GET and HTTP POST Bindings. 940
SOAP Bindings . 941

The wsdl.exe Command-Line Utility . 942
Transforming WSDL into a Server-Side XML Web Service Skeleton 943
Transforming WSDL into a Client-Side Proxy . 944

Examining the Proxy Code . 944
The Default Constructor . 945
Synchronous Invocation Support . 946
Asynchronous Invocation Support . 946
Building the Client Application . 947

Generating Proxy Code Using Visual Studio 2005 . 947
Exposing Custom Types from Web Methods . 948

Exposing Arrays . 949
Exposing Structures . 949
Exposing ADO.NET DataSets . 950
A Windows Forms Client. 951
Client-Side Type Representation . 952

Understanding the Discovery Service Protocol (UDDI). 953
Interacting with UDDI via VS .NET . 954

Summary . 954

■INDEX . 955

■CONTENTS xxxi

4193FM.qxd 8/14/05 2:41 PM Page xxxi

4193FM.qxd 8/14/05 2:41 PM Page xxxii

About the Author

■ANDREW TROELSEN is a Microsoft MVP (Visual C#) and a partner, trainer,
and consultant with Intertech Training (http://www.IntertechTraining.com),
a .NET and J2EE developer education center. He is the author of numerous
books, including Developer’s Workshop to COM and ATL 3.0 (Wordware
Publishing, 2000), COM and .NET Interoperability (Apress, 2002), Visual
Basic .NET and the .NET Platform: An Advanced Guide (Apress, 2001), and
the award-winning C# and the .NET Platform (Apress, 2003). Andrew has
also authored numerous articles on .NET for MSDN online and MacTech
(where he explored the platform-independent aspects of the .NET platform),
and he is a frequent speaker at various .NET conferences and user groups.

Andrew currently lives in Minneapolis, Minnesota, with his wife,
Amanda. He spends his free time waiting for the Wild to win the Stanley Cup, the Vikings to win the
Super Bowl (before he retires would be nice), and the Timberwolves to grab numerous NBA
championship titles.

xxxiii

4193FM.qxd 8/14/05 2:41 PM Page xxxiii

4193FM.qxd 8/14/05 2:41 PM Page xxxiv

About the Technical
Reviewer

■GAVIN SMYTH is a professional software engineer with more years’ experience in development than
he cares to admit, on projects ranging from device drivers to multihost applications; under platforms
as diverse as “bare metal,” real-time operating systems, Unix, and Windows; and in languages including
assembler, C++, Ada, and C#, among a good many others. He has worked for clients such as BT and
Nortel, and is currently employed by Microsoft. Gavin has published a few pieces of technical prose
as well (EXE and Wrox, where are you now?), but finds criticizing other people’s work much more
fulfilling. Beyond that, when he’s not battling weeds and ants in the garden, he tries to persuade
LEGO robots to do what he wants them to do (it’s for the kids’ benefit—honest).

xxxv

4193FM.qxd 8/14/05 2:41 PM Page xxxv

4193FM.qxd 8/14/05 2:41 PM Page xxxvi

Acknowledgments

Completing the third edition of this book would have been completely impossible without
the assistance and talent offered by numerous individuals. First of all, many thanks to the
entire Apress crew. As always, each of you did an outstanding job massaging my raw manu-
script into a polished product. Next, I must thank my technical reviewer, Gavin Smyth (aka
Eagle Eye), who did a truly wonderful job of keeping me honest. Of course, any remaining errors
(spelling, coding, or otherwise) that may have snuck into this book are my sole responsibility.

Thanks to my friends and family who (yet again) tolerated my lack of time and sometimes
grumpy demeanor. More thanks to my friends and coworkers at Intertech Training. Your support
(directly and indirectly) is greatly appreciated. Finally, thanks to my wife, Mandy, and “all the kids”
for their love and encouragement.

xxxvii

4193FM.qxd 8/14/05 2:41 PM Page xxxvii

4193FM.qxd 8/14/05 2:41 PM Page xxxviii

Introduction

I remember a time years ago when I proposed a book to Apress regarding a forthcoming software SDK
code-named Next Generation Windows Services (NGWS). As you may be aware, NGWS eventually
became what we now know as the .NET platform. My research of the C# programming language and
the .NET platform took place in parallel with the authoring of the initial manuscript. It was a fantastic
project; however, I must confess that it was more than a bit nerve-racking writing about a technol-
ogy that was undergoing drastic changes over the course of its development. Thankfully, after many
sleepless nights, the first edition of C# and the .NET Platform was published in conjunction with the
release of .NET 1.0 Beta 2, circa the summer of 2001.

Since that point, I have been extremely happy and grateful to see that this text was very well
received by the press and, most important, by readers. Over the years it was nominated as a Jolt
Award finalist (I lost . . . crap!) and for the 2003 Referenceware Excellence Award in the program-
ming book category (I won? Cool!).

The second edition of this text (C# and the .NET Platform, Second Edition) provided me the
opportunity to expand upon the existing content with regard to version 1.1 of the .NET platform.
Although the second edition of the book did offer a number of new topics, a number of chapters and
examples were unable to make it into the final product.

Now that the book has entered its third edition, I am happy to say that the manuscript con-
tains (almost) all of the topics and examples I was unable to cram into the previous versions. Not only
does this edition of the text account for the numerous bells and whistles brought about by .NET 2.0
but it also incorporates a number of chapters that have long been written but not yet published
(such as content on the common intermediate language, or CIL).

As with the earlier editions, this third edition presents the C# programming language and .NET
base class libraries using a friendly and approachable tone. I have never understood the need
some technical authors have to spit out prose that reads more like a GRE vocabulary study guide than
a readable book. As well, this new edition remains focused on providing you with the information
you need to build software solutions today, rather than spending too much time examining eso-
teric details that few individuals will ever actually care about.

We’re a Team, You and I
Technology authors write for a demanding group of people (I should know—I’m one of them). You
know that building software solutions using any platform is extremely detailed and is very specific
to your department, company, client base, and subject matter. Perhaps you work in the electronic
publishing industry, develop systems for the state or local government, or work at NASA or a branch
of the military. Speaking for myself, I have developed children’s educational software, various n-tier
systems, and numerous projects within the medical and financial industries. The chances are almost
100 percent that the code you write at your place of employment has little to do with the code I write
at mine (unless we happened to work together previously!).

Therefore, in this book, I have deliberately chosen to avoid creating examples that tie the
example code to a specific industry or vein of programming. Given this, I choose to explain C#, OOP,
the CLR, and the .NET 2.0 base class libraries using industry-agnostic examples. Rather than having
every blessed example fill a grid with data, calculate payroll, or whatnot, I’ll stick to subject matter we

xxxix

4193FM.qxd 8/14/05 2:41 PM Page xxxix

can all relate to: automobiles (with some geometric structures and employees thrown in for good
measure). And that’s where you come in.

My job is to explain the C# programming language and the core aspects of the .NET platform
the best I possibly can. As well, I will do everything I can to equip you with the tools and strategies
you need to continue your studies at this book’s conclusion.

Your job is to take this information and apply it to your specific programming assignments.
I obviously understand that your projects most likely don’t revolve around automobiles with pet
names, but that’s what applied knowledge is all about! Rest assured, once you understand the con-
cepts presented within this text, you will be in a perfect position to build .NET solutions that map to
your own unique programming environment.

An Overview of This Book
Pro C# 2005 and the .NET 2.0 Platform, Third Edition is logically divided into five distinct sections,
each of which contains some number of chapters that somehow “belong together.” If you read the
earlier editions of this text, you will notice some similarities in chapter names, but be aware that just
about every page has been updated with new content and expanded examples. You will also notice
that some topics in the first and second editions (such as object serialization and the .NET garbage
collector) have been moved into a chapter of their very own.

Of course, as you would hope, the third edition contains several brand-new chapters (including
a chapter devoted to the syntax and semantics of CIL) and detailed coverage of 2.0-specific features.
These things being said, here is a part-by-part and chapter-by-chapter breakdown of the text.

Part 1: Introducing C# and the .NET Platform
The purpose of Part 1 is to acclimate you to the core aspects of the .NET platform, the .NET type
system, and various development tools (many of which are open source) used during the construc-
tion of .NET applications. Along the way, you will also check out some basic details of the C#
programming language.

Chapter 1: The Philosophy of .NET
This first chapter functions as the backbone for the remainder of the text. We begin by examining the
world of traditional Windows development and uncover the shortcomings with the previous state of
affairs. The primary goal of this chapter, however, is to acquaint you with a number of .NET-centric
building blocks, such as the common language runtime (CLR), Common Type System (CTS), Common
Language Specification (CLS), and base class libraries. Also, you will also take an initial look at the C#
programming language and .NET assembly format, and you’ll examine the platform-independent
nature of the .NET platform and the role of the Common Language Infrastructure (CLI).

Chapter 2: Building C# Applications
The goal of this chapter is to introduce you to the process of compiling and debugging C# source
code files using various tools and techniques. First, you will learn how to make use of the command-
line compiler (csc.exe) and C# response files. Over the remainder of the chapter, you will examine
numerous IDEs, including TextPad, SharpDevelop, Visual C# 2005 Express, and (of course) Visual
Studio 2005. As well, you will be exposed to a number of open source tools (Vil, NAnt, NDoc, etc.),
which any .NET developer should have in their back pocket.

■INTRODUCTIONxl

4193FM.qxd 8/14/05 2:41 PM Page xl

Part 2: The C# Programming Language
This part explores all the gory details of the C# programming language, including the new syn-
tactical constructs introduced with .NET 2.0. As well, Part 2 exposes you to each member of the CTS
(classes, interfaces, structures, enumerations, and delegates) and the construction of generic types.

Chapter 3: C# Language Fundamentals
This chapter examines the core constructs of the C# programming language. Here you will come
to understand basic class construction techniques, the distinction between value types and reference
types, boxing and unboxing, and the role of everybody’s favorite base class, System.Object. Also,
Chapter 3 illustrates how the .NET platform puts a spin on various commonplace programming
constructs, such as enumerations, arrays, and string processing. Finally, this chapter examines
a number of 2.0-specific topics including “nullable data types.”

Chapter 4: Object-Oriented Programming with C#
The role of Chapter 4 is to examine the details of how C# accounts for each “pillar” of OOP: encap-
sulation, inheritance, and polymorphism. Once you have examined the keywords and the syntax
used to build class hierarchies, you will then look at the role of XML code comments.

Chapter 5: Understanding Object Lifetime
This chapter examines how the CLR manages memory using the .NET garbage collector. Here
you will come to understand the role of application roots, object generations, and the System.GC
type. Once you understand the basics, the remainder of this chapter covers the topics of “disposable
objects” (via the IDisposable interface) and the finalization process (via the
System.Object.Finalize() method).

Chapter 6: Understanding Structured Exception Handling
The point of this chapter is to discuss how to handle runtime anomalies in your code base through the
use of structured exception handling. Not only will you learn about the C# keywords that allow you
to handle such problems (try, catch, throw, and finally), but you will also come to understand
the distinction between application-level and system-level exceptions. In addition, this chapter
examines various tools within Visual Studio 2005 that allow you to debug the exceptions that have
escaped your view.

Chapter 7: Interfaces and Collections
The material in this chapter builds upon your understanding of object-based development by
covering the topic of interface-based programming. Here you will learn how to define types that
support multiple behaviors, how to discover these behaviors at runtime, and how to selectively
hide particular behaviors using explicit interface implementation. To showcase the usefulness of
interface types, the remainder of this chapter examines the System.Collections namespace.

Chapter 8: Callback Interfaces, Delegates, and Events
The purpose of Chapter 8 is to demystify the delegate type. Simply put, a .NET delegate is an object
that “points” to other methods in your application. Using this pattern, you are able to build systems
that allow multiple objects to engage in a two-way conversation. After you have examined the use of
.NET delegates (including numerous 2.0-specific features such as anonymous methods), you will then
be introduced to the C# event keyword, which is used to simplify the manipulation of raw delegate
programming.

■INTRODUCTION xli

4193FM.qxd 8/14/05 2:41 PM Page xli

Chapter 9: Advanced C# Type Construction Techniques
This chapter deepens your understanding of the C# programming language by introducing a number
of advanced programming techniques. For example, you will learn how to overload operators and
create custom conversion routines (both implicit and explicit), build type indexers, and manipulate
C-style pointers within a *.cs code file.

Chapter 10: Understanding Generics
As of .NET 2.0, the C# programming language has been enhanced to support a new feature of the
CTS termed generics. As you will see, generic programming greatly enhances application performance
and type safety. Not only will you explore various generic types within the System.Collections.Generic
namespace, but you will also learn how to build your own generic methods and types (with and with-
out constraints).

Part 3: Programming with .NET Assemblies
Part 3 dives into the details of the .NET assembly format. Not only will you learn how to deploy and
configure .NET code libraries, but you will also come to understand the internal composition of a .NET
binary image. This part also explains the role of .NET attributes and the construction of mutilthreaded
applications. Later chapters examine some fairly low-level details (such as object context) and the
syntax and semantics of CIL.

Chapter 11: Introducing .NET Assemblies
From a very high level, assembly is the term used to describe a managed *.dll or *.exe file. However,
the true story of .NET assemblies is far richer than that. Here you will learn the distinction between
single-file and multifile assemblies, and how to build and deploy each entity. You’ll examine how
private and shared assemblies may be configured using XML-based *.config files and publisher
policy assemblies. Along the way, you will investigate the internal structure of the global assembly
cache (GAC) and the role of the .NET Framework 2.0 configuration utility.

Chapter 12: Type Reflection, Late Binding, and Attribute-Based Programming
Chapter 12 continues our examination of .NET assemblies by checking out the process of runtime
type discovery via the System.Reflection namespace. Using these types, you are able to build
applications that can read an assembly’s metadata on the fly. You will learn how to dynamically
activate and manipulate types at runtime using late binding. The final topic of this chapter explores
the role of .NET attributes (both standard and custom). To illustrate the usefulness of each of these
topics, the chapter concludes with the construction of an extendable Windows Forms application.

Chapter 13: Processes, AppDomains, Contexts, and CLR Hosts
Now that you have a solid understanding of assemblies, this chapter dives much deeper into the
composition of a loaded .NET executable. The first goal is to illustrate the relationship between
processes, application domains, and contextual boundaries. Once these terms have been qualified,
you will then understand exactly how the CLR itself is hosted by the Windows operating system and
deepen your understanding of mscoree.dll. The information presented here is a perfect lead-in to
Chapter 14.

■INTRODUCTIONxlii

4193FM.qxd 8/14/05 2:41 PM Page xlii

Chapter 14: Building Multithreaded Applications
This chapter examines how to build multithreaded applications and illustrates a number of techniques
you can use to author thread-safe code. The chapter opens by revisiting the .NET delegate type in
order to understand a delegate’s intrinsic support for asynchronous method invocations. Next, you
will investigate the types within the System.Threading namespace. You will look at numerous types
(Thread, ThreadStart, etc.) that allow you to easily create additional threads of execution.

Chapter 15: Understanding CIL and the Role of Dynamic Assemblies
The goal of this chapter is twofold. In the first half (more or less), you will examine the syntax and
semantics of CIL in much greater detail than in previous chapters. The remainder of this chapter
covers the role of the System.Reflection.Emit namespace. Using these types, you are able to build
software that is capable of generating .NET assemblies in memory at runtime. Formally speaking,
assemblies defined and executed in memory are termed dynamic assemblies.

Part 4: Programming with the .NET Libraries
By this point in the text, you have a solid handle on the C# language and the details of the .NET
assembly format. Part 4 leverages your newfound knowledge by exploring a number of namespaces
within the base class libraries, including file I/O, the .NET remoting layer, Windows Forms develop-
ment, and database access using ADO.NET.

Chapter 16: The System.IO Namespace
As you can gather from its name, the System.IO namespace allows you to interact with a machine’s
file and directory structure. Over the course of this chapter, you will learn how to programmatically
create (and destroy) a directory system as well as move data into and out of various streams (file-based,
string-based, memory-based, etc.).

Chapter 17: Understanding Object Serialization
This chapter examines the object serialization services of the .NET platform. Simply put, serializa-
tion allows you to persist the state of an object (or a set of related objects) into a stream for later use.
Deserialization (as you might expect) is the process of plucking an object from the stream into memory
for consumption by your application. Once you understand the basics, you will then learn how to
customize the serialization process via the ISerializable interface and a set of new attributes intro-
duced with .NET 2.0.

Chapter 18: The .NET Remoting Layer
Contrary to popular belief, XML web services are not the only way to build distributed applications
under the .NET platform. Here you will learn about the .NET remoting layer. As you will see, the
CLR supports the ability to easily pass objects between application and machine boundaries using
marshal-by-value (MBV) and marshal-by-reference (MBR) semantics. Along the way, you will learn
how to alter the runtime behavior of a distributed .NET application in a declarative manner using
XML configuration files.

Chapter 19: Building a Better Window with System.Windows.Forms
This chapter begins your examination of the System.Windows.Forms namespace. Here you will
learn the details of building traditional desktop GUI applications that support menu systems, tool-
bars, and status bars. As you would hope, various design-time aspects of Visual Studio 2005 will
be examined, as well as a number of .NET 2.0 Windows Forms types (MenuStrip, ToolStrip, etc.).

■INTRODUCTION xliii

4193FM.qxd 8/14/05 2:41 PM Page xliii

Chapter 20: Rendering Graphical Data with GDI+
This chapter covers how to dynamically render graphical data in the Windows Forms environment.
In addition to discussing how to manipulate fonts, colors, geometric images, and image files, this
chapter examines hit testing and GUI-based drag-and-drop techniques. You will learn about the new
.NET resource format, which as you may suspect by this point in the text is based on XML data repre-
sentation.

Chapter 21: Programming with Windows Forms Controls
This final Windows-centric chapter will examine numerous GUI widgets that ship with the .NET
Framework 2.0. Not only will you learn how to program against various Windows Forms controls,
but you will also learn about dialog box development and Form inheritance. As well, this chapter
examines how to build custom Windows Forms controls that integrate into the IDE.

Chapter 22: Database Access with ADO.NET
ADO.NET is the data access API of the .NET platform. As you will see, you are able to interact with
the types of ADO.NET using a connected and disconnected layer. Over the course of this chapter,
you will have the chance to work with both modes of ADO.NET, and you’ll learn about several new
.NET 2.0 ADO.NET topics, including the data provider factory model, connection string builders,
and asynchronous database access.

Part 5: Web Applications and XML Web Services
Part 5 is devoted to the construction of ASP.NET web applications and XML web services. As you
will see in the first two chapters of this section, ASP.NET 2.0 is a major upgrade from ASP.NET 1.x and
includes numerous new bells and whistles.

Chapter 23: ASP.NET 2.0 Web Pages and Web Controls
This chapter begins your study of web technologies supported under the .NET platform using
ASP.NET. As you will see, server-side scripting code is now replaced with “real” object-oriented lan-
guages (such as C#, VB .NET, and the like). This chapter will introduce you to key ASP.NET topics
such as working with (or without) code-behind files, the role of ASP.NET web controls, validations
controls, and interacting with the new “master page” model provided by ASP.NET 2.0.

Chapter 24: ASP.NET 2.0 Web Applications
This chapter extends your current understanding of ASP.NET by examining various ways to handle
state management under .NET. Like classic ASP, ASP.NET allows you to easily create cookies, as well
as application-level and session-level variables. However, ASP.NET also introduces a new state man-
agement technique: the application cache. Once you have looked at the numerous ways to handle
state with ASP.NET, you will then come to learn the role of the System.HttpApplication base class
(lurking within the Global.asax file) and how to dynamically alter the runtime behavior of your
web application using the Web.config file.

Chapter 25: Understanding XML Web Services
In this final chapter of this book, you will examine the role of .NET XML web services. Simply put,
a web service is an assembly that is activated using standard HTTP requests. The beauty of this
approach is the fact that HTTP is the one wire protocol almost universal in its acceptance, and it is

■INTRODUCTIONxliv

4193FM.qxd 8/14/05 2:41 PM Page xliv

therefore an excellent choice for building platform- and language-neutral distributed systems. You
will also check out numerous surrounding technologies (WSDL, SOAP, and UDDI) that enable a web
service and external client to communicate in harmony.

Obtaining This Book’s Source Code
All of the code examples contained within this book (minus small code snippets here and there) are
available for free and immediate download from the Source Code area of the Apress website. Simply
navigate to http://www.apress.com, select the Source Code link, and look up this title by name. Once
you are on the “homepage” for Pro C# 2005 and the .NET 2.0 Platform, Third Edition, you may
download a self-extracting *.zip file. After you unzip the contents, you will find that the code has
been logically divided by chapter.

Do be aware that Source Code notes like the following in the chapters are your cue that the
example under discussion may be loaded into Visual Studio 2005 for further examination and modi-
fication:

■Source Code This is a source code note referring you to a specific directory!

To do so, simply open the *.sln file found in the correct subdirectory.

Obtaining Updates for This Book
As you read through this text, you may find an occasional grammatical or code error (although I sure
hope not). If this is the case, my apologies. Being human, I am sure that a glitch or two may be pres-
ent, despite my best efforts. If this is the case, you can obtain the current errata list from the Apress
website (located once again on the “homepage” for this book) as well as information on how to
notify me of any errors you might find.

Contacting Me
If you have any questions regarding this book’s source code, are in need of clarification for a given
example, or simply wish to offer your thoughts regarding the .NET platform, feel free to drop me
a line at the following e-mail address (to ensure your messages don’t end up in my junk mail folder,
please include “C# TE” in the Subject line somewhere): atroelsen@IntertechTraining.com.

Please understand that I will do my best to get back to you in a timely fashion; however, like
yourself, I get busy from time to time. If I don’t respond within a week or two, do know I am not
trying to be a jerk or don’t care to talk to you. I’m just busy (or, if I’m lucky, on vacation somewhere).

So, then! Thanks for buying this text (or at least looking at it in the bookstore while you try to
decide if you will buy it). I hope you enjoy reading this book and putting your newfound knowl-
edge to good use.

Take care,
Andrew Troelsen

■INTRODUCTION xlv

4193FM.qxd 8/14/05 2:41 PM Page xlv

4193FM.qxd 8/14/05 2:41 PM Page xlvi

Introducing C# and the
.NET Platform

P A R T 1

■ ■ ■

4193ch01.qxd 8/14/05 2:43 PM Page 1

4193ch01.qxd 8/14/05 2:43 PM Page 2

The Philosophy of .NET

Every few years or so, the modern-day programmer must be willing to perform a self-inflicted knowl-
edge transplant to stay current with the new technologies of the day. The languages (C++, Visual
Basic 6.0, Java), frameworks (MFC, ATL, STL), and architectures (COM, CORBA, EJB) that were touted
as the silver bullets of software development eventually become overshadowed by something better or
at the very least something new. Regardless of the frustration you can feel when upgrading your internal
knowledge base, it is unavoidable. The .NET platform is Microsoft’s current offering within the land-
scape of software engineering.

The point of this chapter is to lay the conceptual groundwork for the remainder of the book. It
begins with a high-level discussion of a number of .NET-related topics such as assemblies, the com-
mon intermediate language (CIL), and just-in-time (JIT) compilation. In addition to previewing
some key features of the C# programming language, you will also come to understand the relation-
ship between various aspects of the .NET Framework, such as the common language runtime (CLR),
the Common Type System (CTS), and the Common Language Specification (CLS). As you would hope,
all of these topics are explored in further detail throughout the remainder of this text.

This chapter also provides you with an overview of the functionality supplied by the .NET base
class libraries, sometimes abbreviated as the “BCL” or alternatively as the “FCL” (being the Framework
class libraries). Finally, this chapter investigates the language-agnostic and platform-independent
nature of the .NET platform (yes it’s true, .NET is not confined to the Windows operating system).

Understanding the Previous State of Affairs
Before examining the specifics of the .NET universe, it’s helpful to consider some of the issues that
motivated the genesis of Microsoft’s current platform. To get in the proper mind-set, let’s begin this
chapter with a brief and painless history lesson to remember our roots and understand the limita-
tions of the previous state of affairs (after all, admitting you have a problem is the first step toward
finding a solution). After completing this quick tour of life as we knew it, we turn our attention to
the numerous benefits provided by C# and the .NET platform.

Life As a C/Win32 API Programmer
Traditionally speaking, developing software for the Windows family of operating systems involved
using the C programming language in conjunction with the Windows application programming
interface (API). While it is true that numerous applications have been successfully created using this
time-honored approach, few of us would disagree that building applications using the raw API is
a complex undertaking.

The first obvious problem is that C is a very terse language. C developers are forced to contend
with manual memory management, ugly pointer arithmetic, and ugly syntactical constructs. Fur-
thermore, given that C is a structured language, it lacks the benefits provided by the object-oriented

3

C H A P T E R 1

■ ■ ■

4193ch01.qxd 8/14/05 2:43 PM Page 3

CHAPTER 1 ■ THE PHILOSOPHY OF .NET4

approach (can anyone say spaghetti code?) When you combine the thousands of global functions
and data types defined by the Win32 API to an already formidable language, it is little wonder that
there are so many buggy applications floating around today.

Life As a C++/MFC Programmer
One vast improvement over raw C/API development is the use of the C++ programming language.
In many ways, C++ can be thought of as an object-oriented layer on top of C. Thus, even though
C++ programmers benefit from the famed “pillars of OOP” (encapsulation, inheritance, and poly-
morphism), they are still at the mercy of the painful aspects of the C language (e.g., manual memory
management, ugly pointer arithmetic, and ugly syntactical constructs).

Despite its complexity, many C++ frameworks exist today. For example, the Microsoft
Foundation Classes (MFC) provides the developer with a set of C++ classes that facilitate the
construction of Win32 applications. The main role of MFC is to wrap a “sane subset” of the raw
Win32 API behind a number of classes, magic macros, and numerous code-generation tools
(aka wizards). Regardless of the helpful assistance offered by the MFC framework (as well as many
other C++-based windowing toolkits), the fact of the matter is that C++ programming remains
a difficult and error-prone experience, given its historical roots in C.

Life As a Visual Basic 6.0 Programmer
Due to a heartfelt desire to enjoy a simpler lifestyle, many programmers have shifted away from the
world of C(++)-based frameworks to kinder, gentler languages such as Visual Basic 6.0 (VB6). VB6 is
popular due to its ability to build complex user interfaces, code libraries (e.g., COM servers), and
data access logic with minimal fuss and bother. Even more than MFC, VB6 hides the complexities of
the raw Win32 API from view using a number of integrated code wizards, intrinsic data types, classes,
and VB-specific functions.

The major downfall of VB6 (which has been rectified given the advent of Visual Basic .NET) is
that it is not a fully object-oriented language; rather, it is “object aware.” For example, VB6 does not
allow the programmer to establish “is-a” relationships between types (i.e., no classical inheritance)
and has no intrinsic support for parameterized class construction. Moreover, VB6 doesn’t provide
the ability to build multithreaded applications unless you are willing to drop down to low-level
Win32 API calls (which is complex at best and dangerous at worst).

Life As a Java/J2EE Programmer
Enter Java. The Java programming language is (almost) completely object oriented and has its syntac-
tic roots in C++. As many of you are aware, Java’s strengths are far greater than its support for platform
independence. Java (as a language) cleans up many unsavory syntactical aspects of C++. Java (as
a platform) provides programmers with a large number of predefined “packages” that contain various
type definitions. Using these types, Java programmers are able to build “100% Pure Java” applications
complete with database connectivity, messaging support, web-enabled front ends, and a rich user
interface.

Although Java is a very elegant language, one potential problem is that using Java typically
means that you must use Java front-to-back during the development cycle. In effect, Java offers little
hope of language integration, as this goes against the grain of Java’s primary goal (a single program-
ming language for every need). In reality, however, there are millions of lines of existing code out
there in the world that would ideally like to commingle with newer Java code. Sadly, Java makes this
task problematic.

Pure Java is simply not appropriate for many graphically or numerically intensive applications
(in these cases, you may find Java’s execution speed leaves something to be desired). A better

4193ch01.qxd 8/14/05 2:43 PM Page 4

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 5

approach for such programs would be to use a lower-level language (such as C++) where
appropriate. Alas, while Java does provide a limited ability to access non-Java APIs, there is lit-
tle support for true cross-language integration.

Life As a COM Programmer
The Component Object Model (COM) was Microsoft’s previous application development frame-
work. COM is an architecture that says in effect, “If you build your classes in accordance with the
rules of COM, you end up with a block of reusable binary code.”

The beauty of a binary COM server is that it can be accessed in a language-independent man-
ner. Thus, C++ programmers can build COM classes that can be used by VB6. Delphi programmers
can use COM classes built using C, and so forth. However, as you may be aware, COM’s language
independence is somewhat limited. For example, there is no way to derive a new COM class using
an existing COM class (as COM has no support for classical inheritance). Rather, you must make use
of the more cumbersome “has-a” relationship to reuse COM class types.

Another benefit of COM is its location-transparent nature. Using constructs such as applica-
tion identifiers (AppIDs), stubs, proxies, and the COM runtime environment, programmers can
avoid the need to work with raw sockets, RPC calls, and other low-level details. For example, con-
sider the following VB6 COM client code:

' This block of VB6 code can activate a COM class written in
' any COM-aware language, which may be located anywhere
' on the network (including your local machine).
Dim c as MyCOMClass
Set c = New MyCOMClass ' Location resolved using AppID.
c.DoSomeWork

Although COM can be considered a very successful object model, it is extremely complex under
the hood (at least until you have spent many months exploring its plumbing—especially if you
happen to be a C++ programmer). To help simplify the development of COM binaries, numerous
COM-aware frameworks have come into existence. For example, the Active Template Library (ATL)
provides another set of C++ classes, templates, and macros to ease the creation of COM types.

Many other languages also hide a good part of the COM infrastructure from view. However, lan-
guage support alone is not enough to hide the complexity of COM. Even when you choose a relatively
simply COM-aware language such as VB6, you are still forced to contend with fragile registration
entries and numerous deployment-related issues (collectively termed DLL hell).

Life As a Windows DNA Programmer
To further complicate matters, there is a little thing called the Internet. Over the last several years,
Microsoft has been adding more Internet-aware features into its family of operating systems and
products. Sadly, building a web application using COM-based Windows Distributed interNet Appli-
cations Architecture (DNA) is also quite complex.

Some of this complexity is due to the simple fact that Windows DNA requires the use of numer-
ous technologies and languages (ASP, HTML, XML, JavaScript, VBScript, and COM(+), as well as
a data access API such as ADO). One problem is that many of these technologies are completely
unrelated from a syntactic point of view. For example, JavaScript has a syntax much like C, while
VBScript is a subset of VB6. The COM servers that are created to run under the COM+ runtime have
an entirely different look and feel from the ASP pages that invoke them. The result is a highly confused
mishmash of technologies.

Furthermore, and perhaps more important, each language and/or technology has its own type
system (that may look nothing like another’s type system). An “int” in JavaScript is not quite the same
as an “Integer” in VB6.

4193ch01.qxd 8/14/05 2:43 PM Page 5

CHAPTER 1 ■ THE PHILOSOPHY OF .NET6

The .NET Solution
So much for the brief history lesson. The bottom line is that life as a Windows programmer has been
tough. The .NET Framework is a rather radical and brute-force approach to making our lives easier.
The solution proposed by .NET is “Change everything” (sorry, you can’t blame the messenger for the
message). As you will see during the remainder of this book, the .NET Framework is a completely new
model for building systems on the Windows family of operating systems, as well as on numerous
non-Microsoft operating systems such as Mac OS X and various Unix/Linux distributions. To set the
stage, here is a quick rundown of some core features provided courtesy of .NET:

• Full interoperability with existing code: This is (of course) a good thing. Existing COM binaries
can commingle (i.e., interop) with newer .NET binaries and vice versa. Also, Platform Invo-
cation Services (PInvoke) allows you to call C-based libraries (including the underlying API
of the operating system) from .NET code.

• Complete and total language integration: Unlike COM, .NET supports cross-language inheri-
tance, cross-language exception handling, and cross-language debugging.

• A common runtime engine shared by all .NET-aware languages: One aspect of this engine is
a well-defined set of types that each .NET-aware language “understands.”

• A base class library: This library provides shelter from the complexities of raw API calls and
offers a consistent object model used by all .NET-aware languages.

• No more COM plumbing: IClassFactory, IUnknown, IDispatch, IDL code, and the evil VARIANT-
compliant data types (BSTR, SAFEARRAY, and so forth) have no place in a native .NET binary.

• A truly simplified deployment model: Under .NET, there is no need to register a binary unit
into the system registry. Furthermore, .NET allows multiple versions of the same *.dll to
exist in harmony on a single machine.

As you can most likely gather from the previous bullet points, the .NET platform has nothing to
do with COM (beyond the fact that both frameworks originated from Microsoft). In fact, the only
way .NET and COM types can interact with each other is using the interoperability layer.

■Note Coverage of the .NET interoperability layer (including PInvoke) is beyond the scope of this book. If you
require a detailed treatment of these topics, check out my book COM and .NET Interoperability (Apress, 2002).

Introducing the Building Blocks of the .NET
Platform (the CLR, CTS, and CLS)
Now that you know some of the benefits provided by .NET, let’s preview three key (and interrelated)
entities that make it all possible: the CLR, CTS, and CLS. From a programmer’s point of view, .NET
can be understood as a new runtime environment and a comprehensive base class library. The run-
time layer is properly referred to as the common language runtime, or CLR. The primary role of the
CLR is to locate, load, and manage .NET types on your behalf. The CLR also takes care of a number
of low-level details such as memory management and performing security checks.

Another building block of the .NET platform is the Common Type System, or CTS. The CTS
specification fully describes all possible data types and programming constructs supported by the
runtime, specifies how these entities can interact with each other, and details how they are repre-
sented in the .NET metadata format (more information on metadata later in this chapter).

4193ch01.qxd 8/14/05 2:43 PM Page 6

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 7

Understand that a given .NET-aware language might not support each and every feature defined
by the CTS. The Common Language Specification (CLS) is a related specification that defines a subset
of common types and programming constructs that all .NET programming languages can agree on.
Thus, if you build .NET types that only expose CLS-compliant features, you can rest assured that all
.NET-aware languages can consume them. Conversely, if you make use of a data type or programming
construct that is outside of the bounds of the CLS, you cannot guarantee that every .NET program-
ming language can interact with your .NET code library.

The Role of the Base Class Libraries
In addition to the CLR and CTS/CLS specifications, the .NET platform provides a base class library
that is available to all .NET programming languages. Not only does this base class library encapsu-
late various primitives such as threads, file input/output (I/O), graphical rendering, and interaction
with various external hardware devices, but it also provides support for a number of services required
by most real-world applications.

For example, the base class libraries define types that facilitate database access, XML manipula-
tion, programmatic security, and the construction of web-enabled (as well as traditional desktop and
console-based) front ends. From a high level, you can visualize the relationship between the CLR,
CTS, CLS, and the base class library, as shown in Figure 1-1.

Figure 1-1. The CLR, CTS, CLS, and base class library relationship

What C# Brings to the Table
Given that .NET is such a radical departure from previous technologies, Microsoft has developed
a new programming language, C# (pronounced “see sharp”), specifically for this new platform.
C# is a programming language that looks very similar (but not identical) to the syntax of Java.
However, to call C# a Java rip-off is inaccurate. Both C# and Java are based on the syntactical
constructs of C++. Just as Java is in many ways a cleaned-up version of C++, C# can be viewed as
a cleaned-up version of Java—after all, they are all in the same family of languages.

4193ch01.qxd 8/14/05 2:43 PM Page 7

CHAPTER 1 ■ THE PHILOSOPHY OF .NET8

The truth of the matter is that many of C#’s syntactic constructs are modeled after various
aspects of Visual Basic 6.0 and C++. For example, like VB6, C# supports the notion of formal type
properties (as opposed to traditional getter and setter methods) and the ability to declare methods
taking varying number of arguments (via parameter arrays). Like C++, C# allows you to overload
operators, as well as to create structures, enumerations, and callback functions (via delegates).

Due to the fact that C# is a hybrid of numerous languages, the result is a product that is as
syntactically clean—if not cleaner—than Java, is about as simple as VB6, and provides just about
as much power and flexibility as C++ (without the associated ugly bits). In a nutshell, the C# lan-
guage offers the following features (many of which are shared by other .NET-aware programming
languages):

• No pointers required! C# programs typically have no need for direct pointer manipulation
(although you are free to drop down to that level if absolutely necessary).

• Automatic memory management through garbage collection. Given this, C# does not sup-
port a delete keyword.

• Formal syntactic constructs for enumerations, structures, and class properties.

• The C++-like ability to overload operators for a custom type, without the complexity (e.g.,
making sure to “return *this to allow chaining” is not your problem).

• As of C# 2005, the ability to build generic types and generic members using a syntax very simi-
lar to C++ templates.

• Full support for interface-based programming techniques.

• Full support for aspect-oriented programming (AOP) techniques via attributes. This brand of
development allows you to assign characteristics to types and their members to further qualify
their behavior.

Perhaps the most important point to understand about the C# language shipped with the
Microsoft .NET platform is that it can only produce code that can execute within the .NET runtime
(you could never use C# to build a native COM server or a unmanaged Win32 API application).
Officially speaking, the term used to describe the code targeting the .NET runtime is managed code.
The binary unit that contains the managed code is termed an assembly (more details on assemblies
in just a bit). Conversely, code that cannot be directly hosted by the .NET runtime is termed
unmanaged code.

Additional .NET-Aware Programming Languages
Understand that C# is not the only language targeting the .NET platform. When the .NET platform
was first revealed to the general public during the 2000 Microsoft Professional Developers Confer-
ence (PDC), several vendors announced they were busy building .NET-aware versions of their
respective compilers. At the time of this writing, dozens of different languages have undergone
.NET enlightenment. In addition to the five languages that ship with Visual Studio 2005 (C#, J#,
Visual Basic .NET, Managed Extensions for C++, and JScript .NET), there are .NET compilers for
Smalltalk, COBOL, and Pascal (to name a few).

Although this book focuses (almost) exclusively on C#, Table 1-1 lists a number of .NET-enabled
programming languages and where to learn more about them (do note that these URLs are subject
to change).

4193ch01.qxd 8/14/05 2:43 PM Page 8

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 9

Table 1-1. A Sampling of .NET-Aware Programming Languages

.NET Language Web Link Meaning in Life

http://www.oberon.ethz.ch/oberon.net Homepage for Active Oberon .NET.

http://www.usafa.af.mil/df/dfcs/bios/ Homepage for A# (a port of Ada to the .NET platform).
mcc_html/a_sharp.cfm

http://www.netcobol.com For those interested in COBOL .NET.

http://www.eiffel.com For those interested in Eiffel .NET.

http://www.dataman.ro/dforth For those interested in Forth .NET.

http://www.silverfrost.com/11/ftn95/ For those interested in Fortran .NET.
ftn95_fortran_95_for_windows.asp

http://www.vmx-net.com Yes, even Smalltalk .NET is available.

Please be aware that Table 1-1 is not exhaustive. Numerous websites maintain a list of .NET-aware
compilers, one of which would be http://www.dotnetpowered.com/languages.aspx (again, the exact
URL is subject to change). I encourage you to visit this page, as you are sure to find many .NET
languages worth investigating (LISP .NET, anyone?).

Life in a Multilanguage World
As developers first come to understand the language-agnostic nature of .NET, numerous questions
arise. The most prevalent of these questions would have to be, “If all .NET languages compile down
to ‘managed code,’ why do we need more than one compiler?” There are a number of ways to answer
this question. First, we programmers are a very particular lot when it comes to our choice of program-
ming language (myself included). Some of us prefer languages full of semicolons and curly brackets,
with as few language keywords as possible. Others enjoy a language that offers more “human-readable”
syntactic tokens (such as Visual Basic .NET). Still others may want to leverage their mainframe skills
while moving to the .NET platform (via COBOL .NET).

Now, be honest. If Microsoft were to build a single “official” .NET language that was derived
from the BASIC family of languages, can you really say all programmers would be happy with this
choice? Or, if the only “official” .NET language was based on Fortran syntax, imagine all the folks out
there who would ignore .NET altogether. Because the .NET runtime couldn't care less which language
was used to build a block of managed code, .NET programmers can stay true to their syntactic pref-
erences, and share the compiled assemblies among teammates, departments, and external
organizations (regardless of which .NET language others choose to use).

Another excellent byproduct of integrating various .NET languages into a single unified software
solution is the simple fact that all programming languages have their own sets of strengths and weak-
nesses. For example, some programming languages offer excellent intrinsic support for advanced
mathematical processing. Others offer superior support for financial calculations, logical calculations,
interaction with mainframe computers, and so forth. When you take the strengths of a particular pro-
gramming language and then incorporate the benefits provided by the .NET platform, everybody wins.

Of course, in reality the chances are quite good that you will spend much of your time building
software using your .NET language of choice. However, once you learn the syntax of one .NET lan-
guage, it is very easy to master another. This is also quite beneficial, especially to the consultants of
the world. If your language of choice happens to be C#, but you are placed at a client site that has
committed to Visual Basic .NET, you should be able to parse the existing code body almost instantly
(honest!) while still continuing to leverage the .NET Framework. Enough said.

4193ch01.qxd 8/14/05 2:43 PM Page 9

CHAPTER 1 ■ THE PHILOSOPHY OF .NET10

An Overview of .NET Assemblies
Regardless of which .NET language you choose to program with, understand that despite the fact
that .NET binaries take the same file extension as COM servers and unmanaged Win32 binaries
(*.dll or *.exe), they have absolutely no internal similarities. For example, *.dll .NET binaries do
not export methods to facilitate communications with the COM runtime (given that .NET is not
COM). Furthermore, .NET binaries are not described using COM type libraries and are not regis-
tered into the system registry. Perhaps most important, .NET binaries do not contain platform-specific
instructions, but rather platform-agnostic intermediate language (IL) and type metadata. Figure 1-2
shows the big picture of the story thus far.

Figure 1-2. All .NET-aware compilers emit IL instructions and metadata.

■Note There is one point to be made regarding the abbreviation “IL.” During the development of .NET, the offi-
cial term for IL was Microsoft intermediate language (MSIL). However with the final release of .NET, the term was
changed to common intermediate language (CIL). Thus, as you read the .NET literature, understand that IL, MSIL,
and CIL are all describing the same exact entity. In keeping with the current terminology, I will use the abbreviation
“CIL” throughout this text.

When a *.dll or *.exe has been created using a .NET-aware compiler, the resulting module is
bundled into an assembly. You will examine numerous details of .NET assemblies in Chapter 11.
However, to facilitate the discussion of the .NET runtime environment, you do need to understand
some basic properties of this new file format.

As mentioned, an assembly contains CIL code, which is conceptually similar to Java bytecode
in that it is not compiled to platform-specific instructions until absolutely necessary. Typically,
“absolutely necessary” is the point at which a block of CIL instructions (such as a method imple-
mentation) is referenced for use by the .NET runtime.

In addition to CIL instructions, assemblies also contain metadata that describes in vivid detail
the characteristics of every “type” living within the binary. For example, if you have a class named
SportsCar, the type metadata describes details such as SportsCar’s base class, which interfaces are

4193ch01.qxd 8/14/05 2:43 PM Page 10

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 11

implemented by SportsCar (if any), as well as a full description of each member supported by the
SportsCar type.

.NET metadata is a dramatic improvement to COM type metadata. As you may already know,
COM binaries are typically described using an associated type library (which is little more than
a binary version of Interface Definition Language [IDL] code). The problems with COM type infor-
mation are that it is not guaranteed to be present and the fact that IDL code has no way to document
the externally referenced servers that are required for the correct operation of the current COM
server. In contrast, .NET metadata is always present and is automatically generated by a given
.NET-aware compiler.

Finally, in addition to CIL and type metadata, assemblies themselves are also described using
metadata, which is officially termed a manifest. The manifest contains information about the current
version of the assembly, culture information (used for localizing string and image resources), and
a list of all externally referenced assemblies that are required for proper execution. You’ll examine
various tools that can be used to examine an assembly’s types, metadata, and manifest information
over the course of the next few chapters.

Single-File and Multifile Assemblies
In a great number of cases, there is a simple one-to-one correspondence between a .NET assembly
and the binary file (*.dll or *.exe). Thus, if you are building a .NET *.dll, it is safe to consider that
the binary and the assembly are one and the same. Likewise, if you are building an executable desk-
top application, the *.exe can simply be referred to as the assembly itself. As you’ll see in Chapter 11,
however, this is not completely accurate. Technically speaking, if an assembly is composed of a single
*.dll or *.exe module, you have a single-file assembly. Single-file assemblies contain all the neces-
sary CIL, metadata, and associated manifest in an autonomous, single, well-defined package.

Multifile assemblies, on the other hand, are composed of numerous .NET binaries, each of which
is termed a module. When building a multifile assembly, one of these modules (termed the primary
module) must contain the assembly manifest (and possibly CIL instructions and metadata for various
types). The other related modules contain a module level manifest, CIL, and type metadata. As you
might suspect, the primary module documents the set of required secondary modules within the
assembly manifest.

So, why would you choose to create a multifile assembly? When you partition an assembly into
discrete modules, you end up with a more flexible deployment option. For example, if a user is ref-
erencing a remote assembly that needs to be downloaded onto his or her machine, the runtime will
only download the required modules. Therefore, you are free to construct your assembly in such a way
that less frequently required types (such as a type named HardDriveReformatter) are kept in a sepa-
rate stand-alone module.

In contrast, if all your types were placed in a single-file assembly, the end user may end up
downloading a large chunk of data that is not really needed (which is obviously a waste of time).
Thus, as you can see, an assembly is really a logical grouping of one or more related modules that
are intended to be initially deployed and versioned as a single unit.

The Role of the Common Intermediate Language
Now that you have a better feel for .NET assemblies, let’s examine the role of the common
intermediate language (CIL) in a bit more detail. CIL is a language that sits above any particular
platform-specific instruction set. Regardless of which .NET-aware language you choose, the
associated compiler emits CIL instructions. For example, the following C# code models a trivial
calculator. Don’t concern yourself with the exact syntax for now, but do notice the format of the
Add() method in the Calc class:

4193ch01.qxd 8/14/05 2:43 PM Page 11

CHAPTER 1 ■ THE PHILOSOPHY OF .NET12

// Calc.cs
using System;

namespace CalculatorExample
{

// This class contains the app's entry point.
public class CalcApp
{

static void Main()
{

Calc c = new Calc();
int ans = c.Add(10, 84);
Console.WriteLine("10 + 84 is {0}.", ans);

// Wait for user to press the Enter key before shutting down.
Console.ReadLine();

}
}

// The C# calculator.
public class Calc
{

public int Add(int x, int y)
{ return x + y; }

}
}

Once the C# compiler (csc.exe) compiles this source code file, you end up with a single-file
*.exe assembly that contains a manifest, CIL instructions, and metadata describing each aspect of
the Calc and CalcApp classes. For example, if you were to open this assembly using ildasm.exe
(examined a little later in this chapter), you would find that the Add() method is represented using
CIL such as the following:

.method public hidebysig instance int32 Add(int32 x, int32 y) cil managed
{
// Code size 8 (0x8)
.maxstack 2
.locals init ([0] int32 CS$1$0000)
IL_0000: ldarg.1
IL_0001: ldarg.2
IL_0002: add
IL_0003: stloc.0
IL_0004: br.s IL_0006
IL_0006: ldloc.0
IL_0007: ret

} // end of method Calc::Add

Don’t worry if you are unable to make heads or tails of the resulting CIL for this method—
Chapter 15 will describe the basics of the CIL programming language. The point to concentrate on
is that the C# compiler emits CIL, not platform-specific instructions.

Now, recall that this is true of all .NET-aware compilers. To illustrate, assume you created this
same application using Visual Basic .NET (VB .NET), rather than C#:

4193ch01.qxd 8/14/05 2:43 PM Page 12

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 13

' Calc.vb
Imports System

Namespace CalculatorExample
' A VB .NET 'Module' is a class that only contains
' static members.
Module CalcApp

Sub Main()
Dim ans As Integer
Dim c As New Calc
ans = c.Add(10, 84)
Console.WriteLine("10 + 84 is {0}.", ans)
Console.ReadLine()

End Sub
End Module

Class Calc
Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer

Return x + y
End Function

End Class
End Namespace

If you examine the CIL for the Add() method, you find similar instructions (slightly tweaked by
the VB .NET compiler):

.method public instance int32 Add(int32 x, int32 y) cil managed
{
// Code size 9 (0x9)
.maxstack 2
.locals init ([0] int32 Add)
IL_0000: nop
IL_0001: ldarg.1
IL_0002: ldarg.2
IL_0003: add.ovf
IL_0004: stloc.0
IL_0005: br.s IL_0007
IL_0007: ldloc.0
IL_0008: ret

} // end of method Calc::Add

Benefits of CIL
At this point, you might be wondering exactly what is gained by compiling source code into CIL
rather than directly to a specific instruction set. One benefit is language integration. As you have
already seen, each .NET-aware compiler produces nearly identical CIL instructions. Therefore, all
languages are able to interact within a well-defined binary arena.

Furthermore, given that CIL is platform-agnostic, the .NET Framework itself is platform-agnostic,
providing the same benefits Java developers have grown accustomed to (i.e., a single code base run-
ning on numerous operating systems). In fact, there is an international standard for the C# language,
and a large subset of the .NET platform and implementations already exist for many non-Windows
operating systems (more details at the conclusion of this chapter). In contrast to Java, however, .NET
allows you to build applications using your language of choice.

4193ch01.qxd 8/14/05 2:43 PM Page 13

CHAPTER 1 ■ THE PHILOSOPHY OF .NET14

Compiling CIL to Platform-Specific Instructions
Due to the fact that assemblies contain CIL instructions, rather than platform-specific instructions,
CIL code must be compiled on the fly before use. The entity that compiles CIL code into meaningful
CPU instructions is termed a just-in-time (JIT) compiler, which sometimes goes by the friendly name
of Jitter. The .NET runtime environment leverages a JIT compiler for each CPU targeting the runtime,
each optimized for the underlying platform.

For example, if you are building a .NET application that is to be deployed to a handheld
device (such as a Pocket PC), the corresponding Jitter is well equipped to run within a low-
memory environment. On the other hand, if you are deploying your assembly to a back-end
server (where memory is seldom an issue), the Jitter will be optimized to function in a high-
memory environment. In this way, developers can write a single body of code that can be
efficiently JIT-compiled and executed on machines with different architectures.

Furthermore, as a given Jitter compiles CIL instructions into corresponding machine code, it
will cache the results in memory in a manner suited to the target operating system. In this way, if
a call is made to a method named PrintDocument(), the CIL instructions are compiled into platform-
specific instructions on the first invocation and retained in memory for later use. Therefore, the
next time PrintDocument() is called, there is no need to recompile the CIL.

The Role of .NET Type Metadata
In addition to CIL instructions, a .NET assembly contains full, complete, and accurate metadata,
which describes each and every type (class, structure, enumeration, and so forth) defined in the
binary, as well as the members of each type (properties, methods, events, and so on). Thankfully, it
is always the job of the compiler (not the programmer) to emit the latest and greatest type meta-
data. Because .NET metadata is so wickedly meticulous, assemblies are completely self-describing
entities—so much so, in fact, that .NET binaries have no need to be registered into the system reg-
istry.

To illustrate the format of .NET type metadata, let’s take a look at the metadata that has been
generated for the Add() method of the C# Calc class you examined previously (the metadata gener-
ated for the VB .NET version of the Add() method is similar):

TypeDef #2 (02000003)

TypDefName: CalculatorExample.Calc (02000003)
Flags : [Public] [AutoLayout] [Class]
[AnsiClass] [BeforeFieldInit] (00100001)
Extends : 01000001 [TypeRef] System.Object
Method #1 (06000003)

MethodName: Add (06000003)
Flags : [Public] [HideBySig] [ReuseSlot] (00000086)
RVA : 0x00002090
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: I4
2 Arguments
Argument #1: I4
Argument #2: I4
2 Parameters
(1) ParamToken : (08000001) Name : x flags: [none] (00000000)
(2) ParamToken : (08000002) Name : y flags: [none] (00000000)

4193ch01.qxd 8/14/05 2:43 PM Page 14

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 15

Metadata is used by numerous aspects of the .NET runtime environment, as well as by
various development tools. For example, the IntelliSense feature provided by Visual Studio
2005 is made possible by reading an assembly’s metadata at design time. Metadata is also used
by various object browsing utilities, debugging tools, and the C# compiler itself. To be sure,
metadata is the backbone of numerous .NET technologies including remoting, reflection, late
binding, XML web services, and object serialization.

The Role of the Assembly Manifest
Last but not least, remember that a .NET assembly also contains metadata that describes the
assembly itself (technically termed a manifest). Among other details, the manifest documents all
external assemblies required by the current assembly to function correctly, the assembly’s version
number, copyright information, and so forth. Like type metadata, it is always the job of the com-
piler to generate the assembly’s manifest. Here are some relevant details of the
CSharpCalculator.exe manifest:

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly CSharpCalculator
{
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.module CSharpCalculator.exe
.imagebase 0x00400000
.subsystem 0x00000003
.file alignment 512
.corflags 0x00000001

In a nutshell, this manifest documents the list of external assemblies required by CSharpCalcu-
lator.exe (via the .assembly extern directive) as well as various characteristics of the assembly
itself (version number, module name, and so on).

Understanding the Common Type System
A given assembly may contain any number of distinct “types.” In the world of .NET, “type” is sim-
ply a generic term used to refer to a member from the set {class, structure, interface, enumeration,
delegate}. When you build solutions using a .NET-aware language, you will most likely interact
with each of these types. For example, your assembly may define a single class that implements
some number of interfaces. Perhaps one of the interface methods takes an enumeration type as an
input parameter and returns a structure to the caller.

Recall that the Common Type System (CTS) is a formal specification that documents how types
must be defined in order to be hosted by the CLR. Typically, the only individuals who are deeply
concerned with the inner workings of the CTS are those building tools and/or compilers that target
the .NET platform. It is important, however, for all .NET programmers to learn about how to work
with the five types defined by the CTS in their language of choice. Here is a brief overview.

4193ch01.qxd 8/14/05 2:43 PM Page 15

CHAPTER 1 ■ THE PHILOSOPHY OF .NET16

CTS Class Types
Every .NET-aware language supports, at the very least, the notion of a class type, which is the corner-
stone of object-oriented programming (OOP). A class may be composed of any number of members
(such as properties, methods, and events) and data points (fields). In C#, classes are declared using
the class keyword:

// A C# class type.
public class Calc
{

public int Add(int x, int y)
{ return x + y; }

}

Chapter 4 examines the process of building CTS class types with C#; however, Table 1-2 documents
a number of characteristics pertaining to class types.

Table 1-2. CTS Class Characteristics

Class Characteristic Meaning in Life

Is the class “sealed” or not? Sealed classes cannot function as a base class to other classes.

Does the class implement any An interface is a collection of abstract members that
interfaces? provide a contract between the object and object user. The

CTS allows a class to implement any number of interfaces.

Is the class abstract or concrete? Abstract classes cannot be directly created, but are intended
to define common behaviors for derived types. Concrete
classes can be created directly.

What is the “visibility” of this class? Each class must be configured with a visibility attribute.
Basically, this trait defines if the class may be used by external
assemblies, or only from within the defining assembly (e.g.,
a private helper class).

CTS Structure Types
The concept of a structure is also formalized under the CTS. If you have a C background, you should
be pleased to know that these user-defined types (UDTs) have survived in the world of .NET (although
they behave a bit differently under the hood). Simply put, a structure can be thought of as a lightweight
class type having value-based semantics. For more details on the subtleties of structures, see Chapter 3.
Typically, structures are best suited for modeling geometric and mathematical data, and are created in
C# using the struct keyword:

// A C# structure type.
struct Point
{

// Structures can contain fields.
public int xPos, yPos;

// Structures can contain parameterized constructors.
public Point(int x, int y)
{ xPos = x; yPos = y;}

// Structures may define methods.
public void Display()
{

Console.WriteLine("({0}, {1}", xPos, yPos);
}

}

4193ch01.qxd 8/14/05 2:43 PM Page 16

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 17

CTS Interface Types
Interfaces are nothing more than a named collection of abstract member definitions, which may be
supported (i.e., implemented) by a given class or structure. Unlike COM, .NET interfaces do not derive
a common base interface such as IUnknown. In C#, interface types are defined using the interface key-
word, for example:

// A C# interface type.
public interface IDraw
{

void Draw();
}

On their own, interfaces are of little use. However, when a class or structure implements
a given interface in its unique way, you are able to request access to the supplied functionality
using an interface reference in a polymorphic manner. Interface-based programming will be
fully explored in Chapter 7.

CTS Enumeration Types
Enumerations are a handy programming construct that allows you to group name/value pairs. For
example, assume you are creating a video-game application that allows the player to select one of
three character categories (Wizard, Fighter, or Thief). Rather than keeping track of raw numerical
values to represent each possibility, you could build a custom enumeration using the enum keyword:

// A C# enumeration type.
public enum CharacterType
{

Wizard = 100,
Fighter = 200,
Thief = 300

}

By default, the storage used to hold each item is a 32-bit integer; however, it is possible to
alter this storage slot if need be (e.g., when programming for a low-memory device such as
a Pocket PC). Also, the CTS demands that enumerated types derive from a common base class,
System.Enum. As you will see in Chapter 3, this base class defines a number of interesting mem-
bers that allow you to extract, manipulate, and transform the underlying name/value pairs
programmatically.

CTS Delegate Types
Delegates are the .NET equivalent of a type-safe C-style function pointer. The key difference is that
a .NET delegate is a class that derives from System.MulticastDelegate, rather than a simple pointer
to a raw memory address. In C#, delegates are declared using the delegate keyword:

// This C# delegate type can 'point to' any method
// returning an integer and taking two integers as input.
public delegate int BinaryOp(int x, int y);

Delegates are useful when you wish to provide a way for one entity to forward a call to another
entity, and provide the foundation for the .NET event architecture. As you will see in Chapters 8 and 14,
delegates have intrinsic support for multicasting (i.e., forwarding a request to multiple recipients) and
asynchronous method invocations.

4193ch01.qxd 8/14/05 2:43 PM Page 17

CHAPTER 1 ■ THE PHILOSOPHY OF .NET18

CTS Type Members
Now that you have previewed each of the types formalized by the CTS, realize that most types take
any number of members. Formally speaking, a type member is constrained by the set {constructor,
finalizer, static constructor, nested type, operator, method, property, indexer, field, read only field,
constant, event}.

The CTS defines various “adornments” that may be associated with a given member. For exam-
ple, each member has a given visibility trait (e.g., public, private, protected, and so forth). Some
members may be declared as abstract to enforce a polymorphic behavior on derived types as well as
virtual to define a canned (but overridable) implementation. Also, most members may be config-
ured as static (bound at the class level) or instance (bound at the object level). The construction of
type members is examined over the course of the next several chapters.

■Note As described in Chapter 10, .NET 2.0 supports the construction of generic types and generic members.

Intrinsic CTS Data Types
The final aspect of the CTS to be aware of for the time being is that it establishes a well-defined set
of core data types. Although a given language typically has a unique keyword used to declare an
intrinsic CTS data type, all language keywords ultimately resolve to the same type defined in an
assembly named mscorlib.dll. Consider Table 1-3, which documents how key CTS data types are
expressed in various .NET languages.

Table 1-3. The Intrinsic CTS Data Types

CTS Data Type VB .NET Keyword C# Keyword Managed Extensions for C++ Keyword

System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __int64

System.UInt16 UShort ushort unsigned short

System.UInt32 UInteger uint unsigned int or unsigned long

System.UInt64 ULong ulong unsigned __int64

System.Single Single float Float

System.Double Double double Double

System.Object Object object Object^

System.Char Char char wchar_t

System.String String string String^

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool Bool

4193ch01.qxd 8/14/05 2:43 PM Page 18

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 19

Understanding the Common Language Specification
As you are aware, different languages express the same programming constructs in unique, language-
specific terms. For example, in C# you denote string concatenation using the plus operator (+), while
in VB .NET you typically make use of the ampersand (&). Even when two distinct languages express
the same programmatic idiom (e.g., a function with no return value), the chances are very good that
the syntax will appear quite different on the surface:

' VB .NET method returning nothing.
Public Sub MyMethod()

' Some interesting code...
End Sub

// C# method returning nothing.
public void MyMethod()
{

// Some interesting code...
}

As you have already seen, these minor syntactic variations are inconsequential in the eyes of the
.NET runtime, given that the respective compilers (vbc.exe or csc.exe, in this case) emit a similar set
of CIL instructions. However, languages can also differ with regard to their overall level of functional-
ity. For example, a .NET language may or may not have a keyword to represent unsigned data, and may
or may not support pointer types. Given these possible variations, it would be ideal to have a baseline
to which all .NET-aware languages are expected to conform.

The Common Language Specification (CLS) is a set of rules that describe in vivid detail the
minimal and complete set of features a given .NET-aware compiler must support to produce code
that can be hosted by the CLR, while at the same time be accessed in a uniform manner by all
languages that target the .NET platform. In many ways, the CLS can be viewed as a subset of the
full functionality defined by the CTS.

The CLS is ultimately a set of rules that compiler builders must conform to, if they intend their
products to function seamlessly within the .NET universe. Each rule is assigned a simple name (e.g.,
“CLS Rule 6”) and describes how this rule affects those who build the compilers as well as those
who (in some way) interact with them. The crème de la crème of the CLS is the mighty Rule 1:

• Rule 1: CLS rules apply only to those parts of a type that are exposed outside the defining
assembly.

Given this rule, you can (correctly) infer that the remaining rules of the CLS do not apply to the
logic used to build the inner workings of a .NET type. The only aspects of a type that must conform
to the CLS are the member definitions themselves (i.e., naming conventions, parameters, and
return types). The implementation logic for a member may use any number of non-CLS techniques,
as the outside world won’t know the difference.

To illustrate, the following Add() method is not CLS-compliant, as the parameters and return
values make use of unsigned data (which is not a requirement of the CLS):

public class Calc
{

// Exposed unsigned data is not CLS compliant!
public ulong Add(ulong x, ulong y)
{ return x + y;}

}

4193ch01.qxd 8/14/05 2:43 PM Page 19

CHAPTER 1 ■ THE PHILOSOPHY OF .NET20

However, if you were to simply make use of unsigned data internally as follows:

public class Calc
{

public int Add(int x, int y)
{

// As this ulong variable is only used internally,
// we are still CLS compliant.
ulong temp;
...
return x + y;

}
}

you have still conformed to the rules of the CLS, and can rest assured that all .NET languages are
able to invoke the Add() method.

Of course, in addition to Rule 1, the CLS defines numerous other rules. For example, the CLS
describes how a given language must represent text strings, how enumerations should be represented
internally (the base type used for storage), how to define static members, and so forth. Luckily, you
don’t have to commit these rules to memory to be a proficient .NET developer. Again, by and large, an
intimate understanding of the CTS and CLS specifications is only of interest to tool/compiler builders.

Ensuring CLS Compliance
As you will see over the course of this book, C# does define a number of programming constructs
that are not CLS-compliant. The good news, however, is that you can instruct the C# compiler to
check your code for CLS compliance using a single .NET attribute:

// Tell the C# compiler to check for CLS compliance.
[assembly: System.CLSCompliant(true)]

Chapter 12 dives into the details of attribute-based programming. Until then, simply under-
stand that the [CLSCompliant] attribute will instruct the C# compiler to check each and every line of
code against the rules of the CLS. If any CLS violations are discovered, you receive a compiler error
and a description of the offending code.

Understanding the Common Language Runtime
In addition to the CTS and CLS specifications, the final TLA (three letter abbreviation) to contend
with at the moment is the CLR. Programmatically speaking, the term runtime can be understood as
a collection of external services that are required to execute a given compiled unit of code. For
example, when developers make use of the Microsoft Foundation Classes (MFC) to create a new
application, they are aware that their program requires the MFC runtime library (i.e., mfc42.dll).
Other popular languages also have a corresponding runtime. VB6 programmers are also tied to
a runtime module or two (e.g., msvbvm60.dll). Java developers are tied to the Java Virtual Machine
(JVM) and so forth.

The .NET platform offers yet another runtime system. The key difference between the .NET
runtime and the various other runtimes I just mentioned is the fact that the .NET runtime provides
a single well-defined runtime layer that is shared by all languages and platforms that are .NET-aware.

The crux of the CLR is physically represented by a library named mscoree.dll (aka the Com-
mon Object Runtime Execution Engine). When an assembly is referenced for use, mscoree.dll is
loaded automatically, which in turn loads the required assembly into memory. The runtime engine
is responsible for a number of tasks. First and foremost, it is the entity in charge of resolving

4193ch01.qxd 8/14/05 2:43 PM Page 20

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 21

the location of an assembly and finding the requested type within the binary by reading the con-
tained metadata. The CLR then lays out the type in memory, compiles the associated CIL into
platform-specific instructions, performs any necessary security checks, and then executes the code
in question.

In addition to loading your custom assemblies and creating your custom types, the CLR will
also interact with the types contained within the .NET base class libraries when required. Although
the entire base class library has been broken into a number of discrete assemblies, the key
assembly is mscorlib.dll. mscorlib.dll contains a large number of core types that encapsulate
a wide variety of common programming tasks as well as the core data types used by all .NET lan-
guages. When you build .NET solutions, you automatically have access to this particular assembly.

Figure 1-3 illustrates the workflow that takes place between your source code (which is
making use of base class library types), a given .NET compiler, and the .NET execution engine.

Figure 1-3. mscoree.dll in action

4193ch01.qxd 8/14/05 2:43 PM Page 21

The Assembly/Namespace/Type Distinction
Each of us understands the importance of code libraries. The point of libraries such as MFC, J2EE,
and ATL is to give developers a well-defined set of existing code to leverage in their applications.
However, the C# language does not come with a language-specific code library. Rather, C# developers
leverage the language-neutral .NET libraries. To keep all the types within the base class libraries well
organized, the .NET platform makes extensive use of the namespace concept.

Simply put, a namespace is a grouping of related types contained in an assembly. For example,
the System.IO namespace contains file I/O related types, the System.Data namespace defines basic
database types, and so on. It is very important to point out that a single assembly (such as mscorlib.dll)
can contain any number of namespaces, each of which can contain any number of types.

To clarify, Figure 1-4 shows a screen shot of the Visual Studio 2005 Object Brower utility. This tool
allows you to examine the assemblies referenced by your current project, the namespaces within
a particular assembly, the types within a given namespace, and the members of a specific type. Note
that mscorlib.dll contains many different namespaces, each with its own semantically related types.

CHAPTER 1 ■ THE PHILOSOPHY OF .NET22

Figure 1-4. A single assembly can have any number of namespaces.

The key difference between this approach and a language-specific library such as MFC is that
any language targeting the .NET runtime makes use of the same namespaces and same types. For
example, the following three programs all illustrate the ubiquitous “Hello World” application, writ-
ten in C#, VB .NET, and Managed Extensions for C++:

// Hello world in C#
using System;

public class MyApp
{

static void Main()
{

Console.WriteLine("Hi from C#");
}

}

4193ch01.qxd 8/14/05 2:43 PM Page 22

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 23

' Hello world in VB .NET
Imports System

Public Module MyApp
Sub Main()

Console.WriteLine("Hi from VB .NET")
End Sub

End Module

// Hello world in Managed Extensions for C++
#include "stdafx.h"
using namespace System;

int main(array<System::String ^> ^args)
{

Console::WriteLine(L"Hi from managed C++");
return 0;

}

Notice that each language is making use of the Console class defined in the System namespace.
Beyond minor syntactic variations, these three applications look and feel very much alike, both
physically and logically.

Clearly, your primary goal as a .NET developer is to get to know the wealth of types defined in
the (numerous) .NET namespaces. The most fundamental namespace to get your hands around is
named System. This namespace provides a core body of types that you will need to leverage time and
again as a .NET developer. In fact, you cannot build any sort of functional C# application without at
least making a reference to the System namespace. Table 1-4 offers a rundown of some (but certainly
not all) of the .NET namespaces.

Table 1-4. A Sampling of .NET Namespaces

.NET Namespace Meaning in Life

System Within System you find numerous useful types dealing with
intrinsic data, mathematical computations, random number
generation, environment variables, and garbage collection, as well
as a number of commonly used exceptions and attributes.

System.Collections These namespaces define a number of stock container objects
System.Collections.Generic (ArrayList, Queue, and so forth), as well as base types and

interfaces that allow you to build customized collections. As of
.NET 2.0, the collection types have been extended with generic
capabilities.

System.Data These namespaces are used for interacting with databases using
System.Data.Odbc ADO.NET.
System.Data.OracleClient
System.Data.OleDb
System.Data.SqlClient

System.Diagnostics Here, you find numerous types that can be used to
programmatically debug and trace your source code.

System.Drawing Here, you find numerous types wrapping graphical primitives
System.Drawing.Drawing2D such as bitmaps, fonts, and icons, as well as printing capabilities.
System.Drawing.Printing

Continued

4193ch01.qxd 8/14/05 2:43 PM Page 23

CHAPTER 1 ■ THE PHILOSOPHY OF .NET24

Table 1-4. (Continued)

.NET Namespace Meaning in Life

System.IO These namespaces include file I/O, buffering, and so forth. As of
System.IO.Compression .NET 2.0, the IO namespaces now include support compression
System.IO.Ports and port manipulation.

System.Net This namespace (as well as other related namespaces) contains
types related to network programming (requests/responses,
sockets, end points, and so on).

System.Reflection These namespaces define types that support runtime type
System.Reflection.Emit discovery as well as dynamic creation of types.

System.Runtime. This namespace provides facilities to allow .NET types to interact
InteropServices with “unmanaged code” (e.g., C-based DLLs and COM servers)

and vice versa.

System.Runtime.Remoting This namespace (among others) defines types used to build
solutions that incorporate the .NET remoting layer.

System.Security Security is an integrated aspect of the .NET universe. In the
security-centric namespaces you find numerous types dealing
with permissions, cryptography, and so on.

System.Threading This namespace defines types used to build multithreaded
applications.

System.Web A number of namespaces are specifically geared toward the
development of .NET web applications, including ASP.NET and
XML web services.

System.Windows.Forms This namespace contains types that facilitate the construction of
traditional desktop GUI applications.

System.Xml The XML-centric namespaces contain numerous types used to
interact with XML data.

Accessing a Namespace Programmatically
It is worth reiterating that a namespace is nothing more than a convenient way for us mere humans
to logically understand and organize related types. Consider again the System namespace. From
your perspective, you can assume that System.Console represents a class named Console that is
contained within a namespace called System. However, in the eyes of the .NET runtime, this is not
so. The runtime engine only sees a single entity named System.Console.

In C#, the using keyword simplifies the process of referencing types defined in a particular
namespace. Here is how it works. Let’s say you are interested in building a traditional desktop appli-
cation. The main window renders a bar chart based on some information obtained from a back-end
database and displays your company logo. While learning the types each namespace contains takes
study and experimentation, here are some obvious candidates to reference in your program:

// Here are all the namespaces used to build this application.
using System; // General base class library types.
using System.Drawing; // Graphical rendering types.
using System.Windows.Forms; // GUI widget types.
using System.Data; // General data-centric types.
using System.Data.SqlClient; // MS SQL Server data access types.

Once you have specified some number of namespaces (and set a reference to the assemblies
that define them), you are free to create instances of the types they contain. For example, if you are
interested in creating an instance of the Bitmap class (defined in the System.Drawing namespace),
you can write:

4193ch01.qxd 8/14/05 2:43 PM Page 24

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 25

// Explicitly list the namespaces used by this file.
using System;
using System.Drawing;

class MyApp
{

public void DisplayLogo()
{

// Create a 20_20 pixel bitmap.
Bitmap companyLogo = new Bitmap(20, 20);
...

}
}

Because your application is referencing System.Drawing, the compiler is able to resolve the
Bitmap class as a member of this namespace. If you did not specify the System.Drawing namespace,
you would be issued a compiler error. However, you are free to declare variables using a fully quali-
fied name as well:

// Not listing System.Drawing namespace!
using System;

class MyApp
{

public void DisplayLogo()
{

// Using fully qualified name.
System.Drawing.Bitmap companyLogo =

new System.Drawing.Bitmap(20, 20);
...

}
}

While defining a type using the fully qualified name provides greater readability, I think you’d
agree that the C# using keyword reduces keystrokes. In this text, I will avoid the use of fully qualified
names (unless there is a definite ambiguity to be resolved) and opt for the simplified approach of
the C# using keyword.

However, always remember that this technique is simply a shorthand notation for speci-
fying a type’s fully qualified name, and each approach results in the exact same underlying CIL
(given the fact that CIL code always makes use of fully qualified names) and has no effect on
performance or the size of the assembly.

Referencing External Assemblies
In addition to specifying a namespace via the C# using keyword, you also need to tell the C# com-
piler the name of the assembly containing the actual CIL definition for the referenced type. As
mentioned, many core .NET namespaces live within mscorlib.dll. However, the System.Drawing.
Bitmap type is contained within a separate assembly named System.Drawing.dll. A vast majority of
the .NET Framework assemblies are located under a specific directory termed the global assembly
cache (GAC). On a Windows machine, this can be located under %windir%\Assembly, as shown in
Figure 1-5.

4193ch01.qxd 8/14/05 2:43 PM Page 25

CHAPTER 1 ■ THE PHILOSOPHY OF .NET26

Depending on the development tool you are using to build your .NET applications, you will
have various ways to inform the compiler which assemblies you wish to include during the compi-
lation cycle. You’ll examine how to do so in the next chapter, so I’ll hold off on the details for now.

Using ildasm.exe
If you are beginning to feel a tad overwhelmed at the thought of gaining mastery over every namespace
in the .NET platform, just remember that what makes a namespace unique is that it contains types that
are somehow semantically related. Therefore, if you have no need for a user interface beyond a simple
console application, you can forget all about the System.Windows.Forms and System.Web namespaces
(among others). If you are building a painting application, the database namespaces are most likely of
little concern. Like any new set of prefabricated code, you learn as you go.

The Intermediate Language Disassembler utility (ildasm.exe) allows you to load up any .NET
assembly and investigate its contents, including the associated manifest, CIL code, and type meta-
data. By default, ildasm.exe should be installed under C:\Program Files\Microsoft Visual Studio
8\SDK\v2.0\Bin (if you cannot find ildasm.exe in this location, simply search your machine for
a file named “ildasm.exe”).

Once you locate and run this tool, proceed to the File ➤ Open menu command and navigate to
an assembly you wish to explore. By way of illustration, here is the CSharpCalculator.exe assembly
shown earlier in this chapter (see Figure 1-6). ildasm.exe presents the structure of an assembly
using a familiar tree-view format.

Figure 1-5. The base class libraries reside in the GAC.

4193ch01.qxd 8/14/05 2:43 PM Page 26

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 27

Viewing CIL Code
In addition to showing the namespaces, types, and members contained in a given assembly, ildasm.exe
also allows you to view the CIL instructions for a given member. For example, if you were to double-
click the Main() method of the CalcApp class, a separate window would display the underlying CIL (see
Figure 1-7).

Figure 1-6. Your new best friend, ildasm.exe

Figure 1-7. Viewing the underlying CIL

4193ch01.qxd 8/14/05 2:43 PM Page 27

CHAPTER 1 ■ THE PHILOSOPHY OF .NET28

Viewing Type Metadata
If you wish to view the type metadata for the currently loaded assembly, press Ctrl+M. Figure 1-8
shows the metadata for the Calc.Add() method.

Viewing Assembly Metadata
Finally, if you are interested in viewing the contents of the assembly’s manifest, simply double-click
the MANIFEST icon (see Figure 1-9).

Figure 1-8. Viewing type metadata via ildasm.exe

Figure 1-9. Double-click here to view the assembly manifest.

4193ch01.qxd 8/14/05 2:43 PM Page 28

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 29

To be sure, ildasm.exe has more options than shown here, and I will illustrate additional features
of the tool where appropriate in the text. As you read through this text, I strongly encourage you to
open your assemblies using ildasm.exe to see how your C# code is processed into platform-agnostic
CIL code. Although you do not need to become an expert in CIL code to be a C# superstar, under-
standing the syntax of CIL will only strengthen your programming muscle.

Deploying the .NET Runtime
It should come as no surprise that .NET assemblies can be executed only on a machine that has the
.NET Framework installed. As an individual who builds .NET software, this should never be an issue,
as your development machine will be properly configured at the time you install the freely available
.NET Framework 2.0 SDK (as well as commercial .NET development environments such as Visual
Studio 2005).

However, if you deploy an assembly to a computer that does not have .NET installed, it will fail
to run. For this reason, Microsoft provides a setup package named dotnetfx.exe that can be freely
shipped and installed along with your custom software. This installation program is included with
the .NET Framework 2.0 SDK, and it is also freely downloadable from Microsoft.

Once dotnetfx.exe is installed, the target machine will now contain the .NET base class libraries,
.NET runtime (mscoree.dll), and additional .NET infrastructure (such as the GAC).

■Note Do be aware that if you are building a .NET web application, the end user’s machine does not need to be
configured with the .NET Framework, as the browser will simply receive generic HTML and possibly client-side
JavaScript.

The Platform-Independent Nature of .NET
To close this chapter, allow me to briefly comment on the platform-independent nature of the .NET
platform. To the surprise of most developers, .NET assemblies can be developed and executed on
non-Microsoft operating systems (Mac OS X, numerous Linux distributions, BeOS, and FreeBSD, to
name a few). To understand how this is possible, you need to come to terms to yet another abbrevi-
ation in the .NET universe: CLI (Common Language Infrastructure).

When Microsoft released the C# programming language and the .NET platform, it also crafted
a set of formal documents that described the syntax and semantics of the C# and CIL languages, the
.NET assembly format, core .NET namespaces, and the mechanics of a hypothetical .NET runtime
engine (known as the Virtual Execution System, or VES). Better yet, these documents have been sub-
mitted to Ecma International as official international standards (http://www.ecma-international.org).
The specifications of interest are

• ECMA-334: The C# Language Specification

• ECMA-335: The Common Language Infrastructure (CLI)

The importance of these documents becomes clear when you understand that they enable third
parties to build distributions of the .NET platform for any number of operating systems and/or
processors. ECMA-335 is perhaps the more “meaty” of the two specifications, so much so that is has
been broken into five partitions, as shown in Table 1-5.

4193ch01.qxd 8/14/05 2:43 PM Page 29

CHAPTER 1 ■ THE PHILOSOPHY OF .NET30

Table 1-5. Partitions of the CLI

Partitions of ECMA-335 Meaning in Life

Partition I: Architecture Describes the overall architecture of the CLI, including the rules of the
CTS and CLS, and the mechanics of the .NET runtime engine

Partition II: Metadata Describes the details of .NET metadata

Partition III: CIL Describes the syntax and semantics of CIL code

Partition IV: Libraries Gives a high-level overview of the minimal and complete class libraries
that must be supported by a .NET distribution.

Partition V: Annexes A collection of “odds and ends” details such as class library design
guidelines and the implementation details of a CIL compiler

Be aware that Partition IV (Libraries) defines only a minimal set of namespaces that represent
the core services expected by a CLI distribution (collections, console I/O, file I/O, threading, reflec-
tion, network access, core security needs, XML manipulation, and so forth). The CLI does not define
namespaces that facilitate web development (ASP.NET), database access (ADO.NET), or desktop
graphical user interface (GUI) application development (Windows Forms).

The good news, however, is that the mainstream .NET distributions extend the CLI libraries with
Microsoft-compatible equivalents of ASP.NET, ADO.NET, and Windows Forms in order to provide full-
featured, production-level development platforms. To date, there are two major implementations of
the CLI (beyond Microsoft’s Windows-specific offering). Although this text focuses on the creation of
.NET applications using Microsoft’s .NET distribution, Table 1-6 provides information regarding the
Mono and Portable .NET projects.

Table 1-6. Open Source .NET Distributions

Distribution Meaning in Life

http://www.mono-project.com The Mono project is an open source distribution of the CLI that
targets various Linux distributions (e.g., SuSE, Fedora, and so
on) as well as Win32 and Mac OS X.

http://www.dotgnu.org Portable.NET is another open source distribution of the CLI that
runs on numerous operating systems. Portable.NET aims to
target as many operating systems as possible (Win32, AIX, BeOS,
Mac OS X, Solaris, all major Linux distributions, and so on).

Both Mono and Portable.NET provide an ECMA-compliant C# compiler, .NET runtime engine,
code samples, documentation, as well as numerous development tools that are functionally
equivalent to the tools that ship with Microsoft’s .NET Framework 2.0 SDK. Furthermore, Mono
and Portable.NET collectively ship with a VB .NET, Java, and C complier.

■Note If you wish to learn more about Mono or Portable.NET, check out Cross-Platform .NET Development: Using
Mono, Portable.NET, and Microsoft .NET by M. J. Easton and Jason King (Apress, 2004).

4193ch01.qxd 8/14/05 2:43 PM Page 30

CHAPTER 1 ■ THE PHILOSOPHY OF .NET 31

Summary
The point of this chapter was to lay out the conceptual framework necessary for the remainder of
this book. I began by examining a number of limitations and complexities found within the tech-
nologies prior to .NET, and followed up with an overview of how .NET and C# attempt to simplify
the current state of affairs.

.NET basically boils down to a runtime execution engine (mscoree.dll) and base class library
(mscorlib.dll and associates). The common language runtime (CLR) is able to host any .NET binary
(aka assembly) that abides by the rules of managed code. As you have seen, assemblies contain CIL
instructions (in addition to type metadata and the assembly manifest) that are compiled to platform-
specific instructions using a just-in-time (JIT) compiler. In addition, you explored the role of the
Common Language Specification (CLS) and Common Type System (CTS).

This was followed by an examination of the ildasm.exe utility, as well as coverage of how to
configure a machine to host .NET applications using dotnetfx.exe. I wrapped up by briefly address-
ing the platform-independent nature of C# and the .NET platform.

4193ch01.qxd 8/14/05 2:43 PM Page 31

4193ch01.qxd 8/14/05 2:43 PM Page 32

Building C# Applications

As a C# programmer, you may choose among numerous tools to build .NET applications. The
point of this chapter is to provide a tour of various .NET development options, including, of course,
Visual Studio 2005. The chapter opens, however, with an examination of working with the C#
command-line compiler, csc.exe, and the simplest of all text editors, Notepad (notepad.exe). Along
the way, you will also learn about the process of debugging .NET assemblies at the command line
using cordbg.exe. Once you become comfortable compiling and debugging assemblies “IDE-free,”
you will then examine how the TextPad application allows you to edit and compile C# source code
files in a (slightly) more sophisticated manner.

While you could work through this entire text using nothing other than csc.exe and Notepad/
TextPad, I’d bet you are also interested in working with feature-rich integrated development environ-
ments (IDEs). To this end, you will be introduced to an open source IDE named SharpDevelop. This
IDE rivals the functionality of many commercial .NET development environments (and it’s free!).
After briefly examining the Visual C# 2005 Express IDE, you will turn your attention to Visual
Studio 2005. This chapter wraps up with a quick tour of a number of complementary .NET develop-
ment tools (many of which are open source) and describes where to obtain them.

Installing the .NET Framework 2.0 SDK
Before you are able to build .NET applications using the C# programming language and the .NET
Framework, the first step is to install the freely downloadable .NET Framework 2.0 Software
Development Kit (SDK). Do be aware that the .NET Framework 2.0 SDK is automatically installed
with Visual Studio 2005 as well as Visual C# 2005 Express; therefore, if you plan to use either of
these IDEs, there is no need to manually download or install this software package.

If you are not developing with Visual Studio 2005/Visual C# 2005 Express, navigate to
http://msdn.microsoft.com/netframework and search for “.NET Framework 2.0 SDK”. Once you have
located the appropriate page, download setup.exe and save it to a location on your hard drive. At
this point, double-click the executable to install the software.

After the installation process has completed, your development machine will not only be con-
figured with the necessary .NET infrastructure, but also now contain numerous development tools,
a very robust help system, sample code, and tutorials, as well as various white papers.

By default, the .NET Framework 2.0 SDK is installed under C:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0. Here you will find StartHere.htm, which (as the name suggests) serves as an
entry point to other related documentation. Table 2-1 describes the details behind some of the core
subdirectories off the installation root.

33

C H A P T E R 2

■ ■ ■

4193ch02.qxd 8/14/05 2:44 PM Page 33

CHAPTER 2 ■ BUILDING C# APPLICATIONS34

Table 2-1. Subdirectories of the .NET Framework 2.0 SDK Installation Root

Subdirectory Meaning in Life

\Bin Contains a majority of the .NET development tools. Check out
StartTools.htm for a description of each utility.

\Bootstrapper Although you can ignore most of the content in the directory, be aware
that dotnetfx.exe (see Chapter 1) resides under the \Packages\DotNetFx
subdirectory.

\CompactFramework Contains the installer program for the .NET Compact Framework 2.0.

\Samples Provides the setup program (and core content) for the .NET Framework
2.0 SDK samples. To learn how to install the samples, consult
StartSamples.htm.

In addition to the content installed under C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0,
the setup program also creates the Microsoft.NET\Framework subdirectory under your Windows
directory. Here you will find a subdirectory for each version of the .NET Framework installed on
your machine. Within a version-specific subdirectory, you will find command-line compilers for
each language that ships with the Microsoft .NET Framework (CIL, C#, Visual Basic .NET, J#, and
JScript .NET), as well as additional command-line development utilities and .NET assemblies.

The C# Command-Line Compiler (csc.exe)
There are a number of techniques you may use to compile C# source code. In addition to Visual
Studio 2005 (as well as various third-party .NET IDEs), you are able to create .NET assemblies using
the C# command-line compiler, csc.exe (where csc stands for C-Sharp Compiler). This tool is included
with the .NET Framework 2.0 SDK. While it is true that you may never decide to build a large-scale
application using the command-line compiler, it is important to understand the basics of how to
compile your *.cs files by hand. I can think of a few reasons you should get a grip on the process:

• The most obvious reason is the simple fact that you might not have a copy of Visual Studio
2005.

• You plan to make use of automated build tools such as MSBuild or NAnt.

• You want to deepen your understanding of C#. When you use graphical IDEs to build appli-
cations, you are ultimately instructing csc.exe how to manipulate your C# input files. In this
light, it’s edifying to see what takes place behind the scenes.

Another nice by-product of working with csc.exe in the raw is that you become that much
more comfortable manipulating other command-line tools included with the .NET Framework 2.0
SDK. As you will see throughout this book, a number of important utilities are accessible only from
the command line.

Configuring the C# Command-Line Compiler
Before you can begin to make use of the C# command-line compiler, you need to ensure that your
development machine recognizes the existence of csc.exe. If your machine is not configured correctly,
you are forced to specify the full path to the directory containing csc.exe before you can compile
your C# files.

4193ch02.qxd 8/14/05 2:44 PM Page 34

CHAPTER 2 ■ BUILDING C# APPLICATIONS 35

To equip your development machine to compile *.cs files from any directory, follow these
steps (which assume a Windows XP installation; Windows NT/2000 steps will differ slightly):

1. Right-click the My Computer icon and select Properties from the pop-up menu.

2. Select the Advanced tab and click the Environment Variables button.

3. Double-click the Path variable from the System Variables list box.

4. Add the following line to the end of the current Path value (note each value in the Path vari-
able is separated by a semicolon):

C:\Windows\Microsoft.NET\Framework\v2.0.50215

Of course, your entry may need to be adjusted based on your current version and location of
the .NET Framework 2.0 SDK (so be sure to do a sanity check using Windows Explorer). Once you
have updated the Path variable, you may take a test run by closing any command windows open in
the background (to commit the settings), and then opening a new command window and entering

csc /?

If you set things up correctly, you should see a list of options supported by the C# compiler.

■Note When specifying command-line arguments for a given .NET development tool, you may use either a – or /
(e.g., csc -? or csc /?).

Configuring Additional .NET Command-Line Tools
Before you begin to investigate csc.exe, add the following additional Path variable to the System
Variables list box (again, perform a sanity check to ensure a valid directory):

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin

Recall that this directory contains additional command-line tools that are commonly used during
.NET development. With these two paths established, you should now be able to run any .NET util-
ity from any command window. If you wish to confirm this new setting, close any open command
windows, open a new command window, and enter the following command to view the options of
the GAC utility, gacutil.exe:

gacutil /?

■Tip Now that you have seen how to manually configure your machine, I’ll let you in on a shortcut. The .NET
Framework 2.0 SDK provides a preconfigured command window that recognizes all .NET command-line utilities out
of the box. Using the Start button, activate the SDK Command Prompt located under the All Programs ➤ Microsoft
.NET Framework SDK v2.0 menu selection.

4193ch02.qxd 8/14/05 2:44 PM Page 35

CHAPTER 2 ■ BUILDING C# APPLICATIONS36

Building C# Applications Using csc.exe
Now that your development machine recognizes csc.exe, the next goal is to build a simple single
file assembly named TestApp.exe using the C# command-line compiler and Notepad. First, you
need some source code. Open Notepad and enter the following:

// A simple C# application.
using System;

class TestApp
{

public static void Main()
{

Console.WriteLine("Testing! 1, 2, 3");
}

}

Once you have finished, save the file in a convenient location (e.g., C:\CscExample) as
TestApp.cs. Now, let’s get to know the core options of the C# compiler. The first point of interest is to
understand how to specify the name and type of assembly to create (e.g., a console application named
MyShell.exe, a code library named MathLib.dll, a Windows Forms application named MyWinApp.exe,
and so forth). Each possibility is represented by a specific flag passed into csc.exe as a command-line
parameter (see Table 2-2).

Table 2-2. Output-centric Options of the C# Compiler

Option Meaning in Life

/out This option is used to specify the name of the assembly to be created. By
default, the assembly name is the same as the name of the initial input *.cs
file (in the case of a *.dll) or the name of the type containing the program’s
Main() method (in the case of an *.exe).

/target:exe This option builds an executable console application. This is the default file
output type, and thus may be omitted when building this application type.

/target:library This option builds a single-file *.dll assembly.

/target:module This option builds a module. Modules are elements of multifile assemblies
(fully described in Chapter 11).

/target:winexe Although you are free to build Windows-based applications using the
/target:exe flag, the /target:winexe flag prevents a console window from
appearing in the background.

To compile TestApp.cs into a console application named TextApp.exe, change to the directory
containing your source code file and enter the following command set (note that command-line flags
must come before the name of the input files, not after):

csc /target:exe TestApp.cs

Here I did not explicitly specify an /out flag, therefore the executable will be named TestApp.exe,
given that TestApp is the class defining the program’s entry point (the Main() method). Also be aware
that most of the C# compiler flags support an abbreviated version, such as /t rather than /target
(you can view all abbreviations by entering csc /? at the command prompt):

csc /t:exe TestApp.cs

Furthermore, given that the /t:exe flag is the default output used by the C# compiler, you could
also compile TestApp.cs simply by typing

csc TestApp.cs

4193ch02.qxd 8/14/05 2:44 PM Page 36

CHAPTER 2 ■ BUILDING C# APPLICATIONS 37

Figure 2-1. TestApp in action

TestApp.exe can now be run from the command line (see Figure 2-1).

Referencing External Assemblies
Next up, let’s examine how to compile an application that makes use of types defined in a separate
.NET assembly. Speaking of which, just in case you are wondering how the C# compiler understood
your reference to the System.Console type, recall from Chapter 1 that mscorlib.dll is automatically
referenced during the compilation process (if for some strange reason you wish to disable this
behavior, you may specify the /nostdlib flag).

To illustrate the process of referencing external assemblies, let’s update the TestApp application
to display a Windows Forms message box. Open your TestApp.cs file and modify it as follows:

using System;

// Add this!
using System.Windows.Forms;

class TestApp
{

public static void Main()
{

Console.WriteLine("Testing! 1, 2, 3");

// Add this!
MessageBox.Show("Hello...");

}
}

Notice the reference to the System.Windows.Forms namespace via the C# using keyword (intro-
duced in Chapter 1). Recall that when you explicitly list the namespaces used within a given *.cs
file, you avoid the need to make use of fully qualified names (which can lead to hand cramps).

At the command line, you must inform csc.exe which assembly contains the “used” name-
spaces. Given that you have made use of the MessageBox class, you must specify the System.Windows.
Forms.dll assembly using the /reference flag (which can be abbreviated to /r):

csc /r:System.Windows.Forms.dll testapp.cs

If you now rerun your application, you should see what appears in Figure 2-2 in addition to the
console output.

4193ch02.qxd 8/14/05 2:44 PM Page 37

Figure 2-2. Your first Windows Forms application

Compiling Multiple Source Files with csc.exe
The current incarnation of the TestApp.exe application was created using a single *.cs source code
file. While it is perfectly permissible to have all of your .NET types defined in a single *.cs file, most
projects are composed of multiple *.cs files to keep your code base a bit more flexible. Assume you
have authored an additional class contained in a new file named HelloMsg.cs:

// The HelloMessage class
using System;
using System.Windows.Forms;

class HelloMessage
{

public void Speak()
{

MessageBox.Show("Hello...");
}

}

Now, update your initial TestApp class to make use of this new type, and comment out the pre-
vious Windows Forms logic:

using System;

// Don't need this anymore.
// using System.Windows.Forms;

class TestApp
{

public static void Main()
{

Console.WriteLine("Testing! 1, 2, 3");

// Don't need this anymore either.
// MessageBox.Show("Hello...");

// Exercise the HelloMessage class!
HelloMessage h = new HelloMessage();
h.Speak();

}
}

You can compile your C# files by listing each input file explicitly:

csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs

As an alternative, the C# compiler allows you to make use of the wildcard character (*) to inform
csc.exe to include all *.cs files contained in the project directory as part of the current build:

csc /r:System.Windows.Forms.dll *.cs

CHAPTER 2 ■ BUILDING C# APPLICATIONS38

4193ch02.qxd 8/14/05 2:44 PM Page 38

CHAPTER 2 ■ BUILDING C# APPLICATIONS 39

When you run the program again, the output is identical. The only difference between the two
applications is the fact that the current logic has been split among multiple files.

Referencing Multiple External Assemblies
On a related note, what if you need to reference numerous external assemblies using csc.exe? Sim-
ply list each assembly using a semicolon-delimited list. You don’t need to specify multiple external
assemblies for the current example, but some sample usage follows:

csc /r:System.Windows.Forms.dll;System.Drawing.dll *.cs

Working with csc.exe Response Files
As you might guess, if you were to build a complex C# application at the command prompt, your
life would be full of pain as you type in the flags that specify numerous referenced assemblies and
*.cs input files. To help lessen your typing burden, the C# compiler honors the use of response files.

C# response files contain all the instructions to be used during the compilation of your current
build. By convention, these files end in a *.rsp (response) extension. Assume that you have created
a response file named TestApp.rsp that contains the following arguments (as you can see, comments
are denoted with the # character):

This is the response file
for the TestApp.exe app
of Chapter 2.

External assembly references.
/r:System.Windows.Forms.dll

output and files to compile (using wildcard syntax).
/target:exe /out:TestApp.exe *.cs

Now, assuming this file is saved in the same directory as the C# source code files to be compiled,
you are able to build your entire application as follows (note the use of the @ symbol):

csc @TestApp.rsp

If the need should arise, you are also able to specify multiple *.rsp files as input (e.g., csc
@FirstFile.rsp @SecondFile.rsp @ThirdFile.rsp). If you take this approach, do be aware that the
compiler processes the command options as they are encountered! Therefore, command-line argu-
ments in a later *.rsp file can override options in a previous response file.

Also note that flags listed explicitly on the command line before a response file will be overrid-
den by the specified *.rsp file. Thus, if you were to enter

csc /out:MyCoolApp.exe @TestApp.rsp

the name of the assembly would still be TestApp.exe (rather than MyCoolApp.exe), given the
/out:TestApp.exe flag listed in the TestApp.rsp response file. However, if you list flags after
a response file, the flag will override settings in the response file. Thus, in the following command
set, your assembly is indeed named MyCoolApp.exe.

csc @TestApp.rsp /out:MyCoolApp.exe

■Note The /reference flag is cumulative. Regardless of where you specify external assemblies (before, after,
or within a response file) the end result is a summation of each reference assembly.

4193ch02.qxd 8/14/05 2:44 PM Page 39

The Default Response File (csc.rsp)
The final point to be made regarding response files is that the C# compiler has an associated default
response file (csc.rsp), which is located in the same directory as csc.exe itself (e.g., C:\Windows\
Microsoft.NET\Framework\v2.0.50215). If you were to open this file using Notepad, you will find
that numerous .NET assemblies have already been specified using the /r: flag.

When you are building your C# programs using csc.exe, this file will be automatically refer-
enced, even when you supply a custom *.rsp file. Given the presence of the default response file,
the current TestApp.exe application could be successfully compiled using the following command
set (as System.Windows.Forms.dll is referenced within csc.rsp):

csc /out:TestApp.exe *.cs

In the event that you wish to disable the automatic reading of csc.rsp, you can specify the
/noconfig option:

csc @TestApp.rsp /noconfig

Obviously, the C# command-line compiler has many other options that can be used to control
how the resulting .NET assembly is to be generated. If you wish to learn more details regarding the
functionality of csc.exe, look up my article titled “Working with the C# 2.0 Command Line Compiler”
online at http://msdn.microsoft.com.

The Command-Line Debugger (cordbg.exe)
Before moving on to our examination of building C# applications using TextPad, I would like
to briefly point out that the .NET Framework 2.0 SDK does ship with a command-line debugger
named cordbg.exe. This tool provides dozens of options that allow you to debug your assembly.
You may view them by specifying the /? flag:

cordbg /?

Table 2-3 documents some (but certainly not all) of the flags recognized by cordbg.exe (with
the alternative shorthand notation) once you have entered a debugging session.

Table 2-3. A Handful of Useful cordbg.exe Command-Line Flags

Flag Meaning in Life

b[reak] Set or display current breakpoints.

del[ete] Remove one or more breakpoints.

ex[it] Exit the debugger.

g[o] Continue debugging the current process until hitting next breakpoint.

o[ut] Step out of the current function.

p[rint] Print all loaded variables (local, arguments, etc.).

si Step into the next line.

so Step over the next line.

As I assume that most of you will choose to make use of the Visual Studio 2005 integrated debug-
ger, I will not bother to comment on each flag of cordbg.exe. However, for those of you who are
interested, the following section presents a minimal walk-through of the basic process of debugging
at the command line.

CHAPTER 2 ■ BUILDING C# APPLICATIONS40

4193ch02.qxd 8/14/05 2:44 PM Page 40

Figure 2-3. Debugging with cordbg.exe

CHAPTER 2 ■ BUILDING C# APPLICATIONS 41

Debugging at the Command Line
Before you can debug your application using cordbg.exe, the first step is to generate debugging
symbols for your current application by specifying the /debug flag of csc.exe. For example, to gener-
ate debugging data for TestApp.exe, enter the following command set:

csc @testapp.rsp /debug

This generates a new file named (in this case) testapp.pdb. If you do not have an associated
*.pdb file, it is still possible to make use of cordbg.exe; however, you will not be able to view your
C# source code during the process (which is typically no fun whatsoever, unless you wish to compli-
cate matters by reading CIL code).

Once you have generated a *.pdb file, open a session with cordbg.exe by specifying your .NET
assembly as a command-line argument (the *.pdb file will be loaded automatically):

cordbg.exe testapp.exe

At this point, you are in debugging mode and may apply any number of cordbg.exe flags at the
(cordbg) command prompt (see Figure 2-3).

When you wish to quit debugging with cordbg.exe, simply type exit (or the shorthand ex).
Again, unless you are a command-line junkie, I assume you will opt for the graphical debugger pro-
vided by your IDE. If you require more information, look up cordbg.exe in the .NET Framework 2.0
SDK documentation.

Building .NET Applications Using TextPad
While Notepad is fine for creating simple .NET programs, it offers nothing in the way of developer
productivity. It would be ideal to author *.cs files using an editor that supports (at a minimum) key-
word coloring, code snippets, and integration with a C# compiler. As luck would have it, such a tool
does exist: TextPad.

4193ch02.qxd 8/14/05 2:44 PM Page 41

CHAPTER 2 ■ BUILDING C# APPLICATIONS42

Figure 2-4. Setting TextPad’s C# preferences

TextPad is an editor you can use to author and compile code for numerous programming lan-
guages, including C#. The chief advantage of this product is the fact that it is very simple to use and
provides just enough bells and whistles to enhance your coding efforts.

To obtain TextPad, navigate to http://www.textpad.com and download the current version
(4.7.3 at the time of this writing). Once you have installed the product, you will have a feature-
complete version of TextPad; however, this tool is not freeware. Until you purchase a single-user license
(for around US$30.00 at the time of this writing), you will be presented with a “friendly reminder”
each time you run the application.

Enabling C# Keyword Coloring
TextPad is not equipped to understand C# keywords or work with csc.exe out of the box. To do so, you
will need to install an additional add-on. Navigate to http://www.textpad.com/add-ons/syna2g.html
and download csharp8.zip using the “C# 2005” link option. This add-on takes into account the new
keywords introduced with C# 2005 (in contrast to the “C#” link, which is limited to C# 1.1).

Once you have unzipped csharp8.zip, place a copy of the extracted csharp8.syn file in the
Samples subdirectory of the TextPad installation (e.g., C:\Program Files\TextPad 4\Samples). Next,
launch TextPad and perform the following tasks using the New Document Wizard.

1. Activate the Configure ➤ New Document Class menu option.

2. Enter the name C# 2.0 in the “Document class name” edit box.

3. In the next step, enter *.cs in the “Class members” edit box.

4. Finally, enable syntax highlighting, choose csharp8.syn from the drop-down list box, and
close the wizard.

You can now tweak TextPad’s C# support using the Document Classes node accessible from the
Configure ➤ Preferences menu (see Figure 2-4).

4193ch02.qxd 8/14/05 2:44 PM Page 42

CHAPTER 2 ■ BUILDING C# APPLICATIONS 43

Figure 2-5. TextPadTest.cs

Configuring the *.cs File Filter
The next configuration detail is to create a filter for C# source code files displayed by the Open and
Save dialog boxes:

1. Activate the Configure ➤ Preferences menu option and select File Name Filters from the
tree view control.

2. Click the New button, and enter C# into the Description field and *.cs into the Wild cards
text box.

3. Move your new filter to the top of the list using the Move Up button and click OK.

Create a new file (using File ➤ New) and save it in a convenient location (such as
C:\TextPadTestApp) as TextPadTest.cs. Next, enter a trivial class definition (see Figure 2-5).

Hooking Into csc.exe
The last major configuration detail to contend with is to associate csc.exe with TextPad so you can
compile your C# files. The first way to do so is using the Tools ➤ Run menu option. Here you are
presented with a dialog box that allows you to specify the name of the tool to run and any necessary
command-line flags. To compile TextPadTest.cs into a .NET console-based executable, follow these
steps:

1. Enter the full path to csc.exe into the Command text box (e.g., C:\Windows\Microsoft.NET\
Framework\v2.0. 50215\csc.exe).

2. Enter the command-line options you wish to specify within the Parameters text box (e.g.,
/out:myApp.exe *.cs). Recall that you can specify a custom response file to simplify matters
(e.g., @myInput.rsp).

4193ch02.qxd 8/14/05 2:44 PM Page 43

CHAPTER 2 ■ BUILDING C# APPLICATIONS44

3. Enter the directory containing the input files via the Initial folder text box (C:\TextPadTestApp
in this example).

4. If you wish TextPad to capture the compiler output directly (rather than within a separate
command window), select the Capture Output check box.

Figure 2-6 shows the complete compilation settings.

At this point, you can either run your program by double-clicking the executable using Windows
Explorer or leverage the Tools ➤ Run menu option to specify myApp.exe as the current command
(see Figure 2-7).

When you click OK, you should see the program’s output (“Hello from TextPad”) displayed in
the Command Results document.

Associating Run Commands with Menu Items
TextPad also allows you to create custom menu items that represent predefined run commands.
Let’s create a custom item under the Tools menu named “Compile C# Console” that will compile all
C# files in the current directory:

1. Activate the Configure ➤ Preferences menu option and select Tools from the tree view control.

2. Using the Add button, select Program and specify the full path to csc.exe.

Figure 2-6. Specifying a custom Run command

Figure 2-7. Instructing TextPad to run myApp.exe

4193ch02.qxd 8/14/05 2:44 PM Page 44

CHAPTER 2 ■ BUILDING C# APPLICATIONS 45

3. If you wish, rename csc.exe to a more descriptive label (Compile C#) by clicking the tool
name and then clicking OK.

4. Finally, activate the Configure ➤ Preferences menu option once again, but this time select
Compile C# from the Tools node, and specify *.cs as the sole value in the Parameters field
(see Figure 2-8).

With this, you can now compile all C# files in the current directory using your custom Tools
menu item.

Enabling C# Code Snippets
Before leaving behind the world of TextPad, there is one final free add-on you might wish to install.
Navigate to http://www.textpad.com/add-ons/cliplibs.html and download csharp_1.zip using the
C# clip library provided by Sean Gephardt. Extract the contained csharp.tcl file and place it in the
Samples subdirectory. When you restart TextPad, you should find a new clip library named C Sharp
Helpers available from the Clip Library drop-down list (see Figure 2-9). Double-clicking any item
will insert the related C# code in the active document at the location of the cursor.

Figure 2-8. Creating a Tools menu item

Figure 2-9. C# code snippets à la TextPad

4193ch02.qxd 8/14/05 2:44 PM Page 45

CHAPTER 2 ■ BUILDING C# APPLICATIONS46

As you may agree, TextPad is a step in the right direction when contrasted to Notepad and the
command prompt. However, TextPad does not (currently) provide IntelliSense capabilities for C#
code, GUI designers, project templates, or database manipulation tools. To address such needs,
allow me to introduce the next .NET development tool: SharpDevelop.

Building .NET Applications Using SharpDevelop
SharpDevelop is an open source and feature-rich IDE that you can use to build .NET assemblies
using C#, VB .NET, Managed Extensions for C++, or CIL. Beyond the fact that this IDE is completely
free, it is interesting to note that it was written entirely in C#. In fact, you have the choice to down-
load and compile the *.cs files manually or run a setup.exe program to install SharpDevelop on
your development machine. Both distributions can be obtained from http://www.icsharpcode.
net/OpenSource/SD/Download.

Once you have installed SharpDevelop, the File ➤ New ➤ Combine menu option allows you to
pick which type of project you wish to generate (and in which .NET language). In the lingo of SharpDe-
velop, a combine is a collection of individual projects (analogous to a Visual Studio solution). Assume
you have created a C# Windows Application named MySDWinApp (see Figure 2-10).

■Note Be aware that version 1.0 of SharpDevelop is configured to make use of the C# 1.1 compiler. To make
use of the new C# 2005 language features and .NET Framework 2.0 namespaces, you will need to activate the
Project ➤ Project options menu item and update the compiler version from the Runtime/Compiler option page.

Figure 2-10. The SharpDevelop New Project dialog box

4193ch02.qxd 8/14/05 2:44 PM Page 46

CHAPTER 2 ■ BUILDING C# APPLICATIONS 47

Learning the Lay of the Land: SharpDevelop
SharpDevelop provides numerous productivity enhancements and in many cases is as feature rich
as Visual Studio .NET 2003 (but not currently as powerful as Visual Studio 2005). Here is a hit list of
some of the major benefits:

• Support for the Microsoft and Mono C# compilers

• IntelliSense and code expansion capabilities

• An Add Reference dialog box to reference external assemblies, including assemblies
deployed to the GAC

• A visual Windows Forms designer

• Various project perspective windows (termed scouts) to view your projects

• An integrated object browser utility (the Assembly Scout)

• Database manipulation utilities

• A C# to VB .NET (and vice versa) code conversion utility

• Integration with the NUnit (a .NET unit test utility) and NAnt (a .NET build utility)

• Integration with the .NET Framework SDK documentation

Impressive for a free IDE, is it not? Although this chapter doesn’t cover each of these points in
detail, let’s walk through a few items of interest. If you require further details of SharpDevelop, be
aware that it ships with very thorough documentation accessible from the Help ➤ Help Topics menu
option.

The Project and Classes Scouts
When you create a new combine, you can make use of the Project Scout to view the set of files, ref-
erenced assemblies, and resource files of each project (see Figure 2-11).

When you wish to reference an external assembly for your current project, simply right-click
the References icon within the Project Scout and select the Add Reference context menu. Once
you do, you may select assemblies directly from the GAC as well as custom assemblies via the
.NET Assembly Browser tab (see Figure 2-12).

Figure 2-11. The Project Scout

4193ch02.qxd 8/14/05 2:44 PM Page 47

CHAPTER 2 ■ BUILDING C# APPLICATIONS48

The Classes Scout provides a more object-oriented view of your combine in that it displays the
namespaces, types, and members within each project (see Figure 2-13).

If you double-click any item, SharpDevelop responds by opening the corresponding file and
placing your mouse cursor at the item’s definition.

The Assembly Scout
The Assembly Scout utility (accessible from the View menu) allows you to graphically browse the
assemblies referenced within your project. This tool is split into two panes. On the left is a tree view
control that allows you to drill into an assembly and view its namespaces and the contained types
(see Figure 2-14).

Figure 2-12. The SharpDevelop Add Reference dialog box

Figure 2-13. The Classes Scout

4193ch02.qxd 8/14/05 2:44 PM Page 48

CHAPTER 2 ■ BUILDING C# APPLICATIONS 49

The right side of the Assembly Scout utility allows you to view details of the item selected on
the left pane. Not only can you view the basic details using the Info tab, but also you can also view
the underlying CIL code of the item and save its definition to an XML file.

Windows Forms Designers
As you will learn later in this book, Windows Forms is a toolkit used to build desktop applications.
To continue tinkering with SharpDevelop, click the Design tab located at the bottom of the MainForm.cs
code window. Once you do, you will open the integrated Windows Forms designer.

Using the Windows Forms section of your Tools window, you can create a GUI for the Form you
are designing. To demonstrate this, place a single Button type on your main Form by selecting the
Button icon and clicking the designer. To update the look and feel of any GUI item, you can make use
of the Properties window (see Figure 2-15), which you activate from the View ➤ Properties menu
selection. Select the Button from the drop-down list and change various aspects of the Button type
(e.g., BackColor and Text).

Figure 2-14. Viewing referenced assemblies using the Assembly Scout

Figure 2-15. The Properties window

4193ch02.qxd 8/14/05 2:44 PM Page 49

CHAPTER 2 ■ BUILDING C# APPLICATIONS50

Using this same window, you can handle events for a given GUI item. To do so, click the light-
ning bolt icon at the top of the Properties window. Next, select the GUI item you wish to interact
with from the drop-down list (your Button in this case). Finally, handle the Click event by typing in
the name of the method to be called when the user clicks the button (see Figure 2-16).

Once you press the Enter key, SharpDevelop responds by generating stub code for your new
method. To complete the example, enter the following statement within the scope of your event
handler:

void ButtonClicked(object sender, System.EventArgs e)
{

// Update the Form's caption with a custom message.
this.Text = "Stop clicking my button!";

}

At this point, you can run your program (using the Debug ➤ Run menu item). Sure enough,
when you click your Button, you should see the Form’s caption update as expected.

That should be enough information to get you up and running using the SharpDevelop IDE.
I do hope you now have a good understanding of the basics, though obviously there is much more
to this tool than presented here.

Building .NET Applications Using Visual C# 2005
Express
During the summer of 2004, Microsoft introduced a brand-new line of IDEs that fall under the desig-
nation of “Express” products (http://msdn.microsoft.com/express). To date, there are six members
of the Express family:

• Visual Web Developer 2005 Express: A lightweight tool for building dynamic websites and
XML web services using ASP.NET 2.0

• Visual Basic 2005 Express: A streamlined programming tool ideal for novice programmers who
want to learn how to build applications using the user-friendly syntax of Visual Basic .NET

Figure 2-16. Handing events via the Properties window

4193ch02.qxd 8/14/05 2:44 PM Page 50

CHAPTER 2 ■ BUILDING C# APPLICATIONS 51

• Visual C# 2005 Express, Visual C++ 2005 Express, and Visual J# 2005 Express: Targeted IDEs for
students and enthusiasts who wish to learn the fundamentals of computer science in their
syntax of choice

• SQL Server 2005 Express: An entry-level database management system geared toward hobbyists,
enthusiasts, and student developers

■Note At the time of this writing, the Express family products are available as public betas free of charge.

By and large, Express products are slimmed-down versions of their Visual Studio 2005 counter-
parts and are primarily targeted at .NET hobbyists and students. Like SharpDevelop, Visual C# 2005
Express provides various browsing tools, a Windows Forms designer, the Add References dialog box,
IntelliSense capabilities, and code expansion templates. As well, Visual C# 2005 Express offers a few
(important) features currently not available in SharpDevelop, including

• An integrated graphical debugger

• Tools to simplify access to XML web services

Because the look and feel of Visual C# 2005 Express is so similar to that of Visual Studio 2005
(and, to some degree, SharpDevelop) I do not provide a walk-through of this particular IDE here. If
you do wish to learn more about the product, look up my article “An Introduction to Programming
Using Microsoft Visual C# 2005 Express Edition” online at http://msdn.microsoft.com.

The Big Kahuna: Building .NET Applications Using
Visual Studio 2005
If you are a professional .NET software engineer, the chances are extremely good that your employer
has purchased Microsoft’s premier IDE, Visual Studio 2005, for your development endeavors
(http://msdn.microsoft.com/vstudio). This tool is far and away the most feature-rich and enterprise-
ready IDE examined in this chapter. Of course, this power comes at a price, which will vary based on
the version of Visual Studio 2005 you purchase. As you might suspect, each version supplies a unique
set of features.

My assumption during the remainder of this text is that you have chosen to make use of Visual
Studio 2005 as your IDE of choice. Do understand that owning a copy of Visual Studio 2005 is not
required for you to use this edition of the text. In the worst case, I may examine an option that is not
provided by your IDE. However, rest assured that all of this book’s sample code will compile just fine
when processed by your tool of choice.

■Note Once you download the source code for this book from the Downloads area of the Apress website
(http://www.apress.com), you may load the current example into Visual Studio 2005 by double-clicking the
example’s *.sln file. If you are not using Visual Studio 2005, you will need to manually configure your IDE to
compile the provided *.cs files.

4193ch02.qxd 8/14/05 2:44 PM Page 51

CHAPTER 2 ■ BUILDING C# APPLICATIONS52

Learning the Lay of the Land: Visual Studio 2005
Visual Studio 2005 ships with the expected GUI designers, database manipulation tools, object and
project browsing utilities, and an integrated help system. Unlike the IDEs we have already examined,
Visual Studio 2005 provides numerous additions. Here is a partial list:

• Visual XML editors/designers

• Support for mobile device development (such as Smartphones and Pocket PC devices)

• Support for Microsoft Office development

• The ability to track changes for a given source document and view revisions

• Integrated support for code refactoring

• An XML-based code expansion library

• Visual class design tools and object test utilities

• A code definition window (which replaces the functionality of the Windows Forms Class
Viewer, wincv.exe, which shipped with .NET 1.1 and earlier)

To be completely honest, Visual Studio 2005 provides so many features that it would take an
entire book (a large book at that) to fully describe every aspect of the IDE. This is not that book.
However, I do want to point out some of the major enhancements in the pages that follow. As you
progress through the text, you’ll learn more about the Visual Studio 2005 IDE where appropriate.

The Solution Explorer Utility
If you are following along, create a new C# console application (named Vs2005Example) using the
File ➤ New ➤ Project menu item. The Solution Explorer utility (accessible from the View menu)
allows you to view the set of all content files and referenced assemblies that comprise the current
project (see Figure 2-17).

Notice that the References folder of Solution Explorer displays a list of each assembly you have
currently referenced (console projects reference System.dll, System.Data.dll, and System.Xml.dll
by default). When you need to reference additional assemblies, right-click the References folder and
select Add Reference. At this point, you can select your assembly from the resulting dialog box.

Figure 2-17. Solution Explorer

4193ch02.qxd 8/14/05 2:44 PM Page 52

CHAPTER 2 ■ BUILDING C# APPLICATIONS 53

■Note Visual Studio 2005 now allows you to set references to executable assemblies (unlike Visual Studio .NET
2003, in which you were limited to *.dll code libraries).

Finally, notice an icon named Properties within Solution Explorer. When you double-click this
item, you are presented with an enhanced project configuration editor (see Figure 2-18).

You will see various aspects of the Project Properties window as you progress through this text.
However, if you take some time to poke around, you will see that you can establish various security
settings, strongly name your assembly, insert string resources, and configure pre- and postbuild
events.

The Class View Utility
The next tool to examine is the Class View utility, which you can load from the View menu. Like
SharpDevelop, the purpose of this utility is to show all of the types in your current project from an
object-oriented perspective. The top pane displays the set of namespaces and their types, while the
bottom pane displays the currently selected type’s members (see Figure 2-19).

Figure 2-18. The Project Properties window

4193ch02.qxd 8/14/05 2:44 PM Page 53

CHAPTER 2 ■ BUILDING C# APPLICATIONS54

The Code Definition Window
If you have a background in programming with .NET 1.1, you may be familiar with the Windows
Forms Class Viewer utility, wincv.exe. This tool allowed you to type in the name of a .NET type and
view its C# definition. While wincv.exe is deprecated with the release of .NET 2.0, an enhanced ver-
sion of this tool has been integrated within Visual C# 2005 Express and Visual Studio 2005. You can
activate the Code Definition window using the View menu. Simply place your mouse cursor over
any type in your C# code files, and you will be presented with a snapshot of the type in question. For
example, if you click the word “string” within your Main() method, you find the definition of the
System.String class type (see Figure 2-20).

The Object Browser Utility
As you may recall from Chapter 1, Visual Studio 2005 also provides a utility to investigate the
set of referenced assemblies within your current project. Activate the Object Browser using the
View ➤ Other Windows menu, and then select the assembly you wish to investigate (see Figure 2-21).

Figure 2-19. The Class View utility

Figure 2-20. The Code Definition window

4193ch02.qxd 8/14/05 2:44 PM Page 54

CHAPTER 2 ■ BUILDING C# APPLICATIONS 55

Integrated Support for Code Refactoring
One major enhancement that ships with Visual Studio 2005 is intrinsic support to refactor existing
code. Simply put, refactoring is a formal and mechanical process whereby you improve an existing
code base. In the bad old days, refactoring typically involved a ton of manual labor. Luckily, Visual
Studio 2005 does a great deal to automate the refactoring process. Using the Refactor menu, related
keyboard shortcuts, smart tags, and/or context-sensitive mouse clicks, you can dramatically reshape
your code with minimal fuss and bother. Table 2-4 defines some common refactorings recognized
by Visual Studio 2005.

Table 2-4. Visual Studio 2005 Refactorings

Refactoring Technique Meaning in Life

Extract Method Allows you to define a new method based on a selection of
code statements

Encapsulate Field Turns a public field into a private field encapsulated by
a C# property

Extract Interface Defines a new interface type based on a set of existing type
members

Reorder Parameters Provides a way to reorder member arguments

Remove Parameters Removes a given argument from the current list of
parameters (as you would expect)

Rename Allows you to rename a code token (method name, field,
local variable, and so on) throughout a project

Promote Local Variable to Parameter Moves a local variable to the parameter set of the defining
method

Figure 2-21. The Visual Studio 2005 Object Browser utility

4193ch02.qxd 8/14/05 2:44 PM Page 55

To illustrate refactoring in action, update your Main() method with the following code:

static void Main(string[] args)
{

// Set up Console UI (CUI)
Console.Title = "My Rocking App";
Console.ForegroundColor = ConsoleColor.Yellow;
Console.BackgroundColor = ConsoleColor.Blue;
Console.WriteLine("*************************************");
Console.WriteLine("***** Welcome to My Rocking App *****");
Console.WriteLine("*************************************");
Console.BackgroundColor = ConsoleColor.Black;

// Wait for key press to close.
Console.ReadLine();

}

While there is nothing wrong with the preceding code as it now stands, imagine that you want
to display this prompt at various places throughout your program. Rather than retyping the same
exact console user interface logic, it would be ideal to have a helper function that could be called to
do so. Given this, you will apply the Extract Method refactoring to your existing code. First, select
each code statement (except the final call to Console.ReadLine()) within the editor. Now, right-click
and select the Extract Method option from the Refactor context menu. Name your new method
ConfigureCUI() in the resulting dialog box. When you have finished, you will find that your Main()
method calls the newly generated ConfigureCUI() method, which now contains the previously
selected code:

class Program
{

static void Main(string[] args)
{

ConfigureCUI();

// Wait for key press to close.
Console.ReadLine();

}

private static void ConfigureCUI()
{

// Set up Console UI (CUI)
Console.Title = "My Rocking App";
Console.ForegroundColor = ConsoleColor.Yellow;
Console.BackgroundColor = ConsoleColor.Blue;
Console.WriteLine("*************************************");
Console.WriteLine("***** Welcome to My Rocking App *****");
Console.WriteLine("*************************************");
Console.BackgroundColor = ConsoleColor.Black;

}
}

■Note If you are interested in more information on the refactoring process and a detailed walk-through of each
refactoring supported by Visual Studio 2005, look up my article “Refactoring C# Code Using Visual Studio 2005”
online at http://msdn.microsoft.com.

CHAPTER 2 ■ BUILDING C# APPLICATIONS56

4193ch02.qxd 8/14/05 2:44 PM Page 56

Code Expansions and Surround with Technology
Visual Studio 2005 (as well as Visual C# 2005 Express) also has the capability to insert complex
blocks of C# code using menu selections, context-sensitive mouse clicks, and/or keyboard short-
cuts. The number of available code expansions is impressive and can be broken down into two
main groups:

• Snippets: These templates insert common code blocks at the location of the mouse cursor.

• Surround With: These templates wrap a block of selected statements within a relevant scope.

To see this functionality firsthand, right-click a blank line within your Main() method and acti-
vate the Insert Snippet menu. Once you select a given item, you will find the related code is expanded
automatically (press the Esc key to dismiss the pop-up menu).

If you were to right-click and select the Surround With menu, you would likewise be presented
with a list of options. Be sure to take time to explore these predefined code expansion templates, as
they can radically speed up the development process.

■Note All code expansion templates are XML-based descriptions of the code to generate within the IDE. Using
Visual Studio 2005 (as well as Visual C# 2005 Express), you can create your own custom code templates. Details
of how to do so can be found in my article “Investigating Code Snippet Technology” at http://msdn.microsoft.com.

The Visual Class Designer
Visual Studio 2005 gives us the ability to design classes visually (but this capability is not included in
Visual C# 2005 Express). The Class Designer utility allows you to view and modify the relationships
of the types (classes, interfaces, structures, enumerations, and delegates) in your project. Using this
tool, you are able to visually add (or remove) members to (or from) a type and have your modifications
reflected in the corresponding C# file. As well, as you modify a given C# file, changes are reflected in
the class diagram.

To work with this aspect of Visual Studio 2005, the first step is to insert a new class diagram file.
There are many ways to do so, one of which is to click the View Class Diagram button located on
Solution Explorer’s right side (see Figure 2-22).

CHAPTER 2 ■ BUILDING C# APPLICATIONS 57

Figure 2-22. Inserting a class diagram file

Once you do, you will find class icons that represent the classes in your current project. If you
click the arrow image, you can show or hide the type’s members (see Figure 2-23).

4193ch02.qxd 8/14/05 2:44 PM Page 57

This utility works in conjunction with two other aspects of Visual Studio 2005: the Class Details
window (activated using the View ➤ Other Windows menu) and the Class Designer Toolbox (acti-
vated using the View ➤ Toolbox menu item). The Class Details window not only shows you the
details of the currently selected item in the diagram, but also allows you to modify existing members
and insert new members on the fly (see Figure 2-24).

CHAPTER 2 ■ BUILDING C# APPLICATIONS58

The Class Designer Toolbox (see Figure 2-25) allows you to insert new types into your project
(and create relationships between these types) visually. (Be aware you must have a class diagram as
the active window to view this toolbox.) As you do so, the IDE automatically creates new C# type
definitions in the background.

Figure 2-23. The Class Diagram viewer

Figure 2-24. The Class Details window

Figure 2-25. Inserting a new class using the visual Class Designer

4193ch02.qxd 8/14/05 2:44 PM Page 58

CHAPTER 2 ■ BUILDING C# APPLICATIONS 59

By way of example, drag a new class from the Class Designer Toolbox onto your Class Designer.
Name this class Car in the resulting dialog box. Now, using the Class Details window, add a public
string field named petName (see Figure 2-26).

If you now look at the C# definition of the Car class, you will see it has been updated accordingly:

public class Car
{

// Public data is typically a bad idea; however,
// it keeps this example simple.
public string petName;

}

Add another new class to the designer named SportsCar. Now, select the Inheritance icon from
the Class Designer Toolbox and click the top of the SportsCar icon. Without releasing the left mouse
button, move the mouse on top of the Car class icon. If you performed these steps correctly, you
have just derived the SportsCar class from Car (see Figure 2-27).

Figure 2-26. Adding a field with the Class Details window

Figure 2-27. Visually deriving from an existing class

4193ch02.qxd 8/14/05 2:44 PM Page 59

CHAPTER 2 ■ BUILDING C# APPLICATIONS60

To complete this example, update the generated SportsCar class with a public method named
PrintPetName() as follows:

public class SportsCar : Car
{

public void PrintPetName()
{

petName = "Fred";
Console.WriteLine("Name of this car is: {0}", petName);

}
}

Object Test Bench
Another nice visual tool provided by Visual Studio 2005 is Object Test Bench (OTB). This aspect of
the IDE allows you to quickly create an instance of a class and invoke its members without the need
to compile and run the entire application. This can be extremely helpful when you wish to test
a specific method, but would rather not step through dozens of lines of code to do so.

To work with OTB, right-click the type you wish to create using the Class Designer. For example,
right-click the SportsCar type, and from the resulting context menu select Create Instance ➤ Sports-
Car(). This will display a dialog box that allows you to name your temporary object variable (and supply
any constructor arguments if required). Once the process is complete, you will find your object hosted
within the IDE. Right-click the object icon and invoke the PrintPetName() method (see Figure 2-28).

Figure 2-28. The Visual Studio 2005 Object Test Bench

You will see the message “Name of this car is: Fred” appear within the Visual Studio 2005 Quick
Console.

The Integrated Help System
The final aspect of Visual Studio 2005 you must be comfortable with from the outset is the fully
integrated help system. The .NET Framework 2.0 SDK documentation is extremely good, very read-
able, and full of useful information. Given the huge number of predefined .NET types (which
number well into the thousands), you must be willing to roll up your sleeves and dig into the pro-
vided documentation. If you resist, you are doomed to a long, frustrating, and painful existence as
a .NET developer.

Visual Studio 2005 provides the Dynamic Help window, which changes its contents (dynami-
cally!) based on what item (window, menu, source code keyword, etc.) is currently selected. For

4193ch02.qxd 8/14/05 2:44 PM Page 60

CHAPTER 2 ■ BUILDING C# APPLICATIONS 61

example, if you place the cursor on the Console class, the Dynamic Help window displays a set of
links regarding the System.Console type.

You should also be aware of a very important subdirectory of the .NET Framework 2.0 SDK
documentation. Under the .NET Development ➤ .NET Framework SDK➤ Class Library Reference
node of the documentation, you will find complete documentation of each and every namespace in
the .NET base class libraries (see Figure 2-29).

Each “book” defines the set of types in a given namespace, the members of a given type, and
the parameters of a given member. Furthermore, when you view the help page for a given type, you
will be told the name of the assembly and namespace that contains the type in question (located at
the top of said page). As you read through the remainder of this book, I assume that you will dive
into this very, very critical node to read up on additional details of the entity under examination.

A Partial Catalogue of Additional .NET
Development Tools
To conclude this chapter, I would like to point out a number of .NET development tools that com-
plement the functionality provided by your IDE of choice. Many of the tools mentioned here are
open source, and all of them are free of charge. While I don’t have the space to cover the details of
these utilities, Table 2-5 lists a number of the tools I have found to be extremely helpful as well as
URLs you can visit to find more information about them.

Figure 2-29. The .NET base class library reference

4193ch02.qxd 8/14/05 2:44 PM Page 61

CHAPTER 2 ■ BUILDING C# APPLICATIONS62

Table 2-5. Select .NET Development Tools

Tool Meaning in Life URL

FxCop This is a must-have for any .NET http://www.gotdotnet.com/team/fxcop
developer interested in .NET best practices.
FxCop will test any .NET assembly against
the official Microsoft .NET best-practice
coding guidelines.

Lutz Roeder’s This advanced .NET decompiler/object http://www.aisto.com/roeder/dotnet
Reflector for browser allows you to view the
.NET implementation of any .NET type using CIL,

C#, Object Pascal .NET (Delphi), and
Visual Basic .NET.

NAnt NAnt is the .NET equivalent of Ant, the http://sourceforge.net/projects/nant
popular Java automated build tool. NAnt
allows you to define and execute detailed
build scripts using an XML-based syntax.

NDoc NDoc is a tool that will generate code http://sourceforge.net/projects/ndoc
documentation files for C# code
(or a compiled .NET assembly) in a
variety of popular formats (MSDN’s *.chm,
XML, HTML, Javadoc, and LaTeX).

NUnit NUnit is the .NET equivalent of the http://www.nunit.org
Java-centric JUnit unit testing tool.
Using NUnit, you are able to facilitate
the testing of your managed code.

Vil Think of Vil as a friendly “big brother” http://www.1bot.com
for .NET developers. This tool will analyze
your .NET code and offer various opinions
as to how to improve your code via
refactoring, structured exception handling,
and so forth.

■Note The functionality of FxCop has now been integrated directly into Visual Studio 2005. To check it out, simply
double-click the Properties icon within Solution Explorer and activate the Code Analysis tab.

Summary
So as you can see, you have many new toys at your disposal! The point of this chapter was to provide
you with a tour of the major programming tools a C# programmer may leverage during the develop-
ment process. You began the journey by learning how to generate .NET assemblies using nothing
other than the free C# compiler and Notepad. Next, you were introduced to the TextPad application
and walked though the process of enabling this tool to edit and compile *.cs code files.

You also examined three feature-rich IDEs, starting with the open source SharpDevelop, followed
by Microsoft’s Visual C# 2005 Express and Visual Studio 2005. While this chapter only scratched the
surface of each tool’s functionality, you should be in a good position to explore your chosen IDE at
your leisure. The chapter wrapped up by examining a number of open source .NET development
tools that extend the functionality of your IDE of choice.

4193ch02.qxd 8/14/05 2:44 PM Page 62

The C# Programming
Language

P A R T 2

■ ■ ■

4193ch03.qxd 8/14/05 2:45 PM Page 63

4193ch03.qxd 8/14/05 2:45 PM Page 64

C# Language Fundamentals

Consider this chapter a potpourri of core topics regarding the C# language and the .NET platform.
Unlike forthcoming chapters, there is no overriding example or theme; rather, the following pages
illustrate a number of bite-size topics you must become comfortable with, including value-based
and reference-based data types, decision and iteration constructs, boxing and unboxing mechanisms,
the role of System.Object, and basic class-construction techniques. Along the way, you’ll also learn
how to manipulate CLR strings, arrays, enumerations, and structures using the syntax of C#.

To illustrate these language fundamentals, you’ll take a programmatic look at the .NET base
class libraries and build a number of sample applications, making use of various types in the System
namespace. This chapter also examines a new C# 2005 language feature, nullable data types. Finally,
you’ll learn how to organize your types into custom namespaces using the C# namespace keyword.

The Anatomy of a Simple C# Program
C# demands that all program logic is contained within a type definition (recall from Chapter 1 that
type is a term referring to a member of the set {class, interface, structure, enumeration, delegate}).
Unlike in C(++), in C# it is not possible to create global functions or global points of data. In its sim-
plest form, a C# program can be written as follows:

// By convention, C# files end with a *.cs file extension.
using System;

class HelloClass
{

public static int Main(string[] args)
{

Console.WriteLine("Hello World!");
Console.ReadLine();
return 0;

}
}

Here, a definition is created for a class type (HelloClass) that supports a single method named
Main(). Every executable C# application must contain a class defining a Main() method, which is
used to signify the entry point of the application. As you can see, this signature of Main() is adorned
with the public and static keywords. Later in this chapter, you will be supplied with a formal defi-
nition of “public” and “static.” Until then, understand that public members are accessible from other
types, while static members are scoped at the class level (rather than the object level) and can thus
be invoked without the need to first create a new class instance.

65

C H A P T E R 3

■ ■ ■

4193ch03.qxd 8/14/05 2:45 PM Page 65

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS66

■Note C# is a case-sensitive programming language. Therefore, “Main” is not the same as “main”, and “Read-
line” is not the same as “ReadLine”. Given this, be aware that all C# keywords are in lowercase (public, lock,
global, and so on), while namespaces, types, and member names begin (by convention) with an initial capital letter
and have capitalized any embedded words (e.g., Console.WriteLine, System.Windows.Forms.MessageBox,
System.Data.SqlClient, and so on).

In addition to the public and static keywords, this Main() method has a single parameter,
which happens to be an array of strings (string[] args). Although you are not currently bothering
to process this array, this parameter may contain any number of incoming command-line argu-
ments (you’ll see how to access them momentarily).

The program logic of HelloClass is within Main() itself. Here, you make use of the Console class,
which is defined within the System namespace. Among its set of members is the static WriteLine()
which, as you might assume, pumps a text string to the standard output. You also make a call to
Console.ReadLine() to ensure the command prompt launched by Visual Studio 2005 remains visible
during a debugging session until you press the Enter key.

Because this Main() method has been defined as returning an integer data type, we return zero
(success) before exiting. Finally, as you can see from the HelloClass type definition, C- and C++-style
comments have carried over into the C# language.

Variations on the Main() Method
The previous iteration of Main() was defined to take a single parameter (an array of strings) and
return an integer data type. This is not the only possible form of Main(), however. It is permissible to
construct your application’s entry point using any of the following signatures (assuming it is contained
within a C# class or structure definition):

// No return type, array of strings as argument.
public static void Main(string[] args)
{
}

// No return type, no arguments.
public static void Main()
{
}

// Integer return type, no arguments.
public static int Main()
{
}

■Note The Main() method may also be defined as private as opposed to public. Doing so ensures other
assemblies cannot directly invoke an application’s entry point. Visual Studio 2005 automatically defines a pro-
gram’s Main() method as private.

Obviously, your choice of how to construct Main() will be based on two questions. First, do you
need to process any user-supplied command-line parameters? If so, they will be stored in the array
of strings. Second, do you want to return a value to the system when Main() has completed? If so,
you need to return an integer data type rather than void.

4193ch03.qxd 8/14/05 2:45 PM Page 66

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 67

Figure 3-1. Supplying arguments at the command line

Processing Command-Line Arguments
Assume that you now wish to update HelloClass to process possible command-line parameters:

// This time, check if you have been sent any command-line arguments.
using System;

class HelloClass
{

public static int Main(string[] args)
{

Console.WriteLine("***** Command line args *****");
for(int i = 0; i < args.Length; i++)

Console.WriteLine("Arg: {0} ", args[i]);
...

}
}

Here, you are checking to see if the array of strings contains some number of items using the
Length property of System.Array (as you’ll see later in this chapter, all C# arrays actually alias the
System.Array type, and therefore have a common set of members). As you loop over each item in
the array, its value is printed to the console window. Supplying the arguments at the command line
is equally as simple, as shown in Figure 3-1.

As an alternative to the standard for loop, you may iterate over incoming string arrays using
the C# foreach keyword. This bit of syntax is fully explained later in this chapter, but here is some
sample usage:

// Notice you have no need to check the size of the array when using 'foreach'.
public static int Main(string[] args)
{
...

foreach(string s in args)
Console.WriteLine("Arg: {0} ", s);

...
}

Finally, you are also able to access command-line arguments using the static GetCommand-
LineArgs() method of the System.Environment type. The return value of this method is an array of
strings. The first index identifies the current directory containing the application itself, while the
remaining elements in the array contain the individual command-line arguments (when using this
technique, you no longer need to define the Main() method as taking a string array parameter):

4193ch03.qxd 8/14/05 2:45 PM Page 67

public static int Main(string[] args)
{
...

// Get arguments using System.Environment.
string[] theArgs = Environment.GetCommandLineArgs();
Console.WriteLine("Path to this app is: {0}", theArgs[0]);

...
}

Specifying Command-Line Arguments with Visual Studio 2005
In the real world, the end user supplies the command-line arguments used by a given application
when starting the program. However, during the development cycle, you may wish to specify possi-
ble command-line flags for testing purposes. To do so with Visual Studio 2005, double-click the
Properties icon from Solution Explorer and select the Debug tab on the left side. From here, specify
values using the “Command line arguments” text box (see Figure 3-2).

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS68

An Interesting Aside: The System.Environment
Class
Let’s examine the System.Environment class in greater detail. This class allows you to obtain a num-
ber of details regarding the operating system currently hosting your .NET application using various
static members. To illustrate this class’s usefulness, update your Main() method with the following
logic:

public static int Main(string[] args)
{
...

// OS running this app?
Console.WriteLine("Current OS: {0} ", Environment.OSVersion);

// Directory containing this app?
Console.WriteLine("Current Directory: {0} ",

Environment.CurrentDirectory);

Figure 3-2. Setting command arguments via Visual Studio 2005

4193ch03.qxd 8/14/05 2:45 PM Page 68

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 69

// List the drives on this machine.
string[] drives = Environment.GetLogicalDrives();
for(int i = 0; i < drives.Length; i++)

Console.WriteLine("Drive {0} : {1} ", i, drives[i]);

// Which version of the .NET platform is running this app?
Console.WriteLine("Executing version of .NET: {0} ",

Environment.Version);
...
}

Possible output can be seen in Figure 3-3.

The System.Environment type defines members other than those presented in the previous
example. Table 3-1 documents some additional properties of interest; however, be sure to check out
the .NET Framework 2.0 SDK documentation for full details.

Table 3-1. Select Properties of System.Environment

Property Meaning in Life

MachineName Gets the name of the current machine

NewLine Gets the newline symbol for the current environment

ProcessorCount Returns the number of processors on the current machine

SystemDirectory Returns the full path to the system directory

UserName Returns the name of the entity that started this application

Defining Classes and Creating Objects
Now that you have the role of Main() under your belt, let’s move on to the topic of object construc-
tion. All object-oriented (OO) languages make a clear distinction between classes and objects.
A class is a definition (or, if you will, a blueprint) for a user-defined type (UDT). An object is simply
a term describing a given instance of a particular class in memory. In C#, the new keyword is the de
facto way to create an object. Unlike other OO languages (such as C++), it is not possible to allocate
a class type on the stack; therefore, if you attempt to use a class variable that has not been “new-ed,”
you are issued a compile-time error. Thus the following C# code is illegal:

Figure 3-3. Various environment variables at work

4193ch03.qxd 8/14/05 2:45 PM Page 69

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS70

using System;

class HelloClass
{

public static int Main(string[] args)
{

// Error! Use of unassigned local variable! Must use 'new'.
HelloClass c1;
c1.SomeMethod();

...
}

}

To illustrate the proper procedures for object creation, observe the following update:

using System;

class HelloClass
{

public static int Main(string[] args)
{

// You can declare and create a new object in a single line...
HelloClass c1 = new HelloClass();

// ...or break declaration and creation into two lines.
HelloClass c2;
c2 = new HelloClass();

...
}

}

The new keyword is in charge of calculating the correct number of bytes for the specified object
and acquiring sufficient memory from the managed heap. Here, you have allocated two objects of
the HelloClass class type. Understand that C# object variables are really a reference to the object in
memory, not the actual object itself. Thus, in this light, c1 and c2 each reference a unique HelloClass
object allocated on the managed heap.

The Role of Constructors
The previous HelloClass objects have been constructed using the default constructor, which by defini-
tion never takes arguments. Every C# class is automatically provided with a free default constructor,
which you may redefine if need be. The default constructor ensures that all member data is set to an
appropriate default value (this behavior is true for all constructors). Contrast this to C++, where unini-
tialized state data points to garbage (sometimes the little things mean a lot).

Typically, classes provide additional constructors beyond the default. In doing so, you provide the
object user with a simple way to initialize the state of an object at the time of creation. Like in Java and
C++, in C# constructors are named identically to the class they are constructing, and they never pro-
vide a return value (not even void). Here is the HelloClass type once again, with a custom constructor,
a redefined default constructor, and a point of public string data:

// HelloClass, with constructors.
using System;

class HelloClass
{

// A point of state data.
public string userMessage;

4193ch03.qxd 8/14/05 2:45 PM Page 70

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 71

Figure 3-4. Simple constructor logic

// Default constructor.
public HelloClass()
{ Console.WriteLine("Default ctor called!"); }

// This custom constructor assigns state data
// to a user-supplied value.
public HelloClass (string msg)
{

Console.WriteLine("Custom ctor called!");
userMessage = msg;

}

// Program entry point.
public static int Main(string[] args)
{

// Call default constructor.
HelloClass c1 = new HelloClass();
Console.WriteLine("Value of userMessage: {0}\n", c1.userMessage);

// Call parameterized constructor.
HelloClass c2;
c2 = new HelloClass("Testing, 1, 2, 3");
Console.WriteLine("Value of userMessage: {0}", c2.userMessage);
Console.ReadLine();
return 0;

}
}

■Note Technically speaking, when a type defines identically named members (including constructors) that differ
only in the number of—or type of—parameters, the member in question is overloaded. Chapter 4 examines mem-
ber overloading in detail.

On examining the program’s output, you can see that the default constructor has assigned the
string field to its default value (empty), while the custom constructor has assigned the member data
to the user-supplied value (see Figure 3-4).

■Note As soon as you define a custom constructor for a class type, the free default constructor is removed. If
you wish to allow your object users to create an instance of your type using the default constructor, you will need
to explicitly redefine it as in the preceding example.

4193ch03.qxd 8/14/05 2:45 PM Page 71

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS72

Is That a Memory Leak?
If you have a background in C++, you may be alarmed by the previous code samples. Specifically,
notice how the Main() method of the previous HelloClass type has no logic that explicitly destroys
the c1 and c2 references.

This is not a horrible omission, but the way of .NET. Like Visual Basic and Java developers, C#
programmers never explicitly destroy a managed object. The .NET garbage collector frees the
allocated memory automatically, and therefore C# does not support a delete keyword. Chapter 5
examines the garbage collection process in more detail. Until then, just remember that the .NET
runtime environment automatically destroys the managed objects you allocate.

Defining an “Application Object”
Currently, the HelloClass type has been constructed to perform two duties. First, the class defines
the entry point of the application (the Main() method). Second, HelloClass maintains a point of field
data and a few constructors. While this is all well and good, it may seem a bit strange (although syn-
tactically well-formed) that the static Main() method creates an instance of the very class in which it
was defined:

class HelloClass
{
...

public static int Main(string[] args)
{

HelloClass c1 = new HelloClass();
...

}
}

Many of my initial examples take this approach, just to keep focused on illustrating the task at
hand. However, a more natural design would be to refactor the current HelloClass type into two dis-
tinct classes: HelloClass and HelloApp. When you build C# applications, it becomes quite common to
have one type functioning as the “application object” (the type that defines the Main() method) and
numerous other types that constitute the application at large.

In OO parlance, this is termed the separation of concerns. In a nutshell, this design principle
states that a class should be responsible for the least amount of work. Thus, we could reengineer the
current program into the following (notice that a new member named PrintMessage() has been added
to the HelloClass type):

class HelloClass
{

public string userMessage;

public HelloClass()
{ Console.WriteLine("Default ctor called!"); }

public HelloClass(string msg)
{

Console.WriteLine("Custom ctor called!");
userMessage = msg;

}

public void PrintMessage()
{

Console.WriteLine("Message is: {0}", userMessage);
}

}

4193ch03.qxd 8/14/05 2:45 PM Page 72

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 73

class HelloApp
{

public static int Main(string[] args)
{

HelloClass c1 = new HelloClass("Hey there...");
c1.PrintMessage();

...
}

}

■Source Code The HelloClass project is located under the Chapter 3 subdirectory.

The System.Console Class
Many of the example applications created over the course of these first few chapters make extensive
use of the System.Console class. While a console user interface (CUI) is not as enticing as a Windows
or web UI, restricting the early examples to a CUI will allow us to keep focused on the concepts under
examination, rather than dealing with the complexities of building GUIs.

As its name implies, the Console class encapsulates input, output, and error stream manipula-
tions for console-based applications. With the release of .NET 2.0, the Console type has been enhanced
with additional functionality. Table 3-2 lists some (but not all) new members of interest.

Table 3-2. Select .NET 2.0–Specific Members of System.Console

Member Meaning in Life

BackgroundColor These properties set the background/foreground colors for the current
ForegroundColor output. They may be assigned any member of the ConsoleColor

enumeration.

BufferHeight These properties control the height/width of the console’s buffer area.
BufferWidth

Clear() This method clears the buffer and console display area.

Title This property sets the title of the current console.

WindowHeight These properties control the dimensions of the console in relation to
WindowWidth the established buffer.
WindowTop
WindowLeft

Basic Input and Output with the Console Class
In addition to the members in Table 3-2, the Console type defines a set of methods to capture input
and output, all of which are defined as static and are therefore called at the class level. As you have
seen, WriteLine() pumps a text string (including a carriage return) to the output stream. The Write()
method pumps text to the output stream without a carriage return. ReadLine() allows you to receive
information from the input stream up until the carriage return, while Read() is used to capture a single
character from the input stream.

To illustrate basic I/O using the Console class, consider the following Main() method, which
prompts the user for some bits of information and echoes each item to the standard output stream.
Figure 3-5 shows a test run.

4193ch03.qxd 8/14/05 2:45 PM Page 73

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS74

Figure 3-5. Basic I/O using System.Console

Figure 3-6. Multiple string literal placeholders

// Make use of the Console class to perform basic I/O.
static void Main(string[] args)
{

// Echo some stats.
Console.Write("Enter your name: ");
string s = Console.ReadLine();
Console.WriteLine("Hello, {0} ", s);

Console.Write("Enter your age: ");
s = Console.ReadLine();
Console.WriteLine("You are {0} years old", s);

}

Formatting Console Output
During these first few chapters, you have seen numerous occurrences of the tokens {0}, {1}, and the
like embedded within a string literal. .NET introduces a new style of string formatting, slightly remi-
niscent of the C printf() function, but without the cryptic %d, %s, or %c flags. A simple example follows
(see the output in Figure 3-6):

static void Main(string[] args)
{
...

int theInt = 90;
double theDouble = 9.99;
bool theBool = true;

// The '\n' token in a string literal inserts a newline.
Console.WriteLine("Int is: {0}\nDouble is: {1}\nBool is: {2}",

theInt, theDouble, theBool);
}

4193ch03.qxd 8/14/05 2:45 PM Page 74

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 75

The first parameter to WriteLine() represents a string literal that contains optional placeholders
designated by {0}, {1}, {2}, and so forth (curly bracket numbering always begins with zero). The
remaining parameters to WriteLine() are simply the values to be inserted into the respective place-
holders (in this case, an int, a double, and a bool).

Also be aware that WriteLine() has been overloaded to allow you to specify placeholder values
as an array of objects. Thus, you can represent any number of items to be plugged into the format
string as follows:

// Fill placeholders using an array of objects.
object[] stuff = {"Hello", 20.9, 1, "There", "83", 99.99933} ;
Console.WriteLine("The Stuff: {0} , {1} , {2} , {3} , {4} , {5} ", stuff);

It is also permissible for a given placeholder to repeat within a given string. For example, if you
are a Beatles fan and want to build the string "9, Number 9, Number 9" you would write

// John says...
Console.WriteLine("{0}, Number {0}, Number {0}", 9);

■Note If you have a mismatch between the number of uniquely numbered curly-bracket placeholders and fill
arguments, you will receive a FormatException exception at runtime.

.NET String Formatting Flags
If you require more elaborate formatting, each placeholder can optionally contain various format
characters (in either uppercase or lowercase), as seen in Table 3-3.

Table 3-3. .NET String Format Characters

String Format Character Meaning in Life

C or c Used to format currency. By default, the flag will prefix the local cultural
symbol (a dollar sign [$] for U.S. English).

D or d Used to format decimal numbers. This flag may also specify the minimum
number of digits used to pad the value.

E or e Used for exponential notation.

F or f Used for fixed-point formatting.

G or g Stands for general. This character can be used to format a number to
fixed or exponential format.

N or n Used for basic numerical formatting (with commas).

X or x Used for hexadecimal formatting. If you use an uppercase X, your hex
format will also contain uppercase characters.

These format characters are suffixed to a given placeholder value using the colon token (e.g.,
{0:C}, {1:d}, {2:X}, and so on). Assume you have updated Main() with the following logic:

// Now make use of some format tags.
static void Main(string[] args)
{
...

Console.WriteLine("C format: {0:C}", 99989.987);
Console.WriteLine("D9 format: {0:D9}", 99999);
Console.WriteLine("E format: {0:E}", 99999.76543);
Console.WriteLine("F3 format: {0:F3}", 99999.9999);

4193ch03.qxd 8/14/05 2:45 PM Page 75

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS76

Figure 3-7. String format flags in action

Console.WriteLine("N format: {0:N}", 99999);
Console.WriteLine("X format: {0:X}", 99999);
Console.WriteLine("x format: {0:x}", 99999);

}

Be aware that the use of .NET formatting characters is not limited to console applications. These
same flags can be used within the context of the static String.Format() method. This can be helpful
when you need to build a string containing numerical values in memory for use in any application
type (Windows Forms, ASP.NET, XML web services, and so on):

static void Main(string[] args)
{
...

// Use the static String.Format() method to build a new string.
string formatStr;
formatStr =

String.Format("Don't you wish you had {0:C} in your account?",
99989.987);

Console.WriteLine(formatStr);
}

Figure 3-7 shows a test run.

■Source Code The BasicConsoleIO project is located under the Chapter 3 subdirectory.

Establishing Member Visibility
Before we go much further, it is important to address the topic of member visibility. Members (methods,
fields, constructors, and so on) of a given class or structure must specify their “visibility” level. If you
define a member without specifying an accessibility keyword, it automatically defaults to private. C#
offers the method access modifiers shown in Table 3-4.

4193ch03.qxd 8/14/05 2:45 PM Page 76

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 77

Table 3-4. C# Accessibility Keywords

C# Access Modifier Meaning in Life

public Marks a member as accessible from an object variable as well as any
derived classes.

private Marks a method as accessible only by the class that has defined the
method. In C#, all members are private by default.

protected Marks a method as usable by the defining class, as well as any derived
classes. Protected methods, however, are not accessible from an object
variable.

internal Defines a method that is accessible by any type in the same assembly,
but not outside the assembly.

protected internal Defines a method whose access is limited to the current assembly or
types derived from the defining class in the current assembly.

As you may already know, members that are declared public are directly accessible from an object
reference via the dot operator (.). Private members cannot be accessed by an object reference, but
instead are called internally by the object to help the instance get its work done (i.e., private helper
functions).

Protected members are only truly useful when you create class hierarchies, which is the subject
of Chapter 4. As far as internal or internal protected members are concerned, they are only truly useful
when you are creating .NET code libraries (such as a managed *.dll, a topic examined in Chapter 11).

To illustrate the implications of these keywords, assume you have created a class (SomeClass)
using each of the possible member access modifiers:

// Member visibility options.
class SomeClass
{

// Accessible anywhere.
public void PublicMethod(){}

// Accessible only from SomeClass types.
private void PrivateMethod(){}

// Accessible from SomeClass and any descendent.
protected void ProtectedMethod(){}

// Accessible from within the same assembly.
internal void InternalMethod(){}

// Assembly-protected access.
protected internal void ProtectedInternalMethod(){}

// Unmarked members are private by default in C#.
void SomeMethod(){}

}

Now assume you have created an instance of SomeClass and attempt to invoke each method
using the dot operator:

static void Main(string[] args)
{

// Make an object and attempt to call members.
SomeClass c = new SomeClass();
c.PublicMethod();

4193ch03.qxd 8/14/05 2:45 PM Page 77

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS78

c.InternalMethod();
c.ProtectedInternalMethod();
c.PrivateMethod(); // Error!
c.ProtectedMethod(); // Error!
c.SomeMethod(); // Error!

}

If you compile this program, you will find that the protected and private members are not acces-
sible from an object.

■Source Code The MemberAccess project is located under the Chapter 3 subdirectory.

Establishing Type Visibility
Types (classes, interfaces, structures, enumerations, and delegates) can also take accessibility modi-
fiers, but are limited to public or internal. When you create a public type, you ensure that the type can
be accessed from other types in the current assembly as well as external assemblies. Again, this is useful
only when you are creating a code library (see Chapter 11); however, here is some example usage:

// This type can be used by any assembly.
public class MyClass{}

An internal type, on the other hand, can be used only by the assembly in which it is defined.
Thus, if you created a .NET code library that defines three internal types, assemblies that reference
the *.dll would not be able to see, create, or in anyway interact with them.

Because internal is the default accessibility for types in C#, if you do not specifically make use
of the public keyword, you actually create an internal type:

// These classes can only be used by the defining assembly.
internal class MyHelperClass{}
class FinalHelperClass{} // Types are internal by default in C#.

■Note In Chapter 4 you’ll learn about nested types. As you’ll see, nested types can be declared private as well.

Default Values of Class Member Variables
The member variables of class types are automatically set to an appropriate default value. This
value will differ based on the exact data type; however, the rules are simple:

• bool types are set to false.

• Numeric data is set to 0 (or 0.0 in the case of floating-point data types).

• string types are set to null.

• char types are set to '\0'.

• Reference types are set to null.

Given these rules, ponder the following code:

// Fields of a class type receive automatic default assignments.
class Test
{

public int myInt; // Set to 0.

4193ch03.qxd 8/14/05 2:45 PM Page 78

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 79

public string myString; // Set to null.
public bool myBool; // Set to false.
public object myObj; // Set to null.

}

Default Values and Local Variables
The story is very different, however, when you declare local variables within a member scope. When
you define local variables, you must assign an initial value before you use them, as they do not receive
a default assignment. For example, the following code results in a compiler error:

// Compiler error! Must assign 'localInt' to an initial value before use.
static void Main(string[] args)
{

int localInt;
Console.WriteLine(localInt);

}

Fixing the problem is trivial. Simply make an initial assignment:

// Better; everyone is happy.
static void Main(string[] args)
{

int localInt = 0;
Console.WriteLine(localInt);

}

■Note There’s one exception to the mandatory assignment of local variables. If the variable is used as an output
parameter (you’ll examine this a bit later in this chapter), the variable doesn’t need to be assigned an initial value.

Member Variable Initialization Syntax
Class types tend to have numerous member variables (aka fields). Given that a class may define multiple
constructors, you can find yourself in the annoying position of having to write the same initialization
code in each and every constructor implementation. This is particularly true if you do not wish to accept
the member’s default value. For example, if you wish to ensure that an integer member variable (myInt)
always begins life with the value of 9, you could write

// This is OK, but redundant...
class Test
{

public int myInt;
public string myString;

public Test() { myInt = 9; }
public Test(string s)
{

myInt = 9;
myString = s;

}
}

An alternative would be to define a private helper function for your class type that is called by
each constructor. While this will reduce the amount of repeat assignment code, you are now stuck
with the following redundancy:

4193ch03.qxd 8/14/05 2:45 PM Page 79

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS80

// This is still rather redundant...
class Test
{

public int myInt;
public string myString;

public Test() { InitData(); }
public Test(string s)
{

myString = s;
InitData();

}

private void InitData()
{ myInt = 9; }

}

While both of these techniques are still valid, C# allows you to assign a type’s member data to an
initial value at the time of declaration (as you may be aware, other OO languages [such as C++] do not
allow you to initialize a member in this way). Notice in the following code blurb that member initial-
ization may be used with internal object references as well as numerical data types:

// This technique is useful when you don't want to accept default values
// and would rather not write the same initialization code in each constructor.
class Test
{

public int myInt = 9;
public string myStr = "My initial value.";
public SportsCar viper = new SportsCar(Color.Red);
...

}

■Note Member assignment happens before constructor logic. Thus, if you assign a field within the scope of
a constructor, it effectively cancels out the previous member assignment.

Defining Constant Data
Now that you have seen how to declare class variables, let’s see how to define data that should never
be reassigned. C# offers the const keyword to define variables with a fixed, unalterable value. Once
the value of a constant has been established, any attempt to alter it results in a compiler error. Unlike
in C++, in C# the const keyword cannot be used to qualify parameters or return values, and is reserved
for the creation of local or instance-level data.

It is important to understand that the value assigned to a constant variable must be known at com-
pile time, and therefore a constant member cannot be assigned to an object reference (whose value is
computed at runtime). To illustrate the use of the const keyword, assume the following class type:

class ConstData
{

// The value assigned to a const must be known
// at compile time.
public const string BestNbaTeam = "Timberwolves";
public const double SimplePI = 3.14;
public const bool Truth = true;
public const bool Falsity = !Truth;

}

4193ch03.qxd 8/14/05 2:45 PM Page 80

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 81

Figure 3-8. The const keyword hard-codes its value into the assembly metadata.

Notice that the value of each constant is known at the time of compilation. In fact, if you were to
view these constants using ildasm.exe, you would find the value hard-coded directly into the assem-
bly, as shown in Figure 3-8. (You can’t get much more constant than this!)

Referencing Constant Data
When you wish to reference a constant defined by an external type, you must prefix the defining
type name (e.g., ConstData.Truth), as constant fields are implicitly static. However, if you are refer-
encing a piece of constant data defined in the current type (or within the current member), you are
not required to prefix the type name. To solidify these points, observe the following additional class:

class Program
{

public const string BestNhlTeam = "Wild";

static void Main(string[] args)
{

// Print const values defined by other type.
Console.WriteLine("Nba const: {0}", ConstData.BestNbaTeam);
Console.WriteLine("SimplePI const: {0}", ConstData.SimplePI);
Console.WriteLine("Truth const: {0}", ConstData.Truth);
Console.WriteLine("Falsity const: {0}", ConstData.Falsity);

// Print member-level const.
Console.WriteLine("Nhl const: {0}", BestNhlTeam);

// Print local-scoped const.
const int LocalFixedValue = 4;
Console.WriteLine("Local const: {0}", LocalFixedValue);
Console.ReadLine();

}
}

Notice that when the Program class accesses the constants within ConstData, the type name must
be specified. However, Program has direct access to the BestNhlTeam constant as it was defined within
its own class scope. The LocalFixedValue constant defined within Main() would, of course, be acces-
sible only from the Main() method.

■Source Code The Constants project is located under the Chapter 3 subdirectory.

4193ch03.qxd 8/14/05 2:45 PM Page 81

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS82

Defining Read-Only Fields
As mentioned earlier, the value assigned to a constant must be known at compile time. However, what
if you wish to create an unchangeable field whose initial value is not known until runtime? Assume
you have created a class named Tire, which maintains a manufacture ID. Furthermore, assume you
wish to configure this class type to maintain a pair of well-known Tire instances whose value should
never change. If you use the const keyword, you will receive compiler errors, given that the address
of an object in memory is not known until runtime:

class Tire
{

// Given that the address of objects is determined at
// runtime, we cannot use the 'const' keyword here!
public const Tire GoodStone = new Tire(90); // Error!
public const Tire FireYear = new Tire(100); // Error!

public int manufactureID;
public Tire() {}
public Tire(int ID)
{ manufactureID = ID; }

}

Read-only fields allow you to establish a point of data whose value is not known at compile time,
but that should never change once established. To define a read-only field, make use of the C# read-
only keyword:

class Tire
{

public readonly Tire GoodStone = new Tire(90);
public readonly Tire FireYear = new Tire(100);

public int manufactureID;
public Tire() {}
public Tire(int ID)
{ manufactureID = ID; }

}

With this update, you not only compile, but also ensure that if the GoodStone or FireYear fields
are changed within your program, you receive a compilation error:

static void Main(string[] args)
{

// Error! Can't change the value of a read-only field.
Tire t = new Tire();
t.FireYear = new Tire(33);

}

Read-only fields have another distinction from constant data: their value may be assigned within
the scope of a constructor. This can be very useful if the value to assign to a read-only field must be
read from an external source (such as a text file or database). Assume another class named Employee,
which defines a read-only string representing a U.S. Social Security number (SSN). To ensure the object
user can specify this value, you may author the following code:

class Employee
{

public readonly string SSN;

4193ch03.qxd 8/14/05 2:45 PM Page 82

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 83

public Employee(string empSSN)
{

SSN = empSSN;
}

}

Again, because SSN is readonly, any attempt to change this value after the constructor logic results
in a compiler error:

static void Main(string[] args)
{

Employee e = new Employee("111-22-1111");
e.SSN = "222-22-2222"; // Error!

}

Static Read-Only Fields
Unlike constant data, read-only fields are not implicitly static. If you wish to allow object users to
obtain the value of a read-only field from the class level, simply make use of the static keyword:

class Tire
{

public static readonly Tire GoodStone = new Tire(90);
public static readonly Tire FireYear = new Tire(100);

...
}

Here is an example of working with the new Tire type:

static void Main(string[] args)
{

Tire myTire = Tire.FireYear;
Console.WriteLine("ID of my tire is: {0}", myTire.manufactureID);

}

■Source Code The ReadOnlyFields project is included under the Chapter 3 subdirectory.

Understanding the static Keyword
As shown throughout this chapter, C# class (and structure) members may be defined using the static
keyword. When you do so, the member in question must be invoked directly from the class level, rather
than from a type instance. To illustrate the distinction, consider our good friend System.Console. As you
have seen, you do not invoke the WriteLine() method from the object level:

// Error! WriteLine() is not an instance level method!
Console c = new Console();
c.WriteLine("I can't be printed...");

but instead simply prefix the type name to the static WriteLine() member:

// Correct! WriteLine() is a static method.
Console.WriteLine("Thanks...");

Simply put, static members are items that are deemed (by the type designer) to be so common-
place that there is no need to create an instance of the type. When you are designing custom class
types, you are also able to define any number of static and/or instance-level members.

4193ch03.qxd 8/14/05 2:45 PM Page 83

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS84

Static Methods
Assume a class named Teenager that defines a static method named Complain(), which returns
a random string, obtained in part by calling a private helper function named GetRandomNumber():

class Teenager
{

private static Random r = new Random();
private static int GetRandomNumber(short upperLimit)
{ return r.Next(upperLimit); }

public static string Complain()
{

string[] messages = new string[5]{ "Do I have to?",
"He started it!", "I'm too tired...",
"I hate school!", "You are sooo wrong." } ;

return messages[GetRandomNumber(5)];
}

}

Notice that the System.Random member variable and the GetRandomNumber() helper function method
have also been declared as static members of the Teenager class, given the rule that static members can
operate only on other static members.

■Note Allow me to repeat myself. Static members can operate only on static class members. If you attempt to
make use of nonstatic class members (also called instance data) within a static method, you receive a compiler error.

Like any static member, to call Complain(), prefix the name of the defining class:

// Call the static Complain method of the Teenager class.
static void Main(string[] args)
{

for(int i = 0; i < 10; i++)
Console.WriteLine("-> {0}", Teenager.Complain());

}

And like any nonstatic method, if the Complain() method was not marked static, you would
need to create an instance of the Teenager class before you could hear about the gripe of the day:

// Nonstatic data must be invoked at the object level.
Teenager joe = new Teenager();
joe.Complain();

■Source Code The StaticMethods application is located under the Chapter 3 subdirectory.

Static Data
In addition to static methods, a type may also define static data (such as the Random member variable
seen in the previous Teenager class). Understand that when a class defines nonstatic data, each object
of this type maintains a private copy of the field. For example, assume a class that models a savings
account:

4193ch03.qxd 8/14/05 2:45 PM Page 84

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 85

// This class has a single piece of nonstatic data.
class SavingsAccount
{

public double currBalance;
public SavingsAccount(double balance)
{ currBalance = balance;}

}

When you create SavingsAccount objects, memory for the currBalance field is allocated for each
instance. Static data, on the other hand, is allocated once and shared among all object instances of
the same type. To illustrate the usefulness of static data, assume you add piece of static data named
currInterestRate to the SavingsAccount class:

class SavingsAccount
{

public double currBalance;
public static double currInterestRate = 0.04;
public SavingsAccount(double balance)
{ currBalance = balance;}

}

If you were to create three instances of SavingsAccount as so:

static void Main(string[] args)
{

// Each SavingsAccount object maintains a copy of the currBalance field.
SavingsAccount s1 = new SavingsAccount(50);
SavingsAccount s2 = new SavingsAccount(100);
SavingsAccount s3 = new SavingsAccount(10000.75);

}

the in-memory data allocation would look something like Figure 3-9.

Figure 3-9. Static data is shared for all instances of the defining class.

Let’s update the SavingsAccount class to define two static methods to get and set the interest
rate value. As stated, static methods can operate only on static data. However, a nonstatic method
can make use of both static and nonstatic data. This should make sense, given that static data is
available to all instances of the type. Given this, let’s also add two instance-level methods to interact
with the interest rate variable:

4193ch03.qxd 8/14/05 2:45 PM Page 85

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS86

Figure 3-10. Static data is allocated only once.

class SavingsAccount
{

public double currBalance;
public static double currInterestRate = 0.04;
public SavingsAccount(double balance)
{ currBalance = balance;}

// Static methods to get/set interest rate.
public static SetInterestRate(double newRate)
{ currInterestRate = newRate;}

public static double GetInterestRate()
{ return currInterestRate;}

// Instance method to get/set current interest rate.
public void SetInterestRateObj(double newRate)
{ currInterestRate = newRate;}

public double GetInterestRateObj()
{ return currInterestRate;}

}

Now, observe the following usage and the output in Figure 3-10:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Static Data *****");
SavingsAccount s1 = new SavingsAccount(50);
SavingsAccount s2 = new SavingsAccount(100);

// Get and set interest rate.
Console.WriteLine("Interest Rate is: {0}", s1.GetInterestRateObj());
s2.SetInterestRateObj(0.08);

// Make new object, this does NOT 'reset' the interest rate.
SavingsAccount s3 = new SavingsAccount(10000.75);
Console.WriteLine("Interest Rate is: {0}", SavingsAccount.GetInterestRate());
Console.ReadLine();

}

Static Constructors
As you know, constructors are used to set the value of a type’s data at the time of construction. If
you were to assign the value to a piece of static data within an instance-level constructor, you
would be saddened to find that the value is reset each time you create a new object! For example,
assume you have updated the SavingsAccount class as so:

4193ch03.qxd 8/14/05 2:45 PM Page 86

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 87

Figure 3-11. Assigning static data in a constructor “resets” the value.

class SavingsAccount
{

public double currBalance;
public static double currInterestRate;
public SavingsAccount(double balance)
{

currBalance = balance;
currInterestRate = 0.04;

}
...
}

If you execute the previous Main() method, you will see a very different output (see Figure 3-11).
Specifically notice how the currInterestRate variable is reset each time you create a new SavingsAccount
object.

While you are always free to establish the initial value of static data using the member initialization
syntax, what if the value for your static data needed to be obtained from a database or external file?
To perform such tasks requires a method scope to author the code statements. For this very reason, C#
allows you to define a static constructor:

class SavingsAccount
{
...

// Static constructor.
static SavingsAccount()
{

Console.WriteLine("In static ctor!");
currInterestRate = 0.04;

}
}

Here are a few points of interest regarding static constructors:

• A given class (or structure) may define only a single static constructor.

• A static constructor executes exactly one time, regardless of how many objects of the type are
created.

• A static constructor does not take an access modifier and cannot take any parameters.

• The runtime invokes the static constructor when it creates an instance of the class or before
accessing the first static member invoked by the caller.

• The static constructor executes before any instance-level constructors.

Given this modification, when you create new SavingsAccount objects, the value of the static
data is preserved, and the output is identical to Figure 3-10.

4193ch03.qxd 8/14/05 2:45 PM Page 87

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS88

Static Classes
C# 2005 has widened the scope of the static keyword by introducing static classes. When a class has
been defined as static, it is not creatable using the new keyword, and it can contain only static mem-
bers or fields (if this is not the case, you receive compiler errors).

At first glance, this might seem like a very useless feature, given that a class that cannot be cre-
ated does not appear all that helpful. However, if you create a class that contains nothing but static
members and/or constant data, the class has no need to be allocated in the first place. Consider the
following type:

// Static classes can only
// contain static members and constant fields.
static class UtilityClass
{

public static void PrintTime()
{ Console.WriteLine(DateTime.Now.ToShortTimeString()); }
public static void PrintDate()
{ Console.WriteLine(DateTime.Today.ToShortDateString()); }

}

Given the static modifier, object users cannot create an instance of UtilityClass:

static void Main(string[] args)
{

UtilityClass.PrintDate();

// Compiler error! Can't create static classes.
UtilityClass u = new UtilityClass();

...
}

Prior to C# 2005, the only way to prevent an object user from creating such a type was to either
redefine the default constructor as private or mark the class as an abstract type using the C#
abstract keyword (full details regarding abstract types are in Chapter 4):

class UtilityClass
{

private UtilityClass(){}
...
}

abstract class UtilityClass
{
...
}

While these constructs are still permissible, the use of static classes is a cleaner solution and
more type-safe, given that the previous two techniques allowed nonstatic members to appear within
the class definition.

■Source Code The StaticData project is located under the Chapter 3 subdirectory.

4193ch03.qxd 8/14/05 2:45 PM Page 88

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 89

Method Parameter Modifiers
Methods (static and instance level) tend to take parameters passed in by the caller. However, unlike
some programming languages, C# provides a set of parameter modifiers that control how arguments
are sent into (and possibly returned from) a given method, as shown in Table 3-5.

Table 3-5. C# Parameter Modifiers

Parameter Modifier Meaning in Life

(none) If a parameter is not marked with a parameter modifier, it is assumed to
be passed by value, meaning the called method receives a copy of the
original data.

out Output parameters are assigned by the method being called (and therefore
passed by reference). If the called method fails to assign output parameters,
you are issued a compiler error.

params This parameter modifier allows you to send in a variable number of
identically typed arguments as a single logical parameter. A method can
have only a single params modifier, and it must be the final parameter of
the method.

ref The value is initially assigned by the caller, and may be optionally reassigned
by the called method (as the data is also passed by reference). No compiler
error is generated if the called method fails to assign a ref parameter.

The Default Parameter-Passing Behavior
The default manner in which a parameter is sent into a function is by value. Simply put, if you do
not mark an argument with a parameter-centric modifier, a copy of the variable is passed into the
function:

// Arguments are passed by value by default.
public static int Add(int x, int y)
{

int ans = x + y;

// Caller will not see these changes
// as you are modifying a copy of the
// original data.
x = 10000;
y = 88888;
return ans;

}

Here, the incoming integer parameters will be passed by value. Therefore, if you change the
values of the parameters within the scope of the member, the caller is blissfully unaware, given that
you are changing the values of copies of the caller’s integer data types:

static void Main(string[] args)
{

int x = 9, y = 10;
Console.WriteLine("Before call: X: {0}, Y: {1}", x, y);
Console.WriteLine("Answer is: {0}", Add(x, y));
Console.WriteLine("After call: X: {0}, Y: {1}", x, y);

}

As you would hope, the values of x and y remain identical before and after the call to Add().

4193ch03.qxd 8/14/05 2:45 PM Page 89

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS90

The out Modifier
Next, we have the use of output parameters. Methods that have been defined to take output parame-
ters are under obligation to assign them to an appropriate value before exiting the method in question
(if you fail to ensure this, you will receive compiler errors).

To illustrate, here is an alternative version of the Add() method that returns the sum of two integers
using the C# out modifier (note the physical return value of this method is now void):

// Output parameters are allocated by the member.
public static void Add(int x, int y, out int ans)
{

ans = x + y;
}

Calling a method with output parameters also requires the use of the out modifier. Recall that
local variables passed as output variables are not required to be assigned before use (if you do so, the
original value is lost after the call), for example:

static void Main(string[] args)
{

// No need to assign local output variables.
int ans;
Add(90, 90, out ans);
Console.WriteLine("90 + 90 = {0} ", ans);

}

The previous example is intended to be illustrative in nature; you really have no reason to return
the value of your summation using an output parameter. However, the C# out modifier does serve
a very useful purpose: it allows the caller to obtain multiple return values from a single method
invocation.

// Returning multiple output parameters.
public static void FillTheseValues(out int a, out string b, out bool c)
{

a = 9;
b = "Enjoy your string.";
c = true;

}

The caller would be able to invoke the following method:

static void Main(string[] args)
{

int i;
string str;
bool b;

FillTheseValues(out i, out str, out b);
Console.WriteLine("Int is: {0}", i);
Console.WriteLine("String is: {0}", str);
Console.WriteLine("Boolean is: {0}", b);

}

The ref Modifier
Now consider the use of the C# ref parameter modifier. Reference parameters are necessary when
you wish to allow a method to operate on (and usually change the values of) various data points
declared in the caller’s scope (such as a sorting or swapping routine). Note the distinction between
output and reference parameters:

4193ch03.qxd 8/14/05 2:45 PM Page 90

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 91

• Output parameters do not need to be initialized before they passed to the method. The reason
for this? The method must assign output parameters before exiting.

• Reference parameters must be initialized before they are passed to the method. The reason
for this? You are passing a reference to an existing variable. If you don’t assign it to an initial
value, that would be the equivalent of operating on an unassigned local variable.

Let’s check out the use of the ref keyword by way of a method that swaps two strings:

// Reference parameter.
public static void SwapStrings(ref string s1, ref string s2)
{

string tempStr = s1;
s1 = s2;
s2 = tempStr;

}

This method can be called as so:

static void Main(string[] args)
{

string s = "First string";
string s2 = "My other string";
Console.WriteLine("Before: {0}, {1} ", s, s2);
SwapStrings(ref s, ref s2);
Console.WriteLine("After: {0}, {1} ", s, s2);

}

Here, the caller has assigned an initial value to local string data (s and s2). Once the call to
SwapStrings() returns, s now contains the value "My other string", while s2 reports the value
"First string".

The params Modifier
The final parameter modifier is the params modifier, which allows you to create a method that may be
sent to a set of identically typed arguments as a single logical parameter. Yes, this can be confusing. To
clear the air, assume a method that returns the average of any number of doubles:

// Return average of 'some number' of doubles.
static double CalculateAverage(params double[] values)
{

double sum = 0;
for (int i = 0; i < values.Length; i++)

sum += values[i];
return (sum / values.Length);

}

This method has been defined to take a parameter array of doubles. What this method is in fact
saying is, “Send me any number of doubles and I’ll compute the average.” Given this, you can call
CalculateAverage() in any of the following ways (if you did not make use of the params modifier in the
definition of CalculateAverage(), the first invocation of this method would result in a compiler error):

static void Main(string[] args)
{

// Pass in a comma-delimited list of doubles...
double average;
average = CalculateAverage(4.0, 3.2, 5.7);
Console.WriteLine("Average of 4.0, 3.2, 5.7 is: {0}",

average);

4193ch03.qxd 8/14/05 2:45 PM Page 91

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS92

// ...or pass an array of doubles.
double[] data = { 4.0, 3.2, 5.7 };
average = CalculateAverage(data);
Console.WriteLine("Average of data is: {0}", average);
Console.ReadLine();

}

That wraps up our initial look at parameter modifiers. We’ll revisit this topic later in the chapter
when we examine the distinction between value types and reference types. Next up, let’s check out
the iteration and decision constructions of the C# programming language.

■Source Code The SimpleParams project is located under the Chapter 3 subdirectory.

Iteration Constructs
All programming languages provide ways to repeat blocks of code until a terminating condition has
been met. Regardless of which language you have used in the past, the C# iteration statements
should not raise too many eyebrows and should require little explanation. C# provides the following
four iteration constructs:

• for loop

• foreach/in loop

• while loop

• do/while loop

Let’s quickly examine each looping construct in turn.

The for Loop
When you need to iterate over a block of code a fixed number of times, the for statement is the con-
struct of champions. In essence, you are able to specify how many times a block of code repeats itself,
as well as the terminating condition. Without belaboring the point, here is a sample of the syntax:

// A basic for loop.
static void Main(string[] args)
{

// Note! 'i' is only visible within the scope of the for loop.
for(int i = 0; i < 10; i++)
{

Console.WriteLine("Number is: {0} ", i);
}
// 'i' is not visible here.

}

All of your old C, C++, and Java tricks still hold when building a C# for statement. You can create
complex terminating conditions, build endless loops, and make use of the goto, continue, and break
keywords. I’ll assume that you will bend this iteration construct as you see fit. Consult the .NET Frame-
work 2.0 SDK documentation if you require further details on the C# for keyword.

4193ch03.qxd 8/14/05 2:45 PM Page 92

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 93

The foreach Loop
The C# foreach keyword allows you to iterate over all items within an array, without the need to test
for the array’s upper limit. Here are two examples using foreach, one to traverse an array of strings
and the other to traverse an array of integers:

// Iterate array items using foreach.
static void Main(string[] args)
{

string[] books = {"Complex Algorithms",
"Do you Remember Classic COM?",
"C# and the .NET Platform"};

foreach (string s in books)
Console.WriteLine(s);

int[] myInts = { 10, 20, 30, 40 };
foreach (int i in myInts)

Console.WriteLine(i);
}

In addition to iterating over simple arrays, foreach is also able to iterate over system-supplied
or user-defined collections. I’ll hold off on the details until Chapter 7, as this aspect of the foreach
keyword entails an understanding of interface-based programming and the role of the IEnumerator
and IEnumerable interfaces.

The while and do/while Looping Constructs
The while looping construct is useful should you wish to execute a block of statements until some
terminating condition has been reached. Within the scope of a while loop, you will, of course, need
to ensure this terminating event is indeed established; otherwise, you will be stuck in an endless loop.
In the following example, the message “In while loop” will be continuously printed until the user
terminates the loop by entering yes at the command prompt:

static void Main(string[] args)
{

string userIsDone = "no";

// Test on a lower class copy of the string.
while(userIsDone.ToLower() != "yes")
{

Console.Write("Are you done? [yes] [no]: ");
userIsDone = Console.ReadLine();
Console.WriteLine("In while loop");

}
}

Closely related to the while loop is the do/while statement. Like a simple while loop, do/while
is used when you need to perform some action for an undetermined number of times. The difference
is that do/while loops are guaranteed to execute the corresponding block of code at least once (in con-
trast, it is possible that a simple while loop may never execute if the terminating condition is false
from the onset).

static void Main(string[] args)
{

string userIsDone = "";

do

4193ch03.qxd 8/14/05 2:45 PM Page 93

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS94

{
Console.WriteLine("In do/while loop");
Console.Write("Are you done? [yes] [no]: ");
userIsDone = Console.ReadLine();

}while(userIsDone.ToLower() != "yes"); // Note the semicolon!
}

Decision Constructs and the Relational/Equality
Operators
Now that you can iterate over a block of statements, the next related concept is how to control the
flow of program execution. C# defines two simple constructs to alter the flow of your program, based
on various contingencies:

• The if/else statement

• The switch statement

The if/else Statement
First up is our good friend the if/else statement. Unlike in C and C++, however, the if/else state-
ment in C# operates only on Boolean expressions, not ad hoc values such as –1, 0. Given this, if/else
statements typically involve the use of the C# operators shown in Table 3-6 in order to obtain a literal
Boolean value.

Table 3-6. C# Relational and Equality Operators

C# Equality/Relational Operator Example Usage Meaning in Life

== if(age == 30) Returns true only if each expression is
the same

!= if("Foo" != myStr) Returns true only if each expression is
different

< if(bonus < 2000) Returns true if expression A is less than,
> if(bonus > 2000) greater than, less than or equal to,
<= if(bonus <= 2000) or greater than or equal to expression B
>= if(bonus >= 2000)

Again, C and C++ programmers need to be aware that the old tricks of testing a condition for
a value “not equal to zero” will not work in C#. Let’s say you want to see if the string you are working
with is longer than zero characters. You may be tempted to write

// This is illegal, given that Length returns an int, not a bool.
string thoughtOfTheDay = "You CAN teach an old dog new tricks";
if(thoughtOfTheDay.Length)
{

...
}

If you wish to make use of the String.Length property to determine if you have an empty string,
you need to modify your conditional expression as follows:

4193ch03.qxd 8/14/05 2:45 PM Page 94

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 95

// Legal, as this resolves to either true or false.
if(0 != thoughtOfTheDay.Length)
{

...
}

An if statement may be composed of complex expressions as well and can contain else state-
ments to perform more-complex testing. The syntax is identical to C(++) and Java (and not too far
removed from Visual Basic). To build complex expressions, C# offers an expected set of conditional
operators, as shown in Table 3-7.

Table 3-7. C# Conditional Operators

Operator Example Meaning in Life

&& if((age == 30) && (name == "Fred")) Conditional AND operator

|| if((age == 30) || (name == "Fred")) Conditional OR operator

! if(!myBool) Conditional NOT operator

The switch Statement
The other simple selection construct offered by C# is the switch statement. As in other C-based lan-
guages, the switch statement allows you to handle program flow based on a predefined set of choices.
For example, the following Main() logic prints a specific string message based on one of two possible
selections (the default case handles an invalid selection):

// Switch on a numerical value.
static void Main(string[] args)
{

Console.WriteLine("1 [C#], 2 [VB]");
Console.Write("Please pick your language preference: ");

string langChoice = Console.ReadLine();
int n = int.Parse(langChoice);

switch (n)
{

case 1:
Console.WriteLine("Good choice, C# is a fine language.");

break;
case 2:

Console.WriteLine("VB .NET: OOP, multithreading, and more!");
break;
default:

Console.WriteLine("Well...good luck with that!");
break;

}
}

■Note C# demands that each case (including default) that contains executable statements have a terminating
break or goto to avoid fall-through.

4193ch03.qxd 8/14/05 2:45 PM Page 95

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS96

One nice feature of the C# switch statement is that you can evaluate string data in addition to
numeric data. Here is an updated switch statement that does this very thing (notice we have no need
to parse the user data into a numeric value with this approach):

static void Main(string[] args)
{

Console.WriteLine("C# or VB");
Console.Write("Please pick your language preference: ");

string langChoice = Console.ReadLine();
switch (langChoice)
{

case "C#":
Console.WriteLine("Good choice, C# is a fine language.");

break;
case "VB":

Console.WriteLine("VB .NET: OOP, multithreading and more!");
break;
default:

Console.WriteLine("Well...good luck with that!");
break;

}
}

■Source Code The IterationsAndDecisions project is located under the Chapter 3 subdirectory.

Understanding Value Types and Reference Types
Like any programming language, C# defines a number of keywords that represent basic data types
such as whole numbers, character data, floating-point numbers, and Boolean values. If you come
from a C++ background, you will be happy to know that these intrinsic types are fixed constants in
the universe, meaning that when you create an integer data point, all .NET-aware languages under-
stand the fixed nature of this type, and all agree on the range it is capable of handling.

Specifically speaking, a .NET data type may be value-based or reference-based. Value-based types,
which include all numerical data types (int, float, etc.), as well as enumerations and structures, are
allocated on the stack. Given this factoid, value types can be quickly removed from memory once they
fall out of the defining scope:

// Integers are value types!
public void SomeMethod()
{

int i = 0;
Console.WriteLine(i);

} // 'i' is popped off the stack here!

When you assign one value type to another, a member-by-member copy is achieved by default.
In terms of numerical or Boolean data types, the only “member” to copy is the value of the variable
itself:

// Assigning two intrinsic value types results in
// two independent variables on the stack.
public void SomeMethod()
{

4193ch03.qxd 8/14/05 2:45 PM Page 96

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 97

int i = 99;
int j = i;

// After the following assignment, 'i' is still 99.
j = 8732;

}

While the previous example is no major newsflash, understand that .NET structures (and enumer-
ations, which are examined later in this chapter) are also value types. Structures, simply put, provide
a way to achieve the bare-bones benefits of object orientation (i.e., encapsulation) while having the
efficiency of stack-allocated data. Like a class, structures can take constructors (provided they have
arguments) and define any number of members.

All structures are implicitly derived from a class named System.ValueType. Functionally, the only
purpose of System.ValueType is to “override” the virtual methods defined by System.Object (described
in just a moment) to honor value-based, versus reference-based, semantics. In fact, the instance meth-
ods defined by System.ValueType are identical to those of System.Object:

// Structures and enumerations extend System.ValueType.
public abstract class ValueType : object
{

public virtual bool Equals(object obj);
public virtual int GetHashCode();
public Type GetType();
public virtual string ToString();

}

Assume you have created a C# structure named MyPoint, using the C# struct keyword:

// Structures are value types!
struct MyPoint
{

public int x, y;
}

To allocate a structure type, you may make use of the new keyword, which may seem counterin-
tuitive given that we typically think new always implies heap allocation. This is part of the smoke and
mirrors maintained by the CLR. As programmers, we can assume everything is an object and new
value types. However, when the runtime encounters a type derived from System.ValueType, stack
allocation is achieved:

// Still on the stack!
MyPoint p = new MyPoint();

As an alternative, structures can be allocated without using the new keyword:

MyPoint p1;
p1.x = 100;
p1.y = 100;

If you take this approach, however, you must initialize each piece of field data before use.
Failing to do so results in a compiler error.

Value Types, References Types, and the Assignment Operator
Now, ponder the following Main() method and observe the output shown in Figure 3-12:

4193ch03.qxd 8/14/05 2:45 PM Page 97

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS98

Figure 3-12. Assignment of value types results in a verbatim copy of each field.

static void Main(string[] args)
{

Console.WriteLine("***** Value Types / Reference Types *****");
Console.WriteLine("-> Creating p1");
MyPoint p1 = new MyPoint();
p1.x = 100;
p1.y = 100;
Console.WriteLine("-> Assigning p2 to p1\n");
MyPoint p2 = p1;

// Here is p1.
Console.WriteLine("p1.x = {0}", p1.x);
Console.WriteLine("p1.y = {0}", p1.y);

// Here is p2.
Console.WriteLine("p2.x = {0}", p2.x);
Console.WriteLine("p2.y = {0}", p2.y);

// Change p2.x. This will NOT change p1.x.
Console.WriteLine("-> Changing p2.x to 900");
p2.x = 900;

// Print again.
Console.WriteLine("-> Here are the X values again...");
Console.WriteLine("p1.x = {0}", p1.x);
Console.WriteLine("p2.x = {0}", p2.x);
Console.ReadLine();

}

Here you have created a variable of type MyPoint (named p1) that is then assigned to another
MyPoint (p2). Because MyPoint is a value type, you have two copies of the MyPoint type on the stack,
each of which can be independently manipulated. Therefore, when you change the value of p2.x,
the value of p1.x is unaffected (just like the behavior seen in the previous integer example).

In stark contrast, reference types (classes) are allocated on the managed heap. These objects
stay in memory until the .NET garbage collector destroys them. By default, assignment of reference
types results in a new reference to the same object on the heap. To illustrate, let’s change the defini-
tion of the MyPoint type from a C# structure to a C# class:

4193ch03.qxd 8/14/05 2:45 PM Page 98

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 99

Figure 3-13. Assignment of reference types copies the reference.

// Classes are always reference types.
class MyPoint // <= Now a class!
{

public int x, y;
}

If you were to run the test program once again, you would notice a change in behavior (see
Figure 3-13).

In this case, you have two references pointing to the same object on the managed heap. There-
fore, when you change the value of x using the p2 reference, p1.x reports the same value.

Value Types Containing Reference Types
Now that you have a better feeling for the differences between value types and reference types, let’s
examine a more complex example. Assume you have the following reference (class) type that main-
tains an informational string that can be set using a custom constructor:

class ShapeInfo
{

public string infoString;
public ShapeInfo(string info)
{ infoString = info; }

}

Now assume that you want to contain a variable of this class type within a value type named
MyRectangle. To allow the outside world to set the value of the inner ShapeInfo, you also provide
a custom constructor (as explained in just a bit, the default constructor of a structure is reserved
and cannot be redefined):

struct MyRectangle
{

// The MyRectangle structure contains a reference type member.
public ShapeInfo rectInfo;

public int top, left, bottom, right;

4193ch03.qxd 8/14/05 2:45 PM Page 99

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS100

Figure 3-14. The internal references point to the same object!

public MyRectangle(string info)
{

rectInfo = new ShapeInfo(info);
top = left = 10;
bottom = right = 100;

}
}

At this point, you have contained a reference type within a value type. The million-dollar ques-
tion now becomes, what happens if you assign one MyRectangle variable to another? Given what
you already know about value types, you would be correct in assuming that the integer data (which
is indeed a structure) should be an independent entity for each MyRectangle variable. But what
about the internal reference type? Will the object’s state be fully copied, or will the reference to that
object be copied? Ponder the following code and check out Figure 3-14 for the answer.

static void Main(string[] args)
{

// Create the first MyRectangle.
Console.WriteLine("-> Creating r1");
MyRectangle r1 = new MyRectangle("This is my first rect");

// Now assign a new MyRectangle to r1.
Console.WriteLine("-> Assigning r2 to r1");
MyRectangle r2;
r2 = r1;

// Change values of r2.
Console.WriteLine("-> Changing all values of r2");
r2.rectInfo.infoString = "This is new info!";
r2.bottom = 4444;

// Print values
Console.WriteLine("-> Values after change:");
Console.WriteLine("-> r1.rectInfo.infoString: {0}", r1.rectInfo.infoString);
Console.WriteLine("-> r2.rectInfo.infoString: {0}", r2.rectInfo.infoString);
Console.WriteLine("-> r1.bottom: {0}", r1.bottom);
Console.WriteLine("-> r2.bottom: {0}", r2.bottom);

}

As you can see, when you change the value of the informational string using the r2 reference, the
r1 reference displays the same value. By default, when a value type contains other reference types,

4193ch03.qxd 8/14/05 2:45 PM Page 100

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 101

assignment results in a copy of the references. In this way, you have two independent structures,
each of which contains a reference pointing to the same object in memory (i.e., a “shallow copy”).
When you want to perform a “deep copy,” where the state of internal references is fully copied into
a new object, you need to implement the ICloneable interface (as you will do in Chapter 7).

■Source Code The ValAndRef project is located under the Chapter 3 subdirectory.

Passing Reference Types by Value
Reference types can obviously be passed as parameters to type members. However, passing an
object by reference is quite different from passing it by value. To understand the distinction, assume
you have a Person class, defined as follows:

class Person
{

public string fullName;
public byte age;
public Person(string n, byte a)
{

fullName = n;
age = a;

}
public Person(){}
public void PrintInfo()
{ Console.WriteLine("{0} is {1} years old", fullName, age); }

}

Now, what if you create a method that allows the caller to send in the Person type by value (note
the lack of parameter modifiers):

public static void SendAPersonByValue(Person p)
{

// Change the age of 'p'?
p.age = 99;

// Will the caller see this reassignment?
p = new Person("Nikki", 999);

}

Notice how the SendAPersonByValue() method attempts to reassign the incoming Person refer-
ence to a new object as well as change some state data. Now let’s test this method using the following
Main() method:

static void Main(string[] args)
{

// Passing ref-types by value.
Console.WriteLine("***** Passing Person object by value *****");
Person fred = new Person("Fred", 12);
Console.WriteLine("Before by value call, Person is:");
fred.PrintInfo();
SendAPersonByValue(fred);
Console.WriteLine("After by value call, Person is:");
fred.PrintInfo();

}

Figure 3-15 shows the output of this call.

4193ch03.qxd 8/14/05 2:45 PM Page 101

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS102

Figure 3-15. Passing reference types by value locks the reference in place.

As you can see, the value of age has been modified. This behavior seems to fly in the face of what
it means to pass a parameter “by value.” Given that you were able to change the state of the incoming
Person, what was copied? The answer: a copy of the reference to the caller’s object. Therefore, as the
SendAPersonByValue() method is pointing to the same object as the caller, it is possible to alter the
object’s state data. What is not possible is to reassign what the reference is pointing to (slightly akin to
a constant pointer in C++).

Passing Reference Types by Reference
Now assume you have a SendAPersonByReference() method, which passes a reference type by refer-
ence (note the ref parameter modifier):

public static void SendAPersonByReference(ref Person p)
{

// Change some data of 'p'.
p.age = 555;

// 'p' is now pointing to a new object on the heap!
p = new Person("Nikki", 999);

}

As you might expect, this allows complete flexibility of how the callee is able to manipulate the
incoming parameter. Not only can the callee change the state of the object, but if it so chooses, it may
also reassign the reference to a new Person type. Now ponder the following usage:

static void Main(string[] args)
{

// Passing ref-types by ref.
Console.WriteLine("\n***** Passing Person object by reference *****");
Person mel = new Person("Mel", 23);
Console.WriteLine("Before by ref call, Person is:");
mel.PrintInfo();
SendAPersonByReference(ref mel);
Console.WriteLine("After by ref call, Person is:");
mel.PrintInfo();

}

As you can see from Figure 3-16, the type named Fred returns after the call as a type named Nikki.

4193ch03.qxd 8/14/05 2:45 PM Page 102

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 103

Figure 3-16. Passing reference types by reference allows the reference to be redirected.

The golden rule to keep in mind when passing reference types by reference is as follows:

• If a reference type is passed by reference, the callee may change the values of the object’s state
data as well as the object it is referencing.

■Source Code The RefTypeValTypeParams project is located under the Chapter 3 subdirectory.

Value and Reference Types: Final Details
To wrap up this topic, ponder the information in Table 3-8, which summarizes the core distinctions
between value types and reference types.

Table 3-8. Value Types and Reference Types Side by Side

Intriguing Question Value Type Reference Type

Where is this type allocated? Allocated on the stack. Allocated on the managed heap.

How is a variable represented? Value type variables are local Reference type variables are
copies. pointing to the memory occupied

by the allocated instance.

What is the base type? Must derive from Can derive from any other type
System.ValueType. (except System.ValueType), as long

as that type is not “sealed” (more
details on this in Chapter 4).

Can this type function as a No. Value types are always Yes. If the type is not sealed, it
base to other types? sealed and cannot be may function as a base to other

extended. types.

What is the default parameter Variables are passed by value Variables are passed by reference
passing behavior? (i.e., a copy of the variable is (e.g., the address of the

passed into the called variable is passed into the called
function). function).

Can this type override No. Value types are never Yes, indirectly (more details
System.Object.Finalize()? placed onto the heap and on this in Chapter 4).

therefore do not need to
be finalized.

Can I define constructors for Yes, but the default constru- But of course!
this type? ctor is reserved (i.e., your

custom constructors must all
have arguments).

When do variables of this When they fall out of the When the managed heap is
type die? defining scope. garbage collected.

4193ch03.qxd 8/14/05 2:45 PM Page 103

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS104

Despite their differences, value types and reference types both have the ability to implement
interfaces and may support any number of fields, methods, overloaded operators, constants, prop-
erties, and events.

Understanding Boxing and Unboxing Operations
Given that .NET defines two major categories of types (value based and reference based), you may
occasionally need to represent a variable of one category as a variable of the other category. C# pro-
vides a very simple mechanism, termed boxing, to convert a value type to a reference type. Assume
that you have created a variable of type short:

// Make a short value type.
short s = 25;

If, during the course of your application, you wish to represent this value type as a reference
type, you would “box” the value as follows:

// Box the value into an object reference.
object objShort = s;

Boxing can be formally defined as the process of explicitly converting a value type into a corre-
sponding reference type by storing the variable in a System.Object. When you box a value, the CLR
allocates a new object on the heap and copies the value type’s value (in this case, 25) into that instance.
What is returned to you is a reference to the newly allocated object. Using this technique, .NET
developers have no need to make use of a set of wrapper classes used to temporarily treat stack data
as heap-allocated objects.

The opposite operation is also permitted through unboxing. Unboxing is the process of converting
the value held in the object reference back into a corresponding value type on the stack. The unboxing
operation begins by verifying that the receiving data type is equivalent to the boxed type, and if so, it
copies the value back into a local stack-based variable. For example, the following unboxing operation
works successfully, given that the underlying type of the objShort is indeed a short (you’ll examine the C#
casting operator in detail in the next chapter, so hold tight for now):

// Unbox the reference back into a corresponding short.
short anotherShort = (short)objShort;

Again, it is mandatory that you unbox into an appropriate data type. Thus, the following
unboxing logic generates an InvalidCastException exception (more details on exception handling
in Chapter 6):

// Illegal unboxing.
static void Main(string[] args)
{
...

try
{

// The type contained in the box is NOT a int, but a short!
int i = (int)objShort;

}
catch(InvalidCastException e)
{

Console.WriteLine("OOPS!\n{0} ", e.ToString());
}

}

4193ch03.qxd 8/14/05 2:45 PM Page 104

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 105

Some Practical (Un)Boxing Examples
So, you may be thinking, when would you really need to manually box (or unbox) a data type? The previ-
ous example was purely illustrative in nature, as there was no good reason to box (and then unbox) the
short data point. The truth of the matter is that you will seldom—if ever—need to manually box data
types. Much of the time, the C# compiler automatically boxes variables when appropriate. For example,
if you pass a value type into a method requiring an object parameter, boxing occurs behind the curtains.

class Program
{

static void Main(string[] args)
{

// Create an int (value type).
int myInt = 99;

// Because myInt is passed into a
// method prototyped to take an object,
// myInt is 'boxed' automatically.
UseThisObject(myInt);
Console.ReadLine();

}

static void UseThisObject(object o)
{

Console.WriteLine("Value of o is: {0}", o);
}

}

Automatic boxing also occurs when working with the types of the .NET base class libraries. For
example, the System.Collections namespace (formally examined in Chapter 7) defines a class type
named ArrayList. Like most collection types, ArrayList provides members that allow you to insert,
obtain, and remove items:

public class System.Collections.ArrayList : object,
System.Collections.IList,
System.Collections.ICollection,
System.Collections.IEnumerable,
ICloneable

{
...

public virtual int Add(object value);
public virtual void Insert(int index, object value);
public virtual void Remove(object obj);
public virtual object this[int index] {get; set; }

}

As you can see, these members operate on generic System.Object types. Given that everything
ultimately derives from this common base class, the following code is perfectly legal:

static void Main(string[] args)
{
...

ArrayList myInts = new ArrayList();
myInts.Add(88);
myInts.Add(3.33);
myInts.Add(false);

}

4193ch03.qxd 8/14/05 2:45 PM Page 105

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS106

However, given your understanding of value types and reference types, you might wonder exactly
what was placed into the ArrayList type. (References? Copies of references? Copies of structures?) Just
like with the previous UseThisObject() method, it should be clear that each of the System.Int32 data
types were indeed boxed before being placed into the ArrayList type. To retrieve an item from the
ArrayList type, you are required to unbox accordingly:

static void BoxAndUnboxInts()
{

// Box ints into ArrayList.
ArrayList myInts = new ArrayList();
myInts.Add(88);
myInts.Add(3.33);
myInts.Add(false);

// Unbox first item from ArrayList.
int firstItem = (int)myInts[0];
Console.WriteLine("First item is {0}", firstItem);

}

To be sure, boxing and unboxing types takes some processing time and, if used without restraint,
could hurt the performance of your application. However, with this .NET technique, you are able to
symmetrically operate on value-based and reference-based types.

■Note Under C# 2.0, boxing and unboxing penalties can be eliminated using generics, which you’ll examine in
Chapter 10.

Unboxing Custom Value Types
When you pass custom structures or enumerations into a method prototyped to take a System.Object,
a boxing operation also occurs. However, once the incoming parameter has been received by the called
method, you will not be able to access any members of the struct (or enum) until you unbox the type.
Recall the MyPoint structure defined previously in this chapter:

struct MyPoint
{

public int x, y;
}

Assume you now send a MyPoint variable into a new method named UseBoxedMyPoint():

static void Main(string[] args)
{
...

MyPoint p;
p.x = 10;
p.y = 20;
UseBoxedMyPoint(p);

}

If you attempt to access the field data of MyPoint, you receive a compiler error, as the method
assumes you are operating on a strongly typed System.Object:

static void UseBoxedMyPoint(object o)
{

// Error! System.Object does not have
// member variables named 'x' or 'y'.
Console.WriteLine("{0}, {1}", o.x, o.y);

}

4193ch03.qxd 8/14/05 2:45 PM Page 106

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 107

To access the field data of MyPoint, you must first unbox the parameter. As a sanity check, you
can leverage the C# is keyword to ensure the parameter is indeed a MyPoint variable. The is keyword
is further examined in Chapter 4; however, here is some example usage:

static void UseBoxedMyPoint(object o)
{

if (o is MyPoint)
{

MyPoint p = (MyPoint)o;
Console.WriteLine("{0}, {1}", p.x, p.y);

}
else

Console.WriteLine("You did not send a MyPoint.");
}

■Source Code The Boxing project is included under the Chapter 3 subdirectory.

Working with .NET Enumerations
In addition to structures, enumerations (or simply enums) are the other member of the .NET value
type category. When you build a program, it is often convenient to create a set of symbolic names for
underlying numerical values. For example, if you are creating an employee payroll system, you may
wish to use the constants Manager, Grunt, Contractor, and VP rather than simple numerical values such
as {0, 1, 2, 3}. C# supports the notion of custom enumerations for this very reason. For example,
here is the EmpType enumeration:

// A custom enumeration.
enum EmpType
{

Manager, // = 0
Grunt, // = 1
Contractor, // = 2
VP // = 3

}

The EmpType enumeration defines four named constants corresponding to specific numerical
values. In C#, the numbering scheme sets the first element to zero (0) by default, followed by an n + 1
progression. You are free to change this behavior as you see fit:

// Begin numbering at 102.
enum EmpType
{

Manager = 102,
Grunt, // = 103
Contractor, // = 104
VP // = 105

}

Enumerations do not necessarily need to follow a sequential order. If (for some reason) it made
good sense to establish your EmpType as follows, the compiler continues to be happy:

// Elements of an enumeration need not be sequential!
enum EmpType
{

4193ch03.qxd 8/14/05 2:45 PM Page 107

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS108

Manager = 10,
Grunt = 1,
Contractor = 100,
VP = 9

}

Under the hood, the storage type used for each item in an enumeration maps to a System.Int32
by default. You are also free to change this to your liking. For example, if you want to set the underlying
storage value of EmpType to be a byte rather than an int, you would write the following:

// This time, EmpType maps to an underlying byte.
enum EmpType : byte
{

Manager = 10,
Grunt = 1,
Contractor = 100,
VP = 9

}

■Note C# enumerations can be defined in a similar manner for any of the numerical types (byte, sbyte, short,
ushort, int, uint, long, or ulong). This can be helpful if you are programming for low-memory devices such as
Pocket PCs or .NET-enabled cellular phones.

Once you have established the range and storage type of your enumeration, you can use them in
place of so-called magic numbers. Assume you have a class defining a static function, taking EmpType
as the sole parameter:

static void AskForBonus(EmpType e)
{

switch(e)
{

case EmpType.Contractor:
Console.WriteLine("You already get enough cash...");

break;
case EmpType.Grunt:

Console.WriteLine("You have got to be kidding...");
break;
case EmpType.Manager:

Console.WriteLine("How about stock options instead?");
break;
case EmpType.VP:

Console.WriteLine("VERY GOOD, Sir!");
break;
default: break;

}
}

This method can be invoked as so:

static void Main(string[] args)
{

// Make a contractor type.
EmpType fred;
fred = EmpType.Contractor;
AskForBonus(fred);

}

4193ch03.qxd 8/14/05 2:45 PM Page 108

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 109

■Note The value of an enum must always be referenced by prefixing the enum name (e.g., EmpType.Grunt, not
simply Grunt).

The System.Enum Base Class
The interesting thing about .NET enumerations is that they implicitly derive from System.Enum. This
base class defines a number of methods that allow you to interrogate and transform a given enumer-
ation. Table 3-9 documents some items of interest, all of which are static.

Table 3-9. Select Static Members of System.Enum

Member Meaning in Life

Format() Converts a value of a specified enumerated type to its equivalent string
representation according to the specified format

GetName() Retrieves a name (or an array containing all names) for the constant in
GetNames() the specified enumeration that has the specified value

GetUnderlyingType() Returns the underlying data type used to hold the values for a given
enumeration

GetValues() Retrieves an array of the values of the constants in a specified
enumeration

IsDefined() Returns an indication of whether a constant with a specified value
exists in a specified enumeration

Parse() Converts the string representation of the name or numeric value of one
or more enumerated constants to an equivalent enumerated object

You can make use of the static Enum.Format() method and the same exact string formatting flags
examined earlier in the chapter during our examination of System.Console. For example, you may
extract the string name (by specifying G), the hexadecimal value (X), or numeric value (D, F, etc.) of
a given enum.

System.Enum also defines a static method named GetValues(). This method returns an instance of
System.Array (examined later in this chapter), with each item in the array corresponding to name/value
pairs of the specified enumeration. To illustrate these points, ponder the following:

static void Main(string[] args)
{

// Print information for the EmpType enumeration.
Array obj = Enum.GetValues(typeof(EmpType));
Console.WriteLine("This enum has {0} members.", obj.Length);

foreach(EmpType e in obj)
{

Console.Write("String name: {0},", e.ToString());
Console.Write(" int: ({0}),", Enum.Format(typeof(EmpType), e, "D"));
Console.Write(" hex: ({0})\n", Enum.Format(typeof(EmpType), e, "X"));

}
}

As you can guess, this code block prints out the name/value pairs (in decimal and hexadecimal)
for the EmpType enumeration.

4193ch03.qxd 8/14/05 2:45 PM Page 109

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS110

Next, let’s explore the IsDefined property. This property allows you to determine if a given string
name is a member of the current enumeration. For example, assume you wish to know if the value
SalesPerson is part of the EmpType enumeration. To do so, you must send it the type information of the
enumeration (which can be done via the C# typeof operator) and the string name of the value you wish
to query (type information will be examined in much greater detail in Chapter 12):

static void Main(string[] args)
{
...

// Does EmpType have a SalesPerson value?
if(Enum.IsDefined(typeof(EmpType), "SalesPerson"))

Console.WriteLine("Yep, we have sales people.");
else

Console.WriteLine("No, we have no profits...");
}

It is also possible to generate an enumeration set to the correct value from a string literal via
the static Enum.Parse() method. Given that Parse() returns a generic System.Object, you will need
to cast the return value into the correct enum type:

// Prints: "Sally is a Manager"
EmpType sally = (EmpType)Enum.Parse(typeof(EmpType), "Manager");
Console.WriteLine("Sally is a {0}", sally.ToString());

Last but not least, it is worth pointing out that C# enumerations support the use of various oper-
ators, which test against the assigned values, for example:

static void Main(string[] args)
{
...

// Which of these two EmpType variables has the greatest numerical value?
EmpType Joe = EmpType.VP;
EmpType Fran = EmpType.Grunt;

if(Joe < Fran)
Console.WriteLine("Joe's value is less than Fran's value.");

else
Console.WriteLine("Fran's value is less than Joe's value.");

}

■Source Code The Enums project is located under the Chapter 3 subdirectory.

The Master Class: System.Object

■Tip The following examination of System.Object requires you to understand the concept of virtual methods
and method overriding. If you are new to the world of OOP, you may wish to reread this section once you complete
Chapter 4.

In .NET, every type is ultimately derived from a common base class: System.Object. The Object class
defines a common set of members supported by every type in the .NET universe. When you create
a class that does not explicitly specify its base class, you implicitly derive from System.Object:

4193ch03.qxd 8/14/05 2:45 PM Page 110

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 111

// Implicitly deriving from System.Object.
class HelloClass
{...}

If you wish to be more clear with your intension, the C# colon operator (:) allows you to explicitly
specify a type’s base class (such as System.Object):

// In both cases we are explicitly deriving from System.Object.
class ShapeInfo : System.Object
{...}

class ShapeInfo : object
{...}

System.Object defines a set of instance-level and class-level (static) members. Note that some of
the instance-level members are declared using the virtual keyword and can therefore be overridden
by a derived class:

// The topmost class in the .NET universe: System.Object
namespace System
{

public class Object
{

public Object();
public virtual Boolean Equals(Object obj);
public virtual Int32 GetHashCode();
public Type GetType();
public virtual String ToString();
protected virtual void Finalize();
protected Object MemberwiseClone();
public static bool Equals(object objA, object objB);
public static bool ReferenceEquals(object objA, object objB);

}
}

Table 3-10 offers a rundown of the functionality provided by each instance-level method.

Table 3-10. Core Members of System.Object

Instance Method of Object Class Meaning in Life

Equals() By default, this method returns true only if the items being
compared refer to the exact same item in memory. Thus, Equals()
is used to compare object references, not the state of the object.
Typically, this method is overridden to return true only if the
objects being compared have the same internal state values
(that is, value-based semantics).
Be aware that if you override Equals(), you should also
override GetHashCode().

GetHashCode() This method returns an integer that identifies a specific object
in memory.
If you intend your custom types to be contained in
a System.Collections.Hashtable type, you are well-advised to
override the default implementation of this member.

GetType() This method returns a System.Type object that fully describes
the details of the current item. In short, this is a Runtime Type
Identification (RTTI) method available to all objects (this is
discussed in greater detail in Chapter 12).

Continued

4193ch03.qxd 8/14/05 2:45 PM Page 111

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS112

Table 3-10. (Continued)

Instance Method of Object Class Meaning in Life

ToString() This method returns a string representation of a given object,
using the namespace.typename format (i.e., fully qualified name).
If the type has not been defined within a namespace, typename
alone is returned. This method can be overridden by a subclass
to return a tokenized string of name/value pairs that represent
the object’s internal state, rather than its fully qualified name.

Finalize() For the time being, you can understand that this protected
method (when overridden) is invoked by the .NET runtime
when an object is to be removed from the heap. We investigate
the garbage collection process in Chapter 5.

MemberwiseClone() This protected method exists to return a new object that is
a member-by-member copy of the current object. Thus, if your
object contains references to other objects, the references to
these types are copied (i.e., it achieves a shallow copy). If the
object contains value types, full copies of the values are
achieved.

The Default Behavior of System.Object
To illustrate some of the default behavior provided by the System.Object base class, assume a class
named Person defined in a custom namespace named ObjectMethods:

// The 'namespace' keyword is fully examined at the end of this chapter.
namespace ObjectMethods
{

class Person
{

public Person(string fname, string lname, string s, byte a)
{

firstName = fname;
lastName = lname;
SSN = s;
age = a;

}
public Person(){}

// The state of a person.
public string firstName;
public string lastName;
public string SSN;
public byte age;

}
}

Now, within our Main() method, we make use of the Person type as so:

static void Main(string[] args)
{

Console.WriteLine("***** Working with Object *****\n");

Person fred = new Person("Fred", "Clark", "111-11-1111", 20);
Console.WriteLine("-> fred.ToString: {0}", fred.ToString());
Console.WriteLine("-> fred.GetHashCode: {0}", fred.GetHashCode());
Console.WriteLine("-> fred's base class: {0}", fred.GetType().BaseType);

4193ch03.qxd 8/14/05 2:45 PM Page 112

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 113

Figure 3-17. Default implementation of select System.Object members

// Make some other references to 'fred'.
Person p2 = fred;
object o = p2;

// Are all 3 instances pointing to the same object in memory?
if(o.Equals(fred) && p2.Equals(o))

Console.WriteLine("fred, p2 and o are referencing the same object!");
Console.ReadLine();

}

Figure 3-17 shows a test run.

First, notice how the default implementation of ToString() simply returns the fully qualified
name of the type (e.g., namespace.typename). GetType() retrieves a System.Type object, which defines
a property named BaseType (as you can guess, this will identify the fully qualified name of the type’s
base class).

Now, reexamine the code that leverages the Equals() method. Here, a new Person object is placed
on the managed heap, and the reference to this object is stored in the fred reference variable. p2 is also
of type Person, however, you are not creating a new instance of the Person class, but assigning p2 to fred.
Therefore, fred and p2 are both pointing to the same object in memory, as is the variable o (of type object,
which was thrown in for good measure). Given that fred, p2, and o all point to the same object in
memory, the equality test succeeds.

Overriding Some Default Behaviors of
System.Object
Although the canned behavior of System.Object can fit the bill in most cases, it is quite common for
your custom types to override some of these inherited methods. Chapter 4 provides a complete
examination of OOP under C#, but in a nutshell, overriding is the process of redefining the behavior
of an inherited virtual member in a derived class. As you have just seen, System.Object defines
a number of virtual methods (such as ToString() and Equals()) that do define a canned implemen-
tation. However, if you want to build a custom implementation of these virtual members for a derived
type, you make use of the C# override keyword.

4193ch03.qxd 8/14/05 2:45 PM Page 113

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS114

Overriding System.Object.ToString()
Overriding the ToString() method provides a way to quickly gain a snapshot of an object’s current
state. As you might guess, this can be helpful during the debugging process. To illustrate, let’s override
System.Object.ToString() to return a textual representation of a person’s state (note we are using
a new namespace named System.Text):

// Need to reference System.Text to access StringBuilder type.
using System;
using System.Text;

class Person
{

// Overriding System.Object.ToString().
public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.AppendFormat("[FirstName={0};", this.firstName);
sb.AppendFormat(" LastName={0};", this.lastName);
sb.AppendFormat(" SSN={0};", this.SSN);
sb.AppendFormat(" Age={0}]", this.age);
return sb.ToString();

}
...
}

How you format the string returned from System.Object.ToString() is largely a matter of personal
choice. In this example, the name/value pairs have been contained within square brackets, with each
pair separated by a semicolon (a common technique within the .NET base class libraries).

Also notice that this example makes use of a new type, System.Text.StringBuilder (which is also
a matter of personal choice). This type is described in greater detail later in the chapter. The short
answer, however, is that StringBuilder is a more efficient alternative to C# string concatenation.

Overriding System.Object.Equals()
Let’s also override the behavior of System.Object.Equals() to work with value-based semantics.
Recall that by default, Equals() returns true only if the two references being compared are pointing
to the same object on the heap. In many cases, however, you don’t necessary care if two references
are pointing to the same object in memory, but you are more interested if the two objects have the
same state data (name, SSN, and age in the case of a Person):

public override bool Equals(object o)
{

// Make sure the caller sent a valid
// Person object before proceeding.
if (o != null && o is Person)
{

// Now see if the incoming Person
// has the exact same information as
// the current object (this).
Person temp = (Person)o;
if (temp.firstName == this.firstName &&

temp.lastName == this.lastName &&
temp.SSN == this.SSN &&
temp.age == this.age)

return true;
}

4193ch03.qxd 8/14/05 2:45 PM Page 114

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 115

return false; // Not the same!
}

Here you are first verifying the caller did indeed pass in a Person object to the Equals() method
using the C# is keyword. After this point, you go about examining the values of the incoming param-
eter against the values of the current object’s field data (note the use of the this keyword, which refers
to the current object).

The prototype of System.Object.Equals() takes a single argument of type object. Thus, you are
required to perform an explicit cast within the Equals() method to access the members of the Person
type. If the name, SSN, and age of each are identical, you have two objects with the same state data
and therefore return true. If any point of data is not identical, you return false.

If you override System.Object.ToString() for a given class, you can take a very simple shortcut
when overriding System.Object.Equals(). Given that the value returned from ToString() should take
into account all of the member variables of the current class (and possible data declared in base classes),
Equals() can simply compare the values of the string types:

public override bool Equals(object o)
{

if (o != null && o is Person)
{

Person temp = (Person)o;
if (this.ToString() == o.ToString())

return true;
else

return false;
}
return false;

}

Now, for the sake of argument, assume you have a type named Car, and attempt to pass in a Car
instance to the Person.Equals() method as so:

// Cars are not people!
Car c = new Car();
Person p = new Person();
p.Equals(c);

Given your runtime check for a true-blue Person object (via the is operator) the Equals() method
returns false. Now consider the following invocation:

// Oops!
Person p = new Person();
p.Equals(null);

This would also be safe, given your check for an incoming null reference.

Overriding System.Object.GetHashCode()
When a class overrides the Equals() method, best practices dictate that you should also override
System.Object.GetHashCode(). If you fail to do so, you are issued a compiler warning. The role of
GetHashCode() is to return a numerical value that identifies an object based on its internal state
data. Thus, if you have two Person objects that have an identical first name, last name, SSN, and age,
you should obtain the same hash code.

By and large, overriding this method is only useful if you intend to store a custom type within
a hash-based collection such as System.Collections.Hashtable. Under the hood, the Hashtable type
calls the Equals() and GetHashCode() members of the contained types to determine the correct object
to return to the caller. Due to the fact that System.Object has no clue about the state data of derived
types, you should override this member for any type you wish to store in a Hashtable.

4193ch03.qxd 8/14/05 2:45 PM Page 115

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS116

There are many algorithms that can be used to create a hash code—some fancy, others not so
fancy. As mentioned, an object’s hash value will be based on its state data. As luck would have it, the
System.String class has a very solid implementation of GetHashCode() that is based on the string’s
character data. Therefore, if you can identify a string field that should be unique among objects
(such as the Person’s SSN field), you can simply call GetHashCode() on the field’s string representation:

// Return a hash code based on the person's SSN.
public override int GetHashCode()
{

return SSN.GetHashCode();
}

If you cannot identify a single point of data in your class, but have overridden ToString(), you
can simply return the hash code of the string returned from your custom ToString() implementation:

// Return a hash code based our custom ToString().
public override int GetHashCode()
{

return ToString().GetHashCode();
}

Testing the Overridden Members
You can now test your updated Person class. Add the following code to your Main() method and check
out Figure 3-18 for output:

static void Main(string[] args)
{

// NOTE: We want these to be identical for testing purposes.
Person p3 = new Person("Fred", "Jones", "222-22-2222", 98);
Person p4 = new Person("Fred", "Jones", "222-22-2222", 98);

// Should have same hash code and string at this point.
Console.WriteLine("-> Hash code of p3 = {0}", p3.GetHashCode());
Console.WriteLine("-> Hash code of p4 = {0}", p4.GetHashCode());
Console.WriteLine("-> String of p3 = {0}", p3.ToString());
Console.WriteLine("-> String of p4 = {0}", p4.ToString());

// Should be equal at this point.
if (p3.Equals(p4))

Console.WriteLine("-> P3 and p4 have same state!");
else

Console.WriteLine("-> P3 and p4 have different state!");

// Change age of p4.
Console.WriteLine("\n-> Changing the age of p4\n");
p4.age = 2;

// No longer equal, different hash values and string data.
Console.WriteLine("-> String of p3 = {0}", p3.ToString());
Console.WriteLine("-> String of p4 = {0}", p4.ToString());
Console.WriteLine("-> Hash code of p3 = {0}", p3.GetHashCode());
Console.WriteLine("-> Hash code of p4 = {0}", p4.GetHashCode());
if (p3.Equals(p4))

Console.WriteLine("-> P3 and p4 have same state!");
else

Console.WriteLine("-> P3 and p4 have different state!");
}

4193ch03.qxd 8/14/05 2:45 PM Page 116

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 117

Figure 3-18. Overridden System.Object members in action

Static Members of System.Object
To wrap up our examination of this supreme base class of .NET, it is worth pointing out that System.
Object does define two static members (Object.Equals() and Object.ReferenceEquals()) that test
for value-based or reference-based equality. Consider the following code:

static void Main(string[] args)
{

// Assume two identically configured objects.
Person p3 = new Person("Fred", "Jones", "222-22-2222", 98);
Person p4 = new Person("Fred", "Jones", "222-22-2222", 98);

// Do p3 and p4 have the same state? TRUE!
Console.WriteLine("Do P3 and p4 have same state: {0} ", object.Equals(p3, p4));

// Are they the same object in memory? FALSE!
Console.WriteLine("Are P3 and p4 are pointing to same object: {0} ",

object.ReferenceEquals(p3, p4));
}

■Source Code The ObjectMethods project is located under the Chapter 3 subdirectory.

The System Data Types (and C# Shorthand
Notation)
As you may have begun to notice, every intrinsic C# data type is actually a shorthand notation for
defining an existing type defined in the System namespace. Table 3-11 lists each system data type,
its range, the corresponding C# alias, and the type’s compliance with the Common Language
Specification (CLS).

4193ch03.qxd 8/14/05 2:45 PM Page 117

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS118

Table 3-11. System Types and C# Shorthand

C# CLS
Shorthand Compliant? System Type Range Meaning in Life

sbyte No System.SByte –128 to 127 Signed 8-bit number

byte Yes System.Byte 0 to 255 Unsigned 8-bit
number

short Yes System.Int16 –32,768 to 32,767 Signed 16-bit number

ushort No System.UInt16 0 to 65,535 Unsigned 16-bit
number

int Yes System.Int32 –2,147,483,648 to Signed 32-bit number
2,147,483,647

uint No System.UInt32 0 to 4,294,967,295 Unsigned 32-bit
number

long Yes System.Int64 –9,223,372,036,854,775,808 Signed 64-bit number
to 9,223,372,036,854,775,807

ulong No System.UInt64 0 to Unsigned 64-bit
18,446,744,073,709,551,615 number

char Yes System.Char U0000 to Uffff A single 16-bit
Unicode character

float Yes System.Single 1.5×10-45 to 3.4×1038 32-bit floating point
number

double Yes System.Double 5.0×10-324 to 1.7×10308 64-bit floating point
number

bool Yes System.Boolean true or false Represents truth or
falsity

decimal Yes System.Decimal 100 to 1028 A 96-bit signed
number

string Yes System.String Limited by system memory Represents a set of
Unicode characters

object Yes System.Object Any type can be stored The base class of all
in an object variable types in the .NET

universe

■Note By default, a real numeric literal on the right-hand side of the assignment operator is treated as double.
Therefore, to initialize a float variable, use the suffix f or F (5.3F).

It is very interesting to note that even the primitive .NET data types are arranged in a class hierar-
chy. The relationship between these core system types (as well as some other soon-to-be-discovered
types) can be represented as shown in Figure 3-19.

4193ch03.qxd 8/14/05 2:45 PM Page 118

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 119

Figure 3-19. The hierarchy of System types

As you can see, each of these types ultimately derives from System.Object. Because data types such
as int are simply shorthand notations for the corresponding system type (in this case, System.Int32), the
following is perfectly legal syntax:

// Remember! A C# int is really a shorthand for System.Int32.
Console.WriteLine(12.GetHashCode());
Console.WriteLine(12.Equals(23));
Console.WriteLine(12.ToString());
Console.WriteLine(12); // ToString() called automatically.
Console.WriteLine(12.GetType().BaseType);

Furthermore, given that all value types are provided with a default constructor, it is permissible
to create a system type using the new keyword, which sets the variable to its default value. Although
it is more cumbersome to use the new keyword when creating a System data type, the following is
syntactically well-formed C#:

4193ch03.qxd 8/14/05 2:45 PM Page 119

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS120

// These statements are identical.
bool b1 = new bool(); // b1 = false.
bool b2 = false;

On a related note, you could also create a system data type using the fully qualified name:

// These statements are also semantically identical.
System.Bool b1 = new System.Bool(); // b1 = false.
System.Bool sb2 = false;

Experimenting with Numerical Data Types
The numerical types of .NET support MaxValue and MinValue properties that provide informa-
tion regarding the range a given type can store. Assume you have created some variables of type
System.UInt16 (an unsigned short) and exercised it as follows:

static void Main(string[] args)
{

System.UInt16 myUInt16 = 30000;
Console.WriteLine("Max for an UInt16 is: {0} ", UInt16.MaxValue);
Console.WriteLine("Min for an UInt16 is: {0} ", UInt16.MinValue);
Console.WriteLine("Value is: {0} ", myUInt16);
Console.WriteLine("I am a: {0} ", myUInt16.GetType());

// Now in System.UInt16 shorthand (e.g., a ushort).
ushort myOtherUInt16 = 12000;
Console.WriteLine("Max for an UInt16 is: {0} ", ushort.MaxValue);
Console.WriteLine("Min for an UInt16 is: {0} ", ushort.MinValue);
Console.WriteLine("Value is: {0} ", myOtherUInt16);
Console.WriteLine("I am a: {0} ", myOtherUInt16.GetType());
Console.ReadLine();

}

In addition to the MinValue/MaxValue properties, a given system type may define further use-
ful members. For example, the System.Double type allows you to obtain the values for Epsilon and
infinity values:

Console.WriteLine("-> double.Epsilon: {0}", double.Epsilon);
Console.WriteLine("-> double.PositiveInfinity: {0}", double.PositiveInfinity);
Console.WriteLine("-> double.NegativeInfinity: {0}", double.NegativeInfinity);
Console.WriteLine("-> double.MaxValue: {0}", double.MaxValue);
Console.WriteLine("-> double.MinValue: {0}",double.MinValue);

Members of System.Boolean
Next, consider the System.Boolean data type. Unlike C(++), the only valid assignment a C# bool can
take is from the set {true | false}. You cannot assign makeshift values (e.g., –1, 0, 1) to a C# bool,
which (to most programmers) is a welcome change. Given this point, it should be clear that
System.Boolean does not support a MinValue/MaxValue property set, but rather TrueString/FalseString:

// No more ad hoc Boolean types in C#!
bool b = 0; // Illegal!
bool b2 = -1; // Also illegal!
bool b3 = true; // No problem.
bool b4 = false; // No problem.
Console.WriteLine("-> bool.FalseString: {0}", bool.FalseString);
Console.WriteLine("-> bool.TrueString: {0}", bool.TrueString);

4193ch03.qxd 8/14/05 2:45 PM Page 120

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 121

Members of System.Char
C# textual data is represented by the intrinsic C# string and char data types. All .NET-aware languages
map textual data to the same underlying types (System.String and System.Char), both of which are
Unicode under the hood.

The System.Char type provides you with a great deal of functionality beyond the ability to hold
a single point of character data (which must be placed between single quotes). Using the static meth-
ods of System.Char, you are able to determine if a given character is numerical, alphabetical, a point
of punctuation, or whatnot. To illustrate, check out the following:

static void Main(string[] args)
{
...

// Test the truth of the following statements...
Console.WriteLine("-> char.IsDigit('K'): {0}", char.IsDigit('K'));
Console.WriteLine("-> char.IsDigit('9'): {0}", char.IsDigit('9'));
Console.WriteLine("-> char.IsLetter('10', 1): {0}", char.IsLetter("10", 1));
Console.WriteLine("-> char.IsLetter('p'): {0}", char.IsLetter('p'));
Console.WriteLine("-> char.IsWhiteSpace('Hello There', 5): {0}",

char.IsWhiteSpace("Hello There", 5));
Console.WriteLine("-> char.IsWhiteSpace('Hello There', 6): {0}",

char.IsWhiteSpace("Hello There", 6));
Console.WriteLine("-> char.IsLetterOrDigit('?'): {0}",

char.IsLetterOrDigit('?'));
Console.WriteLine("-> char.IsPunctuation('!'): {0}",

char.IsPunctuation('!'));
Console.WriteLine("-> char.IsPunctuation('>'): {0}",

char.IsPunctuation('>'));
Console.WriteLine("-> char.IsPunctuation(','): {0}",

char.IsPunctuation(','));
...
}

As you can see, each of these static members of System.Char has two calling conventions: a single
character or a string with a numerical index that specified the position of the character to test.

Parsing Values from String Data
Also understand that the .NET data types provide the ability to generate a variable of their underlying
type given a textual equivalent (e.g., parsing). This technique can be extremely helpful when you
wish to convert a bit of user input data (such as a selection from a drop-down list) into a numerical
value. Ponder the following parsing logic:

static void Main(string[] args)
{
...

bool myBool = bool.Parse("True");
Console.WriteLine("-> Value of myBool: {0}", myBool);
double myDbl = double.Parse("99.884");
Console.WriteLine("-> Value of myDbl: {0}", myDbl);
int myInt = int.Parse("8");
Console.WriteLine("-> Value of myInt: {0}", myInt);
char myChar = char.Parse("w");
Console.WriteLine("-> Value of myChar: {0}\n", myChar);

...
}

4193ch03.qxd 8/14/05 2:45 PM Page 121

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS122

Figure 3-20. Working with DateTime and TimeSpan

System.DateTime and System.TimeSpan
To wrap up our examination of core data types, allow me to point out the fact that the System name-
space defines a few useful data types for which there is no C# keyword—specifically, the DateTime
and TimeSpan structures (I’ll leave the investigation of System.Guid and System.Void, as shown in
Figure 3-19, to interested readers).

The DateTime type contains data that represents a specific date (month, day, year) and time value,
both of which may be formatted in a variety of ways using the supplied members. By way of a simple
example, ponder the following statements:

static void Main(string[] args)
{
...

// This constructor takes (year, month, day)
DateTime dt = new DateTime(2004, 10, 17);

// What day of the month is this?
Console.WriteLine("The day of {0} is {1}", dt.Date, dt.DayOfWeek);
dt.AddMonths(2); // Month is now December.
Console.WriteLine("Daylight savings: {0}", dt.IsDaylightSavingTime());

...
}

The TimeSpan structure allows you to easily define and transform units of time using various
members, for example:

static void Main(string[] args)
{
...

// This constructor takes (hours, minutes, seconds)
TimeSpan ts = new TimeSpan(4, 30, 0);
Console.WriteLine(ts);

// Subtract 15 minutes from the current TimeSpan and
// print the result.
Console.WriteLine(ts.Subtract(new TimeSpan(0, 15, 0)));

...
}

Figure 3-20 shows the output of the DateTime and TimeSpan statements.

4193ch03.qxd 8/14/05 2:45 PM Page 122

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 123

■Source Code The DataTypes project is located under the Chapter 3 subdirectory.

The System.String Data Type
The C# string keyword is a shorthand notation of the System.String type, which provides a number
of members you would expect from such a utility class. Table 3-12 lists some (but not all) of the inter-
esting members.

Table 3-12. Select Members of System.String

Member Meaning in Life

Length This property returns the length of the current string.

Contains() This method is used to determine if the current string object contains
a specified string.

Format() This static method is used to format a string literal using other primitives
(i.e., numerical data and other strings) and the {0} notation examined earlier
in this chapter.

Insert() This method is used to receive a copy of the current string that contains
newly inserted string data.

PadLeft() These methods return copies of the current string that has been padded
PadRight() with specific data.

Remove() Use these methods to receive a copy of a string, with modifications
Replace() (characters removed or replaced).

Substring() This method returns a string that represents a substring of the current string.

ToCharArray() This method returns a character array representing the current string.

ToUpper() These methods create a copy of a given string in uppercase or lowercase.
ToLower()

Basic String Operations
To illustrate some basic string operations, consider the following Main() method:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Strings *****");
string s = "Boy, this is taking a long time.";
Console.WriteLine("--> s contains 'oy'?: {0}", s.Contains("oy"));
Console.WriteLine("--> s contains 'Boy'?: {0}", s.Contains("Boy"));
Console.WriteLine(s.Replace('.', '!'));
Console.WriteLine(s.Insert(0, "Boy O' "));
Console.ReadLine();

}

Here, we are creating a string type invoking the Contains(), Replace(), and Insert() methods.
Figure 3-21 shows the output.

4193ch03.qxd 8/14/05 2:45 PM Page 123

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS124

Figure 3-21. Basic string operations

You should be aware that although string is a reference type, the equality operators (== and !=)
are defined to compare the value with the string objects, not the memory to which they refer. There-
fore, the following comparison evaluates to true:

string s1 = "Hello ";
string s2 = "Hello ";
Console.WriteLine("s1 == s2: {0}", s1 == s2);

whereas this comparison evaluates to false:

string s1 = "Hello ";
string s2 = "World!";
Console.WriteLine("s1 == s2: {0}", s1 == s2);

When you wish to concatenate existing strings into a new string that is the sum of all its parts,
C# provides the + operator as well as the static String.Concat() method. Given this, the following
statements are functionally equivalent:

// Concatenation of strings.
string newString = s + s1 + s2;
Console.WriteLine("s + s1 + s2 = {0}", newString);
Console.WriteLine("string.Concat(s, s1, s2) = {0}", string.Concat(s, s1, s2));

Another helpful feature of the string type is the ability to iterate over each individual character
using an arraylike syntax. Formally speaking, objects that support arraylike access to their contents
make use of an indexer method. You’ll learn how to build indexers in Chapter 9; however, to illustrate
the concept, the following code prints each character of the s1 string object to the console:

// System.String also defines an indexer to access each
// character in the string.
for (int k = 0; k < s1.Length; k++)

Console.WriteLine("Char {0} is {1}", k, s1[k]);

As an alternative to interacting with the type’s indexer, the string class can also be used within
the C# foreach construct. Given that System.String is maintaining an array of individual System.Char
types, the following code also prints each character of s1 to the console:

foreach(char c in s1)
Console.WriteLine(c);

Escape Characters
Like in other C-based languages, in C# string literals may contain various escape characters, which
qualify how the character data should be printed to the output stream. Each escape character begins
with a backslash, followed by a specific token. In case you are a bit rusty on the meanings behind
these escape characters, Table 3-13 lists the more common options.

4193ch03.qxd 8/14/05 2:45 PM Page 124

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 125

Table 3-13. String Literal Escape Characters

Character Meaning in Life

\' Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal. This can be quite helpful when
defining file paths.

\a Triggers a system alert (beep). For console applications, this can be an audio
clue to the user.

\n Inserts a new line (on Win32 platforms).

\r Inserts a carriage return.

\t Inserts a horizontal tab into the string literal.

For example, to print a string that contains a tab between each word, you can make use of the
\t escape character:

// Literal strings may contain any number of escape characters.
string s3 = "Hello\tThere\tAgain";
Console.WriteLine(s3);

As another example, assume you wish to create a string literal that contains quotation marks,
another that defines a directory path, and a final string literal that inserts three blank lines after
printing the character data. To do so without compiler errors, you would need to make use of the \",
\\, and \n escape characters:

Console.WriteLine("Everyone loves \"Hello World\"");
Console.WriteLine("C:\\MyApp\\bin\\debug");
Console.WriteLine("All finished.\n\n\n");

Working with C# Verbatim Strings
C# introduces the @-prefixed string literal notation termed a verbatim string. Using verbatim strings,
you disable the processing of a literal’s escape characters. This can be most useful when working
with strings representing directory and network paths. Therefore, rather than making use of \\ escape
characters, you can simply write the following:

// The following string is printed verbatim
// thus, all escape characters are displayed.
Console.WriteLine(@"C:\MyApp\bin\debug");

Also note that verbatim strings can be used to preserve white space for strings that flow over
multiple lines:

// White space is preserved with verbatim strings.
string myLongString = @"This is a very

very
very

long string";
Console.WriteLine(myLongString);

You can also insert a double quote into a literal string by doubling the " token, for example:

Console.WriteLine(@"Cerebus said ""Darrr! Pret-ty sun-sets""");

4193ch03.qxd 8/14/05 2:45 PM Page 125

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS126

The Role of System.Text.StringBuilder
While the string type is perfect when you wish to represent basic string variables (first name, SSN, etc.),
it can be inefficient if you are building a program that makes heavy use of textual data. The reason has
to do with a very important fact regarding .NET strings: the value of a string cannot be modified once
established. C# strings are immutable.

On the surface, this sounds like a flat-out lie, given that we are always assigning new values to
string variables. However, if you examine the methods of System.String, you notice that the methods
that seem to internally modify a string in fact return a modified copy of the original string. For exam-
ple, when you call ToUpper() on a string object, you are not modifying the underlying buffer of an
existing string object, but receive a new string object in uppercase form:

static void Main(string[] args)
{
...

// Make changes to strFixed? Nope!
System.String strFixed = "This is how I began life";
Console.WriteLine(strFixed);
string upperVersion = strFixed.ToUpper();
Console.WriteLine(strFixed);
Console.WriteLine("{0}\n\n", upperVersion);

...
}

In a similar vein, when you assign an existing string object to a new value, you have actually
allocated a new string in the process (the original string object will eventually be garbage collected).
A similar process occurs with string concatenation.

To help reduce the amount of string copying, the System.Text namespace defines a class named
StringBuilder (first seen during our examination of System.Object earlier in this chapter). Unlike
System.String, StringBuilder provides you direct access to the underlying buffer. Like System.String,
StringBuilder provides numerous members that allow you to append, format, insert, and remove
data from the object (consult the .NET Framework 2.0 SDK documentation for full details).

When you create a StringBuilder object, you may specify (via a constructor argument) the initial
number of characters the object can contain. If you do not do so, the default capacity of a StringBuilder
is 16. In either case, if you add more character data to a StringBuilder than it is able to hold, the buffer is
resized on the fly.

Here is an example of working with this class type:

using System;
using System.Text; // StringBuilder lives here.

class StringApp
{

static void Main(string[] args)
{

StringBuilder myBuffer = new StringBuilder("My string data");
Console.WriteLine("Capacity of this StringBuilder: {0}",

myBuffer.Capacity);
myBuffer.Append(" contains some numerical data: ");
myBuffer.AppendFormat("{0}, {1}.", 44, 99);
Console.WriteLine("Capacity of this StringBuilder: {0}",

myBuffer.Capacity);
Console.WriteLine(myBuffer);

}
}

4193ch03.qxd 8/14/05 2:45 PM Page 126

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 127

Now, do understand that in many cases, System.String will be your textual object of choice. For
most applications, the overhead associated with returning modified copies of character data will be
negligible. However, if you are building a text-intensive application (such as a word processor program),
you will most likely find that using System.Text.StringBuilder improves performance.

■Source Code The Strings project is located under the Chapter 3 subdirectory.

.NET Array Types
Formally speaking, an array is a collection of data points, of the same defined data type, that are
accessed using a numerical index. Arrays are references types and derive from a common base class
named System.Array. By default, .NET arrays always have a lower bound of zero, although it is pos-
sible to create an array with an arbitrary lower bound using the static
System.Array.CreateInstance() method.

C# arrays can be declared in a handful of ways. First of all, if you are creating an array whose
values will be specified at a later time (perhaps due to yet-to-be-obtained user input), specify the
size of the array using square brackets ([]) at the time of its allocation, for example:

// Assign a string array containing 3 elements {0 - 2}
string[] booksOnCOM;
booksOnCOM = new string[3];

// Initialize a 100 item string array, numbered {0 - 99}
string[] booksOnDotNet = new string[100];

Once you have declared an array, you can make use of the indexer syntax to fill each item with
a value:

// Create, populate, and print an array of three strings.
string[] booksOnCOM;
booksOnCOM = new string[3];
booksOnCOM[0] = "Developer's Workshop to COM and ATL 3.0";
booksOnCOM[1] = "Inside COM";
booksOnCOM[2] = "Inside ATL";
foreach (string s in booksOnCOM)

Console.WriteLine(s);

As a shorthand notation, if you know an array’s values at the time of declaration, you may specify
these values within curly brackets. Note that in this case, the array size is optional (as it is calculated
on the fly), as is the new keyword. Thus, the following declarations are identical:

// Shorthand array declaration (values must be known at time of declaration).
int[] n = new int[] { 20, 22, 23, 0 };
int[] n3 = { 20, 22, 23, 0 };

There is one final manner in which you can create an array type:

int[] n2 = new int[4] { 20, 22, 23, 0 }; // 4 elements, {0 - 3}

In this case, the numeric value specified represents the number of elements in the array, not the
value of the upper bound. If there is a mismatch between the declared size and the number of initial-
izers, you are issued a compile time error.

Regardless of how you declare an array, be aware that the elements in a .NET array are automati-
cally set to their respective default values until you indicate otherwise. Thus, if you have an array of

4193ch03.qxd 8/14/05 2:45 PM Page 127

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS128

numerical types, each member is set to 0 (or 0.0 in the case of floating-point numbers), objects are set
to null, and Boolean types are set to false.

Arrays As Parameters (and Return Values)
Once you have created an array, you are free to pass it as a parameter and receive it as a member return
value. For example, the following PrintArray() method takes an incoming array of strings and prints
each member to the console, while the GetStringArray() method populates an array and returns it to
the caller:

static void PrintArray(int[] myInts)
{

for(int i = 0; i < myInts.Length; i++)
Console.WriteLine("Item {0} is {1}", i, myInts[i]);

}

static string[] GetStringArray()
{

string[] theStrings = { "Hello", "from", "GetStringArray" };
return theStrings;

}

These methods may be invoked from a Main() method as so:

static void Main(string[] args)
{

int[] ages = {20, 22, 23, 0} ;
PrintArray(ages);
string[] strs = GetStringArray();
foreach(string s in strs)

Console.WriteLine(s);
Console.ReadLine();

}

Working with Multidimensional Arrays
In addition to the single-dimension arrays you have seen thus far, C# also supports two varieties of
multidimensional arrays. The first of these is termed a rectangular array, which is simply an array of
multiple dimensions, where each row is of the same length. To declare and fill a multidimensional
rectangular array, proceed as follows:

static void Main(string[] args)
{
...

// A rectangular MD array.
int[,] myMatrix;
myMatrix = new int[6,6];

// Populate (6 * 6) array.
for(int i = 0; i < 6; i++)

for(int j = 0; j < 6; j++)
myMatrix[i, j] = i * j;

// Print (6 * 6) array.
for(int i = 0; i < 6; i++)

4193ch03.qxd 8/14/05 2:45 PM Page 128

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 129

Figure 3-22. A multidimensional array

{
for(int j = 0; j < 6; j++)

Console.Write(myMatrix[i, j] + "\t");
Console.WriteLine();

}
...
}

Figure 3-22 shows the output (note the rectangular nature of the array).

The second type of multidimensional array is termed a jagged array. As the name implies,
jagged arrays contain some number of inner arrays, each of which may have a unique upper limit,
for example:

static void Main(string[] args)
{
...

// A jagged MD array (i.e., an array of arrays).
// Here we have an array of 5 different arrays.
int[][] myJagArray = new int[5][];

// Create the jagged array.
for (int i = 0; i < myJagArray.Length; i++)

myJagArray[i] = new int[i + 7];

// Print each row (remember, each element is defaulted to zero!)
for(int i = 0; i < 5; i++)
{

Console.Write("Length of row {0} is {1} :\t", i, myJagArray[i].Length);
for(int j = 0; j < myJagArray[i].Length; j++)

Console.Write(myJagArray[i][j] + " ");
Console.WriteLine();

}
}

Figure 3-23 shows the output (note the jaggedness of the array).

4193ch03.qxd 8/14/05 2:45 PM Page 129

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS130

Figure 3-23. A jagged array

Now that you understand how to build and populate C# arrays, let’s turn our attention to the
ultimate base class of any array: System.Array.

The System.Array Base Class
Every .NET array you create is automatically derived from System.Array. This class defines a number
of helpful methods that make working with arrays much more palatable. Table 3-14 gives a rundown
of some (but not all) of the more interesting members.

Table 3-14. Select Members of System.Array

Member Meaning in Life

BinarySearch() This static method searches a (previously sorted) array for a given item.
If the array is composed of custom types you have created, the type in
question must implement the IComparer interface (see Chapter 7) to
engage in a binary search.

Clear() This static method sets a range of elements in the array to empty values
(0 for value types; null for reference types).

CopyTo() This method is used to copy elements from the source array into the
destination array.

Length This read-only property is used to determine the number of elements
in an array.

Rank This property returns the number of dimensions of the current array.

Reverse() This static method reverses the contents of a one-dimensional array.

Sort() This method sorts a one-dimensional array of intrinsic types. If the
elements in the array implement the IComparer interface, you can also
sort your custom types (again, see Chapter 7).

Let’s see some of these members in action. The following code makes use of the static Reverse()
and Clear() methods (and the Length property) to pump out some information about an array of
strings named firstNames to the console:

// Create some string arrays and exercise some System.Array members.
static void Main(string[] args)
{

// Array of strings.
string[] firstNames = { "Steve", "Dominic", "Swallow", "Baldy"} ;

// Print names as declared.

4193ch03.qxd 8/14/05 2:45 PM Page 130

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 131

Console.WriteLine("Here is the array:");
for(int i = 0; i < firstNames.Length; i++)

Console.Write("Name: {0}\t", firstNames[i]);
Console.WriteLine("\n");

// Reverse array and print.
Array.Reverse(firstNames);
Console.WriteLine("Here is the array once reversed:");
for(int i = 0; i < firstNames.Length; i++)

Console.Write("Name: {0}\t", firstNames[i]);
Console.WriteLine("\n");

// Clear out all but Baldy.
Console.WriteLine("Cleared out all but Baldy...");
Array.Clear(firstNames, 1, 3);
for(int i = 0; i < firstNames.Length; i++)

Console.Write("Name: {0}\t", firstNames[i]);
Console.ReadLine();

}

Do note that when you call the Clear() method on an array type, the items are not compacted into
a smaller array. Rather, the emptied elements are simply set to default values. If you require a dynam-
ically allocated container type, you will need to check out the types within the System.Collections
namespace (among others).

■Source Code The Arrays application is located under the Chapter 3 subdirectory.

Understanding C# Nullable Types
As you have seen, CLR data types have a fixed range. For example, the System.Boolean data type can be
assigned a value from the set {true, false}. As of .NET 2.0, it is now possible to create nullable data
types. Simply put, a nullable type can represent all the values of its underlying type, plus the value null.
Thus, if we declare a nullable System.Boolean, it could be assigned a value from the set {true, false,
null}. This is significant, as non-nullable value types cannot be assigned the value null:

static void Main(string[] args)
{

// Compiler errors!
// Value types cannot be set to null!
bool myBool = null;
int myInt = null;

}

To define a nullable variable type, the question mark symbol (?) is suffixed to the underlying
data type. Do note that this syntax is only legal when applied to value types or an array of value types.
If you attempt to create a nullable reference type (including strings), you are issued a compile-time
error. Like a non-nullable variable, local nullable variables must be assigned an initial value:

static void Main(string[] args)
{

// Define some local nullable types.
int? nullableInt = 10;
double? nullableDouble = 3.14;
bool? nullableBool = null;

4193ch03.qxd 8/14/05 2:45 PM Page 131

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS132

char? nullableChar = 'a';
int?[] arrayOfNullableInts = new int?[10];

// Error! Strings are reference types!
string? s = "oops";

}

In C#, the ? suffix notation is a shorthand for creating a variable of the generic System.Nullable<T>
structure type. Although we will not examine generics until Chapter 10, it is important to understand
that the System.Nullable<T> type provides a set of members that all nullable types can make use of. For
example, you are able to programmatically discover if the nullable variable indeed has been assigned
a null value using the HasValue property or the != operator. The assigned value of a nullable type may
be obtained directly or via the Value property.

Working with Nullable Types
Nullable data types can be particularly useful when you are interacting with databases, given that
columns in a data table may be intentionally empty (e.g., undefined). To illustrate, assume the fol-
lowing class, which simulates the process of accessing a database that has a table containing two
columns that may be null. Note that the GetIntFromDatabase() method is not assigning a value to
the nullable integer member variable, while GetBoolFromDatabase() is assigning a valid value to the
bool? member:

class DatabaseReader
{

// Nullable data field.
public int? numbericValue;
public bool? boolValue = true;

// Note the nullable return type.
public int? GetIntFromDatabase()
{ return numbericValue; }

// Note the nullable return type.
public bool? GetBoolFromDatabase()
{ return boolValue; }

}

Now, assume the following Main() method, which invokes each member of the DatabaseReader
class, and discovers the assigned values using the HasValue and Value members as well as a C#-spe-
cific syntax:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Nullable Data *****\n");
DatabaseReader dr = new DatabaseReader();

// Get int from 'database'.
int? i = dr.GetIntFromDatabase();
if (i.HasValue)

Console.WriteLine("Value of 'i' is: {0}", i);
else

Console.WriteLine("Value of 'i' is undefined.");

4193ch03.qxd 8/14/05 2:45 PM Page 132

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 133

// Get bool from 'database'.
bool? b = dr.GetBoolFromDatabase();
if (b != null)

Console.WriteLine("Value of 'b' is: {0}", b);
else

Console.WriteLine("Value of 'b' is undefined.");
Console.ReadLine();

}

The ?? Operator
The final aspect of nullable types to be aware of is that they can make use of the C# 2005–specific ??
operator. This operator allows you to assign a value to a nullable type if the retrieved value is in fact
null. For this example, assume you wish to assign a local nullable integer to 100 if the value returned
from GetIntFromDatabase() is null (of course, this method is programmed to always return null,
but I am sure you get the general idea):

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Nullable Data *****\n");
DatabaseReader dr = new DatabaseReader();

...
// If the value from GetIntFromDatabase() is null,
// assign local variable to 100.
int? myData = dr.GetIntFromDatabase() ?? 100;
Console.WriteLine("Value of myData: {0}", myData);
Console.ReadLine();

}

■Source Code The NullableType application is located under the Chapter 3 subdirectory.

Defining Custom Namespaces
Up to this point, you have been building small test programs leveraging existing namespaces in the
.NET universe (System in particular). When you build your own custom applications, it can be very
helpful to group your related types into custom namespaces. In C#, this is accomplished using the
namespace keyword.

Assume you are developing a collection of geometric classes named Square, Circle, and Hexagon.
Given their similarities, you would like to group them all together into a common custom namespace.
You have two basic approaches. First, you may choose to define each class within a single file (shapes-
lib.cs) as follows:

// shapeslib.cs
using System;

namespace MyShapes
{

// Circle class.
class Circle{ /* Interesting methods... */ }
// Hexagon class.
class Hexagon{ /* More interesting methods... */ }
// Square class.
class Square{ /* Even more interesting methods... */ }

}

4193ch03.qxd 8/14/05 2:45 PM Page 133

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS134

Notice how the MyShapes namespace acts as the conceptual “container” of these types. Alterna-
tively, you can split a single namespace into multiple C# files. To do so, simply wrap the given class
definitions in the same namespace:

// circle.cs
using System;

namespace MyShapes
{

// Circle class.
class Circle{ }

}

// hexagon.cs
using System;

namespace MyShapes
{

// Hexagon class.
class Hexagon{ }

}

// square.cs
using System;

namespace MyShapes
{

// Square class.
class Square{ }

}

As you already know, when another namespace wishes to use objects within a distinct namespace,
the using keyword can be used as follows:

// Make use of types defined the MyShape namespace.
using System;
using MyShapes;

namespace MyApp
{

class ShapeTester
{

static void Main(string[] args)
{

Hexagon h = new Hexagon();
Circle c = new Circle();
Square s = new Square();

}
}

}

A Type’s Fully Qualified Name
Technically speaking, you are not required to make use of the C# using keyword when declaring a type
defined in an external namespace. You could make use of the fully qualified name of the type, which
as you recall from Chapter 1 is the type’s name prefixed with the defining namespace:

4193ch03.qxd 8/14/05 2:45 PM Page 134

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 135

// Note we are not 'using' MyShapes anymore.
using System;

namespace MyApp
{

class ShapeTester
{

static void Main(string[] args)
{

MyShapes.Hexagon h = new MyShapes.Hexagon();
MyShapes.Circle c = new MyShapes.Circle();
MyShapes.Square s = new MyShapes.Square();

}
}

}

Typically there is no need to use a fully qualified name. Not only does it require a greater number
of keystrokes, but also it makes no difference whatsoever in terms of code size or execution speed. In
fact, in CIL code, types are always defined with the fully qualified name. In this light, the C# using key-
word is simply a typing time-saver.

However, fully qualified names can be very helpful (and sometimes necessary) to avoid name
clashes that may occur when using multiple namespaces that contain identically named types. Assume
a new namespace termed My3DShapes, which defines three classes capable of rendering a shape in
stunning 3D:

// Another shapes namespace...
using System;

namespace My3DShapes
{

// 3D Circle class.
class Circle{ }
// 3D Hexagon class
class Hexagon{ }
// 3D Square class
class Square{ }

}

If you update ShapeTester as was done here, you are issued a number of compile-time errors,
because both namespaces define identically named types:

// Ambiguities abound!
using System;
using MyShapes;
using My3DShapes;

namespace MyApp
{

class ShapeTester
{

static void Main(string[] args)
{

// Which namespace do I reference?
Hexagon h = new Hexagon(); // Compiler error!
Circle c = new Circle(); // Compiler error!
Square s = new Square(); // Compiler error!

}
}

4193ch03.qxd 8/14/05 2:45 PM Page 135

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS136

The ambiguity can be resolved using the type’s fully qualified name:

// We have now resolved the ambiguity.
static void Main(string[] args)
{

My3DShapes.Hexagon h = new My3DShapes.Hexagon();
My3DShapes.Circle c = new My3DShapes.Circle();
MyShapes.Square s = new MyShapes.Square();

}

Defining using Aliases
The C# using keyword can also be used to create an alias to a type’s fully qualified name. When you
do so, you are able to define a token that is substituted with the type’s full name at compile time, for
example:

using System;
using MyShapes;
using My3DShapes;

// Resolve the ambiguity using a custom alias.
using The3DHexagon = My3DShapes.Hexagon;

namespace MyApp
{

class ShapeTester
{

static void Main(string[] args)
{

// This is really creating a My3DShapes.Hexagon type.
The3DHexagon h2 = new The3DHexagon();

...
}

}
}

This alternative using syntax can also be used to create an alias to a lengthy namespace. One of
the longer namespaces in the base class library would have to be System.Runtime.Serialization.
Formatters.Binary, which contains a member named BinaryFormatter. If you wish, you could create
an instance of the BinaryFormatter as so:

using MyAlias = System.Runtime.Serialization.Formatters.Binary;

namespace MyApp
{

class ShapeTester
{

static void Main(string[] args)
{

MyAlias.BinaryFormatter b = new MyAlias.BinaryFormatter();
}

}
}

as well with a traditional using directive:

using System.Runtime.Serialization.Formatters.Binary;

4193ch03.qxd 8/14/05 2:45 PM Page 136

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS 137

namespace MyApp
{

class ShapeTester
{

static void Main(string[] args)
{

BinaryFormatter b = new BinaryFormatter();
}

}
}

■Note C# now provides a mechanism that can be used to resolve name clashes between identically named
namespaces using the namespace alias qualifier (::) and “global” token. Thankfully, this type of name collision is
rare. If you require more information regarding this topic, look up my article “Working with the C# 2.0 Command
Line Compiler” from http://msdn.microsoft.com.

Creating Nested Namespaces
When organizing your types, you are free to define namespaces within other namespaces. The .NET
base class libraries do so in numerous places to provide an even deeper level of type organization. For
example, the Collections namespace is nested within System, to yield System.Collections. If you wish
to create a root namespace that contains the existing My3DShapes namespace, you can update your
code as follows:

// Nesting a namespace.
namespace Chapter3
{

namespace My3DShapes
{

// 3D Circle class.
class Circle{ }
// 3D Hexagon class
class Hexagon{ }
// 3D Square class
class Square{ }

}
}

In many cases, the role of a root namespace is simply to provide a further level of scope, and there-
fore may not define any types directly within its scope (as in the case of the Chapter3 namespace). If this
is the case, a nested namespace can be defined using the following compact form:

// Nesting a namespace (take two).
namespace Chapter3.My3DShapes
{

// 3D Circle class.
class Circle{ }
// 3D Hexagon class
class Hexagon{ }
// 3D Square class
class Square{ }

}

Given that you have now nested the My3DShapes namespace within the Chapter3 root namespace,
you need to update any existing using directives and type aliases:

4193ch03.qxd 8/14/05 2:45 PM Page 137

CHAPTER 3 ■ C# LANGUAGE FUNDAMENTALS138

Figure 3-24. Configuring the default namespace

using Chapter3.My3DShapes;
using The3DHexagon = Chapter3.My3DShapes.Hexagon;

The “Default Namespace” of Visual Studio 2005
On a final namespace-related note, it is worth pointing out that by default, when you create a new C#
project using Visual Studio 2005, the name of your application’s default namespace will be identical to
the project name. From this point on, when you insert new items using the Project ➤ Add New Item
menu selection, types will automatically be wrapped within the default namespace. If you wish to
change the name of the default namespace (e.g., to be your company name), simply access the Default
namespace option using the Application tab of the project’s Properties window (see Figure 3-24).

With this update, any new item inserted into the project will be wrapped within the Intertech-
Training namespace (and, obviously, if another namespace wishes to use these types, the correct
using directive must be applied).

■Source Code The Namespaces project is located under the Chapter 3 subdirectory.

Summary
This (rather lengthy) chapter exposed you to the numerous core aspects of the C# programming
language and the .NET platform. The focus was to examine the constructs that will be commonplace
in any application you may be interested in building.

As you have seen, all intrinsic C# data types alias a corresponding type in the System namespace.
Each system type has a number of members that provide a programmatic manner to obtain the range
of the type. Furthermore, you learned the basic process of building C# class types and examined the
various parameter-passing conventions, value types and reference types, and the role of the mighty
System.Object.

You also examined various aspects of the CLR that place an OO spin on common programming
constructs, such as arrays, strings, structures, and enumerations. In addition, this chapter illustrated
the concept of boxing and unboxing. This simple mechanism allows you to easily move between
value-based and reference-based data types. Finally, the chapter wrapped up by explaining the role
of nullable data types and the construction of custom namespaces.

4193ch03.qxd 8/14/05 2:45 PM Page 138

Object-Oriented Programming
with C# 2.0

In the previous chapter, you were introduced to a number of core constructs of the C# language
and the .NET platform as well as select types within the System namespace. Here, you will spend
your time digging deeper into the details of object-based development. I begin with a review of the
famed “pillars of OOP” and then examine exactly how C# contends with the notions of encapsula-
tion, inheritance, and polymorphism. This will equip you with the knowledge you need in order to
build custom class hierarchies.

During this process, you examine some new constructs such as type properties, versioning
type members, “sealed” classes, and XML code documentation syntax. Do be aware that the infor-
mation presented here will serve as the foundation for more advanced class design techniques (such
as overloaded operators, events, and custom conversion routines) examined in later chapters.

By way of a friendly invitation, even if you are currently comfortable with the constructs of
object-oriented programming using other languages, I would encourage you to pound out the code
examples found within this chapter. As you will see, C# does place a new spin on many common OO
techniques.

Understanding the C# Class Type
If you have been “doing objects” in another programming language, you are no doubt aware of the
role of class definitions. Formally, a class is nothing more than a custom user-defined type (UDT)
that is composed of field data (sometimes termed member variables) and functions (often called
methods in OO speak) that act on this data. The set of field data collectively represents the “state” of
a class instance.

The power of object-oriented languages is that by grouping data and functionality in a single
UDT, you are able to model your software types after real-world entities. For example, assume you
are interested in modeling a generic employee for a payroll system. At minimum, you may wish to
build a class that maintains the name, current pay, and employee ID for each worker. In addition,
the Employee class defines one method, named GiveBonus(), which increases an individual’s current
pay by some amount, and another, named DisplayStats(), which prints out the state data for this
individual. Figure 4-1 illustrates the Employee class type.

139

C H A P T E R 4

■ ■ ■

4193ch04.qxd 8/14/05 2:46 PM Page 139

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0140

As you recall from Chapter 3, C# classes can define any number of constructors. These special
class methods provide a simple way for an object user to create an instance of a given class with an
initial look and feel. Every C# class is initially provided with a default constructor, which by definition
never takes arguments. In addition to the default constructor, you are also free to define as many
custom constructors as you feel are necessary.

To get the ball rolling, here is our first crack at the Employee class (we will add more functionality
throughout the chapter):

// The initial Employee class definition.
namespace Employees
{

public class Employee
{

// Field data.
private string fullName;
private int empID;
private float currPay;

// Constructors.
public Employee(){ }
public Employee(string fullName, int empID, float currPay)
{

this.fullName = fullName;
this.empID = empID;
this.currPay = currPay;

}

// Bump the pay for this employee.
public void GiveBonus(float amount)
{ currPay += amount; }

// Show current state of this object.
public void DisplayStats()
{

Console.WriteLine("Name: {0} ", fullName);
Console.WriteLine("Pay: {0} ", currPay);
Console.WriteLine("ID: {0} ", empID);

}
}

}

Notice the empty implementation of the default constructor for the Employee class:

Figure 4-1. The Employee class type

4193ch04.qxd 8/14/05 2:46 PM Page 140

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 141

public class Employee
{
...

public Employee(){ }
...
}

Like C++ and Java, if you choose to define custom constructors in a class definition, the default
constructor is silently removed. Therefore, if you wish to allow the object user to create an instance
of your class as follows:

static void Main(string[] args)
{

// Calls the default constructor.
Employee e = new Employee();

}

you must explicitly redefine the default constructor for your class (as we have done here). If you do
not, you will receive a compiler error when creating an instance of your class type using the default
constructor. In any case, the following Main() method creates a few Employee objects using our cus-
tom three-argument constructor:

// Make some Employee objects.
static void Main(string[] args)
{

Employee e = new Employee("Joe", 80, 30000);
Employee e2;
e2 = new Employee("Beth", 81, 50000);
Console.ReadLine();

}

Understanding Method Overloading
Like other object-oriented languages, C# allows a type to overload various methods. Simply put,
when a class has a set of identically named members that differ by the number (or type) of parame-
ters, the member in question is said to be overloaded. In the Employee class, you have overloaded the
class constructor, given that you have provided two definitions that differ only by the parameter set:

public class Employee
{
...

// Overloaded constructors.
public Employee(){ }
public Employee(string fullName, int empID, float currPay){...}

...
}

Constructors, however, are not the only members that may be overloaded for a type. By way of
example, assume you have a class named Triangle that supports an overloaded Draw() method. By
doing so, you allow the object user to render the image using various input parameters:

public class Triangle
{

// The overloaded Draw() method.
public void Draw(int x, int y, int height, int width) {...}
public void Draw(float x, float y, float height, float width) {...}
public void Draw(Point upperLeft, Point bottomRight) {...}
public void Draw(Rect r) {...}

}

4193ch04.qxd 8/14/05 2:46 PM Page 141

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0142

If C# did not support method overloading, you would be forced to create four uniquely named
members, which, as you can see, is far from ideal:

public class Triangle
{

// Yuck...
public void DrawWithInts(int x, int y, int height, int width) {...}
public void DrawWIthFloats(float x, float y, float height, float width) {...}
public void DrawWithPoints(Point upperLeft, Point bottomRight) {...}
public void DrawWithRect(Rect r) {...}

}

Again, remember that when you are overloading a member, the return type alone is not unique
enough. Thus, the following is illegal:

public class Triangle
{

...
// Error! Cannot overload methods
// based solely on return values!
public float GetX() {...}
public int GetX() {...}

}

Self-Reference in C# Using this
Next, note that the custom constructor of the Employee class makes use of the C# this keyword:

// Explicitly use "this" to resolve name-clash.
public Employee(string fullName, int empID, float currPay)
{

// Assign the incoming params to my state data.
this.fullName = fullName;
this.empID = empID;
this.currPay = currPay;

}

This particular C# keyword is used when you wish to explicitly reference the fields and members
of the current object. The reason you made use of this in your custom constructor was to avoid clashes
between the parameter names and names of your internal state variables. Of course, another
approach would be to change the names for each parameter and avoid the name clash altogether:

// When there is no name clash, "this" is assumed.
public Employee(string name, int id, float pay)
{

fullName = name;
empID = id;
currPay = pay;

}

In this case, we have no need to explicitly prefix the this keyword to the Employee’s member
variables, because we have removed the name clash. The compiler can resolve the scope of these
member variables using what is known as an implict this. Simply put, when your class references
its own field data and member variables (in an unambiguous manner), this is assumed. Therefore,
the previous constructor logic is functionally identical to the following:

public Employee(string name, int id, float pay)
{

this.fullName = name;

4193ch04.qxd 8/14/05 2:46 PM Page 142

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 143

this.empID = id;
this.currPay = pay;

}

■Note Static members of a type cannot make use of the this keyword within its method scope. This fact should
make some sense, as static member functions operate on the class (not object) level. At the class level, there is no this!

Forwarding Constructor Calls Using this
Another use of the this keyword is to force one constructor to call another in order to avoid redun-
dant member initialization logic. Consider the following update to the Employee class:

public class Employee
{
...

public Employee(string fullName, int empID, float currPay)
{

this.fullName = fullName;
this.empID = empID;
this.currPay = currPay;

}

// If the user calls this ctor, forward to the 3-arg version.
public Employee(string fullName)

: this(fullName, IDGenerator.GetNewEmpID(), 0.0F) { }
...
}

This iteration of the Employee class defines two custom constructors, the second of which
requires a single parameter (the individual’s name). However, to fully construct a new Employee,
you want to ensure you have a proper ID and rate of pay. Assume you have created a custom class
(IDGenerator) that defines a static method named GetNewEmpID(), which generates a new employee
ID (in some way or another). Once you gather the correct set of startup parameters, you forward the
creation request to the alternate three-argument constructor.

If you did not forward the call, you would need to add redundant code to each constructor:

// currPay automatically set to 0.0F via default values.
public Employee(string fullName)
{

this.fullName = fullName;
this.empID = IDGenerator.GetNewEmpID();

}

Understand that using the this keyword to forward constructor calls is not mandatory. However,
when you make use of this technique, you do tend to end up with a more manitainable and concise
class definition. In fact, using this technique you can simplify your programming tasks, as the real
work is delegated to a single constructor (typically the constructor that has the most parameters),
while the other constructors simply “pass the buck.”

Defining the Public Interface of a Class
Once you have established a class’s internal state data and constructor set, your next step is to flesh
out the details of the public interface to the class. The term refers to the set of members that are directly
accessible from an object variable via the dot operator.

4193ch04.qxd 8/14/05 2:46 PM Page 143

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0144

Figure 4-2. The Employee class type at work

From the class builder’s point of view, the public interface is any item declared in a class using
the public keyword. Beyond field data and constructors, the public interface of a class may be pop-
ulated by numerous members, including the following:

• Methods: Named units of work that model some behavior of a class

• Properties: Traditional accessor and mutator functions in disguise

• Constants/Read-only fields: Field data that cannot be changed after assignment (see Chapter 3)

■Note As you will see later in this chapter, nested type definitions may also appear on a type’s public interface.
Furthermore, as you will see in Chapter 8, the public interface of a class may also be configured to support events.

Given that our Employee currently defines two public methods (GiveBonus() and DisplayStats()),
we are able to interact with the public interface as follows:

// Interact with the public interface of the Employee class type.
static void Main(string[] args)
{

Console.WriteLine("***** The Employee Type at Work *****\n");
Employee e = new Employee("Joe", 80, 30000);
e.GiveBonus(200);
e.DisplayStats();

Employee e2;
e2 = new Employee("Beth", 81, 50000);
e2.GiveBonus(1000);
e2.DisplayStats();
Console.ReadLine();

}

If you were to run the application as it now stands, you would find the output shown in
Figure 4-2.

At this point we have created a very simple class type with a minimal public interface. Before
we move ahead with more complex examples, let’s take a moment to review the cornerstones of
object-oriented programming (we will return to the Employee type shortly).

4193ch04.qxd 8/14/05 2:46 PM Page 144

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 145

Figure 4-3. The “is-a” relationship

Reviewing the Pillars of OOP
All object-oriented languages contend with three core principles of object-oriented programming,
often called the famed “pillars of OOP.”

• Encapsulation: How does this language hide an object’s internal implementation?

• Inheritance: How does this language promote code reuse?

• Polymorphism: How does this language let you treat related objects in a similar way?

Before digging into the syntactic details of each pillar, it is important you understand the basic
role of each. Therefore, here is a brisk, high-level rundown, just to clear off any cobwebs you may
have acquired between project deadlines.

Encapsulation
The first pillar of OOP is called encapsulation. This trait boils down to the language’s ability to hide
unnecessary implementation details from the object user. For example, assume you are using a class
named DatabaseReader that has two methods named Open() and Close():

// DatabaseReader encapsulates the details of database manipulation.
DatabaseReader dbObj = new DatabaseReader();

dbObj.Open(@"C:\Employees.mdf");
// Do something with database...

dbObj.Close();

The fictitious DatabaseReader class has encapsulated the inner details of locating, loading,
manipulating, and closing the data file. Object users love encapsulation, as this pillar of OOP keeps
programming tasks simpler. There is no need to worry about the numerous lines of code that are work-
ing behind the scenes to carry out the work of the DatabaseReader class. All you do is create an instance
and send the appropriate messages (e.g., “open the file named Employees.mdf located on my C drive”).

Another aspect of encapsulation is the notion of data protection. Ideally, an object’s state data
should be defined as private rather than public (as was the case in previous chapters). In this way, the
outside world must “ask politely” in order to change or obtain the underlying value.

Inheritance
The next pillar of OOP, inheritance, boils down to the language’s ability to allow you to build new
class definitions based on existing class definitions. In essence, inheritance allows you to extend the
behavior of a base (or parent) class by enabling a subclass to inherit core functionality (also called
a derived class or child class). Figure 4-3 illustrates the “is-a” relationship.

4193ch04.qxd 8/14/05 2:46 PM Page 145

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0146

You can read this diagram as “A hexagon is-a shape that is-an object.” When you have classes
related by this form of inheritance, you establish “is-a” relationships between types. The “is-a”
relationship is often termed classical inheritance.

Recall from Chapter 3 that System.Object is the ultimate base class in any .NET hierarchy. Here,
the Shape class extends Object. You can assume that Shape defines some number of properties, fields,
methods, and events that are common to all shapes. The Hexagon class extends Shape and inherits
the functionality defined by Shape and Object, in addition to defining its own set of members (what-
ever they may be).

There is another form of code reuse in the world of OOP: the containment/delegation model
(also known as the “has-a” relationship). This form of reuse is not used to establish base/subclass
relationships. Rather, a given class can define a member variable of another class and expose part or
all of its functionality to the outside world.

For example, if you are modeling an automobile, you might wish to express the idea that
a car “has-a” radio. It would be illogical to attempt to derive the Car class from a Radio, or vice versa.
(A Car “is-a” Radio? I think not!) Rather, you have two independent classes working together, where
the containing class creates and exposes the contained class’s functionality:

public class Radio
{

public void Power(bool turnOn)
{ Console.WriteLine("Radio on: {0}", turnOn);}

}

public class Car
{

// Car "has-a" Radio.
private Radio myRadio = new Radio();

public void TurnOnRadio(bool onOff)
{

// Delegate to inner object.
myRadio.Power(onOff);

}
}

Here, the containing type (Car) is responsible for creating the contained object (Radio). If the
Car wishes to make the Radio’s behavior accessible from a Car instance, it must extend its own pub-
lic interface with some set of functions that operate on the contained type. Notice that the object
user has no clue that the Car class is making use of an inner Radio object:

static void Main(string[] args)
{

// Call is forward to Radio internally.
Car viper = new Car();
viper.TurnOnRadio(true);

}

Polymorphism
The final pillar of OOP is polymorphism. This trait captures a language’s ability to treat related objects
the same way. This tenent of an object-oriented language allows a base class to define a set of mem-
bers (formally termed the ploymorphic interface) to all descendents. A class type’s polymorphic
interface is constructed using any number of virtual or abstract members. In a nutshell, a virtual
member may be changed (or more formally speaking, overridden) by a derived class, whereas an
abstract method must be overriden by a derived type. When derived types override the members
defined by a base class, they are essentially redefining how they respond to the same request.

4193ch04.qxd 8/14/05 2:46 PM Page 146

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 147

Figure 4-4. Classical polymorphism

To illustrate polymorphism, let’s revisit the shapes hierarchy. Assume that the Shape class has
defined a method named Draw(), taking no parameters and returning nothing. Given the fact that
every shape needs to render itself in a unique manner, subclasses (such as Hexagon and Circle) are
free to override this method to their own liking (see Figure 4-4).

Once a polymorphic interface has been designed, you can begin to make various assumptions
in your code. For example, given that Hexagon and Circle derive from a common parent (Shape), an
array of Shape types could contain any derived class. Furthermore, given that Shape defines a poly-
morphic interface to all derived types (the Draw() method in this example), we can assume each
member in the array has this functionaltiy. Ponder the following Main() method, which instructs an
array of Shape-derived types to render themselves using the Draw() method:

static void Main(string[] args)
{

// Create an array of Shape derived items.
Shape[] myShapes = new Shape[3];
myShapes[0] = new Hexagon();
myShapes[1] = new Circle();
myShapes[2] = new Hexagon();

// Iterate over the array and draw each item.
foreach (Shape s in myShapes)

s.Draw();
Console.ReadLine();

}

This wraps up our basic (and brisk) review of the pillars of OOP. Now that you have the theory
in your minds, the bulk of this chapter explores further details and exact C# syntax that represents
each trait.

The First Pillar: C#’s Encapsulation Services
The concept of encapsulation revolves around the notion that an object’s field data should not be
directly accessible from the public interface. Rather, if an object user wishes to alter the state of an
object, it does so indirectly using accessor (get) and mutator (set) methods. In C#, encapsulation is
enforced at the syntactic level using the public, private, protected, and protected internal key-
words, as described in Chapter 3. To illustrate the need for encapsulation, assume you have created
the following class definition:

4193ch04.qxd 8/14/05 2:46 PM Page 147

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0148

// A class with a single public field.
public class Book
{

public int numberOfPages;
}

The problem with public field data is that the items have no ability to “understand” whether
the current value to which they are assigned is valid with regard to the current business rules of the
system. As you know, the upper range of a C# int is quite large (2,147,483,647). Therefore, the com-
piler allows the following assignment:

// Humm...
static void Main(string[] args)
{

Book miniNovel = new Book();
miniNovel.numberOfPages = 30000000;

}

Although you do not overflow the boundaries of an integer data type, it should be clear that
a mini-novel with a page count of 30,000,000 pages is a bit unreasonable in the real world. As you
can see, public fields do not provide a way to enforce data validation rules. If your system has a busi-
ness rule that states a mini-novel must be between 1 and 200 pages, you are at a loss to enforce this
programmatically. Because of this, public fields typically have no place in a production-level class
definition (public read-only fields being the exception).

Encapsulation provides a way to preserve the integrity of state data. Rather than defining pub-
lic fields (which can easily foster data corruption), you should get in the habit of defining private
data fields, which are indirectly manipulated by the caller using one of two main techniques:

• Define a pair of traditional accessor and mutator methods.

• Define a named property.

Whichever technique you choose, the point is that a well-encapsulated class should hide its
raw data and the details of how it operates from the prying eyes of the outside world. This is often
termed black box programming. The beauty of this approach is that a class author is free to change
how a given method is implemented under the hood, without breaking any existing code making
use of it (provided that the signature of the method remains constant).

Enforcing Encapsulation Using Traditional Accessors and Mutators
Let’s return to the existing Employee class. If you want the outside world to interact with your private
fullName data field, tradition dictates defining an accessor (get method) and mutator (set method).
For example:

// Traditional accessor and mutator for a point of private data.
public class Employee
{

private string fullName;
...

// Accessor.
public string GetFullName() { return fullName; }

// Mutator.
public void SetFullName(string n)
{

// Remove any illegal characters (!, @, #, $, %),
// check maximum length (or case rules) before making assignment.

4193ch04.qxd 8/14/05 2:46 PM Page 148

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 149

fullName = n;
}

}

Understand, of course, that the compiler could not care less what you call your accessor and
mutator methods. Given the fact that GetFullName() and SetFullName() encapsulate a private string
named fullName, this choice of method names seems to fit the bill. The calling logic is as follows:

// Accessor/mutator usage.
static void Main(string[] args)
{

Employee p = new Employee();
p.SetFullName("Fred Flintstone");
Console.WriteLine("Employee is named: {0}", p.GetFullName());
Console.ReadLine();

}

Another Form of Encapsulation: Class Properties
In contrast to traditional accessor and mutator methods, .NET languages prefer to enforce encapsu-
lation using properties, which simulate publicly accessible points of data. Rather than requiring the
user to call two different methods to get and set the state data, the user is able to call what appears
to be a public field. To illustrate, assume you have provided a property named ID that wraps the
internal empID member variable of the Employee type. The calling syntax would look like this:

// Setting / getting a person's ID through property syntax.
static void Main(string[] args)
{

Employee p = new Employee();

// Set the value.
p.ID = 81;

// Get the value.
Console.WriteLine("Person ID is: {0} ", p.ID);
Console.ReadLine();

}

Type properties always map to “real” accessor and mutator methods under the hood. Therefore,
as a class designer you are able to perform any internal logic necessary before making the value
assignment (e.g., uppercase the value, scrub the value for illegal characters, check the bounds of
a numerical value, and so on). Here is the C# syntax behind the ID property, another property (Pay)
that encapsulates the currPay field, and a final property (Name) to encapsulate the fullName data point.

// Encapsulation with properties.
public class Employee
{
...

private int empID;
private float currPay;
private string fullName;

// Property for empID.
public int ID
{

get { return empID;}
set

4193ch04.qxd 8/14/05 2:46 PM Page 149

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0150

Figure 4-5. The value of value when setting ID to 81

{
// You are still free to investigate (and possibly transform)
// the incoming value before making an assignment.
empID = value;

}
}

// Property for fullName.
public string Name
{

get {return fullName;}
set {fullName = value;}

}

// Property for currPay.
public float Pay
{

get {return currPay;}
set {currPay = value;}

}
}

A C# property is composed using a get block (accessor) and set block (mutator). The C# “value”
token represents the right-hand side of the assignment. The underlying data type of the value token
depends on which sort of data it represents. In this example, the ID property is operating on a int
data type, which, as you recall, maps to a System.Int32:

// 81 is a System.Int32, so "value" is a System.Int32.
Employee e = new Employee();
e.ID = 81;

To prove the point, assume you have updated the ID property’s set logic as follows:

// Property for the empID.
public int ID
{

get { return empID;}
set
{

Console.WriteLine("value is an instance of: {0} ", value.GetType());
Console.WriteLine("value's value: {0} ", value);

empID = value;
}

}

Once you run this application, you would see the output shown in Figure 4-5.

4193ch04.qxd 8/14/05 2:46 PM Page 150

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 151

■Note Strictly speaking, the C# value token is not a keyword, but rather a contentual keyword that represents
the implicit parameter used during a property assignment when within the scope of a property set. Given this, you
are free to have member variables and local data points named “value”.

Understand that properties (as opposed to traditional accessors and mutators) also make your
types easier to manipulate, in that properties are able to respond to the intrinsic operators of C#. To
illustrate, assume that the Employee class type has an internal private member variable representing
the age of the employee. Here is our update:

public class Employee
{
...

// Current age of employee.
private int empAge;

public Employee(string fullName, int age, int empID, float currPay)
{

...
this.empAge = age;

}

public int Age
{

get{return empAge;}
set{empAge = value;}

}

public void DisplayStats()
{

...
Console.WriteLine("Age: {0} ", empAge);

}
}

Now assume you have created an Employee object named joe. On his birthday, you wish to
increment the age by one. Using traditional accessor and mutator methods, you would need to
write code such as the following:

Employee joe = new Employee();
joe.SetAge(joe.GetAge() + 1);

However, if you encapsulate empAge using property snytax, you are able to simply write

Employee joe = new Employee();
joe.Age++;

Internal Representation of C# Properties
Many programmers (especially those of the C++ ilk) tend to design traditional accessor and mutator
methods using “get_” and “set_” prefixes (e.g., get_FullName() and set_FullName()). This naming
convention itself is not problematic. However, it is important to understand that under the hood,
a C# property is represented in CIL code using these same prefixes. For example, if you open up the
Employees.exe assembly using ildasm.exe, you see that each property actually resolves to hidden
get_XXX()/set_XXX() methods (see Figure 4-6).

4193ch04.qxd 8/14/05 2:46 PM Page 151

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0152

Assume the Employee type now has a private member variable named empSSN to represent an
individual’s Social Security number, which is manipulated by a property named SocialSecurityNumber
and set via constructor parameter.

// Add support for a new field representing the employee's SSN.
public class Employee
{
...

// Social Security Number.
private string empSSN;

public Employee(string fullName, int age, int empID,
float currPay, string ssn)

{
...

this.empSSN = ssn;
}

public string SocialSecurityNumber
{

get { return empSSN; }
set { empSSN = value;}

}

public void DisplayStats()
{

...
Console.WriteLine("SSN: {0} ", empSSN);

}
}

If you were to also define two methods named get_SocialSecurityNumber() and
set_SocialSecurityNumber(), you would be issued compile-time errors:

// Remember, a C# property really maps to a get_/set_ pair.
public class Employee
{
...

// ERROR! Already defined under the hood by the property!
public string get_SocialSecurityNumber() {return empSSN;}
public void set_SocialSecurityNumber (string val) {empSSN = val;}

}

Figure 4-6. Properties map to hidden get_XXX() and set_XXX() methods.

4193ch04.qxd 8/14/05 2:46 PM Page 152

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 153

■Note The .NET base class libraries always favor type properties over traditional accessor and mutator methods.
Therefore, if you wish to build custom types that integrate well with the .NET platform, avoid defining traditional
get and set methods.

Controlling Visibility Levels of Property get/set Statements
Prior to C# 2005, the visibility of get and set logic was solely controlled by the access modifer of the
property declaration:

// The get and set logic is both public,
// given the declaration of the property.
public string SocialSecurityNumber
{

get { return empSSN; }
set { empSSN = value;}

}

In some cases, it would be helpful to specify unique accessability levels for get and set logic. To
do so, simply prefix an accessibility keyword to the appropriate get or set keyword (the unqualified
scope takes the visibility of the property’s declaration):

// Object users can only get the value, however
// derived types can set the value.
public string SocialSecurityNumber
{

get { return empSSN; }
protected set { empSSN = value;}

}

In this case, the set logic of SocialSecurityNumber can only be called by the current class and
derived classes and therefore cannot be called from an object instance.

Read-Only and Write-Only Properties
When creating class types, you may wish to configure a read-only property. To do so, simply build
a property without a corresponding set block. Likewise, if you wish to have a write-only property, omit
the get block. We have no need to do so for this example; however, here is how the SocialSecurityNumber
property could be retrofitted as read-only:

public class Employee
{
...

// Now as a read-only property.
public string SocialSecurityNumber { get { return empSSN; } }

}

Given this adjustment, the only manner in which an employee’s US Social Security number can be
set is through a constructor argument.

Static Properties
C# also supports static properties. Recall from Chapter 3 that static members are accessed at the
class level, not from an instance (object) of that class. For example, assume that the Employee type
defines a point of static data to represent the name of the organization employing these workers.
You may define a static (e.g., class-level) property as follows:

4193ch04.qxd 8/14/05 2:46 PM Page 153

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0154

// Static properties must operate on static data!
public class Employee
{

private static string companyName;
public static string Company
{

get { return companyName; }
set { companyName = value;}

}
...
}

Static properties are manipulated in the same manner as static methods, as seen here:

// Set and get the name of the company that employs these people...
public static int Main(string[] args)
{

Employee.Company = "Intertech Training";
Console.WriteLine("These folks work at {0} ", Employee.Company);

...
}

Also, recall from Chapter 3 that C# provides static constructors. Therefore, if you wish to ensure
that the static companyName property is always set to Intertech Training, you could add the follow-
ing member to the Employee class:

// A static ctor takes no access modifer or arguments.
public class Employee
{
...

static Employee()
{

companyName = "Intertech Training";
}

}

In this case, we did not gain too much by adding a static constructor, given that the same end
result could have been achieved by simply assigning the companyName member variable as follows:

// Static properties must operate on static data!
public class Employee
{

private static string companyName = "Intertech Training";
...
}

However, recall that if you need to perform runtime logic to obtain the value to a point of static
data (such as reading a database), static constructors are very helpful indeed.

To wrap up our examination of encapsulation, understand that properties are used for the same
purpose as a classical accessor/mutator pair. The benefit of properties is that the users of your objects
are able to manipulate the internal data point using a single named item.

The Second Pillar: C#’s Inheritance Support
Now that you have seen various techniques that allow you to create a single well-encapsulated
class, it is time to turn your attention to building a family of related classes. As mentioned, inheri-
tance is the aspect of OOP that facilitates code reuse. Inheritance comes in two flavors: classical

4193ch04.qxd 8/14/05 2:46 PM Page 154

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 155

Figure 4-7. The employee hierarchy

inheritance (the “is-a” relationship) and the containment/delegation model (the “has-a” relationship).
Let’s begin by examining the classical “is-a” model.

When you establish “is-a” relationships between classes, you are building a dependency
between types. The basic idea behind classical inheritance is that new classes may leverage (and
possibily extend) the functionality of other classes. To illustrate, assume that you wish to leverage
the functionality of the Employee class to create two new classes (SalesPerson and Manager). The
class hierarchy looks something like what you see in Figure 4-7.

As illustrated in Figure 4-7, you can see that a SalesPerson “is-a” Employee (as is a Manager). In
the classical inheritance model, base classes (such as Employee) are used to define general charac-
teristics that are common to all descendents. Subclasses (such as SalesPerson and Manager) extend
this general functionality while adding more specific behaviors.

For our example, we will assume that the Manager class extends Employee by recording the number
of stock options, while the SalesPerson class maintains the number of sales. In C#, extending a class
is accomplished using the colon operator (:) on the class definition. This being said, here are the
derived class types:

// Add two new subclasses to the Employees namespace.
namespace Employees
{

public class Manager : Employee
{

// Managers need to know their number of stock options.
private ulong numberOfOptions;
public ulong NumbOpts
{

get { return numberOfOptions;}
set { numberOfOptions = value; }

}
}

public class SalesPerson : Employee
{

// Salespeople need to know their number of sales.
private int numberOfSales;
public int NumbSales
{

get { return numberOfSales;}
set { numberOfSales = value; }

}
}

}

4193ch04.qxd 8/14/05 2:46 PM Page 155

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0156

Now that you have established an “is-a” relationship, SalesPerson and Manager have automatically
inherited all public (and protected) members of the Employee base class. To illustrate:

// Create a subclass and access base class functionality.
static void Main(string[] args)
{

// Make a salesperson.
SalesPerson stan = new SalesPerson();

// These members are inherited from the Employee base class.
stan.ID = 100;
stan.Name = "Stan";

// This is defined by the SalesPerson class.
stan.NumbSales = 42;
Console.ReadLine();

}

Do be aware that inheritance preserves encapsulation. Therefore, a derived class cannot
directly access the private members defined by its base class.

Controlling Base Class Creation with base
Currently, SalesPerson and Manager can only be created using a default constructor. With this in
mind, assume you have added a new six-argument constructor to the Manager type, which is invoked
as follows:

static void Main(string[] args)
{

// Assume we now have the following constructor.
// (name, age, ID, pay, SSN, number of stock options).
Manager chucky = new Manager("Chucky", 35, 92, 100000, "333-23-2322", 9000);

}

If you look at the argument list, you can clearly see that most of these parameters should be
stored in the member variables defined by the Employee base class. To do so, you could implement
this new constructor as follows:

// If you do not say otherwise, a subclass constructor automatically calls the
// default constructor of its base class.
public Manager(string fullName, int age, int empID,

float currPay, string ssn, ulong numbOfOpts)
{

// This point of data belongs with us!
numberOfOptions = numbOfOpts;

// Leverage the various members inherited from Employee
// to assign the state data.
ID = empID;
Age = age;
Name = fullName;
SocialSecurityNumber = ssn;
Pay = currPay;

}

Although this is technically permissible, it is not optimal. In C#, unless you say otherwise, the
default constructor of a base class is called automatically before the logic of the custom Manager
constructor is executed. After this point, the current implementation accesses numerous public

4193ch04.qxd 8/14/05 2:46 PM Page 156

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 157

properties of the Employee base class to establish its state. Thus, you have really made seven hits
(five inherited properties and two constructor calls) during the creation of this derived object!

To help optimize the creation of a derived class, you will do well to implement your subclass
constructors to explicitly call an appropriate custom base class constructor, rather than the default.
In this way, you are able to reduce the number of calls to inherited initialization members (which
saves time). Let’s retrofit the custom constructor to do this very thing:

// This time, use the C# "base" keyword to call a custom
// constructor on the base class.
public Manager(string fullName, int age, int empID, float currPay,

string ssn, ulong numbOfOpts)
: base(fullName, age, empID, currPay, ssn)

{
numberOfOptions = numbOfOpts;

}

Here, your constructor has been adorned with an odd bit of syntax. Directly after the closing
parenthesis of the constructor’s argument list, there is a single colon followed by the C# base keyword.
In this situation, you are explicitly calling the five-argument constructor defined by Employee and
saving yourself unnecessary calls during the creation of the child class.

The SalesPerson constructor looks almost identical:

// As a general rule, all subclasses should explicitly call an appropriate
// base class constructor.
public SalesPerson(string fullName, int age, int empID,

float currPay, string ssn, int numbOfSales)
: base(fullName, age, empID, currPay, ssn)

{
numberOfSales = numbOfSales;

}

Also be aware that you may use the base keyword anytime a subclass wishes to access a public
or protected member defined by a parent class. Use of this keyword is not limited to constructor
logic. You will see examples using the base keyword in this manner during our examination of poly-
morphism.

Regarding Multiple Base Classes
Speaking of base classes, it is important to keep in mind that C# demands that a given class have
exactly one direct base class. Therefore, it is not possible to have a single type with two or more base
classes (this technique is known as multiple inheritance, or simply MI). As you will see in Chapter 7,
C# does allow a given type to implement any number of discrete interfaces. In this way, a C# class
can exhibit a number of behaviors while avoiding the problems associated with classic MI. On
a related note, it is permissible to configure a single interface to derive from multiple interfaces (again,
see Chapter 7).

Keeping Family Secrets: The protected Keyword
As you already know, public items are directly accessible from anywhere, while private items cannot
be accessed from any object beyond the class that has defined it. C# takes the lead of many other
modern object languages and provides an additional level of accessibility: protected.

When a base class defines protected data or protected members, it is able to create a set of
items that can be accessed directly by any descendent. If you wish to allow the SalesPerson and
Manager child classes to directly access the data sector defined by Employee, you can update the orig-
inal Employee class definition as follows:

4193ch04.qxd 8/14/05 2:46 PM Page 157

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0158

Figure 4-8. The extended employee hierarchy

// Protected state data.
public class Employee
{

// Child classes can directly access this information. Object users cannot.
protected string fullName;
protected int empID;
protected float currPay;
protected string empSSN;
protected int empAge;

...
}

The benefit of defining protected members in a base class is that derived types no longer have
to access the data using public methods or properties. The possible downfall, of course, is that
when a derived type has direct access to its parent’s internal data, it is very possible to accidentally
bypass existing business rules found within public properties (such as the mini-novel that exceeds
the page count). When you define protected members, you are creating a level of trust between the
parent and child class, as the compiler will not catch any violation of your type’s business rules.

Finally, understand that as far as the object user is concerned, protected data is regarded as
private (as the user is “outside” of the family). Therefore, the following is illegal:

static void Main(string[] args)
{

// Error! Can't access protected data from object instance.
Employee emp = new Employee();
emp.empSSN = "111-11-1111";

}

Preventing Inheritance: Sealed Classes
When you establish base class/subclass relationships, you are able to leverage the behavior of existing
types. However, what if you wish to define a class that cannot be subclassed? For example, assume you
have added yet another class to your employee namespaces that extends the existing SalesPerson
type. Figure 4-8 shows the current update.

PTSalesPerson is a class representing (of course) a part-time salesperson. For the sake of argu-
ment, let’s say that you wish to ensure that no other developer is able to subclass from PTSalesPerson.
(After all, how much more part-time can you get than “part-time”?) To prevent others from extending
a class, make use of the C# sealed keyword:

4193ch04.qxd 8/14/05 2:46 PM Page 158

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 159

// Ensure that PTSalesPerson cannot act as a base class to others.
public sealed class PTSalesPerson : SalesPerson
{

public PTSalesPerson(string fullName, int age, int empID,
float currPay, string ssn, int numbOfSales)
: base(fullName, age, empID, currPay, ssn, numbOfSales)

{
// Interesting constructor logic...

}
// Other interesting members...

}

Because PTSalesPerson is sealed, it cannot serve as a base class to any other type. Thus, if you
attempted to extend PTSalesPerson, you receive a compiler error:

// Compiler error!
public class ReallyPTSalesPerson : PTSalesPerson
{ ... }

The sealed keyword is most useful when creating stand-alone utility classes. As an example,
the String class defined in the System namespace has been explicitly sealed:

public sealed class string : object,
IComparable, ICloneable,
IConvertible, IEnumerable {...}

Therefore, you cannot create some new class deriving from System.String:

// Another error!
public class MyString : string
{...}

If you wish to build a new class that leverages the functionality of a sealed class, your only
option is to forego classical inheritance and make use of the containment/delegation model (aka
the “has-a” relationship).

Programming for Containment/Delegation
As noted a bit earlier in this chapter, inheritance comes in two flavors. We have just explored the
classical “is-a” relationship. To conclude the exploration of the second pillar of OOP, let’s examine
the “has-a” relationship (also known as the containment/delegation model). Assume you have cre-
ated a new class that models an employee benefits package:

// This type will function as a contained class.
public class BenefitPackage
{

// Assume we have other members that represent
// 401K plans, dental / health benefits and so on.
public double ComputePayDeduction()
{ return 125.0; }

}

Obviously, it would be rather odd to establish an “is-a” relationship between the BenefitPackage
class and the employee types. (Manager “is-a” BenefitPackage? I don’t think so) However, it should be
clear that some sort of relationship between the two could be established. In short, you would like
to express the idea that each employee “has-a” BenefitPackage. To do so, you can update the
Employee class definition as follows:

4193ch04.qxd 8/14/05 2:46 PM Page 159

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0160

// Employees now have benefits.
public class Employee
{
...

// Contain a BenefitPackage object.
protected BenefitPackage empBenefits = new BenefitPackage();

}

At this point, you have successfully contained another object. However, to expose the function-
ality of the contained object to the outside world requires delegation. Delegation is simply the act of
adding members to the containing class that make use of the contained object’s functionality. For
example, we could update the Employee class to expose the contained empBenefits object using
a custom property as well as make use of its functionality internally using a new method named
GetBenefitCost():

public class Employee
{

protected BenefitPackage empBenefits = new BenefitPackage();

// Expose certain benefit behaviors of object.
public double GetBenefitCost()
{

return empBenefits.ComputePayDeduction();
}

// Expose object through a custom property.
public BenefitPackage Benefits
{

get { return empBenefits; }
set { empBenefits = value; }

}
}

In the following updated Main() method, notice how we can interact with the internal
BenefitsPackage type defined by the Employee type:

static void Main(string[] args)
{

Manager mel;
mel = new Manager();
Console.WriteLine(mel.Benefits.ComputePayDeduction());

...
Console.ReadLine();

}

Nested Type Definitions
Before examining the final pillar of OOP (polymorphism), let’s explore a programming technique
termed nested types. In C#, it is possible to define a type (enum, class, interface, struct, or delegate)
directly within the scope of a class or structure. When you have done so, the nested (or “inner”)
type is considered a member of the nesting (or “outer”) class, and in the eyes of the runtime can be
manipulated like any other member (fields, properties, methods, events, etc.). The syntax used to
nest a type is quite straightforward:

public class OuterClass
{

// A public nested type can be used by anybody.
public class PublicInnerClass {}

4193ch04.qxd 8/14/05 2:46 PM Page 160

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 161

// A private nested type can only be used by members
// of the containing class.
private class PrivateInnerClass {}

}

Although the syntax is clean, understanding why you might do this is not readily apparent. To
understand this technique, ponder the following:

• Nesting types is similar to composition (“has-a”), except that you have complete control over
the access level of the inner type instead of a contained object.

• Because a nested type is a member of the containing class, it can access private members of
the containing class.

• Oftentimes, a nested type is only useful as helper for the outer class, and is not intended for
use by the outside world.

When a type nests another class type, it can create member variables of the type, just as it
would for any point of data. However, if you wish to make use of a nested type from outside of the
containing type, you must qualify it by the scope of the nesting type. Ponder the following code:

static void Main(string[] args)
{

// Create and use the public inner class. OK!
OuterClass.PublicInnerClass inner;
inner = new OuterClass.PublicInnerClass();

// Compiler Error! Cannot access the private class.
OuterClass.PrivateInnerClass inner2;
inner2 = new OuterClass.PrivateInnerClass();

}

To make use of this concept within our employees example, assume we have now nested the
BenefitPackage directly within the Employee class type:

// Nesting the BenefitPackage.
public class Employee
{
...

public class BenefitPackage
{

public double ComputePayDeduction()
{ return 125.0; }

}
}

The nesting process can be as “deep” as you require. For example, assume we wish to create an
enumeration named BenefitPackageLevel, which documents the various benefit levels an employee
may choose. To programmatically enforce the connection between Employee, BenefitPackage, and
BenefitPackageLevel, we could nest the enumeration as follows:

// Employee nests BenefitPackage.
public class Employee
{

// BenefitPackage nests BenefitPackageLevel.
public class BenefitPackage
{

public double ComputePayDeduction()
{ return 125.0; }

4193ch04.qxd 8/14/05 2:46 PM Page 161

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0162

public enum BenefitPackageLevel
{

Standard, Gold, Platinum
}

}
}

Because of the nesting relationships, note how we are required to make use of this enumeration:

static void Main(string[] args)
{

// Creating a BenefitPackageLevel variable.
Employee.BenefitPackage.BenefitPackageLevel myBenefitLevel =

Employee.BenefitPackage.BenefitPackageLevel.Platinum;
...
}

The Third Pillar: C#’s Polymorphic Support
Let’s now examine the final pillar of OOP: polymorphism. Recall that the Employee base class
defined a method named GiveBonus(), which was implemented as follows:

// Give bonus to employees.
public class Employee
{
...

public void GiveBonus(float amount)
{ currPay += amount; }

}

Because this method has been defined as public, you can now give bonuses to salespeople and
managers (as well as part-time salespeople):

static void Main(string[] args)
{

// Give each employee a bonus.
Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);
chucky.GiveBonus(300);
chucky.DisplayStats();

SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
fran.GiveBonus(200);
fran.DisplayStats();
Console.ReadLine();

}

The problem with the current design is that the inherited GiveBonus() method operates identi-
cally for all subclasses. Ideally, the bonus of a salesperson or part-time salesperson should take into
account the number of sales. Perhaps managers should gain additional stock options in conjunction
with a monetary bump in salary. Given this, you are suddenly faced with an interesting question:
“How can related objects respond differently to the same request?”

The virtual and override Keywords
Polymorphism provides a way for a subclass to customize how it implements a method defined by
its base class. To retrofit your current design, you need to understand the meaning of the C# virtual
and override keywords. If a base class wishes to define a method that may be overridden by a sub-
class, it must specify the method as virtual:

4193ch04.qxd 8/14/05 2:46 PM Page 162

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 163

public class Employee
{

// GiveBonus() has a default implementation, however
// child classes are free to override this behavior.
public virtual void GiveBonus(float amount)
{ currPay += amount; }

...
}

When a subclass wishes to redefine a virtual method, it does so using the override keyword.
For example, the SalesPerson and Manager could override GiveBonus() as follows (assume that
PTSalesPerson overrides GiveBonus() in manner similar to SalesPerson):

public class SalesPerson : Employee
{

// A salesperson's bonus is influenced by the number of sales.
public override void GiveBonus(float amount)
{

int salesBonus = 0;
if(numberOfSales >= 0 && numberOfSales <= 100)

salesBonus = 10;
else if(numberOfSales >= 101 && numberOfSales <= 200)

salesBonus = 15;
else

salesBonus = 20; // Anything greater than 200.
base.GiveBonus (amount * salesBonus);

}
...
}

public class Manager : Employee
{

// Managers get some number of new stock options, in addition to raw cash.
public override void GiveBonus(float amount)
{

// Increase salary.
base.GiveBonus(amount);

// And give some new stock options...
Random r = new Random();
numberOfOptions += (ulong)r.Next(500);

}
...
}

Notice how each overridden method is free to leverage the default behavior using the base key-
word. In this way, you have no need to completely reimplement the logic behind GiveBonus(), but
can reuse (and possibly extend) the default behavior of the parent class.

Also assume that Employee.DisplayStats() has been declared virtual, and has been overridden
by each subclass to account for displaying the number of sales (for salespeople) and current stock
options (for managers). Now that each subclass can interpret what these virtual methods means to
itself, each object instance behaves as a more independent entity:

static void Main(string[] args)
{

// A better bonus system!
Manager chucky = new Manager("Chucky", 50, 92, 100000, "333-23-2322", 9000);

4193ch04.qxd 8/14/05 2:46 PM Page 163

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0164

chucky.GiveBonus(300);
chucky.DisplayStats();

SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
fran.GiveBonus(200);
fran.DisplayStats();

}

Revisiting the sealed Keyword
The sealed keyword can also be applied to type members to prevent virtual members from being
further overridden by derived types. This can be helpful when you do not wish to seal an entire
class, just a few select methods or properties.

For the sake of illustration, if we (for some reason) did wish to allow the PTSalesPerson class to be
extended by other classes but make sure those classes did not further override the virtual GiveBonus(),
we could write the following:

// This class can be extended;
// however, GiveBonus() cannot be overriden by derived classes.
public class PTSalesPerson : SalesPerson
{
...

public override sealed void GiveBonus(float amount)
{

...
}

}

Understanding Abstract Classes
Currently, the Employee base class has been designed to supply protected member variables for its
descendents, as well as supply two virtual methods (GiveBonus() and DisplayStats()) that may be
overridden by a given descendent. While this is all well and good, there is a rather odd byproduct of
the current design: You can directly create instances of the Employee base class:

// What exactly does this mean?
Employee X = new Employee();

In this example, the only real purpose of the Employee base class is to define common fields and
members for all subclasses. In all likelihood, you did not intend anyone to create a direct instance of
this class, reason being that the Employee type itself is too general of a concept. For example, if
I were to walk up to you and say, “I’m an employee!,” I would bet your very first question to me
would be,“What kind of employee are you?” (a consultant, trainer, admin assistant, copy editor,
White House aide, etc.).

Given that many base classes tend to be rather nebulous entities, a far better design for our
example is to prevent the ability to directly create a new Employee object in code. In C#, you can
enforce this programmatically by using the abstract keyword:

// Update the Employee class as abstract to prevent direct instantiation.
abstract public class Employee
{ ...}

With this, if you now attempt to create an instance of the Employee class, you are issued a compile-
time error:

// Error! Can't create an instance of an abstract class.
Employee X = new Employee();

4193ch04.qxd 8/14/05 2:46 PM Page 164

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 165

Excellent! At this point you have constructed a fairly interesting employee hierarchy. We will
add a bit more functionaltiy to this application later in this chapter when examining C# casting
rules. Until then, Figure 4-9 illustrates the core design of our current types.

Figure 4-9. The completed employee hierarchy

■Source Code The Employees project is included under the Chapter 4 subdirectory.

Enforcing Polymorphic Activity: Abstract Methods
When a class has been defined as an abstract base class, it may define any number of abstract
members (which is analogous to a C++ pure virtual function). Abstract methods can be used when-
ever you wish to define a method that does not supply a default implementation. By doing so, you
enforce a polymorphic trait on each descendent, leaving them to contend with the task of providing
the details behind your abstract methods.

The first logical question you might have is, “Why would I ever want to do this?” To understand
the role of abstract methods, let’s revisit the shapes hierarchy seen earlier in this chapter, extended
as shown in Figure 4-10.

4193ch04.qxd 8/14/05 2:46 PM Page 165

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0166

Figure 4-10. The shapes hierarchy

Much like the employee hierarchy, you should be able to tell that you don’t want to allow the
object user to create an instance of Shape directly, as it is too abstract of a concept. Again, to prevent
the direct creation of the Shape type, you could define it as an abstract class:

namespace Shapes
{

public abstract class Shape
{

// Shapes can be assigned a friendly pet name.
protected string petName;

// Constructors.
public Shape(){ petName = "NoName"; }
public Shape(string s) { petName = s;}

// Draw() is virtual and may be overridden.
public virtual void Draw()
{

Console.WriteLine("Shape.Draw()");
}

public string PetName
{

get { return petName;}
set { petName = value;}

}
}

4193ch04.qxd 8/14/05 2:46 PM Page 166

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 167

// Circle DOES NOT override Draw().
public class Circle : Shape
{

public Circle() { }
public Circle(string name): base(name) { }

}

// Hexagon DOES override Draw().
public class Hexagon : Shape
{

public Hexagon(){ }
public Hexagon(string name): base(name) { }
public override void Draw()
{

Console.WriteLine("Drawing {0} the Hexagon", petName);
}

}
}

Notice that the Shape class has defined a virtual method named Draw(). As you have just seen,
subclasses are free to redefine the behavior of a virtual method using the override keyword (as in
the case of the Hexagon class). The point of abstract methods becomes crystal clear when you under-
stand that subclasses are not required to override virtual methods (as in the case of Circle). Therefore,
if you create an instance of the Hexagon and Circle types, you’d find that the Hexagon understands
how to draw itself correctly. The Circle, however, is more than a bit confused (see Figure 4-11 for
output):

// The Circle object did not override the base class implementation of Draw().
static void Main(string[] args)
{

Hexagon hex = new Hexagon("Beth");
hex.Draw();
Circle cir = new Circle("Cindy");

// Humm. Using base class implementation.
cir.Draw();
Console.ReadLine();

}

Figure 4-11. Virtual methods do not have to be overridden.

Clearly this is not a very intelligent design for the shapes heirarchy. To enforce that each child
class defines what Draw() means to itself, you can simply establish Draw() as an abstract method of
the Shape class, which by definition means you provide no default implementation whatsoever.
Note that abstract methods can only be defined in abstract classes. If you attempt to do otherwise,
you will be issued a compiler error:

4193ch04.qxd 8/14/05 2:46 PM Page 167

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0168

Figure 4-12. Fun with polymorphism

// Force all kids to figure out how to be rendered.
public abstract class Shape
{

...
// Draw() is now completely abstract (note semicolon).
public abstract void Draw();

...
}

Given this, you are now obligated to implement Draw() in your Circle class. If you do not,
Circle is also assumed to be a noncreatable abstract type that must be adorned with the abstract
keyword (which is obviously not very useful in this example):

// If we did not implement the abstract Draw() method, Circle would also be
// considered abstract, and could not be directly created!
public class Circle : Shape
{

public Circle(){ }
public Circle(string name): base(name) { }

// Now Circle must decide how to render itself.
public override void Draw()
{

Console.WriteLine("Drawing {0} the Circle", petName);
}

}

To illustrate the full story of polymorphism, consider the following code:

// Create an array of various Shapes.
static void Main(string[] args)
{

Console.WriteLine("***** Fun with Polymorphism *****\n");
Shape[] myShapes = {new Hexagon(), new Circle(), new Hexagon("Mick"),

new Circle("Beth"), new Hexagon("Linda")};

// Loop over the array and ask each object to draw itself.
for(int i = 0; i < myShapes.Length; i++)

myShapes[i].Draw();
Console.ReadLine();

}

Figure 4-12 shows the output.

4193ch04.qxd 8/14/05 2:46 PM Page 168

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 169

This Main() method illustrates polymorphism at its finest. Recall that when you mark a class as
abstract, you are unable to create a direct instance of that type. However, you can freely store references
to any subclass within an abstract base variable. As you iterate over the array of Shape references, it
is at runtime that the correct type is determined. At this point, the correct method is invoked.

Member Hiding
C# provides a facility that is the logical opposite of method overriding: member hiding. Formally
speaking, if a derived class redeclares an identical member inherited from a base class, the derived
class has hidden (or shadowed) the parent’s member. In the real world, this possibility is the greatest
when you are subclassing from a class you (or your team) did not create yourselves (for example, if
you purchase a third-party .NET software package).

For the sake of illustration, assume you receive a class named ThreeDCircle from a coworker
(or classmate) that currently derives from System.Object:

public class ThreeDCircle
{

public void Draw()
{

Console.WriteLine("Drawing a 3D Circle");
}

}

You figure that a ThreeDCircle “is-a” Circle, so you derive from your existing Circle type:

public class ThreeDCircle : Circle
{

public void Draw()
{

Console.WriteLine("Drawing a 3D Circle");
}

}

Once you recompile, you find the following warning shown in Visual Studio 2005 (see Figure 4-13).

Figure 4-13. Oops! ThreeDCircle.Draw() shadows Circle.Draw.

To address this issue, you have two options. You could simply update the parent’s version of
Draw() using the override keyword. With this approach, the ThreeDCircle type is able to extend the
parent’s default behavior as required.

As an alternative, you can prefix the new keyword to the offending Draw() member of the
ThreeDCircle type. Doing so explicitly states that the derived type’s implemention is intentionally
designed to hide the parent’s version (again, in the real world, this can be helpful if external .NET
software somehow conflicts with your current software).

4193ch04.qxd 8/14/05 2:46 PM Page 169

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0170

// This class extends Circle and hides the inherited Draw() method.
public class ThreeDCircle : Circle
{

// Hide any Draw() implementation above me.
public new void Draw()
{

Console.WriteLine("Drawing a 3D Circle");
}

}

You can also apply the new keyword to any member type inherited from a base class (field, con-
stant, static member, property, etc.). As a further example, assume that ThreeDCircle wishes to hide
the inherited petName field:

public class ThreeDCircle : Circle
{

new protected string petName;
new public void Draw()
{

Console.WriteLine("Drawing a 3D Circle");
}

}

Finally, be aware that it is still possible to trigger the base class implementation of a shadowed
member using an explicit cast (described in the next section). For example:

static void Main(string[] args)
{

ThreeDCircle o = new ThreeDCircle();
o.Draw(); // Calls ThreeDCircle.Draw()
((Circle)o).Draw(); // Calls Circle.Draw()

}

■Source Code The Shapes hierarchy can be found under the Chapter 4 subdirectory.

C# Casting Rules
Next up, you need to learn the laws of C# casting operations. Recall the Employees hierarchy and the
fact that the topmost class in the system is System.Object. Therefore, everything “is-a” object and
can be treated as such. Given this fact, it is legal to store an instance of any type within a object vari-
able:

// A Manager "is-a" System.Object.
object frank = new Manager("Frank Zappa", 9, 40000, "111-11-1111", 5);

In the Employees system, Managers, SalesPerson, and PTSalesPerson types all extend Employee,
so we can store any of these objects in a valid base class reference. Therefore, the following state-
ments are also legal:

// A Manager "is-a" Employee too.
Employee moonUnit = new Manager("MoonUnit Zappa", 2, 20000, "101-11-1321", 1);

// A PTSalesPerson "is-a" SalesPerson.
SalesPerson jill = new PTSalesPerson("Jill", 834, 100000, "111-12-1119", 90);

4193ch04.qxd 8/14/05 2:46 PM Page 170

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 171

The first law of casting between class types is that when two classes are related by an “is-a”
relationship, it is always safe to store a derived type within a base class reference. Formally, this is
called an implicit cast, as “it just works” given the laws of inheritance. This leads to some powerful
programming constructs. For example, if you have a class named TheMachine that supports the fol-
lowing static method:

public class TheMachine
{

public static void FireThisPerson(Employee e)
{

// Remove from database...
// Get key and pencil sharpener from fired employee...

}
}

you can effectively pass any descendent from the Employee class into this method directly, given the
“is-a” relationship:

// Streamline the staff.
TheMachine.FireThisPerson(moonUnit); // "moonUnit" was declared as an Employee.
TheMachine.FireThisPerson(jill); // "jill" was declared as a SalesPerson.

The following code compiles given the implicit cast from the base class type (Employee) to the
derived type. However, what if you also wanted to fire Frank Zappa (currently stored in a generic
System.Object reference)? If you pass the frank object directly into TheMachine.FireThisPerson() as
follows:

// A Manager "is-a" object, but...
object frank = new Manager("Frank Zappa", 9, 40000, "111-11-1111", 5);
...
TheMachine.FireThisPerson(frank); // Error!

you are issued a compiler error. The reason is you cannot automatically treat a System.Object as
a derived Employee directly, given that Object “is-not-a” Employee. As you can see, however, the object
reference is pointing to an Employee-compatible object. You can satisfy the compiler by performing
an explicit cast.

In C#, explicit casts are denoted by placing parentheses around the type you wish to cast to, fol-
lowed by the object you are attempting to cast from. For example:

// Cast from the generic System.Object into a strongly
// typed Manager.
Manager mgr = (Manager)frank;
Console.WriteLine("Frank's options: {0}", mgr.NumbOpts);

If you would rather not declare a specific variable of “type to cast to,” you are able to condense
the previous code as follows:

// An "inline" explicit cast.
Console.WriteLine("Frank's options: {0}", ((Manager)frank).NumbOpts);

As far as passing the System.Object reference into the FireThisPerson() method, the problem
can be rectified as follows:

// Explicitly cast System.Object into an Employee.
TheMachine.FireThisPerson((Employee)frank);

■Note If you attempt to cast an object into an incompatable type, you receive an invalid cast exception at runtime.
Chapter 6 examines the details of structured exception handling.

4193ch04.qxd 8/14/05 2:46 PM Page 171

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0172

Determining the “Type of” Employee
Given that the static TheMachine.FireThisPerson() method has been designed to take any possible
type derived from Employee, one question on your mind may be how this method can determine
which derived type was sent into the method. On a related note, given that the incoming parameter
is of type Employee, how can you gain access to the specialized members of the SalesPerson and
Manager types?

The C# language provides three ways to determine whether a given base class reference is actually
referring to a derived type: explicit casting (previously examined), the is keyword, and the as keyword.
The is keyword is helpful in that it will return a Boolean that signals whether the base class reference
is compatible with a given derived type. Ponder the following updated FireThisPerson() method:

public class TheMachine
{

public static void FireThisPerson(Employee e)
{

if(e is SalesPerson)
{

Console.WriteLine("Lost a sales person named {0}", e.GetFullName());
Console.WriteLine("{0} made {1} sale(s)...",

e.GetFullName(), ((SalesPerson)e).NumbSales);
}
if(e is Manager)
{

Console.WriteLine("Lost a suit named {0}", e.GetFullName());
Console.WriteLine("{0} had {1} stock options...",

e.GetFullName(), ((Manager)e).NumbOpts);
}

}
}

Here, you make use of the is keyword to dynamically determine the type of employee. To gain
access to the NumbSales and NumbOpts properties, you make use of an explicit cast. As an alternative,
you could make use of the as keyword to obtain a reference to the more derived type (if the types
are incompatible, the reference is set to null):

SalesPerson p = e as SalesPerson;
if(p != null)

Console.WriteLine("# of sales: {0}", p.NumbSales);

■Note As you will see in Chapter 7, these same techniques (explicit cast, is, and as) can be used to obtain an
interface reference from an implementing type.

Numerical Casts
To wrap up our examination of C# casting operations, be aware that numerical conversions follow
more or less the same rules. If you are attempting to place a “larger” numerical type to a “smaller”
type (such as an integer into a byte), you must also make an explicit cast that informs the compiler
you are willing to accept any possible data loss:

// If "x" were larger than a byte's upper limit, data loss is almost certain;
// however, in Chapter 9 you will learn about "checked exceptions," which
// can alter the outcome.
int x = 6;
byte b = (byte)x;

4193ch04.qxd 8/14/05 2:46 PM Page 172

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 173

However, when you are storing a “smaller” numerical type into a “larger” type (such as a byte to
an integer), the type is implicitly cast on your behalf, as there is no loss of data:

// No need to cast, as an int is big enough to store a byte.
byte b = 30;
int x = b;

Understanding C# Partial Types
C# 2005 introduces a new type modifer named partial that allows you to define a C# type across
multiple *.cs files. Earlier versions of the C# programming language required all code for a given
type be defined within a single *.cs file. Given the fact that a production-level C# class may be hun-
dreds of lines of code (or more), this can end up being a mighty long file indeed.

In these cases, it would be ideal to partition a type’s implementation across numerous C# files
in order to separate code that is in some way more important for other details. For example, using
the partial class modifer, you could place all public members in a file named MyType_Public.cs,
while the private field data and private helper functions are defined within MyType_Private.cs:

// MyClass_Public.cs
namespace PartialTypes
{

public partial class MyClass
{

// Constructors.
public MyClass() { }

// All public members.
public void MemberA() { }
public void MemberB() { }

}
}

// MyClass_Private.cs
namespace PartialTypes
{

public partial class MyClass
{

// Private field data.
private string someStringData;

// All private helper members.
public static void SomeStaticHelper() { }

}
}

As you might guess, this can be helpful to new team members who need to quickly learn about
the public interface of the type. Rather than reading though a single (lengthy) C# file to find the
members of interest, they can focus on the public members. Of course, once these files are com-
piled by csc.exe, the end result is a single unified type (see Figure 4-14).

4193ch04.qxd 8/14/05 2:46 PM Page 173

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0174

Figure 4-14. Once compiled, partial types are no longer partial.

■Note As you will see during our examination of Windows Forms and ASP .NET, Visual Studio 2005 makes use
of the partial keyword to partition code generated by the IDE’s designer tools. Using this approach, you can keep
focused on your current solution, and be blissfully unaware of the designer-generated code.

■Source Code The PartialTypes project can be found under the Chapter 4 subdirectory.

Documenting C# Source Code via XML
To wrap this chapter up, the final task is to examine specific C# comment tokens that yield XML-
based code documentation. If you have a background in Java, you are most likely familiar with the
javadoc utility. Using javadoc, you are able to turn Java source code into a corresponding HTML
representation. The C# documentation model is slightly different, in that the “code comments to
XML” conversion process is the job of the C# compiler (via the /doc option) rather than a stand-
alone utility.

So, why use XML to document our type definitions rather than HTML? The main reason is that
XML is a very “enabling technology.” Given that XML separates the definition of data from the pres-
entation of that data, we can apply any number of XML transformations to the underlying XML to
display the code documentation in a variety of formats (MSDN format, HTML, etc).

When you wish to document your C# types in XML, your first step is to make use of one of two
notations, the triple forward slash (///) or a delimited comment that begins with a single forward
slash and two stars (/**) and ends with a single star-slash combo (*/). Once a documentation comment
has been declared, you are free to use any well-formed XML elements, including the recommended
set shown in Table 4-1.

4193ch04.qxd 8/14/05 2:46 PM Page 174

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 175

Table 4-1. Recommended Code Comment XML Elements

Predefined XML
Documentation Element Meaning in Life

<c> Indicates that the following text should be displayed in a specific “code font”

<code> Indicates multiple lines should be marked as code

<example> Mocks up a code example for the item you are describing

<exception> Documents which exceptions a given class may throw

<list> Inserts a list or table into the documentation file

<param> Describes a given parameter

<paramref> Associates a given XML tag with a specific parameter

<permission> Documents the security constraints for a given member

<remarks> Builds a description for a given member

<returns> Documents the return value of the member

<see> Cross-references related items in the document

<seealso> Builds an “also see” section within a description

<summary> Documents the “executive summary” for a given member

<value> Documents a given property

As a concrete example, here is a definition of a type named Car (note the use of the <summary>
and <param> elements):

/// <summary>
/// This is a simple Car that illustrates
/// working with XML style documentation.
/// </summary>
public class Car
{

/// <summary>
/// Do you have a sunroof?
/// </summary>
private bool hasSunroof = false;

/// <summary>
/// The ctor lets you set the sunroofedness.
/// </summary>
/// <param name="hasSunroof"> </param>
public Car(bool hasSunroof)
{

this.hasSunroof = hasSunroof;
}

/// <summary>
/// This method allows you to open your sunroof.
/// </summary>
/// <param name="state"> </param>
public void OpenSunroof(bool state)
{

if(state == true && hasSunroof == true)
Console.WriteLine("Put sunscreen on that bald head!");

else

4193ch04.qxd 8/14/05 2:46 PM Page 175

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0176

Figure 4-15. Generating an XML documentation file using Visual Studio 2005

Console.WriteLine("Sorry...you don't have a sunroof.");
}

}

The program’s Main() method is also documented using select XML elements:

/// <summary>
/// Entry point to application.
/// </summary>
static void Main(string[] args)
{

Car c = new Car(true);
c.OpenSunroof(true);

}

If you are building your C# programs using csc.exe, the /doc flag is used to generate a specified
*.xml file based on your XML code comments:

csc /doc:XmlCarDoc.xml *.cs

Visual Studio 2005 allows you to specify the name of an XML documentation file using the
Build tab of the Properties window (see Figure 4-15).

XML Code Comment Format Characters
If you were now to open the generated XML file, you will notice that the elements are qualified by
numerous characters such as “M”, “T”, “F”, and so on. For example:

<member name="T:XmlDocCar.Car">
<summary>

This is a simple Car that illustrates
working with XML style documentation.

</summary>
</member>

Table 4-2 describes the meaning behind these tokens.

4193ch04.qxd 8/14/05 2:46 PM Page 176

CHAPTER 4 ■ OBJECT-ORIENTED PROGRAMMING WITH C# 2.0 177

Table 4-2. XML Format Characters

Format Character Meaning in Life

E Item denotes an event.

F Item represents a field.

M Item represents a method (including constructors and overloaded operators).

N Item denotes a namespace.

P Item represents type properties (including indexes).

T Item represents a type (e.g., class, interface, struct, enum, delegate).

Transforming XML Code Comments
Previous versions of Visual Studio 2005 (Visual Studio .NET 2003 in particular) included a very help-
ful tool that would transform XML code documentation files into an HTML-based help system. Sadly,
Visual Studio 2005 does not ship with this utility, leaving us with a raw XML document. If you are
comfortable with the ins and outs of XML transformations, you are, of course, free to manually cre-
ate your own style sheets.

A simpler alternative, however, are the numerous third-party tools that will translate an XML code
file into various helpful formats. For example, recall from Chapter 2 that the NDoc application gen-
erates documentation in several different formats. Again, information regarding NDoc can be found
at http://ndoc.sourceforge.net.

■Source Code The XmlDocCar project can be found under the Chapter 4 subdirectory.

Summary
If you already come to the universe of .NET from another object-oriented language, this chapter
may have been more of a quick compare and contrast between your current language of choice and
C#. On the other hand, if you are exploring OOP for the first time, you may have found many of the
concepts presented here a bit confounding. Fear not; as you work through the remainder of this book,
you will have have numerous opportunities to solidify the concepts presented here.

This chapter began with a review of the pillars of OOP: encapsulation, inheritance, and poly-
morphism. Encapsulation services can be accounted for using traditional accessor/mutator methods,
type properties, or read-only public fields. Inheritance under C# could not be any simpler, given
that the language does not provide a specific keyword, but rather makes use of the simple colon
operator. Last but not least, you have polymorphism, which is supported via the abstract, virtual,
override, and new keywords.

4193ch04.qxd 8/14/05 2:46 PM Page 177

4193ch04.qxd 8/14/05 2:46 PM Page 178

Understanding Object Lifetime

In the previous chapter, you learned a great deal about how to build custom class types using C#.
Here, you will come to understand how the CLR is managing allocated objects via garbage collection.
C# programmers never directly deallocate a managed object from memory (recall there is no
“delete” keyword in the C# language). Rather, .NET objects are allocated onto a region of memory
termed the managed heap, where they will be automatically destroyed by the garbage collector at
“some time in the future.”

Once you have examined the core details of the collection process, you will learn how to program-
matically interact with the garbage collector using the System.GC class type. Next you examine how the
virtual System.Object.Finalize() method and IDisposable interface can be used to build types that
release internal unmanaged resources in a timely manner. By the time you have completed this chap-
ter, you will have a solid understanding of how .NET objects are managed by the CLR.

Classes, Objects, and References
To frame the topics examined in this chapter, it is important to further clarify the distinction between
classes, objects, and references. Recall from the previous chapter that a class is nothing more than
a blueprint that describes how an instance of this type will look and feel in memory. Classes, of course,
are defined within a code file (which in C# takes a *.cs extension by convention). Consider a simple
Car class defined within Car.cs:

// Car.cs
public class Car
{

private int currSp;
private string petName;

public Car(){}
public Car(string name, int speed)
{

petName = name;
currSp = speed;

}
public override string ToString()
{

return string.Format("{0} is going {1} MPH",
petName, currSp);

}
}

179

C H A P T E R 5

■ ■ ■

4193ch05.qxd 8/14/05 2:47 PM Page 179

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME180

Figure 5-1. References to objects on the managed heap

Once a class is defined, you can allocate any number of objects using the C# new keyword. Under-
stand, however, that the new keyword returns a reference to the object on the heap, not the actual object
itself. This reference variable is stored on the stack for further use in your application. When you wish to
invoke members on the object, apply the C# dot operator to the stored reference:

class Program
{

static void Main(string[] args)
{

// Create a new Car object on
// the managed heap. We are
// returned a reference to this
// object ('refToMyCar').
Car refToMyCar = new Car("Zippy", 50);

// The C# dot operator (.) is used
// to invoke members on the object
// using our reference variable.
Console.WriteLine(refToMyCar.ToString());
Console.ReadLine();

}
}

Figure 5-1 illustrates the class, object, and reference relationship.

The Basics of Object Lifetime
When you are building your C# applications, you are correct to assume that the managed heap will
take care of itself without your direct intervention. In fact, the golden rule of .NET memory manage-
ment is simple:

• Rule: Allocate an object onto the managed heap using the new keyword and forget about it.

Once “new-ed,” the garbage collector will destroy the object when it is no longer needed. The next
obvious question, of course, is, “How does the garbage collector determine when an object is no longer
needed”? The short (i.e., incomplete) answer is that the garbage collector removes an object from the
heap when it is unreachable by any part of your code base. Assume you have a method that allocates
a local Car object:

public static void MakeACar()
{

// If myCar is the only reference to the Car object,
// it may be destroyed when the method returns.
Car myCar = new Car();
...

}

4193ch05.qxd 8/14/05 2:47 PM Page 180

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 181

Notice that the Car reference (myCar) has been created directly within the MakeACar() method
and has not been passed outside of the defining scope (via a return value or ref/out parameters).
Thus, once this method call completes, the myCar reference is no longer reachable, and the associ-
ated Car object is now a candidate for garbage collection. Understand, however, that you cannot
guarantee that this object will be reclaimed from memory immediately after MakeACar() has com-
pleted. All you can assume at this point is that when the CLR performs the next garbage collection,
the myCar object could be safely destroyed.

As you will most certainly discover, programming in a garbage-collected environment will greatly
simplify your application development. In stark contrast, C++ programmers are painfully aware that if
they fail to manually delete heap-allocated objects, memory leaks are never far behind. In fact, tracking
down memory leaks is one of the most time-consuming (and tedious) aspects of programming with
unmanaged languages. By allowing the garbage collector to be in charge of destroying objects, the bur-
den of memory management has been taken from your shoulders and placed onto those of the CLR.

■Note If you happen to have a background in COM development, do know that .NET objects do not maintain an
internal reference counter, and therefore managed objects do not expose methods such as AddRef() or Release().

The CIL of new
When the C# compiler encounters the new keyword, it will emit a CIL newobj instruction into the method
implementation. If you were to compile the current example code and investigate the resulting assem-
bly using ildasm.exe, you would find the following CIL statements within the MakeACar() method:

.method public hidebysig static void MakeACar() cil managed
{
// Code size 7 (0x7)
.maxstack 1
.locals init ([0] class SimpleFinalize.Car c)
IL_0000: newobj instance void SimpleFinalize.Car::.ctor()
IL_0005: stloc.0
IL_0006: ret

} // end of method Program::MakeACar

Before we examine the exact rules that determine when an object is removed from the managed
heap, let’s check out the role of the CIL newobj instruction in a bit more detail. First, understand that
the managed heap is more than just a random chunk of memory accessed by the CLR. The .NET
garbage collector is quite a tidy housekeeper of the heap, given that it will compact empty blocks of
memory (when necessary) for purposes of optimization. To aid in this endeavor, the managed heap
maintains a pointer (commonly referred to as the next object pointer or new object pointer) that iden-
tifies exactly where the next object will be located.

These things being said, the newobj instruction informs the CLR to perform the following core tasks:

• Calculate the total amount of memory required for the object to be allocated (including the
necessary memory required by the type’s member variables and the type’s base classes).

• Examine the managed heap to ensure that there is indeed enough room to host the object to be
allocated. If this is the case, the type’s constructor is called, and the caller is ultimately returned
a reference to the new object in memory, whose address just happens to be identical to the last
position of the next object pointer.

• Finally, before returning the reference to the caller, advance the next object pointer to point
to the next available slot on the managed heap.

The basic process is illustrated in Figure 5-2.

4193ch05.qxd 8/14/05 2:47 PM Page 181

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME182

Figure 5-2. The details of allocating objects onto the managed heap

As you are busy allocating objects in your application, the space on the managed heap may even-
tually become full. When processing the newobj instruction, if the CLR determines that the managed
heap does not have sufficient memory to allocate the requested type, it will perform a garbage collec-
tion in an attempt to free up memory. Thus, the next rule of garbage collection is also quite simple.

• Rule: If the managed heap does not have sufficient memory to allocate a requested object,
a garbage collection will occur.

When a collection does take place, the garbage collector temporarily suspends all active threads
within the current process to ensure that the application does not access the heap during the collec-
tion process. We will examine the topic of threads in Chapter 14; however, for the time being, simply
regard a thread as a path of execution within a running executable. Once the garbage collection cycle
has completed, the suspended threads are permitted to carry on their work. Thankfully, the .NET
garbage collector is highly optimized; you will seldom (if ever) notice this brief interruption in your
application.

The Role of Application Roots
Now, back to the topic of how the garbage collector determines when an object is “no longer needed.”
To understand the details, you need to be aware of the notion of application roots. Simply put, a root is
a storage location containing a reference to an object on the heap. Strictly speaking, a root can fall into
any of the following categories:

• References to global objects (while not allowed in C#, CIL code does permit allocation of
global objects)

• References to currently used static objects/static fields

• References to local objects within a given method

• References to object parameters passed into a method

• References to objects waiting to be finalized (described later in this chapter)

• Any CPU register that references a local object

During a garbage collection process, the runtime will investigate objects on the managed heap
to determine if they are still reachable (aka rooted) by the application. To do so, the CLR will build an
object graph, which represents each reachable object on the heap. Object graphs will be seen again
during our discussion of object serialization (Chapter 17). For now, just understand that object graphs
are used to document all reachable objects. As well, be aware that the garbage collector will never
graph the same object twice, thus avoiding the nasty circular reference count found in classic COM
programming.

4193ch05.qxd 8/14/05 2:47 PM Page 182

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 183

Figure 5-3. Object graphs are constructed to determine which objects are reachable by application roots.

Figure 5-4. A clean and compacted heap

Assume the managed heap contains a set of objects named A, B, C, D, E, F, and G. During a garbage
collection, these objects (as well as any internal object references they may contain) are examined
for active roots. Once the graph has been constructed, unreachable objects (which we will assume
are objects C and F) are marked as garbage. Figure 5-3 diagrams a possible object graph for the scenario
just described (you can read the directional arrows using the phrase depends on or requires, for example,
“E depends on G and indirectly B,” “A depends on nothing,” and so on).

Once an object has been marked for termination (C and F in this case—as they are not accounted
for in the object graph), they are swept from memory. At this point, the remaining space on the heap is
compacted, which in turn will cause the CLR to modify the set of active application roots to refer to
the correct memory location (this is done automatically and transparently). Last but not least, the next
object pointer is readjusted to point to the next available slot. Figure 5-4 illustrates the resulting
readjustment.

■Note Strictly speaking, the garbage collector makes use of two distinct heaps, one of which is specifically
used to store very large objects. This heap is less frequently consulted during the collection cycle, given possible
performance penalties involved with relocating large objects. Regardless of this fact, it is safe to consider the
“managed heap” as a single region of memory.

4193ch05.qxd 8/14/05 2:47 PM Page 183

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME184

Understanding Object Generations
When the CLR is attempting to locate unreachable objects, is does not literally examine each and
every object placed on the managed heap. Obviously, doing so would involve considerable time,
especially in larger (i.e., real-world) applications.

To help optimize the process, each object on the heap is assigned to a specific “generation.” The
idea behind generations is simple: The longer an object has existed on the heap, the more likely it is
to stay there. For example, the object implementing Main() will be in memory until the program
terminates. Conversely, objects that have been recently placed on the heap are likely to be unreachable
rather quickly (such as an object created within a method scope). Given these assumptions, each
object on the heap belongs to one of the following generations:

• Generation 0: Identifies a newly allocated object that has never been marked for collection

• Generation 1: Identifies an object that has survived a garbage collection (i.e., it was marked for
collection, but was not removed due to the fact that the sufficient heap space was acquired)

• Generation 2: Identifies an object that has survived more than one sweep of the garbage
collector

The garbage collector will investigate all generation 0 objects first. If marking and sweeping these
objects results in the required amount of free memory, any surviving objects are promoted to genera-
tion 1. To illustrate how an object’s generation affects the collection process, ponder Figure 5-5, which
diagrams how a set of surviving generation 0 objects (A, B, and E) are promoted once the required
memory has been reclaimed.

If all generation 0 objects have been evaluated, but additional memory is still required, gen-
eration 1 objects are then investigated for their “reachability” and collected accordingly. Surviving
generation 1 objects are then promoted to generation 2. If the garbage collector still requires
additional memory, generation 2 objects are then evaluated for their reachability. At this point, if
a generation 2 object survives a garbage collection, it remains a generation 2 object given the pre-
defined upper limit of object generations.

The bottom line is that by assigning a generational value to objects on the heap, newer objects
(such as local variables) will be removed quickly, while older objects (such as a program’s application
object) are not “bothered” as often.

Figure 5-5. Generation 0 objects that survive a garbage collection are promoted to generation 1.

4193ch05.qxd 8/14/05 2:47 PM Page 184

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 185

The System.GC Type
The base class libraries provide a class type named System.GC that allows you to programmatically
interact with the garbage collector using a set of static members. Now, do be very aware that you
will seldom (if ever) need to make use of this type directly in your code. Typically speaking, the only
time you will make use of the members of System.GC is when you are creating types that make use of
unmanaged resources. Table 5-1 provides a rundown of some of the more interesting members (con-
sult the .NET Framework 2.0 SDK Documentation for complete details).

Table 5-1. Select Members of the System.GC Type

System.GC Member Meaning in Life

AddMemoryPressure(), Allow you to specify a numerical value that represents the calling
RemoveMemoryPressure() object’s “urgency level” regarding the garbage collection process. Be

aware that these methods should alter pressure in tandem and thus
never remove more pressure than the total amount you have added.

Collect() Forces the GC to perform a garbage collection.

CollectionCount() Returns a numerical value representing how many times a given
generation has been swept.

GetGeneration() Returns the generation to which an object currently belongs.

GetTotalMemory() Returns the estimated amount of memory (in bytes) currently allocated
on the managed heap. The Boolean parameter specifies whether the
call should wait for garbage collection to occur before returning.

MaxGeneration Returns the maximum of generations supported on the target
system. Under Microsoft’s .NET 2.0, there are three possible
generations (0, 1, and 2).

SuppressFinalize() Sets a flag indicating that the specified object should not have its
Finalize() method called.

WaitForPendingFinalizers() Suspends the current thread until all finalizable objects have been
finalized. This method is typically called directly after invoking
GC.Collect().

Ponder the following Main() method, which illustrates select members of System.GC:

static void Main(string[] args)
{

// Print out estimated number of bytes on heap.
Console.WriteLine("Estimated bytes on heap: {0}",

GC.GetTotalMemory(false));

// MaxGeneration is zero based, so add 1 for display purposes.
Console.WriteLine("This OS has {0} object generations.\n",

(GC.MaxGeneration + 1));

Car refToMyCar = new Car("Zippy", 100);
Console.WriteLine(refToMyCar.ToString());

// Print out generation of refToMyCar object.
Console.WriteLine("Generation of refToMyCar is: {0}",

GC.GetGeneration(refToMyCar));

Console.ReadLine();
}

4193ch05.qxd 8/14/05 2:47 PM Page 185

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME186

Forcing a Garbage Collection
Again, the whole purpose of the .NET garbage collector is to manage memory on our behalf. However,
under some very rare circumstances, it may be beneficial to programmatically force a garbage col-
lection using GC.Collect(). Specifically:

• Your application is about to enter into a block of code that you do not wish to be interrupted
by a possible garbage collection.

• Your application has just finished allocating an extremely large number of objects and you
wish to remove as much of the acquired memory as possible.

If you determine it may be beneficial to have the garbage collector check for unreachable objects,
you could explicitly trigger a garbage collection, as follows:

static void Main(string[] args)
{
...

// Force a garbage collection and wait for
// each object to be finalized.
GC.Collect();
GC.WaitForPendingFinalizers();

...
}

When you manually force a garbage collection, you should always make a call to GC.WaitFor-
PendingFinalizers(). With this approach, you can rest assured that all finalizable objects have had
a chance to perform any necessary cleanup before your program continues forward. Under the hood,
GC.WaitForPendingFinalizers() will suspend the calling “thread” during the collection process.
This is a good thing, as it ensures your code does not invoke methods on an object currently being
destroyed!

The GC.Collect() method can also be supplied a numerical value that identifies the oldest
generation on which a garbage collection will be performed. For example, if you wished to instruct
the CLR to only investigate generation 0 objects, you would write the following:

static void Main(string[] args)
{
...

// Only investigate generation 0 objects.
GC.Collect(0);
GC.WaitForPendingFinalizers();

...
}

Like any garbage collection, calling GC.Collect() will promote surviving generations. To
illustrate, assume that our Main() method has been updated as follows:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with System.GC *****\n");

// Print out estimated number of bytes on heap.
Console.WriteLine("Estimated bytes on heap: {0}",

GC.GetTotalMemory(false));

// MaxGeneration is zero based.
Console.WriteLine("This OS has {0} object generations.\n",

(GC.MaxGeneration + 1));

4193ch05.qxd 8/14/05 2:47 PM Page 186

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 187

Car refToMyCar = new Car("Zippy", 100);
Console.WriteLine(refToMyCar.ToString());

// Print out generation of refToMyCar.
Console.WriteLine("\nGeneration of refToMyCar is: {0}",

GC.GetGeneration(refToMyCar));

// Make a ton of objects for testing purposes.
object[] tonsOfObjects = new object[50000];
for (int i = 0; i < 50000; i++)

tonsOfObjects[i] = new object();

// Collect only gen 0 objects.
GC.Collect(0);
GC.WaitForPendingFinalizers();

// Print out generation of refToMyCar.
Console.WriteLine("Generation of refToMyCar is: {0}",

GC.GetGeneration(refToMyCar));

// See if tonsOfObjects[9000] is still alive.
if (tonsOfObjects[9000] != null)
{

Console.WriteLine("Generation of tonsOfObjects[9000] is: {0}",
GC.GetGeneration(tonsOfObjects[9000]));

}
else

Console.WriteLine("tonsOfObjects[9000] is no longer alive.");

// Print out how many times a generation has been swept.
Console.WriteLine("\nGen 0 has been swept {0} times",

GC.CollectionCount(0));
Console.WriteLine("Gen 1 has been swept {0} times",

GC.CollectionCount(1));
Console.WriteLine("Gen 2 has been swept {0} times",

GC.CollectionCount(2));
Console.ReadLine();

}

Here, we have purposely created a very large array of objects for testing purposes. As you can
see from the output shown in Figure 5-6, even though this Main() method only made one explicit
request for a garbage collection, the CLR performed a number of them in the background.

4193ch05.qxd 8/14/05 2:47 PM Page 187

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME188

Figure 5-6. Interacting with the CLR garbage collector via System.GC

At this point in the chapter, I hope you feel more comfortable regarding the details of object life-
time. The remainder of this chapter examines the garbage collection process a bit further by addressing
how you can build finalizable objects as well as disposable objects. Be very aware that the following tech-
niques will only be useful if you are build managed classes that maintain internal unmanaged
resources.

■Source Code The SimpleGC project is included under the Chapter 5 subdirectory.

Building Finalizable Objects
In Chapter 3, you learned that the supreme base class of .NET, System.Object, defines a virtual method
named Finalize(). The default implementation of this method does nothing whatsoever:

// System.Object
public class Object
{

...
protected virtual void Finalize() {}

}

When you override Finalize() for your custom classes, you establish a specific location to per-
form any necessary cleanup logic for your type. Given that this member is defined as protected, it is
not possible to directly call an object’s Finalize() method. Rather, the garbage collector will call an
object’s Finalize() method (if supported) before removing the object from memory.

Of course, a call to Finalize() will (eventually) occur during a “natural” garbage collection or
when you programmatically force a collection via GC.Collect(). In addition, a type’s finalizer method
will automatically be called when the application domain hosting your application is unloaded from
memory. Based on your current background in .NET, you may know that application domains (or sim-
ply AppDomains) are used to host an executable assembly and any necessary external code libraries.
If you are not familiar with this .NET concept, you will be by the time you’ve finished Chapter 13. The
short answer is that when your AppDomain is unloaded from memory, the CLR automatically invokes
finalizers for every finalizable object created during its lifetime.

4193ch05.qxd 8/14/05 2:47 PM Page 188

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 189

Now, despite what your developer instincts may tell you, a vast majority of your C# classes will
not require any explicit cleanup logic. The reason is simple: If your types are simply making use of
other managed objects, everything will eventually be garbage collected. The only time you would
need to design a class that can clean up after itself is when you are making use of unmanaged
resources (such as raw OS file handles, raw unmanaged database connections, or other unmanaged
resources). As you may know, unmanaged resources are obtained by directly calling into the API of
the operating system using PInvoke (platform invocation) services or due to some very elaborate COM
interoperability scenarios. Given this, consider the next rule of garbage collection:

• Rule: The only reason to override Finalize() is if your C# class is making use of unmanaged
resources via PInvoke or complex COM interoperability tasks (typically via the System.Runtime.
InteropServices.Marshal type).

■Note Recall from Chapter 3 that it is illegal to override Finalize() on structure types. This makes perfect sense
given that structures are value types, which are never allocated on the heap to begin with.

Overriding System.Object.Finalize()
In the rare case that you do build a C# class that makes use of unmanaged resources, you will obviously
wish to ensure that the underlying memory is released in a predictable manner. Assume you have
created a class named MyResourceWrapper that makes use of an unmanaged resource (whatever
that may be) and you wish to override Finalize(). The odd thing about doing so in C# is that you
cannot do so using the expected override keyword:

public class MyResourceWrapper
{

// Compile time error!
protected override void Finalize(){ }

}

Rather, when you wish to configure your custom C# class types to override the Finalize()
method, you make use of the following (C++-like) destructor syntax to achieve the same effect. The
reason for this alternative form of overriding a virtual method is that when the C# compiler processes
a destructor, it will automatically add a good deal of required infrastructure within the Finalize()
method (shown in just a moment).

Here is a custom finalizer for MyResourceWrapper that will issue a system beep when invoked.
Obviously this is only for instructional purposes. A real-world finalizer would do nothing more than
free any unmanaged resources and would not interact with the members of other managed objects,
as you cannot assume they are still alive at the point the garbage collector invokes your Finalize()
method:

// Override System.Object.Finalize() via destructor syntax.
class MyResourceWrapper
{

~MyResourceWrapper()
{

// Clean up unmanaged resources here.

// Beep when destroyed (testing purposes only!)
Console.Beep();

}
}

4193ch05.qxd 8/14/05 2:47 PM Page 189

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME190

If you were to examine this C# destructor using ilasm.exe, you will see that the compiler inserts
some necessary error checking code. First, the code statements within the scope of your Finalize()
method are placed within a try block. This bit of syntax is used to hold code statements that may
trigger a runtime error (formally termed an exception) during their execution. The related finally
block ensures that your base classes’ Finalize() method will always execute, regardless of any excep-
tions encountered within the try scope. You’ll investigate the formalities of structured exception
handling in the next chapter; however, ponder the following CIL representation of MyResourceWrapper’s
C# destructor:

.method family hidebysig virtual instance void
Finalize() cil managed

{
// Code size 13 (0xd)
.maxstack 1
.try
{

IL_0000: ldc.i4 0x4e20
IL_0005: ldc.i4 0x3e8
IL_000a: call

void [mscorlib]System.Console::Beep(int32, int32)
IL_000f: nop
IL_0010: nop
IL_0011: leave.s IL_001b

} // end .try
finally
{

IL_0013: ldarg.0
IL_0014:

call instance void [mscorlib]System.Object::Finalize()
IL_0019: nop
IL_001a: endfinally

} // end handler
IL_001b: nop
IL_001c: ret

} // end of method MyResourceWrapper::Finalize

If you were to now test the MyResourceWrapper type, you would find that a system beep occurs
when the application terminates, given that the CLR will automatically invoke finalizers upon
AppDomain shutdown:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Finalizers *****\n");
Console.WriteLine("Hit the return key to shut down this app");
Console.WriteLine("and force the GC to invoke Finalize()");
Console.WriteLine("for finalizable objects created in this AppDomain.");
Console.ReadLine();
MyResourceWrapper rw = new MyResourceWrapper();

}

■Source Code The SimpleFinalize project is included under the Chapter 5 subdirectory.

4193ch05.qxd 8/14/05 2:47 PM Page 190

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 191

Detailing the Finalization Process
Not to beat a dead horse, but always remember that the role of the Finalize() method is to ensure
that a .NET object can clean up unmanaged resources when garbage collected. Thus, if you are build-
ing a type that does not make use of unmanaged entities (by far the most common case), finalization
is of little use. In fact, if at all possible, you should design your types to avoid supporting a Finalize()
method for the very simple reason that finalization takes time.

When you allocate an object onto the managed heap, the runtime automatically determines
whether your object supports a custom Finalize() method. If so, the object is marked as finalizable,
and a pointer to this object is stored on an internal queue named the finalization queue. The finaliza-
tion queue is a table maintained by the garbage collector that points to each and every object that
must be finalized before it is removed from the heap.

When the garbage collector determines it is time to free an object from memory, it examines
each entry on the finalization queue, and copies the object off the heap to yet another managed
structure termed the finalization reachable table (often abbreviated as freachable, and pronounced
“eff-reachable”). At this point, a separate thread is spawned to invoke the Finalize() method for
each object on the freachable table at the next garbage collection. Given this, it will take at very least
two garbage collections to truly finalize an object.

The bottom line is that while finalization of an object does ensure an object can clean up
unmanaged resources, it is still nondeterministic in nature, and due to the extra behind-the-
curtains processing, considerably slower.

Building Disposable Objects
Given that so many unmanaged resources are “precious items” that should be cleaned up ASAP,
allow me to introduce you to another possible technique used to handle an object’s cleanup. As an
alternative to overriding Finalize(), your class could implement the IDisposable interface, which
defines a single method named Dispose():

public interface IDisposable
{

void Dispose();
}

If you are new to interface-based programming, Chapter 7 will take you through the details. In
a nutshell, an interface as a collection of abstract members a class or structure may support. When
you do support the IDisposable interface, the assumption is that when the object user is finished
using the object, it manually calls Dispose() before allowing the object reference to drop out of
scope. In this way, your objects can perform any necessary cleanup of unmanaged resources with-
out incurring the hit of being placed on the finalization queue and without waiting for the garbage
collector to trigger the class’s finalization logic.

■Note Structures and class types can both support IDisposable (unlike overriding Finalize(), which is
reserved for class types).

Here is an updated MyResourceWrapper class that now implements IDisposable, rather than
overriding System.Object.Finalize():

// Implementing IDisposable.
public class MyResourceWrapper : IDisposable
{

4193ch05.qxd 8/14/05 2:47 PM Page 191

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME192

// The object user should call this method
// when they finished with the object.
public void Dispose()
{

// Clean up unmanaged resources here.

// Dispose other contained disposable objects.
}

}

Notice that a Dispose() method is not only responsible for releasing the type’s unmanaged
resources, but should also call Dispose() on any other contained disposable methods. Unlike
Finalize(), it is perfectly safe to communicate with other managed objects within a Dispose()
method. The reason is simple: The garbage collector has no clue about the IDisposable interface
and will never call Dispose(). Therefore, when the object user calls this method, the object is still
living a productive life on the managed heap and has access to all other heap-allocated objects.
The calling logic is straightforward:

public class Program
{

static void Main()
{

MyResourceWrapper rw = new MyResourceWrapper();
rw.Dispose();
Console.ReadLine();

}
}

Of course, before you attempt to call Dispose() on an object, you will want to ensure the type sup-
ports the IDisposable interface. While you will typically know which objects implement IDisposable by
consulting the .NET Framework 2.0 SDK documentation, a programmatic check can be accomplished
using the is or as keywords discussed in Chapter 4:

public class Program
{

static void Main()
{

MyResourceWrapper rw = new MyResourceWrapper();
if (rw is IDisposable)

rw.Dispose();
Console.ReadLine();

}
}

This example exposes yet another rule of working with garbage-collected types.

• Rule: Always call Dispose() on any object you directly create if the object supports
IDisposable. The assumption you should make is that if the class designer chose to support
the Dispose() method, the type has some cleanup to perform.

Reusing the C# using Keyword
When you are handling a managed object that implements IDisposable, it will be quite common to
make use of structured exception handling (again, see Chapter 6) to ensure the type’s Dispose() method
is called in the event of a runtime exception:

4193ch05.qxd 8/14/05 2:47 PM Page 192

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 193

static void Main(string[] args)
{

MyResourceWrapper rw = new MyResourceWrapper ();
try
{

// Use the members of rw.
}
finally
{

// Always call Dispose(), error or not.
rw.Dispose();

}
}

While this is a fine example of defensive programming, the truth of the matter is that few
developers are thrilled by the prospects of wrapping each and every disposable type within
a try/catch/finally block just to ensure the Dispose() method is called. To achieve the same
result in a much less obtrusive manner, C# supports a special bit of syntax that looks like this:

static void Main(string[] args)
{

// Dispose() is called automatically when the
// using scope exits.
using(MyResourceWrapper rw = new MyResourceWrapper())
{

// Use rw object.
}

}

If you were to look at the CIL code of the Main() method using ildasm.exe, you will find the using
syntax does indeed expand to try/final logic, with the expected call to Dispose():

.method private hidebysig static void Main(string[] args) cil managed
{
...

.try
{

...
} // end .try
finally
{

...
IL_0012: callvirt instance void

SimpleFinalize.MyResourceWrapper::Dispose()
} // end handler

...
} // end of method Program::Main

■Note If you attempt to “use” an object that does not implement IDisposable, you will receive a compiler error.

While this syntax does remove the need to manually wrap disposable objects within try/finally
logic, the C# using keyword unfortunately now has a double meaning (specifying namespaces and
invoking a Dispose() method). Nevertheless, when you are working with .NET types that support the
IDisposable interface, this syntactical construct will ensure that the object “being used” will auto-
matically have its Dispose() method called once the using block has exited.

4193ch05.qxd 8/14/05 2:47 PM Page 193

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME194

■Source Code The SimpleDispose project is included under the Chapter 5 subdirectory.

Building Finalizable and Disposable Types
At this point, we have seen two different approaches to construct a class that cleans up internal
unmanaged resources. On the one hand, we could override System.Object.Finalize(). Using this
technique, we have the peace of mind that comes with knowing the object cleans itself up when
garbage collected (whenever that may be) without the need for user interaction. On the other hand,
we could implement IDisposable to provide a way for the object user to clean up the object as soon
as it is finished. However, if the caller forgets to call Dispose(), the unmanaged resources may be
held in memory indefinitely.

As you might suspect, it is possible to blend both techniques into a single class definition. By
doing so, you gain the best of both models. If the object user does remember to call Dispose(), you
can inform the garbage collector to bypass the finalization process by calling GC.SuppressFinalize().
If the object user forgets to call Dispose(), the object will eventually be finalized. The good news is
that the object’s internal unmanaged resources will be freed one way or another. Here is the next
iteration of MyResourceWrapper, which is now finalizable and disposable:

// A sophisticated resource wrapper.
public class MyResourceWrapper : IDisposable
{

// The garbage collector will call this method if the
// object user forgets to call Dispose().
~ MyResourceWrapper()
{

// Clean up any internal unmanaged resources.
// Do **not** call Dispose() on any managed objects.

}

// The object user will call this method to clean up
// resources ASAP.
public void Dispose()
{

// Clean up unmanaged resources here.
// Call Dispose() on other contained disposable objects.

// No need to finalize if user called Dispose(),
// so suppress finalization.
GC.SuppressFinalize(this);

}
}

Notice that this Dispose() method has been updated to call GC.SuppressFinalize(), which informs
the CLR that it is no longer necessary to call the destructor when this object is garbage collected, given
that the unmanaged resources have already been freed via the Dispose() logic.

A Formalized Disposal Pattern
The current implementation of MyResourceWrapper does work fairly well; however, we are left with
a few minor drawbacks. First, the Finalize() and Dispose() method each have to clean up the same
unmanaged resources. This of course results in duplicate code, which can easily become a nightmare
to maintain. Ideally, you would define a private helper function that is called by either method.

4193ch05.qxd 8/14/05 2:47 PM Page 194

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME 195

Next, you would like to make sure that the Finalize() method does not attempt to dispose of
any managed objects, while the Dispose() method should do so. Finally, you would also like to
make sure that the object user can safely call Dispose() multiple times without error. Currently
our Dispose() method has no such safeguards.

To address these design issues, Microsoft has defined a formal, prim-and-proper disposal pat-
tern that strikes a balance between robustness, maintainability, and performance. Here is the final
(and annotated) version of MyResourceWrapper, which makes use of this official pattern:

public class MyResourceWrapper : IDisposable
{

// Used to determine if Dispose()
// has already been called.
private bool disposed = false;

public void Dispose()
{

// Call our helper method.
// Specifying "true" signifies that
// the object user triggered the clean up.
CleanUp(true);

// Now suppress finialization.
GC.SuppressFinalize(this);

}

private void CleanUp(bool disposing)
{

// Be sure we have not already been disposed!
if (!this.disposed)
{

// If disposing equals true, dispose all
// managed resources.
if (disposing)
{

// Dispose managed resources.
}
// Clean up unmanaged resources here.

}
disposed = true;

}

~MyResourceWrapper()
{

// Call our helper method.
// Specifying "false" signifies that
// the GC triggered the clean up.
CleanUp(false);

}
}

Notice that MyResourceWrapper now defines a private helper method named CleanUp(). When
specifying true as an argument, we are signifying that the object user has initiated the cleanup,
therefore we should clean up all managed and unmanaged resources. However, when the garbage
collector initiates the cleanup, we specify false when calling CleanUp() to ensure that internal dis-
posable objects are not disposed (as we can’t assume they are still in memory!). Last but not least,
our Boolean member variable (disposed) is set to true before exiting CleanUp() to ensure that
Dispose() can be called numerous times without error.

4193ch05.qxd 8/14/05 2:47 PM Page 195

CHAPTER 5 ■ UNDERSTANDING OBJECT L IFETIME196

■Source Code The FinalizableDisposableClass project is included under the Chapter 5 subdirectory.

That wraps up our investigation of how the CLR is managing your objects via garbage collection.
While there are additional details regarding the collection process I have not examined here (such as
weak references and object resurrection), you are certainly in a perfect position for further exploration
on your own terms.

Summary
The point of this chapter was to demystify the garbage collection process. As you have seen, the
garbage collector will only run when it is unable to acquire the necessary memory from the man-
aged heap (or when a given AppDomain unloads from memory). When a collection does occur, you
can rest assured that Microsoft’s collection algorithm as been optimized by the use of object genera-
tions, secondary threads for the purpose of object finalization, and a managed heap dedicated to host
large objects.

This chapter also illustrated how to programmatically interact with the garbage collector using
the System.GC class type. As mentioned, the only time when you will really need to do so is when
you are building finalizable or disposable class types. Recall that finalizable types are classes that
have overridden the virtual System.Object.Finalize() method to clean up unmanaged resources
(at some time in the future). Disposable objects, on the other hand, are classes (or structures) that
implement the IDisposable interface. Using this technique, you expose a public method to the object
user that can be called to perform internal cleanup ASAP. Finally, you learned about an official
“disposal” pattern that blends both approaches.

4193ch05.qxd 8/14/05 2:47 PM Page 196

Understanding Structured
Exception Handling

The point of this chapter is to understand how to handle runtime anomalies in your C# code base
through the use of structured exception handling. Not only will you learn about the C# keywords
that allow you to handle such matters (try, catch, throw, finally), but you will also come to
understand the distinction between application-level and system-level exceptions. This discus-
sion will also provide a lead-in to the topic of building custom exceptions, as well as how to leverage
the exception-centric debugging tools of Visual Studio 2005.

Ode to Errors, Bugs, and Exceptions
Despite what our (sometimes inflated) egos may tell us, no programmer is perfect. Writing software
is a complex undertaking, and given this complexity, it is quite common for even the best software to
ship with various problems. Sometimes the problem is caused by “bad code” (such as overflowing the
bounds of an array). Other times, a problem is caused by bogus user input that has not been accounted
for in the application’s code base (e.g., a phone number field assigned “Chucky”). Now, regardless of
the cause of said problem, the end result is that your application does not work as expected. To help
frame the upcoming discussion of structured exception handling, allow me to provide definitions
for three commonly used anomaly-centric terms:

• Bugs: This is, simply put, an error on the part of the programmer. For example, assume you
are programming with unmanaged C++. If you make calls on a NULL pointer or fail to delete
allocated memory (resulting in a memory leak), you have a bug.

• User errors: Unlike bugs, user errors are typically caused by the individual running your
application, rather than by those who created it. For example, an end user who enters a mal-
formed string into a text box could very well generate an error if you fail to handle this faulty
input in your code base.

• Exceptions: Exceptions are typically regarded as runtime anomalies that are difficult, if not
impossible, to account for while programming your application. Possible exceptions include
attempting to connect to a database that no longer exists, opening a corrupted file, or con-
tacting a machine that is currently offline. In each of these cases, the programmer (and end
user) has little control over these “exceptional” circumstances.

197

C H A P T E R 6

■ ■ ■

4193ch06.qxd 8/14/05 2:48 PM Page 197

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING198

Given the previous definitions, it should be clear that .NET structured exception handling is
a technique well suited to deal with runtime exceptions. However, as for the bugs and user errors
that have escaped your view, the CLR will often generate a corresponding exception that identi-
fies the problem at hand. The .NET base class libraries define numerous exceptions such as
FormatException, IndexOutOfRangeException, FileNotFoundException, ArgumentOutOfRangeExcep-
tion, and so forth.

Before we get too far ahead of ourselves, let’s formalize the role of structured exception handling
and check out how it differs from traditional error handling techniques.

■Note To make the code examples used in this book as clean as possible, I will not catch every possible exception
that may be thrown by a given method in the base class libraries. In your production-level projects, you should, of
course, make liberal use of the techniques presented in this chapter.

The Role of .NET Exception Handling
Prior to .NET, error handling under the Windows operating system was a confused mishmash of
techniques. Many programmers rolled their own error handling logic within the context of a given
application. For example, a development team may define a set of numerical constants that repre-
sent known error conditions, and make use of them as method return values. By way of an example,
ponder the following partial C code:

/* A very C-style error trapping mechanism. */
#define E_FILENOTFOUND 1000

int SomeFunction()
{

// Assume something happens in this f(x)
// that causes the following return value.
return E_FILENOTFOUND;

}

void Main()
{

int retVal = SomeFunction();
if(retVal == E_FILENOTFOUND)

printf("Cannot find file...");
}

This approach is less than ideal, given the fact that the constant E_FILENOTFOUND is little more
than a numerical value, and is far from being a helpful agent regarding how to deal with the prob-
lem. Ideally, you would like to wrap the name, message, and other helpful information regarding
this error condition into a single, well-defined package (which is exactly what happens under
structured exception handling).

In addition to a developer’s ad hoc techniques, the Windows API defines hundreds of error codes
that come by way of #defines, HRESULTs, and far too many variations on the simple Boolean (bool,
BOOL, VARIANT_BOOL, and so on). Also, many C++ COM developers (and indirectly, many VB6 COM
developers) have made use of a small set of standard COM interfaces (e.g., ISupportErrorInfo,
IErrorInfo, ICreateErrorInfo) to return meaningful error information to a COM client.

The obvious problem with these previous techniques is the tremendous lack of symmetry. Each
approach is more or less tailored to a given technology, a given language, and perhaps even a given
project. In order to put an end to this madness, the .NET platform provides a standard technique to
send and trap runtime errors: structured exception handling (SEH).

4193ch06.qxd 8/14/05 2:48 PM Page 198

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 199

The beauty of this approach is that developers now have a unified approach to error handling,
which is common to all languages targeting the .NET universe. Therefore, the way in which a C#
programmer handles errors is syntactically similar to that of a VB .NET programmer, and a C++ pro-
grammer using managed extensions. As an added bonus, the syntax used to throw and catch
exceptions across assemblies and machine boundaries is identical.

Another bonus of .NET exceptions is the fact that rather than receiving a cryptic numerical value
that identifies the problem at hand, exceptions are objects that contain a human-readable descrip-
tion of the problem, as well as a detailed snapshot of the call stack that triggered the exception in
the first place. Furthermore, you are able to provide the end user with help link information that
points the user to a URL that provides detailed information regarding the error at hand as well as
custom user-defined data.

The Atoms of .NET Exception Handling
Programming with structured exception handling involves the use of four interrelated entities:

• A class type that represents the details of the exception that occurred

• A member that throws an instance of the exception class to the caller

• A block of code on the caller’s side that invokes the exception-prone member

• A block of code on the caller’s side that will process (or catch) the exception should it occur

The C# programming language offers four keywords (try, catch, throw, and finally) that
allow you to throw and handle exceptions. The type that represents the problem at hand is a class
derived from System.Exception (or a descendent thereof). Given this fact, let’s check out the role of
this exception-centric base class.

The System.Exception Base Class
All user- and system-defined exceptions ultimately derive from the System.Exception base class
(which in turn derives from System.Object). Note that some of these members are virtual and may
thus be overridden by derived types:

public class Exception : ISerializable, _Exception
{

public virtual IDictionary Data { get; }
protected Exception(SerializationInfo info, StreamingContext context);
public Exception(string message, Exception innerException);
public Exception(string message);
public Exception();
public virtual Exception GetBaseException();
public virtual void GetObjectData(SerializationInfo info,

StreamingContext context);
public System.Type GetType();
protected int HResult { get; set; }
public virtual string HelpLink { get; set; }
public System.Exception InnerException { get; }
public virtual string Message { get; }
public virtual string Source { get; set; }
public virtual string StackTrace { get; }
public MethodBase TargetSite { get; }
public override string ToString();

}

4193ch06.qxd 8/14/05 2:48 PM Page 199

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING200

As you can see, many of the properties defined by System.Exception are read-only in nature.
This is due to the simple fact that derived types will typically supply default values for each property
(for example, the default message of the IndexOutOfRangeException type is “Index was outside the
bounds of the array”).

■Note As of .NET 2.0, the _Exception interface is implemented by System.Exception to expose its functionality
to unmanaged code.

Table 6-1 describes the details of some (but not all) of the members of System.Exception.

Table 6-1. Core Members of the System.Exception Type

System.Exception Property Meaning in Life

Data This property (which is new to .NET 2.0) retrieves a collection of
key/value pairs (represented by an object implementing
IDictionary) that provides additional, user-defined information
about the exception. By default, this collection is empty.

HelpLink This property returns a URL to a help file describing the error in full
detail.

InnerException This read-only property can be used to obtain information about
the previous exception(s) that caused the current exception to
occur. The previous exception(s) are recorded by passing them into
the constructor of the most current exception.

Message This read-only property returns the textual description of a given
error. The error message itself is set as a constructor parameter.

Source This property returns the name of the assembly that threw the
exception.

StackTrace This read-only property contains a string that identifies the
sequence of calls that triggered the exception. As you might guess,
this property is very useful during debugging.

TargetSite This read-only property returns a MethodBase type, which describes
numerous details about the method that threw the exception
(ToString() will identify the method by name).

The Simplest Possible Example
To illustrate the usefulness of structured exception handling, we need to create a type that may throw
an exception under the correct circumstances. Assume we have created a new console application
project (named SimpleException) that defines two class types (Car and Radio) associated using the
“has-a” relationship. The Radio type defines a single method that turns the radio’s power on or off:

public class Radio
{

public void TurnOn(bool on)
{

if(on)
Console.WriteLine("Jamming...");

else
Console.WriteLine("Quiet time...");

}
}

4193ch06.qxd 8/14/05 2:48 PM Page 200

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 201

In addition to leveraging the Radio type via containment/delegation, the Car type is defined in
such a way that if the user accelerates a Car object beyond a predefined maximum speed (specified
using a constant member variable), its engine explodes, rendering the Car unusable (captured by
a bool member variable named carIsDead). Beyond these points, the Car type has a few member
variables to represent the current speed and a user supplied “pet name” as well as various construc-
tors. Here is the complete definition (with code annotations):

public class Car
{

// Constant for maximum speed.
public const int maxSpeed = 100;

// Internal state data.
private int currSpeed;
private string petName;

// Is the car still operational?
private bool carIsDead;

// A car has-a radio.
private Radio theMusicBox = new Radio();

// Constructors.
public Car() {}
public Car(string name, int currSp)
{

currSpeed = currSp;
petName = name;

}

public void CrankTunes(bool state)
{

// Delegate request to inner object.
theMusicBox.TurnOn(state);

}

// See if Car has overheated.
public void Accelerate(int delta)
{

if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{

currSpeed += delta;
if (currSpeed > maxSpeed)
{

Console.WriteLine("{0} has overheated!", petName);
currSpeed = 0;
carIsDead = true;

}
else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed);
}

}
}

4193ch06.qxd 8/14/05 2:48 PM Page 201

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING202

Figure 6-1. The Car in action

Now, if we were to implement a Main() method that forces a Car object to exceed the predefined
maximum speed (represented by the maxSpeed constant) as shown here:

static void Main(string[] args)
{

Console.WriteLine("***** Creating a car and stepping on it *****");
Car myCar = new Car("Zippy", 20);
myCar.CrankTunes(true);

for (int i = 0; i < 10; i++)
myCar.Accelerate(10);

Console.ReadLine();
}

we would see the output displayed in Figure 6-1.

Throwing a Generic Exception
Now that we have a functional Car type, I’ll illustrate the simplest way to throw an exception. The
current implementation of Accelerate() displays an error message if the caller attempts to speed
up the Car beyond its upper limit.

To retrofit this method to throw an exception if the user attempts to speed up the automobile
after it has met its maker, you want to create and configure a new instance of the System.Exception
class, setting the value of the read-only Message property via the class constructor. When you wish to
send the error object back to the caller, make use of the C# throw keyword. Here is the relevant code
update to the Accelerate() method:

// This time, throw an exception if the user speeds up beyond maxSpeed.
public void Accelerate(int delta)
{

if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{

currSpeed += delta;
if (currSpeed >= maxSpeed)
{

carIsDead = true;
currSpeed = 0;

4193ch06.qxd 8/14/05 2:48 PM Page 202

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 203

// Use "throw" keyword to raise an exception.
throw new Exception(string.Format("{0} has overheated!", petName));

}
else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed);
}

}

Before examining how a caller would catch this exception, a few points of interest. First of all,
when you are throwing an exception, it is always up to you to decide exactly what constitutes the error
in question, and when it should be thrown. Here, you are making the assumption that if the program
attempts to increase the speed of a car that has expired, a System.Exception type should be thrown to
indicate the Accelerate() method cannot continue (which may or may not be a valid assumption).

Alternatively, you could implement Accelerate() to recover automatically without needing to
throw an exception in the first place. By and large, exceptions should be thrown only when a more
terminal condition has been met (for example, not finding a necessary file, failing to connect to
a database, and whatnot). Deciding exactly what constitutes throwing an exception is a design issue
you must always contend with. For our current purposes, assume that asking a doomed automobile
to increase its speed justifies a cause to throw an exception.

Catching Exceptions
Because the Accelerate() method now throws an exception, the caller needs to be ready to handle
the exception should it occur. When you are invoking a method that may throw an exception, you
make use of a try/catch block. Once you have caught the exception type, you are able to invoke the
members of the System.Exception type to extract the details of the problem. What you do with this
data is largely up to you. You may wish to log this information to a report file, write the data to the
Windows event log, e-mail a system administrator, or display the problem to the end user. Here, you
will simply dump the contents to the console window:

// Handle the thrown exception.
static void Main(string[] args)
{

Console.WriteLine("***** Creating a car and stepping on it *****");
Car myCar = new Car("Zippy", 20);
myCar.CrankTunes(true);

// Speed up past the car's max speed to
// trigger the exception.
try
{

for(int i = 0; i < 10; i++)
myCar. Accelerate(10);

}
catch(Exception e)
{

Console.WriteLine("\n*** Error! ***");
Console.WriteLine("Method: {0}", e.TargetSite);
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);

}

// The error has been handled, processing continues with the next statement.
Console.WriteLine("\n***** Out of exception logic *****");
Console.ReadLine();

}

4193ch06.qxd 8/14/05 2:48 PM Page 203

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING204

Figure 6-2. Dealing with the error using structured exception handling

In essence, a try block is a section of statements that may throw an exception during execution.
If an exception is detected, the flow of program execution is sent to the appropriate catch block. On
the other hand, if the code within a try block does not trigger an exception, the catch block is skipped
entirely, and all is right with the world. Figure 6-2 shows a test run of this program.

As you can see, once an exception has been handled, the application is free to continue on
from the point after the catch block. In some circumstances, a given exception may be critical
enough to warrant the termination of the application. However, in a good number of cases, the logic
within the exception handler will ensure the application will be able to continue on its merry way
(although it may be slightly less functional, such as the case of not being able to connect to a remote
data source).

Configuring the State of an Exception
Currently, the System.Exception object configured within the Accelerate() method simply estab-
lishes a value exposed to the Message property (via a constructor parameter). As shown in Table 6-1,
however, the Exception class also supplies a number of additional members (TargetSite, StackTrace,
HelpLink, and Data) that can be useful in further qualifying the nature of the problem. To spruce up
our current example, let’s examine further details of these members on a case-by-case basis.

The TargetSite Property
The System.Exception.TargetSite property allows you to determine various details about the method
that threw a given exception. As shown in the previous Main()method, printing the value of TargetSetwill
display the return value, name, and parameters of the method that threw the exception. However, Target-
Sitedoes not simply return a vanilla-flavored string, but a strongly typed System.Reflection.MethodBase
object. This type can be used to gather numerous details regarding the offending method as well as the
class that defines the offending method. To illustrate, assume the previous catch logic has been updated
as follows:

static void Main(string[] args)
{
...

4193ch06.qxd 8/14/05 2:48 PM Page 204

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 205

Figure 6-3. Obtaining aspects of the target site

// TargetSite actually returns a MethodBase object.
catch(Exception e)
{

Console.WriteLine("\n*** Error! ***");
Console.WriteLine("Member name: {0}", e.TargetSite);
Console.WriteLine("Class defining member: {0}",

e.TargetSite.DeclaringType);
Console.WriteLine("Member type: {0}", e.TargetSite.MemberType);
Console.WriteLine("Message: {0}", e.Message);
Console.WriteLine("Source: {0}", e.Source);

}
Console.WriteLine("\n***** Out of exception logic *****");

myCar.Accelerate(10); // Will not speed up car.
Console.ReadLine();

}

This time, you make use of the MethodBase.DeclaringType property to determine the fully qualified
name of the class that threw the error (SimpleException.Car in this case) as well as the MemberType
property of the MethodBase object to identify the type of member (such as a property versus a method)
where this exception originated. Figure 6-3 shows the updated output.

The StackTrace Property
The System.Exception.StackTrace property allows you to identify the series of calls that resulted in
the exception. Be aware that you never set the value of StackTrace as it is established automatically at
the time the exception is created. To illustrate, assume you have once again updated your catch logic:

catch(Exception e)
{

...
Console.WriteLine("Stack: {0}", e.StackTrace);

}

If you were to run the program, you would find the following stack trace is printed to the console
(your line numbers and application folder may differ, of course):

Stack: at SimpleException.Car.Accelerate(Int32 delta)
in c:\myapps\exceptions\car.cs:line 65
at Exceptions.App.Main()
in c:\myapps\exceptions\app.cs:line 21

4193ch06.qxd 8/14/05 2:48 PM Page 205

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING206

The string returned from StackTrace documents the sequence of calls that resulted in the
throwing of this exception. Notice how the bottommost line number of this string identifies the first
call in the sequence, while the topmost line number identifies the exact location of the offending
member. Clearly, this information can be quite helpful during the debugging of a given application,
as you are able to “follow the flow” of the error’s origin.

The HelpLink Property
While the TargetSite and StackTrace properties allow programmers to gain an understanding of
a given exception, this information is of little use to the end user. As you have already seen, the
System.Exception.Message property can be used to obtain human-readable information that may
be displayed to the current user. In addition, the HelpLink property can be set to point the user to
a specific URL or standard Windows help file that contains more detailed information.

By default, the value managed by the HelpLink property is an empty string. If you wish to fill this
property with an interesting value, you will need to do so before throwing the System.Exception type.
Here are the relevant updates to the Car.Accelerate() method:

public void Accelerate(int delta)
{

if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{

currSpeed += delta;
if (currSpeed >= maxSpeed)
{

carIsDead = true;
currSpeed = 0;

// We need to call the HelpLink property, thus we need to
// create a local variable before throwing the Exception object.
Exception ex =

new Exception(string.Format("{0} has overheated!", petName));
ex.HelpLink = "http://www.CarsRUs.com";
throw ex;

}
else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed);
}

}

The catch logic could now be updated to print out this help link information as follows:

catch(Exception e)
{

...
Console.WriteLine("Help Link: {0}", e.HelpLink);

}

The Data Property
The Data property of System.Exception is new to .NET 2.0, and allows you to fill an exception object
with relevant user-supplied information (such as a time stamp or what have you). The Data property
returns an object implementing an interface named IDictionary, defined in the System.Collection
namespace. The next chapter examines the role of interface-based programming as well as the
System.Collections namespace. For the time being, just understand that dictionary collections allow

4193ch06.qxd 8/14/05 2:48 PM Page 206

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 207

you to create a set of values that are retrieved using a specific key value. Observe the next relevant
update to the Car.Accelerate() method:

public void Accelerate(int delta)
{

if (carIsDead)
Console.WriteLine("{0} is out of order...", petName);

else
{

currSpeed += delta;
if (currSpeed >= maxSpeed)
{

carIsDead = true;
currSpeed = 0;

// We need to call the HelpLink property, thus we need
// to create a local variable before throwing the Exception object.
Exception ex =

new Exception(string.Format("{0} has overheated!", petName));
ex.HelpLink = "http://www.CarsRUs.com";

// Stuff in custom data regarding the error.
ex.Data.Add("TimeStamp",

string.Format("The car exploded at {0}", DateTime.Now));
ex.Data.Add("Cause", "You have a lead foot.");
throw ex;

}
else

Console.WriteLine("=> CurrSpeed = {0}", currSpeed);
}

}

To successfully enumerate over the key/value pairs, you first must make sure to specify a using
directive for the System.Collection namespace, given we will make use of a DictionaryEntry type in
the file containing the class implementing your Main() method:

using System.Collections;

Next, we need to update the catch logic to test that the value returned from the Data property is
not null (the default setting). After this point, we make use of the Key and Value properties of the
DictionaryEntry type to print the custom user data to the console:

catch (Exception e)
{
...

// By default, the data field is empty, so check for null.
Console.WriteLine("\n-> Custom Data:");
if (e.Data != null)
{

foreach (DictionaryEntry de in e.Data)
Console.WriteLine("-> {0}: {1}", de.Key, de.Value);

}
}

With this, we would now find the update shown in Figure 6-4.

4193ch06.qxd 8/14/05 2:48 PM Page 207

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING208

■Source Code The SimpleException project is included under the Chapter 5 subdirectory.

System-Level Exceptions (System.
SystemException)
The .NET base class libraries define many classes derived from System.Exception. For example, the
System namespace defines core error objects such as ArgumentOutOfRangeException, IndexOutOfRange-
Exception, StackOverflowException, and so forth. Other namespaces define exceptions that reflect the
behavior of that namespace (e.g., System.Drawing.Printing defines printing exceptions, System.IO
defines IO-based exceptions, System.Data defines database-centric exceptions, and so forth).

Exceptions that are thrown by the CLR are (appropriately) called system exceptions. These
exceptions are regarded as nonrecoverable, fatal errors. System exceptions derive directly from
a base class named System.SystemException, which in turn derives from System.Exception (which
derives from System.Object):

public class SystemException : Exception
{

// Various constructors.
}

Given that the System.SystemException type does not add any additional functionality beyond a set
of constructors, you might wonder why SystemException exists in the first place. Simply put, when an
exception type derives from System.SystemException, you are able to determine that the .NET runtime is
the entity that has thrown the exception, rather than the code base of the executing application.

Application-Level Exceptions (System.
ApplicationException)
Given that all .NET exceptions are class types, you are free to create your own application-specific
exceptions. However, due to the fact that the System.SystemException base class represents exceptions
thrown from the CLR, you may naturally assume that you should derive your custom exceptions from
the System.Exception type. While you could do so, best practice dictates that you instead derive from
the System.ApplicationException type:

public class ApplicationException : Exception
{

// Various constructors.

Figure 6-4. Obtaining custom user-defined data

4193ch06.qxd 8/14/05 2:48 PM Page 208

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 209

Like SystemException, ApplicationException does not define any additional members beyond a set
of constructors. Functionally, the only purpose of System.ApplicationException is to identify the source
of the (nonfatal) error. When you handle an exception deriving from System.ApplicationException, you
can assume the exception was raised by the code base of the executing application, rather than by the
.NET base class libraries.

Building Custom Exceptions, Take One
While you can always throw instances of System.Exception to signal a runtime error (as shown in our
first example), it is sometimes advantageous to build a strongly typed exception that represents the
unique details of your current problem. For example, assume you wish to build a custom exception
(named CarIsDeadException) to represent the error of speeding up a doomed automobile. The first
step is to derive a new class from System.ApplicationException (by convention, all exception classes
end with the “Exception” suffix).

// This custom exception describes the details of the car-is-dead condition.
public class CarIsDeadException : ApplicationException
{}

Like any class, you are free to include any number of custom members that can be called within
the catch block of the calling logic. You are also free to override any virtual members defined by your
parent classes. For example, we could implement CarIsDeadException by overriding the virtual
Message property:

public class CarIsDeadException : ApplicationException
{

private string messageDetails;

public CarIsDeadException(){ }
public CarIsDeadException(string message)
{

messageDetails = message;
}

// Override the Exception.Message property.
public override string Message
{

get
{

return string.Format("Car Error Message: {0}", messageDetails);
}

}
}

Here, the CarIsDeadException type maintains a private data member (messageDetails) that
represents data regarding the current exception, which can be set using a custom constructor.
Throwing this error from the Accelerate() is straightforward. Simply allocate, configure, and throw
a CarIsDeadException type rather than a generic System.Exception:

// Throw the custom CarIsDeadException.
public void Accelerate(int delta)
{
...

CarIsDeadException ex =
new CarIsDeadException(string.Format("{0} has overheated!", petName));

ex.HelpLink = "http://www.CarsRUs.com";
ex.Data.Add("TimeStamp",

4193ch06.qxd 8/14/05 2:48 PM Page 209

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING210

string.Format("The car exploded at {0}", DateTime.Now));
ex.Data.Add("Cause", "You have a lead foot.");
throw ex;

...
}

To catch this incoming exception explicitly, your catch scope can now be updated to catch
a specific CarIsDeadException type (however, given that CarIsDeadException “is-a” System.Exception,
it is still permissible to catch a generic System.Exception as well):

static void Main(string[] args)
{
...

catch(CarIsDeadException e)
{

// Process incoming exception.
}

...
}

So, now that you understand the basic process of building a custom exception, you may wonder
when you are required to do so. Typically, you only need to create custom exceptions when the error
is tightly bound to the class issuing the error (for example, a custom File class that throws a number
of file-related errors, a Car class that throws a number of car-related errors, and so forth). In doing so,
you provide the caller with the ability to handle numerous exceptions on an error-by-error basis.

Building Custom Exceptions, Take Two
The current CarIsDeadException type has overridden the System.Exception.Message property in
order to configure a custom error message. However, we can simplify our programming tasks if we
set the parent’s Message property via an incoming constructor parameter. By doing so, we have no
need to write anything other than the following:

public class CarIsDeadException : ApplicationException
{

public CarIsDeadException(){ }
public CarIsDeadException(string message)

: base(message){ }
}

Notice that this time you have not defined a string variable to represent the message, and have not
overridden the Message property. Rather, you are simply passing the parameter to your base class con-
structor. With this design, a custom exception class is little more than a uniquely named class deriving
from System.ApplicationException, devoid of any member variables (or base class overrides).

Don’t be surprised if most (if not all) of your custom exception classes follow this simple pattern.
Many times, the role of a custom exception is not necessarily to provide additional functionality
beyond what is inherited from the base classes, but to provide a strongly named type that clearly
identifies the nature of the error.

Building Custom Exceptions, Take Three
If you wish to build a truly prim-and-proper custom exception class, you would want to make sure
your type adheres to the exception-centric .NET best practices. Specifically, this requires that your
custom exception:

4193ch06.qxd 8/14/05 2:48 PM Page 210

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 211

• Derives from Exception/ApplicationException

• Is marked with the [System.Serializable] attribute

• Defines a default constructor

• Defines a constructor that sets the inherited Message property

• Defines a constructor to handle “inner exceptions”

• Defines a constructor to handle the serialization of your type

Now, based on your current background with .NET, you may have no idea regarding the role of
attributes or object serialization, which is just fine. I’ll address these topics at this point later in the
text. However, to finalize our examination of building custom exceptions, here is the final iteration
of CarIsDeadException:

[Serializable]
public class CarIsDeadException : ApplicationException
{

public CarIsDeadException() { }
public CarIsDeadException(string message) : base(message) { }
public CarIsDeadException(string message,

System.Exception inner) : base(message, inner) { }
protected CarIsDeadException(

System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

: base(info, context) { }
}

Given that building custom exceptions that adhere to .NET best practices really only differ by
their name, you will be happy to know that Visual Studio 2005 provides a code snippet template
named “Exception” (see Figure 6-5), which will autogenerate a new exception class that adheres to
.NET best practices (see Chapter 2 for an explanation of code snippet templates).

Figure 6-5. The Exception code snippet template

4193ch06.qxd 8/14/05 2:48 PM Page 211

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING212

Processing Multiple Exceptions
In its simplest form, a try block has a single catch block. In reality, you often run into a situation
where the statements within a try block could trigger numerous possible exceptions. For exam-
ple, assume the car’s Accelerate() method also throws a base-class-library predefined
ArgumentOutOfRangeException if you pass an invalid parameter (which we will assume is any
value less than zero):

// Test for invalid argument before proceeding.
public void Accelerate(int delta)
{

if(delta < 0)
throw new ArgumentOutOfRangeException("Speed must be greater than zero!");

...
}

The catch logic could now specifically respond to each type of exception:

static void Main(string[] args)
{
...

// Here, we are on the lookout for multiple exceptions.
try
{

for(int i = 0; i < 10; i++)
myCar.Accelerate(10);

}
catch(CarIsDeadException e)
{

// Process CarIsDeadException.
}
catch(ArgumentOutOfRangeException e)
{

// Process ArgumentOutOfRangeException.
}

...
}

When you are authoring multiple catch blocks, you must be aware that when an exception is
thrown, it will be processed by the “first available” catch. To illustrate exactly what the “first available”
catch means, assume you retrofitted the previous logic with an addition catch scope that attempts to
handle all exceptions beyond CarIsDeadException and ArgumentOutOfRangeException by catching
a generic System.Exception as follows:

// This code will not compile!
static void Main(string[] args)
{
...

try
{

for(int i = 0; i < 10; i++)
myCar.Accelerate(10);

}
catch(Exception e)
{

// Process all other exceptions?
}
catch(CarIsDeadException e)
{

4193ch06.qxd 8/14/05 2:48 PM Page 212

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 213

// Process CarIsDeadException.
}
catch(ArgumentOutOfRangeException e)
{

// Process ArgumentOutOfRangeException.
}

...
}

This exception handling logic generates compile-time errors. The problem is due to the fact that
the first catch block can handle anything derived from System.Exception (given the “is-a” relationship),
including the CarIsDeadException and ArgumentOutOfRangeException types. Therefore, the final two
catch blocks are unreachable!

The rule of thumb to keep in mind is to make sure your catch blocks are structured such that
the very first catch is the most specific exception (i.e., the most derived type in an exception type
inheritance chain), leaving the final catch for the most general (i.e., the base class of a given excep-
tion inheritance chain, in this case System.Exception).

Thus, if you wish to define a catch statement that will handle any errors beyond CarIsDeadException
and ArgumentOutOfRangeException, you would write the following:

// This code compiles just fine.
static void Main(string[] args)
{
...

try
{

for(int i = 0; i < 10; i++)
myCar.Accelerate(10);

}
catch(CarIsDeadException e)
{

// Process CarIsDeadException.
}
catch(ArgumentOutOfRangeException e)
{

// Process ArgumentOutOfRangeException.
}
catch(Exception e)
{

// This will now handle all other possible exceptions
// thrown from statements within the try scope.

}
...
}

Generic catch Statements
C# also supports a “generic” catch scope that does not explicitly receive the exception object thrown
by a given member:

// A generic catch.
static void Main(string[] args)
{
...

try
{

4193ch06.qxd 8/14/05 2:48 PM Page 213

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING214

for(int i = 0; i < 10; i++)
myCar.Accelerate(10);

}
catch
{

Console.WriteLine("Something bad happened...");
}

...
}

Obviously, this is not the most informative way to handle exceptions, given that you have no
way to obtain meaningful data about the error that occurred (such as the method name, call stack,
or custom message). Nevertheless, C# does allow for such a construct.

Rethrowing Exceptions
Be aware that it is permissible for logic in a try block to rethrow an exception up the call stack to the
previous caller. To do so, simply make use of the throw keyword within a catch block. This passes the
exception up the chain of calling logic, which can be helpful if your catch block is only able to partially
handle the error at hand:

// Passing the buck.
static void Main(string[] args)
{
...

try
{

// Speed up car logic...
}
catch(CarIsDeadException e)
{

// Do any partial processing of this error and pass the buck.
// Here, we are rethrowing the incoming CarIsDeadException object.
// However, you are also free to throw a different exception if need be.
throw e;

}
...
}

Be aware that in this example code, the ultimate receiver of CarIsDeadException is the CLR, given
that it is the Main() method rethrowing the exception. Given this point, your end user is presenting
with a system-supplied error dialog box. Typically, you would only rethrow a partial handled exception
to a caller that has the ability to handle the incoming exception more gracefully.

Inner Exceptions
As you may suspect, it is entirely possible to trigger an exception at the time you are handling another
exception. For example, assume that you are handing a CarIsDeadException within a particular
catch scope, and during the process you attempt to record the stack trace to a file on your C drive
named carErrors.txt:

catch(CarIsDeadException e)
{

// Attempt to open a file named carErrors.txt on the C drive.
FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);
...

}

4193ch06.qxd 8/14/05 2:48 PM Page 214

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 215

Now, if the specified file is not located on your C drive, the call to File.Open() results in
a FileNotFoundException! Later in this text, you will learn all about the System.IO namespace where
you will discover how to programmatically determine if a file exists on the hard drive before attempt-
ing to open the file in the first place (thereby avoiding the exception altogether). However, to keep
focused on the topic of exceptions, assume the exception has been raised.

When you encounter an exception while processing another exception, best practice states
that you should record the new exception object as an “inner exception” within a new object of the
same type as the initial exception (that was a mouthful). The reason we need to allocate a new
object of the exception being handled is that the only way to document an inner exception is via
a constructor parameter. Consider the following code:

catch (CarIsDeadException e)
{

try
{

FileStream fs = File.Open(@"C:\carErrors.txt", FileMode.Open);
...

}
catch (Exception e2)
{

// Throw a exception that records the new exception,
// as well as the message of the first exception.
throw new CarIsDeadException(e.Message, e2);

}
}

Notice in this case, we have passed in the FileNotFoundException object as the second parameter
to the CarIsDeadException constructor. Once we have configured this new object, we throw it up the
call stack to the next caller, which in this case would be the Main() method.

Given that there is no “next caller” after Main() to catch the exception, we would be again presented
with an error dialog box. Much like the act of rethrowing an exception, recording inner exceptions is
usually only useful when the caller has the ability to gracefully catch the exception in the first place.
If this is the case, the caller’s catch logic can make use of the InnerException property to extract the
details of the inner exception object.

The Finally Block
A try/catch scope may also define an optional finally block. The motivation behind a finally block
is to ensure that a set of code statements will always execute, exception (of any type) or not. To illus-
trate, assume you wish to always power down the car’s radio before exiting Main(), regardless of any
handled exception:

static void Main(string[] args)
{
...

Car myCar = new Car("Zippy", 20);
myCar.CrankTunes(true);

try
{

// Speed up car logic.
}
catch(CarIsDeadException e)
{

// Process CarIsDeadException.
}

4193ch06.qxd 8/14/05 2:48 PM Page 215

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING216

Figure 6-6. Identifying the exceptions thrown from a given method

catch(ArgumentOutOfRangeException e)
{

// Process ArgumentOutOfRangeException.
}
catch(Exception e)
{

// Process any other Exception.
}
finally
{

// This will always occur. Exception or not.
myCar.CrankTunes(false);

}
...
}

If you did not include a finally block, the radio would not be turned off if an exception is encoun-
tered (which may or may not be problematic). In a more real-world scenario, when you need to dispose
of objects, close a file, detach from a database (or whatever), a finally block ensures a location for
proper cleanup.

Who Is Throwing What?
Given that a method in the .NET Framework could throw any number of exceptions (under various
circumstances), a logical question would be “How do I know which exceptions may be thrown by
a given base class library method?” The ultimate answer is simple: Consult the .NET Framework 2.0
SDK documentation. Each method in the help system documents the exceptions a given member
may throw. As a quick alternative, Visual Studio 2005 allows you to view the list of all exceptions thrown
by a base class library member (if any) simply by hovering your mouse cursor over the member name
in the code window (see Figure 6-6).

4193ch06.qxd 8/14/05 2:48 PM Page 216

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 217

For those coming to .NET from a Java background, understand that type members are not
prototyped with the set of exceptions it may throw (in other words, .NET does not support typed
exceptions). Given this, you are not required to handle each and every exception thrown from
a given member. In many cases, you can handle all possible errors thrown from a set scope by catch-
ing a single System.Exception:

static void Main(string[] args)
{

try
{

File.Open("IDontExist.txt", FileMode.Open);
}
catch(Exception ex)
{

Console.WriteLine(ex.Message);
}

}

However, if you do wish to handle specific exceptions uniquely, just make use of multiple catch
blocks as shown throughout this chapter.

The Result of Unhandled Exception
At this point, you might be wondering what would happen if you do not handle an exception thrown
your direction. Assume that the logic in Main() increases the speed of the Car object beyond the
maximum speed, without the benefit of try/catch logic. The result of ignoring an exception would
be highly obstructive to the end user of your application, as an “unhandled exception” dialog box is
displayed. On a machine where .NET debugging tools are installed, you would see something simi-
lar to Figure 6-7 (a nondevelopment machine would display a similar intrusive dialog box).

■Source Code The CustomException project is included under the Chapter 5 subdirectory.

Figure 6-7. The result of not dealing with exceptions

4193ch06.qxd 8/14/05 2:48 PM Page 217

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING218

Figure 6-8. Debugging unhandled custom exceptions with Visual Studio 2005

Figure 6-9. Debugging unhandled custom exceptions with Visual Studio 2005

Debugging Unhandled Exceptions Using Visual
Studio 2005
To wrap things up, do be aware that Visual Studio 2005 provides a number of tools that help you
debug unhandled custom exceptions. Again, assume you have increased the speed of a Car object
beyond the maximum. If you were to start a debugging session (using the Debug ➤ Start menu
selection), Visual Studio automatically breaks at the time the uncaught exception is thrown. Better
yet, you are presented with a window (see Figure 6-8) displaying the value of the Message property.

If you click the View Detail link, you will find the details regarding the state of the object (see
Figure 6-9).

4193ch06.qxd 8/14/05 2:48 PM Page 218

CHAPTER 6 ■ UNDERSTANDING STRUCTURED EXCEPTION HANDLING 219

■Note If you fail to handle an exception thrown by a method in the .NET base class libraries, the Visual Studio 2005
debugger breaks at the statement that called the offending method.

Summary
In this chapter, you examined the role of structured exception handling. When a method needs to
send an error object to the caller, it will allocate, configure, and throw a specific System.Exception
derived type via the C# throw keyword. The caller is able to handle any possible incoming exceptions
using the C# catch keyword and an optional finally scope.

When you are creating your own custom exceptions, you ultimately create a class type deriving
from System.ApplicationException, which denotes an exception thrown from the currently executing
application. In contrast, error objects deriving from System.SystemException represent critical (and
fatal) errors thrown by the CLR. Last but not least, this chapter illustrated various tools within Visual
Studio 2005 that can be used to create custom exceptions (according to .NET best practices) as well
as debug exceptions.

4193ch06.qxd 8/14/05 2:48 PM Page 219

4193ch06.qxd 8/14/05 2:48 PM Page 220

Interfaces and Collections

This chapter builds on your current understanding of object-oriented development by examining
the topic of interface-based programming. Here you learn how to use C# to define and implement
interfaces, and come to understand the benefits of building types that support “multiple behaviors.”
Along the way, a number of related topics are also discussed, such as obtaining interface references,
explicit interface implementation, and the construction of interface hierarchies.

The remainder of this chapter is spent examining a number of interfaces defined within the
.NET base class libraries. As you will see, your custom types are free to implement these predefined
interfaces to support a number of advanced behaviors such as object cloning, object enumeration,
and object sorting.

To showcase how interfaces are leveraged in the .NET base class libraries, this chapter will also
examine numerous predefined interfaces implemented by various collection classes (ArrayList,
Stack, etc.) defined by the System.Collections namespace. The information presented here will
equip you to understand the topic of Chapter 10, .NET generics and the System.Collections.Generic
namespace.

Defining Interfaces in C#
To begin this chapter, allow me to provide a formal definition of the “interface” type. An interface is
nothing more than a named collection of semantically related abstract members. The specific mem-
bers defined by an interface depend on the exact behavior it is modeling. Yes, it’s true. An interface
expresses a behavior that a given class or structure may choose to support.

At a syntactic level, an interface is defined using the C# interface keyword. Unlike other .NET
types, interfaces never specify a base class (not even System.Object) and contain members that do
not take an access modifier (as all interface members are implicitly public). To get the ball rolling,
here is a custom interface defined in C#:

// This interface defines the behavior of "having points."
public interface IPointy
{

// Implicitly public and abstract.
byte GetNumberOfPoints();

}

■Note By convention, interfaces in the .NET base class libraries are prefixed with a capital letter “I.” When you are
creating your own custom interfaces, it is considered a best practice to do the same.

221

C H A P T E R 7

■ ■ ■

4193ch07.qxd 8/14/05 3:14 PM Page 221

CHAPTER 7 ■ INTERFACES AND COLLECTIONS222

As you can see, the IPointy interface defines a single method. However, .NET interface types
are also able to define any number of properties. For example, you could create the IPointy interface
to use a read-only property rather than a traditional accessor method:

// The pointy behavior as a read-only property.
public interface IPointy
{

byte Points{get;}
}

Do understand that interface types are quite useless on their own, as they are nothing more
than a named collection of abstract members. Given this, you cannot allocate interface types as you
would a class or structure:

// Ack! Illegal to "new" interface types.
static void Main(string[] args)
{

IPointy p = new IPointy(); // Compiler error!
}

Interfaces do not bring much to the table until they are implemented by a class or structure. Here,
IPointy is an interface that expresses the behavior of “having points.” As you can tell, this behavior
might be useful in the shapes hierarchy developed in Chapter 4. The idea is simple: Some classes in
the Shapes hierarchy have points (such as the Hexagon), while others (such as the Circle) do not. If
you configure Hexagon and Triangle to implement the IPointy interface, you can safely assume that
each class now supports a common behavior, and therefore a common set of members.

Implementing an Interface in C#
When a class (or structure) chooses to extend its functionality by supporting interface types, it does
so using a comma-delimited list in the type definition. Be aware that the direct base class must be
the first item listed after the colon operator. When your class type derives directly from System.Object,
you are free to simply list the interface(s) supported by the class, as the C# compiler will extend your
types from System.Object if you do not say otherwise. On a related note, given that structures always
derive from System.ValueType (see Chapter 3), simply list each interface directly after the structure
definition. Ponder the following examples:

// This class derives from System.Object and
// implements a single interface.
public class SomeClass : ISomeInterface
{...}

// This class also derives from System.Object
// and implements a single interface.
public class MyClass : object, ISomeInterface
{...}

// This class derives from a custom base class
// and implements a single interface.
public class AnotherClass : MyBaseClass, ISomeInterface
{...}

// This struct derives from System.ValueType and
// implements two interfaces.
public struct SomeStruct : ISomeInterface, IPointy
{...}

4193ch07.qxd 8/14/05 3:14 PM Page 222

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 223

Figure 7-1. The Shapes hierarchy (now with interfaces)

Understand that implementing an interface is an all-or-nothing proposition. The supporting
type is not able to selectively choose which members it will implement. Given that the IPointy
interface defines a single property, this is not too much of a burden. However, if you are implement-
ing an interface that defines ten members, the type is now responsible for fleshing out the details of
the ten abstract entities.

In any case, here is the implementation of the updated shapes hierarchy (note the new Triangle
class type):

// Hexagon now implements IPointy.
public class Hexagon : Shape, IPointy
{

public Hexagon(){ }
public Hexagon(string name) : base(name){ }
public override void Draw()
{ Console.WriteLine("Drawing {0} the Hexagon", PetName); }

// IPointy Implementation.
public byte Points
{

get { return 6; }
}

}

// New Shape derived class named Triangle.
public class Triangle : Shape, IPointy
{

public Triangle() { }
public Triangle(string name) : base(name) { }
public override void Draw()
{ Console.WriteLine("Drawing {0} the Triangle", PetName); }

// IPointy Implementation.
public byte Points
{

get { return 3; }
}

}

Each class now returns its number of points to the caller when asked to do so. To sum up the
story so far, the Visual Studio 2005 class diagram shown in Figure 7-1 illustrates IPointy-compatible
classes using the popular “lollipop” notation.

4193ch07.qxd 8/14/05 3:14 PM Page 223

CHAPTER 7 ■ INTERFACES AND COLLECTIONS224

Contrasting Interfaces to Abstract Base Classes
Given your work in Chapter 4, you may be wondering what the point of interface types are in the
first place. After all, C# already allows you to build abstract class types containing abstract methods.
Like an interface, when a class derives from an abstract base class, it is also under obligation to flesh
out the details of the abstract methods (provided the derived class is not declared abstract as
well). However, abstract base classes do far more than define a group of abstract methods. They are
free to define public, private, and protected state data, as well as any number of concrete methods
that can be accessed by the subclasses.

Interfaces, on the other hand, are pure protocol. Interfaces never define state data and never
provide an implementation of the methods (if you try, you receive a compile-time error):

public interface IAmABadInterface
{

// Error, interfaces can't define data!
int myInt = 0;

// Error, only abstract members allowed!
void MyMethod()
{ Console.WriteLine("Eek!"); }

}

Interface types are also quite helpful given that C# (and .NET-aware languages in general) only
support single inheritance; the interface-based protocol allows a given type to support numerous
behaviors, while avoiding the issues that arise when deriving from extending multiple base classes.

Most importantly, interface-based programming provides yet another way to inject polymorphic
behavior into a system. If multiple classes (or structures) implement the same interface in their
unique ways, you have the power to treat each type in the same manner. As you will see a bit later in
this chapter, interfaces are extremely polymorphic, given that types that are not related via classical
inheritance can support identical behaviors.

Invoking Interface Members at the Object Level
Now that you have a set of types that support the IPointy interface, the next question is how you
interact with the new functionality. The most straightforward way to interact with functionality sup-
plied by a given interface is to invoke the methods directly from the object level. For example:

static void Main(string[] args)
{

// Call new Points member defined by IPointy.
Hexagon hex = new Hexagon();
Console.WriteLine("Points: {0}", hex.Points);
Console.ReadLine();

}

This approach works fine in this particular case, given that you are well aware that the Hexagon
type has implemented the interface in question. Other times, however, you will not be able to deter-
mine at compile time which interfaces are supported by a given type. For example, assume you have
an array containing 50 Shape-compatible types, only some of which support IPointy. Obviously, if
you attempt to invoke the Points property on a type that has not implemented IPointy, you receive
a compile-time error. Next question: How can we dynamically determine the set of interfaces sup-
ported by a type?

The first way you can determine at runtime if a type supports a specific interface is to make use of
an explicit cast. If the type does not support the requested interface, you receive an InvalidCastException.
To handle this possibility gracefully, make use of structured exception handling, for example:

4193ch07.qxd 8/14/05 3:14 PM Page 224

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 225

static void Main(string[] args)
{
...

// Catch a possible InvalidCastException.
Circle c = new Circle("Lisa");
IPointy itfPt;
try
{

itfPt = (IPointy)c;
Console.WriteLine(itfPt.Points);

}
catch (InvalidCastException e)
{ Console.WriteLine(e.Message); }
Console.ReadLine();

}

While you could make use of try/catch logic and hope for the best, it would be ideal to determine
which interfaces are supported before invoking the interface members in the first place. Let’s see
two ways of doing so.

Obtaining Interface References: The as Keyword
The second way you can determine whether a given type supports an interface is to make use of the
as keyword, which was first introduced in Chapter 4. If the object can be treated as the specified
interface, you are returned a reference to the interface in question. If not, you receive a null reference:

static void Main(string[] args)
{
...

// Can we treat hex2 as IPointy?
Hexagon hex2 = new Hexagon("Peter");
IPointy itfPt2 = hex2 as IPointy;

if(itfPt2 != null)
Console.WriteLine("Points: {0}", itfPt2.Points);

else
Console.WriteLine("OOPS! Not pointy...");

}

Notice that when you make use of the as keyword, you have no need to make use of try/catch
logic, given that if the reference is not null, you know you are calling on a valid interface reference.

Obtaining Interface References: The is Keyword
You may also check for an implemented interface using the is keyword. If the object in question is
not compatible with the specified interface, you are returned the value false. On the other hand, if
the type is compatible with the interface in question, you can safely call the members without needing
to make use of try/catch logic.

To illustrate, assume we have updated the array of Shape types by including some members that
implement IPointy. Notice how we are able to determine which item in the array supports this interface
using the is keyword:

static void Main(string[] args)
{
...

Shape[] s = { new Hexagon(), new Circle(), new Triangle("Joe"),
new Circle("JoJo")} ;

4193ch07.qxd 8/14/05 3:14 PM Page 225

CHAPTER 7 ■ INTERFACES AND COLLECTIONS226

Figure 7-2. Dynamically determining implemented interfaces

for(int i = 0; i < s.Length; i++)
{

// Recall the Shape base class defines an abstract Draw()
// member, so all shapes know how to draw themselves.
s[i].Draw();

// Who's pointy?
if(s[i] is IPointy)

Console.WriteLine("-> Points: {0} ", ((IPointy)s[i]).Points);
else

Console.WriteLine("-> {0}\'s not pointy!", s[i].PetName);
}

}

The output follows in Figure 7-2.

Interfaces As Parameters
Given that interfaces are valid .NET types, you may construct methods that take interfaces as param-
eters. To illustrate, assume you have defined another interface named IDraw3D:

// Models the ability to render a type in stunning 3D.
public interface IDraw3D
{

void Draw3D();
}

Next, assume that two of your three shapes (Circle and Hexagon) have been configured to sup-
port this new behavior:

// Circle supports IDraw3D.
public class Circle : Shape, IDraw3D
{
...

public void Draw3D()
{ Console.WriteLine("Drawing Circle in 3D!"); }

}

// Hexagon supports IPointy and IDraw3D.
public class Hexagon : Shape, IPointy, IDraw3D
{
...

4193ch07.qxd 8/14/05 3:14 PM Page 226

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 227

Figure 7-3. The updated Shapes hierarchy

public void Draw3D()
{ Console.WriteLine("Drawing Hexagon in 3D!"); }

}

Figure 7-3 presents the updated Visual Studio 2005 class diagram.

If you now define a method taking an IDraw3D interface as a parameter, you are able to effectively
send in any object implementing IDraw3D (if you attempt to pass in a type not supporting the neces-
sary interface, you receive a compile-time error). Consider the following:

// Make some shapes. If they can be rendered in 3D, do it!
public class Program
{

// I'll draw anyone supporting IDraw3D.
public static void DrawIn3D(IDraw3D itf3d)
{

Console.WriteLine("-> Drawing IDraw3D compatible type");
itf3d.Draw3D();

}

static void Main()
{

Shape[] s = { new Hexagon(), new Circle(),
new Triangle(), new Circle("JoJo")} ;

for(int i = 0; i < s.Length; i++)
{

...
// Can I draw you in 3D?
if(s[i] is IDraw3D)

DrawIn3D((IDraw3D)s[i]);
}

}
}

Notice that the triangle is never drawn, as it is not IDraw3D-compatible (see Figure 7-4).

4193ch07.qxd 8/14/05 3:14 PM Page 227

CHAPTER 7 ■ INTERFACES AND COLLECTIONS228

Interfaces As Return Values
Interfaces can also be used as method return values. For example, you could write a method that
takes any System.Object, checks for IPointy compatibility, and returns a reference to the extracted
interface:

// This method tests for IPointy-compatibility and,
// if able, returns an interface reference.
static IPointy ExtractPointyness(object o)
{

if (o is IPointy)
return (IPointy)o;

else
return null;

}

We could interact with this method as follows:

static void Main(string[] args)
{

// Attempt to get IPointy from Car object.
Car myCar = new Car();
IPointy itfPt = ExtractPointyness(myCar);

if(itfPt != null)
Console.WriteLine("Object has {0} points.", itfPt.Points);

else
Console.WriteLine("This object does not implement IPointy");

}

Arrays of Interface Types
Understand that the same interface can be implemented by numerous types, even if they are not
within the same class hierarchy. This can yield some very powerful programming constructs. For
example, assume that you have developed a brand new class hierarchy modeling kitchen utensils
and another modeling gardening equipment.

Figure 7-4. Interfaces as parameters

4193ch07.qxd 8/14/05 3:14 PM Page 228

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 229

Although these hierarchies are completely unrelated from a classical inheritance point of view,
you can treat them polymorphically using interface-based programming. To illustrate, assume you
have an array of IPointy-compatible objects. Given that these members all support the same inter-
face, you are able to iterate through the array and treat each object as an IPointy-compatible object,
regardless of the overall diversity of the class hierarchies:

static void Main(string[] args)
{

// This array can only contain types that
// implement the IPointy interface.
IPointy[] myPointyObjects = {new Hexagon(), new Knife(),

new Triangle(), new Fork(), new PitchFork()};

for (int i = 0; i < myPointyObjects.Length; i++)
Console.WriteLine("Object has {0} points.", myPointyObjects[i].Points);

}

■Note Given the language-agonistic nature of .NET, understand that it is permissible to define an interface in
one language (C#) and implement it in another (VB .NET). To understand how this is possible requires an under-
standing of .NET assemblies, which is the topic of Chapter 11.

Understanding Explicit Interface Implementation
In our current definition of IDraw3D, we were forced to name its sole method Draw3D() in order to
avoid clashing with the abstract Draw() method defined in the Shape base class. While there is nothing
horribly wrong with this interface definition, a more natural method name would simply be Draw():

// Refactor method name from "Draw3D" to "Draw".
public interface IDraw3D
{

void Draw();
}

If we were to make such a change, this would require us to also update our implementation of
DrawIn3D().

public static void DrawIn3D(IDraw3D itf3d)
{

Console.WriteLine("-> Drawing IDraw3D compatible type");
itf3d.Draw();

}

Now, assume you have defined a new class named Line that derives from the abstract Shape
class and implements IDraw3D (both of which now define an identically named abstract Draw()
method):

// Problems? It depends...
public class Line : Shape, IDraw3D
{

public override void Draw()
{

Console.WriteLine("Drawing a line...");
}

}

4193ch07.qxd 8/14/05 3:14 PM Page 229

CHAPTER 7 ■ INTERFACES AND COLLECTIONS230

The Line class compiles without a hitch. But consider the following Main() logic:

static void Main(string[] args)
{
...

// Calls Draw().
Line myLine = new Line();
myLine.Draw();

// Calls same implementation of Draw()!
IDraw3D itfDraw3d= (IDraw3D) myLine;
itfDraw3d.Draw();

}

Given what you already know about the Shape base class and IDraw3D interface, it looks as if you
have called two variations of the Draw() method (one from the object level, the other from an interface
reference). Nevertheless, the compiler is happy to call the same implementation from an interface or
object reference, given that the Shape abstract base class and IDraw3D interface have an identically
named member. This would be problematic if you would like to have the IDraw3D.Draw() method
render a type in stunning 3D, while the overridden Shape.Draw() method draws in boring 2D.

Now consider a related problem. What if you wish to ensure that the methods defined by a given
interface are only accessible from an interface reference rather than an object reference? Currently,
the members defined by the IPointy interface can be accessed using either an object reference or an
IPointy reference.

The answer to both questions comes by way of explicit interface implementation. Using this tech-
nique, you are able to ensure that the object user can only access methods defined by a given interface
using the correct interface reference, as well as circumvent possible name clashes. To illustrate, here is
the updated Line class (assume you have updated Hexagon and Circle in a similar manner):

// Using explicit method implementation we are able
// to provide distinct Draw() implementations.
public class Line : Shape, IDraw3D
{

// You can only call this method from an IDraw3D interface reference.
void IDraw3D.Draw()
{ Console.WriteLine("Drawing a 3D line..."); }

// You can only call this at the object level.
public override void Draw()
{ Console.WriteLine("Drawing a line..."); }

}

As you can see, when explicitly implementing an interface member, the general pattern breaks
down to returnValue InterfaceName.MethodName(args). There are a few odds and ends to be aware
of when using explicit interface implementation. First and foremost, you cannot define the explicitly
implemented members with an access modifier. For example, the following is illegal syntax:

// Nope! Illegal.
public class Line : Shape, IDraw3D
{

public void IDraw3D.Draw() // <= Error!
{

Console.WriteLine("Drawing a 3D line...");
}

...
}

4193ch07.qxd 8/14/05 3:14 PM Page 230

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 231

This should make sense. The whole reason to use explicit interface method implementation is
to ensure that a given interface method is bound at the interface level. If you were to add the public
keyword, this would suggest that the method is a member of the public sector of the class, which
defeats the point! Given this design, the caller is only able to invoke the Draw() method defined by
the Shape base class from the object level:

// This invokes the overridden Shape.Draw() method.
Line myLine = new Line();
myLine.Draw();

To invoke the Draw() method defined by IDraw3D, we must now explicitly obtain the interface
reference using any of the techniques shown previously. For example:

// This triggers the IDraw3D.Draw() method.
Line myLine = new Line();
IDraw3D i3d = (IDraw3D)myLine;
i3d.Draw();

Resolving Name Clashes
Explicit interface implementation can also be very helpful whenever you are implementing a number
of interfaces that happen to contain identical members. For example, assume you wish to create
a class that implements all the following new interface types:

// Three interfaces each define identically named methods.
public interface IDraw
{

void Draw();
}

public interface IDrawToPrinter
{

void Draw();
}

If you wish to build a class named SuperImage that supports basic rendering (IDraw), 3D rendering
(IDraw3D), as well as printing services (IDrawToPrinter), the only way to provide unique implementa-
tions for each method is to use explicit interface implementation:

// Not deriving from Shape, but still injecting a name clash.
public class SuperImage : IDraw, IDrawToPrinter, IDraw3D
{

void IDraw.Draw()
{ /* Basic drawing logic. */ }

void IDrawToPrinter.Draw()
{ /* Printer logic. */ }

void IDraw3D.Draw()
{ /* 3D rendering logic. */ }

}

■Source Code The CustomInterface project is located under the Chapter 7 subdirectory.

4193ch07.qxd 8/14/05 3:14 PM Page 231

CHAPTER 7 ■ INTERFACES AND COLLECTIONS232

Building Interface Hierarchies
To continue our investigation of creating custom interfaces, let’s examine the topic of interface
hierarchies. Just as a class can serve as a base class to other classes (which can in turn function as
base classes to yet another class), it is possible to build inheritance relationships among interfaces.
As you might expect, the topmost interface defines a general behavior, while the most derived
interface defines more specific behaviors. To illustrate, ponder the following interface hierarchy:

// The base interface.
public interface IDrawable
{ void Draw();}

public interface IPrintable : IDrawable
{ void Print(); }

public interface IMetaFileRender : IPrintable
{ void Render(); }

Figure 7-5 illustrates the chain of inheritance.

Now, if a class wished to support each behavior expressed in this interface hierarchy, it would
derive from the nth-most interface (IMetaFileRender in this case). Any methods defined by the base
interface(s) are automatically carried into the definition. For example:

// This class supports IDrawable, IPrintable, and IMetaFileRender.
public class SuperImage : IMetaFileRender
{

public void Draw()
{ Console.WriteLine("Basic drawing logic."); }

public void Print()
{ Console.WriteLine("Draw to printer."); }

public void Render()
{ Console.WriteLine("Render to metafile."); }

}

Figure 7-5. An interface hierarchy

4193ch07.qxd 8/14/05 3:14 PM Page 232

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 233

Figure 7-6. Multiple inheritance of interface types is allowed by the CTS.

Here is some sample usage of exercising each interface from a SuperImage instance:

// Exercise the interfaces.
static void Main(string[] args)
{

SuperImage si = new SuperImage();

// Get IDrawable.
IDrawable itfDraw = (IDrawable)si;
itfDraw.Draw();

// Now get ImetaFileRender, which exposes all methods up
// the chain of inheritance.
if (itfDraw is IMetaFileRender)
{

IMetaFileRender itfMF = (IMetaFileRender)itfDraw;
itfMF.Render();
itfMF.Print();

}
Console.ReadLine();

}

Interfaces with Multiple Base Interfaces
As you build interface hierarchies, be aware that it is completely permissible to create an interface
that derives from multiple base interfaces. Recall, however, that it is not permissible to build a class
that derives from multiple base classes. To illustrate, assume you are building a new set of interfaces
that model the automobile behaviors for a particular English agent:

public interface ICar
{ void Drive(); }

public interface IUnderwaterCar
{ void Dive(); }

// Here we have an interface with TWO base interfaces.
public interface IJamesBondCar : ICar, IUnderwaterCar
{ void TurboBoost(); }

Figure 7-6 illustrates the chain of inheritance.

If you were to build a class that implements IJamesBondCar, you would now be responsible for
implementing TurboBoost(), Dive(), and Drive():

4193ch07.qxd 8/14/05 3:14 PM Page 233

CHAPTER 7 ■ INTERFACES AND COLLECTIONS234

public class JamesBondCar : IJamesBondCar
{

public void Drive(){ Console.WriteLine("Speeding up...");}
public void Dive(){ Console.WriteLine("Submerging...");}
public void TurboBoost(){ Console.WriteLine("Blast off!");}

}

This specialized automobile can now be manipulated as you would expect:

static void Main(string[] args)
{
...

JamesBondCar j = new JamesBondCar();
j.Drive();
j.TurboBoost();
j.Dive();

}

Implementing Interfaces Using Visual Studio 2005
Although interface-based programming is a very powerful programming technique, implementing
interfaces may entail a healthy amount of typing. Given that interfaces are a named set of abstract
members, you will be required to type in the stub code (and implementation) for each interface
method on each class that supports the behavior.

As you would hope, Visual Studio 2005 does support various tools that make the task of imple-
menting interfaces less burdensome. Assume you wish to implement the ICar interface on a new
class named MiniVan. You will notice when you complete typing the interface’s name (or when you
position the mouse cursor on the interface name in the code window), the first letter is underlined
(formally termed a “smart tag”). If you click the smart tag, you will be presented a drop-down list
that allows you to implement the interface explicitly or implicitly (see Figure 7-7).

Once you select options, you will see that Visual Studio 2005 has built generated stub code
(within a named code region) for you to update (note that the default implementation throws
a System.Exception).

namespace IFaceHierarchy
{

public class MiniVan : ICar
{

Figure 7-7. Implementing interfaces using Visual Studio 2005

4193ch07.qxd 8/14/05 3:14 PM Page 234

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 235

public MiniVan()
{
}

#region ICar Members
public void Drive()
{

new Exception("The method or operation is not implemented.");
}
#endregion

}
}

Now that you have drilled into the specifics of building and implementing custom interfaces,
the remainder of the chapter examines a number of predefined interfaces contained within the
.NET base class libraries.

■Source Code The IFaceHierarchy project is located under the Chapter 7 subdirectory.

Building Enumerable Types (IEnumerable and
IEnumerator)
To illustrate the process of implementing existing .NET interfaces, let’s first examine the role of
IEnumerable and IEnumerator. Assume you have developed a class named Garage that contains a set
of individual Car types (see Chapter 6) stored within a System.Array:

// Garage contains a set of Car objects.
public class Garage
{

private Car[] carArray;

// Fill with some Car objects upon startup.
public Garage()
{

carArray = new Car[4];
carArray[0] = new Car("Rusty", 30);
carArray[1] = new Car("Clunker", 55);
carArray[2] = new Car("Zippy", 30);
carArray[3] = new Car("Fred", 30);

}
}

Ideally, it would be convenient to iterate over the Garage object’s subitems using the C# foreach
construct:

// This seems reasonable...
public class Program
{

static void Main(string[] args)
{

Garage carLot = new Garage();

// Hand over each car in the collection?
foreach (Car c in carLot)
{

4193ch07.qxd 8/14/05 3:14 PM Page 235

CHAPTER 7 ■ INTERFACES AND COLLECTIONS236

Console.WriteLine("{0} is going {1} MPH",
c.PetName, c.CurrSpeed);

}
}

}

Sadly, the compiler informs you that the Garage class does not implement a method named
GetEnumerator(). This method is formalized by the IEnumerable interface, which is found lurking
within the System.Collections namespace. Objects that support this behavior advertise that they
are able to expose contained subitems to the caller:

// This interface informs the caller
// that the object's subitems can be enumerated.
public interface IEnumerable
{

IEnumerator GetEnumerator();
}

As you can see, the GetEnumerator() method returns a reference to yet another interface named
System.Collections.IEnumerator. This interface provides the infrastructure to allow the caller to tra-
verse the internal objects contained by the IEnumerable-compatible container:

// This interface allows the caller to
// obtain a container's subitems.
public interface IEnumerator
{

bool MoveNext (); // Advance the internal position of the cursor.
object Current { get;} // Get the current item (read-only property).
void Reset (); // Reset the cursor before the first member.

}

If you wish to update the Garage type to support these interfaces, you could take the long road
and implement each method manually. While you are certainly free to provide customized versions
of GetEnumerator(), MoveNext(), Current, and Reset(), there is a simpler way. As the System.Array
type (as well as many other types) already implements IEnumerable and IEnumerator, you can simply
delegate the request to the System.Array as follows:

using System.Collections;
...
public class Garage : IEnumerable
{

// System.Array already implements IEnumerator!
private Car[] carArray;

public Cars()
{

carArray = new Car[4];
carArray[0] = new Car("FeeFee", 200, 0);
carArray[1] = new Car("Clunker", 90, 0);
carArray[2] = new Car("Zippy", 30, 0);
carArray[3] = new Car("Fred", 30, 0);

}

public IEnumerator GetEnumerator()
{

// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}
}

4193ch07.qxd 8/14/05 3:14 PM Page 236

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 237

Once you have updated your Garage type, you can now safely use the type within the C# foreach
construct. Furthermore, given that the GetEnumerator() method has been defined publicly, the object
user could also interact with the IEnumerator type:

// Manually work with IEnumerator.
IEnumerator i = carLot.GetEnumerator();
i.MoveNext();
Car myCar = (Car)i.Current;
Console.WriteLine("{0} is going {1} MPH", myCar.PetName, myCar.CurrSpeed);

If you would prefer to hide the functionality of IEnumerable from the object level, simply make
use of explicit interface implementation:

public IEnumerator IEnumerable.GetEnumerator()
{

// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}

■Source Code The CustomEnumerator project is located under the Chapter 7 subdirectory.

Understanding C# Iterator Methods
Under .NET 1.x, if you wished to have your custom collections (such as Garage) support foreach like
enumeration, implementing the IEnumerable interface (and possibly the IEnumerator interface) was
mandatory. However, C# 2005 offers an alternative way to build types that work with the foreach
loop via iterators.

Simply put, an iterator is a member that specifies how a container’s internal items should be
returned when processed by foreach. While the iterator method must still be named GetEnumerator(),
and the return value must still be of type IEnumerator, your custom class does not need to imple-
ment any of the expected interfaces:

public class Garage // No longer implementing IEnumerator!
{

private Car[] carArray;
...
// Iterator method.
public IEnumerator GetEnumerator()
{

foreach (Car c in carArray)
{

yield return c;
}

}
}

Notice that this implementation of GetEnumerator() iterates over the subitems using internal
foreach logic and returns each Car to the caller using the new yield return syntax. The yield key-
word is used to specify the value (or values) to be returned to the caller’s foreach construct. When
the yield return statement is reached, the current location is stored, and execution is restarted
from this location the next time the iterator is called.

When the C# compiler encounters an iterator method, it will dynamically generate a nested
class within the scope of the defining type (Garage in this case). This autogenerated class imple-
ments the IEnumerable and IEnumerator interfaces on our behalf and fleshes out the details of the
GetEnumerator(), MoveNext(), Reset(), and Current members. If you were to load the current application

4193ch07.qxd 8/14/05 3:14 PM Page 237

CHAPTER 7 ■ INTERFACES AND COLLECTIONS238

into ildasm.exe, you would find that the Garage’s implementation of GetEnumerator() is making use
of this compiler-generated type (which happens to be named <GetEnumerator>d__0 in this example)
internally:

.method public hidebysig instance class
[mscorlib]System.Collections.IEnumerator
GetEnumerator() cil managed

{
...
newobj instance void
CustomEnumeratorWithYield.Garage/'<GetEnumerator>d__0'::.ctor(int32)

...
} // end of method Garage::GetEnumerator

Now, understand that because our current Garage type originally implemented GetEnumerator()
by delegating to the internal System.Array, we would not really gain much by defining an iterator
method as shown here. However, if you are building a more exotic custom container (such as
a binary tree) where you need to manually implement the IEnumerator and IEnumerable interfaces,
the C# iterator syntax can be a massive time-saver. In any case, the caller’s code is identical when
interacting with a type’s iterator method via foreach:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Iterator Methods *****\n");
Garage carLot = new Garage();
foreach (Car c in carLot)
{

Console.WriteLine("{0} is going {1} MPH", c.PetName, c.CurrSpeed);
}
Console.ReadLine();

}

■Source Code The CustomEnumeratorWithYield project is located under the Chapter 7 subdirectory.

Building Cloneable Objects (ICloneable)
As you recall from Chapter 3, System.Object defines a member named MemberwiseClone(). This method
is used to obtain a shallow copy of the current object. Object users do not call this method directly (as it
is protected); however, a given object may call this method itself during the cloning process. To illustrate,
assume you have a class named Point:

// A class named Point.
public class Point
{

// Public for easy access.
public int x, y;
public Point(int x, int y) { this.x = x; this.y = y;}
public Point(){}

// Override Object.ToString().
public override string ToString()
{ return string.Format("X = {0}; Y = {1}", x, y); }

}

4193ch07.qxd 8/14/05 3:14 PM Page 238

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 239

Given what you already know about reference types and value types (Chapter 3), you are aware
that if you assign one reference variable to another, you have two references pointing to the same
object in memory. Thus, the following assignment operation results in two references to the same
Point object on the heap; modifications using either reference affect the same object on the heap:

static void Main(string[] args)
{

// Two references to same object!
Point p1 = new Point(50, 50);
Point p2 = p1;
p2.x = 0;
Console.WriteLine(p1);
Console.WriteLine(p2);

}

When you wish to equip your custom types to support the ability to return an identical copy of
itself to the caller, you may implement the standard ICloneable interface. This type defines a single
method named Clone():

public interface ICloneable
{

object Clone();
}

Obviously, the implementation of the Clone() method varies between objects. However, the
basic functionality tends to be the same: Copy the values of your member variables into a new object
instance, and return it to the user. To illustrate, ponder the following update to the Point class:

// The Point now supports "clone-ability."
public class Point : ICloneable
{

public int x, y;
public Point(){ }
public Point(int x, int y) { this.x = x; this.y = y;}

// Return a copy of the current object.
public object Clone()
{ return new Point(this.x, this.y); }

public override string ToString()
{ return string.Format("X = {0}; Y = {1}", x, y); }

}

In this way, you can create exact stand-alone copies of the Point type, as illustrated by the fol-
lowing code:

static void Main(string[] args)
{

// Notice Clone() returns a generic object type.
// You must perform an explicit cast to obtain the derived type.
Point p3 = new Point(100, 100);
Point p4 = (Point)p3.Clone();

// Change p4.x (which will not change p3.x).
p4.x = 0;

// Print each object.
Console.WriteLine(p3);
Console.WriteLine(p4);

}

4193ch07.qxd 8/14/05 3:14 PM Page 239

CHAPTER 7 ■ INTERFACES AND COLLECTIONS240

While the current implementation of Point fits the bill, you can streamline things just a bit.
Because the Point type does not contain reference type variables, you could simplify the implemen-
tation of the Clone() method as follows:

public object Clone()
{

// Copy each field of the Point member by member.
return this.MemberwiseClone();

}

Be aware, however, that if the Point did contain any reference type member variables, Member-
wiseClone() will copy the references to those objects (aka a shallow copy). If you wish to support
a true deep copy, you will need to create a new instance of any reference type variables during the
cloning process. Let’s see an example.

A More Elaborate Cloning Example
Now assume the Point class contains a reference type member variable of type PointDescription.
This class maintains a point’s friendly name as well as an identification number expressed as
a System.Guid (if you don’t come from a COM background, know that a Globally Unique Identifier
[GUID] is a statistically unique 128-bit number). Here is the implementation:

// This class describes a point.
public class PointDescription
{

// Exposed publicly for simplicity.
public string petName;
public Guid pointID;

public PointDescription()
{

this.petName = "No-name";
pointID = Guid.NewGuid();

}
}

The initial updates to the Point class itself included modifying ToString() to account for these
new bits of state data, as well as defining and creating the PointDescription reference type. To allow
the outside world to establish a pet name for the Point, you also update the arguments passed into
the overloaded constructor:

public class Point : ICloneable
{

public int x, y;
public PointDescription desc = new PointDescription();

public Point(){}
public Point(int x, int y)
{

this.x = x; this.y = y;
}
public Point(int x, int y, string petname)
{

this.x = x;
this.y = y;
desc.petName = petname;

}

4193ch07.qxd 8/14/05 3:14 PM Page 240

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 241

Figure 7-8. MemberwiseClone() returns a shallow copy of the current object.

public object Clone()
{ return this.MemberwiseClone(); }

public override string ToString()
{

return string.Format("X = {0}; Y = {1}; Name = {2};\nID = {3}\n",
x, y, desc.petName, desc.pointID);

}
}

Notice that you did not yet update your Clone() method. Therefore, when the object user asks
for a clone using the current implementation, a shallow (member-by-member) copy is achieved. To
illustrate, assume you have updated Main() as follows:

static void Main(string[] args)
{

Console.WriteLine("Cloned p3 and stored new Point in p4");
Point p3 = new Point(100, 100, "Jane");
Point p4 = (Point)p3.Clone();

Console.WriteLine("Before modification:");
Console.WriteLine("p3: {0}", p3);
Console.WriteLine("p4: {0}", p4);
p4.desc.petName = "Mr. X";
p4.x = 9;

Console.WriteLine("\nChanged p4.desc.petName and p4.x");
Console.WriteLine("After modification:");
Console.WriteLine("p3: {0}", p3);
Console.WriteLine("p4: {0}", p4);

}

Figure 7-8 shows the output.

4193ch07.qxd 8/14/05 3:14 PM Page 241

CHAPTER 7 ■ INTERFACES AND COLLECTIONS242

Figure 7-9. Now you have a true deep copy of the object.

In order for your Clone() method to make a complete deep copy of the internal reference types,
you need to configure the object returned by MemberwiseClone() to account for the current point’s
name (the System.Guid type is in fact a structure, so the numerical data is indeed copied). Here is
one possible implementation:

// Now we need to adjust for the PointDescription member.
public object Clone()
{

Point newPoint = (Point)this.MemberwiseClone();
PointDescription currentDesc = new PointDescription();
currentDesc.petName = this.desc.petName;
newPoint.desc = currentDesc;
return newPoint;

}

If you rerun the application once again as shown in Figure 7-9, you see that the Point returned
from Clone() does copy its internal reference type member variables (note the pet name is now unique
for both p3 and p4).

To summarize the cloning process, if you have a class or structure that contains nothing but value
types, implement your Clone() method using MemberwiseClone(). However, if you have a custom type
that maintains other reference types, you need to establish a new type that takes into account each
reference type member variable.

■Source Code The CloneablePoint project is located under the Chapter 7 subdirectory.

Building Comparable Objects (IComparable)
The System.IComparable interface specifies a behavior that allows an object to be sorted based on
some specified key. Here is the formal definition:

// This interface allows an object to specify its
// relationship between other like objects.
public interface IComparable

4193ch07.qxd 8/14/05 3:14 PM Page 242

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 243

{
int CompareTo(object o);

}

Let’s assume you have updated the Car class to maintain an internal ID number (represented
by a simple integer named carID) that can be set via a constructor parameter and manipulated
using a new property named ID. Here are the relevant updates to the Car type:

public class Car
{
...

private int carID;
public int ID
{

get { return carID; }
set { carID = value; }

}
public Car(string name, int currSp, int id)
{

currSpeed = currSp;
petName = name;
carID = id;

}
...
}

Object users might create an array of Car types as follows:

static void Main(string[] args)
{

// Make an array of Car types.
Car[] myAutos = new Car[5];
myAutos[0] = new Car("Rusty", 80, 1);
myAutos[1] = new Car("Mary", 40, 234);
myAutos[2] = new Car("Viper", 40, 34);
myAutos[3] = new Car("Mel", 40, 4);
myAutos[4] = new Car("Chucky", 40, 5);

}

As you recall, the System.Array class defines a static method named Sort(). When you invoke
this method on an array of intrinsic types (int, short, string, etc.), you are able to sort the items in
the array in numerical/alphabetic order as these intrinsic data types implement IComparable. How-
ever, what if you were to send an array of Car types into the Sort() method as follows?

// Sort my cars?
Array.Sort(myAutos);

If you run this test, you would find that an ArgumentException exception is thrown by the runtime,
with the following message: “At least one object must implement IComparable.” When you build cus-
tom types, you can implement IComparable to allow arrays of your types to be sorted. When you flesh
out the details of CompareTo(), it will be up to you to decide what the baseline of the ordering operation
will be. For the Car type, the internal carID seems to be the most logical candidate:

// The iteration of the Car can be ordered
// based on the CarID.
public class Car : IComparable
{
...

// IComparable implementation.
int IComparable.CompareTo(object obj)

4193ch07.qxd 8/14/05 3:14 PM Page 243

CHAPTER 7 ■ INTERFACES AND COLLECTIONS244

{
Car temp = (Car)obj;
if(this.carID > temp.carID)

return 1;
if(this.carID < temp.carID)

return -1;
else

return 0;
}

}

As you can see, the logic behind CompareTo() is to test the incoming type against the current
instance based on a specific point of data. The return value of CompareTo() is used to discover if this
type is less than, greater than, or equal to the object it is being compared with (see Table 7-1).

Table 7-1. CompareTo() Return Values

CompareTo() Return Value Meaning in Life

Any number less than zero This instance comes before the specified object in the sort order.

Zero This instance is equal to the specified object.

Any number greater than zero This instance comes after the specified object in the sort order.

Now that your Car type understands how to compare itself to like objects, you can write the fol-
lowing user code:

// Exercise the IComparable interface.
static void Main(string[] args)
{

// Make an array of Car types.
...

// Dump current array.
Console.WriteLine("Here is the unordered set of cars:");
foreach(Car c in myAutos)

Console.WriteLine("{0} {1}", c.ID, c.PetName);

// Now, sort them using IComparable!
Array.Sort(myAutos);

// Dump sorted array.
Console.WriteLine("Here is the ordered set of cars:");
foreach(Car c in myAutos)

Console.WriteLine("{0} {1}", c.ID, c.PetName);
Console.ReadLine();

}

Figure 7-10 illustrates a test run.

4193ch07.qxd 8/14/05 3:14 PM Page 244

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 245

Figure 7-10. Comparing automobiles based on car ID

Specifying Multiple Sort Orders (IComparer)
In this version of the Car type, you made use of the car’s ID to function as the baseline of the sort
order. Another design might have used the pet name of the car as the basis of the sorting algorithm
(to list cars alphabetically). Now, what if you wanted to build a Car that could be sorted by ID as well
as by pet name? If this is the behavior you are interested in, you need to make friends with another
standard interface named IComparer, defined within the System.Collections namespace as follows:

// A generic way to compare two objects.
interface IComparer
{

int Compare(object o1, object o2);
}

Unlike the IComparable interface, IComparer is typically not implemented on the type you are
trying to sort (i.e., the Car). Rather, you implement this interface on any number of helper classes,
one for each sort order (pet name, car ID, etc.). Currently, the Car type already knows how to com-
pare itself against other cars based on the internal car ID. Therefore, to allow the object user to sort
an array of Car types by pet name will require an additional helper class that implements IComparer.
Here’s the code:

// This helper class is used to sort an array of Cars by pet name.
using System.Collections;

public class PetNameComparer : IComparer
{

public PetNameComparer(){ }

// Test the pet name of each object.
int IComparer.Compare(object o1, object o2)
{

Car t1 = (Car)o1;
Car t2 = (Car)o2;
return String.Compare(t1.PetName, t2.PetName);

}
}

4193ch07.qxd 8/14/05 3:14 PM Page 245

CHAPTER 7 ■ INTERFACES AND COLLECTIONS246

Figure 7-11. Sorting automobiles by pet name

The object user code is able to make use of this helper class. System.Array has a number of
overloaded Sort() methods, one that just happens to take an object implementing IComparer (see
Figure 7-11):

static void Main(string[] args)
{
...

// Now sort by pet name.
Array.Sort(myAutos, new PetNameComparer());

// Dump sorted array.
Console.WriteLine("Ordering by pet name:");
foreach(Car c in myAutos)

Console.WriteLine("{0} {1}", c.ID, c.PetName);
...
}

Custom Properties, Custom Sort Types
It is worth pointing out that you can make use of a custom static property in order to help the object
user along when sorting your Car types by a specific data point. Assume the Car class has added
a static read-only property named SortByPetName() that returns an instance of an object imple-
menting the IComparer interface (PetNameComparer, in this case):

// We now support a custom property to return
// the correct IComparer interface.
public class Car : IComparable
{

...
// Property to return the SortByPetName comparer.
public static IComparer SortByPetName
{ get { return (IComparer)new PetNameComparer(); } }

}

4193ch07.qxd 8/14/05 3:14 PM Page 246

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 247

The object user code can now sort by pet name using a strongly associated property, rather than
just “having to know” to use the stand-alone PetNameComparer class type:

// Sorting by pet name made a bit cleaner.
Array.Sort(myAutos, Car.SortByPetName);

■Source Code The ComparableCar project is located under the Chapter 7 subdirectory.

Hopefully at this point, you not only understand how to define and implement interface types,
but can understand their usefulness. To be sure, interfaces will be found within every major .NET
namespace. To wrap up this chapter, let’s check out the interfaces (and core classes) of the
System.Collections namespace.

The Interfaces of the System.Collections Namespace
The most primitive container construct would have to be our good friend System.Array. As you have
already seen in Chapter 3, this class provides a number of services (e.g., reversing, sorting, clearing,
and enumerating). However, the simple Array class has a number of limitations, most notably it
does not dynamically resize itself as you add or clear items. When you need to contain types in
a more flexible container, you may wish to leverage the types defined within the System.Collections
namespace (or as discussed in Chapter 10, the System.Collections.Generic namespace).

The System.Collections namespace defines a number of interfaces (some of which you have
already implemented during the course of this chapter). As you can guess, a majority of the collection
classes implement these interfaces to provide access to their contents. Table 7-2 gives a breakdown
of the core collection-centric interfaces.

Table 7-2. Interfaces of System.Collections

System.Collections Interface Meaning in Life

ICollection Defines generic characteristics (e.g., count and thread safety) for
a collection type.

IComparer Allows two objects to be compared.

IDictionary Allows an object to represent its contents using name/value pairs.

IDictionaryEnumerator Enumerates the contents of a type supporting IDictionary.

IEnumerable Returns the IEnumerator interface for a given object.

IEnumerator Generally supports foreach-style iteration of subtypes.

IHashCodeProvider Returns the hash code for the implementing type using
a customized hash algorithm.

IKeyComparer (This interface is new to .NET 2.0.) Combines the functionality
of IComparer and IHashCodeProvider to allow objects to be
compared in a “hash-code-compatible manner” (e.g., if the
objects are indeed equal, they must also return the same hash
code value).

IList Provides behavior to add, remove, and index items in a list of
objects. Also, this interface defines members to determine
whether the implementing collection type is read-only and/or
a fixed-size container.

4193ch07.qxd 8/14/05 3:37 PM Page 247

CHAPTER 7 ■ INTERFACES AND COLLECTIONS248

Figure 7-12. The System.Collections interface hierarchy

Many of these interfaces are related by an interface hierarchy, while others are stand-alone
entities. Figure 7-12 illustrates the relationship between each type (recall that it is permissible for
a single interface to derive from multiple interfaces).

The Role of ICollection
The ICollection interface is the most primitive interface of the System.Collections namespace in
that it defines a behavior supported by a collection type. In a nutshell, this interface provides
a small set of properties that allow you to determine (a) the number of items in the container,
(b) the thread safety of the container, as well as (c) the ability to copy the contents into a System.Array
type. Formally, ICollection is defined as follows (note that ICollection extends IEnumerable):

public interface ICollection : IEnumerable
{

// IEnumerable member...
int Count { get; }
bool IsSynchronized { get; }
object SyncRoot { get; }
void CopyTo(Array array, int index);

}

The Role of IDictionary
As you may already be aware, a dictionary is simply a collection that maintains a set of name/value
pairs. For example, you could build a custom type that implements IDictionary such that you can
store Car types (the values) that may be retrieved by ID or pet name (e.g., names). Given this function-
ality, you can see that the IDictionary interface defines a Keys and Values property as well as Add(),
Remove(), and Contains() methods. The individual items may be obtained by the type indexer. Here is
the formal definition:

public interface IDictionary :
ICollection, IEnumerable

{

4193ch07.qxd 8/14/05 3:14 PM Page 248

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 249

bool IsFixedSize { get; }
bool IsReadOnly { get; }
object this[object key] { get; set; }
ICollection Keys { get; }
ICollection Values { get; }
void Add(object key, object value);
void Clear();
bool Contains(object key);
IDictionaryEnumerator GetEnumerator();
void Remove(object key);

}

The Role of IDictionaryEnumerator
If you were paying attention, you may have noted that IDictionary.GetEnumerator() returns an
instance of the IDictionaryEnumerator type. IDictionaryEnumerator is simply a strongly typed
enumerator, given that it extends IEnumerator by adding the following functionality:

public interface IDictionaryEnumerator : IEnumerator
{

// IEnumerator methods...
DictionaryEntry Entry { get; }
object Key { get; }
object Value { get; }

}

Notice how IDictionaryEnumerator allows you to enumerate over items in the dictionary via the
generic Entry property, which returns a System.Collections.DictionaryEntry class type. In addition,
you are also able to traverse the name/value pairs using the Key/Value properties.

The Role of IList
The final key interface of System.Collections is IList, which provides the ability to insert, remove,
and index items into (or out of) a container:

public interface IList :
ICollection, IEnumerable

{
bool IsFixedSize { get; }
bool IsReadOnly { get; }
object this[int index] { get; set; }
int Add(object value);
void Clear();
bool Contains(object value);
int IndexOf(object value);
void Insert(int index, object value);
void Remove(object value);
void RemoveAt(int index);

}

The Class Types of System.Collections
As I hope you understand by this point in the chapter, interfaces by themselves are not very useful
until they are implemented by a given class or structure. Table 7-3 provides a rundown of the core
classes in the System.Collections namespace and the key interfaces they support.

4193ch07.qxd 8/14/05 3:14 PM Page 249

CHAPTER 7 ■ INTERFACES AND COLLECTIONS250

Table 7-3. Classes of System.Collections

System.Collections Class Meaning in Life Key Implemented Interfaces

ArrayList Represents a dynamically sized IList, ICollection,
array of objects. IEnumerable, and ICloneable

Hashtable Represents a collection of objects IDictionary, ICollection,
identified by a numerical key. IEnumerable, and ICloneable
Custom types stored in a Hashtable
should always override
System.Object.GetHashCode().

Queue Represents a standard first-in, ICollection, ICloneable, and
first-out (FIFO) queue. IEnumerable

SortedList Like a dictionary; however, the IDictionary, ICollection,
elements can also be accessed by IEnumerable, and ICloneable
ordinal position (e.g., index).

Stack A last-in, first-out (LIFO) queue ICollection, ICloneable, and
providing push and pop (and peek) IEnumerable
functionality.

In addition to these key types, System.Collections defines some minor players (at least in
terms of their day-to-day usefulness) such as BitArray, CaseInsensitiveComparer, and Case-
InsensitiveHashCodeProvider. Furthermore, this namespace also defines a small set of abstract
base classes (CollectionBase, ReadOnlyCollectionBase, and DictionaryBase) that can be used to
build strongly typed containers.

As you begin to experiment with the System.Collections types, you will find they all tend to
share common functionality (that’s the point of interface-based programming). Thus, rather than
listing out the members of each and every collection class, the next task of this chapter is to illustrate
how to interact with three common collection types: ArrayList, Queue, and Stack. Once you under-
stand the functionality of these types, gaining an understanding of the remaining collection classes
should naturally follow (especially since each of the types is fully documented within online help).

Working with the ArrayList Type
The ArrayList type is bound to be your most frequently used type in the System.Collections name-
space in that it allows you to dynamically resize the contents at your whim. To illustrate the basics of
this type, ponder the following code, which leverages the ArrayList to manipulate a set of Car objects:

static void Main(string[] args)
{

// Create ArrayList and fill with some initial values.
ArrayList carArList = new ArrayList();
carArList.AddRange(new Car[] { new Car("Fred", 90, 10),

new Car("Mary", 100, 50), new Car("MB", 190, 11)});
Console.WriteLine("Items in carArList: {0}", carArList.Count);

// Print out current values.
foreach(Car c in carArList)

Console.WriteLine("Car pet name: {0}", c.PetName);

// Insert a new item.
Console.WriteLine("\n->Inserting new Car.");
carArList.Insert(2, new Car("TheNewCar", 0, 12));
Console.WriteLine("Items in carArList: {0}", carArList.Count);

4193ch07.qxd 8/14/05 3:14 PM Page 250

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 251

Figure 7-13. Fun with System.Collections.ArrayList

// Get object array from ArrayList and print again.
object[] arrayOfCars = carArList.ToArray();
for(int i = 0; i < arrayOfCars.Length; i++)
{

Console.WriteLine("Car pet name: {0}",
((Car)arrayOfCars[i]).PetName);

}
}

Here you are making use of the AddRange() method to populate your ArrayList with a set of Car
types (as you can tell, this is basically a shorthand notation for calling Add() n number of times).
Once you print out the number of items in the collection (as well as enumerate over each item to
obtain the pet name), you invoke Insert(). As you can see, Insert() allows you to plug a new item
into the ArrayList at a specified index. Finally, notice the call to the ToArray() method, which returns
a generic array of System.Object types based on the contents of the original ArrayList. Figure 7-13
shows the output.

Working with the Queue Type
Queues are containers that ensure items are accessed using a first-in, first-out manner. Sadly, we
humans are subject to queues all day long: lines at the bank, lines at the movie theater, and lines at the
morning coffeehouse. When you are modeling a scenario in which items are handled on a first-come,
first-served basis, System.Collections.Queue is your type of choice. In addition to the functionality
provided by the supported interfaces, Queue defines the key members shown in Table 7-4.

Table 7-4. Members of the Queue Type

Member of System.Collection.Queue Meaning in Life

Dequeue() Removes and returns the object at the beginning of the
Queue

Enqueue() Adds an object to the end of the Queue

Peek() Returns the object at the beginning of the Queue without
removing it

4193ch07.qxd 8/14/05 3:14 PM Page 251

CHAPTER 7 ■ INTERFACES AND COLLECTIONS252

To illustrate these methods, we will leverage our automobile theme once again and build
a Queue object that simulates a line of cars waiting to enter a car wash. First, assume the following
static helper method:

public static void WashCar(Car c)
{

Console.WriteLine("Cleaning {0}", c.PetName);
}

Now, ponder the following code:

static void Main(string[] args)
{
...

// Make a Q with three items.
Queue carWashQ = new Queue();
carWashQ.Enqueue(new Car("FirstCar", 0, 1));
carWashQ.Enqueue(new Car("SecondCar", 0, 2));
carWashQ.Enqueue(new Car("ThirdCar", 0, 3));

// Peek at first car in Q.
Console.WriteLine("First in Q is {0}",

((Car)carWashQ.Peek()).PetName);

// Remove each item from Q.
WashCar((Car)carWashQ.Dequeue());
WashCar((Car)carWashQ.Dequeue());
WashCar((Car)carWashQ.Dequeue());

// Try to de-Q again?
try
{ WashCar((Car)carWashQ.Dequeue()); }
catch(Exception e)
{ Console.WriteLine("Error!! {0}", e.Message);}

}

Here, you insert three items into the Queue type via its Enqueue() method. The call to Peek()
allows you to view (but not remove) the first item currently in the Queue, which in this case is the car
named FirstCar. Finally, the call to Dequeue() removes the item from the line and sends it into the
WashCar() helper function for processing. Do note that if you attempt to remove items from an empty
queue, a runtime exception is thrown.

Working with the Stack Type
The System.Collections.Stack type represents a collection that maintains items using a last-in,
first-out manner. As you would expect, Stack defines a member named Push() and Pop() (to place
items onto or remove items from the stack). The following stack example makes use of the standard
System.String:

static void Main(string[] args)
{
...

Stack stringStack = new Stack();
stringStack.Push("One");
stringStack.Push("Two");
stringStack.Push("Three");

4193ch07.qxd 8/14/05 3:14 PM Page 252

CHAPTER 7 ■ INTERFACES AND COLLECTIONS 253

// Now look at the top item, pop it, and look again.
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());

try
{

Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());

}
catch(Exception e)
{ Console.WriteLine("Error!! {0}", e.Message);}

}

Here, you build a stack that contains three string types (named according to their order of inser-
tion). As you peek onto the stack, you will always see the item at the very top, and therefore the first
call to Peek() reveals the third string. After a series of Pop() and Peek() calls, the stack is eventually
empty, at which time additional Peek()/Pop() calls raise a system exception.

■Source Code The CollectionTypes project can be found under the Chapter 7 subdirectory.

System.Collections.Specialized Namespace
In addition to the types defined within the System.Collections namespace, you should also be
aware that the .NET base class libraries provide the System.Collections.Specialized namespace,
which defines another set of types that are more (pardon the redundancy) specialized. For example,
the StringDictionary and ListDictionary types each provide a stylized implementation of the
IDictionary interface. Table 7-5 documents the key class types.

Table 7-5. Types of the System.Collections.Specialized Namespace

Member of System.Collections.Specialized Meaning in Life

CollectionsUtil Creates collections that ignore the case in strings.

HybridDictionary Implements IDictionary by using
a ListDictionary while the collection is small,
and then switching to a Hashtable when the
collection gets large.

ListDictionary Implements IDictionary using a singly linked list.
Recommended for collections that typically
contain ten items or fewer.

NameValueCollection Represents a sorted collection of associated
String keys and String values that can be
accessed either with the key or with the index.

StringCollection Represents a collection of strings.

StringDictionary Implements a hashtable with the key strongly
typed to be a string rather than an object.

StringEnumerator Supports a simple iteration over a StringCollection.

4193ch07.qxd 8/14/05 3:14 PM Page 253

CHAPTER 7 ■ INTERFACES AND COLLECTIONS254

Summary
An interface can be defined as a named collection of abstract members. Because an interface does
not provide any implementation details, it is common to regard an interface as a behavior that may
be supported by a given type. When two or more classes implement the same interface, you are able
to treat each type the same way (aka interface-based polymorphism).

C# provides the interface keyword to allow you to define a new interface. As you have seen,
a type can support as many interfaces as necessary using a comma-delimited list. Furthermore, it is
permissible to build interfaces that derive from multiple base interfaces.

In addition to building your custom interfaces, the .NET libraries define a number of standard
(i.e., framework-supplied) interfaces. As you have seen, you are free to build custom types that
implement these predefined interfaces to gain a number of desirable traits such as cloning, sorting,
and enumerating. Finally, you spent some time investigating the stock collection classes defined
within the System.Collections namespace and examining a number of common interfaces used by
the collection-centric types.

4193ch07.qxd 8/14/05 3:14 PM Page 254

Callback Interfaces, Delegates, and
Events

Up to this point in the text, every application you have developed added various bits of code to
Main(), which, in some way or another, sent requests to a given object. However, you have not yet
examined how an object can talk back to the entity that created it. In most programs, it is quite com-
mon for objects in a system to engage in a two-way conversation through the use of callback interfaces,
events, and other programming constructs. To set the stage, this chapter begins by examining how
interface types may be used to enable callback functionality.

Next, you learn about the .NET delegate type, which is a type-safe object that “points to” other
method(s) that can be invoked at a later time. Unlike a traditional C++ function pointer, however,
.NET delegates are objects that have built-in support for multicasting and asynchronous method
invocation. We will examine the asynchronous behavior of delegate types later in this text during
our examination of the System.Threading namespace (see Chapter 14).

Once you learn how to create and manipulate delegate types, you then investigate the C# event
keyword, which simplifies and streamlines the process of working with delegate types. Finally, this
chapter examines new delegate-and-event-centric language features of C#, including anonymous
methods and method group conversions. As you will see, these techniques are shorthand notations
for capturing the target of a given event.

Understanding Callback Interfaces
As you have seen in the previous chapter, interfaces define a behavior that may be supported by
various types in your system. Beyond using interfaces to establish polymorphism, interfaces may
also be used as a callback mechanism. This technique enables objects to engage in a two-way
conversation using a common set of members.

To illustrate the use of callback interfaces, let’s update the now familiar Car type in such a way
that it is able to inform the caller when it is about to explode (the current speed is 10 miles below
the maximum speed) and has exploded (the current speed is at or above the maximum speed). The
ability to send and receive these events will be facilitated with a custom interface named IEngineEvents:

// The callback interface.
public interface IEngineEvents
{

void AboutToBlow(string msg);
void Exploded(string msg);

}

255

C H A P T E R 8

■ ■ ■

4193ch08.qxd 8/14/05 2:49 PM Page 255

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS256

Event interfaces are not typically implemented directly by the object directly interested in
receiving the events, but rather by a helper object called a sink object. The sender of the events (the
Car type in this case) will make calls on the sink under the appropriate circumstances. Assume the sink
class is called CarEventSink, which simply prints out the incoming messages to the console. Beyond
this point, our sink will also maintain a string that identifies its friendly name:

// Car event sink.
public class CarEventSink : IEngineEvents
{

private string name;
public CarEventSink(){}
public CarEventSink(string sinkName)
{ name = sinkName; }

public void AboutToBlow(string msg)
{ Console.WriteLine("{0} reporting: {1}", name, msg); }
public void Exploded(string msg)
{ Console.WriteLine("{0} reporting: {1}", name, msg); }

}

Now that you have a sink object that implements the event interface, your next task is to pass
a reference to this sink into the Car type. The Car holds onto the reference and makes calls back on
the sink when appropriate. In order to allow the Car to obtain a reference to the sink, we will need to
add a public helper member to the Car type that we will call Advise(). Likewise, if the caller wishes to
detach from the event source, it may call another helper method on the Car type named Unadvise().
Finally, in order to allow the caller to register multiple event sinks (for the purposes of multicasting),
the Car now maintains an ArrayList to represent each outstanding connection:

// This Car and caller can now communicate
// using the IEngineEvents interface.
public class Car
{

// The set of connected sinks.
ArrayList clientSinks = new ArrayList();

// Attach or disconnect from the source of events.
public void Advise(IEngineEvents sink)
{ clientSinks.Add(sink); }

public void Unadvise(IEngineEvents sink)
{ clientSinks.Remove(sink); }

...
}

To actually send the events, let’s update the Car.Accelerate() method to iterate over the list of
connections maintained by the ArrayList and fire the correct notification when appropriate (note the
Car class now maintains a Boolean member variable named carIsDead to represent the engine’s state):

// Interface-based event protocol!
class Car
{
...

// Is the car alive or dead?
bool carIsDead;

public void Accelerate(int delta)
{

4193ch08.qxd 8/14/05 2:49 PM Page 256

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 257

// If the car is 'dead', send Exploded event to each sink.
if(carIsDead)
{

foreach(IEngineEvents e in clientSinks)
e.Exploded("Sorry, this car is dead...");

}
else
{

currSpeed += delta;

// Send AboutToBlow event.
if(10 == maxSpeed - currSpeed)
{

foreach(IEngineEvents e in clientSinks)
e.AboutToBlow("Careful buddy! Gonna blow!");

}

if(currSpeed >= maxSpeed)
carIsDead = true;

else
Console.WriteLine("\tCurrSpeed = {0} ", currSpeed);

}
}

Here is some client-side code, now making use of a callback interface to listen to the Car events:

// Make a car and listen to the events.
public class CarApp
{

static void Main(string[] args)
{

Console.WriteLine("***** Interfaces as event enablers *****");
Car c1 = new Car("SlugBug", 100, 10);

// Make sink object.
CarEventSink sink = new CarEventSink();

// Pass the Car a reference to the sink.
c1.Advise(sink);

// Speed up (this will trigger the events).
for(int i = 0; i < 10; i++)

c1.Accelerate(20);

// Detach from event source.
c1.Unadvise(sink);
Console.ReadLine();

}
}

Figure 8-1 shows the end result of this interface-based event protocol.

4193ch08.qxd 8/14/05 2:49 PM Page 257

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS258

Figure 8-1. An interface-based event protocol

Do note that the Unadvise() method can be very helpful in that it allows the caller to selectively
detach from an event source at will. Here, you call Unadvise() before exiting Main(), although this is
not technically necessary. However, assume that the application now wishes to register two sinks,
dynamically remove a particular sink during the flow of execution, and continue processing the
program at large:

static void Main(string[] args)
{

Console.WriteLine("***** Interfaces as event enablers *****");
Car c1 = new Car("SlugBug", 100, 10);

// Make 2 sink objects.
Console.WriteLine("***** Creating sinks *****");
CarEventSink sink = new CarEventSink("First sink");
CarEventSink myOtherSink = new CarEventSink("Other sink");

// Hand sinks to Car.
Console.WriteLine("\n***** Sending 2 sinks into Car *****");
c1.Advise(sink);
c1.Advise(myOtherSink);

// Speed up (this will generate the events).
Console.WriteLine("\n***** Speeding up *****");
for(int i = 0; i < 10; i++)

c1.Accelerate(20);

// Detach first sink from events.
Console.WriteLine("\n***** Removing first sink *****");
c1.Unadvise(sink);

// Speed up again (only myOtherSink will be called).
Console.WriteLine("\n***** Speeding up again *****");
for(int i = 0; i < 10; i++)

c1.Accelerate(20);

// Detach other sink from events.
Console.WriteLine("\n***** Removing second sink *****");
c1.Unadvise(myOtherSink);
Console.ReadLine();

}

4193ch08.qxd 8/14/05 2:49 PM Page 258

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 259

Event interfaces can be helpful in that they can be used under any language or platform (.NET,
J2EE, or otherwise) that supports interface-based programming. However, as you may be suspecting,
the .NET platform defines an “official” event protocol. To understand this intrinsic event architecture,
we begin by examining the role of the delegate type.

■Source Code The EventInterface project is located under the Chapter 8 subdirectory.

Understanding the .NET Delegate Type
Before formally defining .NET delegates, let’s gain a bit of perspective. Historically speaking, the
Windows API makes frequent use of C-style function pointers to create entities termed callback
functions or simply callbacks. Using callbacks, programmers were able to configure one function to
report back to (call back) another function in the application.

The problem with standard C-style callback functions is that they represent little more than a raw
address in memory. Ideally, callbacks could be configured to include additional type-safe information
such as the number of (and types of) parameters and the return value (if any) of the method pointed
to. Sadly, this is not the case in traditional callback functions, and, as you may suspect, can therefore
be a frequent source of bugs, hard crashes, and other runtime disasters.

Nevertheless, callbacks are useful entities. In the .NET Framework, callbacks are still possible,
and their functionality is accomplished in a much safer and more object-oriented manner using
delegates. In essence, a delegate is a type-safe object that points to another method (or possibly
multiple methods) in the application, which can be invoked at a later time. Specifically speaking,
a delegate type maintains three important pieces of information:

• The name of the method on which it makes calls

• The arguments (if any) of this method

• The return value (if any) of this method

■Note Unlike C(++) function pointers, .NET delegates can point to either static or instance methods.

Once a delegate has been created and provided the aforementioned information, it may dynami-
cally invoke the method(s) it points to at runtime. As you will see, every delegate in the .NET Framework
(including your custom delegates) is automatically endowed with the ability to call their methods
synchronously or asynchronously. This fact greatly simplifies programming tasks, given that we can call
a method on a secondary thread of execution without manually creating and managing a Thread object.
We will examine the asynchronous behavior of delegate types during our investigation of the System.
Threading namespace in Chapter 14.

Defining a Delegate in C#
When you want to create a delegate in C#, you make use of the delegate keyword. The name of your
delegate can be whatever you desire. However, you must define the delegate to match the signature
of the method it will point to. For example, assume you wish to build a delegate named BinaryOp
that can point to any method that returns an integer and takes two integers as input parameters:

4193ch08.qxd 8/14/05 2:49 PM Page 259

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS260

Figure 8-2. The C# delegate keyword represents a sealed type deriving from System.MulticastDelegate.

// This delegate can point to any method,
// taking two integers and returning an
// integer.
public delegate int BinaryOp(int x, int y);

When the C# compiler processes delegate types, it automatically generates a sealed class deriv-
ing from System.MulticastDelegate. This class (in conjunction with its base class, System.Delegate)
provides the necessary infrastructure for the delegate to hold onto the list of methods to be invoked
at a later time. For example, if you examine the BinaryOp delegate using ildasm.exe, you would find
the items shown in Figure 8-2.

As you can see, the generated BinaryOp class defines three public methods. Invoke() is perhaps
the core method, as it is used to invoke each method maintained by the delegate type in a synchro-
nous manner, meaning the caller must wait for the call to complete before continuing on its way.
Strangely enough, the synchronous Invoke() method is not directly callable from C#. As you will see
in just a bit, Invoke() is called behind the scenes when you make use of the appropriate C# syntax.

BeginInvoke() and EndInvoke() provide the ability to call the current method asynchronously
on a second thread of execution. If you have a background in multithreading, you are aware that
one of the most common reason developers create secondary threads of execution is to invoke
methods that require time to complete. Although the .NET base class libraries provide an entire
namespace devoted to multithreaded programming (System.Threading), delegates provide this
functionality out of the box.

Now, how exactly does the compiler know how to define the Invoke(), BeginInvoke(), and
EndInvoke() methods? To understand the process, here is the crux of the generated BinaryOp class
type (bold marks the items specified by the defined delegate type):

sealed class BinaryOp : System.MulticastDelegate
{

public BinaryOp(object target, uint functionAddress);
public void Invoke(int x, int y);
public IAsyncResult BeginInvoke(int x, int y,

AsyncCallback cb, object state);
public int EndInvoke(IAsyncResult result);

}

4193ch08.qxd 8/14/05 2:49 PM Page 260

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 261

First, notice that the parameters and return value defined for the Invoke() method exactly
match the definition of the BinaryOp delegate. The initial parameters to BeginInvoke() members
(two integers in our case) are also based on the BinaryOp delegate; however, BeginInvoke() will
always provide two final parameters (of type AsyncCallback and object) that are used to facilitate
asynchronous method invocations. Finally, the return value of EndInvoke() is identical to the
original delegate declaration and will always take as a sole parameter an object implementing the
IAsyncResult interface.

Let’s see another example. Assume you have defined a delegate type that can point to any method
returning a string and receiving three System.Boolean input parameters:

public delegate string MyDelegate(bool a, bool b, bool c);

This time, the auto-generated class breaks down as follows:

sealed class MyDelegate : System.MulticastDelegate
{

public MyDelegate(object target, uint functionAddress);
public string Invoke(bool a, bool b, bool c);
public IAsyncResult BeginInvoke(bool a, bool b, bool c,

AsyncCallback cb, object state);
public string EndInvoke(IAsyncResult result);

}

Delegates can also “point to” methods that contain any number of out or ref parameters. For
example, assume the following delegate type:

public delegate string MyOtherDelegate(out bool a, ref bool b, int c);

The signatures of the Invoke() and BeginInvoke() methods look as you would expect; however,
check out the EndInvoke() method, which now includes the set of all out/ref arguments defined by
the delegate type:

sealed class MyOtherDelegate : System.MulticastDelegate
{

public MyOtherDelegate (object target, uint functionAddress);
public string Invoke(out bool a, ref bool b, int c);
public IAsyncResult BeginInvoke(out bool a, ref bool b, int c,

AsyncCallback cb, object state);
public string EndInvoke(out bool a, ref bool b, IAsyncResult result);

}

To summarize, a C# delegate definition results in a sealed class with three compiler-generated
methods whose parameter and return types are based on the delegate’s declaration. The following
pseudo-code approximates the basic pattern:

// This is only pseudo-code!
public sealed class DelegateName : System.MulticastDelegate
{

public DelegateName (object target, uint functionAddress);
public delegateReturnValue Invoke(allDelegateInputParams);
public IAsyncResult BeginInvoke(allDelegateInputRefAndOutParams,

AsyncCallback cb, object state);
public delegateReturnValue EndInvoke(allDelegateRefAndOutParams,

IAsyncResult result);
}

4193ch08.qxd 8/14/05 2:49 PM Page 261

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS262

The System.MulticastDelegate and System.
Delegate Base Classes
So, when you build a type using the C# delegate keyword, you indirectly declare a class type that
derives from System.MulticastDelegate. This class provides descendents with access to a list that
contains the addresses of the methods maintained by the delegate type, as well as several additional
methods (and a few overloaded operators) to interact with the invocation list. Here are some select
members of System.MulticastDelegate:

[Serializable]
public abstract class MulticastDelegate : Delegate
{

// Methods
public sealed override Delegate[] GetInvocationList();

// Overloaded operators
public static bool operator ==(MulticastDelegate d1, MulticastDelegate d2);
public static bool operator !=(MulticastDelegate d1, MulticastDelegate d2);

// Fields
private IntPtr _invocationCount;
private object _invocationList;

}

System.MulticastDelegate obtains additional functionality from its parent class, System.
Delegate. Here is a partial snapshot of the class definition:

[Serializable, ClassInterface(ClassInterfaceType.AutoDual)]
public abstract class Delegate : ICloneable, ISerializable
{

// Methods
public static Delegate Combine(params Delegate[] delegates);
public static Delegate Combine(Delegate a, Delegate b);
public virtual Delegate[] GetInvocationList();
public static Delegate Remove(Delegate source, Delegate value);
public static Delegate RemoveAll(Delegate source, Delegate value);

// Overloaded operators
public static bool operator ==(Delegate d1, Delegate d2);
public static bool operator !=(Delegate d1, Delegate d2);

// Properties
public MethodInfo Method { get; }
public object Target { get; }

}

Now, remember that you will never directly derive from these base classes and can typically
concern yourself only with the members documented in Table 8-1.

4193ch08.qxd 8/14/05 2:49 PM Page 262

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 263

Table 8-1. Select Members of System.MultcastDelegate/System.Delegate

Inherited Member Meaning in Life

Method This property returns a System.Reflection.MethodInfo type that
represents details of a static method that is maintained by the delegate.

Target If the method to be called is defined at the object level (rather than a static
method), Target returns the name of the method maintained by the delegate.
If the value returned from Target equals null, the method to be called is
a static member.

Combine() This static method adds a method to the list maintained by the delegate.
In C#, you trigger this method using the overloaded += operator as
a shorthand notation.

GetInvocationList() This method returns an array of System.Delegate types, each representing
a particular method that may be invoked.

Remove() These static methods removes a method (or all methods) from the
RemoveAll() invocation list. In C#, the Remove() method can be called indirectly using

the overloaded -= operator.

The Simplest Possible Delegate Example
Delegates can tend to cause a great deal of confusion when encountered for the first time. Thus, to
get the ball rolling, let’s take a look at a very simple example that leverages our BinaryOp delegate type.
Here is the complete code, with analysis to follow:

namespace SimpleDelegate
{

// This delegate can point to any method,
// taking two integers and returning an
// integer.
public delegate int BinaryOp(int x, int y);

// This class contains methods BinaryOp will
// point to.
public class SimpleMath
{

public static int Add(int x, int y)
{ return x + y; }
public static int Subtract(int x, int y)
{ return x + y; }

}

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Simple Delegate Example *****\n");

// Create a BinaryOp object that
// "points to" SimpleMath.Add().
BinaryOp b = new BinaryOp(SimpleMath.Add);

4193ch08.qxd 8/14/05 2:49 PM Page 263

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS264

// Invoke Add() method using delegate.
Console.WriteLine("10 + 10 is {0}", b(10, 10));
Console.ReadLine();

}
}

}

Again notice the format of the BinaryOp delegate, which can point to any method taking two inte-
gers and returning an integer. Given this, we have created a class named SimpleMath, which defines
two static methods that (surprise, surprise) match the pattern defined by the BinaryOp delegate.

When you want to insert the target method to a given delegate, simply pass in the name of the
method to the delegate’s constructor. At this point, you are able to invoke the member pointed to
using a syntax that looks like a direct function invocation:

// Invoke() is really called here!
Console.WriteLine("10 + 10 is {0}", b(10, 10));

Under the hood, the runtime actually calls the compiler-generated Invoke() method. You can
verify this fact for yourself if you open your assembly in ildasm.exe and investigate the CIL code within
the Main() method:

.method private hidebysig static void Main(string[] args) cil managed
{
...

.locals init ([0] class SimpleDelegate.BinaryOp b)
ldftn int32 SimpleDelegate.SimpleMath::Add(int32, int32)

...
newobj instance void SimpleDelegate.BinaryOp::.ctor(object, native int)
stloc.0
ldstr "10 + 10 is {0}"
ldloc.0
ldc.i4.s 10
ldc.i4.s 10
callvirt instance int32 SimpleDelegate.BinaryOp::Invoke(int32, int32)

...
}

Recall that .NET delegates (unlike C-style function pointers) are type safe. Therefore, if you attempt
to pass a delegate a method that does not “match the pattern,” you receive a compile-time error. To
illustrate, assume the SimpleMath class defines an additional method named SquareNumber():

public class SimpleMath
{
...

public static int SquareNumber(int a)
{ return a * a; }

}

Given that the BinaryOp delegate can only point to methods that take two integers and return
an integer, the following code is illegal and will not compile:

// Error! Method does not match delegate pattern!
BinaryOp b = new BinaryOp(SimpleMath.SquareNumber);

Investigating a Delegate Object
Let’s spice up the current example by creating a helper function named DisplayDelegateInfo().
This method will print out names of the methods maintained by the incoming System.Delegate-
derived type as well as the name of the class defining the method. To do so, we will iterate over the

4193ch08.qxd 8/14/05 2:49 PM Page 264

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 265

Figure 8-3. Examining a delegate’s invocation list

System.Delegate array returned by GetInvocationList(), invoking each object’s Target and Method
properties:

static void DisplayDelegateInfo(Delegate delObj)
{

// Print the names of each member in the
// delegate's invocation list.
foreach (Delegate d in delObj.GetInvocationList())
{

Console.WriteLine("Method Name: {0}", d.Method);
Console.WriteLine("Type Name: {0}", d.Target);

}
}

Assuming you have updated your Main() method to actually call this new helper method, you
would find the output shown in Figure 8-3.

Notice that the name of the type (SimpleMath) is currently not displayed by the Target property.
The reason has to do with the fact that our BinaryOp delegate is pointing to static methods and
therefore there is no object to reference! However, if we update the Add() and Subtract methods to
be nonstatic, we could create an instance of the SimpleMath type and specify the methods to invoke
as follows:

static void Main(string[] args)
{

Console.WriteLine("***** Simple Delegate Example *****\n");

// .NET delegates can also point to instance methods.
SimpleMath m = new SimpleMath();
BinaryOp b = new BinaryOp(m.Add);

// Show information about this object.
DisplayDelegateInfo(b);

Console.WriteLine("\n10 + 10 is {0}", b(10, 10));
Console.ReadLine();

}

In this case, we would find the output shown in Figure 8-4.

4193ch08.qxd 8/14/05 2:49 PM Page 265

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS266

■Source Code The SimpleDelegate project is located under the Chapter 8 subdirectory.

Retrofitting the Car Type with Delegates
Clearly, the previous SimpleDelegate example was intended to be purely illustrative in nature, given
that there would be no reason to build a delegate simply to add two numbers. Hopefully, however,
this example demystifies the process of working with delegate types. To provide a more realistic use
of delegate types, let’s retrofit our Car type to send the Exploded and AboutToBlow notifications using
.NET delegates rather than a custom callback interface. Beyond no longer implementing IEngineEvents,
here are the steps we will need to take:

• Define the AboutToBlow and Exploded delegates.

• Declare member variables of each delegate type in the Car class.

• Create helper functions on the Car that allow the caller to specify the methods maintained by
the delegate member variables.

• Update the Accelerate() method to invoke the delegate’s invocation list under the correct
circumstances.

Ponder the following updated Car class, which addresses the first three points:

public class Car
{

// Define the delegate types.
public delegate void AboutToBlow(string msg);
public delegate void Exploded (string msg);

// Define member variables of each delegate type.
private AboutToBlow almostDeadList;
private Exploded explodedList;

// Add members to the invocation lists using helper methods.
public void OnAboutToBlow(AboutToBlow clientMethod)
{ almostDeadList = clientMethod; }
public void OnExploded(Exploded clientMethod)
{ explodedList = clientMethod; }

...
}

Notice in this example that we define the delegate types directly within the scope of the Car
type. As you explore the base class libraries, you will find it is quite common to define a delegate

Figure 8-4. Examining a delegate’s invocation list (once again)

4193ch08.qxd 8/14/05 2:49 PM Page 266

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 267

within the scope of the type it naturally works with. On a related note, given that the compiler trans-
forms a delegate into a full class definition, what we have actually done is create two nested classes.

Next, note that we declare two member variables (one for each delegate type) and two helper
functions (OnAboutToBlow() and OnExploded()) that allow the client to add a method to the dele-
gates invocation list. In concept, these methods are similar to the Advise() and Unadvise() method
we created during the EventInterface example. Of course, in this case, the incoming parameter is
a client-allocated delegate object rather than a class implementing a specific interface.

At this point, we need to update the Accelerate() method to invoke each delegate, rather than iter-
ate over an ArrayList of client-side sinks (as we did in the EventInterface example). Here is the update:

public void Accelerate(int delta)
{

// If the car is dead, fire Exploded event.
if (carIsDead)
{

if (explodedList != null)
explodedList("Sorry, this car is dead...");

}
else
{

currSpeed += delta;

// Almost dead?
if (10 == maxSpeed - currSpeed

&& almostDeadList != null)
{

almostDeadList("Careful buddy! Gonna blow!");
}

// Still OK!
if (currSpeed >= maxSpeed)

carIsDead = true;
else

Console.WriteLine("->CurrSpeed = {0}", currSpeed);
}

}

Notice that before we invoke the methods maintained by the almostDeadList and explodedList
member variables, we are checking them against a null value. The reason is that it will be the job of
the caller to allocate these objects by calling the OnAboutToBlow() and OnExploded() helper methods.
If the caller does not call these methods, and we attempt to invoke the delegate’s invocation list, we
will trigger a NullReferenceException and bomb at runtime (which would obviously be a bad thing!).

Now that we have the delegate infrastructure in place, observe the updates to the Program class:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Delegates as event enablers *****");

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers with Car type.
c1.OnAboutToBlow(new Car.AboutToBlow(CarAboutToBlow));
c1.OnExploded(new Car.Exploded(CarExploded));

4193ch08.qxd 8/14/05 2:49 PM Page 267

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS268

// Speed up (this will trigger the events).
Console.WriteLine("\n***** Speeding up *****");
for (int i = 0; i < 6; i++)

c1.Accelerate(20);
Console.ReadLine();

}

// The Car will call these methods.
public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }

public static void CarExploded(string msg)
{ Console.WriteLine(msg); }

}

The only major point to be made here is the fact that the caller is the entity that assigns the
delegate member variables via the helper registration methods. Also, because the AboutToBlow and
Exploded delegates are nested within the Car class, we must allocate them using their full name (e.g.,
Car.AboutToBlow). Like any delegate constructor, we pass in the name of the method to add to the
invocation list, which in this case are two static members on the Program class (if you wanted to
wrap these methods in a new class, it would look very similar to the CarEventSink type of the
EventInterface example).

Enabling Multicasting
Recall that .NET delegates have the intrinsic ability to multicast. In other words, a delegate object
can maintain a list of methods to call, rather than a single method. When you wish to add multiple
methods to a delegate object, you simply make use of the overloaded += operator, rather than
a direct assignment. To enable multicasting on the Car type, we could update the OnAboutToBlow()
and OnExploded() methods as follows:

public class Car
{

// Add member to the invocation lists.
public void OnAboutToBlow(AboutToBlow clientMethod)
{ almostDeadList += clientMethod; }

public void OnExploded(Exploded clientMethod)
{ explodedList += clientMethod; }

...
}

With this, the caller can now register multiple targets:

class Program
{

static void Main(string[] args)
{

Car c1 = new Car("SlugBug", 100, 10);

// Register multiple event handlers!
c1.OnAboutToBlow(new Car.AboutToBlow(CarAboutToBlow));
c1.OnAboutToBlow(new Car.AboutToBlow(CarIsAlmostDoomed));
c1.OnExploded(new Car.Exploded(CarExploded));

...
}

4193ch08.qxd 8/14/05 2:49 PM Page 268

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 269

// Car will call these.
public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }
public static void CarIsAlmostDoomed(string msg)
{ Console.WriteLine("Critical Message from Car: {0}", msg); }
public static void CarExploded(string msg)
{ Console.WriteLine(msg); }

}

In terms of CIL code, the += operator resolves to a call to the static Delegate.Combine() method
(you could call Delegate.Combine() directly, but the += operator offers a simpler alternative). Ponder
the following CIL implementation of OnAboutToBlow():

.method public hidebysig instance void OnAboutToBlow
(class CarDelegate.Car/AboutToBlow clientMethod) cil managed

{
.maxstack 8
ldarg.0
dup
ldfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ldarg.1
call class [mscorlib]System.Delegate

[mscorlib]System.Delegate::Combine(
class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

castclass CarDelegate.Car/AboutToBlow
stfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ret

}

The Delegate class also defines a static Remove() method that allows a caller to dynamically
remove a member from the invocation list. As you may be suspecting, C# developers can leverage
the overloaded -= operator as a shorthand notation. If you wish to allow the caller the option to
detach from the AboutToBlow and Exploded notifications, you could add the following additional
helper methods to the Car type (note the -= operators at work):

public class Car
{

// Remove member from the invocation lists.
public void RemoveAboutToBlow(AboutToBlow clientMethod)
{ almostDeadList -= clientMethod; }

public void RemoveExploded(Exploded clientMethod)
{ explodedList -= clientMethod; }

...
}

Again, the -= syntax is simply a shorthand notation for manually calling the static Delegate.Remove()
method, as illustrated by the following CIL code for the RemoveAboutToBlow() member of the Car type:

.method public hidebysig instance void RemoveAboutToBlow(class
CarDelegate.Car/AboutToBlow clientMethod) cil managed
{

.maxstack 8
ldarg.0
dup
ldfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ldarg.1
call class [mscorlib]System.Delegate

4193ch08.qxd 8/14/05 2:49 PM Page 269

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS270

Figure 8-5. The CarDelegate application at work

[mscorlib]System.Delegate::Remove(
class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

castclass CarDelegate.Car/AboutToBlow
stfld class CarDelegate.Car/AboutToBlow CarDelegate.Car::almostDeadList
ret

}

If the caller does indeed wish to remove an item from a delegate’s invocation list, you will need
to supply the same delegate object you added previously. Thus, we could stop receiving the Exploded
notification by updating Main() as follows:

static void Main(string[] args)
{

Car c1 = new Car("SlugBug", 100, 10);

// Hold onto Car.Exploded delegate object for later use.
Car.Exploded d = new Car.Exploded(CarExploded);
c1.OnExploded(d);

...
// Remove CarExploded method
// from invocation list.
c1.RemoveExploded(d);

...
}

The output of our CarDelegate application can be seen in Figure 8-5.

■Source Code The CarDelegate project is located under the Chapter 8 subdirectory.

A More Elaborate Delegate Example
To illustrate a more advanced use of delegates, let’s begin by updating the Car class to include two
new Boolean member variables. The first is used to determine whether your automobile is due for
a wash (isDirty); the other represents whether the car in question is in need of a tire rotation
(shouldRotate). To enable the object user to interact with this new state data, Car also defines some
additional properties and an updated constructor. Here is the story so far:

4193ch08.qxd 8/14/05 2:49 PM Page 270

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 271

// Updated Car class.
public class Car
{
...

// Are we in need of a wash? Need to rotate tires?
private bool isDirty;
private bool shouldRotate;

// Extra params to set bools.
public Car(string name, int max, int curr,

bool washCar, bool rotateTires)
{

...
isDirty = washCar;
shouldRotate = rotateTires;

}
public bool Dirty
{

get{ return isDirty; }
set{ isDirty = value; }

}
public bool Rotate
{

get{ return shouldRotate; }
set{ shouldRotate = value; }

}
}

Now, also assume the Car type nests a new delegate, CarDelegate:

// Car defines yet another delegate.
public class Car
{
...

// Can call any method taking a Car as
// a parameter and returning nothing.
public delegate void CarDelegate(Car c);

...
}

Here, you have created a delegate named CarDelegate. The CarDelegate type represents “some
function” taking a Car as a parameter and returning void.

Delegates As Parameters
Now that you have a new delegate type that points to methods taking a Car parameter and returning
nothing, you can create other functions that take this delegate as a parameter. To illustrate, assume
you have a new class named Garage. This type maintains a collection of Car types contained in
a System.Collections.ArrayList. Upon creation, the ArrayList is filled with some initial Car types:

// The Garage class maintains a list of Car types.
Using System.Collections;
...
public class Garage
{

// A list of all cars in the garage.
ArrayList theCars = new ArrayList();

4193ch08.qxd 8/14/05 2:49 PM Page 271

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS272

// Create the cars in the garage.
public Garage()
{

// Recall, we updated the ctor to set isDirty and shouldRotate.
theCars.Add(new Car("Viper", 100, 0, true, false));
theCars.Add(new Car("Fred", 100, 0, false, false));
theCars.Add(new Car("BillyBob", 100, 0, false, true));

}
}

More importantly, the Garage class defines a public ProcessCars() method, which takes a sin-
gle argument of our new delegate type (Car.CarDelegate). In the implementation of ProcessCars(),
you pass each Car in your collection as a parameter to the “function pointed to” by the delegate.
ProcessCars() also makes use of the Target and Method members of System.MulticastDelegate to
determine exactly which function the delegate is currently pointing to:

// The Garage class has a method that makes use of the CarDelegate.
Using System.Collections;
...
public class Garage
{
...

// This method takes a Car.CarDelegate as a parameter.
public void ProcessCars(Car.CarDelegate proc)
{

// Where are we forwarding the call?
Console.WriteLine("***** Calling: {0} *****",

d.Method);

// Are we calling an instance method or a static method?
if(proc.Target != null)

Console.WriteLine("—>Target: {0} ", proc.Target);
else

Console.WriteLine("—>Target is a static method");

// Call the method "pointed to," passing in each car.
foreach (Car c in theCars)
{

Console.WriteLine("\n-> Processing a Car");
proc(c);

}
}

}

Like any delegate operation, when calling ProcessCars(), we send in the name of the method
that should handle this request. Recall that these methods may be either static or instance level. For
the sake of argument, assume these are instance members named WashCar() and RotateTires()
that are defined by a new class named ServiceDepartment. Notice that these two methods are mak-
ing use of the new Rotate and Dirty properties of the Car type.

// This class defines method to be invoked by
// the Car.CarDelegate type.
public class ServiceDepartment
{

public void WashCar(Car c)
{

4193ch08.qxd 8/14/05 2:49 PM Page 272

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 273

if(c.Dirty)
Console.WriteLine("Cleaning a car");

else
Console.WriteLine("This car is already clean...");

}

public void RotateTires(Car c)
{

if(c.Rotate)
Console.WriteLine("Tires have been rotated");

else
Console.WriteLine("Don't need to be rotated...");

}
}

Now, to illustrate the interplay between the new Car.CarDelegate, Garage, and ServiceDepartment
types, consider the following usage:

// The Garage delegates all work orders to the ServiceDepartment
// (finding a good mechanic is always a problem...)
public class Program
{

static void Main(string[] args)
{

// Make the garage.
Garage g = new Garage();

// Make the service department.
ServiceDepartment sd = new ServiceDepartment();

// The Garage washes cars and rotates tires
// by delegating to the ServiceDepartment.
g.ProcessCars(new Car.CarDelegate(sd.WashCar));
g.ProcessCars(new Car.CarDelegate(sd.RotateTires));
Console.ReadLine();

}
}

Figure 8-6 shows the current output.

4193ch08.qxd 8/14/05 2:49 PM Page 273

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS274

Analyzing the Delegation Code
The Main() method begins by creating an instance of the Garage and ServiceDepartment types. Now,
when you write the following:

// Wash all dirty cars.
g.ProcessCars(new Car.CarDelegate(sd.WashCar));

what you are effectively saying is “Add a pointer to the ServiceDepartment.WashCar() method to
a Car.CarDelegate object, and pass this object to Garage.ProcessCars().” Like most real-world
garages, the real work is delegated to the service department (which explains why a 30-minute oil
change takes 2 hours). Given this, ProcessCars() can be understood as

// CarDelegate points to the ServiceDepartment.WashCar function.
public void ProcessCars(Car.CarDelegate proc)
{
...

foreach(Car c in theCars)
proc(c); // proc(c) => ServiceDepartment.WashCar(c)

}

Likewise, if you say the following:

// Rotate the tires.
g.ProcessCars(new Car.CarDelegate(sd.RotateTires));

then ProcessCars() can be understood as

// CarDelegate points to the ServiceDepartment.RotateTires function:
public void ProcessCars(Car.CarDelegate proc)
{

Figure 8-6. Passing the buck

4193ch08.qxd 8/14/05 2:49 PM Page 274

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 275

foreach(Car c in theCars)
proc(c); // proc(c) => ServiceDepartment.RotateTires(c)

...
}

■Source Code The CarGarage project is located under the Chapter 8 subdirectory.

Understanding Delegate Covariance
Hopefully at this point in the game, you are more comfortable with the creation and use of delegate
types. Before turning our attention to the C# event syntax, let’s examine a new delegate-centric feature
provided by .NET 2.0 termed covariance. As you may have noticed, each of the delegates created thus
far point to methods returning simple numerical data types (or void). However, assume you are design-
ing a delegate that can point to methods returning a custom class type:

// Define a deletate pointing to targets returning Car types.
public delegate Car ObtainCarDelegate();

Of course, you would be able to define a target for the delegate as expected:

class Program
{

public delegate Car ObtainCarDelegate();

public static Car GetBasicCar()
{ return new Car(); }

static void Main(string[] args)
{

ObtainCarDelegate targetA = new ObtainCarDelegate(GetBasicCar);
Car c = targetA();
Console.ReadLine();

}
}

So far, so good. However, what if you were to derive a new class from the Car type named SportsCar
and wish to create a delegate type that can point to methods returning this class type? Prior to .NET 2.0,
you would be required to define an entirely new delegate to do so:

// A new deletate pointing to targets returning SportsCar types.
public delegate SportsCar ObtainSportsCarDelegate();

As we now have two delegate types, we now must create an instance of each to obtain Car and
SportsCar types:

class Program
{

public delegate Car ObtainCarDelegate();
public delegate SportsCar ObtainSportsCarDelegate();

public static Car GetBasicCar()
{ return new Car(); }

public static SportsCar GetSportsCar()
{ return new SportsCar(); }

4193ch08.qxd 8/14/05 2:49 PM Page 275

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS276

static void Main(string[] args)
{

ObtainCarDelegate targetA = new ObtainCarDelegate(GetBasicCar);
Car c = targetA();

ObtainSportsCarDelegate targetB =
new ObtainSportsCarDelegate(GetSportsCar);

SportsCar sc = targetB();
Console.ReadLine();

}
}

Given the laws of classic inheritance, it would be ideal to build a single delegate type that can
point to methods returning either Car or SportsCar types (after all, a SportsCar “is-a” Car). Covariance
allows for this very possibility. Simply put, covariance allows you to build a single delegate that can
point to methods returning class types related by classical inheritance:

class Program
{

// Define a single deletate that may return a Car
// or SportsCar.
public delegate Car ObtainVehicalDelegate();

public static Car GetBasicCar()
{ return new Car(); }

public static SportsCar GetSportsCar()
{ return new SportsCar(); }

static void Main(string[] args)
{

Console.WriteLine("***** Delegate Covariance *****\n");
ObtainVehicalDelegate targetA = new ObtainVehicalDelegate(GetBasicCar);
Car c = targetA();

// Covariance allows this target assignment.
ObtainVehicalDelegate targetB = new ObtainVehicalDelegate(GetSportsCar);
SportsCar sc = (SportsCar)targetB();
Console.ReadLine();

}
}

Notice that the ObtainVehicalDelegate delegate type has been defined to point to methods
returning a strongly typed Car type. Given covariance, however, we can point to methods returning
derived types as well. To obtain the derived type, simply perform an explicit cast.

■Note In a similar vein, contravariance allows you to create a single delegate that can point to numerous meth-
ods that receive objects related by classical inheritance. Consult the .NET Framework 2.0 SDK Documentation for
further details.

■Source Code The DelegateCovariance project is located under the Chapter 8 subdirectory.

4193ch08.qxd 8/14/05 2:49 PM Page 276

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 277

Understanding C# Events
Delegates are fairly interesting constructs in that they enable two objects in memory to engage in
a two-way conversation. As you may agree, however, working with delegates in the raw does entail
a good amount of boilerplate code (defining the delegate, declaring necessary member variables,
and creating custom registration/unregistration methods).

Because the ability for one object to call back to another object is such a helpful construct, C#
provides the event keyword to lessen the burden of using delegates in the raw. When the compiler
processes the event keyword, you are automatically provided with registration and unregistration
methods as well as any necessary member variable for your delegate types. In this light, the event
keyword is little more than syntactic sugar, which can be used to save you some typing time.

■Note Even if you choose to leverage the C# event keyword, you are still required to manually define the
related delegate types.

Defining an event is a two-step process. First, you need to define a delegate that contains the
methods to be called when the event is fired. Next, you declare the events (using the C# event key-
word) in terms of the related delegate. In a nutshell, defining a type that can send events entails the
following pattern (shown in pseudo-code):

public class SenderOfEvents
{

public delegate retval AssociatedDelegate(args);
public event AssociatedDelegate NameOfEvent;

...
}

The events of the Car type will take the same name as the previous delegates (AboutToBlow and
Exploded). The new delegate to which the events are associated will be called CarEventHandler. Here
are the initial updates to the Car type:

public class Car
{

// This delegate works in conjunction with the
// Car's events.
public delegate void CarEventHandler(string msg);

// This car can send these events.
public event CarEventHandler Exploded;
public event CarEventHandler AboutToBlow;

...
}

Sending an event to the caller is as simple as specifying the event by name as well as any
required parameters as defined by the associated delegate. To ensure that the caller has indeed reg-
istered with event, you will want to check the event against a null value before invoking the delegate’s
method set. These things being said, here is the new iteration of the Car’s Accelerate() method:

public void Accelerate(int delta)
{

// If the car is dead, fire Exploded event.
if (carIsDead)
{

4193ch08.qxd 8/14/05 2:49 PM Page 277

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS278

if (Exploded != null)
Exploded("Sorry, this car is dead...");

}

else
{

currSpeed += delta;

// Almost dead?
if (10 == maxSpeed - currSpeed

&& AboutToBlow != null)
{

AboutToBlow("Careful buddy! Gonna blow!");
}

// Still OK!
if (currSpeed >= maxSpeed)

carIsDead = true;
else

Console.WriteLine("->CurrSpeed = {0}", currSpeed);
}

}

With this, you have configured the car to send two custom events without the need to define
custom registration functions. You will see the usage of this new automobile in just a moment, but
first, let’s check the event architecture in a bit more detail.

Events Under the Hood
A C# event actually expands into two hidden public methods, one having an add_ prefix; the other
having a remove_ prefix. This prefix is followed by the name of the C# event. For example, the Exploded
event results in two CIL methods named add_Exploded() and remove_Exploded(). In addition to the
add_XXX() and remove_XXX() methods, the CIL-level event definition associates the correct delegate to
a given event.

If you were to check out the CIL instructions behind add_AboutToBlow(), you would find code that
looks just about identical to the OnAboutToBlow() helper method you wrote previously in the CarDelegate
example (note the call to Delegate.Combine()):

.method public hidebysig specialname instance void
add_AboutToBlow(class CarEvents.Car/CarEventHandler 'value')
cil managed synchronized

{
.maxstack 8
ldarg.0
ldarg.0
ldfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ldarg.1
call class [mscorlib]System.Delegate
[mscorlib]System.Delegate::Combine(

class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)
castclass CarEvents.Car/CarEventHandler
stfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ret

}

As you would expect, remove_AboutToBlow() will indirectly call Delegate.Remove() and is more
or less identical to the previous RemoveAboutToBlow() helper method:

4193ch08.qxd 8/14/05 2:49 PM Page 278

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 279

.method public hidebysig specialname instance void
remove_AboutToBlow(class CarEvents.Car/CarEventHandler 'value')
cil managed synchronized

{
.maxstack 8
ldarg.0
ldarg.0
ldfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ldarg.1
call class [mscorlib]System.Delegate

[mscorlib]System.Delegate::Remove(
class [mscorlib]System.Delegate, class [mscorlib]System.Delegate)

castclass CarEvents.Car/CarEventHandler
stfld class CarEvents.Car/CarEventHandler CarEvents.Car::AboutToBlow
ret

}

Finally, the CIL code representing the event itself makes use of the .addon and .removeon direc-
tives to map the names of the correct add_XXX() and remove_XXX() methods to invoke:

.event CarEvents.Car/EngineHandler AboutToBlow
{

.addon void CarEvents.Car::add_AboutToBlow
(class CarEvents.Car/CarEngineHandler)

.removeon void CarEvents.Car::remove_AboutToBlow
(class CarEvents.Car/CarEngineHandler)

}

Now that you understand how to build a class that can send C# events (and are aware that events
are nothing more than a typing time-saver), the next big question is how to “listen to” the incoming
events on the caller’s side.

Listening to Incoming Events
C# events also simplify the act of registering the caller-side event handlers. Rather than having to
specify custom helper methods, the caller simply makes use of the += and -= operators directly
(which triggers the correct add_XXX() or remove_XXX() method in the background). When you wish
to register with an event, follow the pattern shown here:

// ObjectVariable.EventName +=
// new AssociatedDelegate(functionToCall);
Car.EngineHandler d = new Car.EngineHandler(CarExplodedEventHandler)
myCar.Exploded += d;

When you wish to detach from a source of events, use the -= operator:

// ObjectVariable.EventName -= delegateObject;
myCar.Exploded -= d;

Given these very predictable patterns, here is the refactored Main() method, now using the C#
event registration syntax:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Events *****");
Car c1 = new Car("SlugBug", 100, 10);

4193ch08.qxd 8/14/05 2:49 PM Page 279

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS280

Figure 8-7. Delegate selection IntelliSense

// Register event handlers.
c1.AboutToBlow += new Car.CarEventHandler(CarIsAlmostDoomed);
c1.AboutToBlow += new Car.CarEventHandler(CarAboutToBlow);

Car.CarEventHandler d = new Car.CarEventHandler(CarExploded);
c1.Exploded += d;

Console.WriteLine("\n***** Speeding up *****");
for (int i = 0; i < 6; i++)

c1.Accelerate(20);

// Remove CarExploded method
// from invocation list.
c1.Exploded -= d;

Console.WriteLine("\n***** Speeding up *****");
for (int i = 0; i < 6; i++)

c1.Accelerate(20);
Console.ReadLine();

}

public static void CarAboutToBlow(string msg)
{ Console.WriteLine(msg); }
public static void CarIsAlmostDoomed(string msg)
{ Console.WriteLine("Critical Message from Car: {0}", msg); }
public static void CarExploded(string msg)
{ Console.WriteLine(msg); }

}

■Source Code The CarEvents project is located under the Chapter 8 subdirectory.

Simplifying Event Registration Using Visual Studio 2005
Visual Studio .NET 2003 and Visual Studio 2005 each offer assistance with the process of registering
event handlers. When you apply the += syntax during the act of event registration, you will find an
IntelliSense window is displayed inviting you to hit the Tab key to auto-fill the associated delegate
instance (see Figure 8-7).

Once you do hit the Tab key, you are then invited to enter the name of the event handler to be
generated (or simply accept the default name) as shown in Figure 8-8.

4193ch08.qxd 8/14/05 2:49 PM Page 280

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 281

Figure 8-8. Delegate target format IntelliSense

Once you hit the Tab key again, you will be provided with stub code in the correct format of the
delegate target (note that this method has been declared static due to the fact that the event was reg-
istered within a static method):

static void c1_AboutToBlow(string msg)
{

// Add your code!
}

This IntelliSense feature is available to all .NET events in the base class libraries. This IDE fea-
ture is a massive timesaver, given that this removes you from the act of needing to search the .NET
help system to figure out the correct delegate to use with a particular event as well as the format of
the delegate target.

A “Prim-and-Proper” Event
Truth be told, there is one final enhancement we could make to the CarEvents example that mirrors
Microsoft’s recommended event pattern. As you begin to explore the events sent by a given type in the
base class libraries, you will find that the first parameter of the underlying delegate is a System.Object,
while the second parameter is a type deriving from System.EventArgs.

The System.Object argument represents a reference to the object that sent the event (such as the Car),
while the second parameter represents information regarding the event at hand. The System.EventArgs
base class represents an event that is not sending any custom information:

public class EventArgs
{

public static readonly System.EventArgs Empty;
public EventArgs();

}

For simple events, you can pass an instance of EventArgs directly. However, when you wish to
pass along custom data, you should build a suitable class deriving from EventArgs. For our example,
assume we have a class named CarEventArgs, which maintains a string representing the message
sent to the receiver:

public class CarEventArgs : EventArgs
{

public readonly string msg;
public CarEventArgs(string message)
{

msg = message;
}

}

4193ch08.qxd 8/14/05 2:49 PM Page 281

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS282

With this, we would now update the CarEventHandler delegate as follows (the events would be
unchanged):

public class Car
{

public delegate void CarEventHandler(object sender, CarEventArgs e);
...
}

When firing our events from within the Accelerate() method, we would now need to supply
a reference to the current Car (via the this keyword) and an instance of our CarEventArgs type:

public void Accelerate(int delta)
{

// If the car is dead, fire Exploded event.
if (carIsDead)
{

if (Exploded != null)
Exploded(this, new CarEventArgs("Sorry, this car is dead..."));

}
else
{

...
AboutToBlow(this, new CarEventArgs("Careful buddy! Gonna blow!"));

}
...
}

On the caller’s side, all we would need to do is update our event handlers to receive the incoming
parameters and obtain the message via our read-only field. For example:

public static void CarAboutToBlow(object sender, CarEventArgs e)
{ Console.WriteLine("{0} says: {1}", sender, e.msg); }

If the receiver wishes to interact with the object that sent the event, we can explicitly cast the
System.Object. Thus, if we wish to power down the radio when the Car object is about to meet its
maker, we could author an event handler looking something like the following:

public static void CarIsAlmostDoomed(object sender, CarEventArgs e)
{

// Just to be safe, perform a
// runtime check before casting.
if (sender is Car)
{

Car c = (Car)sender;
c.CrankTunes(false);

}
Console.WriteLine("Critical Message from {0}: {1}", sender, e.msg);

}

■Source Code The PrimAndProperCarEvents project is located under the Chapter 8 subdirectory.

Understanding C# Anonymous Methods
To wrap up this chapter, let’s examine some final delegate-and-event-centric features of .NET 2.0 as
seen through the eyes of C#. To begin, consider the fact that when a caller wishes to listen to incom-
ing events, it must define a unique method that matches the signature of the associated delegate:

4193ch08.qxd 8/14/05 2:49 PM Page 282

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 283

class SomeCaller
{

static void Main(string[] args)
{

SomeType t = new SomeType();
t.SomeEvent += new SomeDelegate(MyEventHandler);

}

// Typically only called by the SomeDelegate object.
public static void MyEventHandler()
{ ...}

}

When you think about it, however, methods such as MyEventHandler() are seldom intended to
be called by any part of the program other than the invoking delegate. As far as productivity is con-
cerned, it is a bit of a bother (though in no way a showstopper) to manually define a separate method
to be called by the delegate object.

To address this point, it is now possible to associate a delegate directly to a block of code statements
at the time of event registration. Formally, such code is termed an anonymous method. To illustrate the
basic syntax, check out the following Main() method, which handles the events sent from the Car type
using anonymous methods, rather than specifically named event handlers:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Anonymous Methods *****\n");
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers as anonymous methods.
c1.AboutToBlow += delegate {

Console.WriteLine("Eek! Going too fast!");
};

c1.AboutToBlow += delegate(object sender, CarEventArgs e) {
Console.WriteLine("Message from Car: {0}", e.msg);

};

c1.Exploded += delegate(object sender, CarEventArgs e) {
Console.WriteLine("Fatal Message from Car: {0}", e.msg);

};
...

}
}

■Note The final curly bracket of an anonymous method must be terminated by a semicolon. If you fail to do so,
you are issued a compilation error.

Again, notice that the Program type no longer defines specific static event handlers such as
CarAboutToBlow() or CarExploded(). Rather, the unnamed (aka anonymous) methods are defined
inline at the time the caller is handling the event using the += syntax.

The basic syntax of an anonymous method matches the following pseudo-code:

4193ch08.qxd 8/14/05 2:49 PM Page 283

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS284

class SomeCaller
{

static void Main(string[] args)
{

SomeType t = new SomeType();
t.SomeEvent += delegate (optionallySpecifiedDelegateArgs)

{ /* statements */ };
}

}

When handling the first AboutToBlow event within the previous Main() method, notice that you
are not defining the arguments passed by the delegate:

c1.AboutToBlow += delegate {
Console.WriteLine("Eek! Going too fast!");

};

Strictly speaking, you are not required to receive the incoming arguments sent by a specific event.
However, if you wish to make use of the possible incoming arguments, you will need to specify the
parameters prototyped by the delegate type (as seen in the second handling of the AboutToBlow and
Exploded events). For example:

c1.AboutToBlow += delegate(object sender, CarEventArgs e) {
Console.WriteLine("Critical Message from Car: {0}", e.msg);

};

Accessing “Outer”Variables
Anonymous methods are interesting in that they are able to access the local variables of the method
that defines them. Formally speaking, such variables are termed “outer variables” of the anonymous
method. To illustrate, assume our Main() method defined a local integer named aboutToBlowCounter.
Within the anonymous methods that handle the AboutToBlow event, we will increment this counter
by 1 and print out the tally before Main() completes:

static void Main(string[] args)
{
...

int aboutToBlowCounter = 0;

// Make a car as usual.
Car c1 = new Car("SlugBug", 100, 10);

// Register event handlers as anonymous methods.
c1.AboutToBlow += delegate
{

aboutToBlowCounter++;
Console.WriteLine("Eek! Going too fast!");

};

c1.AboutToBlow += delegate(string msg)
{

aboutToBlowCounter++;
Console.WriteLine("Critical Message from Car: {0}", msg);

};
...

Console.WriteLine("AboutToBlow event was fired {0} times.",
aboutToBlowCounter);

Console.ReadLine();

4193ch08.qxd 8/14/05 2:49 PM Page 284

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 285

Once you run this updated Main() method, you will find the final Console.WriteLine() reports
the AboutToBlow event was fired twice.

■Note An anonymous method cannot access ref or out parameters of the defining method.

C# Method Group Conversions
Another delegate-and-event-centric feature of C# is termed method group conversion. This feature
allows you to register the “simple” name of an event handler. To illustrate, let’s revisit the
SimpleMath type examined earlier in this chapter, which is now updated with a new event named
ComputationFinished:

public class SimpleMath
{

// Not bothering to create a System.EventArgs
// derived type here.
public delegate void MathMessage(string msg);
public event MathMessage ComputationFinished;

public int Add(int x, int y)
{

ComputationFinished("Adding complete.");
return x + y;

}

public int Subtract(int x, int y)
{

ComputationFinished("Subtracting complete.");
return x - y;

}
}

If we are not using anonymous method syntax, you know that the way we would handle the
ComputationComplete event is as follows:

class Program
{

static void Main(string[] args)
{

SimpleMath m = new SimpleMath();
m.ComputationFinished +=

new SimpleMath.MathMessage(ComputationFinishedHandler);
Console.WriteLine("10 + 10 is {0}", m.Add(10, 10));
Console.ReadLine();

}

static void ComputationFinishedHandler(string msg)
{ Console.WriteLine(msg); }

}

However, we can register the event handler with a specific event like this (the remainder of the
code is identical):

m.ComputationFinished += ComputationFinishedHandler;

4193ch08.qxd 8/14/05 2:49 PM Page 285

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS286

Figure 8-9. You can extract a delegate from the related event handler.

Notice that we are not directly “new-ing” the associated delegate type, but rather simply specifying
a method that matches the delegate’s expected signature (a method returning nothing and taking
a single System.String in this case). Understand that the C# compiler is still ensuring type safety. Thus,
if the ComputationFinishedHandler() method did not take a System.String and return void, we would
be issued a compiler error.

It is also possible to explicitly convert an event hander into an instance of the delegate it relates
to. This can be helpful if you need to obtain the underlying delegate using a predefined method. For
example:

// .NET 2.0 allows event handlers to be converted into
// their underlying delegate.
SimpleMath.MathMessage mmDelegate =

(SimpleMath.MathMessage)ComputationFinishedHandler;
Console.WriteLine(mmDelegate.Method);

If you executed this code, the final Console.WriteLine() prints out the signature of Computation
FinishedHandler, as shown in Figure 8-9.

■Source Code The AnonymousMethods project is located under the Chapter 8 subdirectory.

Summary
In this chapter, you have examined a number of ways in which multiple objects can partake in
a bidirectional conversation. First, you examined the use of callback interfaces, which provide
a way to have object B make calls on object A through a common interface type. Do understand
that this design pattern is not specific to .NET, but may be employed in any language or platform
that honors the use of interface-based programming techniques.

Next, you examined the C# delegate keyword, which is used to indirectly construct a class derived
from System.MulticastDelegate. As you have seen, a delegate is simply an object that maintains a list of
methods to call when told to do so. These invocations may be made synchronously (using the Invoke()
method) or asynchronously (via the BeginInvoke() and EndInvoke() methods). Again, the asynchronous
nature of .NET delegate types will be examined at a later time.

4193ch08.qxd 8/14/05 2:49 PM Page 286

CHAPTER 8 ■ CALLBACK INTERFACES, DELEGATES, AND EVENTS 287

You then examined the C# event keyword which, when used in conjunction with a delegate type,
can simplify the process of sending your event notifications to awaiting callers. As shown via the
resulting CIL, the .NET event model maps to hidden calls on the System.Delegate/System.Multicast-
Delegate types. In this light, the C# event keyword is purely optional in that it simply saves you some
typing time.

Finally, this chapter examined a new C# 2005 language feature termed anonymous methods.
Using this syntactic construct, you are able to directly associate a block of code statements to a given
event. As you have seen, anonymous methods are free to ignore the parameters sent by the event
and have access to the “outer variables” of the defining method. Last but not least, you examined
a simplified way to register events using method group conversion.

4193ch08.qxd 8/14/05 2:49 PM Page 287

4193ch08.qxd 8/14/05 2:49 PM Page 288

Advanced C# Type Construction
Techniques

In this chapter, you’ll deepen your understanding of the C# programming language by examining
a number of advanced (but still quite useful) syntactic constructs. To begin, you’ll learn how to con-
struct and use an indexer method. This C# mechanism enables you to build custom types that
provide access to internal subtypes using an array-like syntax. Once you learn how to build an
indexer method, you’ll then examine how to overload various operators (+, –, <, >, and so forth), and
create custom explicit and implicit conversion routines for your types (and you’ll learn why you
may wish to do so).

The later half of this chapter examines a small set of lesser used (but nonetheless interesting)
C# keywords. For example, you’ll learn how to programmatically account for overflow and underflow
conditions using the checked and unchecked keywords, as well as how to create an “unsafe” code
context in order to directly manipulate pointer types using C#. The chapter wraps up with an exam-
ination of the role of C# preprocessor directives.

Building a Custom Indexer
As programmers, we are very familiar with the process of accessing discrete items contained within
a standard array using the index operator, for example:

// Declare an array of integers.
int[] myInts = { 10, 9, 100, 432, 9874};

// Use the [] operator to access each element.
for(int j = 0; j < myInts.Length; j++)

Console.WriteLine("Index {0} = {1} ", j, myInts[j]);

The previous code is by no means a major newsflash. However, the C# language provides the
capability to build custom classes and structures that may be indexed just like a standard array. It
should be no big surprise that the method that provides the capability to access items in this man-
ner is termed an indexer.

Before exploring how to create such a construct, let’s begin by seeing one in action. Assume
you have added support for an indexer method to the custom collection (Garage) developed in
Chapter 8. Observe the following usage:

289

C H A P T E R 9

■ ■ ■

4193ch09.qxd 8/14/05 2:50 PM Page 289

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES290

// Indexers allow you to access items in an arraylike fashion.
public class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Indexers *****\n");

// Assume the Garage type has an indexer method.
Garage carLot = new Garage();

// Add some cars to the garage using indexer.
carLot[0] = new Car("FeeFee", 200);
carLot[1] = new Car("Clunker", 90);
carLot[2] = new Car("Zippy", 30);

// Now obtain and display each item using indexer.
for (int i = 0; i < 3; i++)
{

Console.WriteLine("Car number: {0}", i);
Console.WriteLine("Name: {0}", carLot[i].PetName);
Console.WriteLine("Max speed: {0}", carLot[i].CurrSpeed);
Console.WriteLine();

}
Console.ReadLine();

}
}

As you can see, indexers behave much like a custom collection supporting the IEnumerator and
IEnumerable interfaces. The only major difference is that rather than accessing the contents using
interface types, you are able to manipulate the internal collection of automobiles just like a standard
array.

Now for the big question: How do you configure the Garage class (or any class/structure) to sup-
port this functionality? An indexer is represented as a slightly mangled C# property. In its simplest
form, an indexer is created using the this[] syntax. Here is the relevant update to the Garage type:

// Add the indexer to the existing class definition.
public class Garage : IEnumerable // foreach iteration
{
...

// Use ArrayList to contain the Car types.
private ArrayList carArray = new ArrayList();

// The indexer returns a Car based on a numerical index.
public Car this[int pos]
{

// Note ArrayList has an indexer as well!
get { return (Car)carArray[pos]; }
set {carArray.Add(value);}

}
}

Beyond the use of the this keyword, the indexer looks just like any other C# property declara-
tion. Do be aware that indexers do not provide any array-like functionality beyond the use of the
subscript operator. In other words, the object user cannot write code such as the following:

// Use ArrayList.Count property? Nope!
Console.WriteLine("Cars in stock: {0} ", carLot.Count);

4193ch09.qxd 8/14/05 2:50 PM Page 290

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 291

To support this functionality, you would need to add your own Count property to the Garage
type, and delegate accordingly:

public class Garage: IEnumerable
{

...
// Containment/delegation in action once again.
public int Count { get { return carArray.Count; } }

}

As you can gather, indexers are yet another form of syntactic sugar, given that this functionality
can also be achieved using “normal” public methods. For example, if the Garage type did not sup-
port an indexer, you would be able to allow the outside world to interact with the internal array list
using a named property or traditional accessor/mutator methods. Nevertheless, you when you sup-
port indexers on your custom collection types, they integrate well into the fabric of the .NET base
class libraries.

■Source Code The SimpleIndexer project is located under the Chapter 9 subdirectory.

A Variation of the Garage Indexer
The current Garage type defined an indexer that allowed the caller to identify subitems using a numer-
ical value. Understand, however, that this is not a requirement of an indexer method. Assume you
would rather contain the Car objects within a System.Collections.Specialized.ListDictionary
rather than an ArrayList. Given that ListDictionary types allow access to the contained types using
a key token (such as a string), you could configure the new Garage indexer as follows:

public class Garage : IEnumerable
{

private ListDictionary carDictionary = new ListDictionary();

// This indexer returns a Car based on a string index.
public Car this[string name]
{

get { return (Car)carDictionary[name]; }
set { carDictionary[name] = value; }

}

public int Length { get { return carDictionary.Count; } }

public IEnumerator GetEnumerator()
{ return carDictionary.GetEnumerator(); }

}

The caller would now be able to interact with the internal cars as shown here:

public class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Indexers *****\n");
Garage carLot = new Garage();

4193ch09.qxd 8/14/05 2:50 PM Page 291

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES292

// Add named cars to garage.
carLot["FeeFee"] = new Car("FeeFee", 200, 0);
carLot["Clunker"] = new Car("Clunker", 90, 0);
carLot["Zippy"] = new Car("Zippy", 30, 0);

// Now get Zippy.
Car zippy = carLot["Zippy"];
Console.WriteLine("{0} is going {1} MPH",

zippy.PetName, zippy.CurrSpeed);
Console.ReadLine();

}
}

Understand that indexers may be overloaded. Thus, if it made sense to allow the caller to
access subitems using a numerical index or a string value, you might define multiple indexers for
a single type.

■Source Cone The StringIndexer project is located under the Chapter 9 subdirectory.

Internal Representation of Type Indexers
Now that you have seen a few variations on the C# indexer method, you may be wondering how
indexers are represented in terms of CIL. If you were to open up the numerical indexer of the Garage
type, you would find that the C# compiler has created a property named Item, which maps to the
correct getter/setter methods:

property instance class SimpleIndexer.Car Item(int32)
{
.get instance class SimpleIndexer.Car SimpleIndexer.Garage::get_Item(int32)
.set instance void SimpleIndexer.Garage::set_Item(int32,
class SimpleIndexer.Car)

} // end of property Garage::Item

The get_Item() and set_Item() methods are implemented like any other .NET property, for
example:

method public hidebysig specialname instance class SimpleIndexer.Car
get_Item(int32 pos) cil managed

{
Code size 22 (0x16)
.maxstack 2
.locals init ([0] class SimpleIndexer.Car CS$1$0000)
IL_0000: ldarg.0
IL_0001: ldfld class [mscorlib]System.Collections.ArrayList
SimpleIndexer.Garage::carArray

IL_0006: ldarg.1
IL_0007: callvirt instance object [mscorlib]
System.Collections.ArrayList::get_Item(int32)

IL_000c: castclass SimpleIndexer.Car
IL_0011: stloc.0
IL_0012: br.s IL_0014
IL_0014: ldloc.0
IL_0015: ret

} // end of method Garage::get_Item

4193ch09.qxd 8/14/05 2:50 PM Page 292

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 293

Indexers: Final Details
If you want to get really exotic, you can also create an indexer that takes multiple parameters.
Assume you have a custom collection that stores subitems in a 2D array. If this is the case, you may
configure an indexer method as follows:

public class SomeContainer
{

private int[,] my2DintArray = new int[10, 10];

public int this[int row, int column]
{ /* get or set value from 2D array */ }

}

Finally, understand that indexers can be defined on a given .NET interface type to allow imple-
menting types to provide a custom implementation. Such an interface is as follows:

public interface IEstablishSubObjects
{

// This interface defines an indexer that returns
// strings based on a numerical index.
string this[int index] { get; set; }

}

So much for the topic of C# indexers. Next up, you’ll examine a technique supported by some
(but not all) .NET programming languages: operator overloading.

Understanding Operator Overloading
C#, like any programming language, has a canned set of tokens that are used to perform basic oper-
ations on intrinsic types. For example, you know that the + operator can be applied to two integers
in order to yield a larger integer:

// The + operator with ints.
int a = 100;
int b = 240;
int c = a + b; // c is now 340

Again, this is no major news flash, but have you ever stopped and noticed how the same +
operator can be applied to most intrinsic C# data types? For example, consider this code:

// + operator with strings.
string s1 = "Hello";
string s2 = " world!";
string s3 = s1 + s2; // s3 is now "Hello world!"

In essence, the + operator functions in unique ways based on the supplied data types (strings
or integers in this case). When the + operator is applied to numerical types, the result is the summa-
tion of the operands. However, when the + operator is applied to string types, the result is string
concatenation.

The C# language provides the capability for you to build custom classes and structures that also
respond uniquely to the same set of basic tokens (such as the + operator). Be aware that you cannot
overload each and every intrinsic C# operator. Table 9-1 outlines the “overloadability” of the core
operators.

4193ch09.qxd 8/14/05 2:50 PM Page 293

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES294

Table 9-1. Valid Overloadable Operators

C# Operator Overloadability

+, –, !, ~, ++, – –, true, false This set of unary operators can be overloaded.

+, –, *, /, %, &, |, ^, <<, >> These binary operators can be overloaded.

==, !=, <, >, <=, >= The comparison operators can be overloaded. C# will
demand that “like” operators (i.e., < and >, <= and >=, = =
and !=) are overloaded together.

[] The [] operator cannot be overloaded. As you saw earlier
in this chapter, however, the indexer construct provides
the same functionality.

() The () operator cannot be overloaded. As you will see
later in this chapter, however, custom conversion methods
provide the same functionality.

+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>= Shorthand assignment operators cannot be overloaded;
however, you receive them as a freebie when you overload
the related binary operator.

Overloading Binary Operators
To illustrate the process of overloading binary operators, assume the following simple Point structure:

// Just a simple everyday C# struct.
public struct Point
{

private int x, y;
public Point(int xPos, int yPos)
{

x = xPos;
y = yPos;

}

public override string ToString()
{

return string.Format("[{0}, {1}]", this.x, this.y);
}

}

Now, logically speaking, it makes sense to add Points together. On a related note, it may be
helpful to subtract one Point from another. For example, you would like to be able to author the
following code:

// Adding and subtracting two points.
static void Main(string[] args)
{

Console.WriteLine("***** Fun with Overloaded Operators *****\n");

// Make two points.
Point ptOne = new Point(100, 100);
Point ptTwo = new Point(40, 40);
Console.WriteLine("ptOne = {0}", ptOne);
Console.WriteLine("ptTwo = {0}", ptTwo);

// Add the points to make a bigger point?
Console.WriteLine("ptOne + ptTwo: {0} ", ptOne + ptTwo);

4193ch09.qxd 8/14/05 2:50 PM Page 294

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 295

// Subtract the points to make a smaller point?
Console.WriteLine("ptOne - ptTwo: {0} ", ptOne - ptTwo);
Console.ReadLine();

}

To allow a custom type to respond uniquely to intrinsic operators, C# provides the operator
keyword, which you can only use in conjunction with static methods. When you are overloading
a binary operator (such as + and -), you will pass in two arguments that are the same type as the
defining class (a Point in this example), as illustrated in the following code:

// A more intelligent Point type.
public struct Point
{
...

// overloaded operator +
public static Point operator + (Point p1, Point p2)
{ return new Point(p1.x + p2.x, p1.y + p2.y); }

// overloaded operator -
public static Point operator - (Point p1, Point p2)
{ return new Point(p1.x - p2.x, p1.y - p2.y); }

}

The logic behind operator + is simply to return a brand new Point based on the summation of
the fields of the incoming Point parameters. Thus, when you write pt1 + pt2, under the hood you can
envision the following hidden call to the static operator + method:

// p3 = Point.operator+ (p1, p2)
p3 = p1 + p2;

Likewise, p1 – p2 maps to the following:

// p3 = Point.operator- (p1, p2)
p3 = p1 - p2;

And What of the += and –+ Operators?
If you are coming to C# from a C++ background, you may lament the loss of overloading the short-
hand assignment operators (+=, –=, and so forth). Fear not. In terms of C#, the shorthand assignment
operators are automatically simulated if a type overloads the related binary operator. Thus, given that
the Point structure has already overloaded the + and - operators, you are able to write the following:

// Overloading binary operators results in a freebie shorthand operator.
static void Main(string[] args)
{
...

// Freebie +=
Point ptThree = new Point(90, 5);
Console.WriteLine("ptThree = {0}", ptThree);
Console.WriteLine("ptThree += ptTwo: {0}", ptThree += ptTwo);

// Freebie -=
Point ptFour = new Point(0, 500);
Console.WriteLine("ptFour = {0}", ptFour);
Console.WriteLine("ptFour -= ptThree: {0}", ptFour -= ptThree);

}

4193ch09.qxd 8/14/05 2:50 PM Page 295

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES296

Overloading Unary Operators
C# also allows you to overload various unary operators, such as ++ and --. When you overload
a unary operator, you will also define a static method via the operator keyword; however in this case
you will simply pass in a single parameter that is the same type as the defining class/structure. For
example, if you were to update the Point with the following overloaded operators:

public struct Point
{
...

// Add 1 to the incoming Point.
public static Point operator ++(Point p1)
{ return new Point(p1.x+1, p1.y+1); }

// Subtract 1 from the incoming Point.
public static Point operator --(Point p1)
{ return new Point(p1.x-1, p1.y-1); }

}

you could increment and decrement Point’s X and Y values as so:

static void Main(string[] args)
{
...

// Applying the ++ and -- unary operators to a Point.
Console.WriteLine("++ptFive = {0}", ++ptFive);
Console.WriteLine("--ptFive = {0}", --ptFive);

}

Overloading Equality Operators
As you may recall from Chapter 3, System.Object.Equals() can be overridden to perform value-based
(rather than referenced-based) comparisons between types. If you choose to override Equals() (and
the often related System.Object.GetHashCode() method), it is trivial to overload the equality operators
(== and !=). To illustrate, here is the updated Point type:

// This incarnation of Point also overloads the == and != operators.
public struct Point
{
...

public override bool Equals(object o)
{

if(o is Point)
{

if(((Point)o).x == this.x &&
((Point)o).y == this.y)
return true;

}
return false;

}

public override int GetHashCode()
{ return this.ToString().GetHashCode(); }

// Now let's overload the == and != operators.
public static bool operator ==(Point p1, Point p2)
{ return p1.Equals(p2); }

4193ch09.qxd 8/14/05 2:50 PM Page 296

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 297

public static bool operator !=(Point p1, Point p2)
{ return !p1.Equals(p2); }

}

Notice how the implementation of operator == and operator != simply makes a call to the over-
ridden Equals() method to get the bulk of the work done. Given this, you can now exercise your Point
class as follows:

// Make use of the overloaded equality operators.
static void Main(string[] args)
{
...

Console.WriteLine("ptOne == ptTwo : {0}", ptOne == ptTwo);
Console.WriteLine("ptOne != ptTwo : {0}", ptOne != ptTwo);

}

As you can see, it is quite intuitive to compare two objects using the well-known == and !=
operators rather than making a call to Object.Equals(). If you do overload the equality operators
for a given class, keep in mind that C# demands that if you override the == operator, you must also
override the != operator (if you forget, the compiler will let you know).

Overloading Comparison Operators
In Chapter 7, you learned how to implement the IComparable interface in order to compare the rela-
tive relationship between two like objects. Additionally, you may also overload the comparison
operators (<, >, <=, and >=) for the same class. Like the equality operators, C# demands that if you
overload <, you must also overload >. The same holds true for the <= and >= operators. If the Point
type overloaded these comparison operators, the object user could now compare Points as follows:

// Using the overloaded < and > operators.
static void Main(string[] args)
{
...

Console.WriteLine("ptOne < ptTwo : {0}", ptOne < ptTwo);
Console.WriteLine("ptOne > ptTwo : {0}", ptOne > ptTwo);

}

Assuming you have implemented the IComparable interface, overloading the comparison oper-
ators is trivial. Here is the updated class definition:

// Point is also comparable using the comparison operators.
public struct Point : IComparable
{
...

public int CompareTo(object obj)
{

if (obj is Point)
{

Point p = (Point)obj;
if (this.x > p.x && this.y > p.y)

return 1;
if (this.x < p.x && this.y < p.y)

return -1;
else

return 0;
}

4193ch09.qxd 8/14/05 2:50 PM Page 297

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES298

Figure 9-1. In terms of CIL, overloaded operators map to hidden methods.

else
throw new ArgumentException();

}

public static bool operator <(Point p1, Point p2)
{ return (p1.CompareTo(p2) < 0); }

public static bool operator >(Point p1, Point p2)
{ return (p1.CompareTo(p2) > 0); }

public static bool operator <=(Point p1, Point p2)
{ return (p1.CompareTo(p2) <= 0); }

public static bool operator >=(Point p1, Point p2)
{ return (p1.CompareTo(p2) >= 0); }

}

The Internal Representation of Overloaded Operators
Like any C# programming element, overloaded operators are represented using specific CIL syntax.
To begin examining what takes place behind the scenes, open the OverloadedOps.exe assembly
using ildasm.exe. As you can see from Figure 9-1, the overloaded operators are internally expressed
via hidden methods (e.g., op_Addition(), op_Subtraction(), op_Equality(), and so on).

Now, if you were to examine the specific CIL instructions for the op_Addition method, you
would find that the specialname method decoration has also been inserted by csc.exe:

4193ch09.qxd 8/14/05 2:50 PM Page 298

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 299

.method public hidebysig specialname static
valuetype OverloadedOps.Point

op_Addition(valuetype OverloadedsOps.Point p1,
valuetype OverloadedOps.Point p2) cil managed

{
...

}

The truth of the matter is that any operator that you may overload equates to a specially named
method in terms of CIL. Table 9-2 documents the C# operator-to-CIL mapping for the most com-
mon C# operators.

Table 9-2. C# Operator-to-CIL Special Name Road Map

Intrinsic C# Operator CIL Representation

–– op_Decrement()

++ op_Increment()

+ op_Addition()

– op_Subtraction()

* op_Multiply()

/ op_Division()

== op_Equality()

> op_GreaterThan()

< op_LessThan()

!= op_Inequality()

>= op_GreaterThanOrEqual()

<= op_LessThanOrEqual()

–= op_SubtractionAssignment()

+= op_AdditionAssignment()

Interacting with Overloaded Operators from
Overloaded Operator–Challenged Languages
Understanding how overloaded operators are represented in CIL code is not simply interesting from an
academic point of view. To understand the practical reason for this knowledge, recall that the capability
to overload operators is not supported by every .NET-aware language. Given this, what would happen if
you wanted to add two Point types together in an overloaded operator–challenged language?

One approach is to provide “normal” public members that perform the same task as the over-
loaded operators. For example, you could update the Point type with Add() and Subtract() methods,
which leverage the work performed by the custom + and - operators:

// Exposing overloaded operator semantics using simple
// member functions.
public struct Point
{
...

// Operator + via Add()
public static Point Add (Point p1, Point p2)
{ return p1 + p2; }

4193ch09.qxd 8/14/05 2:50 PM Page 299

// Operator - via Subtract()
public static Point Subtract (Point p1, Point p2)
{ return p1 - p2; }

}

With this, the Point type is able to expose the same functionality using whichever technique
a given language demands. C# users can apply the + and - operators and/or call Add()/Subtract():

// Use operator + or Add().
Console.WriteLine("ptOne + ptTwo: {0} ", ptOne + ptTwo);
Console.WriteLine("Point.Add(ptOne, ptTwo): {0} ", Point.Add(ptOne, ptTwo));

// Use operator - or Subtract().
Console.WriteLine("ptOne - ptTwo: {0} ", ptOne - ptTwo);
Console.WriteLine("Point.Subtract(ptOne, ptTwo): {0} ",

Point.Subtract(ptOne, ptTwo));

Languages that cannot use overloaded operators can simply make due with the public static
methods. As an alternative to providing duplicate functionality on the same type, understand that
it is also possible to directly call the specially named methods from languages that lack overloaded
operators.

Consider the initial release of the VB .NET programming language. If you were to build a VB .NET
console application that references the Point type, you could add or subtract Point types using the CIL
“special names,” for example:

' Assume this VB .NET application has access to the Point type.
Module OverLoadedOpClient

Sub Main()
Dim p1 As Point
p1.x = 200
p1.y = 9

Dim p2 As Point
p2.x = 9
p2.y = 983

' Not as clean as calling AddPoints(),
' but it gets the job done.
Dim bigPoint = Point.op_Addition(p1, p2)
Console.WriteLine("Big point is {0}", bigPoint)

End Sub
End Module

As you can see, overloaded operator–challenged .NET programming languages are able to
directly invoke the internal CIL methods as if they were “normal” methods. While it is not pretty,
it works.

■Note Do be aware that the current version of VB .NET (Visual Basic .NET 2005) supports operator overloading.
However, for the (many) managed languages that do not support operator overloading, knowledge of CIL “special
names” can prove helpful.

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES300

4193ch09.qxd 8/14/05 2:50 PM Page 300

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 301

Final Thoughts Regarding Operator Overloading
As you have seen, C# provides the capability to build types that can respond uniquely to various
intrinsic, well-known operators. Now, before you go and retrofit all your classes to support such
behavior, you must be sure that the operator(s) you are about to overload make some sort of logical
sense in the world at large.

For example, let’s say you overloaded the multiplication operator for the Engine class. What exactly
would it mean to multiply two Engine objects? Not much. Overloading operators is generally only use-
ful when you’re building utility types. Strings, points, rectangles, fractions, and hexagons make good
candidates for operator overloading. People, managers, cars, headphones, and baseball hats do not. As
a rule of thumb, if an overloaded operator makes it harder for the user to understand a type’s functionality,
don’t do it. Use this feature wisely.

■Source Code The OverloadedOps project is located under the Chapter 9 subdirectory.

Understanding Custom Type Conversions
Let’s now examine a topic closely related to operator overloading: custom type conversions. To set
the stage for the discussion to follow, let’s quickly review the notion of explicit and implicit conver-
sions between numerical data and related class types.

Recall: Numerical Conversions
In terms of the intrinsic numerical types (sbyte, int, float, etc.), an explicit conversion is required
when you attempt to store a larger value in a smaller container, as this may result in a loss of data.
Basically, this is your way to tell the compiler, “Leave me alone, I know what I am trying to do.”
Conversely, an implicit conversion happens automatically when you attempt to place a smaller
type in a destination type that will not result in a loss of data:

static void Main()
{

int a = 123;
long b = a; // Implicit conversion from int to long
int c = (int) b; // Explicit conversion from long to int

}

Recall: Conversions Among Related Class Types
As shown in Chapter 4, class types may be related by classical inheritance (the “is-a” relationship). In
this case, the C# conversion process allows you to cast up and down the class hierarchy. For example,
a derived class can always be implicitly cast into a given base type. However, if you wish to store a base
class type in a derived variable, you must perform an explicit cast:

// Two related class types.
class Base{}
class Derived : Base{}

class Program
{

static void Main()
{

4193ch09.qxd 8/14/05 2:50 PM Page 301

// Implicit cast between derived to base.
Base myBaseType;
myBaseType = new Derived();

// Must explicitly cast to store base reference
// in derived type.
Derived myDerivedType = (Derived)myBaseType;

}
}

This explicit cast works due to the fact that the Base and Derived classes are related by classical
inheritance. However, what if you have two class types in different hierarchies that require conversions?
Given that they are not related by classical inheritance, explicit casting offers no help.

On a related note, consider value types. Assume you have two .NET structures named Square
and Rectangle. Given that structures cannot leverage classic inheritance, you have no natural way
to cast between these seemingly related types (assuming it made sense to do so).

While you could build helper methods in the structures (such as Rectangle.ToSquare()), C#
allows you to build custom conversion routines that allow your types to respond to the () operator.
Therefore, if you configured the Square type correctly, you would be able to use the following syn-
tax to explicitly convert between these structure types:

// Convert a Rectangle to a Square.
Rectangle rect;
rect.Width = 3;
rect.Height = 10;
Square sq = (Square)rect;

Creating Custom Conversion Routines
C# provides two keywords, explicit and implicit, that you can use to control how your types respond
during an attempted conversion. Assume you have the following structure definitions:

public struct Rectangle
{

// Public for ease of use;
// however, feel free to encapsulate with properties.
public int Width, Height;

public void Draw()
{ Console.WriteLine("Drawing a rect.");}

public override string ToString()
{

return string.Format("[Width = {0}; Height = {1}]",
Width, Height);

}
}

public struct Square
{

public int Length;

public void Draw()
{ Console.WriteLine("Drawing a square.");}

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES302

4193ch09.qxd 8/14/05 2:50 PM Page 302

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 303

public override string ToString()
{ return string.Format("[Length = {0}]", Length); }

// Rectangles can be explicitly converted
// into Squares.
public static explicit operator Square(Rectangle r)
{

Square s;
s.Length = r.Width;
return s;

}
}

Notice that this iteration of the Rectangle type defines an explicit conversion operator. Like the
process of overloading an operator, conversion routines make use of the C# operator keyword (in con-
junction with the explicit or implicit keyword) and must be defined as static. The incoming parameter
is the entity you are converting from, while the return value is the entity you are converting to:

public static explicit operator Square(Rectangle r)
{...}

In any case, the assumption is that a square (being a geometric pattern in which all sides are of
equal length) can be obtained from the width of a rectangle. Thus, you are free to convert a Rectangle
into a Square as so:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Custom Conversions *****\n");

// Create a 5 * 10 Rectangle.
Rectangle rect;
rect.Width = 10;
rect.Height = 5;
Console.WriteLine("rect = {0}", rect);

// Convert Rectangle to a 10 * 10 Square.
Square sq = (Square)rect;
Console.WriteLine("sq = {0}", sq);
Console.ReadLine();

}

While it may not be all that helpful to convert a Rectangle into a Square within the same scope,
assume you have a function that has been prototyped to take Square types.

// This method requires a Square type.
private static void DrawSquare(Square sq)
{

sq.Draw();
}

Using your explicit conversion operation, you can safely pass in Square types for processing:

static void Main(string[] args)
{
...

// Convert Rectangle to Square to invoke method.
DrawSquare((Square)rect);

}

4193ch09.qxd 8/14/05 2:50 PM Page 303

Additional Explicit Conversions for the Square Type
Now that you can explicitly convert Rectangles into Squares, let’s examine a few additional explicit
conversions. Given that a square is symmetrical on each side, it might be helpful to provide an explicit
conversion routine that allows the caller to cast from a System.Int32 type into a Square (which, of
course, will have a side length equal to the incoming integer). Likewise, what if you were to update
Square such that the caller can cast from a Square into a System.Int32? Here is the calling logic:

static void Main(string[] args)
{
...

// Converting a System.Int32 to a Square.
Square sq2 = (Square)90;
Console.WriteLine("sq2 = {0}", sq2);

// Converting a Square to a System.Int32.
int side = (int)sq2;
Console.WriteLine("Side length of sq2 = {0}", side);

}

And here is the update to the Square type:

public struct Square
{
...

public static explicit operator Square(int sideLength)
{

Square newSq;
newSq.Length = sideLength;
return newSq;

}

public static explicit operator int (Square s)
{return s.Length;}

}

Wild, huh? To be honest, converting from a Square into a System.Int32 may not be the most
intuitive (or useful) operation. However, this does point out a very important fact regarding custom
conversion routines: the compiler does not care what you convert to or from, as long as you have
written syntactically correct code. Thus, as with overloading operators, just because you can create
an explicit cast operation for a given type does not mean you should. Typically, this technique will
be most helpful when you’re creating .NET structure types, given that they are unable to participate
in classical inheritance (where casting comes for free).

Defining Implicit Conversion Routines
Thus far, you have created various custom explicit conversion operations. However, what about the
following implicit conversion?

static void Main(string[] args)
{
...

// Attempt to make an implicit cast?
Square s3;
s3.Length = 83;
Rectangle rect2 = s3;

}

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES304

4193ch09.qxd 8/14/05 2:50 PM Page 304

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 305

As you might expect, this code will not compile, given that you have not provided an implicit con-
version routine for the Rectangle type. Now here is the catch: it is illegal to define explicit and implicit
conversion functions on the same type, if they do not differ by their return type or parameter set. This
might seem like a limitation; however, the second catch is that when a type defines an implicit conver-
sion routine, it is legal for the caller to make use of the explicit cast syntax!

Confused? To clear things up, let’s add an implicit conversion routine to the Rectangle structure
using the C# implicit keyword (note that the following code assumes the width of the resulting Rectangle
is computed by multiplying the side of the Squareby 2):

public struct Rectangle
{
...

public static implicit operator Rectangle(Square s)
{

Rectangle r;
r.Height = s.Length;

// Assume the length of the new Rectangle with
// (Length x 2)
r.Width = s.Length * 2;
return r;

}
}

With this update, you are now able to convert between types as follows:

static void Main(string[] args)
{
...

// Implicit cast OK!
Square s3;
s3.Length= 83;
Rectangle rect2 = s3;
Console.WriteLine("rect2 = {0}", rect2);
DrawSquare(s3);

// Explicit cast syntax still OK!
Square s4;
s4.Length = 3;
Rectangle rect3 = (Rectangle)s4;
Console.WriteLine("rect3 = {0}", rect3);

...
}

Again, be aware that it is permissible to define explicit and implicit conversion routines for the
same type as long as their signatures differ. Thus, you could update the Square as follows:

public struct Square
{
...

// Can call as:
// Square sq2 = (Square)90;
// or as:
// Square sq2 = 90;
public static implicit operator Square(int sideLength)
{

4193ch09.qxd 8/14/05 2:50 PM Page 305

Figure 9-2. CIL representation of user-defined conversion routines

Square newSq;
newSq.Length = sideLength;
return newSq;

}

// Must call as:
// int side = (Square)mySquare;
public static explicit operator int (Square s)
{ return s.Length; }

}

The Internal Representation of Custom Conversion
Routines
Like overloaded operators, methods that are qualified with the implicit or explicit keywords have
“special” names in terms of CIL: op_Implicit and op_Explicit, respectively (see Figure 9-2).

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES306

That wraps up our examination of defining custom conversion routines. As with overloaded
operators, remember that this bit of syntax is simply a shorthand notation for “normal” member
functions, and in this light it is always optional.

■Source Code The CustomConversions project is located under the Chapter 9 subdirectory.

4193ch09.qxd 8/14/05 2:50 PM Page 306

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 307

The Advanced Keywords of C#
To close this chapter, you’ll examine some of the more esoteric C# keywords:

• checked/unchecked

• unsafe/stackalloc/fixed/sizeof

To start, let’s check out how C# provides automatic detection of arithmetic overflow and underflow
conditions using the checked and unchecked keywords.

The checked Keyword
As you are no doubt well aware, each numerical data type has a fixed upper and lower limit (which
may be obtained programmatically using the MaxValue and MinValue properties). Now, when you are
performing arithmetic operations on a specific type, it is very possible that you may accidentally over-
flow the maximum storage of the type (i.e., assign a value that is greater than the maximum value) or
underflow the minimum storage of the type (i.e., assign a value that is less than the minimum value).
To keep in step with the CLR, I will refer to both of these possibilities collectively as “overflow.” (As you
will see, checked overflow and underflow conditions result in a System.OverflowException type. There
is no System.UnderflowException type in the base class libraries.)

To illustrate the issue, assume you have created two System.Byte types (a C# byte), each of which
has been assigned a value that is safely below the maximum (255). If you were to add the values of
these types (casting the resulting integer as a byte), you would assume that the result would be the
exact sum of each member:

namespace CheckedUnchecked
{

class Program
{

static void Main(string[] args)
{

// Overflow the max value of a System.Byte.
Console.WriteLine("Max value of byte is {0}.", byte.MaxValue);
Console.WriteLine("Min value of byte is {0}.", byte.MinValue);
byte b1 = 100;
byte b2 = 250;
byte sum = (byte)(b1 + b2);

// sum should hold the value 350, however...
Console.WriteLine("sum = {0}", sum);
Console.ReadLine();

}
}

}

If you were to view the output of this application, you might be surprised to find that sum con-
tains the value 94 (rather than the expected 350). The reason is simple. Given that a System.Byte can
hold a value only between 0 and 255 (inclusive, for a grand total of 256 slots), sum now contains the
overflow value (350 – 256 = 94). As you have just seen, if you take no corrective course of action, over-
flow occurs without exception. At times, this hidden overflow may cause no harm whatsoever in your
project. Other times, this loss of data is completely unacceptable.

To handle overflow or underflow conditions in your application, you have two options. Your first
choice is to leverage your wits and programming skills to handle all overflow conditions manually.
Assuming you were indeed able to find each overflow condition in your program, you could resolve
the previous overflow error as follows:

4193ch09.qxd 8/14/05 2:50 PM Page 307

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES308

// Store sum in an integer to prevent overflow.
byte b1 = 100;
byte b2 = 250;
int sum = b1 + b2;

Of course, the problem with this technique is the simple fact that you are human, and even your
best attempts may result in errors that have escaped your eyes. Given this, C# provides the checked
keyword. When you wrap a statement (or a block of statements) within the scope of the checked key-
word, the C# compiler emits specific CIL instructions that test for overflow conditions that may
result when adding, multiplying, subtracting, or dividing two numerical data types. If an overflow has
occurred, the runtime will throw a System.OverflowException type. Observe the following update:

class Program
{

static void Main(string[] args)
{

// Overflow the max value of a System.Byte.
Console.WriteLine("Max value of byte is {0}.", byte.MaxValue);
byte b1 = 100;
byte b2 = 250;

try
{

byte sum = checked((byte)(b1 + b2));
Console.WriteLine("sum = {0}", sum);

}
catch(OverflowException e)
{ Console.WriteLine(e.Message); }

}
}

Here, you wrap the addition of b1 and b2 within the scope of the checked keyword. If you wish
to force overflow checking to occur over a block of code, you can interact with the checked keyword
as follows:

try
{

checked
{

byte sum = (byte)(b1 + b2);
Console.WriteLine("sum = {0}", sum);

}
}
catch(OverflowException e)
{

Console.WriteLine(e.Message);
}

In either case, the code in question will be evaluated for possible overflow conditions automatically,
which will trigger an overflow exception if encountered.

Setting Projectwide Overflow Checking
Now, if you are creating an application that should never allow silent overflow to occur, you may
find yourself in the annoying position of wrapping numerous lines of code within the scope of the
checked keyword. As an alternative, the C# compiler supports the /checked flag. When enabled, all
of your arithmetic will be evaluated for overflow without the need to make use of the C# checked
keyword. If overflow has been discovered, you will still receive a runtime OverflowException.

4193ch09.qxd 8/14/05 2:50 PM Page 308

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 309

Figure 9-3. Enabling Visual Studio 2005 overflow checking

To enable this flag using Visual Studio 2005, open your project’s property page and click the
Advanced button on the Build tab. From the resulting dialog box, select the “Check for arithmetic
overflow/underflow” check box (see Figure 9-3).

As you may guess, this setting can be very helpful when you’re creating a debug build. Once all
of the overflow exceptions have been squashed out of the code base, you’re free to disable the /checked
flag for subsequent builds (which will increase the runtime execution of your application).

The unchecked Keyword
Now, assuming you have enabled this projectwide setting, what are you to do if you have a block of
code where silent overflow is acceptable? Given that the /checked flag will evaluate all arithmetic logic,
the C# language provides the unchecked keyword to disable the throwing of System.OverflowException
on a case-by-case basis. This keyword’s use is identical to that of the checked keyword in that you can
specify a single statement or a block of statements, for example:

// Assuming /checked is enabled,
// this block will not trigger
// a runtime exception.
unchecked
{

byte sum = (byte)(b1 + b2);
Console.WriteLine("sum = {0}", sum);

}

So, to summarize the C# checked and unchecked keywords, remember that the default behavior
of the .NET runtime is to ignore arithmetic overflow. When you want to selectively handle discrete
statements, make use of the checked keyword. If you wish to trap overflow errors throughout your
application, enable the /checked flag. Finally, the unchecked keyword may be used if you have
a block of code where overflow is acceptable (and thus should not trigger a runtime exception).

■Source Code The CheckedUnchecked project can be found under the Chapter 9 subdirectory.

4193ch09.qxd 8/14/05 2:50 PM Page 309

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES310

Working with Pointer Types
In Chapter 3, you learned that the .NET platform defines two major categories of data: value types and
reference types. Truth be told, however, there is a third category: pointer types. To work with pointer
types, we are provided with specific operators and keywords that allow us to bypass the CLR’s memory
management scheme and take matters into our own hands (see Table 9-3).

Table 9-3. Pointer-centric C# Operators and Keywords

Operator/Keyword Meaning in Life

* This operator is used to create a pointer variable (i.e., a variable that
represents a direct location in memory). As in C(++), this same operator
is used for pointer indirection.

& This operator is used to obtain the address of a variable in memory.

–> This operator is used to access fields of a type that is represented by
a pointer (the unsafe version of the C# dot operator).

[] The [] operator (in an unsafe context) allows you to index the slot
pointed to by a pointer variable (recall the interplay between a pointer
variable and the [] operator in C(++)!).

++, -- In an unsafe context, the increment and decrement operators can be
applied to pointer types.

+, - In an unsafe context, the addition and subtraction operators can be
applied to pointer types.

==, !=, <, >, <=, => In an unsafe context, the comparison and equality operators can be
applied to pointer types.

stackalloc In an unsafe context, the stackalloc keyword can be used to allocate
C# arrays directly on the stack.

fixed In an unsafe context, the fixed keyword can be used to temporarily fix
a variable so that its address may be found.

Now, before we dig into the details, let me point out the fact that you will seldom if ever need to
make use of pointer types. Although C# does allow you to drop down to the level of pointer manipu-
lations, understand that the .NET runtime has absolutely no clue of your intentions. Thus, if
you mismanage a pointer, you are the one in charge of dealing with the consequences. Given
these warnings, when exactly would you need to work with pointer types? There are two com-
mon situations:

• You are looking to optimize select parts of your application by directly manipulating memory
outside the management of the CLR.

• You are calling methods of a C-based *.dll or COM server that demand pointer types as
parameters.

In the event that you do decide to make use of this C# language feature, you will be required to
inform csc.exe of your intentions by enabling your project to support “unsafe code.” To do so using
the C# command-line compiler (csc.exe), simply supply the /unsafe flag as an argument. From
Visual Studio 2005, you will need to access your project’s Properties page and enable the Allow Unsafe
Code option from the Build tab (see Figure 9-4).

4193ch09.qxd 8/14/05 2:50 PM Page 310

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 311

Figure 9-4. Enabling unsafe code using Visual Studio 2005

The unsafe Keyword
In the examples that follow, I’m assuming that you have some background in C(++) pointer manipu-
lations. If this is not true in your case, don’t sweat it. Again, writing unsafe code will not be a common
task for a majority of .NET applications. When you wish to work with pointers in C#, you must specif-
ically declare a block of “unsafe” code using the unsafe keyword (as you might guess, any code that is
not marked with the unsafe keyword is considered “safe” automatically):

unsafe
{

// Work with pointer types here!
}

In addition to declaring a scope of unsafe code, you are able to build structures, classes, type
members, and parameters that are “unsafe.” Here are a few examples to gnaw on:

// This entire structure is 'unsafe' and can
// be used only in an unsafe context.
public unsafe struct Node
{

public int Value;
public Node* Left;
public Node* Right;

}

// This struct is safe, but the Node* members
// are not. Technically, you may access 'Value' from
// outside an unsafe context, but not 'Left' and 'Right'.
public struct Node
{

public int Value;

// These can be accessed only in an unsafe context!
public unsafe Node* Left;
public unsafe Node* Right;

}

4193ch09.qxd 8/14/05 2:50 PM Page 311

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES312

Methods (static or instance level) may be marked as unsafe as well. For example, assume that
you know a given static method will make use of pointer logic. To ensure that this method can be called
only from an unsafe context, you could define the method as follows:

unsafe public static void SomeUnsafeCode()
{

// Work with pointer types here!
}

This configuration demands that the caller invoke SomeUnsafeCode() as so:

static void Main(string[] args)
{

unsafe
{

SomeUnsafeCode();
}

}

Conversely, if you would rather not force the caller to wrap the invocation within an unsafe con-
text, you could remove the unsafe keyword from the SomeUnsafeCode() method signature and opt for
the following:

public static void SomeUnsafeCode()
{

unsafe
{

// Work with pointers here!
}

}

which would simplify the call to this:

static void Main(string[] args)
{

SomeUnsafeCode();
}

Working with the * and & Operators
Once you have established an unsafe context, you are then free to build pointers to data types using
the * operator and obtain the address of said pointer using the & operator. Using C#, the * operator
is applied to the underlying type only, not as a prefix to each pointer variable name. For example,
the following code declares two variables, both of type int* (a pointer to an integer):

// No! This is incorrect under C#!
int *pi, *pj;

// Yes! This is the way of C#.
int* pi, pj;

Consider the following example:

unsafe
{

int myInt;

// Define an int pointer, and
// assign it the address of myInt.
int* ptrToMyInt = &myInt;

4193ch09.qxd 8/14/05 2:50 PM Page 312

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 313

// Assign value of myInt using pointer indirection.
*ptrToMyInt = 123;

// Print some stats.
Console.WriteLine("Value of myInt {0}", myInt);
Console.WriteLine("Address of myInt {0:X}", (int)&ptrToMyInt);

}

An Unsafe (and Safe) Swap Function
Of course, declaring pointers to local variables simply to assign their value (as shown in the previous
example) is never required and not altogether useful. To illustrate a more practical example of unsafe
code, assume you wish to build a swap function using pointer arithmetic:

unsafe public static void UnsafeSwap(int* i, int* j)
{

int temp = *i;
*i = *j;
*j = temp;

}

Very C-like, don’t you think? However, given your work in Chapter 3, you should be aware that
you could write the following safe version of your swap algorithm using the C# ref keyword:

public static void SafeSwap(ref int i, ref int j)
{

int temp = i;
i = j;
j = temp;

}

The functionality of each method is identical, thus reinforcing the point that direct pointer
manipulation is not a mandatory task under C#. Here is the calling logic:

static void Main(string[] args)
{

Console.WriteLine("***** Calling method with unsafe code *****");

// Values for swap.
int i = 10, j = 20;

// Swap values 'safely'.
Console.WriteLine("\n***** Safe swap *****");
Console.WriteLine("Values before safe swap: i = {0}, j = {1}", i, j);
SafeSwap(ref i, ref j);
Console.WriteLine("Values after safe swap: i = {0}, j = {1}", i, j);

// Swap values 'unsafely'.
Console.WriteLine("\n***** Unsafe swap *****");
Console.WriteLine("Values before unsafe swap: i = {0}, j = {1}", i, j);
unsafe { UnsafeSwap(&i, &j); }
Console.WriteLine("Values after unsafe swap: i = {0}, j = {1}", i, j);
Console.ReadLine();

}

4193ch09.qxd 8/14/05 2:50 PM Page 313

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES314

Field Access via Pointers (the -> Operator)
Now assume that you have defined a Point structure and wish to declare a pointer to a Point type.
Like C(++), when you wish to invoke methods or trigger fields of a pointer type, you will need to
make use of the pointer-field access operator (->). As mentioned in Table 9-3, this is the unsafe
version of the standard (safe) dot operator (.). In fact, using the pointer indirection operator (*), it
is possible to dereference a pointer to (once again) apply the dot operator notation. Check out the
following:

struct Point
{

public int x;
public int y;
public override string ToString()
{ return string.Format("({0}, {1})", x, y);}

}

static void Main(string[] args)
{

// Access members via pointer.
unsafe
{

Point point;
Point* p = &point;
p->x = 100;
p->y = 200;
Console.WriteLine(p->ToString());

}

// Access members via pointer indirection.
unsafe
{

Point point;
Point* p = &point;
(*p).x = 100;
(*p).y = 200;
Console.WriteLine((*p).ToString());

}
}

The stackalloc Keyword
In an unsafe context, you may need to declare a local variable that allocates memory directly from
the call stack (and is therefore not subject to .NET garbage collection). To do so, C# provides the
stackalloc keyword, which is the C# equivalent to the _alloca function of the C runtime library.
Here is a simple example:

unsafe
{

char* p = stackalloc char[256];
for (int k = 0; k < 256; k++)

p[k] = (char)k;
}

4193ch09.qxd 8/14/05 2:50 PM Page 314

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 315

Pinning a Type via the fixed Keyword
As you saw in the previous example, allocating a chunk of memory within an unsafe context may be
facilitated via the stackalloc keyword. By the very nature of this operation, the allocated memory is
cleaned up as soon as the allocating method has returned (as the memory is acquired from the stack).
However, assume a more complex example. During our examination of the -> operator, you created
a value type named Point. Like all value types, the allocated memory is popped off the stack once
the executing scope has terminated. For the sake of argument, assume Point was instead defined as
a reference type:

class Point // <= Now a class!
{

public int x;
public int y;
public override string ToString()
{ return string.Format("({0}, {1})", x, y);}

}

As you are well aware, if the caller declares a variable of type Point, the memory is allocated on
the garbage collected heap. The burning question then becomes, what if an unsafe context wishes
to interact with this object (or any object on the heap)? Given that garbage collection can occur at
any moment, imagine the pain of accessing the members of Point at the very point in time at which
a sweep of the heap is under way. Theoretically, it is possible that the unsafe context is attempting to
interact with a member that is no longer accessible or has been repositioned on the heap after
surviving a generational sweep (which is an obvious problem).

To lock a reference type variable in memory from an unsafe context, C# provides the fixed
keyword. The fixed statement sets a pointer to a managed type and “pins” that variable during
the execution of statement. Without fixed, pointers to managed variables would be of little use,
since garbage collection could relocate the variables unpredictably. (In fact, the C# compiler will
not allow you to set a pointer to a managed variable except in a fixed statement.)

Thus, if you create a Point type (now redesigned as a class) and want to interact with its members,
you must write the following code (or receive a compiler error):

unsafe public static void Main()
{

Point pt = new Point();
pt.x = 5;
pt.y = 6;

// pin pt in place so it will not
// be moved or GC-ed.
fixed (int* p = &pt.x)
{

// Use int* variable here!
}

// pt is now unpinned, and ready to be GC-ed.
Console.WriteLine ("Point is: {0}", pt);

}

In a nutshell, the fixed keyword allows you to build a statement that locks a reference vari-
able in memory, such that its address remains constant for the duration of the statement. To be
sure, any time you interact with a reference type from within the context of unsafe code, pinning
the reference is a must.

4193ch09.qxd 8/14/05 2:50 PM Page 315

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES316

The sizeof Keyword
The final unsafe-centric C# keyword to consider is sizeof. As in C(++), the C# sizeof keyword is used
to obtain the size in bytes for a value type (never a reference type), and it may only be used within an
unsafe context. As you may imagine, this ability may prove helpful when you’re interacting with
unmanaged C-based APIs. Its usage is straightforward:

unsafe
{

Console.WriteLine("The size of short is {0}.", sizeof(short));
Console.WriteLine("The size of int is {0}.", sizeof(int));
Console.WriteLine("The size of long is {0}.", sizeof(long));

}

As sizeof will evaluate the number of bytes for any System.ValueType-derived entity, you are
able to obtain the size of custom structures as well. Assume you have defined the following struct:

struct MyValueType
{

public short s;
public int i;
public long l;

}

You can now obtain its size as follows:

unsafe
{

Console.WriteLine("The size of short is {0}.", sizeof(short));
Console.WriteLine("The size of int is {0}.", sizeof(int));
Console.WriteLine("The size of long is {0}.", sizeof(long));
Console.WriteLine("The size of MyValueType is {0}.",

sizeof(MyValueType));
}

■Source Code The UnsafeCode project can be found under the Chapter 9 subdirectory.

C# Preprocessor Directives
Like many other languages in the C family, C# supports the use of various symbols that allow you to
interact with the compilation process. Before examining various C# preprocessor directives, let’s get
our terminology correct. The term “C# preprocessor directive” is not entirely accurate. In reality, this
term is used only for consistency with the C and C++ programming languages. In C#, there is no sep-
arate preprocessing step. Rather, preprocessing directives are processed as part of the lexical analysis
phase of the compiler.

In any case, the syntax of the C# preprocessor directives is very similar to that of the other mem-
bers of the C family, in that the directives are always prefixed with the pound sign (#). Table 9-4 defines
some of the more commonly used directives (consult the .NET Framework 2.0 SDK documentation for
complete details).

4193ch09.qxd 8/14/05 2:50 PM Page 316

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 317

Figure 9-5. Regions at work

Table 9-4. Common C# Preprocessor Directives

Directives Meaning in Life

#region, #endregion Used to mark sections of collapsible source code

#define, #undef Used to define and undefine conditional compilation symbols

#if, #elif, #else, #endif Used to conditionally skip sections of source code (based on specified
compilation symbols)

Specifying Code Regions
Perhaps some of the most useful of all preprocessor directives are #region and #endregion. Using
these tags, you are able to specify a block of code that may be hidden from view and identified by
a friendly textual marker. Use of regions can help keep lengthy *.cs files more manageable. For exam-
ple, you could create one region for a type’s constructors, another for type properties, and so forth:

class Car
{

private string petName;
private int currSp;

#region Constructors
public Car()
{ ... }
public Car Car(int currSp, string petName)
{...}
#endregion

#region Properties
public int Speed
{ ... }
public string Name
{...}
#endregion

}

When you place your mouse cursor over a collapsed region, you are provided with a snapshot
of the code lurking behind (see Figure 9-5).

4193ch09.qxd 8/14/05 2:50 PM Page 317

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES318

Conditional Code Compilation
The next batch of preprocessor directives (#if, #elif, #else, #endif) allows you to conditionally com-
pile a block of code, based on predefined symbols. The classic use of these directives is to identify
a block of code that is compiled only under a debug (rather than a release) build:

class Program
{

static void Main(string[] args)
{

// This code will only execute if the project is
// compiled as a Debug build.
#if DEBUG
Console.WriteLine("App directory: {0}",

Environment.CurrentDirectory);
Console.WriteLine("Box: {0}",

Environment.MachineName);
Console.WriteLine("OS: {0}",

Environment.OSVersion);
Console.WriteLine(".NET Version: {0}",

Environment.Version);
#endif

}
}

Here, you are checking for a symbol named DEBUG. If it is present, you dump out a number of
interesting statistics using some static members of the System.Environment class. If the DEBUG sym-
bol is not defined, the code placed between #if and #endif will not be compiled into the resulting
assembly, and it will be effectively ignored.

By default, Visual Studio 2005 always defines a DEBUG symbol; however, this can be prevented by
deselecting the “Define DEBUG constant” check box located under the Build tab of your project’s
Properties page. Assuming you did disable this autogenerated DEBUG symbol, you could now define
this symbol on a file-by-file basis using the #define preprocessor directive:

#define DEBUG
using System;

namespace Preprocessor
{

class ProcessMe
{

static void Main(string[] args)
{

// Same code as before...
}

}
}

■Note #define directives must be listed before anything else in a C# code file.

You are also able to define your own custom preprocessor symbols. For example, assume you
have authored a C# class that should be compiled a bit differently under the Mono distribution of
.NET (see Chapter 1). Using #define, you can define a symbol named MONO_BUILD on a file-by-file
basis:

4193ch09.qxd 8/14/05 2:50 PM Page 318

CHAPTER 9 ■ ADVANCED C# TYPE CONSTRUCTION TECHNIQUES 319

Figure 9-6. Defining a projectwide preprocessor symbol

#define DEBUG
#define MONO_BUILD

using System;

namespace Preprocessor
{

class Program
{

static void Main(string[] args)
{

#if MONO_BUILD
Console.WriteLine("Compiling under Mono!");

#else
Console.WriteLine("Compiling under Microsoft .NET");

#endif
}

}
}

To create a project-wide symbol, make use of the “Conditional compilation symbols” text box
located on the Build tab of your project’s Properties page (see Figure 9-6).

Summary
The purpose of this chapter is to deepen your understanding of the C# programming language. You
began by investigating various advanced type construction techniques (indexer methods, overloaded
operators, and custom conversion routines). You spent the remainder of this chapter examining
a small set of lesser-known keywords (e.g., sizeof, checked, unsafe, and so forth), and during the
process came to learn how to work with raw pointer types. As stated throughout the chapter’s exami-
nation of pointer types, a vast majority of your C# applications will never need to make use of them.

4193ch09.qxd 8/14/05 2:50 PM Page 319

4193ch09.qxd 8/14/05 2:50 PM Page 320

Understanding Generics

With the release of .NET 2.0, the C# programming language has been enhanced to support a new
feature of the CTS termed generics. Simply put, generics provide a way for programmers to define
“placeholders” (formally termed type parameters) for method arguments and type definitions, which
are specified at the time of invoking the generic method or creating the generic type.

To illustrate this new language feature, this chapter begins with an examination of the
System.Collections.Generic namespace. Once you’ve seen generic support within the base class
libraries, in the remainder of this chapter you’ll examine how you can build your own generic mem-
bers, classes, structures, interfaces, and delegates.

Revisiting the Boxing, Unboxing, and
System.Object Relationship
To understand the benefits provided by generics, it is helpful to understand the “issues” programmers
had without them. As you recall from Chapter 3, the .NET platform supports automatic conversion
between stack-allocated and heap-allocated memory through boxing and unboxing. At first glance,
this may seem like a rather uneventful language feature that is more academic than practical. In
reality, the (un)boxing process is very helpful in that it allows us to assume everything can be treated
as a System.Object, while the CLR takes care of the memory-related details on our behalf.

To review the boxing process, assume you have created a System.Collections.ArrayList to hold
numeric (stack-allocated) data. Recall that the members of ArrayList are all prototyped to receive
and return System.Object types. However, rather than forcing programmers to manually wrap the
stack-based integer in a related object wrapper, the runtime will automatically do so via a boxing
operation:

static void Main(string[] args)
{

// Value types are automatically boxed when
// passed to a member requesting an object.
ArrayList myInts = new ArrayList();
myInts.Add(10);
Console.ReadLine();

}

If you wish to retrieve this value from the ArrayList object using the type indexer, you must
unbox the heap-allocated object into a stack-allocated integer using a casting operation:

static void Main(string[] args)
{
...

// Value is now unboxed...then reboxed!
321

C H A P T E R 1 0

■ ■ ■

4193ch10.qxd 8/14/05 2:51 PM Page 321

CHAPTER 10 ■ UNDERSTANDING GENERICS322

Console.WriteLine("Value of your int: {0}",
(int)myInts[0]);

Console.ReadLine();
}

When the C# compiler transforms a boxing operation into terms of CIL code, you find the box
opcode is used internally. Likewise, the unboxing operation is transformed into a CIL unbox opera-
tion. Here is the relevant CIL code for the previous Main() method (which can be viewed using
ildasm.exe):

.method private hidebysig static void Main(string[] args) cil managed
{
...

box [mscorlib]System.Int32
callvirt instance int32 [mscorlib]System.Collections.ArrayList::Add(object)
pop
ldstr "Value of your int: {0}"
ldloc.0
ldc.i4.0
callvirt instance object [mscorlib]

System.Collections.ArrayList::get_Item(int32)
unbox [mscorlib]System.Int32
ldind.i4
box [mscorlib]System.Int32
call void [mscorlib]System.Console::WriteLine(string, object)

...
}

Note that the stack-allocated System.Int32 is boxed prior to the call to ArrayList.Add() in
order to pass in the required System.Object. Also note that the System.Object is unboxed back into
a System.Int32 once retrieved from the ArrayList using the type indexer (which maps to the hidden
get_Item() method), only to be boxed again when it is passed to the Console.WriteLine() method.

The Problem with (Un)Boxing Operations
Although boxing and unboxing are very convenient from a programmer’s point of view, this simpli-
fied approach to stack/heap memory transfer comes with the baggage of performance issues and
a lack of type safety. To understand the performance issues, ponder the steps that must occur to box
and unbox a simple integer:

1. A new object must be allocated on the managed heap.

2. The value of the stack-based data must be transferred into that memory location.

3. When unboxed, the value stored on the heap-based object must be transferred back to the
stack.

4. The now unused object on the heap will (eventually) be garbage collected.

Although the current Main() method won’t cause a major bottleneck in terms of performance,
you could certainly feel the impact if an ArrayList contained thousands of integers that are manip-
ulated by your program on a somewhat regular basis.

Now consider the lack of type safety regarding unboxing operations. As you know, to unbox
a value using the syntax of C#, you make use of the casting operator. However, the success or failure
of a cast is not known until runtime. Therefore, if you attempt to unbox a value into the wrong data
type, you receive an InvalidCastException:

4193ch10.qxd 8/14/05 2:51 PM Page 322

CHAPTER 10 ■ UNDERSTANDING GENERICS 323

static void Main(string[] args)
{
...

// Ack! Runtime exception!
Console.WriteLine("Value of your int: {0}",

(short)myInts[0]);
Console.ReadLine();

}

In an ideal world, the C# compiler would be able to resolve illegal unboxing operations at com-
pile time, rather than at runtime. On a related note, in a really ideal world, we could store sets of
value types in a container that did not require boxing in the first place. .NET 2.0 generics are the
solution to each of these issues. However, before we dive into the details of generics, let’s see how
programmers attempted to contend with these issues under .NET 1.x using strongly typed collections.

Type Safety and Strongly Typed Collections
In the world of .NET prior to version 2.0, programmers attempted to address type safety by building
custom strongly typed collections. To illustrate, assume you wish to create a custom collection that
can only contain objects of type Person:

public class Person
{

// Made public for simplicity.
public int currAge;
public string fName, lName;

public Person(){}
public Person(string firstName, string lastName, int age)
{

currAge = age;
fName = firstName;
lName = lastName;

}

public override string ToString()
{

return string.Format("{0}, {1} is {2} years old",
lName, fName, currAge);

}
}

To build a person collection, you could define a System.Collections.ArrayList member variable
within a class named PeopleCollection and configure all members to operate on strongly typed
Person objects, rather than on generic System.Objects:

public class PeopleCollection : IEnumerable
{

private ArrayList arPeople = new ArrayList();
public PeopleCollection(){}

// Cast for caller.
public Person GetPerson(int pos)
{ return (Person)arPeople[pos]; }

// Only insert Person types.
public void AddPerson(Person p)
{ arPeople.Add(p); }

4193ch10.qxd 8/14/05 2:51 PM Page 323

CHAPTER 10 ■ UNDERSTANDING GENERICS324

public void ClearPeople()
{ arPeople.Clear(); }

public int Count
{ get { return arPeople.Count; } }

// Foreach enumeration support.
IEnumerator IEnumerable.GetEnumerator()
{ return arPeople.GetEnumerator(); }

}

With these types defined, you are now assured of type safety, given that the C# compiler will be
able to determine any attempt to insert an incompatible type:

static void Main(string[] args)
{

Console.WriteLine("***** Custom Person Collection *****\n");
PeopleCollection myPeople = new PeopleCollection();
myPeople.AddPerson(new Person("Homer", "Simpson", 40));
myPeople.AddPerson(new Person("Marge", "Simpson", 38));
myPeople.AddPerson(new Person("Lisa", "Simpson", 9));
myPeople.AddPerson(new Person("Bart", "Simpson", 7));
myPeople.AddPerson(new Person("Maggie", "Simpson", 2));

// This would be a compile-time error!
myPeople.AddPerson(new Car());

foreach (Person p in myPeople)
Console.WriteLine(p);

Console.ReadLine();
}

While custom collections do ensure type safety, this approach leaves you in a position where
you must create a (almost identical) custom collection for each type you wish to contain. Thus, if
you need a custom collection that will be able to operate only on classes deriving form the Car base
class, you need to build a very similar type:

public class CarCollection : IEnumerable
{

private ArrayList arCars = new ArrayList();
public CarCollection(){}

// Cast for caller.
public Car GetCar(int pos)
{ return (Car) arCars[pos]; }

// Only insert Car types.
public void AddCar(Car c)
{ arCars.Add(c); }

public void ClearCars()
{ arCars.Clear(); }

public int Count
{ get { return arCars.Count; } }

// Foreach enumeration support.
IEnumerator IEnumerable.GetEnumerator()
{ return arCars.GetEnumerator(); }

}

4193ch10.qxd 8/14/05 2:51 PM Page 324

CHAPTER 10 ■ UNDERSTANDING GENERICS 325

As you may know from firsthand experience, the process of creating multiple strongly typed
collections to account for various types is not only labor intensive, but also a nightmare to maintain.
Generic collections allow us to delay the specification of the contained type until the time of creation.
Don’t fret about the syntactic details just yet, however. Consider the following code, which makes
use of a generic class named System.Collections.Generic.List<> to create two type-safe container
objects:

static void Main(string[] args)
{

// Use the generic List type to hold only people.
List<Person> morePeople = new List<Person>();
morePeople.Add(new Person());

// Use the generic List type to hold only cars.
List<Car> moreCars = new List<Car>();

// Compile-time error!
moreCars.Add(new Person());

}

Boxing Issues and Strongly Typed Collections
Strongly typed collections are found throughout the .NET base class libraries and are very useful
programming constructs. However, these custom containers do little to solve the issue of boxing
penalties. Even if you were to create a custom collection named IntCollection that was constructed
to operate only on System.Int32 data types, you must allocate some type of object to hold the data
(System.Array, System.Collections.ArrayList, etc.):

public class IntCollection : IEnumerable
{

private ArrayList arInts = new ArrayList();
public IntCollection() { }

// Unbox for caller.
public int GetInt(int pos)
{ return (int)arInts[pos]; }

// Boxing operation!
public void AddInt(int i)
{ arInts.Add(i); }

public void ClearInts()
{ arInts.Clear(); }

public int Count
{ get { return arInts.Count; } }

IEnumerator IEnumerable.GetEnumerator()
{ return arInts.GetEnumerator(); }

}

Regardless of which type you may choose to hold the integers (System.Array,
System.Collections.ArrayList, etc.), you cannot escape the boxing dilemma using .NET 1.1.
As you might guess, generics come to the rescue again. The following code leverages the
System.Collections.Generic.List<> type to create a container of integers that does not incur
any boxing or unboxing penalties when inserting or obtaining the value type:

4193ch10.qxd 8/14/05 2:51 PM Page 325

CHAPTER 10 ■ UNDERSTANDING GENERICS326

static void Main(string[] args)
{

// No boxing!
List<int> myInts = new List<int>();
myInts.Add(5);

// No unboxing!
int i = myInts[0];

}

Just to prove the point, the previous Main() method results in the following CIL code (note the
lack of any box or unbox opcodes):

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

.maxstack 2

.locals init ([0] class [mscorlib]System.Collections.Generic.'List`1'<int32>
myInts, [1] int32 i)

newobj instance void class
[mscorlib]System.Collections.Generic.'List`1'<int32>::.ctor()

stloc.0
ldloc.0
ldc.i4.5
callvirt instance void class [mscorlib]

System.Collections.Generic.'List`1'<int32>::Add(!0)
nop
ldloc.0
ldc.i4.0
callvirt instance !0 class [mscorlib]

System.Collections.Generic.'List`1'<int32>::get_Item(int32)
stloc.1
ret

}

So now that you have a better feel for the role generics can play under .NET 2.0, you’re ready to dig
into the details. To begin, allow me to formally introduce the System.Collections.Generic namespace.

■Source Code The CustomNonGenericCollection project is located under the Chapter 10 directory.

The System.Collections.Generic Namespace
Generic types are found sprinkled throughout the .NET 2.0 base class libraries; however, the System.
Collections.Generic namespace is chock full of them (as its name implies). Like its nongeneric
counterpart (System.Collections), the System.Collections.Generic namespace contains numerous
class and interface types that allow you to contain subitems in a variety of containers. Not surprisingly,
the generic interfaces mimic the corresponding nongeneric types in the System.Collectionsnamespace:

• ICollection<T>

• IComparer<T>

• IDictionary<K, V>

• IEnumerable<T>

• IEnumerator<T>

• IList<T>

4193ch10.qxd 8/14/05 2:51 PM Page 326

CHAPTER 10 ■ UNDERSTANDING GENERICS 327

■Note By convention, generic types specify their placeholders using uppercase letters. Although any letter
(or word) will do, typically T is used to represent types, K is used for keys, and V is used for values.

The System.Collections.Generic namespace also defines a number of classes that implement
many of these key interfaces. Table 10-1 describes the core class types of this namespace, the inter-
faces they implement, and any corresponding type in the System.Collections namespace.

Table 10-1. Classes of System.Collections.Generic

Nongeneric Counterpart
Generic Class in System.Collections Meaning in Life

Collection<T> CollectionBase The basis for a generic collection

Comparer<T> Comparer Compares two generic objects for
equality

Dictionary<K, V> Hashtable A generic collection of name/value pairs

List<T> ArrayList A dynamically resizable list of items

Queue<T> Queue A generic implementation of a first-in,
first-out (FIFO) list

SortedDictionary<K, V> SortedList A generic implementation of a sorted
set of name/value pairs

Stack<T> Stack A generic implementation of a last-in,
first-out (LIFO) list

LinkedList<T> N/A A generic implementation of a doubly
linked list

ReadOnlyCollection<T> ReadOnlyCollectionBase A generic implementation of a set of
read-only items

The System.Collections.Generic namespace also defines a number of “helper” classes and
structures that work in conjunction with a specific container. For example, the LinkedListNode<T>
type represents a node within a generic LinkedList<T>, the KeyNotFoundException exception is raised
when attempting to grab an item from a container using a nonexistent key, and so forth.

As you can see from Table 10-1, many of the generic collection classes have a nongeneric coun-
terpart in the System.Collections namespace (some of which are identically named). Given that
Chapter 7 illustrated how to work with these nongeneric types, I will not provide a detailed examination
of each generic counterpart. Rather, I’ll make use of List<T> to illustrate the process of working with
generics. If you require details regarding other members of the System.Collections.Generic namespace,
consult the .NET Framework 2.0 documentation.

Examining the List<T> Type
Like nongeneric classes, generic classes are heap-allocated objects, and therefore must be new-ed with
any required constructor arguments. In addition, you are required to specify the type(s) to be substituted
for the type parameter(s) defined by the generic type. For example, System.Collections.Generic.List<T>
requires you to specify a single value that describes the type of item the List<T> will operate upon.
Therefore, if you wish to create three List<> objects to contain integers and SportsCar and Person
objects, you would write the following:

4193ch10.qxd 8/14/05 2:51 PM Page 327

CHAPTER 10 ■ UNDERSTANDING GENERICS328

static void Main(string[] args)
{

// Create a List containing integers.
List<int> myInts = new List<int>();

// Create a List containing SportsCar objects.
List<SportsCar> myCars = new List<SportsCar>();

// Create a List containing Person objects.
List<Person> myPeople = new List<Person>();

}

At this point, you might wonder what exactly becomes of the specified placeholder value. If you
were to make use of the Visual Studio 2005 Code Definition View window (see Chapter 2), you will
find that the placeholder T is used throughout the definition of the List<T> type. Here is a partial
listing (note the items in bold):

// A partial listing of the List<T> type.
namespace System.Collections.Generic
{

public class List<T> :
IList<T>, ICollection<T>, IEnumerable<T>,
IList, ICollection, IEnumerable

{
...

public void Add(T item);
public IList<T> AsReadOnly();
public int BinarySearch(T item);
public bool Contains(T item);
public void CopyTo(T[] array);
public int FindIndex(System.Predicate<T> match);
public T FindLast(System.Predicate<T> match);
public bool Remove(T item);
public int RemoveAll(System.Predicate<T> match);
public T[] ToArray();
public bool TrueForAll(System.Predicate<T> match);
public T this[int index] { get; set; }

..
}

}

When you create a List<T> specifying SportsCar types, it is as if the List<T> type was really
defined as so:

namespace System.Collections.Generic
{

public class List<SportsCar> :
IList<SportsCar>, ICollection<SportsCar>, IEnumerable<SportsCar>,
IList, ICollection, IEnumerable

{
...

public void Add(SportsCar item);
public IList<SportsCar> AsReadOnly();
public int BinarySearch(SportsCar item);
public bool Contains(SportsCar item);
public void CopyTo(SportsCar[] array);
public int FindIndex(System.Predicate<SportsCar> match);
public SportsCar FindLast(System.Predicate<SportsCar> match);
public bool Remove(SportsCar item);

4193ch10.qxd 8/14/05 2:51 PM Page 328

CHAPTER 10 ■ UNDERSTANDING GENERICS 329

public int RemoveAll(System.Predicate<SportsCar> match);
public SportsCar [] ToArray();
public bool TrueForAll(System.Predicate<SportsCar> match);
public SportsCar this[int index] { get; set; }

..
}

}

Of course, when you create a generic List<T>, the compiler does not literally create a brand-new
implementation of the List<T> type. Rather, it will address only the members of the generic type
you actually invoke. To solidify this point, assume you exercise a List<T> of SportsCar objects as so:

static void Main(string[] args)
{

// Exercise a List containing SportsCars
List<SportsCar> myCars = new List<SportsCar>();
myCars.Add(new SportsCar());
Console.WriteLine("Your List contains {0} item(s).", myCars.Count);

}

If you examine the generated CIL code using ildasm.exe, you will find the following substitu-
tions:

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

.maxstack 2

.locals init ([0] class [mscorlib]System.Collections.Generic.'List`1'
<class SportsCar> myCars)

newobj instance void class [mscorlib]System.Collections.Generic.'List`1'
<class SportsCar>::.ctor()

stloc.0
ldloc.0
newobj instance void CollectionGenerics.SportsCar::.ctor()
callvirt instance void class [mscorlib]System.Collections.Generic.'List`1'

<class SportsCar>::Add(!0)
nop
ldstr "Your List contains {0} item(s)."
ldloc.0
callvirt instance int32 class [mscorlib]System.Collections.Generic.'List`1'

<class SportsCar>::get_Count()
box [mscorlib]System.Int32
call void [mscorlib]System.Console::WriteLine(string, object)
nop
ret

}

Now that you’ve looked at the process of working with generic types provided by the base class
libraries, in the remainder of this chapter you’ll examine how to create your own generic methods,
types, and collections.

Creating Generic Methods
To learn how to incorporate generics into your own projects, you’ll begin with a simple example of
a generic swap routine. The goal of this example is to build a swap method that can operate on any
possible data type (value-based or reference-based) using a single type parameter. Due to the nature
of swapping algorithms, the incoming parameters will be sent by reference (via the C# ref keyword).
Here is the full implementation:

4193ch10.qxd 8/14/05 2:51 PM Page 329

CHAPTER 10 ■ UNDERSTANDING GENERICS330

// This method will swap any two items.
// as specified by the type parameter <T>.
static void Swap<T>(ref T a, ref T b)
{

Console.WriteLine("You sent the Swap() method a {0}",
typeof(T));

T temp;
temp = a;
a = b;
b = temp;

}

Notice how a generic method is defined by specifying the type parameter after the method
name but before the parameter list. Here, you’re stating that the Swap() method can operate on any
two parameters of type <T>. Just to spice things up a bit, you’re printing out the type name of the
supplied placeholder to the console using the C# typeof() operator. Now ponder the following
Main() method that swaps integer and string types:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Generics *****\n");
// Swap 2 ints.
int a = 10, b = 90;
Console.WriteLine("Before swap: {0}, {1}", a, b);
Swap<int>(ref a, ref b);
Console.WriteLine("After swap: {0}, {1}", a, b);
Console.WriteLine();

// Swap 2 strings.
string s1 = "Hello", s2 = "There";
Console.WriteLine("Before swap: {0} {1}!", s1, s2);
Swap<string>(ref s1, ref s2);
Console.WriteLine("After swap: {0} {1}!", s1, s2);
Console.ReadLine();

}

Omission of Type Parameters
When you invoke generic methods such as Swap<T>, you can optionally omit the type parameter if
(and only if) the generic method requires arguments, as the compiler can infer the type parameter
based on the member parameters. For example, you could swap two System.Boolean types as so:

// Compiler will infer System.Boolean.
bool b1 = true, b2 = false;
Console.WriteLine("Before swap: {0}, {1}", b1, b2);
Swap(ref b1, ref b2);
Console.WriteLine("After swap: {0}, {1}", b1, b2);

However, if you had another generic method named DisplayBaseClass<T> that did not take any
incoming parameters, as follows:

static void DisplayBaseClass<T>()
{

Console.WriteLine("Base class of {0} is: {1}.",
typeof(T), typeof(T).BaseType);

}

you are required to supply the type parameter upon invocation:

4193ch10.qxd 8/14/05 2:51 PM Page 330

CHAPTER 10 ■ UNDERSTANDING GENERICS 331

static void Main(string[] args)
{
...

// Must supply type parameter if
// the method does not take params.
DisplayBaseClass<int>();
DisplayBaseClass<string>();

// Compiler error! No params? Must supply placeholder!
// DisplayBaseClass();

...
}

Figure 10-1 shows the current output of this application.

Currently, the generic Swap<T> and DisplayBaseClass<T> methods have been defined within the
application object (i.e., the type defining the Main() method). If you would rather define these mem-
bers in a new class type (MyHelperClass), you are free to do so:

public class MyHelperClass
{

public static void Swap<T>(ref T a, ref T b)
{

Console.WriteLine("You sent the Swap() method a {0}",
typeof(T));

T temp;
temp = a;
a = b;
b = temp;

}

public static void DisplayBaseClass<T>()
{

Console.WriteLine("Base class of {0} is: {1}.",
typeof(T), typeof(T).BaseType);

}
}

Figure 10-1. Generic methods in action

4193ch10.qxd 8/14/05 2:51 PM Page 331

Notice that the MyHelperClass type is not in itself generic; rather, it defines two generic methods.
In any case, now that the Swap<T> and DisplayBaseClass<T> methods have been scoped within a new
class type, you will need to specify the type’s name when invoking either member, for example:

MyHelperClass.Swap<int>(ref a, ref b);

Finally, generic methods do not need to be static. If Swap<T> and DisplayBaseClass<T> were
instance level, you would simply make an instance of MyHelperClass and invoke them off the object
variable:

MyHelperClass c = new MyHelperClass();
c.Swap<int>(ref a, ref b);

Creating Generic Structures (or Classes)
Now that you understand how to define and invoke generic methods, let’s turn our attention to the
construction of a generic structure (the process of building a generic class is identical). Assume you
have built a flexible Point structure that supports a single type parameter representing the underly-
ing storage for the (x, y) coordinates. The caller would then be able to create Point<T> types as so:

// Point using ints.
Point<int> p = new Point<int>(10, 10);

// Point using double.
Point<double> p2 = new Point<double>(5.4, 3.3);

Here is the complete definition of Point<T>, with analysis to follow:

// A generic Point structure.
public struct Point<T>
{

// Generic state date.
private T xPos;
private T yPos;

// Generic constructor.
public Point(T xVal, T yVal)
{

xPos = xVal;
yPos = yVal;

}

// Generic properties.
public T X
{

get { return xPos; }
set { xPos = value; }

}

public T Y
{

get { return yPos; }
set { yPos = value; }

}

public override string ToString()

CHAPTER 10 ■ UNDERSTANDING GENERICS332

4193ch10.qxd 8/14/05 2:51 PM Page 332

CHAPTER 10 ■ UNDERSTANDING GENERICS 333

{
return string.Format("[{0}, {1}]", xPos, yPos);

}

// Reset fields to the default value of the
// type parameter.
public void ResetPoint()
{

xPos = default(T);
yPos = default(T);

}
}

The default Keyword in Generic Code
As you can see, Point<T> leverages its type parameter in the definition of the field data, constructor
arguments, and property definitions. Notice that in addition to overriding ToString(), Point<T>
defines a method named ResetPoint() that makes use of some new syntax:

// The 'default' keyword is overloaded in C# 2005.
// when used with generics, it represents the default
// value of a type parameter.
public void ResetPoint()
{

xPos = default(T);
yPos = default(T);

}

Under C# 2005, the default keyword has been given a dual identity. In addition to its use
within a switch construct, it can be used to set a type parameter to its default value. This is clearly
helpful given that a generic type does not know the actual placeholders up front and therefore can-
not safely assume what the default value will be. The defaults for a type parameter are as follows:

• Numeric values have a default value of 0.

• Reference types have a default value of null.

• Fields of a structure are set to 0 (for value types) or null (for reference types).

For Point<T>, you could simply set xPos and yPos to 0 directly, given that it is safe to assume the
caller will supply only numerical data. However, by using the default(T) syntax, you increase the over-
all flexibility of the generic type. In any case, you can now exercise the methods of Point<T> as so:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Generics *****\n");

// Point using ints.
Point<int> p = new Point<int>(10, 10);
Console.WriteLine("p.ToString()={0}", p.ToString());
p.ResetPoint();
Console.WriteLine("p.ToString()={0}", p.ToString());
Console.WriteLine();

// Point using double.
Point<double> p2 = new Point<double>(5.4, 3.3);
Console.WriteLine("p2.ToString()={0}", p2.ToString());
p2.ResetPoint();

4193ch10.qxd 8/14/05 2:51 PM Page 333

Figure 10-2. Using the generic Point type

Console.WriteLine("p2.ToString()={0}", p2.ToString());
Console.WriteLine();

// Swap 2 Points.
Point<int> pointA = new Point<int>(50, 40);
Point<int> pointB = new Point<int>(543, 1);
Console.WriteLine("Before swap: {0}, {1}", pointA, pointB);
Swap<Point<int>>(ref pointA, ref pointB);
Console.WriteLine("After swap: {0}, {1}", pointA, pointB);
Console.ReadLine();

}

Figure 10-2 shows the output.

CHAPTER 10 ■ UNDERSTANDING GENERICS334

■Source Code The SimpleGenerics project is located under the Chapter 10 subdirectory.

Creating a Custom Generic Collection
As you have seen, the System.Collections.Generic namespace provides numerous types that allow
you to create type-safe and efficient containers. Given the set of available choices, the chances are
quite good that you will not need to build custom collection types when programming with .NET
2.0. Nevertheless, to illustrate how you could build a stylized generic container, the next task is to
build a generic collection class named CarCollection<T>.

Like the nongeneric CarCollection created earlier in this chapter, this iteration will leverage an
existing collection type to hold the subitems (a List<> in this case). As well, you will support foreach
iteration by implementing the generic IEnumerable<> interface. Do note that IEnumerable<> extends
the nongeneric IEnumerable interface; therefore, the compiler expects you to implement two versions
of the GetEnumerator() method. Here is the update:

public class CarCollection<T> : IEnumerable<T>
{

private List<T> arCars = new List<T>();

public T GetCar(int pos)
{ return arCars[pos]; }

4193ch10.qxd 8/14/05 2:51 PM Page 334

CHAPTER 10 ■ UNDERSTANDING GENERICS 335

public void AddCar(T c)
{ arCars.Add(c); }

public void ClearCars()
{ arCars.Clear(); }

public int Count
{ get { return arCars.Count; } }

// IEnumerable<T> extends IEnumerable, therefore
// we need to implement both versions of GetEnumerator().
IEnumerator<T> IEnumerable<T>.GetEnumerator()
{ return arCars.GetEnumerator(); }
IEnumerator IEnumerable.GetEnumerator()
{ return arCars.GetEnumerator(); }

}

You could make use of this updated CarCollection<T> as so:

static void Main(string[] args)
{

Console.WriteLine("***** Custom Generic Collection *****\n");

// Make a collection of Cars.
CarCollection<Car> myCars = new CarCollection<Car>();
myCars.AddCar(new Car("Rusty", 20));
myCars.AddCar(new Car("Zippy", 90));

foreach (Car c in myCars)
{

Console.WriteLine("PetName: {0}, Speed: {1}",
c.PetName, c.Speed);

}
Console.ReadLine();

}

Here you are creating a CarCollection<T> type that contains only Car types. Again, you could
achieve a similar end result if you make use of the List<T> type directly. The major benefit at this
point is the fact that you are free to add unique methods to the CarCollection that delegate the
request to the internal List<T>.

Constraining Type Parameters Using where
Currently, the CarCollection<T> class does not buy you much beyond uniquely named public methods.
Furthermore, an object user could create an instance of CarCollection<T> and specify a completely
unrelated type parameter:

// This is syntactically correct, but confusing at best...
CarCollection<int> myInts = new CarCollection<int>();
myInts.AddCar(5);
myInts.AddCar(11);

To illustrate another form of generic abuse, assume that you have now created two new classes
(SportsCar and MiniVan) that derive from the Car type:

4193ch10.qxd 8/14/05 2:51 PM Page 335

CHAPTER 10 ■ UNDERSTANDING GENERICS336

public class SportsCar : Car
{

public SportsCar(string p, int s)
: base(p, s){}

// Assume additional SportsCar methods.
}

public class MiniVan : Car
{

public MiniVan(string p, int s)
: base(p, s){}

// Assume additional MiniVan methods.
}

Given the laws of inheritance, it is permissible to add a MiniVan or SportsCar type directly into
a CarCollection<T> created with a type parameter of Car:

// CarCollection<Car> can hold any type deriving from Car.
CarCollection<Car> myCars = new CarCollection<Car>();
myInts.AddCar(new MiniVan("Family Truckster", 55));
myInts.AddCar(new SportsCar("Crusher", 40));

Although this is syntactically correct, what if you wished to update CarCollection<T> with
a new public method named PrintPetName()? This seems simple enough—just access the correct
item in the List<T> and invoke the PetName property:

// Error! System.Object does not have a
// property named PetName.
public void PrintPetName(int pos)
{

Console.WriteLine(arCars[pos].PetName);
}

However, this will not compile, given that the true identity of T is not yet known, and you can-
not say for certain if the item in the List<T> type has a PetName property. When a type parameter is
not constrained in any way (as is the case here), the generic type is said to be unbound. By design,
unbound type parameters are assumed to have only the members of System.Object (which clearly
does not provide a PetName property).

You may try to trick the compiler by casting the item returned from the List<T>’s indexer
method into a strongly typed Car, and invoking PetName from the returned object:

// Error!
// Cannot convert type 'T' to 'Car'
public void PrintPetName(int pos)
{

Console.WriteLine(((Car)arCars[pos]).PetName);
}

This again does not compile, given that the compiler does not yet know the value of the type
parameter <T> and cannot guarantee the cast would be legal.

To address such issues, .NET generics may be defined with optional constraints using the where
keyword. As of .NET 2.0, generics may be constrained in the ways listed in Table 10-2.

4193ch10.qxd 8/14/05 2:51 PM Page 336

CHAPTER 10 ■ UNDERSTANDING GENERICS 337

Table 10-2. Possible Constraints for Generic Type Parameters

Generic Constraint Meaning in Life

where T : struct The type parameter <T> must have System.ValueType in its chain
of inheritance.

where T : class The type parameter <T> must not have System.ValueType in its
chain of inheritance (e.g., <T> must be a reference type).

where T : new() The type parameter <T> must have a default constructor. This is
very helpful if your generic type must create an instance of the
type parameter, as you cannot assume the format of custom
constructors. Note that this constraint must be listed last on
a multiconstrained type.

where T : NameOfBaseClass The type parameter <T> must be derived from the class specified
by NameOfBaseClass.

where T : NameOfInterface The type parameter <T> must implement the interface specified
by NameOfInterface.

When constraints are applied using the where keyword, the constraint list is placed after the
generic type’s base class and interface list. By way of a few concrete examples, ponder the following
constraints of a generic class named MyGenericClass:

// Contained items must have a default ctor.
public class MyGenericClass<T> where T : new()
{...}

// Contained items must be a class implementing IDrawable
// and support a default ctor.
public class MyGenericClass<T> where T : class, IDrawable, new()
{...}

// MyGenericClass derives from MyBase and implements ISomeInterface,
// while the contained items must be structures.
public class MyGenericClass<T> : MyBase, ISomeInterface where T : struct
{...}

On a related note, if you are building a generic type that specifies multiple type parameters,
you can specify a unique set of constraints for each:

// <K> must have a default ctor, while <T> must
// implement the generic IComparable interface.
public class MyGenericClass<K, T> where K : new()

where T : IComparable<T>
{...}

If you wish to update CarCollection<T> to ensure that only Car-derived types can be placed
within it, you could write the following:

public class CarCollection<T> : IEnumerable<T> where T : Car
{
...

public void PrintPetName(int pos)
{

// Because all subitems must be in the Car family,
// we can now directly call the PetName property.
Console.WriteLine(arCars[pos].PetName);

}
}

4193ch10.qxd 8/14/05 2:51 PM Page 337

CHAPTER 10 ■ UNDERSTANDING GENERICS338

Notice that once you constrain CarCollection<T> such that it can contain only Car-derived types,
the implementation of PrintPetName() is straightforward, given that the compiler now assumes <T>
is a Car-derived type. Furthermore, if the specified type parameter is not Car-compatible, you are
issued a compiler error:

// Compiler error!
CarCollection<int> myInts = new CarCollection<int>();

Do be aware that generic methods can also leverage the where keyword. For example, if you wish
to ensure that only System.ValueType-derived types are passed into the Swap() method created pre-
viously in this chapter, update the code accordingly:

// This method will swap any Value types.
static void Swap<T>(ref T a, ref T b) where T : struct
{
...
}

Understand that if you were to constrain the Swap() method in this manner, you would no
longer be able to swap string types (as they are reference types).

The Lack of Operator Constraints
When you are creating generic methods, it may come as a surprise to you that it is a compiler error
to apply any C# operators (+, -, *, ==, etc.) on the type parameters. As an example, I am sure you
could imagine the usefulness of a class that can Add(), Subtract(), Multiply(), and Divide()
generic types:

// Compiler error! Cannot apply
// operators to type parameters!
public class BasicMath<T>
{

public T Add(T arg1, T arg2)
{ return arg1 + arg2; }
public T Subtract(T arg1, T arg2)
{ return arg1 - arg2; }
public T Multiply(T arg1, T arg2)
{ return arg1 * arg2; }
public T Divide(T arg1, T arg2)
{ return arg1 / arg2; }

}

Sadly, the preceding BasicMath<T> class will not compile. While this may seem like a major
restriction, you need to remember that generics are generic. Of course, the System.Int32 type can
work just fine with the binary operators of C#. However, for the sake of argument, if <T> were a custom
class or structure type, the compiler cannot assume it has overloaded the +, -, *, and / operators.
Ideally, C# would allow a generic type to be constrained by supported operators, for example:

// Illustrative code only!
// This is not legal code under C# 2.0.
public class BasicMath<T> where T : operator +, operator -,

operator *, operator /
{

public T Add(T arg1, T arg2)
{ return arg1 + arg2; }
public T Subtract(T arg1, T arg2)
{ return arg1 - arg2; }
public T Multiply(T arg1, T arg2)

4193ch10.qxd 8/14/05 2:51 PM Page 338

CHAPTER 10 ■ UNDERSTANDING GENERICS 339

{ return arg1 * arg2; }
public T Divide(T arg1, T arg2)
{ return arg1 / arg2; }

}

Alas, operator constraints are not supported under C# 2005.

■Source Code The CustomGenericCollection project is located under the Chapter 10 subdirectory.

Creating Generic Base Classes
Before we examine generic interfaces, it is worth pointing out that generic classes can be the base
class to other classes, and can therefore define any number of virtual or abstract methods. However,
the derived types must abide by a few rules to ensure that the nature of the generic abstraction flows
through. First of all, if a nongeneric class extends a generic class, the derived class must specify a type
parameter:

// Assume you have created a custom
// generic list class.
public class MyList<T>
{

private List<T> listOfData = new List<T>();
}

// Concrete types must specify the type
// parameter when deriving from a
// generic base class.
public class MyStringList : MyList<string>
{}

Furthermore, if the generic base class defines generic virtual or abstract methods, the derived
type must override the generic methods using the specified type parameter:

// A generic class with a virtual method.
public class MyList<T>
{

private List<T> listOfData = new List<T>();
public virtual void PrintList(T data) { }

}

public class MyStringList : MyList<string>
{

// Must substitute the type parameter used in the
// parent class in derived methods.
public override void PrintList(string data) { }

}

If the derived type is generic as well, the child class can (optionally) reuse the type placeholder
in its definition. Be aware, however, that any constraints placed on the base class must be honored
by the derived type, for example:

// Note that we now have a default constructor constraint.
public class MyList<T> where T : new()
{

private List<T> listOfData = new List<T>();

4193ch10.qxd 8/14/05 2:51 PM Page 339

CHAPTER 10 ■ UNDERSTANDING GENERICS340

public virtual void PrintList(T data) { }
}

// Derived type must honor constraints.
public class MyReadOnlyList<T> : MyList<T> where T : new()
{

public override void PrintList(T data) { }
}

Now, unless you plan to build your own generics library, the chances that you will need to build
generic class hierarchies are slim to none. Nevertheless, C# does support generic inheritance.

Creating Generic Interfaces
As you saw earlier in the chapter during the examination of the System.Collections.Generic name-
space, generic interfaces are also permissible (e.g., IEnumerable<T>). You are, of course, free to define
your own generic interfaces (with or without constraints). Assume you wish to define an interface
that can perform binary operations on a generic type parameter:

public interface IBinaryOperations<T>
{

T Add(T arg1, T arg2);
T Subtract(T arg1, T arg2);
T Multiply(T arg1, T arg2);
T Divide(T arg1, T arg2);

}

Of course, interfaces are more or less useless until they are implemented by a class or structure.
When you implement a generic interface, the supporting type specifies the placeholder type:

public class BasicMath : IBinaryOperations<int>
{

public int Add(int arg1, int arg2)
{ return arg1 + arg2; }

public int Subtract(int arg1, int arg2)
{ return arg1 - arg2; }

public int Multiply(int arg1, int arg2)
{ return arg1 * arg2; }

public int Divide(int arg1, int arg2)
{ return arg1 / arg2; }

}

At this point, you make use of BasicMath as you would expect:

static void Main(string[] args)
{

Console.WriteLine("***** Generic Interfaces *****\n");
BasicMath m = new BasicMath();
Console.WriteLine("1 + 1 = {0}", m.Add(1, 1));
Console.ReadLine();

}

If you would rather create a BasicMath class that operates on floating-point numbers, you could
specify the type parameter as so:

4193ch10.qxd 8/14/05 2:51 PM Page 340

CHAPTER 10 ■ UNDERSTANDING GENERICS 341

public class BasicMath : IBinaryOperations<double>
{

public double Add(double arg1, double arg2)
{ return arg1 + arg2; }

...
}

■Source Code The GenericInterface project is located under the Chapter 10 subdirectory.

Creating Generic Delegates
Last but not least, .NET 2.0 does allow you to define generic delegate types. For example, assume you
wish to define a delegate that can call any method returning void and receiving a single argument.
If the argument in question may differ, you could model this using a type parameter. To illustrate,
ponder the following code (notice the delegate targets are being registered using both “traditional”
delegate syntax and method group conversion):

namespace GenericDelegate
{

// This generic delegate can call any method
// returning void and taking a single parameter.
public delegate void MyGenericDelegate<T>(T arg);

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Generic Delegates *****\n");

// Register target with 'traditional' delegate syntax.
MyGenericDelegate<string> strTarget =

new MyGenericDelegate<string>(StringTarget);
strTarget("Some string data");

// Register target using method group conversion.
MyGenericDelegate<int> intTarget = IntTarget;
intTarget(9);
Console.ReadLine();

}

static void StringTarget(string arg)
{

Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());
}

static void IntTarget(int arg)
{

Console.WriteLine("++arg is: {0}", ++arg);
}

}
}

4193ch10.qxd 8/14/05 2:51 PM Page 341

CHAPTER 10 ■ UNDERSTANDING GENERICS342

Notice that MyGenericDelegate<T> defines a single type parameter that represents the argument
to pass to the delegate target. When creating an instance of this type, you are required to specify the
value of the type parameter as well as the name of the method the delegate will invoke. Thus, if you
specified a string type, you send a string value to the target method:

// Create an instance of MyGenericDelegate<T>
// with string as the type parameter.
MyGenericDelegate<string> strTarget =

new MyGenericDelegate<string>(StringTarget);
strTarget("Some string data");

Given the format of the strTarget object, the StringTarget() method must now take a single
string as a parameter:

static void StringTarget(string arg)
{

Console.WriteLine("arg in uppercase is: {0}", arg.ToUpper());
}

Simulating Generic Delegates Under .NET 1.1
As you can see, generic delegates offer a more flexible way to specify the method to be invoked.
Under .NET 1.1, you could achieve a similar end result using a generic System.Object:

public delegate void MyDelegate(object arg);

Although this allows you to send any type of data to a delegate target, you do so without type
safety and with possible boxing penalties. For instance, assume you have created two instances of
MyDelegate, both of which point to the same method, MyTarget. Note the boxing/unboxing penalties
as well as the inherent lack of type safety:

class Program
{

static void Main(string[] args)
{

...
// Register target with 'traditional' delegate syntax.
MyDelegate d = new MyDelegate(MyTarget);
d("More string data");

// Register target using method group conversion.
MyDelegate d2 = MyTarget;
d2(9); // Boxing penalty.

...
}

// Due to a lack of type safety, we must
// determine the underlying type before casting.
static void MyTarget(object arg)
{

if(arg is int)
{

int i = (int)arg; // Unboxing penalty.
Console.WriteLine("++arg is: {0}", ++i);

}
if(arg is string)

4193ch10.qxd 8/14/05 2:51 PM Page 342

CHAPTER 10 ■ UNDERSTANDING GENERICS 343

{
string s = (string)arg;
Console.WriteLine("arg in uppercase is: {0}", s.ToUpper());

}
}

}

When you send out a value type to the target site, the value is (of course) boxed and unboxed
once received by the target method. As well, given that the incoming parameter could be anything
at all, you must dynamically check the underlying type before casting. Using generic delegates, you
can still obtain the desired flexibility without the “issues.”

A Brief Word Regarding Nested Delegates
I’ll wrap up this chapter by covering one final aspect regarding generic delegates. As you know,
delegates may be nested within a class type to denote a tight association between the two reference
types. If the nesting type is a generic, the nested delegate may leverage any type parameters in its
definition:

// Nested generic delegates may access
// the type parameters of the nesting generic type.
public class MyList<T>
{

private List<T> listOfData = new List<T>();
public delegate void ListDelegate(T arg);

}

■Source Code The GenericDelegate project is located under the Chapter 10 directory.

Summary
Generics can arguably be viewed as the major enhancement provided by C# 2005. As you have seen,
a generic item allows you to specify “placeholders” (i.e., type parameters) that are specified at the
time of creation (or invocation, in the case of generic methods). Essentially, generics provide a solu-
tion to the boxing and type-safety issues that plagued .NET 1.1 development.

While you will most often simply make use of the generic types provided in the .NET base class
libraries, you are also able to create your own generic types. When you do so, you have the option of
specifying any number of constraints to increase the level of type safety and ensure that you are
performing operations on types of a “known quantity.”

4193ch10.qxd 8/14/05 2:51 PM Page 343

4193ch10.qxd 8/14/05 2:51 PM Page 344

Programming with .NET
Assemblies

P A R T 3

■ ■ ■

4193ch11.qxd 8/14/05 2:52 PM Page 345

4193ch11.qxd 8/14/05 2:52 PM Page 346

Introducing .NET Assemblies

Each of the applications developed in this book’s first ten chapters were along the lines of traditional
“stand-alone” applications, given that all of your custom programming logic was contained within
a single executable file (*.exe). However, one major aspect of the .NET platform is the notion of binary
reuse, where applications make use of the types contained within various external assemblies (aka
code libraries). The point of this chapter is to examine the core details of creating, deploying, and
configuring .NET assemblies.

In this chapter, you’ll first learn the distinction between single-file and multifile assemblies,
as well as “private” and “shared” assemblies. Next, you’ll examine exactly how the .NET runtime
resolves the location of an assembly and come to understand the role of the Global Assembly
Cache (GAC), application configuration files (*.config files), publisher policy assemblies, and the
System.Configuration namespace.

The Role of .NET Assemblies
.NET applications are constructed by piecing together any number of assemblies. Simply put, an
assembly is a versioned, self-describing binary file hosted by the CLR. Now, despite the fact that .NET
assemblies have exactly the same file extensions (*.exe or *.dll) as previous Win32 binaries (includ-
ing legacy COM servers), they have very little in common under the hood. Thus, to set the stage for
the information to come, let’s ponder some of the benefits provided by the assembly format.

Assemblies Promote Code Reuse
As you have been building your console applications over the previous chapters, it may have seemed
that all of the applications’ functionality was contained within the executable assembly you were con-
structing. In reality, your applications were leveraging numerous types contained within the always
accessible .NET code library, mscorlib.dll (recall that the C# compiler references mscorlib.dll
automatically), as well as System.Windows.Forms.dll.

As you may know, a code library (also termed a class library) is a *.dll that contains types
intended to be used by external applications. When you are creating executable assemblies, you will
no doubt be leveraging numerous system-supplied and custom code libraries as you create the
application at hand. Do be aware, however, that a code library need not take a *.dll file extension.
It is perfectly possible for an executable assembly to make use of types defined within an external
executable file. In this light, a referenced *.exe can also be considered a “code library.”

347

C H A P T E R 1 1

■ ■ ■

4193ch11.qxd 8/14/05 2:52 PM Page 347

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES348

■Note Before the release of Visual Studio 2005, the only way to reference an executable code library was using the
/reference flag of the C# compiler. However, the Add Reference dialog box of Visual Studio 2005 now allows you to
reference *.exe assemblies.

Regardless of how a code library is packaged, the .NET platform allows you to reuse types in
a language-independent manner. For example, you could create a code library in C# and reuse that
library in any other .NET programming language. It is possible to not only allocate types across lan-
guages, but derive from them as well. A base class defined in C# could be extended by a class
authored in Visual Basic .NET. Interfaces defined in Pascal .NET can be implemented by structures
defined in C#, and so forth. The point is that when you begin to break apart a single monolithic
executable into numerous .NET assemblies, you achieve a language-neutral form of code reuse.

Assemblies Establish a Type Boundary
In Chapter 3, you learned about the formalities behind .NET namespaces. Recall that a type’s fully
qualified name is composed by prefixing the type’s namespace (e.g., System) to its name (e.g., Console).
Strictly speaking however, the assembly in which a type resides further establishes a type’s identity. For
example, if you have two uniquely named assemblies (say, MyCars.dll and YourCars.dll) that both define
a namespace (CarLibrary) containing a class named SportsCar, they are considered unique types in
the .NET universe.

Assemblies Are Versionable Units
.NET assemblies are assigned a four-part numerical version number of the form <major>.<minor>.
<build>.<revision> (if you do not explicitly provide a version number using the [AssemblyVersion]
attribute, the assembly is automatically assigned a version of 0.0.0.0). This number, in conjunction
with an optional public key value, allows multiple versions of the same assembly to coexist in harmony
on a single machine. Formally speaking, assemblies that provide public key information are termed
strongly named. As you will see in this chapter, using a strong name, the CLR is able to ensure that
the correct version of an assembly is loaded on behalf of the calling client.

Assemblies Are Self-Describing
Assemblies are regarded as self-describing in part because they record every external assembly it
must have access to in order to function correctly. Thus, if your assembly requires System.Windows.
Forms.dll and System.Drawing.dll, they will be documented in the assembly’s manifest. Recall from
Chapter 1 that a manifest is a blob of metadata that describes the assembly itself (name, version,
external assemblies, etc.).

In addition to manifest data, an assembly contains metadata that describes the composition
(member names, implemented interfaces, base classes, constructors and so forth) of every contained
type. Given that an assembly is documented in such vivid detail, the CLR does not consult the
Win32 system registry to resolve its location (quite the radical departure from Microsoft’s legacy
COM programming model). As you will discover during this chapter, the CLR makes use of an entirely
new scheme to resolve the location of external code libraries.

Assemblies Are Configurable
Assemblies can be deployed as “private” or “shared.” Private assemblies reside in the same directory
(or possibly a subdirectory) as the client application making use of them. Shared assemblies, on the

4193ch11.qxd 8/14/05 2:52 PM Page 348

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 349

other hand, are libraries intended to be consumed by numerous applications on a single machine
and are deployed to a specific directory termed the Global Assembly Cache (GAC).

Regardless of how you deploy your assemblies, you are free to author XML-based configuration
files. Using these configuration files, the CLR can be instructed to “probe” for assemblies under a spe-
cific location, load a specific version of a referenced assembly for a particular client, or consult an
arbitrary directory on your local machine, your network location, or a web-based URL. You’ll learn
a good deal more about XML configuration files throughout this chapter.

Understanding the Format of a .NET Assembly
Now that you’ve learned about several benefits provided by the .NET assembly, let’s shift gears and
get a better idea of how an assembly is composed under the hood. Structurally speaking, a .NET
assembly (*.dll or *.exe) consists of the following elements:

• A Win32 file header

• A CLR file header

• CIL code

• Type metadata

• An assembly manifest

• Optional embedded resources

While the first two elements (the Win32 and CLR headers) are blocks of data that you can typically
ignore, they do deserve some brief consideration. This being said, an overview of each element follows.

The Win32 File Header
The Win32 file header establishes the fact that the assembly can be loaded and manipulated by the
Windows family of operating systems. This header data also identifies the kind of application (console-
based, GUI-based, or *.dll code library) to be hosted by the Windows operating system. If you open
a .NET assembly using the dumpbin.exe utility (via a .NET Framework 2.0 SDK command prompt) and
specify the /headers flag, you can view an assembly’s Win32 header information. Figure 11-1 shows (par-
tial) Win32 header information for the CarLibrary.dll assembly you will build a bit later in this chapter.

4193ch11.qxd 8/14/05 2:52 PM Page 349

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES350

Figure 11-1. An assembly’s Win32 file header information

Figure 11-2. An assembly’s CLR file header information

The CLR File Header
The CLR header is a block of data that all .NET files must support (and do support, courtesy of the
C# compiler) in order to be hosted by the CLR. In a nutshell, this header defines numerous flags that
enable the runtime to understand the layout of the managed file. For example, flags exist that identify
the location of the metadata and resources within the file, the version of the runtime the assembly was
built against, the value of the (optional) public key, and so forth. If you supply the /clrheader flag to
dumpbin.exe, you are presented with the internal CLR header information for a given .NET assembly,
as shown in Figure 11-2.

4193ch11.qxd 8/14/05 2:52 PM Page 350

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 351

CLR header data is represented by an unmanaged C-style structure (IMAGE_COR20_HEADER) defined
in the C-based header file, corhdr.h. For those who are interested, here is the layout of the structure
in question:

// CLR 2.0 header structure.
typedef struct IMAGE_COR20_HEADER
{

// Header versioning
ULONG cb;
USHORT MajorRuntimeVersion;
USHORT MinorRuntimeVersion;

// Symbol table and startup information
IMAGE_DATA_DIRECTORY MetaData;
ULONG Flags;
ULONG EntryPointToken;

// Binding information
IMAGE_DATA_DIRECTORY Resources;
IMAGE_DATA_DIRECTORY StrongNameSignature;

// Regular fixup and binding information
IMAGE_DATA_DIRECTORY CodeManagerTable;
IMAGE_DATA_DIRECTORY VTableFixups;
IMAGE_DATA_DIRECTORY ExportAddressTableJumps;

// Precompiled image info (internal use only - set to zero)
IMAGE_DATA_DIRECTORY ManagedNativeHeader;

} IMAGE_COR20_HEADER;

Again, as a .NET developer you will not need to concern yourself with the gory details of Win32
or CLR header information (unless perhaps you are building a new managed compiler!). Just under-
stand that every .NET assembly contains this data, which is used behind the scenes by the .NET
runtime and Win32 operating system.

CIL Code, Type Metadata, and the Assembly Manifest
At its core, an assembly contains CIL code, which as you recall is a platform- and CPU-agnostic
intermediate language. At runtime, the internal CIL is compiled on the fly (using a just-in-time [JIT]
compiler) to platform- and CPU-specific instructions. Given this architecture, .NET assemblies can
indeed execute on a variety of architectures, devices, and operating systems. Although you can live
a happy and productive life without understanding the details of the CIL programming language,
Chapter 15 offers an introduction to the syntax and semantics of CIL.

An assembly also contains metadata that completely describes the format of the contained types
as well as the format of external types referenced by this assembly. The .NET runtime uses this
metadata to resolve the location of types (and their members) within the binary, lay out types in
memory, and facilitate remote method invocations. You’ll check out the details of the .NET metadata
format in Chapter 12 during our examination of reflection services.

An assembly must also contain an associated manifest (also referred to as assembly metadata).
The manifest documents each module within the assembly, establishes the version of the assembly,
and also documents any external assemblies referenced by the current assembly (unlike legacy
COM type libraries, which did not provide a way to document external dependencies). As you will
see over the course of this chapter, the CLR makes extensive use of an assembly’s manifest during the
process of locating external assembly references.

4193ch11.qxd 8/14/05 2:52 PM Page 351

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES352

Figure 11-3. A single-file assembly

■Note Needless to say by this point in the book, when you wish to view an assembly’s CIL code, type metadata,
or manifest, ildasm.exe is the tool of choice. I will assume you will make extensive use of ildasm.exe as you
work through the code examples in this chapter.

Optional Assembly Resources
Finally, a .NET assembly may contain any number of embedded resources such as application icons,
image files, sound clips, or string tables. In fact, the .NET platform supports satellite assemblies that
contain nothing but localized resources. This can be useful if you wish to partition your resources
based on a specific culture (English, German, etc.) for the purposes of building international software.
The topic of building satellite assemblies is outside the scope of this text; however, you will learn how
to embed application resources into an assembly during our examination of GDI+ in Chapter 20.

Single-File and Multifile Assemblies
Technically speaking, an assembly can be composed of multiple modules. A module is really nothing
more than a generic term for a valid .NET binary file. In most situations, an assembly is in fact com-
posed of a single module. In this case, there is a one-to-one correspondence between the (logical)
assembly and the underlying (physical) binary (hence the term single-file assembly).

Single-file assemblies contain all of the necessary elements (header information, CIL code, type
metadata, manifest, and required resources) in a single *.exe or *.dll package. Figure 11-3 illustrates
the composition of a single-file assembly.

A multifile assembly, on the other hand, is a set of .NET *.dlls that are deployed and versioned
as a single logic unit. Formally speaking, one of these *.dlls is termed the primary module and con-
tains the assembly-level manifest (as well as any necessary CIL code, metadata, header information,
and optional resources). The manifest of the primary module records each of the related *.dll files
it is dependent upon.

4193ch11.qxd 8/14/05 2:52 PM Page 352

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 353

Figure 11-4. The primary module records secondary modules in the assembly manifest

As a naming convention, the secondary modules in a multifile assembly take a *.netmodule file
extension; however, this is not a requirement of the CLR. Secondary *.netmodules also contain CIL
code and type metadata, as well as a module-level manifest, which simply records the externally
required assemblies of that specific module.

The major benefit of constructing multifile assemblies is that they provide a very efficient way to
download content. For example, assume you have a machine that is referencing a remote multifile
assembly composed of three modules, where the primary module is installed on the client. If the
client requires a type within a secondary remote *.netmodule, the CLR will download the binary to
the local machine on demand to a specific location termed the download cache. If each *.netmodule
is 1MB, I’m sure you can see the benefit.

Another benefit of multifile assemblies is that they enable modules to be authored using multiple
.NET programming languages (which is very helpful in larger corporations, where individual depart-
ments tend to favor a specific .NET language). Once each of the individual modules has been compiled,
the modules can be logically “connected” into a logical assembly using tools such as the assembly
linker (al.exe).

In any case, do understand that the modules that compose a multifile assembly are not literally
linked together into a single (larger) file. Rather, multifile assemblies are only logically related by
information contained in the primary module’s manifest. Figure 11-4 illustrates a multifile assembly
composed of three modules, each authored using a unique .NET programming language.

4193ch11.qxd 8/14/05 2:52 PM Page 353

Figure 11-5. Creating a C# code library

At this point you (hopefully) have a better understanding about the internal composition of a .NET
binary file. With this necessary preamble out of the way, we are ready to dig into the details of building
and configuring a variety of code libraries.

Building and Consuming a Single-File Assembly
To begin the process of comprehending the world of .NET assemblies, you’ll first create a single-file *.dll
assembly (named CarLibrary) that contains a small set of public types. To build a code library using
Visual Studio 2005, simply select the Class Library project workspace (see Figure 11-5).

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES354

The design of your automobile library begins with an abstract base class named Car that
defines a number of protected data members exposed through custom properties. This class has
a single abstract method named TurboBoost(), which makes use of a custom enumeration
(EngineState) representing the current condition of the car’s engine:

using System;

namespace CarLibrary
{

// Represents the state of the engine.
public enum EngineState
{ engineAlive, engineDead }

// The abstract base class in the hierarchy.
public abstract class Car
{

4193ch11.qxd 8/14/05 2:52 PM Page 354

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 355

protected string petName;
protected short currSpeed;
protected short maxSpeed;
protected EngineState egnState = EngineState.engineAlive;

public abstract void TurboBoost();

public Car(){}
public Car(string name, short max, short curr)
{

petName = name; maxSpeed = max; currSpeed = curr;
}

public string PetName
{

get { return petName; }
set { petName = value; }

}
public short CurrSpeed
{

get { return currSpeed; }
set { currSpeed = value; }

}
public short MaxSpeed
{ get { return maxSpeed; } }
public EngineState EngineState
{ get { return egnState; } }
}

}

Now assume that you have two direct descendents of the Car type named MiniVan and SportsCar.
Each overrides the abstract TurboBoost() method in an appropriate manner.

using System;
using System.Windows.Forms;

namespace CarLibrary
{

public class SportsCar : Car
{

public SportsCar(){ }
public SportsCar(string name, short max, short curr)

: base (name, max, curr){ }

public override void TurboBoost()
{

MessageBox.Show("Ramming speed!", "Faster is better...");
}

}

public class MiniVan : Car
{

public MiniVan(){ }
public MiniVan(string name, short max, short curr)

: base (name, max, curr){ }

4193ch11.qxd 8/14/05 2:52 PM Page 355

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES356

Figure 11-6. Referencing external .NET assemblies begins here.

public override void TurboBoost()
{

// Minivans have poor turbo capabilities!
egnState = EngineState.engineDead;
MessageBox.Show("Time to call AAA", "Your car is dead");

}
}

}

Notice how each subclass implements TurboBoost() using the MessageBox class, which is
defined in the System.Windows.Forms.dll assembly. For your assembly to make use of the types
defined within this external assembly, the CarLibrary project must set a reference to this binary via
the Add Reference dialog box (see Figure 11-6), which you can access through the Visual Studio 2005
Project ➤ Add Reference menu selection.

It is really important to understand that the assemblies displayed in the .NET tab of the Add
Reference dialog box do not represent each and every assembly on your machine. The Add Refer-
ence dialog box will not display your custom assemblies, and it does not display all assemblies
located in the GAC. Rather, this dialog box simply presents a list of common assemblies that Visual
Studio 2005 is preprogrammed to display. When you are building applications that require the use
of an assembly not listed within the Add Reference dialog box, you need to click the Browse tab to
manually navigate to the *.dll or *.exe in question.

■Note Although it is technically possible to have your custom assemblies appear in the Add Reference dialog
box’s list by deploying a copy to C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\PublicAssemblies, there
is little benefit in doing so. The Recent tab keeps a running list of previously referenced assemblies.

4193ch11.qxd 8/14/05 2:52 PM Page 356

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 357

Figure 11-7. CarLibrary.dll loaded into ildasm.exe

Exploring the Manifest
Before making use of CarLibrary.dll from a client application, let’s check out how the code library
is composed under the hood. Assuming you have compiled this project, load CarLibrary.dll into
ildasm.exe (see Figure 11-7).

Now, open the manifest of CarLibrary.dll by double-clicking the MANIFEST icon. The first code
block encountered in a manifest is used to specify all external assemblies that are required by the current
assembly to function correctly. As you recall, CarLibrary.dll made use of types within mscorlib.dll and
System.Windows.Forms.dll, both of which are listed in the manifest using the .assembly extern token:

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly extern System.Windows.Forms
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

Here, each .assembly extern block is qualified by the .publickeytoken and .ver directives. The
.publickeytoken instruction is present only if the assembly has been configured with a strong name
(more details later in this chapter). The .ver token marks (of course) the numerical version identifier.

After cataloging each of the external references, you will find a number of .custom tokens that
identify assembly-level attributes. If you examine the AssemblyInfo.cs file created by Visual Studio
2005, you will find these attributes represent basic characteristics about the assembly such as com-
pany name, trademark, and so forth (all of which are currently empty). Chapter 14 examines
attributes in detail, so don’t sweat the details at this point. Do be aware, however, that the attributes
defined in AssemblyInfo.cs update the manifest with various .custom tokens, such as [AssemblyTitle]:

.assembly CarLibrary
{
...
.custom instance void [mscorlib]

4193ch11.qxd 8/14/05 2:52 PM Page 357

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES358

System.Reflection.AssemblyTitleAttribute::.ctor(string) = (01 00 00 00 00)
.hash algorithm 0x00008004
.ver 1:0:454:30104

}
.module CarLibrary.dll

Finally, you can also see that the .assembly token is used to mark the friendly name of your assem-
bly (CarLibrary), while the .module token specifies the name of the module itself (CarLibrary.dll). The
.ver token defines the version number assigned to this assembly, as specified by the [AssemblyVersion]
attribute within AssemblyInfo.cs. More details on assembly versioning later in this chapter, but note
that the * wildcard character within the [AssemblyVersion] attribute informs Visual Studio 2005 to
increment the build and revision numbers during compilation.

Exploring the CIL
Recall that an assembly does not contain platform-specific instructions; rather, it contains platform-
agnostic CIL. When the .NET runtime loads an assembly into memory, the underlying CIL is compiled
(using the JIT compiler) into instructions that can be understood by the target platform. If you
double-click the TurboBoost() method of the SportsCar class, ildasm.exe will open a new window
showing the CIL instructions:

.method public hidebysig virtual instance void
TurboBoost() cil managed

{
// Code size 17 (0x11)
.maxstack 2
IL_0000: ldstr "Ramming speed!"
IL_0005: ldstr "Faster is better..."
IL_000a: call valuetype [System.Windows.Forms]

System.Windows.Forms.DialogResult [System.Windows.Forms]
System.Windows.Forms.MessageBox::Show(string, string)

IL_000f: pop
IL_0010: ret

} // end of method SportsCar::TurboBoost

Notice that the .method tag is used to identify a method defined by the SportsCar type. Member
variables defined by a type are marked with the .field tag. Recall that the Car class defined a set of
protected data, such as currSpeed:

.field family int16 currSpeed

Properties are marked with the .property tag. Here is the CIL describing the public CurrSpeed
property (note that the read/write nature of a property is marked by .get and .set tags):

.property instance int16 CurrSpeed()
{
.get instance int16 CarLibrary.Car::get_CurrSpeed()
.set instance void CarLibrary.Car::set_CurrSpeed(int16)

} // end of property Car::CurrSpeed

Exploring the Type Metadata
Finally, if you now press Ctrl+M, ildasm.exe displays the metadata for each type within the
CarLibrary.dll assembly (see Figure 11-8).

4193ch11.qxd 8/14/05 2:52 PM Page 358

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 359

Figure 11-8. Type metadata for the types within CarLibrary.dll

Now that you have looked inside the CarLibrary.dll assembly, you can build some client
applications.

■Source Code The CarLibrary project is located under the Chapter 11 subdirectory.

Building a C# Client Application
Because each of the CarLibrary types has been declared using the public keyword, other assemblies
are able to make use of them. Recall that you may also define types using the C# internal keyword
(in fact, this is the default C# access mode if you do not specifically define a type as public). Internal
types can be used only by the assembly in which they are defined. External clients can neither see
nor create internal types.

■Note .NET 2.0 now provides a way to specify “friend assemblies” that allow internal types to be consumed by
specific assemblies. Look up the InternalsVisibleToAttribute class in the .NET Framework 2.0 SDK docu-
mentation for details.

To consume these types, create a new C# console application project (CSharpCarClient). Once
you have done so, set a reference to CarLibrary.dll using the Browse tab of the Add Reference dialog
box (if you compiled CarLibrary.dll using Visual Studio 2005, your assembly is located under the
\Bin\Debug subdirectory of the CarLibrary project folder). Once you click the OK button, Visual Studio
2005 responds by placing a copy of CarLibrary.dll into the \Bin\Debug folder of the CSharpCarClient
project folder (see Figure 11-9).

4193ch11.qxd 8/14/05 2:52 PM Page 359

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES360

Figure 11-9. Visual Studio 2005 copies private assemblies to the client’s directory.

At this point you can build your client application to make use of the external types. Update your
initial C# file as so:

using System;

// Don't forget to 'use' the CarLibrary namespace!
using CarLibrary;

namespace CSharpCarClient
{

public class CarClient
{

static void Main(string[] args)
{

// Make a sports car.
SportsCar viper = new SportsCar("Viper", 240, 40);
viper.TurboBoost();

// Make a minivan.
MiniVan mv = new MiniVan();
mv.TurboBoost();
Console.ReadLine();

}
}

}

This code looks just like the other applications developed thus far. The only point of interest is
that the C# client application is now making use of types defined within a separate custom assembly.
Go ahead and run your program. As you would expect, the execution of this program results in the
display of various message boxes.

■Source Code The CSharpCarClient project is located under the Chapter 11 subdirectory.

Building a Visual Basic .NET Client Application
To illustrate the language-agnostic attitude of the .NET platform, let’s create another console appli-
cation (VbNetCarClient), this time using Visual Basic .NET (see Figure 11-10). Once you have created
the project, set a reference to CarLibrary.dll using the Add Reference dialog box.

4193ch11.qxd 8/14/05 2:52 PM Page 360

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 361

Figure 11-10. Creating a Visual Basic .NET console application

Like C#, Visual Basic .NET requires you to list each namespace used within the current file.
However, Visual Basic .NET offers the Imports keyword rather than the C# using keyword. Given
this, add the following Imports statement within the Module1.vb code file:

Imports CarLibrary

Module Module1

Sub Main()
End Sub

End Module

Notice that the Main() method is defined within a Visual Basic .NET Module type (which has
nothing to do with a *.netmodule file for a multifile assembly). Modules are simply a Visual Basic
.NET shorthand notation for defining a sealed class that can contain only static methods. To drive
this point home, here would be the same construct in C#:

// A VB .NET 'Module' is simply a sealed class
// containing static methods.
public sealed class Module1
{

public static void Main()
{
}

}

In any case, to exercise the MiniVan and SportsCar types using the syntax of Visual Basic .NET,
update your Main() method as so:

4193ch11.qxd 8/14/05 2:52 PM Page 361

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES362

Sub Main()
Console.WriteLine("***** Fun with Visual Basic .NET *****")
Dim myMiniVan As New MiniVan()
myMiniVan.TurboBoost()

Dim mySportsCar As New SportsCar()
mySportsCar.TurboBoost()
Console.ReadLine()

End Sub

When you compile and run your application, you will once again find a series of message boxes
displayed.

Cross-Language Inheritance in Action
A very enticing aspect of .NET development is the notion of cross-language inheritance. To illustrate,
let’s create a new Visual Basic .NET class that derives from SportsCar (which was authored using C#).
First, add a new class file to your current Visual Basic .NET application (by selecting Project ➤ Add Class)
named PerformanceCar.vb. Update the initial class definition by deriving from the SportsCar type
using the Inherits keyword. Furthermore, override the abstract TurboBoost() method using the
Overrides keyword:

Imports CarLibrary

' This VB type is deriving from the C# SportsCar.
Public Class PerformanceCar
Inherits SportsCar
Public Overrides Sub TurboBoost()

Console.WriteLine("Zero to 60 in a cool 4.8 seconds...")
End Sub

End Class

To test this new class type, update the Module’s Main() method as so:

Sub Main()
...

Dim dreamCar As New PerformanceCar()

' Inherited property.
dreamCar.PetName = "Hank"
dreamCar.TurboBoost()
Console.ReadLine()

End Sub

Notice that the dreamCar object is able to invoke any public member (such as the PetName prop-
erty) found up the chain of inheritance, regardless of the fact that the base class has been defined in
a completely different language and is defined in a completely different code library.

■Source Code The VbNetCarClient project is located under the Chapter 11 subdirectory.

Building and Consuming a Multifile Assembly
Now that you have constructed and consumed a single-file assembly, let’s examine the process of
building a multifile assembly. Recall that a multifile assembly is simply a collection of related modules

4193ch11.qxd 8/14/05 2:52 PM Page 362

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 363

that is deployed and versioned as a single unit. At the time of this writing, Visual Studio 2005 does
not support a C# multifile assembly project template. Therefore, you will need to make use of the
command-line compiler (csc.exe) if you wish to build such as beast.

To illustrate the process, you will build a multifile assembly named AirVehicles. The primary
module (airvehicles.dll) will contain a single class type named Helicopter. The related manifest
(also contained in airvehicles.dll) catalogues an additional *.netmodule file named ufo.netmodule,
which contains another class type named (of course) Ufo. Although both class types are physically
contained in separate binaries, you will group them into a single namespace named AirVehicles.
Finally, both classes are created using C# (although you could certainly mix and match languages if
you desire).

To begin, open a simple text editor (such as Notepad) and create the following Ufo class definition
saved to a file named ufo.cs:

using System;

namespace AirVehicles
{

public class Ufo
{

public void AbductHuman()
{

Console.WriteLine("Resistance is futile");
}

}
}

To compile this class into a .NET module, navigate to the folder containing ufo.cs and issue
the following command to the C# compiler (the module option of the /target flag instructs csc.exe
to produce a *.netmodule as opposed to a *.dll or *.exe file):

csc.exe /t:module ufo.cs

If you now look in the folder that contains the ufo.cs file, you should see a new file named
ufo.netmodule (take a peek). Next, create a new file named helicopter.cs that contains the following
class definition:

using System;

namespace AirVehicles
{

public class Helicopter
{

public void TakeOff()
{

Console.WriteLine("Helicopter taking off!");
}

}
}

Given that airvehicles.dll is the intended name of the primary module of this multifile assem-
bly, you will need to compile helicopter.cs using the /t:library and /out: options. To enlist the
ufo.netmodule binary into the assembly manifest, you must also specify the /addmodule flag. The
following command does the trick:

csc /t:library /addmodule:ufo.netmodule /out:airvehicles.dll helicopter.cs

At this point, your directory should contain the primary airvehicles.dll module as well as the
secondary ufo.netmodule binaries.

4193ch11.qxd 8/14/05 2:52 PM Page 363

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES364

Exploring the ufo.netmodule File
Now, using ildasm.exe, open ufo.netmodule. As you can see, *.netmodules contain a module-level
manifest; however, its sole purpose is to list each external assembly referenced by the code base. Given
that the Ufo class did little more than make a call to Console.WriteLine(), you find the following:

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.module ufo.netmodule

Exploring the airvehicles.dll File
Next, using ildasm.exe, open the primary airvehicles.dll module and investigate the assembly-level
manifest. Notice that the .file token documents the associated modules in the multifile assembly
(ufo.netmodule in this case). The .class extern tokens are used to document the names of the external
types referenced for use from the secondary module (Ufo):

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly airvehicles
{
...
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.file ufo.netmodule
...
.class extern public AirVehicles.Ufo
{
.file ufo.netmodule
.class 0x02000002

}
.module airvehicles.dll

Again, realize that the only entity that links together airvehicles.dll and ufo.netmodule is the
assembly manifest. These two binary files have not been merged into a single, larger *.dll.

Consuming a Multifile Assembly
The consumers of a multifile assembly couldn’t care less that the assembly they are referencing is
composed of numerous modules. To keep things simple, let’s create a new Visual Basic .NET client
application at the command line. Create a new file named Client.vb with the following Module
definition. When you are done, save it in the same location as your multifile assembly.

Imports AirVehicles

Module Module1
Sub Main()

Dim h As New AirVehicles.Helicopter()
h.TakeOff()

4193ch11.qxd 8/14/05 2:52 PM Page 364

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 365

' This will load the *.netmodule on demand.
Dim u As New UFO()
u.AbductHuman()

End Sub
End Module

To compile this executable assembly at the command line, you will make use of the Visual Basic
.NET command-line compiler, vbc.exe, with the following command set:

vbc /r:airvehicles.dll *.vb

Notice that when you are referencing a multifile assembly, the compiler needs to be supplied
only with the name of the primary module (the *.netmodules are loaded on demand when used by
the client’s code base). In and of themselves, *.netmodules do not have an individual version number
and cannot be directly loaded by the CLR. Individual *.netmodules can be loaded only by the primary
module (e.g., the file that contains the assembly manifest).

■Note Visual Studio 2005 also allows you to reference a multifile assembly. Simply use the Add References
dialog box and select the primary module. Any related *.netmodules are copied during the process.

At this point, you should feel comfortable with the process of building both single-file and mul-
tifile assemblies. To be completely honest, chances are that 99.99 percent of your assemblies will be
single-file entities. Nevertheless, multifile assemblies can prove helpful when you wish to break a large
physical binary into more modular units (and they are quite useful for remote download scenarios).
Next up, let’s formalize the concept of a private assembly.

■Source Code The MultifileAssembly project is included under the Chapter 11 subdirectory.

Understanding Private Assemblies
Technically speaking, the assemblies you’ve created thus far in this chapter have been deployed as
private assemblies. Private assemblies are required to be located within the same directory as the
client application (termed the application directory) or a subdirectory thereof. Recall that when you
set a reference to CarLibrary.dll while building the CSharpCarClient.exe and VbNetCarClient.exe
applications, Visual Studio 2005 responded by placing a copy of CarLibrary.dll within the client’s
application directory.

When a client program uses the types defined within this external assembly, the CLR simply
loads the local copy of CarLibrary.dll. Because the .NET runtime does not consult the system
registry when searching for referenced assemblies, you can relocate the CSharpCarClient.exe (or
VbNetCarClient.exe) and CarLibrary.dll assemblies to location on your machine and run the
application (this is often termed Xcopy deployment).

Uninstalling (or replicating) an application that makes exclusive use of private assemblies is
a no-brainer: simply delete (or copy) the application folder. Unlike with COM applications, you do
not need to worry about dozens of orphaned registry settings. More important, you do not need to
worry that the removal of private assemblies will break any other applications on the machine.

The Identity of a Private Assembly
The full identity of a private assembly consists of the friendly name and numerical version, both of
which are recorded in the assembly manifest. The friendly name simply is the name of the module

4193ch11.qxd 8/14/05 2:52 PM Page 365

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES366

that contains the assembly’s manifest minus the file extension. For example, if you examine the
manifest of the CarLibrary.dll assembly, you find the following (your version will no doubt differ):

.assembly CarLibrary
{
...

.ver 1:0:454:30104
}

Given the isolated nature of a private assembly, it should make sense that the CLR does not bother
to make use of the version number when resolving its location. The assumption is that private assem-
blies do not need to have any elaborate version checking, as the client application is the only entity that
“knows” of its existence. Given this, it is (very) possible for a single machine to have multiple copies of
the same private assembly in various application directories.

Understanding the Probing Process
The .NET runtime resolves the location of a private assembly using a technique termed probing,
which is much less invasive than it sounds. Probing is the process of mapping an external assembly
request to the location of the requested binary file. Strictly speaking, a request to load an assembly
may be either implicit or explicit. An implicit load request occurs when the CLR consults the manifest
in order to resolve the location of an assembly defined using the .assembly extern tokens:

// An implicit load request.
.assembly extern CarLibrary
{ ...}

An explicit load request occurs programmatically using the Load() or LoadFrom() method of the
System.Reflection.Assembly class type, typically for the purposes of late binding and dynamic
invocation of type members. You’ll examine these topics further in Chapter 12, but for now you can
see an example of an explicit load request in the following code:

// An explicit load request.
Assembly asm = Assembly.Load("CarLibrary");

In either case, the CLR extracts the friendly name of the assembly and begins probing the client’s
application directory for a file named CarLibrary.dll. If this file cannot be located, an attempt is made
to locate an executable assembly based on the same friendly name (CarLibrary.exe). If neither of these
files can be located in the application directory, the runtime gives up and throws a FileNotFound
exception at runtime.

■Note Technically speaking, if a copy of the requested assembly cannot be found within the client’s application
directory, the CLR will also attempt to locate a client subdirectory with the exact same name as the assembly’s
friendly name (e.g., C:\MyClient\CarLibrary). If the requested assembly resides within this subdirectory, the CLR
will load the assembly into memory.

Configuring Private Assemblies
While it is possible to deploy a .NET application by simply copying all required assemblies to a sin-
gle folder on the user’s hard drive, you will most likely wish to define a number of subdirectories to
group related content. For example, assume you have an application directory named C:\MyApp
that contains CSharpCarClient.exe. Under this folder might be a subfolder named MyLibraries that
contains CarLibrary.dll.

4193ch11.qxd 8/14/05 2:52 PM Page 366

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 367

Figure 11-11. CarLibrary.dll now resides under the MyLibraries subdirectory.

Regardless of the intended relationship between these two directories, the CLR will not probe
the MyLibraries subdirectory unless you supply a configuration file. Configuration files contain var-
ious XML elements that allow you to influence the probing process. By “law,” configuration files
must have the same name as the launching application and take a *.config file extension, and they
must be deployed in the client’s application directory. Thus, if you wish to create a configuration file
for CSharpCarClient.exe, it must be named CSharpCarClient.exe.config.

To illustrate the process, create a new directory on your C drive named MyApp using Windows
Explorer. Next, copy CSharpCarClient.exe and CarLibrary.dll to this new folder, and run the program
by double-clicking the executable. Your program should run successfully at this point (remember, the
assemblies are not registered!). Next, create a new subdirectory under C:\MyApp named MyLibraries
(see Figure 11-11), and move CarLibrary.dll to this location.

Try to run your client program again. Because the CLR could not locate “CarLibrary” directly
within the application directory, you are presented with a rather nasty unhandled FileNotFound
exception.

To rectify the situation, create a new configuration file named CSharpCarClient.exe.config
and save it in the same folder containing the CSharpCarClient.exe application, which in this exam-
ple would be C:\MyApp. Open this file and enter the following content exactly as shown (be aware
that XML is case sensitive!):

<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="MyLibraries"/>

</assemblyBinding>
</runtime>

</configuration>

.NET *.config files always open with a root element named <configuration>. The nested <runtime>
element may specify an <assemblyBinding> element, which nests a further element named <probing>.
The privatePath attribute is the key point in this example, as it is used to specify the subdirectories
relative to the application directory where the CLR should probe.

4193ch11.qxd 8/14/05 2:52 PM Page 367

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES368

Figure 11-12. The Visual Studio 2005 App.config file

Do note that the <probing> element does not specify which assembly is located under a given
subdirectory. In other words, you cannot say, “CarLibrary is located under the MyLibraries subdirec-
tory, but MathUtils is located under Bin subdirectory.” The <probing> element simply instructs the
CLR to investigate all specified subdirectories for the requested assembly until the first match is
encountered.

■Note Be very aware that the privatePath attribute cannot be used to specify an absolute (C:\SomeFolder\
SomeSubFolder) or relative (..\\SomeFolder\\AnotherFolder) path! If you wish to specify a directory outside the
client’s application directory, you will need to make use of a completely different XML element named <codeBase>
(more details on this element later in the chapter).

Multiple subdirectories can be assigned to the privatePath attribute using a semicolon-delimited
list. You have no need to do so at this time, but here is an example that informs the CLR to consult the
MyLibraries and MyLibraries\Tests client subdirectories:

<probing privatePath="MyLibraries; MyLibraries\Tests"/>

Once you’ve finished creating CSharpCarClient.exe.config, run the client by double-clicking
the executable in Windows Explorer. You should find that CSharpCarClient.exe executes without
a hitch (if this is not the case, double-check it for typos).

Next, for testing purposes, change the name of your configuration file (in one way or another)
and attempt to run the program once again. The client application should now fail. Remember that
*.config files must be prefixed with the same name as the related client application. By way of a final
test, open your configuration file for editing and capitalize any of the XML elements. Once the file is
saved, your client should fail to run once again (as XML is case sensitive).

Configuration Files and Visual Studio 2005
While you are always able to create XML configuration files by hand using your text editor of choice,
Visual Studio 2005 allows you create a configuration file during the development of the client pro-
gram. To illustrate, load the CSharpCarClient solution into Visual Studio 2005 and insert a new
Application Configuration File item using the Project ➤ Add New Item menu selection. Before you
click the OK button, take note that the file is named App.config (don’t rename it!). If you look in the
Solution Explorer window, you will now find App.config has been inserted into your current project
(see Figure 11-12).

At this point, you are free to enter the necessary XML elements for the client you happen to be
creating. Now, here is the cool thing. Each time you compile your project, Visual Studio 2005 will

4193ch11.qxd 8/14/05 2:52 PM Page 368

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 369

Figure 11-13. The .NET Framework 2.0 Configuration utility

automatically copy the data in App.config to the \Bin\Debug directory using the proper naming
convention (such as CSharpCarClient.exe.config). However, this behavior will happen only if your
configuration file is indeed named App.config.

Using this approach, all you need to do is maintain App.config, and Visual Studio 2005 will
ensure your application directory contains the latest and greatest content (even if you happen to
rename your project).

Introducing the .NET Framework 2.0 Configuration Utility
Although authoring a *.config file by hand is not too traumatic, the .NET Framework 2.0 SDK does
ship with a tool that allows you to build XML configuration files using a friendly GUI. You can find
the .NET Framework 2.0 Configuration utility under the Administrative folder of your Control Panel.
Once you launch this tool, you will find a number of configuration options (see Figure 11-13).

To build a client *.config file using this utility, your first step is to add the application to con-
figure by right-clicking the Applications node and selecting Add. In the resulting dialog box, you
may find the application you wish to configure, provided that you have executed it using Windows
Explorer. If this is not the case, click the Other button and navigate to the location of the client pro-
gram you wish to configure. For this example, select the VbNetCarClient.exe application created
earlier in this chapter (look under the Bin folder). Once you have done so, you will now find a new
subnode, as shown in Figure 11-14.

4193ch11.qxd 8/14/05 2:52 PM Page 369

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES370

Figure 11-14. Preparing to configure VbNetCarClient.exe

Figure 11-15. Configuring a private probing path graphically

If you right-click the VbNetCarClient node and activate the Properties page, you will notice a text
field located at the bottom of the dialog box where you can enter the values to be assigned to the
privatePath attribute. Just for testing purposes, enter a subdirectory named TestDir (see Figure 11-15).

Once you click the OK button, you can examine the VbNetCarClient\Debug directory and find
that the default *.config file (which Visual Studio 2005 provides for most VB .NET programs) has
been updated with the correct <probing> element.

4193ch11.qxd 8/14/05 2:52 PM Page 370

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 371

Figure 11-16. The GAC

■Note As you may guess, you can copy the XML content generated by the .NET Framework 2.0 Configuration
utility into a Visual Studio 2005 App.config file for further editing. Using this approach, you can certainly decrease
your typing burden by allowing the tool to generate the initial content.

Understanding Shared Assemblies
Now that you understand how to deploy and configure a private assembly, you can begin to examine
the role of a shared assembly. Like a private assembly, a shared assembly is a collection of types and
(optional) resources. The most obvious difference between shared and private assemblies is the fact
that a single copy of a shared assembly can be used by several applications on a single machine.

Consider all the applications created in this text that required you to set a reference to System.
Windows.Forms.dll. If you were to look in the application directory of each of these clients, you
would not find a private copy of this .NET assembly. The reason is that System.Windows.Forms.dll
has been deployed as a shared assembly. Clearly, if you need to create a machine-wide class library,
this is the way to go.

As suggested in the previous paragraph, a shared assembly is not deployed within the same
directory as the application making use of it. Rather, shared assemblies are installed into the Global
Assembly Cache (GAC). The GAC is located under a subdirectory of your Windows directory named
Assembly (e.g., C:\Windows\Assembly), as shown in Figure 11-16.

■Note You cannot install executable assemblies (*.exe) into the GAC. Only assemblies that take the *.dll file
extension can be deployed as a shared assembly.

Understanding Strong Names
Before you can deploy an assembly to the GAC, you must assign it a strong name, which is used to
uniquely identify the publisher of a given .NET binary. Understand that a “publisher” could be an
individual programmer, a department within a given company, or an entire company at large.

4193ch11.qxd 8/14/05 2:52 PM Page 371

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES372

Figure 11-17. At compile time, a digital signature is generated and embedded into the assembly based
in part on public and private key data.

In some ways, a strong name is the modern day .NET equivalent of the COM globally unique
identifier (GUID) identification scheme. If you have a COM background, you may recall that AppIDs
are GUIDs that identify a particular COM application. Unlike COM GUID values (which are nothing
more than 128-bit numbers), strong names are based (in part) on two cryptographically related keys
(termed the public key and the private key), which are much more unique and resistant to tampering
than a simple GUID.

Formally, a strong name is composed of a set of related data, much of which is specified using
assembly-level attributes:

• The friendly name of the assembly (which you recall is the name of the assembly minus the
file extension)

• The version number of the assembly (assigned using the [AssemblyVersion] attribute)

• The public key value (assigned using the [AssemblyKeyFile] attribute)

• An optional culture identity value for localization purposes (assigned using the [AssemblyCulture]
attribute)

• An embedded digital signature created using a hash of the assembly’s contents and the private
key value

To provide a strong name for an assembly, your first step is to generate public/private key data
using the .NET Framework 2.0 SDK’s sn.exe utility (which you’ll do momentarily). The sn.exe utility
responds by generating a file (typically ending with the *.snk [Strong Name Key] file extension) that
contains data for two distinct but mathematically related keys, the “public” key and the “private” key.
Once the C# compiler is made aware of the location for your *.snk file, it will record the full public
key value in the assembly manifest using the .publickey token at the time of compilation.

The C# compiler will also generate a hash code based on the contents of the entire assembly
(CIL code, metadata, and so forth). As you recall from Chapter 3, a hash code is a numerical value
that is unique for a fixed input. Thus, if you modify any aspect of a .NET assembly (even a single
character in a string literal) the compiler yields a unique hash code. This hash code is combined with
the private key data within the *.snk file to yield a digital signature embedded within the assembly’s
CLR header data. The process of strongly naming an assembly is illustrated in Figure 11-17.

4193ch11.qxd 8/14/05 2:52 PM Page 372

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 373

Understand that the actual private key data is not listed anywhere within the manifest, but is
used only to digitally sign the contents of the assembly (in conjunction with the generated hash code).
Again, the whole idea of making use of public/private key cryptography is to ensure that no two com-
panies, departments, or individuals have the same identity in the .NET universe. In any case, once the
process of assigning a strong name is complete, the assembly may be installed into the GAC.

■Note Strong names also provide a level of protection against potential evildoers tampering with your assembly’s
contents. Given this point, it considered a .NET best practice to strongly name every assembly regardless if it is
deployed to the GAC.

Strongly Naming CarLibrary.dll
Let’s walk through the process of assigning a strong name to the CarLibrary assembly created earlier
in this chapter (go ahead and open up that project using your IDE of choice). The first order of busi-
ness is to generate the required key data using the sn.exe utility. Although this tool has numerous
command-line options, all you need to concern yourself with for the moment is the -k flag, which
instructs the tool to generate a new file containing the public/private key information. Create a new
folder on your C drive named MyTestKeyPair and change to that directory using the .NET Command
Prompt. Now, issue the following command to generate a file named MyTestKeyPair.snk:

sn -k MyTestKeyPair.snk

Now that you have your key data, you need to inform the C# compiler exactly where
MyTestKeyPair.snk is located. When you create any new C# project workspace using Visual Studio
2005, you will notice that one of your initial project files (located under the Properties node of Solu-
tion Explorer) is named AssemblyInfo.cs. This file contains a number of attributes that describe the
assembly itself. The AssemblyKeyFile assembly-level attribute can be used to inform the compiler of
the location of a valid *.snk file. Simply specify the path as a string parameter, for example:

[assembly: AssemblyKeyFile(@"C:\MyTestKeyPair\MyTestKeyPair.snk")]

Given that the version of a shared assembly is one aspect of a strong name, let’s also specify
a specific version number for CarLibrary.dll. In the AssemblyInfo.cs file, you will find another
attribute named AssemblyVersion. Initially the value is set to 1.0.*:

[assembly: AssemblyVersion("1.0.*")]

Recall that a .NET version number is composed of the four parts (<major>.<minor>.<build>.
<revision>). Until you say otherwise, Visual Studio 2005 automatically increments the build and
revision numbers (as marked by the * wildcard token) as part of each compilation. To enforce
a fixed value for the assembly’s build version, replace the wildcard token with a specific build and
revision value:

// Format: <Major version>.<Minor version>.<Build number>.<Revision>
// Valid values for each part of the version number are between 0 and 65535.
[assembly: AssemblyVersion("1.0.0.0")]

At this point, the C# compiler has all the information needed to generate strong name data (as
you are not specifying a unique culture value via the [AssemblyCulture] attribute, you “inherit” the
culture of your current machine). Compile your CarLibrary code library and open the manifest using
ildasm.exe. You will now see a new .publickey tag is used to document the full public key information,
while the .ver token records the version specified via the [AssemblyVersion] attribute (see Figure 11-18).

4193ch11.qxd 8/14/05 2:52 PM Page 373

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES374

Figure 11-18. A strongly named assembly records the public key in the manifest.

Figure 11-19. Specifying a *.snk file via the Properties page

Assigning Strong Names Using Visual Studio 2005
Before you deploy CarLibrary.dll to the GAC, let me point out that Visual Studio 2005 allows you to
specify the location of your *.snk file using the project’s Properties page (in fact, this is now consid-
ered the preferred approach; using the [AssemblyKeyFile] attribute generates a compiler warning
under Visual Studio 2005). To do so, select the Signing node, supply the path to the *.snk file, and select
the “Sign the assembly” check box (see Figure 11-19).

Installing/Removing Shared Assemblies to/from the GAC
The final step is to install the (now strongly named) CarLibrary.dll into the GAC. The simplest way
to install a shared assembly into the GAC is to drag and drop the assembly to C:\Windows\Assembly
using Windows Explorer (which is ideal for a quick test).

In addition, the .NET Framework 2.0 SDK provides a command-line utility named gacutil.exe
that allows you to examine and modify the contents of the GAC. Table 11-1 documents some
relevant options of gacutil.exe (specify the /? flag to see each option).

4193ch11.qxd 8/14/05 2:52 PM Page 374

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 375

Figure 11-20. The strongly named, shared CarLibrary (version 1.0.0.0)

Table 11-1. Various Options of gacutil.exe

Option Meaning in Life

/i Installs a strongly named assembly into the GAC

/u Uninstalls an assembly form the GAC

/l Displays the assemblies (or a specific assembly) in the GAC

Using either technique, deploy CarLibrary.dll to the GAC. Once you’ve finished, you should
see your library present and accounted for (see Figure 11-20).

■Note You may right-click any assembly icon to pull up its Properties page, and you may also uninstall a specific
version of an assembly altogether from the right-click context menu (the GUI equivalent of supplying the /u flag to
gacutil.exe).

The Role of Delayed Signing
When you are building your own custom .NET assemblies, you are able to assign a strong name using
your own personal *.snk file. However, given the sensitive nature of a public/private key file, don’t be
too surprised if your company/department refuses to give you access to the master *.snk file. This is
an obvious problem, given that we (as developers) will often need to install an assembly into the GAC
for testing purposes. To allow this sort of testing (while not distributing the true *.snk file), you are able
to make use of delayed signing. We have no need to do so for the current CarLibrary.dll; however,
here is an overview of the process.

Delayed signing begins by the trusted individual holding the *.snk file extracting the public key
value from the public/private *.snk file using the -p command-line flag of sn.exe, to produce a new
file that only contains the public key value:

sn -p myKey.snk testPublicKey.snk

At this point, the testPublicKey.snk file can be distributed to individual developers for the
creation and testing of strongly named assemblies. To inform the C# compiler that the assembly in
question is making use of delayed signing, the developer must make sure to set the value of the
AssemblyDelaySign attribute to true in addition to specifying the pseudo-key file as the parameter
to the AssemblyKeyFile attribute. Here are the relevant updates to the project’s AssemblyInfo.cs file:

[assembly: AssemblyDelaySign(true)]
[assembly: AssemblyKeyFile(@"C:\MyKey\testPublicKey.snk)]

4193ch11.qxd 8/14/05 2:52 PM Page 375

Figure 11-21. Nope! You can’t reference shared assemblies by navigating to the Assembly folder using
Visual Studio 2005.

■Note If you are using Visual Studio 2005, these same attributes can be established visually using the Properties
page of your project.

Once an assembly has enabled delayed signing, the next step is to disable the signature verifi-
cation process that happens automatically when an assembly is deployed to the GAC. To do so, specify
the -vr flag (using sn.exe) to skip the verification process on the current machine:

sn.exe -vr MyAssembly.dll

Once all testing has been performed, the assembly in question can be shipped to the trusted
individual who holds the “true” public/private key file to resign the binary to provide the correct digi-
tal signature. Again, sn.exe provides the necessary behavior, this time using the -r flag:

sn.exe -r MyAssembly.dll C:\MyKey\myKey.snk

To enable the signature verification process, the final step is to apply the -vu flag:

sn.exe -vu MyAssembly.dll

Understand, of course, that if you (or your company) only build assemblies intended for internal
use, you may never need to bother with the process of delayed signing. However, if you are in the
business of building .NET assemblies that may be purchased by external parties, the ability to delay
signing keeps things safe and sane for all involved.

Consuming a Shared Assembly
When you are building applications that make use of a shared assembly, the only difference from
consuming a private assembly is in how you reference the library using Visual Studio 2005. In reality,
there is no difference as far as the tool is concerned (you still make use of the Add Reference dialog
box). What you must understand is that this dialog box will not allow you to reference the assembly
by browsing to the Assembly folder. Any efforts to do so will be in vain, as you cannot reference the
assembly you have highlighted (see Figure 11-21).

4193ch11.qxd 8/14/05 2:52 PM Page 376

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 377

Figure 11-22. Correct! You must reference shared assemblies by navigating to the project’s \Bin\Debug
directory using Visual Studio 2005.

Rather, you will need to browse to the \Bin\Debug directory of the original project via the
Browse tab (see Figure 11-22).

This (somewhat annoying) fact aside, create a new C# console application named
SharedCarLibClient and exercise your types as you wish:

using CarLibrary;

namespace SharedCarLibClient
{

class Program
{

static void Main(string[] args)
{

SportsCar c = new SportsCar();
c.TurboBoost();
Console.ReadLine();

}
}

}

Once you have compiled your client application, navigate to the directory that contains
SharedCarLibClient.exe using Windows Explorer and notice that Visual Studio 2005 has not copied
CarLibrary.dll to the client’s application directory. When you reference an assembly whose mani-
fest contains a .publickey value, Visual Studio 2005 assumes the strongly named assembly will most
likely be deployed in the GAC, and therefore does not bother to copy the binary.

As a quick side note, if you wish to have Visual Studio 2005 copy a shared assembly to the client
directory, you can select an assembly from the References node of Solution Explorer and set the
Copy Local property to True or False using the Properties window (see Figure 11-23).

4193ch11.qxd 8/14/05 2:52 PM Page 377

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES378

Figure 11-23. The Copy Local property can force a copy of a strongly named code library.

Exploring the Manifest of SharedCarLibClient
Recall that when you generate a strong name for an assembly, the entire public key is recorded in
the assembly manifest. On a related note, when a client references a strongly named assembly, its
manifest records a condensed hash-value of the full public key, denoted by the .publickeytoken tag.
If you were to open the manifest of SharedCarLibClient.exe using ildasm.exe, you would find the
following:

.assembly extern CarLibrary
{
.publickeytoken = (21 9E F3 80 C9 34 8A 38)
.ver 1:0:0:0

}

If you compare the value of the public key token recorded in the client manifest with the public
key token value shown in the GAC, you will find a dead-on match. Recall that a public key represents
one aspect of the strongly named assembly’s identity. Given this, the CLR will only load version
1.0.0.0 of an assembly named CarLibrary that has a public key that can be hashed down to the value
219EF380C9348A38. If the CLR does not find an assembly meeting this description in the GAC (and
cannot find a private assembly named CarLibrary in the client’s directory), a FileNotFound exception
is thrown.

■Source Code The SharedCarLibClient application can be found under the Chapter 11 subdirectory.

Configuring Shared Assemblies
Like a private assembly, shared assemblies can be configured using a client *.config file. Of course,
because shared assemblies are found in a well-known location (the GAC), you will not specify
a <privatePath> element as you did for private assemblies (although if the client is using both shared
and private assemblies, the <privatePath> element may still exist in the *.config file).

You can use application configuration files in conjunction with shared assemblies whenever you
wish to instruct the CLR to bind to a different version of a specific assembly, effectively bypassing the

4193ch11.qxd 8/14/05 2:52 PM Page 378

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 379

value recorded in the client’s manifest. This can be useful for a number of reasons. For example,
imagine that you have shipped version 1.0.0.0 of an assembly and discover a major bug some time
after the fact. One corrective action would be to rebuild the client application to reference the correct
version of the bug-free assembly (say, 1.1.0.0) and redistribute the updated client and new library to
each and every target machine.

Another option is to ship the new code library and a *.config file that automatically instructs the
runtime to bind to the new (bug-free) version. As long as the new version has been installed into the GAC,
the original client runs without recompilation, redistribution, or fear of having to update your resume.

Here’s another example: you have shipped the first version of a bug-free assembly (1.0.0.0), and
after a month or two, you add new functionality to the assembly in question to yield version 2.0.0.0.
Obviously, existing client applications that were compiled against version 1.0.0.0 have no clue about
these new types, given that their code base makes no reference to them.

New client applications, however, wish to make reference to the new functionality found in version
2.0.0.0. Under .NET, you are free to ship version 2.0.0.0 to the target machines, and have version 2.0.0.0
run alongside the older version 1.0.0.0. If necessary, existing clients can be dynamically redirected to
load version 2.0.0.0 (to gain access to the implementation refinements), using an application
configuration file without needing to recompile and redeploy the client application.

Freezing the Current Shared Assembly
To illustrate how to dynamically bind to a specific version of a shared assembly, open Windows
Explorer and copy the current version of CarLibrary (1.0.0.0) into a distinct subdirectory (I called
mine “Version 1”) off the project root to symbolize the freezing of this version (see Figure 11-24).

Building Shared Assembly Version 2.0.0.0
Now, update your CarLibrary project to define a new enum named MusicMedia that defines four possible
musical devices:

// Holds source of music.
public enum MusicMedia
{

musicCd,
musicTape,
musicRadio,
musicMp3

}

Figure 11-24. Freezing the current version of CarLibrary.dll

4193ch11.qxd 8/14/05 2:52 PM Page 379

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES380

Figure 11-25. Side-by-side execution

As well, add a new public method to the Car type that allows the caller to turn on one of the
given media players:

public abstract class Car
{
...

public void TurnOnRadio(bool musicOn, MusicMedia mm)
{

if(musicOn)
MessageBox.Show(string.Format("Jamming {0}", mm));

else
MessageBox.Show("Quiet time...");

}
...
}

Update the constructors of the Car class to display a MessageBox that verifies you are indeed using
CarLibrary 2.0.0.0:

public abstract class Car
{
...

public Car()
{

MessageBox.Show("Car 2.0.0.0");
}
public Car(string name, short max, short curr)
{

MessageBox.Show("Car 2.0.0.0");
petName = name; maxSpeed = max; currSpeed = curr;

}
...
}

Finally, before you recompile, be sure to update this version of this assembly to 2.0.0.0 by updating
the value passed to the [AssemblyVersion] attribute:

// CarLibrary version 2.0.0.0 (now with music!)
[assembly: AssemblyVersion("2.0.0.0")]

If you look in your project’s \Bin\Debug folder, you’ll see that you have a new version of this
assembly (2.0.0.0), while version 1.0.0.0 is safe in storage under the Version 1 subdirectory. Install this
new assembly into the GAC as described earlier in this chapter. Notice that you now have two versions
of the same assembly (see Figure 11-25).

4193ch11.qxd 8/14/05 2:52 PM Page 380

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 381

If you were to run the current SharedCarLibClient.exe program by double-clicking the icon
using Windows Explorer, you should not see the “Car 2.0.0.0” message box appear, as the manifest is
specifically requesting version 1.0.0.0. How then can you instruct the CLR to bind to version 2.0.0.0?
Glad you asked.

Dynamically Redirecting to Specific Versions of a Shared
Assembly
When you wish to inform the CLR to load a version of a shared assembly other than the version
listed in its manifest, you may build a *.config file that contains a <dependentAssembly> element.
When doing so, you will need to create an <assemblyIdentity> subelement that specifies the friendly
name of the assembly listed in the client manifest (CarLibrary, for this example) and an optional
culture attribute (which can be assigned an empty string or omitted altogether if you wish to specify
the default culture for the machine). Moreover, the <dependentAssembly> element will define
a <bindingRedirect> subelement to define the version currently in the manifest (via the oldVersion
attribute) and the version in the GAC to load instead (via the newVersion attribute).

Create a new configuration file in the application directory of SharedCarLibClient named
SharedCarLibClient.exe.config that contains the following XML data. Of course, the value of your
public key token will be different from what you see in the following code, and it can be obtained
either by examining the client manifest using ildasm.exe or via the GAC.

<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="CarLibrary"
publicKeyToken="219ef380c9348a38"
culture=""/>

<bindingRedirect oldVersion= "1.0.0.0"
newVersion= "2.0.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Now run the SharedCarLibClient.exe program. You should see the message that displays version
2.0.0.0 has loaded. If you set the newVersion attribute to 1.0.0.0 (or if you simply deleted the *.config
file), you now see the message that version 1.0.0.0 has loaded, as the CLR found version 1.0.0.0 listed
in the client’s manifest.

Multiple <dependentAssembly> elements can appear within a client’s configuration file. Although
you have no need to do so, assume that the manifest of SharedCarLibClient.exe also referenced ver-
sion 2.5.0.0 of an assembly named MathLibrary. If you wished to redirect to version 3.0.0.0 of
MathLibrary (in addition to version 2.0.0.0 of CarLibrary), the SharedCarLibClient.exe.config file
would look like the following:

<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="CarLibrary"
publicKeyToken="219ef380c9348a38"
culture=""/>

<bindingRedirect oldVersion= "1.0.0.0"
newVersion= "2.0.0.0"/>

</dependentAssembly>

4193ch11.qxd 8/14/05 2:52 PM Page 381

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES382

<dependentAssembly>
<assemblyIdentity name="MathLibrary"

publicKeyToken="219ef380c9348a38"
culture=""/>

<bindingRedirect oldVersion= "2.5.0.0"
newVersion= "3.0.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Revisiting the .NET Framework 2.0 Configuration Utility
As you would hope, you can generate shared assembly–centric *.config files using the graphical .NET
Framework 2.0 Configuration utility. Like the process of building a *.config file for private assemblies, the
first step is to reference the *.exe to configure. To illustrate, delete the SharedCarLibClient.exe.config
you just authored. Now, add a reference to SharedCarLibClient.exeby right-clicking the Applications
node. Once you do, expand the plus sign (+) icon and select the Configured Assemblies subnode. From
here, click the Configure an Assembly link on the right side of the utility.

At this point, you are presented with a dialog box that allows you to establish a <dependentAssembly>
element using a number of friendly UI elements. First, select the “Choose an assembly from the list
of assemblies this application uses” radio button (which simply means, “Show me the manifest!”)
and click the Choose Assembly button.

A dialog box now displays that shows you not only the assemblies specifically listed in the client
manifest, but also the assemblies referenced by these assemblies. For this example’s purposes, select
CarLibrary. When you click the Finish button, you will be shown a Properties page for this one small
aspect of the client’s manifest. Here, you can generate the <dependentAssembly> using the Binding
Policy tab.

Once you select the Binding Policy tab, you can set the oldVersion attribute (1.0.0.0) via the
Requested Version text field and the newVersion attribute (2.0.0.0) using the New Version text field. Once
you have committed the settings, you will find the following configuration file is generated for you:

<?xml version="1.0"?>
<configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38" />
<publisherPolicy apply="yes" />
<bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0" />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Investigating the Internal Composition of the GAC
So far, so good. Now, let’s dig into the internal composition of the GAC itself. When you view the GAC
using Windows Explorer, you find a number of icons representing each version of a shared assembly.
This graphical shell is provided courtesy of a COM server named shfusion.dll. As you may suspect,
however, beneath these icons is an elaborate (but predictable) directory structure.

To understand what the GAC really boils down to, open a command prompt and change to the
Assembly directory:

cd c:\windows\assembly

4193ch11.qxd 8/14/05 2:52 PM Page 382

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 383

Figure 11-26. The hidden GAC_MSIL subdirectory

Figure 11-27. Inside the hidden CarLibrary subdirectory

Issue a dir command from the command line. Here you will find a folder named GAC_MISL
(see Figure 11-26).

Change to the GAC_MSIL directory and issue a dir command once more. You will now be
presented with a list of a number of subdirectories that happen to have the same exact name as the
icons displayed by shfusion.dll. Change to the CarLibrary subdirectory and again issue a dir com-
mand (see Figure 11-27).

As you can see, the GAC maintains a subdirectory for each version of a shared assembly, which
follows the naming convention <versionOfAssembly>__PublicKeyToken. If you were again to change
the current directory to version 1.0.0.0 of CarLibrary, you would indeed find a copy of the code library
(see Figure 11-28).

4193ch11.qxd 8/14/05 2:52 PM Page 383

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES384

Figure 11-28. Behold! The GAC’s internal copy of CarLibrary.dll.

When you install a strongly named assembly into the GAC, the operating system responds by
extending the directory structure beneath the Assembly subdirectory. Using this approach, the CLR
is able to manipulate multiple versions of a specific assembly while avoiding the expected name
clashes resulting from identically named *.dlls.

Understanding Publisher Policy Assemblies
The next configuration issue you’ll examine is the role of publisher policy assemblies. As you’ve just
seen, *.config files can be constructed to bind to a specific version of a shared assembly, thereby
bypassing the version recorded in the client manifest. While this is all well and good, imagine you’re
an administrator who now needs to reconfigure all client applications on a given machine to rebind
to version 2.0.0.0 of the CarLibrary.dll assembly. Given the strict naming convention of a configu-
ration file, you would need to duplicate the same XML content in numerous locations (assuming
you are, in fact, aware of the locations of the executables using CarLibrary!). Clearly this would be
a maintenance nightmare.

Publisher policy allows the publisher of a given assembly (you, your department, your company,
or what have you) to ship a binary version of a *.config file that is installed into the GAC along with
the newest version of the associated assembly. The benefit of this approach is that client application
directories do not need to contain specific *.config files. Rather, the CLR will read the current mani-
fest and attempt to find the requested version in the GAC. However, if the CLR finds a publisher policy
assembly, it will read the embedded XML data and perform the requested redirection at the level of
the GAC.

Publisher policy assemblies are created at the command line using a .NET utility named al.exe
(the assembly linker). While this tool provides a large number of options, building a publisher policy
assembly requires you only to pass in the following input parameters:

• The location of the *.config or *.xml file containing the redirecting instructions

• The name of the resulting publisher policy assembly

• The location of the *.snk file used to sign the publisher policy assembly

• The version numbers to assign the publisher policy assembly being constructed

If you wish to build a publisher policy assembly that controls CarLibrary.dll, the command set
is as follows:

al /link: CarLibraryPolicy.xml /out:policy.1.0.CarLibrary.dll
/keyf:C:\MyKey\myKey.snk /v:1.0.0.0

4193ch11.qxd 8/14/05 2:52 PM Page 384

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 385

Here, the XML content is contained within a file named CarLibraryPolicy.xml. The name of
the output file (which must be in the format policy.<major>.<minor>.assemblyToConfigure) is spec-
ified using the obvious /out flag. In addition, note that the name of the file containing the public/private
key pair will also need to be supplied via the /keyf option. (Remember, publisher policy files are
shared, and therefore must have a strong name!)

Once the al.exe tool has executed, the result is a new assembly that can be placed into the GAC
to force all clients to bind to version 2.0.0.0 of CarLibrary.dll, without the use of a specific client
application configuration file.

Disabling Publisher Policy
Now, assume you (as a system administrator) have deployed a publisher policy assembly (and the lat-
est version of the related assembly) to a client machine. As luck would have it, nine of the ten affected
applications rebind to version 2.0.0.0 without error. However, the remaining client application (for
whatever reason) blows up when accessing CarLibrary.dll 2.0.0.0 (as we all know, it is next to impos-
sible to build backward-compatible software that works 100 percent of the time).

In such a case, it is possible to build a configuration file for a specific troubled client that instructs
the CLR to ignore the presence of any publisher policy files installed in the GAC. The remaining client
applications that are happy to consume the newest .NET assembly will simply be redirected via the
installed publisher policy assembly. To disable publisher policy on a client-by-client basis, author
a (properly named) *.config file that makes use of the <publisherPolicy> element and set the apply
attribute to no. When you do so, the CLR will load the version of the assembly originally listed in the
client’s manifest.

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<publisherPolicy apply="no" />

</assemblyBinding>
</runtime>

</configuration>

Understanding the <codeBase> Element
Application configuration files can also specify code bases. The <codeBase> element can be used to
instruct the CLR to probe for dependent assemblies located at arbitrary locations (such as network
share points, or simply a local directory outside a client’s application directory).

■Note If the value assigned to a <codeBase> element is located on a remote machine, the assembly will be
downloaded on demand to a specific directory in the GAC termed the download cache. You can view the content
of your machine’s download cache by supplying the /ldl option to gacutil.exe.

Given what you have learned about deploying assemblies to the GAC, it should make sense
that assemblies loaded from a <codeBase> element will need to be assigned a strong name (after all,
how else could the CLR install remote assemblies to the GAC?).

■Note Technically speaking, the <codeBase> element can be used to probe for assemblies that do not have
a strong name. However, the assembly’s location must be relative to the client’s application directory (and thus is
little more than an alternative to the <privatePath> element).

4193ch11.qxd 8/14/05 2:52 PM Page 385

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES386

Create a console application named CodeBaseClient, set a reference to CarLibrary.dll version
2.0.0.0, and update the initial file as so:

using CarLibrary;

namespace CodeBaseClient
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with CodeBases *****");
SportsCar c = new SportsCar();
Console.WriteLine("Sports car has been allocated.");
Console.ReadLine();

}
}

}

Given that CarLibrary.dll has been deployed to the GAC, you are able to run the program as is.
However, to illustrate the use of the <codeBase> element, create a new folder under your C drive
(perhaps C:\MyAsms) and place a copy of CarLibrary.dll version 2.0.0.0 into this directory.

Now, add an App.config file to the CodeBaseClient project (as explained earlier in this chapter)
and author the following XML content (remember that your .publickeytoken value will differ; consult
your GAC as required):

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="SharedAssembly" publicKeyToken="219ef380c9348a38" />
<codeBase version="2.0.0.0" href="file:///C:\MyAsms\CarLibrary.dll" />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

As you can see, the <codeBase> element is nested within the <assemblyIdentity> element,
which makes use of the name and publicKeyToken attributes to specify the friendly name as associ-
ated publicKeyToken values. The <codeBase> element itself specifies the version and location (via the
href property) of the assembly to load. If you were to delete version 2.0.0.0 of CarLibrary.dll from
the GAC, this client would still run successfully, as the CLR is able to resolve locate the external assembly
under C:\MyAsms.

However, if you were to delete the MyAsms directory from your machine, the client would now
fail. Clearly the <codeBase> elements (if present) take precedence over the investigation of the GAC.

■Note If you place assemblies at random locations on your development machine, you are in effect re-creating
the system registry (and the related DLL hell), given that if you move or rename the folder containing your binaries,
the current bind will fail. Given this point, use <codeBase> with caution.

The <codeBase> element can also be helpful when referencing assemblies located on a remote
networked machine. Assume you have permission to access a folder located at http://www.
IntertechTraining.com. To download the remote *.dll to the GAC’s download cache on your location
machine, you could update the <codeBase> element as so:

4193ch11.qxd 8/14/05 2:52 PM Page 386

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 387

<codeBase version="2.0.0.0"
href="http://www.IntertechTraining.com/Assemblies/CarLibrary.dll" />

■Source Code The CodeBaseClient application can be found under the Chapter 11 subdirectory.

The System.Configuration Namespace
Currently, all of the *.config files shown in this chapter have made use of well-known XML elements
that are read by the CLR to resolve the location of external assemblies. In addition to these recognized
elements, it is perfectly permissible for a client configuration file to contain application-specific
data that has nothing to do with binding heuristics. Given this, it should come as no surprise that
the .NET Framework provides a namespace that allows you to programmatically read the data within
a client configuration file.

The System.Configuration namespace provides a small set of types you may use to read cus-
tom data from a client’s *.config file. These custom settings must be contained within the scope
of an <appSettings> element. The <appSettings> element contains any number of <add> elements
that define a key/value pair to be obtained programmatically.

For example, assume you have a *.config file for a console application named AppConfigReaderApp
that defines a database connection string and a point of data named timesToSayHello:

<configuration>
<appSettings>

<add key="appConStr"
value="server=localhost;uid='sa';pwd='';database=Cars" />

<add key="timesToSayHello" value="8" />
</appSettings>

</configuration>

Reading these values for use by the client application is as simple as calling the instance-level
GetValue() method of the System.Configuration.AppSettingsReader type. As shown in the follow-
ing code, the first parameter to GetValue() is the name of the key in the *.config file, whereas the
second parameter is the underlying type of the key (obtained via the C# typeof operator):

class Program
{

static void Main(string[] args)
{

// Create a reader and get the connection string value.
AppSettingsReader ar = new AppSettingsReader();
Console.WriteLine(ar.GetValue("appConStr", typeof(string)));

// Now get the number of times to say hello, and then do it!
int numbOfTimes = (int)ar.GetValue("timesToSayHello", typeof(int));
for(int i = 0; i < numbOfTimes; i++)

Console.WriteLine("Yo!");
Console.ReadLine();

}
}

The AppSettingsReader class type does not provide a way to write application-specific data to
a *.config file. While this may seem like a limitation at first encounter, it actually makes good sense.
The whole idea of a *.config file is that it contains read-only data that is consulted by the CLR (or
possibly the AppSettingsReader type) after an application has already been deployed to a target machine.

4193ch11.qxd 8/14/05 2:52 PM Page 387

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES388

■Note During our examination of ADO.NET (Chapter 22) you will learn about the new <connectionStrings>
configuration element and new types within the System.Configuration namespace. These .NET 2.0–specific
items provide a standard manner to handle connection string data.

■Source Code The AppConfigReaderApp application can be found under the Chapter 11 subdirectory.

The Machine Configuration File
The configuration files you’ve examined in this chapter have a common theme: they apply only to
a specific application (that is why they have the same name as the launching application). In addition,
each .NET-aware machine has a file named machine.config that contains a vast number of configura-
tion details (many of which have nothing to do with resolving external assemblies) that control how
the .NET platform operates.

The .NET platform maintains a separate *.config file for each version of the framework
installed on the local machine. The machine.config file for .NET 2.0 can be found under the
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215\CONFIG directory (your version may differ).
If you were to open this file, you would find numerous XML elements that control ASP.NET settings,
various security details, debugging support, and so forth. However, if you wish to update the
machine.config file with machinewide application settings (via an <appSettings> element), you are
free to do so.

Although this file can be directly edited using Notepad, be warned that if you alter this file incor-
rectly, you may cripple the ability of the runtime to function correctly. This scenario can be far more
painful than a malformed application *.config file, given that XML errors in an application config-
uration file affect only a single application, but erroneous XML in the machine.config file can break
a specific version of the .NET platform.

The Assembly Binding “Big Picture”
Now that you have drilled down into the details regarding how the CLR resolves the location of
requested external assemblies, remember that the simple case is, indeed, simple. Many (if not most)
of your .NET applications will consist of nothing more than a group of private assemblies deployed
to a single directory. In this case, simply copy the folder to a location of your choosing and run the
client executable.

As you have seen, however, the CLR will check for client configuration files and publisher pol-
icy assemblies during the resolution process. To summarize the path taken by the CLR to resolve an
external assembly reference, ponder Figure 11-29.

4193ch11.qxd 8/14/05 2:52 PM Page 388

CHAPTER 11 ■ INTRODUCING .NET ASSEMBLIES 389

Figure 11-29. Behold the CLR’s path of assembly resolution.

Summary
This chapter drilled down into the details of how the CLR resolves the location of externally referenced
assemblies. You began by examining the content within an assembly: headers, metadata, manifests,
and CIL. Then you constructed single-file and multifile assemblies and a handful of client applications
(written in a language-agonistic manner).

As you have seen, assemblies may be private or shared. Private assemblies are copied to the
client’s subdirectory, whereas shared assemblies are deployed to the Global Assembly Cache (GAC),
provided they have been assigned a strong name. Finally, has you have seen, private and shared
assemblies can be configured using a client-side XML configuration file or, alternatively, via a pub-
lisher policy assembly.

4193ch11.qxd 8/14/05 2:52 PM Page 389

4193ch11.qxd 8/14/05 2:52 PM Page 390

Type Reflection, Late Binding, and
Attribute-Based Programming

As shown in the previous chapter, assemblies are the basic unit of deployment in the .NET universe.
Using the integrated object browsers of Visual Studio 2005, you are able to examine the public types
within a project’s referenced set of assemblies. Furthermore, external tools such as ildasm.exe allow
you to peek into the underlying CIL code, type metadata, and assembly manifest for a given .NET
binary. In addition to this design-time investigation of .NET assemblies, you are also able to
programmatically obtain this same information using the System.Reflection namespace. To this end,
the first task of this chapter is to define the role of reflection and the necessity of .NET metadata.

The remainder of the chapter examines a number of closely related topics, all of which hinge
upon reflection services. For example, you’ll learn how a .NET client may employ dynamic loading
and late binding to activate types it has no compile-time knowledge of. You’ll also learn how to insert
custom metadata into your .NET assemblies through the use of system-supplied and custom attributes.
To put all of these (seemingly esoteric) topics into perspective, the chapter closes by demonstrating
how to build several “snap-in objects” that you can plug into an extendable Windows Forms appli-
cation.

The Necessity of Type Metadata
The ability to fully describe types (classes, interfaces, structures, enumerations, and delegates) using
metadata is a key element of the .NET platform. Numerous .NET technologies, such as object serial-
ization, .NET remoting, and XML web services, require the ability to discover the format of types at
runtime. Furthermore, cross-language interoperability, compiler support, and an IDE’s IntelliSense
capabilities all rely on a concrete description of type.

Regardless of (or perhaps due to) its importance, metadata is not a new idea supplied by the
.NET Framework. Java, CORBA, and COM all have similar concepts. For example, COM type libraries
(which are little more than compiled IDL code) are used to describe the types contained within a COM
server. Like COM, .NET code libraries also support type metadata. Of course, .NET metadata has no
syntactic similarities to COM IDL. Recall that the ildasm.exe utility allows you to view an assembly’s
type metadata using the Ctrl+M keyboard option (see Chapter 1). Thus, if you were to open any of
the *.dll or *.exe assemblies created over the course of this book (such as CarLibrary.dll) using
ildasm.exe and press Ctrl+M, you would find the relevant type metadata (see Figure 12-1).

391

C H A P T E R 1 2

■ ■ ■

4193ch12.qxd 8/14/05 2:53 PM Page 391

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING392

As you can see, ildasm.exe’s display of .NET type metadata is very verbose (the actual binary
format is much more compact). In fact, if I were to list the entire metadata description representing
the CarLibrary.dll assembly, it would span several pages. Given that this act would be a woeful waste
of your time (and paper), let’s just glimpse into some key types of the CarLibrary.dll assembly.

Viewing (Partial) Metadata for the EngineState Enumeration
Each type defined within the current assembly is documented using a “TypeDef #n” token (where
TypeDef is short for type definition). If the type being described uses a type defined within a separate
.NET assembly, the referenced type is documented using a “TypeRef #n” token (where TypeRef is
short for type reference). A TypeRef token is a pointer (if you will) to the referenced type’s full meta-
data definition. In a nutshell, .NET metadata is a set of tables that clearly mark all type definitions
(TypeDefs) and referenced entities (TypeRefs), all of which can be viewed using ildasm.exe’s meta-
data window.

As far as CarLibrary.dll goes, one TypeDef we encounter is the metadata description of the
CarLibrary.EngineState enumeration (your number may differ; TypeDef numbering is based on
the order in which the C# compiler processes the file):

TypeDef #1

TypDefName: CarLibrary.EngineState (02000002)
Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass] (00000101)
Extends : 01000001 [TypeRef] System.Enum

...
Field #2

Field Name: engineAlive (04000002)
Flags : [Public] [Static] [Literal] [HasDefault] (00008056)
DefltValue: (I4) 0
CallCnvntn: [FIELD]
Field type: ValueClass CarLibrary.EngineState

...

Here, the TypDefName token is used to establish the name of the given type. The Extends meta-
data token is used to document the base class of a given .NET type (in this case, the referenced type,
System.Enum). Each field of an enumeration is marked using the “Field #n” token. For brevity, I have
simply listed the metadata for EngineState.engineAlive.

Figure 12-1. Viewing an assembly’s metadata

4193ch12.qxd 8/14/05 2:53 PM Page 392

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 393

Viewing (Partial) Metadata for the Car Type
Here is a partial dump of the Car type that illustrates the following:

• How fields are defined in terms of .NET metadata

• How methods are documented via .NET metadata

• How a single type property is mapped to two discrete member functions

TypeDef #3

TypDefName: CarLibrary.Car (02000004)
Flags : [Public] [AutoLayout] [Class] [Abstract] [AnsiClass] (00100081)
Extends : 01000002 [TypeRef] System.Object
Field #1

Field Name: petName (04000008)
Flags : [Family] (00000004)
CallCnvntn: [FIELD]
Field type: String

...
Method #1

MethodName: .ctor (06000001)
Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName]
[RTSpecialName] [.ctor] (00001886)
RVA : 0x00002050
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.

...
Property #1

Prop.Name : PetName (17000001)
Flags : [none] (00000000)
CallCnvntn: [PROPERTY]
hasThis
ReturnType: String
No arguments.
DefltValue:
Setter : (06000004) set_PetName
Getter : (06000003) get_PetName
0 Others

...

First, note that the Car class metadata marks the type’s base class and includes various flags
that describe how this type was constructed (e.g., [public], [abstract], and whatnot). Methods
(such as our Car’s constructor) are described in regard to their parameters, return value, and name.
Finally, note how properties are mapped to their internal get/set methods using the .NET metadata
Setter/Getter tokens. As you would expect, the derived Car types (SportsCar and MiniVan) are described
in a similar manner.

4193ch12.qxd 8/14/05 2:53 PM Page 393

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING394

Examining a TypeRef
Recall that an assembly’s metadata will describe not only the set of internal types (Car, EngineState, etc.),
but also any external types the internal types reference. For example, given that CarLibrary.dll has
defined two enumerations, you find a TypeRef block for the System.Enum type:

TypeRef #1 (01000001)

Token: 0x01000001
ResolutionScope: 0x23000001
TypeRefName: System.Enum

MemberRef #1

Member: (0a00000f) ToString:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: String
No arguments.

Documenting the Defining Assembly
The ildasm.exe metadata window also allows you to view the .NET metadata that describes the
assembly itself using the Assembly token. As you can see from the following (partial) listing, infor-
mation documented within the Assembly table is (surprise, surprise!) the same information that can
be viewable via the MANIFEST icon. Here is a partial dump of the manifest of CarLibrary.dll
(version 2.0.0.0):

Assembly

Token: 0x20000001
Name : CarLibrary
Public Key : 00 24 00 00 04 80 00 00 // Etc...

Hash Algorithm : 0x00008004
Major Version: 0x00000002
Minor Version: 0x00000000
Build Number: 0x00000000
Revision Number: 0x00000000
Locale: <null>
Flags : [SideBySideCompatible] (00000000)

Documenting Referenced Assemblies
In addition to the Assembly token and the set of TypeDef and TypeRef blocks, .NET metadata also makes
use of “AssemblyRef #n” tokens to document each external assembly. Given that the CarLibrary.dll
makes use of the MessageBox type, you find an AssemblyRef for System.Windows.Forms, for example:

AssemblyRef #2

Token: 0x23000002
Public Key or Token: b7 7a 5c 56 19 34 e0 89
Name: System.Windows.Forms
Version: 2.0.3600.0
Major Version: 0x00000002
Minor Version: 0x00000000

4193ch12.qxd 8/14/05 2:53 PM Page 394

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 395

Build Number: 0x00000e10
Revision Number: 0x00000000
Locale: <null>
HashValue Blob:
Flags: [none] (00000000)

Documenting String Literals
The final point of interest regarding .NET metadata is the fact that each and every string literal in
your code base is documented under the User Strings token, for example:

User Strings

70000001 : (11) L"Car 2.0.0.0"
70000019 : (11) L"Jamming {0}"
70000031 : (13) L"Quiet time..."
7000004d : (14) L"Ramming speed!"
7000006b : (19) L"Faster is better..."
70000093 : (16) L"Time to call AAA"
700000b5 : (16) L"Your car is dead"
700000d7 : (9) L"Be quiet "
700000eb : (2) L"!!"

Now, don’t be too concerned with the exact syntax of each and every piece of .NET metadata.
The bigger point to absorb is that .NET metadata is very descriptive and lists each internally defined
(and externally referenced) type found within a given code base.

The next question on your mind may be (in the best-case scenario) “How can I leverage this
information in my applications?” or (in the worst-case scenario) “Why should I care about metadata?”
To address both points of view, allow me to introduce .NET reflection services. Be aware that the
usefulness of the topics presented over the pages that follow may be a bit of a head-scratcher until
this chapter’s endgame. So hang tight.

■Note You will also find a number of CustomAttribute tokens displayed by the MetaInfo window, which docu-
ments the attributes applied within the code base. You’ll learn about the role of .NET attributes later in this chapter.

Understanding Reflection
In the .NET universe, reflection is the process of runtime type discovery. Using reflection services,
you are able to programmatically obtain the same metadata information displayed by ildasm.exe
using a friendly object model. For example, through reflection, you can obtain a list of all types con-
tained within a given assembly (or *.netmodule), including the methods, fields, properties, and
events defined by a given type. You can also dynamically discover the set of interfaces supported by
a given class (or structure), the parameters of a method, and other related details (base classes,
namespace information, manifest data, and so forth).

Like any namespace, System.Reflection contains a number of related types. Table 12-1 lists
some of the core items you should be familiar with.

4193ch12.qxd 8/14/05 2:53 PM Page 395

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING396

Table 12-1. A Sampling of Members of the System.Reflection Namespace

Type Meaning in Life

Assembly This class (in addition to numerous related types) contains a number of
methods that allow you to load, investigate, and manipulate an assembly.

AssemblyName This class allows you to discover numerous details behind an assembly’s
identity (version information, culture information, and so forth).

EventInfo This class holds information for a given event.

FieldInfo This class holds information for a given field.

MemberInfo This is the abstract base class that defines common behaviors for the
EventInfo, FieldInfo, MethodInfo, and PropertyInfo types.

MethodInfo This class contains information for a given method.

Module This class allows you to access a given module within a multifile assembly.

ParameterInfo This class holds information for a given parameter.

PropertyInfo This class holds information for a given property.

To understand how to leverage the System.Reflection namespace to programmatically read
.NET metadata, you need to first come to terms with the System.Type class.

The System.Type Class
The System.Type class defines a number of members that can be used to examine a type’s meta-
data, a great number of which return types from the System.Reflection namespace. For example,
Type.GetMethods() returns an array of MethodInfo types, Type.GetFields() returns an array of
FieldInfo types, and so on. The complete set of members exposed by System.Type is quite expansive;
however, Table 12-2 offers a partial snapshot of the members supported by System.Type (see the
.NET Framework 2.0 SDK documentation for full details).

Table 12-2. Select Members of System.Type

Type Meaning in Life

IsAbstract These properties (among others) allow you
IsArray to discover a number of basic traits about
IsClass the Type you are referring to (e.g., if it is an
IsCOMObject abstract method, an array, a nested class, and
IsEnum so forth).
IsGenericTypeDefinition
IsGenericParameter
IsInterface
IsPrimitive
IsNestedPrivate
IsNestedPublic
IsSealed
IsValueType

GetConstructors() These methods (among others) allow you to
GetEvents() obtain an array representing the items (interface,
GetFields() method, property, etc.) you are interested in.
GetInterfaces() Each method returns a related array
GetMembers() (e.g., GetFields() returns a FieldInfo array,
GetMethods() GetMethods() returns a MethodInfo array, etc.).
GetNestedTypes() Be aware that each of these methods has a
GetProperties() singular form (e.g., GetMethod(), GetProperty(),

etc.) that allows you to retrieve a specific item by
name, rather than an array of all related items.

4193ch12.qxd 8/14/05 2:53 PM Page 396

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 397

Type Meaning in Life

FindMembers() This method returns an array of MemberInfo
types based on search criteria.

GetType() This static method returns a Type instance
given a string name.

InvokeMember() This method allows late binding to a given item.

Obtaining a Type Reference Using System.Object.GetType()
You can obtain an instance of the Type class in a variety of ways. However, the one thing you cannot
do is directly create a Type object using the new keyword, as Type is an abstract class. Regarding your
first choice, recall that System.Object defines a method named GetType(), which returns an instance
of the Type class that represents the metadata for the current object:

// Obtain type information using a SportsCar instance.
SportsCar sc = new SportsCar();
Type t = sc.GetType();

Obviously, this approach will only work if you have compile-time knowledge of the type (SportsCar
in this case). Given this restriction, it should make sense that tools such as ildasm.exe do not obtain
type information by directly calling System.Object.GetType() for each type, given the ildasm.exe
was not compiled against your custom assemblies!

Obtaining a Type Reference Using System.Type.GetType()
To obtain type information in a more flexible manner, you may call the static GetType() member of
the System.Type class and specify the fully qualified string name of the type you are interested in
examining. Using this approach, you do not need to have compile-time knowledge of the type you
are extracting metadata from, given that Type.GetType() takes an instance of the omnipresent
System.String.

The Type.GetType() method has been overloaded to allow you to specify two Boolean parameters,
one of which controls whether an exception should be thrown if the type cannot be found, and the
other of which establishes the case sensitivity of the string. To illustrate, ponder the following:

// Obtain type information using the static Type.GetType() method.
// (don't throw an exception if SportsCar cannot be found and ignore case).
Type t = Type.GetType("CarLibrary.SportsCar", false, true);

In the previous example, notice that the string you are passing into GetType() makes no mention
of the assembly containing the type. In this case, the assumption is that the type is defined within
the currently executing assembly. However, when you wish to obtain metadata for a type within an
external private assembly, the string parameter is formatted using the type’s fully qualified name,
followed by the friendly name of the assembly containing the type (each of which is separated by
a comma):

// Obtain type information for a type within an external assembly.
Type t = null;
t = Type.GetType("CarLibrary.SportsCar, CarLibrary");

As well, do know that the string passed into Type.GetType() may specify a plus token (+) to
denote a nested type. Assume you wish to obtain type information for an enumeration (SpyOptions)
nested within a class named JamesBondCar. To do so, you would write the following:

// Obtain type information for a nested enumeration
// within the current assembly.
Type t =

Type.GetType("CarLibrary.JamesBondCar+SpyOptions");

4193ch12.qxd 8/14/05 2:53 PM Page 397

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING398

Obtaining a Type Reference Using typeof()
The final way to obtain type information is using the C# typeof operator:

// Get the Type using typeof.
Type t = typeof(SportsCar);

Like Type.GetType(), the typeof operator is helpful in that you do not need to first create an
object instance to extract type information. However, your code base must still have compile-time
knowledge of the type you are interested in examining.

Building a Custom Metadata Viewer
To illustrate the basic process of reflection (and the usefulness of System.Type), let’s create a console
application named MyTypeViewer. This program will display details of the methods, properties, fields,
and supported interfaces (in addition to some other points of interest) for any type within mscorlib.dll
(recall all .NET applications have automatic access to this core framework class library) or a type
within MyTypeViewer itself.

Reflecting on Methods
The Program class will be updated to define a number of static methods, each of which takes a single
System.Type parameter and returns void. First you have ListMethods(), which (as you might guess)
prints the name of each method defined by the incoming type. Notice how Type.GetMethods() returns
an array of System.Reflection.MethodInfo types:

// Display method names of type.
public static void ListMethods(Type t)
{

Console.WriteLine("***** Methods *****");
MethodInfo[] mi = t.GetMethods();
foreach(MethodInfo m in mi)

Console.WriteLine("->{0}", m.Name);
Console.WriteLine("");

}

Here, you are simply printing the name of the method using the MethodInfo.Name property. As
you might guess, MethodInfo has many additional members that allow you to determine if the method
is static, virtual, or abstract. As well, the MethodInfo type allows you to obtain the method’s return
value and parameter set. You’ll spruce up the implementation of ListMethods() in just a bit.

Reflecting on Fields and Properties
The implementation of ListFields() is similar. The only notable difference is the call to Type.GetFields()
and the resulting FieldInfo array. Again, to keep things simple, you are printing out only the name
of each field.

// Display field names of type.
public static void ListFields(Type t)
{

Console.WriteLine("***** Fields *****");
FieldInfo[] fi = t.GetFields();
foreach(FieldInfo field in fi)

Console.WriteLine("->{0}", field.Name);
Console.WriteLine("");

}

4193ch12.qxd 8/14/05 2:53 PM Page 398

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 399

The logic to display a type’s properties is similar:

// Display property names of type.
public static void ListProps(Type t)
{

Console.WriteLine("***** Properties *****");
PropertyInfo[] pi = t.GetProperties();
foreach(PropertyInfo prop in pi)

Console.WriteLine("->{0}", prop.Name);
Console.WriteLine("");

}

Reflecting on Implemented Interfaces
Next, you will author a method named ListInterfaces() that will print out the names of any interfaces
supported on the incoming type. The only point of interest here is that the call to GetInterfaces()
returns an array of System.Types! This should make sense given that interfaces are, indeed, types:

// Display implemented interfaces.
public static void ListInterfaces(Type t)
{

Console.WriteLine("***** Interfaces *****");
Type[] ifaces = t.GetInterfaces();
foreach(Type i in ifaces)

Console.WriteLine("->{0}", i.Name);
}

Displaying Various Odds and Ends
Last but not least, you have one final helper method that will simply display various statistics (indi-
cating whether the type is generic, what the base class is, whether the type is sealed, and so forth)
regarding the incoming type:

// Just for good measure.
public static void ListVariousStats(Type t)
{

Console.WriteLine("***** Various Statistics *****");
Console.WriteLine("Base class is: {0}", t.BaseType);
Console.WriteLine("Is type abstract? {0}", t.IsAbstract);
Console.WriteLine("Is type sealed? {0}", t.IsSealed);
Console.WriteLine("Is type generic? {0}", t.IsGenericTypeDefinition);
Console.WriteLine("Is type a class type? {0}", t.IsClass);
Console.WriteLine("");

}

Implementing Main()
The Main() method of the Program class prompts the user for the fully qualified name of a type.
Once you obtain this string data, you pass it into the Type.GetType() method and send the extracted
System.Type into each of your helper methods. This process repeats until the user enters Q to termi-
nate the application:

// Need to make use of the reflection namespace.
using System;
using System.Reflection;
...
static void Main(string[] args)

4193ch12.qxd 8/14/05 2:53 PM Page 399

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING400

{
Console.WriteLine("***** Welcome to MyTypeViewer *****");
string typeName = "";
bool userIsDone = false;

do
{

Console.WriteLine("\nEnter a type name to evaluate");
Console.Write("or enter Q to quit: ");

// Get name of type.
typeName = Console.ReadLine();

// Does user want to quit?
if (typeName.ToUpper() == "Q")
{

userIsDone = true;
break;

}

// Try to display type.
try
{

Type t = Type.GetType(typeName);
Console.WriteLine("");
ListVariousStats(t);
ListFields(t);
ListProps(t);
ListMethods(t);
ListInterfaces(t);

}
catch
{

Console.WriteLine("Sorry, can't find type");
}

} while (!userIsDone);
}

At this point, MyTypeViewer.exe is ready to take out for a test drive. For example, run your
application and enter the following fully qualified names (be aware that the manner in which you
invoked Type.GetType() requires case-sensitive string names):

• System.Int32

• System.Collections.ArrayList

• System.Threading.Thread

• System.Void

• System.IO.BinaryWriter

• System.Math

• System.Console

• MyTypeViewer.Program

Figure 12-2 shows the partial output when specifying System.Math.

4193ch12.qxd 8/14/05 2:53 PM Page 400

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 401

Figure 12-2. Reflecting on System.Math

Reflecting on Method Parameters and Return Values
So far, so good! Let’s make one minor enhancement to the current application. Specifically, you will
update the ListMethods() helper function to list not only the name of a given method, but also the
return value and incoming parameters. The MethodInfo type provides the ReturnType property and
GetParameters() method for these very tasks. In the following code, notice that you are building
a string type that contains the type and name of each parameter using a nested foreach loop:

public static void ListMethods(Type t)
{

Console.WriteLine("***** Methods *****");
MethodInfo[] mi = t.GetMethods();
foreach (MethodInfo m in mi)
{

// Get return value.
string retVal = m.ReturnType.FullName;
string paramInfo = "(";

// Get params.
foreach (ParameterInfo pi in m.GetParameters())
{

paramInfo += string.Format("{0} {1} ", pi.ParameterType, pi.Name);
}
paramInfo += ")";

// Now display the basic method sig.
Console.WriteLine("->{0} {1} {2}", retVal, m.Name, paramInfo);

}
Console.WriteLine("");

}

If you now run this updated application, you will find that the methods of a given type are
much more detailed. Figure 12-3 shows the method metadata of the System.Globalization.
GregorianCalendar type.

4193ch12.qxd 8/14/05 2:53 PM Page 401

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING402

Figure 12-3. Method details of System.Globalization.GregorianCalendar

Interesting stuff, huh? Clearly the System.Reflection namespace and System.Type class allow
you to reflect over many other aspects of a type beyond what MyTypeViewer is currently displaying.
As you would hope, you can obtain a type’s events, discover which interfaces have been implemented
explicitly, get the list of any generic parameters for a given member, and glean dozens of other details.

Nevertheless, at this point you have created an (somewhat capable) object browser. The major
limitation, of course, is that you have no way to reflect beyond the current assembly (MyTypeViewer)
or the always accessible mscorlib.dll. This begs the question, “How can I build applications that can
load (and reflect over) assemblies not known at compile time?”

■Source Code The MyTypeViewer project can be found under the Chapter 12 subdirectory.

Dynamically Loading Assemblies
In the previous chapter, you learned all about how the CLR consults the assembly manifest when
probing for an externally referenced assembly. While this is all well and good, there will be many
times when you need to load assemblies on the fly programmatically, even if there is no record of
said assembly in the manifest. Formally speaking, the act of loading external assemblies on demand
is known as a dynamic load.

System.Reflection defines a class named Assembly. Using this type, you are able to dynamically
load an assembly as well as discover properties about the assembly itself. Using the Assembly type,
you are able to dynamically load private or shared assemblies, as well as load an assembly located
at an arbitrary location. In essence, the Assembly class provides methods (Load() and LoadFrom() in
particular) that allow you to programmatically supply the same sort of information found in a client-
side *.config file.

To illustrate dynamic loading, create a brand-new console application named
ExternalAssemblyReflector. Your task is to construct a Main() method that prompts for the friendly
name of an assembly to load dynamically. You will pass the Assembly reference into a helper method
named DisplayTypes(), which will simply print the names of each class, interface, structure, enu-
meration, and delegate it contains. The code is refreshingly simple:

using System;
using System.Reflection;
using System.IO; // For FileNotFoundException definition.

4193ch12.qxd 8/14/05 2:53 PM Page 402

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 403

namespace ExternalAssemblyReflector
{

class Program
{

static void DisplayTypesInAsm(Assembly asm)
{

Console.WriteLine("\n***** Types in Assembly *****");
Console.WriteLine("->{0}", asm.FullName);
Type[] types = asm.GetTypes();
foreach (Type t in types)

Console.WriteLine("Type: {0}", t);
Console.WriteLine("");

}

static void Main(string[] args)
{

Console.WriteLine("***** External Assembly Viewer *****");

string asmName = "";
bool userIsDone = false;
Assembly asm = null;

do
{

Console.WriteLine("\nEnter an assembly to evaluate");
Console.Write("or enter Q to quit: ");

// Get name of assembly.
asmName = Console.ReadLine();

// Does user want to quit?
if (asmName.ToUpper() == "Q")
{

userIsDone = true;
break;

}

// Try to load assembly.
try
{

asm = Assembly.Load(asmName);
DisplayTypesInAsm(asm);

}
catch
{

Console.WriteLine("Sorry, can't find assembly.");
}

} while (!userIsDone);
}

}
}

Notice that the static Assembly.Load() method has been passed only the friendly name
of the assembly you are interested in loading into memory. Thus, if you wish to reflect over
CarLibrary.dll, you will need to copy the CarLibrary.dll binary to the \Bin\Debug directory of
the ExternalAssemblyReflector application to run this program. Once you do, you will find output
similar to Figure 12-4.

4193ch12.qxd 8/14/05 2:53 PM Page 403

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING404

■Note If you wish to make ExternalAssemblyReflector more flexible, load the external assembly using
Assembly.LoadFrom() rather than Assembly.Load(). By doing so, you can enter an absolute path to the
assembly you wish to view (e.g., C:\MyApp\MyAsm.dll).

■Source Code The ExternalAssemblyReflector project is included in the Chapter 12 subdirectory.

Reflecting on Shared Assemblies
As you may suspect, Assembly.Load() has been overloaded a number of times. One variation of the
Assembly.Load() method allows you to specify a culture value (for localized assemblies) as well as
a version number and public key token value (for shared assemblies).

Collectively speaking, the set of items identifying an assembly is termed the display name. The
format of a display name is a comma-delimited string of name/value pairs that begins with the
friendly name of the assembly, followed by optional qualifiers (that may appear in any order). Here
is the template to follow (optional items appear in parentheses):

Name (,Culture = culture token) (,Version = major.minor.build.revision)
(,PublicKeyToken= public key token)

When you’re crafting a display name, the convention PublicKeyToken=null indicates that binding
and matching against a non–strongly-named assembly is required. Additionally, Culture="" indicates
matching against the default culture of the target machine, for example:

// Load version 1.0.982.23972 of CarLibrary using the default culture.
Assembly a = Assembly.Load(
@"CarLibrary, Version=1.0.982.23972, PublicKeyToken=null, Culture=""");

Also be aware that the System.Reflection namespace supplies the AssemblyName type, which
allows you to represent the preceding string information in a handy object variable. Typically, this
class is used in conjunction with System.Version, which is an OO wrapper around an assembly’s
version number. Once you have established the display name, it can then be passed into the over-
loaded Assembly.Load() method:

// Make use of AssemblyName to define the display name.
AssemblyName asmName;

Figure 12-4. Reflecting on the external CarLibrary assembly

4193ch12.qxd 8/14/05 2:53 PM Page 404

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 405

asmName = new AssemblyName();
asmName.Name = "CarLibrary";
Version v = new Version("1.0.982.23972");
asmName.Version = v;
Assembly a = Assembly.Load(asmName);

To load a shared assembly from the GAC, the Assembly.Load() parameter must specify
a publickeytoken value. For example, assume you wish to load version 2.0.0.0 of the System.Windows.
Forms.dll assembly provided by the .NET base class libraries. Given that the number of types in this
assembly is quite large, the following application simply prints out the names of the first 20 types:

using System;
using System.Reflection;
using System.IO;

namespace SharedAsmReflector
{

public class SharedAsmReflector
{

private static void DisplayInfo(Assembly a)
{

Console.WriteLine("***** Info about Assembly *****");
Console.WriteLine("Loaded from GAC? {0}", a.GlobalAssemblyCache);
Console.WriteLine("Asm Name: {0}", a.GetName().Name);
Console.WriteLine("Asm Version: {0}", a.GetName().Version);
Console.WriteLine("Asm Culture: {0}",

a.GetName().CultureInfo.DisplayName);

Type[] types = a.GetTypes();
for(int i = 0; i < 20; i++)

Console.WriteLine("Type: {0}", types[i]);
}

static void Main(string[] args)
{

Console.WriteLine("***** The Shared Asm Reflector App *****\n");

// Load System.Windows.Forms.dll from GAC.
string displayName = null;
displayName = "System.Windows.Forms," +

"Version=2.0.0.0," +
"PublicKeyToken=b77a5c561934e089" +
@“Culture=""";
Assembly asm = Assembly.Load(displayName);

DisplayInfo(asm);
Console.ReadLine();

}
}

}

■Source Code The SharedAsmReflector project is included in the Chapter 12 subdirectory.

Sweet! At this point you should understand how to use some of the core items defined within
the System.Reflection namespace to discover metadata at runtime. Of course, I realize despite the

4193ch12.qxd 8/14/05 2:53 PM Page 405

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING406

“cool factor,” you likely will not need to build custom object browsers at your place of employment.
Do recall, however, that reflection services are the foundation for a number of very common pro-
gramming activities, including late binding.

Understanding Late Binding
Simply put, late binding is a technique in which you are able to create an instance of a given type
and invoke its members at runtime without having compile-time knowledge of its existence. When
you are building an application that binds late to a type in an external assembly, you have no rea-
son to set a reference to the assembly; therefore, the caller’s manifest has no direct listing of the
assembly.

At first glance, you may not understand the value of late binding. It is true that if you can “bind
early” to a type (e.g., set an assembly reference and allocate the type using the C# new keyword), you
should opt to do so. For one reason, early binding allows you to determine errors at compile time,
rather than at runtime. Nevertheless, late binding does have a critical role in any extendable appli-
cation you may be building.

The System.Activator Class
The System.Activator class is the key to .NET late binding process. Beyond the methods inherited
from System.Object, Activator defines only a small set of members, many of which have to do with
.NET remoting (see Chapter 18). For our current example, we are only interested in the Activator.
CreateInstance() method, which is used to create an instance of a type à la late binding.

This method has been overloaded numerous times to provide a good deal of flexibility. The sim-
plest variation of the CreateInstance() member takes a valid Type object that describes the entity
you wish to allocate on the fly. Create a new application named LateBinding, and update the Main()
method as so (be sure to place a copy of CarLibrary.dll in the project’s \Bin\Debug directory):

// Create a type dynamically.
public class Program
{

static void Main(string[] args)
{

// Try to load a local copy of CarLibrary.
Assembly a = null;
try
{

a = Assembly.Load("CarLibrary");
}
catch(FileNotFoundException e)
{

Console.WriteLine(e.Message);
Console.ReadLine();
return;

}

// Get metadata for the Minivan type.
Type miniVan = a.GetType("CarLibrary.MiniVan");

// Create the Minivan on the fly.
object obj = Activator.CreateInstance(miniVan);

}
}

4193ch12.qxd 8/14/05 2:53 PM Page 406

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 407

Figure 12-5. Late-bound method invocation

Notice that the Activator.CreateInstance() method returns a generic System.Object rather
than a strongly typed MiniVan. Therefore, if you apply the dot operator on the obj variable, you will
fail to see any members of the MiniVan type. At first glance, you may assume you can remedy this
problem with an explicit cast; however, this program has no clue what a MiniVan is in the first place!

Remember that the whole point of late binding is to create instances of objects for which there
is no compile-time knowledge. Given this, how can you invoke the underlying methods of the
MiniVan object stored in the System.Object variable? The answer, of course, is by using reflection.

Invoking Methods with No Parameters
Assume you wish to invoke the TurboBoost() method of the MiniVan. As you recall, this method will
set the state of the engine to “dead” and display an informational message box. The first step is to
obtain a MethodInfo type for the TurboBoost() method using Type.GetMethod(). From the resulting
MethodInfo, you are then able to call MiniVan.TurboBoost using Invoke(). MethodInfo.Invoke() requires
you to send in all parameters that are to be given to the method represented by MethodInfo. These
parameters are represented by an array of System.Object types (as the parameters for a given method
could be any number of various entities).

Given that TurboBoost() does not require any parameters, you can simply pass null (meaning
“this method has no parameters”). Update your Main() method as so:

static void Main(string[] args)
{

// Try to load a local copy of CarLibrary.
...

// Get the MiniVan type.
Type miniVan = a.GetType("CarLibrary.MiniVan");

// Create the MiniVan on the fly.
object obj = Activator.CreateInstance(miniVan);

// Get info for TurboBoost.
MethodInfo mi = miniVan.GetMethod("TurboBoost");

// Invoke method ('null' for no parameters).
mi.Invoke(obj, null);

}

At this point you are happy to see the message box in Figure 12-5.

Invoking Methods with Parameters
To illustrate how to dynamically invoke a method that does take some number of parameters,
assume the MiniVan type defines a method named TellChildToBeQuiet():

4193ch12.qxd 8/14/05 2:53 PM Page 407

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING408

// Quiet down the troops...
public void TellChildToBeQuiet(string kidName, int shameIntensity)
{

for(int i = 0 ; i < shameIntensity; i++)
MessageBox.Show("Be quiet {0} !!", kidName);

}

TellChildToBeQuiet() takes two parameters: a string representing the child’s name and an
integer representing your current level of frustration. When using late binding, parameters are
packaged as an array of System.Objects. To invoke the new method, add the following code to your
Main() method:

// Bind late to a method taking params.
object[] paramArray = new object[2];
paramArray[0] = "Fred"; // Child name.
paramArray[1] = 4; // Shame Intensity.
mi = miniVan.GetMethod("TellChildToBeQuiet");
mi.Invoke(obj, paramArray);

If you run this program, you will see four message boxes pop up, shaming young Fred. Hopefully
at this point you can see the relationships among reflection, dynamic loading, and late binding. Again,
you still may wonder exactly when you might make use of these techniques in your own applications.
The conclusion of this chapter should shed light on this question; however, the next topic under
investigation is the role of .NET attributes.

■Source Code The LateBinding project is included in the Chapter 12 subdirectory.

Understanding Attributed Programming
As illustrated at beginning of this chapter, one role of a .NET compiler is to generate metadata
descriptions for all defined and referenced types. In addition to this standard metadata contained
within any assembly, the .NET platform provides a way for programmers to embed additional metadata
into an assembly using attributes. In a nutshell, attributes are nothing more than code annotations
that can be applied to a given type (class, interface, structure, etc.), member (property, method, etc.),
assembly, or module.

The idea of annotating code using attributes is not new. COM IDL provided numerous predefined
attributes that allowed developers to describe the types contained within a given COM server. How-
ever, COM attributes were little more than a set of keywords. If a COM developer needed to create
a custom attribute, they could do so, but it was referenced in code by a 128-bit number (GUID), which
was cumbersome at best.

Unlike COM IDL attributes (which again were simply keywords), .NET attributes are class types
that extend the abstract System.Attribute base class. As you explore the .NET namespaces, you will
find many predefined attributes that you are able to make use of in your applications. Furthermore,
you are free to build custom attributes to further qualify the behavior of your types by creating a new
type deriving from Attribute.

Understand that when you apply attributes in your code, the embedded metadata is essentially
useless until another piece of software explicitly reflects over the information. If this is not the case,
the blurb of metadata embedded within the assembly is ignored and completely harmless.

Attribute Consumers
As you would guess, the .NET Framework 2.0 SDK ships with numerous utilities that are indeed on
the lookout for various attributes. The C# compiler (csc.exe) itself has been preprogrammed to dis-

4193ch12.qxd 8/14/05 2:53 PM Page 408

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 409

cover the presence of various attributes during the compilation cycle. For example, if the C# compiler
encounters the [CLSCompilant] attribute, it will automatically check the attributed item to ensure it
is exposing only CLS-compliant constructs. By way of another example, if the C# compiler discovers
an item attributed with the [Obsolete] attribute, it will display a compiler warning in the Visual
Studio 2005 Error List window.

In addition to development tools, numerous methods in the .NET base class libraries are pre-
programmed to reflect over specific attributes. For example, if you wish to persist the state of an
object to file, all you are required to do is annotate your class with the [Serializable] attribute. If
the Serialize() method of the BinaryFormatter class encounters this attribute, the object is auto-
matically persisted to file in a compact binary format.

The .NET CLR is also on the prowl for the presence of certain attributes. Perhaps the most famous
.NET attribute is [WebMethod]. If you wish to expose a method via HTTP requests and automatically
encode the method return value as XML, simply apply [WebMethod] to the method and the CLR handles
the details. Beyond web service development, attributes are critical to the operation of the .NET
security system, .NET remoting layer, and COM/.NET interoperability (and so on).

Finally, you are free to build applications that are programmed to reflect over your own custom
attributes as well as any attribute in the .NET base class libraries. By doing so, you are essentially able
to create a set of “keywords” that are understood by a specific set of assemblies.

Applying Predefined Attributes in C#
As previously mentioned, the .NET base class library provides a number of attributes in various
namespaces. Table 12-3 gives a snapshot of some—but by absolutely no means all—predefined
attributes.

Table 12-3. A Tiny Sampling of Predefined Attributes

Attribute Meaning in Life

[CLSCompliant] Enforces the annotated item to conform to the rules of the Common
Language Specification (CLS). Recall that CLS-compliant types are
guaranteed to be used seamlessly across all .NET programming
languages.

[DllImport] Allows .NET code to make calls to any unmanaged C- or C++-based code
library, including the API of the underlying operating system. Do note
that [DllImport] is not used when communicating with COM-based
software.

[Obsolete] Marks a deprecated type or member. If other programmers attempt to use
such an item, they will receive a compiler warning describing the error of
their ways.

[Serializable] Marks a class or structure as being “serializable.”

[NonSerialized] Specifies that a given field in a class or structure should not be persisted
during the serialization process.

[WebMethod] Marks a method as being invokable via HTTP requests and instructs the
CLR to serialize the method return value as XML (see Chapter 25 for
complete details).

To illustrate the process of applying attributes in C#, assume you wish build a class named
Motorcycle that can be persisted in a binary format. To do so, simply apply the [Serializable]
attribute to the class definition. If you have a field that should not be persisted, you may apply the
[NonSerialized] attribute:

4193ch12.qxd 8/14/05 2:53 PM Page 409

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING410

Figure 12-6. Attributes shown in ildasm.exe

// This class can be saved to disk.
[Serializable]
public class Motorcycle
{

// However this field will not be persisted.
[NonSerialized]
float weightOfCurrentPassengers;

// These fields are still serializable.
bool hasRadioSystem;
bool hasHeadSet;
bool hasSissyBar;

}

■Note An attribute only applies to the “very next” item. For example, the only nonserialized field of the Motorcycle
class is weightOfCurrentPassengers. The remaining fields are serializable given that the entire class has been
annotated with [Serializable].

At this point, don’t concern yourself with the actual process of object serialization (Chapter 17
examines the details). Just notice that when you wish to apply an attribute, the name of the attribute
is sandwiched between square brackets.

Once this class has been compiled, you can view the extra metadata using ildasm.exe. Notice
that these attributes are recorded using the serializable and notserialized tokens (see Figure 12-6).

As you might guess, a single item can be attributed with multiple attributes. Assume you have
a legacy C# class type (HorseAndBuggy) that was marked as serializable, but is now considered obso-
lete for current development. To apply multiple attributes to a single item, simply use
a comma-delimited list:

[Serializable,
Obsolete("This class is obsolete, use another vehicle!")]
public class HorseAndBuggy
{

// ...

4193ch12.qxd 8/14/05 2:53 PM Page 410

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 411

Figure 12-7. Attributes in action

As an alternative, you can also apply multiple attributes on a single item by stacking each
attribute as so (the end result is identical):

[Serializable]
[Obsolete("This class is obsolete, use another vehicle!")]
public class HorseAndBuggy
{

// ...
}

Specifying Constructor Parameters for Attributes
Notice that the [Obsolete] attribute is able to accept what appears to be a constructor parameter.
If you view the formal definition of the [Obsolete] attribute using the Code Definition window of
Visual Studio 2005, you will find that this class indeed provides a constructor receiving a System.String:

public sealed class ObsoleteAttribute : System.Attribute
{

public bool IsError { get; }
public string Message { get; }
public ObsoleteAttribute(string message, bool error);
public ObsoleteAttribute(string message);
public ObsoleteAttribute();

}

Understand that when you supply constructor parameters to an attribute, the attribute is not
allocated into memory until they parameters are reflected upon by another type or an external tool.
The string data defined at the attribute level is simply stored within the assembly as a blurb of
metadata.

The Obsolete Attribute in Action
Now that HorseAndBuggy has been marked as obsolete, if you were to allocate an instance of this
type, you would find that the supplied string data is extracted and displayed within the Error List
window of Visual Studio 2005 (see Figure 12-7).

In this case, the “other piece of software” that is reflecting on the [Obsolete] attribute is the
C# compiler.

C# Attribute Shorthand Notation
If you were reading closely, you may have noticed that the actual class name of the [Obsolete]
attribute is ObsoleteAttribute, not Obsolete. As a naming convention, all .NET attributes (including
custom attributes you may create yourself) are suffixed with the “Attribute” token. However, to

4193ch12.qxd 8/14/05 2:53 PM Page 411

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING412

simplify the process of applying attributes, the C# language does not require you to type in the
Attribute suffix. Given this, the following iteration of the HorseAndBuggy type is identical to the previ-
ous (it just involves a few more keystrokes):

[SerializableAttribute]
[ObsoleteAttribute("This class is obsolete, use another vehicle!")]
public class HorseAndBuggy
{

// ...
}

Be aware that this is a courtesy provided by C#. Not all .NET-enabled languages support this
feature. In any case, at this point you should hopefully understand the following key points regarding
.NET attributes:

• Attributes are classes that derive from System.Attribute.

• Attributes result in embedded metadata.

• Attributes are basically useless until another agent reflects upon them.

• Attributes are applied in C# using square brackets.

Next up, let’s examine how you can build your own custom attributes and a piece of custom
software that reflects over the embedded metadata.

Building Custom Attributes
The first step in building a custom attribute is to create a new class deriving from System.Attribute.
Keeping in step with the automobile theme used throughout this book, assume you have created
a brand new C# class library named AttributedCarLibrary. This assembly will define a handful of
vehicles (some of which you have already seen in this text), each of which is described using a cus-
tom attribute named VehicleDescriptionAttribute:

// A custom attribute.
public sealed class VehicleDescriptionAttribute : System.Attribute
{

private string msgData;

public VehicleDescriptionAttribute(string description)
{ msgData = description;}
public VehicleDescriptionAttribute(){ }

public string Description
{

get { return msgData; }
set { msgData = value; }

}
}

As you can see, VehicleDescriptionAttribute maintains a private internal string (msgData) that
can be set using a custom constructor and manipulated using a type property (Description).
Beyond the fact that this class derived from System.Attribute, there is nothing unique to this class
definition.

4193ch12.qxd 8/14/05 2:53 PM Page 412

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 413

■Note For security reasons, it is considered a .NET best practice to design all custom attributes as sealed.

Applying Custom Attributes
Given that VehicleDescriptionAttribute is derived from System.Attribute, you are now able to
annotate your vehicles as you see fit:

// Assign description using a 'named property'.
[Serializable,
VehicleDescription(Description = "My rocking Harley")]
public class Motorcycle
{

// ...
}

[SerializableAttribute]
[ObsoleteAttribute("This class is obsolete, use another vehicle!"),
VehicleDescription("The old gray mare, she ain't what she used to be...")]
public class HorseAndBuggy
{

// ...
}

[VehicleDescription("A very long, slow, but feature-rich auto")]
public class Winnebago
{

// ...
}

Notice that the description of the Motorcycle is assigned a description using a new bit of attribute-
centric syntax termed a named property. In the constructor of the first [VehicleDescription]
attribute, you set the underlying System.String using a name/value pair. If this attribute is reflected
upon by an external agent, the value is fed into the Description property (named property syntax is
legal only if the attribute supplies a writable .NET property). In contrast, the HorseAndBuggy and
Winnebago types are not making use of named property syntax and are simply passing the string
data via the custom constructor.

Once you compile the AttributedCarLibrary assembly, you can make use of ildasm.exe to view
the injected metadata descriptions for your type. For example, here is an embedded description of
the Winnebago type (see Figure 12-8).

Figure 12-8. Embedded vehicle description data

4193ch12.qxd 8/14/05 2:53 PM Page 413

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING414

Restricting Attribute Usage
By default, custom attributes can be applied to just about any aspect of your code (methods, classes,
properties, and so on). Thus, if it made sense to do so, you could use VehicleDescription to qualify
methods, properties, or fields (among other things):

[VehicleDescription("A very long, slow, but feature-rich auto")]
public class Winnebago
{

[VehicleDescription("My rocking CD player")]
public void PlayMusic(bool On)
{

...
}

}

In some cases, this is exactly the behavior you require. Other times, however, you may want to
build a custom attribute that can be applied only to select code elements. If you wish to constrain
the scope of a custom attribute, you will need to apply the [AttributeUsage] attribute on the defini-
tion of your custom attribute. The [AttributeUsage] attribute allows you to supply any combination
of values (via an OR operation) from the AttributeTargets enumeration:

// This enumeration defines the possible targets of an attribute.
public enum AttributeTargets
{

All, Assembly, Class, Constructor,
Delegate, Enum, Event, Field,
Interface, Method, Module, Parameter,
Property, ReturnValue, Struct

}

Furthermore, [AttributeUsage] also allows you to optionally set a named property
(AllowMultiple) that specifies whether the attribute can be applied more than once on the
same item. As well, [AttributeUsage] allows you to establish whether the attribute should
be inherited by derived classes using the Inherited named property.

To establish that the [VehicleDescription] attribute can be applied only once on a class or structure
(and the value is not inherited by derived types), you can update the VehicleDescriptionAttribute
definition as so:

// This time, we are using the AttributeUsage attribute
// to annotate our custom attribute.
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct,

AllowMultiple = false, Inherited = false)]
public class VehicleDescriptionAttribute : System.Attribute
{
...
}

With this, if a developer attempted to apply the [VehicleDescription] attribute on anything
other than a class or structure, he or she is issued a compile-time error.

■Tip Always get in the habit of explicitly marking the usage flags for any custom attribute you may create, as not
all .NET programming languages honor the use of unqualified attributes!

4193ch12.qxd 8/14/05 2:53 PM Page 414

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 415

Figure 12-9. The AssemblyInfo.cs file

Assembly-Level (and Module-Level) Attributes
It is also possible to apply attributes on all types within a given module or all modules within
a given assembly using the [module:] and [assembly:] tags, respectively. For example, assume you
wish to ensure that every public type defined within your assembly is CLS-compliant. To do so,
simply add the following line in any one of your C# source code files (do note that assembly-level
attributes must be outside the scope of a namespace definition):

// Enforce CLS compliance for all public types in this assembly.
[assembly:System.CLSCompliantAttribute(true)]

If you now add a bit of code that falls outside the CLS specification (such as an exposed point
of unsigned data)

// Ulong types don't jive with the CLS.
public class Winnebago
{

public ulong notCompliant;
}

you are issued a compiler error.

The Visual Studio 2005 AssemblyInfo.cs File
By default, Visual Studio 2005 generates a file named AssemblyInfo.cs (see Figure 12-9).

This file is a handy place to put attributes that are to be applied at the assembly level. Table 12-4
lists some assembly-level attributes to be aware of.

Table 12-4. Select Assembly-Level Attributes

Attribute Meaning in Life

AssemblyCompanyAttribute Holds basic company information

AssemblyCopyrightAttribute Holds any copyright information for the product or
assembly

AssemblyCultureAttribute Provides information on what cultures or languages the
assembly supports

AssemblyDescriptionAttribute Holds a friendly description of the product or modules
that make up the assembly

Continued

4193ch12.qxd 8/14/05 2:53 PM Page 415

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING416

Table 12-4. (Continued)

Attribute Meaning in Life

AssemblyKeyFileAttribute Specifies the name of the file containing the key pair used
to sign the assembly (i.e., establish a shared name)

AssemblyOperatingSystemAttribute Provides information on which operating system the
assembly was built to support

AssemblyProcessorAttribute Provides information on which processors the assembly
was built to support

AssemblyProductAttribute Provides product information

AssemblyTrademarkAttribute Provides trademark information

AssemblyVersionAttribute Specifies the assembly’s version information, in the
format <major.minor.build.revision>

■Source Code The AttributedCarLibrary project is included in the Chapter 12 subdirectory.

Reflecting on Attributes Using Early Binding
As mentioned in this chapter, an attribute is quite useless until some piece of software reflects over
its values. Once a given attribute has been discovered, that piece of software can take whatever course
of action necessary. Now, like an application, this “other piece of software” could discover the presence
of a custom attribute using either early binding or late binding. If you wish to make use of early
binding, you’ll require the client application to have a compile-time definition of the attribute in
question (VehicleDescriptionAttribute in this case). Given that the AttributedCarLibrary assembly
has defined this custom attribute as a public class, early binding is the best option.

To illustrate the process of reflecting on custom attributes, create a new C# console application
named VehicleDescriptionAttributeReader. Next, set a reference to the AttributedCarLibrary assembly.
Finally, update your initial *.cs file with the following code:

// Reflecting on custom attributes using early binding.
using System;
using AttributedCarLibrary;

public class Program
{

static void Main(string[] args)
{

// Get a Type representing the Winnebago.
Type t = typeof(Winnebago);

// Get all attributes on the Winnebago.
object[] customAtts = t.GetCustomAttributes(false);

// Print the description.
Console.WriteLine("***** Value of VehicleDescriptionAttribute *****\n");
foreach(VehicleDescriptionAttribute v in customAtts)

Console.WriteLine("-> {0}\n", v.Description);
Console.ReadLine();

}
}

4193ch12.qxd 8/14/05 2:53 PM Page 416

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 417

As the name implies, Type.GetCustomAttributes() returns an object array that represents all
the attributes applied to the member represented by the Type (the Boolean parameter controls
whether the search should extend up the inheritance chain). Once you have obtained the list of
attributes, iterate over each VehicleDescriptionAttribute class and print out the value obtained by
the Description property.

■Source Code The VehicleDescriptionAttributeReader application is included under the Chapter 12 subdirectory.

Reflecting on Attributes Using Late Binding
The previous example made use of early binding to print out the vehicle description data for the
Winnebago type. This was possible due to the fact that the VehicleDescriptionAttribute class type
was defined as a public member in the AttributedCarLibrary assembly. It is also possible to make
use of dynamic loading and late binding to reflect over attributes.

Create a new project called VehicleDescriptionAttributeReaderLateBinding and copy
AttributedCarLibrary.dll to the project’s \Bin\Debug directory. Now, update your Main() method
as so:

using System.Reflection;

namespace VehicleDescriptionAttributeReaderLateBinding
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Descriptions of Your Vehicles *****\n");

// Load the local copy of AttributedCarLibrary.
Assembly asm = Assembly.Load("AttributedCarLibrary");

// Get type info of VehicleDescriptionAttribute.
Type vehicleDesc =

asm.GetType("AttributedCarLibrary.VehicleDescriptionAttribute");

// Get type info of the Description property.
PropertyInfo propDesc = vehicleDesc.GetProperty("Description");

// Get all types in the assembly.
Type[] types = asm.GetTypes();

// Iterate over each type and obtain any VehicleDescriptionAttributes.
foreach (Type t in types)
{

object[] objs = t.GetCustomAttributes(vehicleDesc, false);

// Iterate over each VehicleDescriptionAttribute and print
// the description using late binding.
foreach (object o in objs)
{

Console.WriteLine("-> {0}: {1}\n",
t.Name, propDesc.GetValue(o, null));

}
}

4193ch12.qxd 8/14/05 2:53 PM Page 417

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING418

Console.ReadLine();
}

}
}

If you were able to follow along with the examples in this chapter, this Main() method should be
(more or less) self-explanatory. The only point of interest is the use of the PropertyInfo.GetValue()
method, which is used to trigger the property’s accessor. Figure 12-10 shows the output.

■Source Code The VehicleDescriptionAttributeReaderLateBinding application is included under the Chapter 12
subdirectory.

Putting Reflection, Late Binding, and Custom
Attributes in Perspective
Even though you have seen numerous examples of these techniques in action, you may still be
wondering when to make use of reflection, dynamic loading, late binding, and custom attributes in
your programs. To be sure, these topics (while fascinating) can seem a bit on the academic side of
programming (which may or may not be a bad thing, depending on your point of view). To help
map these topics to a real-world situation, you need a solid example. Assume for the moment that
you are on a programming team that is building an application with the following requirement:

• The product must be extendible by the use of additional third-party tools.

So, what exactly is meant by extendable? Consider Visual Studio 2005. When this application
was developed, various “hooks” were inserted to allow other software vendors to snap custom modules
into the IDE. Obviously, the Visual Studio 2005 team had no way to set references to external .NET
assemblies it had not programmed (thus, no early binding), so how exactly would an application
provide the required hooks?

• First, an extendable application must provide some input vehicle to allow the user to specify the
module to plug in (such as a dialog box or command-line flag). This requires dynamic loading.

• Second, an extendable application must be able to determine if the module supports the
correct functionality (such as a set of required interfaces) in order to be plugged into the
environment. This requires reflection.

• Finally, an extendable application must obtain a reference to the required infrastructure
(e.g., the interface types) and invoke the members to trigger the underlying functionality.
This often requires late binding.

Figure 12-10. Reflecting on attributes using late binding

4193ch12.qxd 8/14/05 2:53 PM Page 418

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 419

Simply put, if the extendible application has been preprogrammed to query for specific inter-
faces, it is able to determine at runtime if the type can be activated. Once this verification test has
been passed, the type in question may support additional interfaces that provide a polymorphic
fabric to their functionality. This is the exact approach taken by the Visual Studio 2005 team, and
despite what you may be thinking, is not at all difficult.

Building an Extendable Application
In the sections that follow, I will take you through a complete example that illustrates the process
of building an extendible Windows Forms application that can be augmented by the functionality of
external assemblies. What I will not do at this point is comment on the process of programming
Windows Forms applications (Chapters 19, 20, and 21 will tend to that chore). So, if you are not
familiar with the process of building Windows Forms applications, feel free to simply open up the
supplied sample code and follow along (or build a console-based alternative). To serve as a road map,
our extendible application entails the following assemblies:

• CommonSnappableTypes.dll: This assembly contains type definitions that will be implemented
by each snap-in as well as referenced by the extendible Windows Forms application.

• CSharpSnapIn.dll: A snap-in written in C#, which leverages the types of
CommonSnappableTypes.dll.

• VbNetSnapIn.dll: A snap-in written in Visual Basic .NET, which leverages the types of
CommonSnappableTypes.dll.

• MyPluggableApp.exe: This Windows Forms application will be the entity that may be extended
by the functionality of each snap-in. Again, this application will make use of dynamic load-
ing, reflection, and late binding to dynamically gain the functionality of assemblies it has no
prior knowledge of.

Building CommonSnappableTypes.dll
The first order of business is to create an assembly that contains the types that a given snap-in must
leverage to be plugged into your expandable Windows Forms application. The CommonSnappableTypes
class library project defines two types:

namespace CommonSnappableTypes
{

public interface IAppFunctionality
{

void DoIt();
}

[AttributeUsage(AttributeTargets.Class)]
public sealed class CompanyInfoAttribute : System.Attribute
{

private string companyName;
private string companyUrl;
public CompanyInfoAttribute(){}

public string Name
{
get { return companyName; }
set { companyName = value; }

}

4193ch12.qxd 8/14/05 2:53 PM Page 419

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING420

public string Url
{
get { return companyUrl; }
set { companyUrl = value; }

}
}

}

The IAppFunctionality interface provides a polymorphic interface for all snap-ins that can be
consumed by the extendible Windows Forms application. Of course, as this example is purely illus-
trative in nature, you supply a single method named DoIt(). To map this to a real-world example,
imagine an interface (or a set of interfaces) that allows the snapper to generate scripting code, render
an image onto the application’s toolbox, or integrate into the main menu of the hosting application.

The CompanyInfoAttribute type is a custom attribute that will be applied on any class type that
wishes to be snapped in to the container. As you can tell by the definition of this class, [CompanyInfo]
allows the developer of the snap-in to provide some basic details about the component’s point of
origin.

Building the C# Snap-In
Next up, you need to create a type that implements the IAppFunctionality interface. Again, to focus
on the overall design of an extendible application, a trivial type is in order. Assume a new C# code
library named CSharpSnapIn that defines a class type named CSharpModule. Given that this class
must make use of the types defined in CommonSnappableTypes, be sure to set a reference to this
binary (as well as System.Windows.Forms.dll to display a noteworthy message). This being said, here
is the code:

using System;
using CommonSnappableTypes;
using System.Windows.Forms;

namespace CSharpSnapIn
{

[CompanyInfo(Name = "Intertech Training",
Url = "www.intertechtraining.com")]

public class TheCSharpModule : IAppFunctionality
{

void IAppFunctionality.DoIt()
{

MessageBox.Show("You have just used the C# snap in!");
}

}
}

Notice that I choose to make use of explicit interface implementation when supporting the
IAppFunctionality interface. This is not required; however, the idea is that the only part of the system
that needs to directly interact with this interface type is the hosting Windows application.

Building the Visual Basic .NET Snap-In
Now, to simulate the role of a third-party vendor who prefers Visual Basic .NET over C#, create a new
Visual Basic .NET code library (VbNetSnapIn) that references the same external assemblies as the
previous CSharpSnapIn project. The code is (again) intentionally simple:

Imports System.Windows.Forms
Imports CommonSnappableTypes

4193ch12.qxd 8/14/05 2:53 PM Page 420

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 421

Figure 12-11. Initial GUI for MyExtendableApp

<CompanyInfo(Name:="Chucky's Software", Url:="www.ChuckySoft.com")> _
Public Class VbNetSnapIn

Implements IAppFunctionality

Public Sub DoIt() Implements CommonSnappableTypes.IAppFunctionality.DoIt
MessageBox.Show("You have just used the VB .NET snap in!")

End Sub
End Class

Not too much to say here! Do notice, however, that applying attributes in the syntax of Visual
Basic .NET requires angle brackets (< >) rather than square brackets ([]).

Building an Extendable Windows Forms Application
The final step is to create a new Windows Forms application (MyExtendableApp) that allows the
user to select a snap-in using a standard Windows Open dialog box. Next, set a reference to the
CommonSnappableTypes.dll assembly, but not the CSharpSnapIn.dll or VbNetSnapIn.dll code libraries.
Remember that the whole goal of this application is to make use of late binding and reflection to
determine the “snapability” of independent binaries created by third-party vendors.

Again, I won’t bother to examine all the details of Windows Forms development at this point in
the text. However, assuming you have placed a MenuStrip component onto the Form template, define
a topmost menu item named Tools that provides a single submenu named Snap In Module (see
Figure 12-11).

This Windows Form will also contain a ListBox type (which I renamed as lstLoadedSnapIns)
that will be used to display the names of each snap-in loaded by the user. Figure 12-12 shows the
final GUI.

4193ch12.qxd 8/14/05 2:53 PM Page 421

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING422

The code that handles the Tools ➤ Snap In Module menu item (which may be created simply
by double-clicking the menu item from the design-time editor) displays a File Open dialog box
and extracts the path to the selected file. This path is then sent into a helper function named
LoadExternalModule() for processing. This method will return false when it is unable to find a class
implementing IAppFunctionality:

private void snapInModuleToolStripMenuItem_Click(object sender,
EventArgs e)

{
// Allow user to select an assembly to load.
OpenFileDialog dlg = new OpenFileDialog();

if (dlg.ShowDialog() == DialogResult.OK)
{

if (LoadExternalModule(dlg.FileName) == false)
MessageBox.Show("Nothing implements IAppFunctionality!");

}
}

The LoadExternalModule() method performs the following tasks:

• Dynamically loads the assembly into memory

• Determines if the assembly contains a type implementing IAppFunctionality

If a type implementing IAppFunctionality is found, the DoIt() method is called, and the fully
qualified name of the type is added to the ListBox (note that the for loop will iterate over all types
in the assembly to account for the possibility that a single assembly has multiple snap-ins):

private bool LoadExternalModule(string path)
{

bool foundSnapIn = false;
IAppFunctionality itfAppFx;

// Dynamically load the selected assembly.
Assembly theSnapInAsm = Assembly.LoadFrom(path);

// Get all types in assembly.
Type[] theTypes = theSnapInAsm.GetTypes();

Figure 12-12. Final GUI for MyExtendableApp

4193ch12.qxd 8/14/05 2:53 PM Page 422

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING 423

Figure 12-13. Snapping in external assemblies

// See if a type implement IAppFunctionality.
for (int i = 0; i < theTypes.Length; i++)
{

Type t = theTypes[i].GetInterface("IAppFunctionality");
if (t != null)
{

foundSnapIn = true;

// Use late binding to create the type.
object o =

theSnapInAsm.CreateInstance(theTypes[i].FullName);

// Call DoIt() off the interface.
itfAppFx = o as IAppFunctionality;
itfAppFx.DoIt();
lstLoadedSnapIns.Items.Add(theTypes[i].FullName);

}
}
return foundSnapIn;

}

At this point, you can run your application. When you select the CSharpSnapIn.dll or
VbNetSnapIn.dll assemblies, you should see the correct message displayed. Figure 12-13 shows
one possible run.

The final task is to display the metadata provided by the [CompanyInfo]. To do so, simply update
LoadExternalModule() to call a new helper function named DisplayCompanyData() before exiting the
if scope. Notice this method takes a single System.Type parameter.

private bool LoadExternalModule(string path)
{
...

if (t != null)
{

...
// Show company info.
DisplayCompanyData(theTypes[i]);

}
}
return foundSnapIn;

}

4193ch12.qxd 8/14/05 2:53 PM Page 423

CHAPTER 12 ■ TYPE REFLECTION, LATE BINDING, AND ATTRIBUTE-BASED PROGRAMMING424

Using the incoming type, simply reflect over the [CompanyInfo] attribute:

private void DisplayCompanyData(Type t)
{

// Get [CompanyInfo] data.
object[] customAtts = t.GetCustomAttributes(false);

// Show data.
foreach (CompanyInfoAttribute c in customAtts)
{

MessageBox.Show(c.Url,
string.Format("More info about {0} can be found at", c.Name));

}
}

Excellent! That wraps up the example application. I hope at this point you can see that the
topics presented in this chapter can be quite helpful in the real world and are not limited to the tool
builders of the world.

■Source Code The CommonSnappableTypes, CSharpSnapIn, VbNetSnapIn, and MyExtendableApp applications
are included under the Chapter 12 subdirectory.

Summary
Reflection is a very interesting aspect of a robust OO environment. In the world of .NET, the keys to
reflection services revolve around the System.Type class and the System.Reflection namespace. As
you have seen, reflection is the process of placing a type under the magnifying glass at runtime to
understand the who, what, where, when, why, and how of a given item.

Late binding is the process of creating a type and invoking its members without prior knowl-
edge of the specific names of said members. As shown during this chapter’s extendible application
example, this is a very powerful technique used by tool builders as well as tool consumers. This
chapter also examined the role of attribute-based programming. When you adorn your types with
attributes, the result is the augmentation of the underlying assembly metadata.

4193ch12.qxd 8/14/05 2:53 PM Page 424

Processes, AppDomains, Contexts,
and CLR Hosts

In the previous two chapters, you examined the steps taken by the CLR to resolve the location of
an externally referenced assembly as well as the role of .NET metadata. In this chapter, you’ll drill
deeper into the details of how an assembly is hosted by the CLR and come to understand the rela-
tionship between processes, application domains, and object contexts.

In a nutshell, application domains (or, simply, AppDomains) are logical subdivisions within
a given process that host a set of related .NET assemblies. As you will see, an AppDomain is further
subdivided into contextual boundaries, which are used to group together like-minded .NET objects.
Using the notion of context, the CLR is able to ensure that objects with special runtime requirements
are handled appropriately.

Once you have come to understand how an assembly is hosted by the CLR, it’s time to address
the next obvious question: what is hosting the CLR? As you recall from Chapter 1, the CLR itself is
represented (in part) by mscoree.dll. When you launch an executable assembly, mscoree.dll is loaded
automatically; however, as you will see, there are actually a number of transparent steps happening
in the background.

Reviewing Traditional Win32 Processes
The concept of a “process” has existed within Windows-based operating systems well before the
release of the .NET platform. Simply put, process is the term used to describe the set of resources
(such as external code libraries and the primary thread) and the necessary memory allocations used
by a running application. For each *.exe loaded into memory, the OS creates a separate and isolated
process for use during its lifetime. Using this approach to application isolation, the result is a much
more robust and stable runtime environment, given that the failure of one process does not affect
the functioning of another.

Now, every Win32 process is assigned a unique process identifier (PID) and may be indepen-
dently loaded and unloaded by the OS as necessary (as well as programmatically using Win32 API
calls). As you may be aware, the Processes tab of the Windows Task Manager utility (activated via
the Ctrl+Shift+Esc keystroke combination) allows you to view various statistics regarding the processes
running on a given machine, including its PID and image name (see Figure 13-1).

425

C H A P T E R 1 3

■ ■ ■

4193ch13.qxd 8/14/05 2:54 PM Page 425

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS426

■Note If you do not see a PID column listed in Task Manager, simply select View ➤ Select Columns and check
the PID box.

An Overview of Threads
Every Win32 process has exactly one main “thread” that functions as the entry point for the application.
The next chapter examines how to create additional threads and thread-safe code using the System.
Threading namespace; however, to facilitate the topics presented here, we need a few working defi-
nitions. First of all, a thread is a path of execution within a process. Formally speaking, the first thread
created by a process’s entry point is termed the primary thread. Win32 GUI desktop applications
define the WinMain() method as the application’s entry point. On the other hand, a console applica-
tion provides the Main() method for the same purpose.

Processes that contain a single primary thread of execution are intrinsically thread-safe, given
the fact that there is only one thread that can access the data in the application at a given time.
However, a single-threaded process (especially one that is GUI-based) will often appear a bit unre-
sponsive to the user if this single thread is performing a complex operation (such as printing out
a lengthy text file, performing an exotic calculation, or attempting to connect to a remote server
located thousands of miles away).

Given this potential drawback of single-threaded applications, the Win32 API makes it is possible
for the primary thread to spawn additional secondary threads (also termed worker threads) using
a handful of Win32 API functions such as CreateThread(). Each thread (primary or secondary) becomes
a unique path of execution in the process and has concurrent access to all shared points of data.

As you may have guessed, developers typically create additional threads to help improve the
program’s overall responsiveness. Multithreaded processes provide the illusion that numerous
activities are happening at more or less the same time. For example, an application may spawn

Figure 13-1. Windows Task Manager

4193ch13.qxd 8/14/05 2:54 PM Page 426

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 427

Figure 13-2. The Win32 process/thread relationship

a worker thread to perform a labor-intensive unit of work (again, such as printing a large text file).
As this secondary thread is churning away, the main thread is still responsive to user input, which
gives the entire process the potential of delivering greater performance. However, this may not actually
be the case: using too many threads in a single process can actually degrade performance, as the CPU
must switch between the active threads in the process (which takes time).

In reality, it is always worth keeping in mind that multithreading is most commonly an illusion
provided by the OS. Machines that host a single CPU do not have the ability to literally handle mul-
tiple threads at the same exact time. Rather, a single CPU will execute one thread for a unit of time
(called a time slice) based on the thread’s priority level. When a thread’s time slice is up, the existing
thread is suspended to allow another thread to perform its business. For a thread to remember what
was happening before it was kicked out of the way, each thread is given the ability to write to Thread
Local Storage (TLS) and is provided with a separate call stack, as illustrated in Figure 13-2.

If the subject of threads is new to you, don’t sweat the details. At this point, just remember that
a thread is a unique path of execution within a Win32 process. Every process has a primary thread
(created via the executable’s entry point) and may contain additional threads that have been pro-
grammatically created.

■Note Newer Intel CPUs have a feature called Hyper-Threading Technology that allows a single CPU to handle
multiple threads simultaneously under certain circumstances. See http://www.intel.com/info/hyperthreading
for more details.

Interacting with Processes Under the .NET
Platform
Although processes and threads are nothing new, the manner in which we interact with these prim-
itives under the .NET platform has changed quite a bit (for the better). To pave the way to understanding
the world of building multithreaded assemblies (see Chapter 14), let’s begin by checking out how
to interact with processes using the .NET base class libraries.

The System.Diagnostics namespace defines a number of types that allow you to programmati-
cally interact with processes and various diagnostic-related types such as the system event log and
performance counters. In this chapter, we are only concerned with the process-centric types defined
in Table 13-1.

4193ch13.qxd 8/14/05 2:54 PM Page 427

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS428

Table 13-1. Select Members of the System.Diagnostics Namespace

Process-Centric Types of the
System.Diagnostics Namespace Meaning in Life

Process The Process class provides access to local and remote
processes and also allows you to programmatically start and
stop processes.

ProcessModule This type represents a module (*.dll or *.exe) that is loaded
into a particular process. Understand that the ProcessModule
type can represent any module—COM-based, .NET-based, or
traditional C-based binaries.

ProcessModuleCollection Provides a strongly typed collection of ProcessModule objects.

ProcessStartInfo Specifies a set of values used when starting a process via the
Process.Start() method.

ProcessThread Represents a thread within a given process. Be aware that
ProcessThread is a type used to diagnose a process’s thread set
and is not used to spawn new threads of execution within
a process.

ProcessThreadCollection Provides a strongly typed collection of ProcessThread objects.

The System.Diagnostics.Process type allows you to analyze the processes running on a given
machine (local or remote). The Process class also provides members that allow you to programmat-
ically start and terminate processes, establish a process’s priority level, and obtain a list of active
threads and/or loaded modules within a given process. Table 13-2 lists some (but not all) of the key
members of System.Diagnostics.Process.

Table 13-2. Select Members of the Process Type

Members Meaning in Life

ExitCode This property gets the value that the associated process specified when it
terminated. Do note that you will be required to handle the Exited event
(for asynchronous notification) or call the WaitForExit() method (for
synchronous notification) to obtain this value.

ExitTime This property gets the timestamp associated with the process that has
terminated (represented with a DateTime type).

Handle This property returns the handle associated to the process by the OS.

HandleCount This property returns the number of handles opened by the process.

Id This property gets the process ID (PID) for the associated process.

MachineName This property gets the name of the computer the associated process is
running on.

MainModule This property gets the ProcessModule type that represents the main
module for a given process.

MainWindowTitle MainWindowTitle gets the caption of the main window of the process (if
MainWindowHandle the process does not have a main window, you receive an empty string).

MainWindowHandle gets the underlying handle (represented via
a System.IntPtr type) of the associated window. If the process does not
have a main window, the IntPtr type is assigned the value
System.IntPtr.Zero.

Modules This property provides access to the strongly typed
ProcessModuleCollection type, which represents the set of modules
(*.dll or *.exe) loaded within the current process.

4193ch13.qxd 8/14/05 2:54 PM Page 428

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 429

Members Meaning in Life

PriorityBoostEnabled This property determines if the OS should temporarily boost the process
if the main window has the focus.

PriorityClass This property allows you to read or change the overall priority for the
associated process.

ProcessName This property gets the name of the process (which, as you would
assume, is the name of the application itself).

Responding This property gets a value indicating whether the user interface of the
process is responding (or not).

StartTime This property gets the time that the associated process was started (via
a DateTime type).

Threads This property gets the set of threads that are running in the associated
process (represented via an array of ProcessThread types).

CloseMainWindow() This method closes a process that has a user interface by sending a close
message to its main window.

GetCurrentProcess() This static method returns a new Process type that represents the
currently active process.

GetProcesses() This static method returns an array of new Process components running
on a given machine.

Kill() This method immediately stops the associated process.

Start() This method starts a process.

Enumerating Running Processes
To illustrate the process of manipulating Process types (pardon the redundancy), assume you have
a C# console application named ProcessManipulator, which defines the following static helper method:

public static void ListAllRunningProcesses()
{

// Get all the processes on the local machine.
Process[] runningProcs = Process.GetProcesses(".");

// Print out PID and name of each process.
foreach(Process p in runningProcs)
{

string info = string.Format("-> PID: {0}\tName: {1}",
p.Id, p.ProcessName);

Console.WriteLine(info);
}
Console.WriteLine("************************************\n");

}

Notice how the static Process.GetProcesses() method returns an array of Process types that
represent the running processes on the target machine (the dot notation shown here represents the
local computer).

Once you have obtained the array of Process types, you are able to trigger any of the members
seen in Table 13-2. Here, you are simply displaying the PID and the name of each process. Assuming
the Main() method has been updated to call ListAllRunningProcesses(), you will see something
like the output shown in Figure 13-3.

4193ch13.qxd 8/14/05 2:54 PM Page 429

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS430

Investigating a Specific Process
In addition to obtaining a full and complete list of all running processes on a given machine, the
static Process.GetProcessById() method allows you to obtain a single Process type via the associated
PID. If you request access to a nonexistent process ID, an ArgumentException exception is thrown.
Therefore, if you were interested in obtaining a Process object representing a process with the PID
of 987, you could write the following:

// If there is no process with the PID of 987, a
// runtime exception will be thrown.
static void Main(string[] args)
{

Process theProc;
try
{

theProc = Process.GetProcessById(987);
}
catch // Generic catch for used simplicity.
{

Console.WriteLine("-> Sorry...bad PID!");
}

}

Investigating a Process’s Thread Set
The Process class type also provides a manner to programmatically investigate the set of all
threads currently used by a specific process. The set of threads is represented by the strongly typed
ProcessThreadCollection collection, which contains some number of individual ProcessThread
types. To illustrate, assume the following additional static helper function has been added to your
current application:

Figure 13-3. Enumerating running processes

4193ch13.qxd 8/14/05 2:54 PM Page 430

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 431

public static void EnumThreadsForPid(int pID)
{

Process theProc;
try
{

theProc = Process.GetProcessById(pID);
}
catch
{

Console.WriteLine("-> Sorry...bad PID!");
Console.WriteLine("************************************\n");
return;

}

// List out stats for each thread in the specified process.
Console.WriteLine("Here are the threads used by: {0}",

theProc.ProcessName);
ProcessThreadCollection theThreads = theProc.Threads;
foreach(ProcessThread pt in theThreads)
{

string info =
string.Format("-> Thread ID: {0}\tStart Time {1}\tPriority {2}",
pt.Id , pt.StartTime.ToShortTimeString(), pt.PriorityLevel);

Console.WriteLine(info);
}
Console.WriteLine("************************************\n");

}

As you can see, the Threads property of the System.Diagnostics.Process type provides access
to the ProcessThreadCollection class. Here, you are printing out the assigned thread ID, start time,
and priority level of each thread in the process specified by the client. Thus, if you update your pro-
gram’s Main() method to prompt the user for a PID to investigate, as follows:

static void Main(string[] args)
{
...

// Prompt user for a PID and print out the set of active threads.
Console.WriteLine("***** Enter PID of process to investigate *****");
Console.Write("PID: ");
string pID = Console.ReadLine();
int theProcID = int.Parse(pID);

EnumThreadsForPid(theProcID);
Console.ReadLine();

}

you would find output along the lines of that shown in Figure 13-4.

4193ch13.qxd 8/14/05 2:54 PM Page 431

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS432

The ProcessThread type has additional members of interest beyond Id, StartTime, and
PriorityLevel. Table 13-3 documents some members of interest.

Table 13-3. Select Members of the ProcessThread Type

Member Meaning in Life

BasePriority Gets the base priority of the thread

CurrentPriority Gets the current priority of the thread

Id Gets the unique identifier of the thread

IdealProcessor Sets the preferred processor for this thread to run on

PriorityLevel Gets or sets the priority level of the thread

ProcessorAffinity Sets the processors on which the associated thread can run

StartAddress Gets the memory address of the function that the operating system
called that started this thread

StartTime Gets the time that the operating system started the thread

ThreadState Gets the current state of this thread

TotalProcessorTime Gets the total amount of time that this thread has spent using the
processor

WaitReason Gets the reason that the thread is waiting

Before you read any further, be very aware that the ProcessThread type is not the entity used to
create, suspend, or kill threads under the .NET platform. Rather, ProcessThread is a vehicle used to
obtain diagnostic information for the active Win32 threads within a running process. You will inves-
tigate how to build multithreaded applications using the System.Threading namespace in Chapter 14.

Investigating a Process’s Module Set
Next up, let’s check out how to iterate over the number of loaded modules that are hosted within
a given process. Recall that a module is a generic name used to describe a given *.dll (or the *.exe
itself) that is hosted by a specific process. When you access the ProcessModuleCollection via the
Process.Module property, you are able to enumerate over all modules hosted within a process: .NET-
based, COM-based, or traditional C-based libraries. Ponder the following additional helper function
that will enumerate the modules in a specific process based on the PID:

Figure 13-4. Enumerating the threads within a running process

4193ch13.qxd 8/14/05 2:54 PM Page 432

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 433

Figure 13-5. Enumerating the loaded modules within a running process

public static void EnumModsForPid(int pID)
{

Process theProc;
try
{

theProc = Process.GetProcessById(pID);
}
catch
{

Console.WriteLine("-> Sorry...bad PID!");
Console.WriteLine("************************************\n");
return;

}
Console.WriteLine("Here are the loaded modules for: {0}",

theProc.ProcessName);
try
{

ProcessModuleCollection theMods = theProc.Modules;
foreach(ProcessModule pm in theMods)
{

string info = string.Format("-> Mod Name: {0}", pm.ModuleName);
Console.WriteLine(info);

}
Console.WriteLine("************************************\n");

}
catch
{

Console.WriteLine("No mods!");
}

}

To see some possible output, let’s check out the loaded modules for the process hosting the
current console application (ProcessManipulator). To do so, run the application, identify the PID
assigned to ProcessManipulator.exe, and pass this value to the EnumModsForPid() method (be sure
to update your Main() method accordingly). Once you do, you may be surprised to see the list of
*.dlls used for a simple console application (atl.dll, mfc42u.dll, oleaut32.dll, and so forth).
Figure 13-5 shows a test run.

4193ch13.qxd 8/14/05 2:54 PM Page 433

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS434

Starting and Stopping Processes Programmatically
The final aspects of the System.Diagnostics.Process type examined here are the Start() and Kill()
methods. As you can gather by their names, these members provide a way to programmatically
launch and terminate a process, respectively. For example, ponder the static StartAndKillProcess()
helper method:

public static void StartAndKillProcess()
{

// Launch Internet Explorer.
Process ieProc = Process.Start("IExplore.exe",

"www.intertechtraining.com");

Console.Write("--> Hit enter to kill {0}...", ieProc.ProcessName);
Console.ReadLine();

// Kill the iexplorer.exe process.
try
{

ieProc.Kill();
}
catch{} // In case the user already killed it...

}

The static Process.Start() method has been overloaded a few times, however. At minimum,
you will need to specify the friendly name of the process you wish to launch (such as Microsoft
Internet Explorer). This example makes use of a variation of the Start() method that allows you to
specify any additional arguments to pass into the program’s entry point (i.e., the Main() method).

The Start() method also allows you to pass in a System.Diagnostics.ProcessStartInfo type to
specify additional bits of information regarding how a given process should come to life. Here is the
formal definition of ProcessStartInfo (see the .NET Framework 2.0 SDK documentation for full
details):

public sealed class System.Diagnostics.ProcessStartInfo :
object

{
public ProcessStartInfo();
public ProcessStartInfo(string fileName);
public ProcessStartInfo(string fileName, string arguments);
public string Arguments { get; set; }
public bool CreateNoWindow { get; set; }
public StringDictionary EnvironmentVariables { get; }
public bool ErrorDialog { get; set; }
public IntPtr ErrorDialogParentHandle { get; set; }
public string FileName { get; set; }
public bool RedirectStandardError { get; set; }
public bool RedirectStandardInput { get; set; }
public bool RedirectStandardOutput { get; set; }
public bool UseShellExecute { get; set; }
public string Verb { get; set; }
public string[] Verbs { get; }
public ProcessWindowStyle WindowStyle { get; set; }
public string WorkingDirectory { get; set; }
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public Type GetType();
public virtual string ToString();

}

4193ch13.qxd 8/14/05 2:54 PM Page 434

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 435

Regardless of which version of the Process.Start() method you invoke, do note that you are
returned a reference to the newly activated process. When you wish to terminate the process, sim-
ply call the instance-level Kill() method.

■Source Code The ProcessManipulator application is included under the Chapter 13 subdirectory.

Understanding .NET Application Domains
Now that you understand the role of Win32 processes and how to interact with them from managed
code, we need to investigate the concept of a .NET application domain. Under the .NET platform,
assemblies are not hosted directly within a process (as is the case in traditional Win32 applications).
Rather, a .NET executable is hosted by a logical partition within a process termed an application
domain (aka AppDomain). As you will see, a single process may contain multiple application domains,
each of which is hosting a .NET executable. This additional subdivision of a traditional Win32 process
offers several benefits, some of which are as follows:

• AppDomains are a key aspect of the OS-neutral nature of the .NET platform, given that this
logical division abstracts away the differences in how an underlying OS represents a loaded
executable.

• AppDomains are far less expensive in terms of processing power and memory than a full-
blown process. Thus, the CLR is able to load and unload application domains much quicker
than a formal process.

• AppDomains provide a deeper level of isolation for hosting a loaded application. If one App-
Domain within a process fails, the remaining AppDomains remain functional.

As suggested in the previous hit list, a single process can host any number of AppDomains,
each of which is fully and completely isolated from other AppDomains within this process (or any
other process). Given this factoid, be very aware that an application running in one AppDomain is
unable to obtain data of any kind (global variables or static fields) within another AppDomain unless
they make use of the .NET remoting protocol (which you’ll examine in Chapter 18).

While a single process may host multiple AppDomains, this is not always the case. At the very
least, an OS process will host what is termed the default application domain. This specific applica-
tion domain is automatically created by the CLR at the time the process launches.

After this point, the CLR creates additional application domains on an as-needed basis. If the
need should arise (which it most likely will not for the majority of your .NET endeavors), you are
also able to programmatically create application domains at runtime within a given process using
static methods of the System.AppDomain class. This class is also useful for low-level control of appli-
cation domains. Key members of this class are shown in Table 13-4.

Table 13-4. Select Members of AppDomain

Member Meaning in Life

CreateDomain() This static method creates a new AppDomain in the current process.
Understand that the CLR will create new application domains as
necessary, and thus the chance of you absolutely needing to call this
member is slim to none.

GetCurrentThreadId() This static method returns the ID of the active thread in the current
application domain.

Continued

4193ch13.qxd 8/14/05 2:54 PM Page 435

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS436

Table 13-4. (Continued)

Member Meaning in Life

Unload() This is another static method that allows you to unload a specified
AppDomain within a given process.

BaseDirectory This property returns the base directory used to probe for dependent
assemblies.

CreateInstance() This method creates an instance of a specified type defined in
a specified assembly file.

ExecuteAssembly() This method executes an assembly within an application domain,
given its file name.

GetAssemblies() This method gets the set of .NET assemblies that have been loaded into
this application domain (COM-based or C-based binaries are ignored).

Load() This method is used to dynamically load an assembly into the current
application domain.

In addition, the AppDomain type also defines a small set of events that correspond to various
aspects of an application domain’s life cycle, as shown in Table 13-5.

Table 13-5. Events of the AppDomain Type

Event Meaning in Life

AssemblyLoad Occurs when an assembly is loaded

AssemblyResolve Occurs when the resolution of an assembly fails

DomainUnload Occurs when an AppDomain is about to be unloaded

ProcessExit Occurs on the default application domain when the default application
domain’s parent process exits

ResourceResolve Occurs when the resolution of a resource fails

TypeResolve Occurs when the resolution of a type fails

UnhandledException Occurs when an exception is not caught by an event handler

Enumerating a Process’s AppDomains
To illustrate how to interact with .NET application domains programmatically, assume you have
a new C# console application named AppDomainManipulator that defines a static method named
PrintAllAssembliesInAppDomain(). This helper method makes use of AppDomain.GetAssemblies() to
obtain a list of all .NET binaries hosted within the application domain in question.

This list is represented by an array of System.Reflection.Assembly types, and thus you are
required to use the System.Reflection namespace (see Chapter 12). Once you acquire the assembly
array, you iterate over the array and print out the friendly name and version of each module:

public static void PrintAllAssembliesInAppDomain(AppDomain ad)
{

Assembly[] loadedAssemblies = ad.GetAssemblies();
Console.WriteLine("***** Here are the assemblies loaded in {0} *****\n",

ad.FriendlyName);
foreach(Assembly a in loadedAssemblies)
{

Console.WriteLine("-> Name: {0}", a.GetName().Name);
Console.WriteLine("-> Version: {0}\n", a.GetName().Version);

}

4193ch13.qxd 8/14/05 2:54 PM Page 436

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 437

Figure 13-6. Enumerating assemblies within the current application domain

Now let’s update the Main() method to obtain a reference to the current application domain
before invoking PrintAllAssembliesInAppDomain(), using the AppDomain.CurrentDomain property.

To make things a bit more interesting, notice that the Main() method launches a Windows
Forms message box to force the CLR to load the System.Windows.Forms.dll, System.Drawing.dll,
and System.dll assemblies (so be sure to set a reference to these assemblies and update your using
statements appropriately):

static void Main(string[] args)
{

Console.WriteLine("***** The Amazing AppDomain app *****\n");

// Get info for current AppDomain.
AppDomain defaultAD= AppDomain.CurrentDomain;
MessageBox.Show("Hello");
PrintAllAssembliesInAppDomain(defaultAD);

Console.ReadLine();
}

Figure 13-6 shows the output (your version numbers may differ).

Programmatically Creating New AppDomains
Recall that a single process is capable of hosting multiple AppDomains. While it is true that you will
seldom (if ever) need to manually create AppDomains in code, you are able to do so via the static
CreateDomain() method. As you would guess, AppDomain.CreateDomain() has been overloaded
a number of times. At minimum, you will specify the friendly name of the new application domain,
as shown here:

static void Main(string[] args)
{
...

// Make a new AppDomain in the current process.
AppDomain anotherAD = AppDomain.CreateDomain("SecondAppDomain");
PrintAllAssembliesInAppDomain(anotherAD);

Console.ReadLine();
}

4193ch13.qxd 8/14/05 2:54 PM Page 437

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS438

Now, if you run the application again (see Figure 13-7), notice that the System.Windows.Forms.dll,
System.Drawing.dll, and System.dll assemblies are only loaded within the default application domain.
This may seem counterintuitive if you have a background in traditional Win32 (as you might suspect,
both application domains have access to the same assembly set). Recall, however, that an assembly
loads into an application domain, not directly into the process itself.

Next, notice how the SecondAppDomain application domain automatically contains its own
copy of mscorlib.dll, as this key assembly is automatically loaded by the CLR for each and every
application domain. This begs the question, “How can I programmatically load an assembly into an
application domain?” Answer: with the AppDomain.Load() method (or, alternatively, AppDomain.
ExecuteAssembly()). Assuming you have copied CarLibrary.dll to the application directory of
AppDomainManipulator.exe, you may load CarLibrary.dll into the SecondAppDomain AppDomain
as so:

static void Main(string[] args)
{

Console.WriteLine("***** The Amazing AppDomain app *****\n");
...
// Load CarLibrary.dll into the new AppDomain.
AppDomain anotherAD = AppDomain.CreateDomain("SecondAppDomain");
anotherAD.Load("CarLibrary");
PrintAllAssembliesInAppDomain(anotherAD);
Console.ReadLine();

}

To solidify the relationship between processes, application domains, and assemblies, Figure 13-8
diagrams the internal composition of the AppDomainManipulator.exe process just constructed.

Figure 13-7. A single process with two application domains

4193ch13.qxd 8/14/05 2:54 PM Page 438

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 439

Programmatically Unloading AppDomains
It is important to point out that the CLR does not permit unloading individual .NET assemblies.
However, using the AppDomain.Unload() method, you are able to selectively unload a given applica-
tion domain from its hosting process. When you do so, the application domain will unload each
assembly in turn.

Recall that the AppDomain type defines a small set of events, one of which is DomainUnload. This
event is fired when a (nondefault) AppDomain is unloaded from the containing process. Another event
of interest is the ProcessExit event, which is fired when the default application domain is unloaded
from the process (which obviously entails the termination of the process itself). Thus, if you wish to
programmatically unload anotherAD from the AppDomainManipulator.exe process and be notified when
the associated application domain is torn down, you are able to write the following event logic:

static void Main(string[] args)
{
...

// Hook into DomainUnload event.
anotherAD.DomainUnload +=

new EventHandler(anotherAD_DomainUnload);
// Now unload anotherAD.
AppDomain.Unload(anotherAD);

}

Notice that the DomainUnload event works in conjunction with the System.EventHandler delegate,
and therefore the format of anotherAD_DomainUnload() takes the following arguments:

public static void anotherAD_DomainUnload(object sender, EventArgs e)
{

Console.WriteLine("***** Unloaded anotherAD! *****\n");
}

If you wish to be notified when the default AppDomain is unloaded, modify your Main() method
to handle the ProcessEvent event of the default application domain:

Figure 13-8. The AppDomainManipulator.exe process under the hood

4193ch13.qxd 8/14/05 2:54 PM Page 439

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS440

static void Main(string[] args)
{
...

AppDomain defaultAD = AppDomain.CurrentDomain;
defaultAD.ProcessExit +=new EventHandler(defaultAD_ProcessExit);

}

and define an appropriate event handler:

private static void defaultAD_ProcessExit(object sender, EventArgs e)
{

Console.WriteLine("***** Unloaded defaultAD! *****\n");
}

■Source Code The AppDomainManipulator project is included under the Chapter 13 subdirectory.

Understanding Object Context Boundaries
As you have just seen, AppDomains are logical partitions within a process used to host .NET assem-
blies. On a related note, a given application domain may be further subdivided into numerous
context boundaries. In a nutshell, a .NET context provides a way for a single AppDomain to estab-
lish a “specific home” for a given object.

Using context, the CLR is able to ensure that objects that have special runtime requirements
are handled in an appropriate and consistent manner by intercepting method invocations into and
out of a given context. This layer of interception allows the CLR to adjust the current method invo-
cation to conform to the contextual settings of a given object. For example, if you define a C# class
type that requires automatic thread safety (using the [Synchronization] attribute), the CLR will
create a “synchronized context” during allocation.

Just as a process defines a default AppDomain, every application domain has a default context.
This default context (sometimes referred to as context 0, given that it is always the first context cre-
ated within an application domain) is used to group together .NET objects that have no specific or
unique contextual needs. As you may expect, a vast majority of .NET objects are loaded into context 0.
If the CLR determines a newly created object has special needs, a new context boundary is created
within the hosting application domain. Figure 13-9 illustrates the process/AppDomain/context
relationship.

Figure 13-9. Processes, application domains, and context boundaries

4193ch13.qxd 8/14/05 2:54 PM Page 440

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 441

Context-Agile and Context-Bound Types
.NET types that do not demand any special contextual treatment are termed context-agile objects.
These objects can be accessed from anywhere within the hosting AppDomain without interfering
with the object’s runtime requirements. Building context-agile objects is a no-brainer, given that
you simply do nothing (specifically, you do not adorn the type with any contextual attributes and
do not derive from the System.ContextBoundObject base class):

// A context-agile object is loaded into context 0.
public class SportsCar{}

On the other hand, objects that do demand contextual allocation are termed context-bound
objects, and they must derive from the System.ContextBoundObject base class. This base class solidi-
fies the fact that the object in question can function appropriately only within the context in which
it was created. Given the role of .NET context, it should stand to reason that if a context-bound object
were to somehow end up in an incompatible context, bad things would be guaranteed to occur at
the most inopportune times.

In addition to deriving from System.ContextBoundObject, a context-sensitive type will also be
adorned by a special category of .NET attributes termed (not surprisingly) context attributes. All
context attributes derive from the System.Runtime.Remoting.Contexts.ContextAttribute base class:

public class System.Runtime.Remoting.Contexts.ContextAttribute :
Attribute, IContextAttribute, IContextProperty

{
public ContextAttribute(string name);
public string Name { virtual get; }
public object TypeId { virtual get; }
public virtual bool Equals(object o);
public virtual void Freeze(System.Runtime.Remoting.Contexts.Context newContext);
public virtual int GetHashCode();
public virtual void GetPropertiesForNewContext(

System.Runtime.Remoting.Activation.IConstructionCallMessage ctorMsg);
public Type GetType();
public virtual bool IsContextOK(
System.Runtime.Remoting.Contexts.Context ctx,
System.Runtime.Remoting.Activation.IConstructionCallMessage ctorMsg);

public virtual bool IsDefaultAttribute();
public virtual bool IsNewContextOK(

System.Runtime.Remoting.Contexts.Context newCtx);
public virtual bool Match(object obj);
public virtual string ToString();

}

Given that the ContextAttribute class is not sealed, it is possible for you to build your own
custom contextual attribute (simply derive from ContextAttribute and override the necessary
virtual methods). Once you have done so, you are able to build a custom piece of software that can
respond to the contextual settings.

■Note This book doesn’t dive into the details of building custom object contexts; however, if you are interested
in learning more, check out Applied .NET Attributes (Apress, 2003).

4193ch13.qxd 8/14/05 2:54 PM Page 441

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS442

Defining a Context-Bound Object
Assume that you wish to define a class (SportsCarTS) that is automatically thread-safe in nature,
even though you have not hard-coded thread synchronization logic within the member implemen-
tations. To do so, derive from ContextBoundObject and apply the [Synchronization] attribute as
follows:

using System.Runtime.Remoting.Contexts;

// This context-bound type will only be loaded into a
// synchronized (hence thread-safe) context.
[Synchronization]
public class SportsCarTS : ContextBoundObject
{}

Types that are attributed with the [Synchronization] attribute are loaded into a thread-safe
context. Given the special contextual needs of the MyThreadSafeObject class type, imagine the problems
that would occur if an allocated object were moved from a synchronized context into a nonsynchro-
nized context. The object is suddenly no longer thread-safe and thus becomes a candidate for massive
data corruption, as numerous threads are attempting to interact with the (now thread-volatile)
reference object. To ensure the CLR does not move SportsCarTS objects outside of a synchronized
context, simply derive from ContextBoundObject.

Inspecting an Object’s Context
Although very few of the applications you will write will need to programmatically interact with
context, here is an illustrative example. Create a new console application named ContextManipulator.
This application defines one context-agile class (SportsCar) and a single context-bound type
(SportsCarTS):

using System.Runtime.Remoting.Contexts; // For Context type.
using System.Threading; // For Thread type.

// SportsCar has no special contextual
// needs and will be loaded into the
// default context of the app domain.
public class SportsCar
{

public SportsCar()
{

// Get context information and print out context ID.
Context ctx = Thread.CurrentContext;
Console.WriteLine("{0} object in context {1}",

this.ToString(), ctx.ContextID);
foreach(IContextProperty itfCtxProp in ctx.ContextProperties)

Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name);
}

}

// SportsCarTS demands to be loaded in
// a synchronization context.
[Synchronization]
public class SportsCarTS : ContextBoundObject
{

public SportsCarTS()
{

4193ch13.qxd 8/14/05 2:54 PM Page 442

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 443

// Get context information and print out context ID.
Context ctx = Thread.CurrentContext;
Console.WriteLine("{0} object in context {1}",

this.ToString(), ctx.ContextID);
foreach(IContextProperty itfCtxProp in ctx.ContextProperties)

Console.WriteLine("-> Ctx Prop: {0}", itfCtxProp.Name);
}

}

Notice that each constructor obtains a Context type from the current thread of execution, via
the static Thread.CurrentContext property. Using the Context object, you are able to print out statis-
tics about the contextual boundary, such as its assigned ID, as well as a set of descriptors obtained
via Context.ContextProperties. This property returns an object implementing the IContextProperty
interface, which exposes each descriptor through the Name property. Now, update Main() to allocate
an instance of each class type:

static void Main(string[] args)
{

Console.WriteLine("***** The Amazing Context Application *****\n");

// Objects will display contextual info upon creation.
SportsCar sport = new SportsCar();
Console.WriteLine();

SportsCar sport2 = new SportsCar();
Console.WriteLine();

SportsCarTS synchroSport = new SportsCarTS();
Console.ReadLine();

}

As the objects come to life, the class constructors will dump out various bits of context-centric
information (see Figure 13-10).

Figure 13-10. Investigating an object’s context

4193ch13.qxd 8/14/05 2:54 PM Page 443

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS444

Given that the SportsCar class has not been qualified with a context attribute, the CLR has allo-
cated sport and sport2 into context 0 (i.e., the default context). However, the SportsCarTS object
is loaded into a unique contextual boundary (which has been assigned a context ID of 1), given the
fact that this context-bound type was adorned with the [Synchronization] attribute.

■Source Code The ContextManipulator project is included under the Chapter 13 subdirectory

Summarizing Processes, AppDomains, and Context
At this point, you hopefully have a much better idea about how a .NET assembly is hosted by the
CLR. To summarize the key points,

• A .NET process hosts one to many application domains. Each AppDomain is able to host any
number of related .NET assemblies and may be independently loaded and unloaded by the
CLR (or programmatically via the System.AppDomain type).

• A given AppDomain consists of one to many contexts. Using a context, the CLR is able to place
a “special needs” object into a logical container, to ensure that its runtime requirements are
honored.

If the previous pages have seemed to be a bit too low level for your liking, fear not. For the most
part, the .NET runtime automatically deals with the details of processes, application domains, and
contexts on your behalf. The good news, however, is that this information provides a solid foundation
for understanding multithreaded programming under the .NET platform. Before we turn our atten-
tion to the System.Threading namespace, though, we’ll examine how the CLR itself is hosted by the
Win32 OS.

Hosting the Common Language Runtime
To the end user, running a .NET executable is achieved simply by double-clicking the *.exe in Windows
Explorer (or activating an associated shortcut). As you recall from Chapter 1, however, the .NET
Framework is not (currently) incorporated directly into the Windows OS, but sits on top of the OS
itself. When you install Visual Studio 2005 (or the .NET Framework 2.0 SDK) on your development
machine, the .NET runtime environment (including the necessary base class libraries) is installed
as well. Also recall that Microsoft provides a freely distributable .NET runtime setup program
(dotnetfx.exe) to configure end user machines to host .NET assemblies.

Given that the Windows OS does not natively understand the format of a .NET assembly, it
should be clear that various steps occur in the background when an executable assembly is activated.
Under the Windows XP OS, the basic steps are as follows (do recall from Chapter 11 that all .NET
assemblies contain Win32 header information):

1. The Windows OS loads the executable binary file into memory.

2. The Windows OS reads the embedded WinNT header to determine if the binary file is
a .NET assembly (via the IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR flag).

3. If the image is a .NET assembly, mscoree.dll is loaded.

4. mscoree.dll then loads one of two implementations of the CLR (mscorwks.dll or
mscorsvr.dll).

5. At this point, the CLR takes over the show, performing all .NET-centric details (finding
external assemblies, performing security checks, processing CIL code, performing garbage
collections, etc.).

4193ch13.qxd 8/14/05 2:54 PM Page 444

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 445

As suggested by the previous list, mscoree.dll is not the CLR itself (as I have suggested in previ-
ous chapters). Although it is safe to regard mscoree.dll as the actual CLR, in reality this binary file is
a shim to one of two possible CLR implementations. If the host machine makes use of a single CPU,
mscorwks.dll is loaded. If the machine supports multiple CPUs, mscorsvr.dll is loaded into memory
(which is a version of the CLR optimized to execute on multiple-processor machines).

Side-by-Side Execution of the CLR
To dig just a bit deeper, realize that the .NET platform supports side-by-side execution, meaning
that multiple versions of the .NET platform can be installed on a single machine (1.0, 1.1, and 2.0 at
the time of this writing). mscoree.dll itself resides in the machine’s System32 subdirectory of the
registered Windows installation directory. On my machine, mscoree.dll lives under C:\WINDOWS\
system32 (see Figure 13-11).

Once mscoree.dll has been loaded, the Win32 system registry (yes, that system registry) is con-
sulted to determine the latest installed version and installation path of the .NET Framework via
HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework (see Figure 13-12).

Figure 13-11. mscoree.dll lives under the System32 directory

Figure 13-12. Resolving the version and installation path of the .NET platform

4193ch13.qxd 8/14/05 2:54 PM Page 445

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS446

Once the version and installation path of the .NET platform have been determined, the correct
version of mscorwks.dll/mscorsvr.dll is loaded into memory. Again, on my machine, the root instal-
lation path of the .NET platform is C:\WINDOWS\Microsoft.NET\Framework. Under this directory
are specific subdirectories for .NET version 1.0, 1.1, and (at the time of this writing) the current build
of 2.0 (see Figure 13-13; your version numbers may differ).

Loading a Specific Version of the CLR
When mscoree.dll determines which version of mscorwks.dll/mscorsrv.dll to load (by consulting
the system registry), it will also read a subfolder under HKEY_LOCAL_MACHINE\Software\Microsoft\
.NET\Framework named “policy.” This subfolder records the CLR upgrades that may be safely performed.
For example, if you execute an assembly that was built using .NET version 1.0.3705, mscoree.dll
learns from the policy file that it can safely load version 1.1.4322.

This promotion occurs silently in the background and only when the upgrade is known to pro-
duce compatible execution. In the rare case that you wish to instruct mscoree.dll to load a specific
version of the CLR, you may do so using a client-side *.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<startup>
<requiredRuntime version ="1.0.3705"/>

</startup>
</configuration>

Here, the <requiredRuntime> element expresses that only version 1.0.3705 should be used to
host the assembly in question. Therefore, if the target machine does not have a complete installation
of .NET version 1.0.3705, the end user is presented with the runtime error shown in Figure 13-14.

Figure 13-13. mscorwks.dll version 2.0

Figure 13-14. <requiredRuntime> results in a runtime error if the specified version of the CLR is not

4193ch13.qxd 8/14/05 2:54 PM Page 446

CHAPTER 13 ■ PROCESSES, APPDOMAINS, CONTEXTS, AND CLR HOSTS 447

Additional CLR Hosts
The process just defined qualifies the basic steps taken by the Windows OS to host the CLR when an
executable assembly is activated. However, Microsoft provides many applications that bypass this
out-of-the-box behavior in favor of loading the CLR programmatically. For example, Microsoft Internet
Explorer can natively host custom Windows Forms controls (the managed equivalent of the now
legacy ActiveX controls). The latest version of Microsoft SQL Server (code-named Yukon and offi-
cially called SQL Server 2005) also has the ability to directly host the CLR internally.

As a final note, Microsoft has defined a set of interfaces that allow developers to build their own
custom CLR host. This may be done using straight C/C++ code or via a COM type library (mscoree.tlb).
While the process of building a custom CLR host is surprisingly simple (especially using the COM
type library), this topic is outside the scope of this text. If you require further information, you can
find numerous articles online (just do a search for “CLR hosts”).

Summary
The point of this chapter was to examine exactly how a .NET executable image is hosted by the
.NET platform. As you have seen, the long-standing notion of a Win32 process has been altered
under the hood to accommodate the needs of the CLR. A single process (which can be programmat-
ically manipulated via the System.Diagnostics.Process type) is now composed of multiple application
domains, which represent isolated and independent boundaries within a process. As you have seen,
a single process can host multiple application domains, each of which is capable of hosting and
executing any number of related assemblies.

Furthermore, a single application domain can contain any number of contextual boundaries.
Using this additional level of type isolation, the CLR can ensure that special-need objects are han-
dled correctly. The chapter concluded by examining the details regarding how the CLR is hosted by
the Win32 OS.

4193ch13.qxd 8/14/05 2:54 PM Page 447

4193ch13.qxd 8/14/05 2:54 PM Page 448

Building Multithreaded Applications

In the previous chapter, you examined the relationship between processes, application domains,
and contexts. This chapter builds on your newfound knowledge by examining how the .NET plat-
form allows you to build multithreaded applications and how to keep shared resources thread-safe.

You’ll begin by revisiting the .NET delegate type and come to understand its intrinsic support
for asynchronous method invocations. As you’ll see, this technique allows you to invoke a method
on a secondary thread of execution automatically. Next, you’ll investigate the types within the System.
Threading namespace. Here you’ll examine numerous types (Thread, ThreadStart, etc.) that allow
you to easily create additional threads of execution. Of course, the complexity of multithreaded
development isn’t in the creation of threads, but in ensuring that your code base is well equipped to
handle concurrent access to shared resources. Given this, the chapter closes by examining various
synchronization primitives that the .NET Framework provides.

The Process/AppDomain/Context/Thread
Relationship
In the previous chapter, a thread was defined as a path of execution within an executable application.
While many .NET applications can live happy and productive single-threaded lives, an assembly’s
primary thread (spawned by the CLR when Main() executes) may create secondary threads of exe-
cution to perform additional units of work. By implementing additional threads, you can build more
responsive (but not necessarily faster executing) applications.

The System.Threading namespace contains various types that allow you to create multithreaded
applications. The Thread class is perhaps the core type, as it represents a given thread. If you wish to
programmatically obtain a reference to the thread currently executing a given member, simply call
the static Thread.CurrentThread property:

private static void ExtractExecutingThread()
{

// Get the thread currently
// executing this method.
Thread currThread = Thread.CurrentThread;

}

Under the .NET platform, there is not a direct one-to-one correspondence between application
domains and threads. In fact, a given AppDomain can have numerous threads executing within it at
any given time. Furthermore, a particular thread is not confined to a single application domain during
its lifetime. Threads are free to cross application domain boundaries as the Win32 thread scheduler
and CLR see fit.

449

C H A P T E R 1 4

■ ■ ■

4193ch14.qxd 8/14/05 2:55 PM Page 449

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS450

Although active threads can be moved between AppDomain boundaries, a given thread can
execute within only a single application domain at any point in time (in other words, it is impossible
for a single thread to be doing work in more than one AppDomain). When you wish to programmat-
ically gain access to the AppDomain that is hosting the current thread, call the static
Thread.GetDomain() method:

private static void ExtractAppDomainHostingThread()
{

// Obtain the AppDomain hosting the current thread.
AppDomain ad = Thread.GetDomain();

}

A single thread may also be moved into a particular context at any given time, and it may be
relocated within a new context at the whim of the CLR. When you wish to obtain the current context
a thread happens to be executing in, make use of the static Thread.CurrentContext property:

private static void ExtractCurrentThreadContext()
{

// Obtain the Context under which the
// current thread is operating.
Context ctx = Thread.CurrentContext;

}

Again, the CLR is the entity that is in charge of moving threads into (and out of) application
domains and contexts. As a .NET developer, you can usually remain blissfully unaware where
a given thread ends up (or exactly when it is placed into its new boundary). Nevertheless, you
should be aware of the various ways of obtaining the underlying primitives.

The Problem of Concurrency and the Role of Thread
Synchronization
One of the many “joys” (read: painful aspects) of multithreaded programming is that you have little
control over how the underlying operating system or the CLR makes use of its threads. For example,
if you craft a block of code that creates a new thread of execution, you cannot guarantee that the
thread executes immediately. Rather, such code only instructs the OS to execute the thread as soon
as possible (which is typically when the thread scheduler gets around to it).

Furthermore, given that threads can be moved between application and contextual boundaries
as required by the CLR, you must be mindful of which aspects of your application are thread-volatile
(e.g., subject to multithreaded access) and which operations are atomic (thread-volatile operations
are the dangerous ones!). To illustrate, assume a thread is invoking a method of a specific object.
Now assume that this thread is instructed by the thread scheduler to suspend its activity, in order to
allow another thread to access the same method of the same object.

If the original thread was not completely finished with the current operation, the second incoming
thread may be viewing an object in a partially modified state. At this point, the second thread is basi-
cally reading bogus data, which is sure to give way to extremely odd (and very hard to find) bugs, which
are even harder to replicate and debug.

Atomic operations, on the other hand, are always safe in a multithreaded environment. Sadly,
there are very few operations in the .NET base class libraries that are guaranteed to be atomic. Even
the act of assigning a value to a member variable is not atomic! Unless the .NET Framework 2.0 SDK
documentation specifically says an operation is atomic, you must assume it is thread-volatile and
take precautions.

At this point, it should be clear that multithreaded application domains are in themselves quite
volatile, as numerous threads can operate on the shared functionality at (more or less) the same time.
To protect an application’s resources from possible corruption, .NET developers must make use of

4193ch14.qxd 8/14/05 2:55 PM Page 450

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 451

any number of threading primitives (such as locks, monitors, and the [Synchronization] attribute)
to control access among the executing threads.

Although the .NET platform cannot make the difficulties of building robust multithreaded appli-
cations completely disappear, the process has been simplified considerably. Using types defined within
the System.Threading namespace, you are able to spawn additional threads with minimal fuss and
bother. Likewise, when it is time to lock down shared points of data, you will find additional types
that provide the same functionality as the Win32 API threading primitives (using a much cleaner
object model).

However, the System.Threading namespace is not the only way to build multithread .NET pro-
grams. During our examination of the .NET delegate (see Chapter 8), it was mentioned that all delegates
have the ability to invoke members asynchronously. This is a major benefit of the .NET platform, given
that one of the most common reasons a developer creates threads is for the purpose of invoking
methods in a nonblocking (aka asynchronous) manner. Although you could make use of the
System.Threading namespace to achieve a similar result, delegates make the whole process much
easier.

A Brief Review of the .NET Delegate
Recall that the .NET delegate type is a type-safe object-oriented function pointer. When you
declare a .NET delegate, the C# compiler responds by building a sealed class that derives from
System.MulticastDelegate (which in turn derives from System.Delegate). These base classes provide
every delegate with the ability to maintain a list of method addresses, all of which may be invoked
at a later time. Consider the BinaryOp delegate first defined in Chapter 8:

// A C# delegate type.
public delegate int BinaryOp(int x, int y);

Based on its definition, BinaryOp can point to any method taking two integers as arguments
and returning an integer. Once compiled, the defining assembly now contains a full-blown class
definition that is dynamically generated based on the delegate declaration. In the case of BinaryOp,
this class looks more or less like the following (shown in pseudo-code):

sealed class BinaryOp : System.MulticastDelegate
{

public BinaryOp(object target, uint functionAddress);
public void Invoke(int x, int y);
public IAsyncResult BeginInvoke(int x, int y,

AsyncCallback cb, object state);
public int EndInvoke(IAsyncResult result);

}

Recall that the generated Invoke() method is used to invoke the methods maintained by a del-
egate object in a synchronous manner. Therefore, the calling thread (such as the primary thread of
the application) is forced to wait until the delegate invocation completes. Also recall that in C#, the
Invoke() method is not directly called in code, but is triggered under the hood when applying “nor-
mal” method invocation syntax. Consider the following program, which invokes the static Add()
method in a synchronous (aka blocking) manner:

// Need this for the Thread.Sleep() call.
using System.Threading;
using System;

namespace SyncDelegate
{

public delegate int BinaryOp(int x, int y);

4193ch14.qxd 8/14/05 2:55 PM Page 451

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS452

Figure 14-1. Synchronous method invocations are “blocking” calls.

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Synch Delegate Review *****");

// Print out the ID of the executing thread.
Console.WriteLine("Main() invoked on thread {0}.",

Thread.CurrentThread.GetHashCode());

// Invoke Add() in a synchronous manner.
BinaryOp b = new BinaryOp(Add);
int answer = b(10, 10);

// These lines will not execute until
// the Add() method has completed.
Console.WriteLine("Doing more work in Main()!");
Console.WriteLine("10 + 10 is {0}.", answer);
Console.ReadLine();

}

static int Add(int x, int y)
{

// Print out the ID of the executing thread.
Console.WriteLine("Add() invoked on thread {0}.",

Thread.CurrentThread.GetHashCode());

// Pause to simulate a lengthy operation.
Thread.Sleep(5000);
return x + y;

}
}

}

Notice first of all that this program is making use of the System.Threading namespace. Within
the Add() method, you are invoking the static Thread.Sleep() method to suspend the calling thread
for (more or less) five seconds to simulate a lengthy task. Given that you are invoking the Add() method
in a synchronous manner, the Main() method will not print out the result of the operation until the
Add() method has completed.

Next, note that the Main() method is obtaining access to the current thread (via Thread.
CurrentThread) and printing out its hash code. Given that a hash code represents an object in
a specific state, this value can be used to as a quick-and-dirty thread ID. This same logic is repeated
in the static Add() method. As you might suspect, given that all the work in this application is performed
exclusively by the primary thread, you find the same hash code value displayed to the console (see
Figure 14-1).

4193ch14.qxd 8/14/05 2:55 PM Page 452

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 453

When you run this program, you should notice that a five-second delay takes place before you
see the Console.WriteLine() logic execute. Although many (if not most) methods may be called
synchronously without ill effect, .NET delegates can be instructed to call their methods asynchro-
nously if necessary.

■Source Code The SyncDelegate project is located under the Chapter 14 subdirectory.

The Asynchronous Nature of Delegates
If you are new to the topic of multithreading, you may wonder what exactly an asynchronous method
invocation is all about. As you are no doubt fully aware, some programming operations take time.
Although the previous Add() was purely illustrative in nature, imagine that you built a single-threaded
application that is invoking a method on a remote object, performing a long-running database query,
or writing 500 lines of text to an external file. While performing these operations, the application will
appear to hang for quite some time. Until the task at hand has been processed, all other aspects of this
program (such as menu activation, toolbar clicking, or console output) are unresponsive.

The question therefore is, how can you tell a delegate to invoke a method on a separate thread
of execution to simulate numerous tasks performing “at the same time”? The good news is that
every .NET delegate type is automatically equipped with this capability. The even better news is that
you are not required to directly dive into the details of the System.Threading namespace to do so
(although these entities can quite naturally work hand in hand).

The BeginInvoke() and EndInvoke() Methods
When the C# compiler processes the delegate keyword, the dynamically generated class defines
two methods named BeginInvoke() and EndInvoke(). Given our definition of the BinaryOp delegate,
these methods are prototyped as so:

sealed class BinaryOp : System.MulticastDelegate
{
...

// Used to invoke a method asynchronously.
public IAsyncResult BeginInvoke(int x, int y,

AsyncCallback cb, object state);

// Used to fetch the return value
// of the invoked method.
public int EndInvoke(IAsyncResult result);

}

The first stack of parameters passed into BeginInvoke() will be based on the format of the
C# delegate (two integers in the case of BinaryOp). The final two arguments will always be System.
AsyncCallback and System.Object. We’ll examine the role of these parameters shortly; for the time
being, though, we’ll supply null for each.

The System.IAsyncResult Interface
Also note that the BeginInvoke() method always returns an object implementing the IAsyncResult
interface, while EndInvoke() requires an IAsyncResult-compatible type as its sole parameter. The
IAsyncResult-compatible object returned from BeginInvoke() is basically a coupling mechanism that
allows the calling thread to obtain the result of the asynchronous method invocation at a later time
via EndInvoke(). The IAsyncResult interface (defined in the System namespace) is defined as follows:

4193ch14.qxd 8/14/05 2:55 PM Page 453

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS454

public interface IAsyncResult
{

object AsyncState { get; }
WaitHandle AsyncWaitHandle { get; }
bool CompletedSynchronously { get; }
bool IsCompleted { get; }

}

In the simplest case, you are able to avoid directly invoking these members. All you have to do
is cache the IAsyncResult-compatible object returned by BeginInvoke() and pass it to EndInvoke()
when you are ready to obtain the result of the method invocation. As you will see, you are able to
invoke the members of an IAsyncResult-compatible object when you wish to become “more involved”
with the process of fetching the method’s return value.

■Note If you asynchronously invoke a method that does not provide a return value, you can simply “fire and for-
get.” In such cases, you will never need to cache the IAsyncResult-compatible object or call EndInvoke() in
the first place (as there is no return value to retrieve).

Invoking a Method Asynchronously
To instruct the BinaryOp delegate to invoke Add() asynchronously, you can update the previous
Main() method as follows:

static void Main(string[] args)
{

Console.WriteLine("***** Async Delegate Invocation *****");

// Print out the ID of the executing thread.
Console.WriteLine("Main() invoked on thread {0}.",

Thread.CurrentThread.GetHashCode());

// Invoke Add() on a secondary thread.
BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

// Do other work on primary thread...
Console.WriteLine("Doing more work in Main()!");

// Obtain the result of the Add()
// method when ready.
int answer = b.EndInvoke(iftAR);
Console.WriteLine("10 + 10 is {0}.", answer);
Console.ReadLine();

}

If you run this application, you will find that two unique hash codes are displayed, given that
there are in fact two threads working within the current AppDomain (see Figure 14-2).

In addition to the unique hash code values, you will also notice upon running the application
that the Doing more work in Main()! message displays immediately, while the secondary thread is
occupied attending to its business.

4193ch14.qxd 8/14/05 2:55 PM Page 454

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 455

Figure 14-2. Methods invoked asynchronously are done so on a unique thread.

Synchronizing the Calling Thread
If you ponder the current implementation of Main(), you might have realized that the time span
between calling BeginInvoke() and EndInvoke() is clearly less than five seconds. Therefore, once
Doing more work in Main()! prints to the console, the calling thread is now blocked and waiting for
the secondary thread to complete before being able to obtain the result of the Add() method. There-
fore, you are effectively making yet another synchronous call:

static void Main(string[] args)
{
...

BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

// This call takes far less than 5 seconds!
Console.WriteLine("Doing more work in Main()!");

// The calling thread is now blocked until
// EndInvoke() completes.
int answer = b.EndInvoke(iftAR);

...
}

Obviously, asynchronous delegates would lose their appeal if the calling thread had the poten-
tial of being blocked under various circumstances. To allow the calling thread to discover if the
asynchronously invoked method has completed its work, the IAsyncResult interface provides the
IsCompleted property. Using this member, the calling thread is able to determine if the asynchro-
nous call has indeed completed before calling EndInvoke(). If the method has not completed,
IsCompleted returns false, and the calling thread is free to carry on its work. If IsCompleted returns
true, the calling thread is able to obtain the result in the “least blocking manner” possible. Ponder
the following update to the Main() method:

static void Main(string[] args)
{
...

BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10, null, null);

// This message will keep printing until
// the Add() method is finished.
while(!iftAR.IsCompleted)
{

Console.WriteLine("Doing more work in Main()!");
}

4193ch14.qxd 8/14/05 2:55 PM Page 455

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS456

// Now we know the Add() method is complete.
int answer = b.EndInvoke(iftAR);

...
}

Here, you enter a loop that will continue processing the Console.WriteLine() statement until
the secondary thread has completed. Once this has occurred, you can obtain the result of the Add()
method knowing full well the method has indeed completed.

In addition to the IsCompleted property, the IAsyncResult interface provides the AsyncWaitHandle
property for more flexible waiting logic. This property returns an instance of the WaitHandle type,
which exposes a method named WaitOne(). The benefit of WaitHandle.WaitOne() is that you can
specify the maximum wait time. If the specified amount of time is exceeded, WaitOne() returns false.
Ponder the following updated while loop:

while (!iftAR.AsyncWaitHandle.WaitOne(2000, true))
{

Console.WriteLine("Doing more work in Main()!");
}

While these properties of IAsyncResult do provide a way to synchronize the calling thread, they
are not the most efficient approach. In many ways, the IsCompleted property is much like a really
annoying manager (or classmate) who is constantly asking, “Are you done yet?” Thankfully, delegates
provide a number of additional (and more effective) techniques to obtain the result of a method that
has been called asynchronously.

■Source Code The AsyncDelegate project is located under the Chapter 14 subdirectory.

The Role of the AsyncCallback Delegate
Rather than polling a delegate to determine if an asynchronously method has completed, it would
be ideal to have the delegate inform the calling thread when the task is finished. When you wish to
enable this behavior, you will need to supply an instance of the System.AsyncCallback delegate as
a parameter to BeginInvoke(), which up until this point has been null. However, when you do sup-
ply an AsyncCallback object, the delegate will call the specified method automatically when the
asynchronous call has completed.

Like any delegate, AsyncCallback can only invoke methods that match a specific pattern, which
in this case is a method taking IAsyncResult as the sole parameter and returning nothing:

void MyAsyncCallbackMethod(IAsyncResult itfAR)

Assume you have another application making use of the BinaryOp delegate. This time, however,
you will not poll the delegate to determine if the Add() method has completed. Rather, you will define
a static method named AddComplete() to receive the notification that the asynchronous invocation
is finished:

namespace AsyncCallbackDelegate
{

public delegate int BinaryOp(int x, int y);

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** AsyncCallbackDelegate Example *****");

4193ch14.qxd 8/14/05 2:55 PM Page 456

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 457

Figure 14-3. The AsyncCallback delegate in action

Console.WriteLine("Main() invoked on thread {0}.",
Thread.CurrentThread.GetHashCode());

BinaryOp b = new BinaryOp(Add);
IAsyncResult iftAR = b.BeginInvoke(10, 10,

new AsyncCallback(AddComplete), null);

// Other work performed here...

Console.ReadLine();
}

static void AddComplete(IAsyncResult itfAR)
{

Console.WriteLine("AddComplete() invoked on thread {0}.",
Thread.CurrentThread.GetHashCode());

Console.WriteLine("Your addition is complete");
}

static int Add(int x, int y)
{

Console.WriteLine("Add() invoked on thread {0}.",
Thread.CurrentThread.GetHashCode());

Thread.Sleep(5000);
return x + y;

}
}

}

Again, the static AddComplete() method will be invoked by the AsyncCallback delegate when the
Add() method has completed. If you run this program, you can confirm that the secondary thread is
the thread invoking the AddComplete() callback (see Figure 14-3).

The Role of the AsyncResult Class
You may have noticed in the current example that the Main() method is not caching the IAsyncResult
type returned from BeginInvoke() and is no longer calling EndInvoke(). The reason is that the target
of the AsyncCallback delegate (AddComplete() in this example) does not have access to the original
BinaryOp delegate created in the scope of Main(). While you could simply declare the BinaryOp vari-
able as a static class member to allow both methods to access the same object, a more elegant solution
is to use the incoming IAsyncResult parameter.

The incoming IAsyncResult parameter passed into the target of the AsyncCallback delegate is
actually an instance of the AsyncResult class (note the lack of an I prefix) defined in the System.
Runtime.Remoting.Messaging namespace. The static AsyncDelegate property returns a reference to

4193ch14.qxd 8/14/05 2:55 PM Page 457

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS458

Figure 14-4. Passing and receiving custom state data

the original asynchronous delegate that was created elsewhere. Therefore, if you wish to obtain
a reference to the BinaryOp delegate object allocated within Main(), simply cast the System.Object
returned by the AsyncDelegate property into type BinaryOp. At this point, you can trigger EndInvoke()
as expected:

// Don't forget to add a 'using' directive for
// System.Runtime.Remoting.Messaging!
static void AddComplete(IAsyncResult itfAR)
{

Console.WriteLine("AddComplete() invoked on thread {0}.",
Thread.CurrentThread.GetHashCode());

Console.WriteLine("Your addition is complete");

// Now get the result.
AsyncResult ar = (AsyncResult)itfAR;
BinaryOp b = (BinaryOp)ar.AsyncDelegate;
Console.WriteLine("10 + 10 is {0}.", b.EndInvoke(itfAR));

}

Passing and Receiving Custom State Data
The final aspect of asynchronous delegates we need to address is the final argument to the BeginInvoke()
method (which has been null up to this point). This parameter allows you to pass additional state
information to the callback method from the primary thread. Because this argument is prototyped
as a System.Object, you can pass in any type of data whatsoever, as long as the callback method
knows what to expect. Assume for the sake of demonstration that the primary thread wishes to pass
in a custom text message to the AddComplete() method:

static void Main(string[] args)
{
...

IAsyncResult iftAR = b.BeginInvoke(10, 10,
new AsyncCallback(AddComplete),
"Main() thanks you for adding these numbers.");

...
}

To obtain this data within the scope of AddComplete(), make use of the AsyncState property of
the incoming IAsyncResult parameter:

static void AddComplete(IAsyncResult itfAR)
{
...

// Retrieve the informational object and cast it to string
string msg = (string)itfAR.AsyncState;
Console.WriteLine(msg);

}

Figure 14-4 shows the output of the current application.

4193ch14.qxd 8/14/05 2:55 PM Page 458

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 459

Cool! Now that you understand how a .NET delegate can be used to automatically spin off
a secondary thread of execution to handle an asynchronous method invocation, let’s turn our atten-
tion to directly interacting with threads using the System.Threading namespace.

■Source Code The AsyncCallbackDelegate project is located under the Chapter 14 subdirectory.

The System.Threading Namespace
Under the .NET platform, the System.Threading namespace provides a number of types that enable
the construction of multithreaded applications. In addition to providing types that allow you to
interact with a particular CLR thread, this namespace defines types that allow access to the CLR
maintained thread pool, a simple (non–GUI-based) Timer class, and numerous types used to pro-
vide synchronized access to shared resources. Table 14-1 lists some of the core members of this
namespace. (Be sure to consult the .NET Framework 2.0 SDK documentation for full details.)

Table 14-1. Select Types of the System.Threading Namespace

Type Meaning in Life

Interlocked This type provides atomic operations for types that are shared by
multiple threads.

Monitor This type provides the synchronization of threading objects using
locks and wait/signals. The C# lock keyword makes use of
a Monitor type under the hood.

Mutex This synchronization primitive can be used for synchronization
between application domain boundaries.

ParameterizedThreadStart This delegate (which is new to .NET 2.0) allows a thread to call
methods that take any number of arguments.

Semaphore This type allows you to limit the number of threads that can
access a resource, or a particular type of resource, concurrently.

Thread This type represents a thread that executes within the CLR. Using
this type, you are able to spawn additional threads in the
originating AppDomain.

ThreadPool This type allows you to interact with the CLR-maintained thread
pool within a given process.

ThreadPriority This enum represents a thread’s priority level (Highest, Normal, etc.).

ThreadStart This delegate is used to specify the method to call for a given
thread. Unlike the ParameterizedThreadStart delegate, targets of
ThreadStart must match a fixed prototype.

ThreadState This enum specifies the valid states a thread may take (Running,
Aborted, etc.).

Timer This type provides a mechanism for executing a method at
specified intervals.

TimerCallback This delegate type is used in conjunction with Timer types.

4193ch14.qxd 8/14/05 2:55 PM Page 459

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS460

The System.Threading.Thread Class
The most primitive of all types in the System.Threading namespace is Thread. This class represents
an object-oriented wrapper around a given path of execution within a particular AppDomain. This
type also defines a number of methods (both static and shared) that allow you to create new threads
within the current AppDomain, as well as to suspend, stop, and destroy a particular thread. Consider
the list of core static members in Table 14-2.

Table 14-2. Key Static Members of the Thread Type

Static Member Meaning in Life

CurrentContext This read-only property returns the context in which the thread is
currently running.

CurrentThread This read-only property returns a reference to the currently running
thread.

GetDomain() These methods return a reference to the current AppDomain or the ID
GetDomainID() of this domain in which the current thread is running.

Sleep() This method suspends the current thread for a specified time.

The Thread class also supports several instance-level members, some of which are shown in
Table 14-3.

Table 14-3. Select Instance-Level Members of the Thread Type

Instance-Level Member Meaning in Life

IsAlive Returns a Boolean that indicates whether this thread has been started.

IsBackground Gets or sets a value indicating whether or not this thread is
a “background thread” (more details in just a moment).

Name Allows you to establish a friendly text name of the thread.

Priority Gets or sets the priority of a thread, which may be assigned a value
from the ThreadPriority enumeration.

ThreadState Gets the state of this thread, which may be assigned a value from the
ThreadState enumeration.

Abort() Instructs the CLR to terminate the thread as soon as possible.

Interrupt() Interrupts (e.g., wakes) the current thread from a suitable wait period.

Join() Blocks the calling thread until the specified thread (the one on which
Join() is called) exits.

Resume() Resumes a thread that has been previously suspended.

Start() Instructs the CLR to execute the thread ASAP.

Suspend() Suspends the thread. If the thread is already suspended, a call to
Suspend() has no effect.

Obtaining Statistics About the Current Thread
Recall that the entry point of an executable assembly (i.e., the Main() method) runs on the primary
thread of execution. To illustrate the basic use of the Thread type, assume you have a new console

4193ch14.qxd 8/14/05 2:55 PM Page 460

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 461

application named ThreadStats. As you know, the static Thread.CurrentThread property retrieves
a Thread type that represents the currently executing thread. Once you have obtained the current
thread, you are able to print out various statistics:

// Be sure to 'use' the System.Threading namespace.
static void Main(string[] args)
{

Console.WriteLine("***** Primary Thread stats *****\n");

// Obtain and name the current thread.
Thread primaryThread = Thread.CurrentThread;
primaryThread.Name = "ThePrimaryThread";

// Show details of hosting AppDomain/Context.
Console.WriteLine("Name of current AppDomain: {0}",

Thread.GetDomain().FriendlyName);
Console.WriteLine("ID of current Context: {0}",

Thread.CurrentContext.ContextID);

// Print out some stats about this thread.
Console.WriteLine("Thread Name: {0}",

primaryThread.Name);
Console.WriteLine("Has thread started?: {0}",

primaryThread.IsAlive);
Console.WriteLine("Priority Level: {0}",

primaryThread.Priority);
Console.WriteLine("Thread State: {0}",

primaryThread.ThreadState);
Console.ReadLine();

}

Figure 14-5 shows the output for the current application.

The Name Property
While this code is more or less self-explanatory, do notice that the Thread class supports a property
called Name. If you do not set this value, Name will return an empty string. However, once you assign
a friendly string moniker to a given Thread object, you can greatly simplify your debugging endeavors.
If you are making use of Visual Studio 2005, you may access the Threads window during a debugging
session (select Debug ➤ Windows ➤ Threads). As you can see from Figure 14-6, you can quickly
identify the thread you wish to diagnose.

Figure 14-5. Gathering thread statistics

4193ch14.qxd 8/14/05 2:55 PM Page 461

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS462

Figure 14-6. Debugging a thread with Visual Studio 2005

The Priority Property
Next, notice that the Thread type defines a property named Priority. By default, all threads have
a priority level of Normal. However, you can change this at any point in the thread’s lifetime using
the ThreadPriority property and the related System.Threading.ThreadPriority enumeration:

public enum ThreadPriority
{

AboveNormal,
BelowNormal,
Highest,
Idle,
Lowest,
Normal, // Default value.
TimeCritical

}

If you were to assign a thread’s priority level to a value other than the default (ThreadPriority.
Normal), understand that you would have little control over when the thread scheduler switches
between threads. In reality, a thread’s priority level offers a hint to the CLR regarding the importance
of the thread’s activity. Thus, a thread with the value ThreadPriority.Highest is not necessarily
guaranteed to given the highest precedence.

Again, if the thread scheduler is preoccupied with a given task (e.g., synchronizing an object,
switching threads, or moving threads), the priority level will most likely be altered accordingly.
However, all things being equal, the CLR will read these values and instruct the thread scheduler
how to best allocate time slices. All things still being equal, threads with an identical thread priority
should each receive the same amount of time to perform their work.

In most cases, you will seldom (if ever) need to directly alter a thread’s priority level. In theory,
it is possible to jack up the priority level on a set of threads, thereby preventing lower-priority threads
from executing at their required levels (so use caution).

■Source Code The ThreadStats project is included under the Chapter 14 subdirectory.

Programmatically Creating Secondary Threads
When you wish to programmatically create additional threads to carry on some unit of work, you
will follow a very predictable process:

1. Create a type method to be the entry point for the new thread.

2. Create a new ParameterizedThreadStart (or legacy ThreadStart) delegate, passing the address
of the method defined in step 1 to the constructor.

4193ch14.qxd 8/14/05 2:55 PM Page 462

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 463

3. Create a Thread object, passing the ParameterizedThreadStart/ThreadStart delegate as
a constructor argument.

4. Establish any initial thread characteristics (name, priority, etc.).

5. Call the Thread.Start() method. This starts the thread at the method referenced by the del-
egate created in step 2 as soon as possible.

As stated in step 2, you may make use of two distinct delegate types to “point to” the method that
the secondary thread will execute. The ThreadStart delegate has been part of the System.Threading
namespace since .NET 1.0, and it can point to any method that takes no arguments and returns
nothing. This delegate can be helpful when the method is designed to simply run in the background
without further interaction.

The obvious limitation of ThreadStart is that you are unable to pass in parameters for processing.
As of .NET 2.0, you are provided with the ParameterizedThreadStart delegate type, which allows a sin-
gle parameter of type System.Object. Given that anything can be represented as a System.Object,
you can pass in any number of parameters via a custom class or structure. Do note, however, that the
ParameterizedThreadStart delegate can only point to methods that return void.

Working with the ThreadStart Delegate
To illustrate the process of building a multithreaded application (as well as to demonstrate the use-
fulness of doing so), assume you have a console application (SimpleMultiThreadApp) that allows
the end user to choose whether the application will perform its duties using the single primary thread
or split its workload using two separate threads of execution.

Assuming you have “used” the System.Threading namespace via the C# using keyword, your
first step is to define a type method to perform the work of the (possible) secondary thread. To keep
focused on the mechanics of building multithreaded programs, this method will simply print out
a sequence of numbers to the console window, pausing for approximately two seconds with each
pass. Here is the full definition of the Printer class:

public class Printer
{

public void PrintNumbers()
{

// Display Thread info.
Console.WriteLine("-> {0} is executing PrintNumbers()",

Thread.CurrentThread.Name);

// Print out numbers.
Console.Write("Your numbers: ");
for(int i = 0; i < 10; i++)
{

Console.Write(i + ", ");
Thread.Sleep(2000);

}
Console.WriteLine();

}
}

Now, within Main(), you will first prompt the user to determine if one or two threads will be
used to perform the application’s work. If the user requests a single thread, you will simply invoke
the PrintNumbers() method within the primary thread. However, if the user specifies two threads,
you will create a ThreadStart delegate that points to PrintNumbers(), pass this delegate object into
the constructor of a new Thread object, and call Start() to inform the CLR this thread is ready for
processing.

4193ch14.qxd 8/14/05 2:55 PM Page 463

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS464

To begin, set a reference to the System.Windows.Forms.dll assembly and display a message
within Main() using MessageBox.Show() (you’ll see the point of doing so once you run the program).
Here is the complete implementation of Main():

static void Main(string[] args)
{

Console.WriteLine("***** The Amazing Thread App *****\n");
Console.Write("Do you want [1] or [2] threads? ");
string threadCount = Console.ReadLine();

// Name the current thread.
Thread primaryThread = Thread.CurrentThread;
primaryThread.Name = "Primary";

// Display Thread info.
Console.WriteLine("-> {0} is executing Main()",
Thread.CurrentThread.Name);

// Make worker class.
Printer p = new Printer();

switch(threadCount)
{

case "2":
// Now make the thread.
Thread backgroundThread =

new Thread(new ThreadStart(p.PrintNumbers));
backgroundThread.Name = "Secondary";
backgroundThread.Start();

break;
case "1":

p.PrintNumbers();
break;
default:

Console.WriteLine("I don't know what you want...you get 1 thread.");
goto case "1";

}

// Do some additional work.
MessageBox.Show("I'm busy!", "Work on main thread...");
Console.ReadLine();

}

Now, if you run this program with a single thread, you will find that the final message box will
not display the message until the entire sequence of numbers has printed to the console. As you
are explicitly pausing for approximately two seconds after each number is printed, this will result in
a less-than-stellar end user experience. However, if you select two threads, the message box displays
instantly, given that a unique Thread object is responsible for printing out the numbers to the con-
sole (see Figure 14-7).

4193ch14.qxd 8/14/05 2:55 PM Page 464

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 465

Figure 14-7. Multithreaded applications provide results in more responsive applications.

Before we move on, it is important to note that when you build multithreaded applications
(which includes the use of asynchronous delegates) on single CPU machines, you do not end up
with an application that runs any faster, as that is a function of a machine’s CPU. When running this
application using either one or two threads, the numbers are still displaying at the same pace. In
reality, multithreaded applications result in more responsive applications. To the end user, it may
appear that the program is “faster,” but this is not the case. Threads have no power to make foreach
loops execute quicker, to make paper print faster, or to force numbers to be added together at rocket
speed. Multithreaded applications simply allow multiple threads to share the workload.

■Source Code The SimpleMultiThreadApp project is included under the Chapter 14 subdirectory.

Working with the ParameterizedThreadStart Delegate
Recall that the ThreadStart delegate can point only to methods that return void and take no arguments.
While this may fit the bill in many cases, if you wish to pass data to the method executing on the
secondary thread, you will need to make use of the ParameterizedThreadStart delegate type. To
illustrate, let’s re-create the logic of the AsyncCallbackDelegate project created earlier in this chapter,
this time making use of the ParameterizedThreadStart delegate type.

To begin, create a new console application named AddWithThreads and “use” the System.Threading
namespace. Now, given that ParameterizedThreadStart can point to any method taking a System.
Object parameter, you will create a custom type containing the numbers to be added:

class AddParams
{

public int a;
public int b;

public AddParams(int numb1, int numb2)
{

a = numb1;
b = numb2;

}
}

Next, create a static method in the Program class that will take an AddParams type and print out
the summation of each value:

4193ch14.qxd 8/14/05 2:55 PM Page 465

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS466

public static void Add(object data)
{

if (data is AddParams)
{

Console.WriteLine("ID of thread in Main(): {0}",
Thread.CurrentThread.GetHashCode());

AddParams ap = (AddParams)data;
Console.WriteLine("{0} + {1} is {2}",

ap.a, ap.b, ap.a + ap.b);
}

}

The code within Main() is straightforward. Simply use ParameterizedThreadStart rather than
ThreadStart:

static void Main(string[] args)
{

Console.WriteLine("***** Adding with Thread objects *****");
Console.WriteLine("ID of thread in Main(): {0}",

Thread.CurrentThread.GetHashCode());

AddParams ap = new AddParams(10, 10);
Thread t = new Thread(new ParameterizedThreadStart(Add));
t.Start(ap);

...
}

■Source Code The AddWithThreads project is included under the Chapter 14 subdirectory.

Foreground Threads and Background Threads
Now that you have seen how to programmatically create new threads of execution using the System.
Threading namespace, let’s formalize the distinction between foreground threads and background
threads:

• Foreground threads have the ability to prevent the current application from terminating. The
CLR will not shut down an application (which is to say, unload the hosting AppDomain) until
all foreground threads have ended.

• Background threads (sometimes called daemon threads) are viewed by the CLR as expend-
able paths of execution that can be ignored at any point in time (even if they are currently
laboring over some unit of work). Thus, if all foreground threads have terminated, any and
all background threads are automatically killed when the application domain unloads.

It is important to note that foreground and background threads are not synonymous with primary
and worker threads. By default, every thread you create via the Thread.Start() method is automati-
cally a foreground thread. Again, this means that the AppDomain will not unload until all threads of
execution have completed their units of work. In most cases, this is exactly the behavior you require.

For the sake of argument, however, assume that you wish to invoke Printer.PrintNumbers() on
a secondary thread that should behave as a background thread. Again, this means that the method
pointed to by the Thread type (via the ThreadStart or ParameterizedThreadStart delegate) should be
able to halt safely as soon as all foreground threads are done with their work. Configuring such a thread
is as simple as setting the IsBackground property to true:

4193ch14.qxd 8/14/05 2:55 PM Page 466

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 467

static void Main(string[] args)
{

Printer p = new Printer();
Thread bgroundThread =

new Thread(new ThreadStart(p.PrintNumbers));
bgroundThread.IsBackground = true;
bgroundThread.Start();

}

Notice that this Main() method is not making a call to Console.ReadLine() to force the console
to remain visible until you press the Enter key. Thus, when you run the application, it will shut down
immediately because the Thread object has been configured as a background thread. Given that the
Main() method triggers the creation of the primary foreground thread, as soon as the logic in Main()
completes, the AppDomain unloads before the secondary thread is able to complete its work. How-
ever, if you comment out the line that sets the IsBackground property, you will find that each number
prints to the console, as all foreground threads must finish their work before the AppDomain is
unloaded from the hosting process.

For the most part, configuring a thread to run as a background type can be helpful when the
worker thread in question is performing a noncritical task that is no longer needed when the main
task of the program is finished.

■Source Code The BackgroundThread project is included under the Chapter 14 subdirectory.

The Issue of Concurrency
All the multithreaded sample applications you have written over the course of this chapter have
been thread-safe, given that only a single Thread object was executing the method in question.
While some of your applications may be this simplistic in nature, a good deal of your multithreaded
applications may contain numerous secondary threads. Given that all threads in an AppDomain have
concurrent access to the shared data of the application, imagine what might happen if multiple threads
were accessing the same point of data. As the thread scheduler will force threads to suspend their work
at random, what if thread A is kicked out of the way before it has fully completed its work? Thread B
is now reading unstable data.

To illustrate the problem of concurrency, let’s build another C# console application named
MultiThreadedPrinting. This application will once again make use of the Printer class created pre-
viously, but this time the PrintNumbers() method will force the current thread to pause for
a randomly generated amount of time:

public class Printer
{

public void PrintNumbers()
{

...
for (int i = 0; i < 10; i++)
{

Random r = new Random();
Thread.Sleep(1000 * r.Next(5));
Console.Write(i + ", ");

}
Console.WriteLine();

}
}

4193ch14.qxd 8/14/05 2:55 PM Page 467

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS468

Figure 14-8. Concurrency in action, take one

The Main() method is responsible for creating an array of ten (uniquely named) Thread objects,
each of which is making calls on the same instance of the Printer object:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("*****Synchronizing Threads *****\n");

Printer p = new Printer();

// Make 10 threads that are all pointing to the same
// method on the same object.
Thread[] threads = new Thread[10];
for (int i = 0; i < 10; i++)
{

threads[i] =
new Thread(new ThreadStart(p.PrintNumbers));

threads[i].Name = string.Format("Worker thread #{0}", i);
}

// Now start each one.
foreach (Thread t in threads)

t.Start();
Console.ReadLine();

}
}

Before looking at some test runs, let’s recap the problem. The primary thread within this App-
Domain begins life by spawning ten secondary worker threads. Each worker thread is told to make
calls on the PrintNumbers() method on the same Printer instance. Given that you have taken no
precautions to lock down this object’s shared resources (the console), there is a good chance that
the current thread will be kicked out of the way before the PrintNumbers() method is able to print
out the complete results. Because you don’t know exactly when (or if) this might happen, you are
bound to get unpredictable results. For example, you might find the output shown in Figure 14-8.

4193ch14.qxd 8/14/05 2:55 PM Page 468

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 469

Figure 14-9. Concurrency in action, take two

Now run the application a few more times. Figure 14-9 shows another possibility (your results
will obviously differ).

There are clearly some problems here. As each thread is telling the Printer to print out the
numerical data, the thread scheduler is happily swapping threads in the background. The result is
inconsistent output. What we need is a way to programmatically enforce synchronized access to the
shared resources. As you would guess, the System.Threading namespace provides a number of
synchronization-centric types. The C# programming language also provides a particular keyword
for the very task of synchronizing shared data in multithreaded applications.

■Note If you are unable to generate unpredictable outputs, increase the number of threads from 10 to 100 (for
example) or introduce a call to Thread.Sleep() within your program. Eventually, you will encounter the concur-
rency issue.

Synchronization Using the C# lock Keyword
The first technique you can use to synchronize access to shared resources is the C# lock keyword.
This keyword allows you to define a scope of statements that must be synchronized between threads.
By doing so, incoming threads cannot interrupt the current thread, preventing it from finishing its
work. The lock keyword requires you to specify a token (an object reference) that must be acquired
by a thread to enter within the lock scope. When you are attempting to lock down an instance-level
method, you can simply pass in a reference to the current type:

// Use the current object as the thread token.
lock(this)
{

// All code within this scope is thread-safe.
}

If you examine the PrintNumbers() method, you can see that the shared resource the threads
are competing to gain access to is the console window. Therefore, if you scope all interactions with
the Console type within a lock scope as so:

4193ch14.qxd 8/14/05 2:55 PM Page 469

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS470

Figure 14-10. Concurrency in action, take three

public void PrintNumbers()
{

lock (this)
{

// Display Thread info.
Console.WriteLine("-> {0} is executing PrintNumbers()",

Thread.CurrentThread.Name);

// Print out numbers.
Console.Write("Your numbers: ");
for (int i = 0; i < 10; i++)
{

Random r = new Random();
Thread.Sleep(1000 * r.Next(5));
Console.Write(i + ", ");

}
Console.WriteLine();

}
}

you have effectively designed a method that will allow the current thread to complete its task. Once
a thread enters into a lock scope, the lock token (in this case, a reference to the current object) is
inaccessible by other threads until the lock is released once the lock scope has exited. Thus, if
thread A has obtained the lock token, other threads are unable to enter the scope until thread
A relinquishes the lock token.

■Note If you are attempting to lock down code in a static method, you obviously cannot use the this keyword. If
this is the case, you can simply pass in the System.Type of the respective class using the C# typeof operator.

If you now run the application, you can see that each thread has ample opportunity to finish its
business (see Figure 14-10).

4193ch14.qxd 8/14/05 2:55 PM Page 470

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 471

■Source Code The MultiThreadedPrinting application is included under the Chapter 14 subdirectory.

Synchronization Using the System.Threading.Monitor Type
The C# lock statement is really just a shorthand notation for working with the System.Threading.Monitor
class type. Once processed by the C# compiler, a lock scope actually resolves to the following (which
you can verify using ildasm.exe):

public void PrintNumbers()
{

Monitor.Enter(this);
try
{

// Display Thread info.
Console.WriteLine("-> {0} is executing PrintNumbers()",

Thread.CurrentThread.Name);

// Print out numbers.
Console.Write("Your numbers: ");
for (int i = 0; i < 10; i++)
{

Random r = new Random();
Thread.Sleep(1000 * r.Next(5));
Console.Write(i + ", ");

}
Console.WriteLine();

}
finally
{

Monitor.Exit(this);
}

}

First, notice that the Monitor.Enter() method is the ultimate recipient of the thread token you
specified as the argument to the lock keyword. Next, all code within a lock scope is wrapped within
a try block. The corresponding finally clause ensures that the thread token is released (via the
Monitor.Exit() method), regardless of any possible runtime exception. If you were to modify the
MultiThreadSharedData program to make direct use of the Monitor type (as just shown), you will
find the output is identical.

Now, given that the lock keyword seems to require less code than making explicit use of the
System.Threading.Monitor type, you may wonder about the benefits of using the Monitor type
directly. The short answer is control. If you make use of the Monitor type, you are able to instruct
the active thread to wait for some duration of time (via the Wait() method), inform waiting threads
when the current thread is completed (via the Pulse() and PulseAll() methods), and so on.

As you would expect, in a great number of cases, the C# lock keyword will fit the bill. However,
if you are interested in checking out additional members of the Monitor class, consult the .NET
Framework 2.0 SDK documentation.

Synchronization Using the System.Threading.Interlocked Type
Although it always is hard to believe until you look at the underlying CIL code, assignments and
simple arithmetic operations are not atomic. For this reason, the System.Threading namespace pro-
vides a type that allows you to operate on a single point of data atomically with less overhead than
with the Monitor type. The Interlocked class type defines the static members shown in Table 14-4.

4193ch14.qxd 8/14/05 2:55 PM Page 471

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS472

Table 14-4. Members of the System.Threading.Interlocked Type

Member Meaning in Life

CompareExchange() Safely tests two values for equality and, if equal, changes one of the
values with a third

Decrement() Safely decrements a value by 1

Exchange() Safely swaps two values

Increment() Safely increments a value by 1

Although it might not seem like it from the onset, the process of atomically altering a single
value is quite common in a multithreaded environment. Assume you have a method named
AddOne() that increments an integer member variable named intVal. Rather than writing synchro-
nization code such as the following:

public void AddOne()
{

lock(this)
{

intVal++;
}

}

you can simplify your code via the static Interlocked.Increment() method. Simply pass in the vari-
able to increment by reference. Do note that the Increment() method not only adjusts the value of
the incoming parameter, but also returns the new value:

public void AddOne()
{

int newVal = Interlocked.Increment(ref intVal);
}

In addition to Increment() and Decrement(), the Interlocked type allows you to atomically
assign numerical and object data. For example, if you wish to assign the value of a member variable
to the value 83, you can avoid the need to use an explicit lock statement (or explicit Monitor logic)
and make use of the Interlocked.Exchange() method:

public void SafeAssignment()
{

Interlocked.Exchange(ref myInt, 83);
}

Finally, if you wish to test two values for equality to change the point of comparison in a thread-
safe manner, you are able to leverage the Interlocked.CompareExchange() method as follows:

public void CompareAndExchange()
{

// If the value of i is currently 83, change i to 99.
Interlocked.CompareExchange(ref i, 99, 83);

}

Synchronization Using the [Synchronization] Attribute
The final synchronization primitive examined here is the [Synchronization] attribute, which is
a member of the System.Runtime.Remoting.Contexts namespace. In essence, this class-level attribute
effectively locks down all instance member code of the object for thread safety. When the CLR
allocates objects attributed with [Synchronization], it will place the object within a synchronized

4193ch14.qxd 8/14/05 2:55 PM Page 472

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 473

context. As you may recall from Chapter 13, objects that should not be removed from a contextual
boundary should derive from ContextBoundObject. Therefore, if you wish to make the Printer class
type thread-safe (without explicitly writing thread-safe code within the class members), you could
update the definition as so:

using System.Runtime.Remoting.Contexts;
...

// All methods of Printer are now thread-safe!
[Synchronization]
public class Printer : ContextBoundObject
{

public void PrintNumbers()
{

...
}

}

In some ways, this approach can be seen as the lazy way to write thread-safe code, given that
you are not required to dive into the details about which aspects of the type are truly manipulating
thread-sensitive data. The major downfall of this approach, however, is that even if a given method
is not making use of thread-sensitive data, the CLR will still lock invocations to the method. Obvi-
ously, this could degrade the overall functionality of the type, so use this technique with care.

At this point, you have seen a number of ways you are able to provide synchronized access to
shared blocks of data. To be sure, additional types are available under the System.Threading name-
space, which I will encourage you to explore at your leisure. To wrap up our examination of thread
programming, allow me to introduce three additional types: TimerCallback, Timer, and ThreadPool.

Programming with Timer Callbacks
Many applications have the need to call a specific method during regular intervals of time. For
example, you may have an application that needs to display the current time on a status bar via
a given helper function. As another example, you may wish to have your application call a helper
function every so often to perform noncritical background tasks such as checking for new e-mail
messages. For situations such as these, you can use the System.Threading.Timer type in conjunc-
tion with a related delegate named TimerCallback.

To illustrate, assume you have a console application that will print the current time every sec-
ond until the user presses a key to terminate the application. The first obvious step is to write the
method that will be called by the Timer type:

class TimePrinter
{

static void PrintTime(object state)
{

Console.WriteLine("Time is: {0}",
DateTime.Now.ToLongTimeString());

}
}

Notice how this method has a single parameter of type System.Object and returns void. This is
not optional, given that the TimerCallback delegate can only call methods that match this signature.
The value passed into the target of your TimerCallback delegate can be any bit of information what-
soever (in the case of the e-mail example, this parameter might represent the name of the Microsoft
Exchange server to interact with during the process). Also note that given that this parameter is
indeed a System.Object, you are able to pass in multiple arguments using a System.Array or custom
class/structure.

4193ch14.qxd 8/14/05 2:55 PM Page 473

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS474

Figure 14-11. Timers at work

The next step is to configure an instance of the TimerCallback delegate and pass it into the
Timer object. In addition to configuring a TimerCallback delegate, the Timer constructor allows you to
specify the optional parameter information to pass into the delegate target (defined as a System.Object),
the interval to poll the method, and the amount of time to wait (in milliseconds) before making the
first call, for example:

static void Main(string[] args)
{

Console.WriteLine("***** Working with Timer type *****\n");

// Create the delegate for the Timer type.
TimerCallback timeCB = new TimerCallback(PrintTime);

// Establish timer settings.
Timer t = new Timer(

timeCB, // The TimerCallback delegate type.
"Hi", // Any info to pass into the called method (null for no info).
0, // Amount of time to wait before starting.
1000); // Interval of time between calls (in milliseconds).

Console.WriteLine("Hit key to terminate...");
Console.ReadLine();

}

In this case, the PrintTime() method will be called roughly every second and will pass in no
additional information to said method. If you did wish to send in some information for use by
the delegate target, simply substitute the null value of the second constructor parameter with the
appropriate information. For example, ponder the following updates:

static void PrintTime(object state)
{

Console.WriteLine("Time is: {0}, Param is: {1}",
DateTime.Now.ToLongTimeString(), state.ToString());

}

Figure 14-11 shows the output.

■Source Code The TimerApp application is included under the Chapter 14 subdirectory.

4193ch14.qxd 8/14/05 2:55 PM Page 474

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS 475

Understanding the CLR ThreadPool
The final thread-centric topic we will examine in this chapter is the CLR thread pool. When you
invoke a method asynchronously using delegate types (via the BeginInvoke() method), the CLR
does not literally create a brand-new thread. For purposes of efficiency, a delegate’s BeginInvoke()
method leverages a pool of worker threads that is maintained by the runtime. To allow you to inter-
act with this pool of waiting threads, the System.Threading namespace provides the ThreadPool
class type.

If you wish to queue a method call for processing by a worker thread in the pool, you can make
use of the ThreadPool.QueueUserWorkItem() method. This method has been overloaded to allow you to
specify an optional System.Object for custom state data in addition to an instance of the WaitCallback
delegate:

public sealed class ThreadPool
{

...
public static bool QueueUserWorkItem(WaitCallback callBack);
public static bool QueueUserWorkItem(WaitCallback callBack,

object state);
}

The WaitCallback delegate can point to any method that takes a System.Object as its sole
parameter (which represents the optional state data) and returns nothing. Do note that if you do
not provide a System.Object when calling QueueUserWorkItem(), the CLR automatically passes a null
value. To illustrate queuing methods for use by the CLR thread pool, ponder the following program,
which makes use of the Printer type once again. In this case, however, you are not manually creat-
ing an array of Thread types; rather, you are assigning members of the pool to the PrintNumbers()
method:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Main thread started. ThreadID = {0}",
Thread.CurrentThread.GetHashCode());

Printer p = new Printer();

WaitCallback workItem = new WaitCallback(PrintTheNumbers);

// Queue the method 10 times
for (int i = 0; i < 10; i++)
{

ThreadPool.QueueUserWorkItem(workItem, p);
}

Console.WriteLine("All tasks queued");
Console.ReadLine();

}

static void PrintTheNumbers(object state)
{

Printer task = (Printer)state;
task.PrintNumbers();

}
}

4193ch14.qxd 8/14/05 2:55 PM Page 475

CHAPTER 14 ■ BUILDING MULTITHREADED APPLICATIONS476

At this point, you may be wondering if it would be advantageous to make use of the CLR-
maintained thread pool rather than explicitly creating Thread objects. Consider these major benefits
of leveraging the thread pool:

• The thread pool manages threads efficiently by minimizing the number of threads that must
be created, started, and stopped.

• By using the thread pool, you can focus on your business problem rather than the application’s
threading infrastructure.

However, using manual thread management is preferred in some cases, for example:

• If you require foreground threads or must set the thread priority. Pooled threads are always
background threads with default priority (ThreadPriority.Normal).

• If you require a thread with a fixed identity in order to abort it, suspend it, or discover it by
name.

■Source Code The ThreadPoolApp application is included under the Chapter 14 subdirectory.

That wraps up our examination of multithreaded programming under .NET. To be sure, the
System.Threading namespace defines numerous types beyond what I had the space to cover in this
chapter. Nevertheless, at this point you should have a solid foundation to build on.

Summary
This chapter began by examining how .NET delegate types can be configured to execute a method
in an asynchronous manner. As you have seen, the BeginInvoke() and EndInvoke() methods allow
you to indirectly manipulate a background thread with minimum fuss and bother. During this dis-
cussion, you were also introduced to the IAsyncResult interface and AsyncResult class type. As you
learned, these types provide various ways to synchronize the calling thread and obtain possible
method return values.

The remainder of this chapter examined the role of the System.Threading namespace. As you
learned, when an application creates additional threads of execution, the result is that the program
in question is able to carry out numerous tasks at (what appears to be) the same time. You also
examined several manners in which you can protect thread-sensitive blocks of code to ensure that
shared resources do not become unusable units of bogus data. Last but not least, you learned that
the CLR maintains an internal pool of threads for the purposes of performance and convenience.

4193ch14.qxd 8/14/05 2:55 PM Page 476

Understanding CIL and the Role of
Dynamic Assemblies

The goal of this chapter is twofold. In the first half (more or less), you will have a chance to exam-
ine the syntax and semantics of the common intermediate language (CIL) in much greater detail
than in previous chapters. Now, to be perfectly honest, you are able to live a happy and productive
life as a .NET programmer without concerning yourself with the details of CIL code. However, once
you learn the basics of CIL, you will gain a much deeper understanding of how some of the “magical”
aspects of .NET (such as cross-language inheritance) actually work.

In the remainder of this chapter, you will examine the role of the System.Reflection.Emit
namespace. Using these types, you are able to build software that is capable of generating .NET
assemblies in memory at runtime. Formally speaking, assemblies defined and executed in memory
are termed dynamic assemblies. As you might guess, this particular aspect of .NET development
requires you to speak the language of CIL, given that you will be required to specify the CIL instruc-
tion set that will be used during the assembly’s construction.

Reflecting on the Nature of CIL Programming
CIL is the true mother tongue of the .NET platform. When you build a .NET assembly using your
managed language of choice, the associated compiler translates your source code into terms of CIL.
Like any programming language, CIL provides numerous structural and implementation tokens.
Given that CIL is just another .NET programming language, it should come as no surprise that it is
possible to build your .NET assemblies directly using CIL and the CIL compiler (ilasm.exe) that ships
with the .NET Framework 2.0 SDK.

Now while it is true that few programmers would choose to build an entire .NET application
directly with CIL, CIL is still an extremely interesting intellectual pursuit. Simply put, the more you
understand the grammar of CIL, the better able you are to move into the realm of advanced .NET
development. By way of some concrete examples, individuals who possess an understanding of CIL
are capable of the following:

• Talking intelligently about how different .NET programming languages map their respective
keywords to CIL tokens.

• Disassembling an existing .NET assembly, editing the CIL code, and recompiling the
updated code base into a modified .NET binary.

• Building dynamic assemblies using the System.Reflection.Emit namespace.

• Leveraging aspects of the CTS that are not supported by higher-level managed languages,
but do exist at the level of CIL. To be sure, CIL is the only .NET language that allows you to
access each and every aspect of the CTS. For example, using raw CIL, you are able to define
global-level members and fields (which are not permissible in C#).

477

C H A P T E R 1 5

■ ■ ■

4193ch15.qxd 8/14/05 2:55 PM Page 477

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES478

Again, to be perfectly clear, if you choose not to concern yourself with the details of CIL code,
you are absolutely able to gain mastery of the .NET base class libraries. In many ways, knowledge of
CIL is analogous to a C(++) programmer’s understanding of assembly language. Those who know the
ins and outs of the low-level “goo” are able to create rather advanced solutions for the task at hand
and gain a deeper understanding of the underlying programming (and runtime) environment. So, if
you are up for the challenge, let’s begin to examine the details of CIL.

■Note Understand that this chapter is not intended to be a comprehensive treatment of the syntax and seman-
tics of CIL. If you require a full examination of CIL, check out CIL Programming: Under the Hood of .NET by Jason
Bock (Apress, 2002).

Examining CIL Directives, Attributes, and Opcodes
When you begin to investigate low-level languages such as CIL, you are guaranteed to find new (and
often intimidating-sounding) names for very familiar concepts. For example, at this point in the text,
if you were shown the following set of items:

{new, public, this, base, get, set, explicit, unsafe, enum, operator, partial}

you would most certainly understand them to be keywords of the C# language (which is correct).
However, if you look more closely at the members of this set, you may be able to see that while each
item is indeed a C# keyword, it has radically different semantics. For example, the enum keyword
defines a System.Enum-derived type, while the this and base keywords allow you to reference the
current object or the object’s parent class, respectively. The unsafe keyword is used to establish
a block of code that cannot be directly monitored by the CLR, while the operator keyword allows
you to build a hidden (specially named) method that will be called when you apply a specific C#
operator (such as the plus sign).

In stark contrast to a higher-level language such as C#, CIL does not just simply define a generic
set of keywords, per se. Rather, the token set understood by the CIL compiler is subdivided into three
broad categories based on semantic connotation:

• CIL directives

• CIL attributes

• CIL operation codes (opcodes)

Each category of CIL token is expressed using a particular syntax, and the tokens are combined
to build a valid .NET assembly.

The Role of CIL Directives
First up, we have a set of well-known CIL tokens that are used to describe the overall structure of a .NET
assembly. These tokens are called directives. CIL directives are used to inform the CIL compiler how
to define the namespaces(s), type(s), and member(s) that will populate the assembly.

Directives are represented syntactically using a single dot (.) prefix (e.g., .namespace, .class,
.publickeytoken, .override, .method, .assembly, etc.). Thus, if your *.il file (the conventional
extension for a file containing CIL code) has a single .namespace directive and three .class directives,
the CIL compiler will generate an assembly that defines a single .NET namespace containing three
.NET class types.

4193ch15.qxd 8/14/05 2:55 PM Page 478

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 479

The Role of CIL Attributes
In many cases, CIL directives in and of themselves are not descriptive enough to fully express the
definition of a given .NET type or type member. Given this fact, many CIL directives can be further
specified with various CIL attributes to qualify how a directive should be processed. For example,
the .class directive can be adorned with the public attribute (to establish the type visibility), the
extends attribute (to explicitly specify the type’s base class), and the implements attribute (to list the
set of interfaces supported by the type).

The Role of CIL Opcodes
Once a .NET assembly, namespace, and type set has been defined in terms of CIL using various
directives and related attributes, the final remaining task is to provide the type’s implementation
logic. This is a job for operation codes, or simply opcodes. In the tradition of other low-level languages,
CIL opcodes tend to be completely unpronounceable by us mere humans. For example, if you need
to define a string variable, you don’t use a friendly opcode named LoadString, but rather ldstr.

Now, to be fair, some CIL opcodes do map quite naturally to their C# counterparts (e.g., box,
unbox, throw, and sizeof). As you will see, the opcodes of CIL are always used within the scope of
a member’s implementation, and unlike CIL directives, they are never written with a dot prefix.

The CIL Opcode/CIL Mnemonic Distinction
As just explained, opcodes such as ldstr are used to implement the members of a given type. In
reality, however, tokens such as ldstr are CIL mnemonics for the actual binary CIL opcodes. To clarify
the distinction, assume you have authored the following method in C#:

static int Add(int x, int y)
{

return x + y;
}

The act of adding two numbers is expressed in terms of the CIL opcode 0X58. In a similar vein,
subtracting two numbers is expressed using the opcode 0X59, and the act of allocating a new object
on the managed heap is achieved using the 0X73 opcode. Given this reality, understand that the “CIL
code” processed by a JIT compiler is actually nothing more than blobs of binary data.

Thankfully, for each binary opcode of CIL, there is a corresponding mnemonic. For example,
the add mnemonic can be used rather than 0X58, sub rather than 0X59, and newobj rather than 0X73.
Given this opcode/mnemonic distinction, realize that CIL decompilers such as ildasm.exe translate
an assembly’s binary opcodes into their corresponding CIL mnemonics:

.method public hidebysig static int32 Add(int32 x,
int32 y) cil managed

{
...

// The 'add' token is a friendly mnemonic
// for the 0X58 CIL opcode.
add

...
}

Unless you’re building some extremely low-level .NET software (such as a custom managed
compiler), you’ll never need to concern yourself with the literal numeric opcodes of CIL. For all
practical purposes, when .NET programmers speak about “CIL opcodes” they’re referring to the set
of friendly string token mnemonics (as I’ve done within this text) rather than the underlying binary
values.

4193ch15.qxd 8/14/05 2:55 PM Page 479

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES480

Pushing and Popping: The Stack-Based Nature of CIL
Higher-level .NET languages (such as C#) attempt to hide low-level grunge from view as much as
possible. One aspect of .NET development that is particularly well hidden is the fact that CIL is
a completely stack-based programming language. Recall from our examination of the System.
Collections namespace (see Chapter 7) that the Stack type can be used to push a value onto a stack
as well as pop the topmost value off of the stack for use. Of course, CIL developers do not liter-
ally use an object of type System.Collections.Stack to load and unload the values to be evaluated;
however, the same pushing and popping mind-set still applies.

Formally speaking, the entity used to hold a set of values is termed the virtual execution stack.
As you will see, CIL provides a number of opcodes that are used to push a value onto the stack; this
process is termed loading. As well, CIL defines a number of additional opcodes that transfer the
topmost value on the stack into memory (such as a local variable) using a process termed storing.

In the world of CIL, it is impossible to access a point of data directly, including locally defined
variables, incoming method arguments, or field data of a type. Rather, you are required to explicitly
load the item onto the stack, only to then pop it off for later use (keep this point in mind, as it will
help explain why a given block of CIL code can look a bit redundant).

To understand how CIL leverages a stack-based model, consider a simple C# method,
PrintMessage(), which takes no arguments and returns nothing. Within the implementation of
this method, you will simply print out the value of a local string variable to the standard output stream:

public void PrintMessage()
{

string myMessage = "Hello.";
Console.WriteLine(myMessage);

}

If you were to examine how the C# compiler translates this method in terms of CIL, you would
first find that the PrintMessage() method defines a storage slot for a local variable using the .locals
directive. The local string is then loaded and stored in this local variable using the ldstr (load string)
and stloc.0 opcodes (which can be read as “store the current value in a local variable at index zero”).

The value (again, at index 0) is then loaded into memory using the ldloc.0 (“load the local
argument at index 0”) opcode for use by the System.Console.WriteLine() method invocation
(specified using the call opcode). Finally, the function returns via the ret opcode:

.method public hidebysig instance void PrintMessage() cil managed
{

.maxstack 1
// Define a local string variable (at index 0).
.locals init ([0] string myMessage)
// Load a string with the value "Hello."
ldstr " Hello."
// Store string value on the stack in the local variable.
stloc.0
// Load the value at index 0.
ldloc.0
// Call method with current value.
call void [mscorlib]System.Console::WriteLine(string)
ret

}

■Note As you can see, CIL supports code comments using the double-slash syntax (as well as the /*...*/ syntax,
for that matter). As in C#, code comments are completely ignored by the CIL compiler.

4193ch15.qxd 8/14/05 2:55 PM Page 480

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 481

Understanding Round-trip Engineering
You are aware of how to use ildasm.exe to view the CIL code generated by the C# compiler. What
you may not know, however, is that ildasm.exe allows you to dump the CIL contained within a loaded
assembly to an external file. Once you have the CIL code at your disposal, you are free to edit and
recompile the code base using the CIL compiler, ilasm.exe.

Formally speaking, this technique is termed round-trip engineering, and it can be useful under
a number of circumstances:

• You need to modify an assembly for which you no longer have the source code.

• You are working with a less-than-perfect .NET language compiler that has emitted ineffective
CIL code, and you wish to modify the code base.

• You are building COM interoperability assemblies and wish to account for some IDL attrib-
utes that have been lost during the conversion process (such as the COM [helpstring]
attribute).

To illustrate the process of round-tripping, begin by creating a new C# code file (HelloProgram.cs)
using a simple text editor, and define the following class type (you are free to use Visual Studio 2005 as
well; however, be sure to delete the AssemblyInfo.cs file to decrease the amount of generated CIL code):

// A simple C# console app.
using System;

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Hello CIL code!");
Console.ReadLine();

}
}

Save your file to a convenient location and compile your program using csc.exe:

csc HelloProgram.cs

Now, open HelloProgram.exe with ildasm.exe and, using the File ➤ Dump menu option, save
the raw CIL code to a new *.il file (HelloProgram.il) in a convenient location on your hard drive
(the default values of the resulting dialog box are fine as is). Now you are able to view this file using
your text editor of choice. Here is the (slightly reformatted and annotated) result:

// Referenced Assemblies.
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

// Our assembly.
.assembly HelloProgram
{
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.module HelloProgram.exe
.imagebase 0x00400000
.file alignment 0x00000200

4193ch15.qxd 8/14/05 2:55 PM Page 481

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES482

.stackreserve 0x00100000

.subsystem 0x0003

.corflags 0x00000001

// Definition of Program class.
.class private auto ansi beforefieldinit Program

extends [mscorlib]System.Object
{
.method private hidebysig static void Main(string[] args) cil managed
{
// Marks this method as the entry point of the
// executable.
.entrypoint
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Hello CIL code!"
IL_0006: call void [mscorlib]System.Console::WriteLine(string)
IL_000b: nop
IL_000c: call string [mscorlib]System.Console::ReadLine()
IL_0011: pop
IL_0012: ret

}

// The default constructor.
.method public hidebysig specialname rtspecialname

instance void .ctor() cil managed
{
.maxstack 8
IL_0000: ldarg.0
IL_0001: call instance void [mscorlib]System.Object::.ctor()
IL_0006: ret

}
}

First, notice that the *.il file opens by declaring each externally referenced assembly the
current assembly is compiled against. Here, you can see a single .assembly extern token set for
the always present mscorlib.dll. Of course, if your class library made use of types within other
referenced assemblies, you would find additional .assembly extern directives.

Next, you find the formal definition of your HelloProgram.exe assembly, which has been assigned
a default version of 0.0.0.0 (given that you did not specify a value using the [AssemblyVersion]
attribute). The assembly is further described using various CIL directives (such as .module, .imagebase,
and so forth).

After documenting the externally referenced assemblies and defining the current assembly, you
find a definition of the Program type. Note that the .class directive has various attributes (many of
which are optional) such as extends, which marks the base class of the type:

.class private auto ansi beforefieldinit Program
extends [mscorlib]System.Object

{ ... }

The bulk of the CIL code implements the class’s default constructor and the Main() method, both
of which are defined (in part) with the .method directive. Once the members have been defined using
the correct directives and attributes, they are implemented using various opcodes.

It is critical to understand that when interacting with .NET types (such as System.Console) in CIL,
you will always need to use the type’s fully qualified name. Furthermore, the type’s fully qualified
name must always be prefixed with the friendly name of the defining assembly (in square brackets).
Consider the CIL implementation of Main():

4193ch15.qxd 8/14/05 2:55 PM Page 482

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 483

.method private hidebysig static void Main(string[] args) cil managed
{
.entrypoint
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Hello CIL code!"
IL_0006: call void [mscorlib]System.Console::WriteLine(string)
IL_000b: nop
IL_000c: call string [mscorlib]System.Console::ReadLine()
IL_0011: pop
IL_0012: ret

}

The implementation of the default constructor in terms of CIL code makes use of yet another
“load-centric” instruction (ldarg.0). In this case, the value is loaded onto the stack as not a custom
variable specified by us, but the current object reference (more details on this later). Also note that
the default constructor explicitly makes a call to the base class constructor:

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

{
.maxstack 8
IL_0000: ldarg.0
IL_0001: call instance void [mscorlib]System.Object::.ctor()
IL_0006: ret

}

The Role of CIL Code Labels
One thing you certainly have noticed is that each line of implementation code is prefixed with
a token of the form IL_XXX: (e.g., IL_0000:, IL_0001:, and so on). These tokens are called code labels
and may be named in any manner you choose (provided they are not duplicated within the same
scope). When you dump an assembly to file using ildasm.exe, it will automatically generate code
labels that follow an IL_XXX: naming convention. However, you may change them to reflect a more
descriptive marker:

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

.maxstack 8
Nothing_1: nop
Load_String: ldstr "Hello CIL code!"
PrintToConsole: call void [mscorlib]System.Console::WriteLine(string)
Nothing_2: nop
WaitFor_KeyPress: call string [mscorlib]System.Console::ReadLine()
RemoveValueFromStack: pop
Leave_Function: ret

}

The truth of the matter is that most code labels are completely optional. The only time code labels
are truly useful (and mandatory) is when you are authoring CIL code that makes use of various
branching or looping constructs. Given this, you can remove these autogenerated labels altogether
with no ill effect:

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

.maxstack 8

4193ch15.qxd 8/14/05 2:55 PM Page 483

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES484

nop
ldstr "Hello CIL code!"
call void [mscorlib]System.Console::WriteLine(string)
nop
call string [mscorlib]System.Console::ReadLine()
pop
ret

}

Interacting with CIL: Modifying an *.il File
Now that you have a better understanding of how a basic CIL file is composed, let’s complete our
round-tripping experiment. The goal here is to update the CIL within the existing *.il file as so:

• Add a reference to the System.Windows.Forms.dll assembly.

• Load a local string within Main().

• Call the System.Windows.Forms.MessageBox.Show() method using the local string variable as
an argument.

The first step is to add a new .assembly directive (qualified with the extern attribute) that speci-
fies you are using System.Windows.Forms.dll. To do so, simply update the *.il file with the following
logic after the external reference to mscorlib:

.assembly extern System.Windows.Forms
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

Be aware that the value assigned to the .ver directive may differ depending on which version of
the .NET platform you have installed on your development machine. Here, you see that System.Windows.
Forms.dll version 2.0.0.0 is used and has the public key token of B77A5C561934E089. If you open
the GAC (see Chapter 11) and locate your version of the System.Windows.Forms.dll assembly, you
can simply copy the correct version and public key token value via the assembly’s Properties page.

Next, you need to alter the current implementation of the Main() method. Locate this method
within the *.il file and remove the current implementation code (the .maxstack and .entrypoint
directives should remain intact; I’ll describe them later):

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

.maxstack 8
// ToDo: Write new CIL code!

}

Again, the goal is to push a new string onto the stack and call the MessageBox.Show() method
(rather than the Console.WriteLine() method). Recall that when you specify the name of an exter-
nal type, you must make use of the type’s fully qualified name (in conjunction with the friendly name
of the assembly). Keeping this in mind, update the Main() method as follows:

4193ch15.qxd 8/14/05 2:55 PM Page 484

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 485

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

.maxstack 8
ldstr "CIL is way cool"
call valuetype [System.Windows.Forms]

System.Windows.Forms.DialogResult
[System.Windows.Forms]
System.Windows.Forms.MessageBox::Show(string)

pop
ret

}

In effect, you have just updated the CIL code to correspond to the following C# class definition:

public class Program
{

static void Main(string[] args)
{

System.Windows.Forms.MessageBox.Show("CIL is way cool");
}

}

Compiling CIL Code Using ilasm.exe
Assuming you have saved this modified *.il file, you can compile a new .NET assembly using the
ilasm.exe (CIL compiler) utility. Perhaps surprisingly, the CIL compiler has far fewer command-line
flags than the C# compiler. Table 15-1 shows the core flags of interest.

Table 15-1. Common ilasm.exe Command-Line Flags

Flag Meaning in Life

/debug Includes debug information (such as local variable and argument names, as
well as line numbers).

/dll Produces a *.dll file as output.

/exe Produces an *.exe file as output. This is the default setting and may be omitted.

/key Compiles the assembly with a strong name using a given *.snk file.

/noautoinherit Prevents class types from automatically inheriting from System.Object when
a specific base class is not defined.

/output Specifies the output file name and extension. If you do not make use of the
/output flag, the resulting file name is the same as the name of the first source file.

To compile your updated simplehelloclass.il file into a .NET *.exe, you can issue the follow-
ing command within a Visual Studio 2005 command prompt:

ilasm /exe HelloProgram.il

Assuming things have worked successfully, you will see the report shown in Figure 15-1.

4193ch15.qxd 8/14/05 2:55 PM Page 485

Figure 15-1. Compiling *.il files using ilasm.exe

Figure 15-2. The result of the round-trip

At this point, you can run your new application. Sure enough, rather than pumping a message
to the Console window, you will now see a message box displaying your message (see Figure 15-2).

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES486

Compiling CIL Code Using SharpDevelop
When working with *.il files, you may wish to make use of the freely available SharpDevelop IDE
(see Chapter 2). When you create a new combine (via the File ➤ New Combine menu option), one
of your choices is to create a CIL project workspace. While SharpDevelop does not have IntelliSense
support for CIL projects, CIL tokens are color-coded, and you are able to compile and run your
application directly within the IDE (rather than running ilasm.exe from a command prompt).

Compiling CIL Code Using ILIDE#
If you’re truly interested in experimenting with the CIL programming language, I also recommend
downloading the latest version of a free open source CIL editor named ILIDE#. This tool, like
SharpDevelop, provides color-coding, ilasm.exe integration, and various related tools. Unlike
SharpDevelop, the latest version of ILIDE# now supports CIL IntelliSense! You can download ILIDE#
from http://ilide.aspfreeserver.com/default-en.aspx (of course, this URL is subject to change).
Figure 15-3 shows ILIDE# in action.

4193ch15.qxd 8/14/05 2:55 PM Page 486

Figure 15-3. ILIDE# is a free CIL IDE.

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 487

The Role of peverify.exe
When you are building or modifying assemblies using CIL code, it is always advisable to verify that
the compiled binary image is a well-formed .NET image using the peverify.exe command-line tool:

peverify HelloProgram.exe

This tool will examine all opcodes within the specified assembly for valid CIL code. For example,
in terms of CIL code, the evaluation stack must always be empty before exiting a function. If you for-
get to pop off any remaining values, the ilasm.exe compiler will still generate a valid assembly (given
that compilers are concerned only with syntax). peverify.exe, on the other hand, is concerned with
semantics. If you did forget to clear the stack before exiting a given function, peverify.exe will let
you know.

■Source Code The HelloProgram.il file is included under the Chapter 15 subdirectory.

Understanding CIL Directives and Attributes
Now that you have seen how ildasm.exe and ilasm.exe can be used to perform a round-trip, we can
get down to the business of checking out the syntax and semantics of CIL itself. The next sections will
walk you through the process of authoring a custom namespace containing a set of types. However,
to keep things simple, these types will not contain any implementation logic for their members.
Once you understand how to create empty types, you can then turn your attention to the process of
providing “real” members using CIL opcodes.

4193ch15.qxd 8/14/05 2:55 PM Page 487

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES488

Specifying Externally Referenced Assemblies in CIL
Create a new file named CilTypes.il using your editor of choice. First, you need to list the set of
external assemblies used by the current assembly. For this example, you will only make use of types
found within mscorlib.dll. To do so, the .assembly directive will be qualified using the external
attribute. When you are referencing a strongly named assembly, such as mscorlib.dll, you’ll want
to specify the .publickeytoken and .ver directives as well:

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

■Note Strictly speaking, you are not required to explicitly reference mscorlib.dll as an external reference, as
ilasm.exe will do so automatically.

Defining the Current Assembly in CIL
The next order of business is to define the assembly you are interested in building using the .assembly
directive. At the simplest level, an assembly can be defined by specifying the friendly name of the
binary:

// Our assembly.
.assembly CILTypes { }

While this indeed defines a new .NET assembly, you will typically place additional directives
within the scope of the assembly declaration. For this example, update your assembly definition to
include a version number of 1.0.0.0 using the .ver directive (note that each numerical identifier is
separated by colons, not the C#-centric dot notation):

// Our assembly.
.assembly CILTypes
{

.ver 1:0:0:0
}

Given that the CILTypes assembly is a single-file assembly, you will finish up the assembly defi-
nition using a single .module directive, which marks the official name of your .NET binary, CILTypes.dll:

.assembly CILTypes
{

.ver 1:0:0:0
}
// The module of our single-file assembly.
.module CILTypes.dll

In addition to .assembly and .module are CIL directives that further qualify the overall structure
of the .NET binary you are composing. Table 15-2 lists a few of the more common assembly-level
directives.

4193ch15.qxd 8/14/05 2:55 PM Page 488

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 489

Table 15-2. Additional Assembly-Centric Directives

Directive Meaning in Life

.mresources If your assembly makes use of internal resource (such as bitmaps or string
tables), this directive is used to identify the name of the file that contains the
resources to be embedded. Chapter 20 examines .NET resources in detail.

.subsystem This CIL directive is used to establish the preferred UI that the assembly wishes
to execute within. For example, a value of 2 signifies that the assembly should
run within a Forms-based GUI, whereas a value of 3 denotes a console application.

Defining Namespaces in CIL
Now that you have defined the look and feel of your assembly (and the required external refer-
ences), you can create a .NET namespace (MyNamespace) using the .namespace directive:

// Our assembly has a single namespace.
.namespace MyNamespace {}

Like C#, CIL namespace definitions can be nested within an outer namespace. For the sake of
argument, assume you wish to create a root namespace named IntertechTraining:

.namespace IntertechTraining
{

.namespace MyNamespace {}
}

Like C#, CIL allows you to define a nested namespace as so:

// Defining a nested namespace.
.namespace IntertechTraining.MyNamespace{}

Defining Class Types in CIL
Empty namespaces are not very interesting, so let’s now check out the process of defining a class
type using CIL. Not surprisingly, the .class directive is used to define a new class type. However,
this simple directive can be adorned with numerous additional attributes, to further qualify the
nature of the type. To illustrate, add a simple public class named MyBaseClass. As in C#, if you do not
specify an explicit base class, your type will automatically be derived from System.Object:

.namespace MyNamespace
{

// System.Object base class assumed.
.class public MyBaseClass {}

}

When you are building a class type that derives from any class other than System.Object, you
make use of the extends attribute. Whenever you need to reference a type defined within the same
assembly, CIL demands that you also make use of the fully qualified name (however, if the base type
is within the same assembly, you can omit the assembly’s friendly name prefix). Therefore, the fol-
lowing attempt to extend MyBaseClass results in a compiler error:

// This will not compile!
.namespace MyNamespace
{

.class public MyBaseClass {}

.class public MyDerivedClass
extends MyBaseClass {}

}

4193ch15.qxd 8/14/05 2:55 PM Page 489

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES490

To correctly define the parent class of MyDerivedClass, you must specify the full name of
MyBaseClass as so:

// Better!
.namespace MyNamespace
{

.class public MyBaseClass {}

.class public MyDerivedClass
extends MyNamespace.MyBaseClass {}

}

In addition to the public and extends attributes, a CIL class definition may take numerous
additional qualifiers that control the type’s visibility, field layout, and so on. Table 15-3 illustrates
some (but not all) of the attributes that may be used in conjunction with the .class directive.

Table 15-3. Various Attributes Used in Conjunction with the .class Directive

Attributes Meaning in Life

public, private, nested assembly, CIL defines various attributes that are used to specify the
nested famandassem, nested family, visibility of a given type. As you can see, raw CIL offers
nested famorassem, nested public, numerous possibilities other than those offered by C#.
nested private

abstract These two attributes may be tacked onto a .class directive
sealed to define an abstract class or sealed class, respectively.

auto These attributes are used to instruct the CLR how to lay
sequential out field data in memory. For class types, the default layout
explicit flag (auto) is appropriate.

extends These attributes allow you to define the base class of a type
implements (via extends) or implement an interface on a type (via

implements).

Defining and Implementing Interfaces in CIL
As odd as it may seem, interface types are defined in CIL using the .class directive. However, when
the .class directive is adorned with the interface attribute, the type is realized as a CTS interface
type. Once an interface has been defined, it may be bound to a class or structure type using the CIL
implements attribute:

.namespace MyNamespace
{

// An interface definition.
.class public interface IMyInterface {}
.class public MyBaseClass {}

// DerivedTestClass now implements IAmAnInterface.
.class public MyDerivedClass

extends MyNamespace.MyBaseClass
implements MyNamespace.IMyInterface {}

}

As you recall from Chapter 7, interfaces can function as the base interface to other interface
types in order to build interface hierarchies. However, contrary to what you might be thinking, the
extends attribute cannot be used to derive interface A from interface B. The extends attribute is
used only to qualify a type’s base class. When you wish to extend an interface, you will make use of
the implements attribute yet again:

4193ch15.qxd 8/14/05 2:55 PM Page 490

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 491

// Extending interfaces in terms of CIL.
.class public interface IMyInterface {}
.class public interface IMyOtherInterface

implements MyNamespace.IMyInterface {}

Defining Structures in CIL
The .class directive can be used to define a CTS structure if the type extends System.ValueType. As
well, the .class directive is qualified with the sealed attribute (given that structures can never be
a base structure to other value types). If you attempt to do otherwise, ilasm.exe will issue a compiler
error.

// A structure definition is always sealed.
.class public sealed MyStruct

extends [mscorlib]System.ValueType{}

Do be aware that CIL provides a shorthand notation to define a structure type. If you use the
value attribute, the new type will derive the type from [mscorlib]System.ValueType and be marked
as sealed automatically. Therefore, you could define MyStruct as so:

// Shorthand notation for declaring a structure.
.class public value MyStruct{}

Defining Enums in CIL
.NET enumerations (as you recall) derive from System.Enum, which is a System.ValueType (and
therefore must also be sealed). When you wish to define an enum in terms of CIL, simply extend
[mscorlib]System.Enum:

// An enum.
.class public sealed MyEnum

extends [mscorlib]System.Enum{}

Like a structure definition, enumerations can be defined with a shorthand notation using the
enum attribute:

// Enum shorthand.
.class public enum MyEnum{}

■Note The other fundamental .NET type, the delegate, also has a specific CIL representation. See Chapter 8 for
full details.

Compiling the CILTypes.il file
Even though you have not yet added any members or implementation code to the types you have
defined, you are able to compile this *.il file into a .NET DLL assembly (which you must do, as you
have not specified a Main() method). Open up a command prompt and enter the following command
to ilasm.exe:

ilasm /dll CilTypes.il

Once you have done so, you are able to open your binary into ildasm.exe (see Figure 15-4).

4193ch15.qxd 8/14/05 2:55 PM Page 491

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES492

Figure 15-4. The CILTypes.dll assembly

Once you have confirmed the contents of your assembly, run peverify.exe against it. Notice
that you are issued a number of errors, given that all your types are completely empty. To understand
how to populate a type with content, you first need to examine the fundamental data types of CIL.

■Source Code The CilTypes.il file is included under the Chapter 15 subdirectory.

.NET Base Class Library, C#, and CIL Data Type
Mappings
Table 15-4 illustrates how a .NET base class type maps to the corresponding C# keyword, and how
each C# keyword maps into raw CIL. As well, Table 15-4 documents the shorthand constant nota-
tions used for each CIL type. As you will see in just a moment, these constants are often referenced
by numerous CIL opcodes.

Table 15-4. Mapping .NET Base Class Types to C# Keywords, and C# Keywords to CIL

.NET Base Class Type C# Keyword CIL Representation CIL Constant Notation

System.SByte sbyte int8 I1

System.Byte byte unsigned int8 U1

System.Int16 short int16 I2

System.UInt16 ushort unsigned int16 U2

System.Int32 int int32 I4

System.UInt32 uint unsigned int32 U4

System.Int64 long int64 I8

System.UInt64 ulong unsigned int64 U8

System.Char char char CHAR

System.Single float float32 R4

System.Double double float64 R8

4193ch15.qxd 8/14/05 2:55 PM Page 492

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 493

.NET Base Class Type C# Keyword CIL Representation CIL Constant Notation

System.Boolean bool bool BOOLEAN

System.String string string N/A

System.Object object object N/A

System.Void void void VOID

Defining Type Members in CIL
As you are already aware, .NET types may support various members. Enumerations have some set
of name/value pairs. Structures and classes may have constructors, fields, methods, properties,
static members, and so on. Over the course of this book’s first 14 chapters, you have already seen
partial CIL definitions for the items previously mentioned, but nevertheless, here is a quick recap of
how various members map to CIL primitives.

Defining Field Data in CIL
Enumerations, structures, and classes can all support field data. In each case, the .field directive
will be used. For example, let’s breathe some life into the skeleton MyEnum enumeration and define
three name/value pairs (note the values are specified using a parentheses syntax):

.class public auto ansi sealed MyEnum
extends [mscorlib]System.Enum

{
.field public static literal valuetype

MyNamespace.MyEnum NameOne = int32(0)
.field public static literal valuetype

MyNamespace.MyEnum NameTwo = int32(1)
.field public static literal valuetype

MyNamespace.MyEnum NameThree = int32(2)
}

Fields that reside within the scope of a .NET System.Enum-derived type are qualified using the
static and literal attributes. As you would guess, these attributes set up the field data to be a fixed
value accessible from the type itself (e.g., MyEnum.NameOne).

■Note The values assigned to an enum value may also be in hexadecimal.

Of course, when you wish to define a point of field data within a class or structure, you are not
limited to a point of public static literal data. For example, you could update MyBaseClass to support
two points of private, instance-level field data:

.class public MyBaseClass
{

.field private string stringField

.field private int32 intField
}

As in C#, class field data will automatically be assigned to the correct default value. If you wish
to allow the object user to supply custom values at the time of creation for each of these points of
private field data, you (of course) need to create custom constructors.

4193ch15.qxd 8/14/05 2:55 PM Page 493

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES494

Defining Type Constructors in CIL
The CTS supports both instance-level and class-level (static) constructors. In terms of CIL, instance-
level constructors are represented using the .ctor token, while a static-level constructor is expressed
via .cctor (class constructor). Both of these CIL tokens must be qualified using the rtspecialname
(return type special name) and specialname attributes. Simply put, these attributes are used to iden-
tify a specific CIL token that can be treated in unique ways by a given .NET language. For example,
in C#, constructors do not define a return type; however, in terms of CIL, the return value of a con-
structor is indeed void:

.class public MyBaseClass
{

.field private string stringField

.field private int32 intField

.method public hidebysig specialname rtspecialname
instance void .ctor(string s, int32 i) cil managed

{
// TODO: Add implementation code...

}
}

Note that the .ctor directive has been qualified with the instance attribute (as it is not a static
constructor). The cil managed attributes denote that the scope of this method contains CIL code,
rather than unmanaged code, which may be used during platform invocation requests.

Defining Properties in CIL
Properties and methods also have specific CIL representations. By way of an example, if MyBaseClass
were updated to support a public property named TheString, you would author the following CIL
(note again the use of the specialname attribute):

.class public MyBaseClass
{
...

.method public hidebysig specialname
instance string get_TheString() cil managed

{
// TODO: Add implementation code...

}

.method public hidebysig specialname
instance void set_TheString(string 'value') cil managed

{
// TODO: Add implementation code...

}

.property instance string TheString()
{

.get instance string
MyNamespace.MyBaseClass::get_TheString()

.set instance void
MyNamespace. MyBaseClass::set_TheString(string)

}
}

4193ch15.qxd 8/14/05 2:55 PM Page 494

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 495

Recall that in terms of CIL, a property maps to a pair of methods that take get_ and set_ prefixes.
The .property directive makes use of the related .get and .set directives to map property syntax to
the correct “specially named” methods.

■Note The previous property definitions will fail to compile, given that you have not yet implemented the
mutator logic.

Defining Member Parameters
Now assume that you wish to define methods that take some number of arguments. In a nutshell,
specifying arguments in CIL is (more or less) identical to doing so in C#. For example, each argument
is defined by specifying its data type followed by the parameter name. Furthermore, like C#, CIL
provides a way to define input, output, and pass-by-reference parameters. As well, CIL allows you to
define a parameter array argument (aka the C# params keyword) as well as optional parameters (which
are not supported in C#, but are used in VB .NET).

To illustrate the process of defining parameters in raw CIL, assume you wish to build a method
that takes an int32 (by value), int32 (by reference), a [mscorlib]System.Collection.ArrayList, and
a single output parameter (of type int32). In terms of C#, this method would look something like the
following:

public static void MyMethod(int inputInt,
ref int refInt, ArrayList ar, out int outputInt)

{
outputInt = 0; // Just to satisfy the C# compiler...

}

If you were to map this method into CIL terms, you would find that C# reference parameters
are marked with an ampersand (&) suffixed to the parameter’s underlying data type (int32&). Output
parameters also make use of the & suffix, but they are further qualified using the CIL [out] token.
Also notice that if the parameter is a reference type (in this case, the [mscorlib]System.Collections.
ArrayList type), the class token is prefixed to the data type (not to be confused with the .class
directive!):

.method public hidebysig static void MyMethod(int32 inputInt,
int32& refInt,
class [mscorlib]System.Collections.ArrayList ar,
[out] int32& outputInt) cil managed

{
...
}

Examining CIL Opcodes
The final aspect of CIL code you’ll examine in this chapter has to do with the role of various operational
codes (opcodes). Recall that an opcode is simply a CIL token used to build the implementation logic
for a given member. The complete set of CIL opcodes (which is fairly large) can be grouped into the
following broad categories:

• Opcodes that control program flow

• Opcodes that evaluate expressions

• Opcodes that access values in memory (via parameters, local variables, etc.)

4193ch15.qxd 8/14/05 2:55 PM Page 495

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES496

To provide some insight to the world of member implementation via CIL, Table 15-5 defines
some of the more useful opcodes that are directly related to member implementation logic, grouped
by related functionality.

Table 15-5. Various Implementation-Specific CIL Opcodes

Opcodes Meaning in Life

add, sub, mul, div, rem These CIL opcodes allow you to add, subtract, multiply, and divide
two values (rem returns the remainder of a division operation).

and, or, not, xor These CIL opcodes allow you to perform binary operations on two
values.

ceq, cgt, clt These CIL opcodes allow you to compare two values on the stack in
various manners, for example:
ceq: Compare for equality
cgt: Compare for greater than
clt: Compare for less than

box, unbox These CIL opcodes are used to convert between reference types
and value types.

ret This CIL opcode is used to exit a method and return a value to the
caller (if necessary).

beq, bgt, ble, blt, switch These CIL opcodes (in addition to many other related opcodes) are
used to control branching logic within a method, for example:
beq: Break to code label if equal
bgt: Break to code label if greater than
ble: Break to code label if less than or equal to
blt: Break to code label if less than
All of the branch-centric opcodes require that you specify a CIL
code label to jump to if the result of the test is true.

call This CIL opcode is used to call a member on a given type.

newarr, newobj These CIL opcodes allow you to allocate a new array or new object
type into memory (respectively).

The next broad category of CIL opcodes (a subset of which is shown in Table 15-6) are used to
load (push) arguments onto the virtual execution stack. Note how these load-specific opcodes take
an ld (load) prefix.

Table 15-6. The Primary Stack-Centric Opcodes of CIL

Opcode Meaning in Life

ldarg (with numerous variations) Loads a method’s argument onto the stack. In addition to
the generic ldarg (which works in conjunction with a given
index that identifies the argument), there are numerous other
variations. For example, ldarg opcodes that have a numerical
suffix (ldarg_0) hard-code which argument to load.
As well, variations of the ldarg opcode allow you to hard-
code the data type using the CIL constant notation shown
in Table 15-4 (ldarg_I4, for an int32) as well as the data type
and value (ldarg_I4_5, to load an int32 with the value of 5).

ldc (with numerous variations) Loads a constant value onto the stack.

ldfld (with numerous variations) Loads the value of an instance-level field onto the stack.

ldloc (with numerous variations) Loads the value of a local variable onto the stack.

4193ch15.qxd 8/14/05 2:55 PM Page 496

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 497

Opcode Meaning in Life

ldobj Obtains all the values gathered by a heap-based object and
places them on the stack.

ldstr Loads a string value onto the stack.

In addition to the set of load-specific opcodes, CIL provides numerous opcodes that explicitly
pop the topmost value off the stack. As shown over the first few examples in this chapter, popping
a value off the stack typically involves storing the value into temporary local storage for further use
(such as a parameter for an upcoming method invocation). Given this, note how many opcodes that
pop the current value off the virtual execution stack take an st (store) prefix. Table 15-7 hits the
highlights.

Table 15-7. Various Pop-Centric Opcodes

Opcode Meaning in Life

pop Removes the value currently on top of the evaluation stack,
but does not bother to store the value

starg Stores the value on top of the stack into the method
argument at a specified index

stloc (with numerous variations) Pops the current value from the top of the evaluation stack
and stores it in a local variable list at a specified index

stobj Copies a value of a specified type from the evaluation stack
into a supplied memory address

stsfld Replaces the value of a static field with a value from the
evaluation stack

Do be aware that various CIL opcodes will implicitly pop values off the stack to perform the
task at hand. For example, if you are attempting to subtract two numbers using the sub opcode, it
should be clear that sub will have to pop off the next two available values before it can perform the
calculation. Once the calculation is complete, the result of the value (surprise, surprise) is pushed
onto the stack once again.

Considering the .maxstack Directive
When you write method implementations using raw CIL, you need to be mindful of a special directive
named .maxstack. As its name suggests, .maxstack establishes the maximum number of variables
that may be pushed onto the stack at any given time during the execution of the method. The good
news is that the .maxstack directive has a default value (8), which should be safe for a vast majority
of methods you may be authoring. However, if you wish to be very explicit, you are able to manually
calculate the number of local variables on the stack and define this value explicitly:

.method public hidebysig instance void
Speak() cil managed

{
// During the scope of this method, exactly
// 1 value (the string literal) is on the stack.
.maxstack 1
ldstr "Hello there..."
call void [mscorlib]System.Console::WriteLine(string)
ret

}

4193ch15.qxd 8/14/05 2:55 PM Page 497

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES498

Declaring Local Variables in CIL
Let’s first check out how to declare a local variable. Assume you wish to build a method in CIL
named MyLocalVariables() that takes no arguments and returns void. Within the method, you wish
to define three local variables of type System.String, System.Int32, and System.Object. In C#, this
member would appear as so (recall that locally scoped variables do not receive a default value and
should be set to an initial state before further use):

public static void MyLocalVariables()
{

string myStr = "CIL me dude...";
int myInt = 33;
object myObj = new object();

}

If you were to construct MyLocalVariables() directly in CIL, you could author the following:

.method public hidebysig static void
MyLocalVariables() cil managed

{
.maxstack 8
// Define three local variables.
.locals init ([0] string myStr, [1] int32 myInt, [2] object myObj)

// Load a string onto the virtual execution stack.
ldstr "CIL me dude..."
// Pop off current value and store in local variable [0].
stloc.0

// Load a constant of type 'i4'
// (shorthand for int32) set to the value 33.
ldc.i4 33
// Pop off current value and store in local variable [1].
stloc.1

// Create a new object and place on stack.
newobj instance void [mscorlib]System.Object::.ctor()
// Pop off current value and store in local variable [2].
stloc.2
ret

}

As you can see, the first step taken to allocate local variables in raw CIL is to make use of the
.locals directive, which is paired with the init attribute. Within the scope of the related parentheses,
your goal is to associate a given numerical index to each variable (seen here as [0], [1], and [2]). As
you can see, each index is identified by its data type and an optional variable name. Once the local
variables have been defined, you load a value onto the stack (using the various load-centric opcodes)
and store the value within the local variable (using the various storage-centric opcodes).

Mapping Parameters to Local Variables in CIL
You have already seen how to declare local variables in raw CIL using the .local init directive; how-
ever, you have yet to see exactly how to map incoming parameters to local methods. Consider the
following static C# method:

public static int Add(int a, int b)
{

return a + b;
}

4193ch15.qxd 8/14/05 2:55 PM Page 498

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 499

This innocent-looking method has a lot to say in terms of CIL. First, the incoming arguments
(a and b) must be pushed onto the virtual execution stack using the ldarg (load argument) opcode.
Next, the add opcode will be used to pop the next two values off the stack and find the summation,
and store the value on the stack yet again. Finally, this sum is popped off the stack and returned to
the caller via the ret opcode. If you were to disassemble this C# method using ildasm.exe, you would
find numerous additional tokens injected by csc.exe, but the crux of the CIL code is quite simple:

.method public hidebysig static int32 Add(int32 a,
int32 b) cil managed

{
.maxstack 2
ldarg.0 // Load 'a' onto the stack.
ldarg.1 // Load 'b' onto the stack.
add // Add both values.
ret

}

The Hidden this Reference
Notice that the two incoming arguments (a and b) are referenced within the CIL code using their
indexed position (index 0 and index 1), given that the virtual execution stack begins indexing at
position 0.

One thing to be very mindful of when you are examining or authoring raw CIL code is that
every (nonstatic) method that takes incoming arguments automatically receives an implicit addi-
tional parameter, which is a reference to the current object (think the C# this keyword). Given this,
if the Add() method were defined as nonstatic

// No longer static!
public int Add(int a, int b)
{

return a + b;
}

the incoming a and b arguments are loaded using ldarg.1 and ldarg.2 (rather than the expected
ldarg.0 and ldarg.1 opcodes). Again, the reason is that slot 0 actually contains the implicit this
reference. Consider the following pseudo-code:

// This is JUST pseudo-code!
.method public hidebysig static int32 AddTwoIntParams(

MyClass_HiddenThisPointer this, int32 a, int32 b) cil managed
{
ldarg.0 // Load MyClass_HiddenThisPointer onto the stack.
ldarg.1 // Load 'a' onto the stack.
ldarg.2 // Load 'b' onto the stack.

...
}

Representing Iteration Constructs in CIL
Iteration constructs in the C# programming language are represented using the for, foreach, while,
and do keywords, each of which has a specific representation in CIL. Consider the classic for loop:

public static void CountToTen()
{

for(int i = 0; i < 10; i++)
;

}

4193ch15.qxd 8/14/05 2:55 PM Page 499

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES500

Now, as you may recall, the br opcodes (br, blt, and so on) are used to control a break in flow
when some condition has been met. In this example, you have set up a condition in which the for
loop should break out of its cycle when the local variable i is equal to the value of 10. With each pass,
the value of 1 is added to i, at which point the test condition is yet again evaluated.

Also recall that when you make use of any of the CIL branching opcodes, you will need to define
a specific code label (or two) that marks the location to jump to when the condition is indeed true.
Given these points, ponder the following (augmented) CIL code generated via ildasm.exe (includ-
ing the autogenerated code labels):

.method public hidebysig static void CountToTen() cil managed
{
.maxstack 2
.locals init ([0] int32 i) // Init the local integer 'i'.
IL_0000: ldc.i4.0 // Load this value onto the stack.
IL_0001: stloc.0 // Store this value at index '0'.
IL_0002: br.s IL_0008 // Jump to IL_0008.
IL_0004: ldloc.0 // Load value of variable at index 0.
IL_0005: ldc.i4.1 // Load the value '1' on the stack.
IL_0006: add // Add current value on the stack at index 0.
IL_0007: stloc.0
IL_0008: ldloc.0 // Load value at index '0'.
IL_0009: ldc.i4.s 10 // Load value of '10' onto the stack.
IL_000b: blt.s IL_0004 // Less than? If so, jump back to IL_0004
IL_000d: ret

}

In a nutshell, this CIL code begins by defining the local int32 and loading it onto the stack. At
this point, you jump back and forth between code label IL_0008 and IL_0004, each time bumping the
value of i by 1 and testing to see whether i is still less than the value 10. If so, you exit the method.

Building a .NET Assembly with CIL
Now that you’ve taken a tour of the syntax and semantics of raw CIL, it’s time to solidify your current
understanding by building a .NET application using nothing but CIL and your text editor of choice.
Specifically, your application will consist of a privately deployed, single-file *.dll that contains two
class type definitions, and a console-based *.exe that interacts with these types.

Building CILCars.dll
The first order of business is to build the *.dll to be consumed by the client. Open a text editor and
create a new *.il file named CILCars.il. This single-file assembly will make use of two external .NET
binaries, and you can begin creating your CIL code file as so:

// Reference mscorlib.dll and
// System.Windows.Forms.dll
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly extern System.Windows.Forms
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

4193ch15.qxd 8/14/05 2:55 PM Page 500

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 501

// Define the single-file assembly.
.assembly CILCars
{
.hash algorithm 0x00008004
.ver 1:0:0:0

}
.module CILCars.dll

As mentioned, this assembly will contain two class types. The first type, CILCar, defines two points
of field data and a custom constructor. The second type, CarInfoHelper, defines a single static method
named DisplayCarInfo(), which takes CILCar as a parameter and returns void. Both types are in the
CILCars namespace. In terms of CIL, CILCar can be implemented as so:

// Implementation of CILCars.CILCar type.
.namespace CILCars
{
.class public auto ansi beforefieldinit CILCar

extends [mscorlib]System.Object
{
// The field data of the CILCar.
.field public string petName
.field public int32 currSpeed

// The custom constructor simply allows the caller
// to assign the field data.
.method public hidebysig specialname rtspecialname

instance void .ctor(int32 c, string p) cil managed
{
.maxstack 8

// Load first arg onto the stack and call base class ctor.
ldarg.0 // 'this' object, not the int32!
call instance void [mscorlib]System.Object::.ctor()

// Now load first and second args onto the stack.
ldarg.0 // 'this' object
ldarg.1 // int32 arg

// Store topmost stack (int 32) member in currSpeed field.
stfld int32 CILCars.CILCar::currSpeed

// Load string arg and store in petName field.
ldarg.0 // 'this' object
ldarg.2 // string arg
stfld string CILCars.CILCar::petName
ret

}
}
}

Keeping in mind that the real first argument for any nonstatic member is the current object ref-
erence, the first block of CIL simply loads the object reference and calls the base class constructor.
Next, you push the incoming constructor arguments onto the stack and store them into the type’s
field data using the stfld (store in field) opcode.

Next, you need to implement the second type in this namespace: CILCarInfo. The meat of the
type is found within the static Display() method. In a nutshell, the role of this method is to take the
incoming CILCar parameter, extract the values of its field data, and display it in a Windows Forms
message box. Here is the complete implementation of CILCarInfo, with analysis to follow:

4193ch15.qxd 8/14/05 2:55 PM Page 501

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES502

.class public auto ansi beforefieldinit CILCarInfo
extends [mscorlib]System.Object

{
.method public hidebysig static void

Display(class CILCars.CILCar c) cil managed
{
.maxstack 8

// We need a local string variable.
.locals init ([0] string caption)

// Load string and the incoming CILCar onto the stack.
ldstr "{0}'s speed is:"
ldarg.0

// Now place the value of the CILCar's petName on the
// stack and call the static String.Format() method.
ldfld string CILCars.CILCar::petName
call string [mscorlib]System.String::Format(string, object)
stloc.0

// Now load the value of the currSpeed field and get its string
// representation (note call to ToString()).
ldarg.0
ldflda int32 CILCars.CILCar::currSpeed
call instance string [mscorlib]System.Int32::ToString()
ldloc.0

// Now call the MessageBox.Show() method with loaded values.
call valuetype [System.Windows.Forms]

System.Windows.Forms.DialogResult
[System.Windows.Forms]
System.Windows.Forms.MessageBox::Show(string, string)

pop
ret

}
}

Although the amount of CIL code is a bit more than you see in the implementation of CILCar,
things are still rather straightforward. First, given that you are defining a static method, you don’t
have to be concerned with the hidden object reference (thus, the ldarg.0 opcode really does load
the incoming CILCar argument).

The method begins by loading a string ("{0}'s speed is") onto the stack, followed by the
CILCar argument. Once these two values are in place, you load the value of the petName field and
call the static System.String.Format() method to substitute the curly bracket placeholder with the
CILCar’s pet name.

The same general procedure takes place when processing the currSpeed field, but note that you
use the ldarga opcode, which loads the argument address onto the stack. At this point, you call
System.Int32.ToString() to transform the value at said address into a string type. Finally, once both
strings have been formatted as necessary, you call the MessageBox.Show() method.

At this point, you are able to compile your new *.dll using ilasm.exe with the following command:

ilasm /dll CILCars.il

and verify the contained CIL using peverify.exe:

peverify CILCars.dll

4193ch15.qxd 8/14/05 2:55 PM Page 502

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 503

Building CILCarClient.exe
Now you can build a simple *.exe assembly that will

• Make a CILCar type.

• Pass the type into the static CILCarInfo.Display() method.

Create a new *.il file and define external references to mscorlib.dll and CILCars.dll (don’t
forget to place a copy of this .NET assembly in the client’s application directory!). Next, define a sin-
gle type (Program) that manipulates the CILCars.dll assembly. Here’s the complete code:

// External assembly refs.
.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}
.assembly extern CILCars
{
.ver 1:0:0:0

}

// Our executable assembly.
.assembly CILCarClient
{
.hash algorithm 0x00008004
.ver 0:0:0:0

}
.module CILCarClient.exe

// Implementation of Program type
.namespace CILCarClient
{
.class private auto ansi beforefieldinit Program
extends [mscorlib]System.Object
{
.method private hidebysig static void
Main(string[] args) cil managed
{
// Marks the entry point of the *.exe.
.entrypoint
.maxstack 8

// Declare a local CILCar type and push
// values on the stack for ctor call.
.locals init ([0] class
[CILCars]CILCars.CILCar myCilCar)
ldc.i4 55
ldstr "Junior"

// Make new CilCar; store and load reference.
newobj instance void
[CILCars]CILCars.CILCar::.ctor(int32, string)

stloc.0
ldloc.0

4193ch15.qxd 8/14/05 2:55 PM Page 503

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES504

Figure 15-4. Your CILCar in action

// Call Display() and pass in topmost value on stack.
call void [CILCars]

CILCars.CILCarInfo::Display(
class [CILCars]CILCars.CILCar)

ret
}

}
}

The one opcode that is important to point out is .entrypoint. Recall from the discussion earlier
in this chapter that this opcode is used to mark which method of an *.exe functions as the entry
point of the module. In fact, given that .entrypoint is how the CLR identifies the initial method to
execute, this method can be called anything at all other than Main(). The remainder of the CIL code
found in the Main() method is your basic pushing and popping of stack-based values.

Do note, however, that the creation of CILCar involves the use of the .newobj opcode. On a related
note, recall that when you wish to invoke a member of a type using raw CIL, you make use of the double-
colon syntax and, as always, make use of the fully qualified name of the type. With this, you can compile
your new file with ilasm.exe, verify your assembly with peverify.exe, and execute your program:

ilasm CilCarClient.il
peverify CilCarClient.exe
CilCarClient.exe

Figure 15-5 shows the end result.

That wraps up the CIL primer and the first goal of this chapter. At this point, I hope you feel
confident that you can open a particular .NET assembly using ildasm.exe and gain a better under-
standing of what exactly is occurring behind the scenes.

Understanding Dynamic Assemblies
As you may have gathered, the process of building a complex .NET application in CIL would be
quite the labor of love. On the one hand, CIL is an extremely expressive programming language
that allows you to interact with all of the programming constructs allowed by the CTS. On the
other hand, authoring raw CIL is tedious, error-prone, and painful. While it is true that knowledge
is power, you may indeed wonder just how important it is to commit the laws of CIL syntax to
memory. The answer is, “It depends.” To be sure, most of your .NET programming endeavors will
not require you to view, edit, or author raw CIL code. However, with the CIL primer behind you,
you are now ready investigate the world of dynamic assemblies (as opposed to static assemblies)
and the role of the System.Reflection.Emit namespace.

The first question you may have is, “What exactly is the difference between static and dynamic
assemblies?” By definition, static assemblies are .NET binaries loaded directly from disk storage,
meaning they are located somewhere on your hard drive in a physical file (or possibly a set of files
in the case of a multifile assembly) at the time the CLR requests them. As you might guess, every
time you compile your C# source code, you end up with a static assembly.

4193ch15.qxd 8/14/05 2:55 PM Page 504

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 505

A dynamic assembly, on the other hand, is created in memory on the fly using the types provided
by the System.Reflection.Emit namespace. The System.Reflection.Emit namespace makes it pos-
sible to create an assembly and its modules, type definitions, and CIL implementation logic at runtime.
Once you have done so, you are then free to save your in-memory binary to disk. This, of course,
results in a new static assembly. To be sure, the process of building a dynamic assembly using the
System.Reflection.Emit namespace does require some level of understanding regarding the nature
of CIL opcodes.

Although creating dynamic assemblies is a fairly advanced (and uncommon) programming task,
they can be useful under various circumstances:

• You are building a .NET programming tool that needs to generate assemblies on demand based
on user input.

• You are building a program that needs to generate proxies to remote types on the fly based
on the obtained metadata.

• You wish to load a static assembly and dynamically insert new types into the binary image.

This being said, let’s check out the types within System.Reflection.Emit.

Exploring the System.Reflection.Emit Namespace
Creating a dynamic assembly requires you to have some familiarity with CIL opcodes, but the types
of the System.Reflection.Emit namespace hide the complexity of CIL as much as possible. For exam-
ple, rather than directly specifying the necessary CIL directives and attributes to define a class type,
you can simply make use of the TypeBuilder class. Likewise, if you wish to define a new instance-level
constructor, you have no need to emit the specialname, rtspecialname, or .ctor tokens; rather, you
can make use of the ConstructorBuilder. Table 15-8 documents the key members of the System.
Reflection.Emit namespace.

Table 15-8. Select Members of the System.Reflection.Emit Namespace

Members Meaning in Life

AssemblyBuilder Used to create an assembly (*.dll or *.exe) at runtime. *.exes
must call the ModuleBuilder.SetEntryPoint() method to set the
method that is the entry point to the module. If no entry point is
specified, a *.dll will be generated.

ModuleBuilder Used to define the set of modules within the current assembly.

EnumBuilder Used to create a .NET enumeration type.

TypeBuilder May be used to create classes, interfaces, structures, and delegates
within a module at runtime.

MethodBuilder Used to create type members (such as methods, local variables,
EventBuilder properties, constructors, and attributes) at runtime.
LocalBuilder
PropertyBuilder
FieldBuilder
ConstructorBuilder
CustomAttributeBuilder
ParameterBuilder

ILGenerator Emits CIL opcodes into a given type member.

OpCodes Provides numerous fields that map to CIL opcodes. This type is
used in conjunction with the various members of System.Reflection.
Emit.ILGenerator.

4193ch15.qxd 8/14/05 2:55 PM Page 505

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES506

In general, the types of the System.Reflection.Emit namespace allow you represent raw CIL
tokens programmatically during the construction of your dynamic binary. You will see many of
these members in the example that follows; however, the ILGenerator type is worth checking out
straightaway.

The Role of the System.Reflection.Emit.ILGenerator
As its name implies, the ILGenerator type’s role is to inject CIL opcodes into a given type member.
Typically, you will not need to directly create ILGenerator objects, but rather receive a valid refer-
ence to the ILGenerator type using the builder-centric types (such as the MethodBuilder and
ConstructorBuilder types), for example:

// Obtain an ILGenerator from a ConstructorBuilder
// object named 'myCtorBuilder'.
ConstructorBuilder myCtorBuilder =
new ConstructorBuilder(/* ...various args... */);

ILGenerator myCILGen = myCtorBuilder.GetILGenerator();

Once you have an ILGenerator in your hands, you are then able to emit the raw CIL opcodes
using any number of methods. Table 15-9 documents some (but not all) methods of ILGenerator.

Table 15-9. Select Methods of ILGenerator

Method Meaning in Life

BeginCatchBlock() Begins a catch block

BeginExceptionBlock() Begins an exception block for a nonfiltered exception

BeginFinallyBlock() Begins a finally block

BeginScope() Begins a lexical scope

DeclareLocal() Declares a local variable

DefineLabel() Declares a new label

Emit() Is overloaded numerous times to allow you to emit CIL opcodes

EmitCall() Pushes a call or callvirt opcode into the CIL stream

EmitWriteLine() Emits a call to Console.WriteLine() with different types of values

EndExceptionBlock() Ends an exception block

EndScope() Ends a lexical scope

ThrowException() Emits an instruction to throw an exception

UsingNamespace() Specifies the namespace to be used in evaluating locals and watches
for the current active lexical scope

The key method of ILGenerator is Emit(), which works in conjunction with the System.Reflec-
tion.Emit.OpCodes class type. As mentioned earlier in this chapter, this type exposes a good number
of read-only fields that map to raw CIL opcodes. The full set of these members are all documented
within online help, and you will see various examples in the pages that follow.

Emitting a Dynamic Assembly
To illustrate the process of defining a .NET assembly at runtime, let’s walk through the process of
creating a single-file dynamic assembly named MyAssembly.dll. Within this module is a class named
HelloWorld. The HelloWorld type supports a default constructor and a custom constructor that is
used to assign the value of a private member variable (theMessage) of type string. In addition,

4193ch15.qxd 8/14/05 2:55 PM Page 506

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 507

HelloWorld supports a public instance method named SayHello(), which prints a greeting to the
standard I/O stream, and another instance method named GetMsg(), which returns the internal pri-
vate string. In effect, you are going to programmatically generate the following class type:

// This class will be created at runtime
// using System.Reflection.Emit.
public class HelloWorld
{

private string theMessage;
HelloWorld() {}
HelloWorld(string s) { theMessage = s;}
public string GetMsg() { return theMessage;}
public void SayHello()
{

System.Console.WriteLine("Hello from the HelloWorld class!");
}

}

Assume you have created a new Visual Studio 2005 console application project workspace named
DynAsmBuilder. Rename your initial class as MyAsmBuilder and define a static method named
CreateMyAsm(). This single method is in charge of the following:

• Defining the characteristics of the dynamic assembly (name, version, etc.)

• Implementing the HelloClass type

• Saving the in-memory assembly to a physical file

Also note that the CreateMyAsm() method takes as a single parameter a System.AppDomain type,
which will be used to obtain access to the AssemblyBuilder type associated with the current application
domain (see Chapter 13 for a discussion of .NET application domains). Here is the complete code,
with analysis to follow:

// The caller sends in an AppDomain type.
public static void CreateMyAsm(AppDomain curAppDomain)
{

// Establish general assembly characteristics.
AssemblyName assemblyName = new AssemblyName();
assemblyName.Name = "MyAssembly";
assemblyName.Version = new Version("1.0.0.0");

// Create new assembly within the current AppDomain.
AssemblyBuilder assembly =

curAppDomain.DefineDynamicAssembly(assemblyName,
AssemblyBuilderAccess.Save);

// Given that we are building a single-file
// assembly, the name of the module is the same as the assembly.
ModuleBuilder module =

assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

// Define a public class named "HelloWorld".
TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",

TypeAttributes.Public);

// Define a private String member variable named "theMessage".
FieldBuilder msgField =

helloWorldClass.DefineField("theMessage", Type.GetType("System.String"),
FieldAttributes.Private);

4193ch15.qxd 8/14/05 2:55 PM Page 507

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES508

// Create the custom ctor.
Type[] constructorArgs = new Type[1];
constructorArgs[0] = typeof(string);
ConstructorBuilder constructor =

helloWorldClass.DefineConstructor(MethodAttributes.Public,
CallingConventions.Standard,
constructorArgs);

ILGenerator constructorIL = constructor.GetILGenerator();
constructorIL.Emit(OpCodes.Ldarg_0);
Type objectClass = typeof(object);
ConstructorInfo superConstructor =

objectClass.GetConstructor(new Type[0]);
constructorIL.Emit(OpCodes.Call, superConstructor);
constructorIL.Emit(OpCodes.Ldarg_0);
constructorIL.Emit(OpCodes.Ldarg_1);
constructorIL.Emit(OpCodes.Stfld, msgField);
constructorIL.Emit(OpCodes.Ret);

// Create the default ctor.
helloWorldClass.DefineDefaultConstructor(MethodAttributes.Public);

// Now create the GetMsg() method.
MethodBuilder getMsgMethod =

helloWorldClass.DefineMethod("GetMsg", MethodAttributes.Public,
typeof(string), null);

ILGenerator methodIL = getMsgMethod.GetILGenerator();
methodIL.Emit(OpCodes.Ldarg_0);
methodIL.Emit(OpCodes.Ldfld, msgField);
methodIL.Emit(OpCodes.Ret);

// Create the SayHello method.
MethodBuilder sayHiMethod =

helloWorldClass.DefineMethod("SayHello",
MethodAttributes.Public, null, null);

methodIL = sayHiMethod.GetILGenerator();
methodIL.EmitWriteLine("Hello from the HelloWorld class!");
methodIL.Emit(OpCodes.Ret);

// 'Bake' the class HelloWorld.
// (Baking is the formal term for emitting the type)
helloWorldClass.CreateType();

// (Optionally) save the assembly to file.
assembly.Save("MyAssembly.dll");

}

Emitting the Assembly and Module Set
The method body begins by establishing the minimal set of characteristics about your assembly,
using the AssemblyName and Version types (defined in the System.Reflection namespace). Next, you
obtain an AssemblyBuilder type via the instance-level AppDomain.DefineDynamicAssembly() method
(recall the caller will pass in an AppDomain reference into the CreateMyAsm() method):

4193ch15.qxd 8/14/05 2:55 PM Page 508

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 509

// Establish general assembly characteristics.
// and gain access to the AssemblyBuilder type
public static void CreateMyAsm(AppDomain curAppDomain)
{

AssemblyName assemblyName = new AssemblyName();
assemblyName.Name = "MyAssembly";
assemblyName.Version = new Version("1.0.0.0");

// Create new assembly within the current AppDomain.
AssemblyBuilder assembly =

curAppDomain.DefineDynamicAssembly(assemblyName,
AssemblyBuilderAccess.Save);

...
}

As you can see, when calling AppDomain.DefineDynamicAssembly(), you must specify the access
mode of the assembly you wish to define, which can be any of the values shown in Table 15-10.

Table 15-10. Values of the AssemblyBuilderAccess Enumeration

Value Meaning in Life

ReflectionOnly Represents that a dynamic assembly that can only be reflected over

Run Represents that a dynamic assembly can be executed in memory but
not saved to disk

RunAndSave Represents that a dynamic assembly can be executed in memory and
saved to disk

Save Represents that a dynamic assembly can be saved to disk but not
executed in memory

The next task is to define the module set for your new assembly. Given that the assembly is
a single file unit, you need to define only a single module. If you were to build a multifile assembly
using the DefineDynamicModule() method, you would specify an optional second parameter that
represents the name of a given module (e.g., myMod.dotnetmodule). However, when creating a single-
file assembly, the name of the module will be identical to the name of the assembly itself. In any
case, once the DefineDynamicModule() method has returned, you are provided with a reference to
a valid ModuleBuilder type:

// The single-file assembly.
ModuleBuilder module =

assembly.DefineDynamicModule("MyAssembly", "MyAssembly.dll");

The Role of the ModuleBuilder Type
ModuleBuilder is key type used during the development of dynamic assemblies. As you would expect,
ModuleBuilder supports a number of members that allow you to define the set of types contained
within a given module (classes, interfaces, structures, etc.) as well as the set of embedded resources
(string tables, images, etc.) contained within (the .NET resource format will be examined in Chapter 15).
Table 15-11 describes a few of the creation-centric methods. (Do note that each method will return
to you a related type that represents the type you wish to construct.)

4193ch15.qxd 8/14/05 2:55 PM Page 509

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES510

Table 15-11. Select Members of the ModuleBuilder Type

Method Meaning in Life

DefineEnum() Used to emit a .NET enum definition

DefineResource() Defines a managed embedded resource to be stored in this module

DefineType() Constructs a TypeBuilder, which allows you to define value types,
interfaces, and class types (including delegates)

The key member of the ModuleBuilder class to be aware of is DefineType(). In addition to spec-
ifying the name of the type (via a simple string), you will also make use of the System.Reflection.
TypeAttributes enum to describe the format of the type itself. Table 15-12 lists some (but not all) of
the key members the TypeAttributes enumeration.

Table 15-12. Select Members of the TypeAttributes Enumeration

Member Meaning in Life

Abstract Specifies that the type is abstract

Class Specifies that the type is a class

Interface Specifies that the type is an interface

NestedAssembly Specifies that the class is nested with assembly visibility and is thus
accessible only by methods within its assembly

NestedFamAndAssem Specifies that the class is nested with assembly and family visibility, and
is thus accessible only by methods lying in the intersection of its family
and assembly

NestedFamily Specifies that the class is nested with family visibility and is thus
accessible only by methods within its own type and any subtypes

NestedFamORAssem Specifies that the class is nested with family or assembly visibility, and
is thus accessible only by methods lying in the union of its family and
assembly

NestedPrivate Specifies that the class is nested with private visibility

NestedPublic Specifies that the class is nested with public visibility

NotPublic Specifies that the class is not public

Public Specifies that the class is public

Sealed Specifies that the class is concrete and cannot be extended

Serializable Specifies that the class can be serialized

Emitting the HelloClass Type and the String Member Variable
Now that you have a better understanding of the role of the ModuleBuilder.CreateType() method,
let’s examine how you can emit the public HelloWorld class type and the private string variable:

// Define a public class named "MyAssembly.HelloWorld".
TypeBuilder helloWorldClass = module.DefineType("MyAssembly.HelloWorld",

TypeAttributes.Public);

// Define a private String member variable named "theMessage".
FieldBuilder msgField =

helloWorldClass.DefineField("theMessage",
typeof(string),
FieldAttributes.Private);

4193ch15.qxd 8/14/05 2:55 PM Page 510

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 511

Notice how the TypeBuilder.DefineField() method provides access to a FieldBuilder type. The
TypeBuilder class also defines other methods that provide access to other “builder” types. For example,
DefineConstructor() returns a ConstructorBuilder, DefineProperty() returns a PropertyBuilder,
and so forth.

Emitting the Constructors
As mentioned earlier, the TypeBuilder.DefineConstructor() method can be used to define a construc-
tor for the current type. However, when it comes to implementing the constructor of HelloClass, you
need to inject raw CIL code into the constructor body, which is responsible for assigning the incoming
parameter to the internal private string. To obtain an ILGenerator type, you call the GetILGenerator()
method from the respective “builder” type you have reference to (in this case, the ConstructorBuilder
type).

The Emit() method of the ILGenerator class is the entity in charge of placing CIL into a member
implementation. Emit() itself makes frequent use of the OpCodes class type, which exposes the opcode
set of CIL using read-only fields. For example, OpCodes.Ret signals the return of a method call. OpCodes.
Stfld makes an assignment to a member variable. OpCodes.Call is used to call a given method (in
this case, the base class constructor). That said, ponder the following constructor logic:

// Create the custom constructor taking
// a single System.String argument.
Type[] constructorArgs = new Type[1];
constructorArgs[0] = typeof(string);
ConstructorBuilder constructor =

helloWorldClass.DefineConstructor(MethodAttributes.Public,
CallingConventions.Standard, constructorArgs);

// Now emit the necessary CIL into the ctor.
ILGenerator constructorIL = constructor.GetILGenerator();
constructorIL.Emit(OpCodes.Ldarg_0);
Type objectClass = typeof(object);
ConstructorInfo superConstructor = objectClass.GetConstructor(new Type[0]);
constructorIL.Emit(OpCodes.Call, superConstructor); // Call base class ctor.

// Load the object's 'this' pointer on the stack.
constructorIL.Emit(OpCodes.Ldarg_0);

// load incoming argument on virtual stack and store in msgField.
constructorIL.Emit(OpCodes.Ldarg_1);
constructorIL.Emit(OpCodes.Stfld, msgField); // Assign msgField.
constructorIL.Emit(OpCodes.Ret); // Return.

Now, as you are well aware, as soon as you define a custom constructor for a type, the default
constructor is silently removed. To redefine the no-argument constructor, simply call the DefineDe-
faultConstructor() method of the TypeBuilder type as so:

// Reinsert the default ctor.
helloWorldClass.DefineDefaultConstructor(MethodAttributes.Public);

This single call emits the standard CIL code used to define a default constructor:

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

{
.maxstack 1
ldarg.0

4193ch15.qxd 8/14/05 2:55 PM Page 511

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES512

call instance void [mscorlib]System.Object::.ctor()
ret

}

Emitting the HelloWorld() Method
Last but not least, let’s examine the process of emitting the SayHello() method. The first task is to
obtain a MethodBuilder type from the helloWorldClass variable. Once you do this, you define the
method and obtain the underlying ILGenerator to inject the CIL instructions:

// Create the SayHello method.
MethodBuilder sayHiMethod =

helloWorldClass.DefineMethod("SayHello",
MethodAttributes.Public, null, null);

methodIL = sayHiMethod.GetILGenerator();

// Write a line to the Console.
methodIL.EmitWriteLine("Hello there!");
methodIL.Emit(OpCodes.Ret);

Here you have established a public method (MethodAttributes.Public) that takes no parameters
and returns nothing (marked by the null entries contained in the DefineMethod() call). Also note the
EmitWriteLine() call. This helper member of the ILGenerator class automatically writes a line to
the standard output with minimal fuss and bother.

Using the Dynamically Generated Assembly
Now that you have the logic in place to create and save your assembly, all that’s needed is a class to
trigger the logic. To come full circle, assume your current project defines a second class named
AsmReader. The logic in Main() obtains the current AppDomain via the Thread.GetDoMain() method
that will be used to host the assembly you will dynamically create. Once you have a reference, you
are able to call the CreateMyAsm() method.

To make things a bit more interesting, once the call to CreateMyAsm() returns, you will exercise
some late binding (see Chapter 12) to load your newly created assembly into memory and interact
with the members of the HelloWorld class:

using System;
using System.Reflection.Emit;
using System.Reflection;
using System.Threading;
...
public class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** The Amazing Dynamic Assembly Builder App *****");
// Get the application domain for the current thread.
AppDomain curAppDomain = Thread.GetDomain();

// Create the dynamic assembly using our helper f(x).
CreateMyAsm(curAppDomain);
Console.WriteLine("-> Finished creating MyAssembly.dll.");

4193ch15.qxd 8/14/05 2:55 PM Page 512

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES 513

// Now load the new assembly from file.
Console.WriteLine("-> Loading MyAssembly.dll from file.");
Assembly a = Assembly.Load("MyAssembly");

// Get the HelloWorld type.
Type hello = a.GetType("MyAssembly.HelloWorld");

// Create HelloWorld object and call the correct ctor.
Console.Write("-> Enter message to pass HelloWorld class: ");
string msg = Console.ReadLine();
object[] ctorArgs = new object[1];
ctorArgs[0] = msg;
object obj = Activator.CreateInstance(hello, ctorArgs);

// Call SayHello and show returned string.
Console.WriteLine("-> Calling SayHello() via late binding.");
MethodInfo mi = hello.GetMethod("SayHello");
mi.Invoke(obj, null);

// Trigger GetMsg(). Invoke() returns an object that
// holds the method's return value.
mi = hello.GetMethod("GetMsg");
Console.WriteLine(mi.Invoke(obj, null));

}
}

In effect, you have just created a .NET assembly that is able to create .NET assemblies at runtime.
That wraps up our examination of CIL and the role of dynamic assemblies. I hope this chapter

has deepened your understanding of the .NET type system and the syntax and semantics of CIL.

■Note Be sure to load your dynamically created assembly into ildasm.exe to connect the dots between raw
CIL code and the functionality within the System.Reflection.Emit namespace.

■Source Code The DynAsmBuilder application is included under the Chapter 15 subdirectory.

A Brief Word Regarding System.CodeDOM
Now that you have seen how to build dynamic assemblies using System.Reflection.Emit and various
CIL tokens, I must confess there is another (often easier) alternative. The .NET platform provides
a technology termed code DOM that allows you to represent the structure of a .NET type in language-
agnostic terms via a related object graph. Once this graph has been established using members of
the System.CodeDOM namespace, you are able to dynamically persist its contents in language-specific
code files (C#, Visual Basic .NET, or any third-party language that supports a code DOM provider).
As well, the System.CodeDOM.Compiler namespace (and related namespaces) can be used to compile
an in-memory (or persisted) object graph into a valid static .NET assembly.

Alas, I don’t have the space to include information regarding code DOM technology in this edi-
tion of the text. If you require more information, look up the topic “CodeDOM, quick reference” within
the .NET Framework 2.0 SDK documentation.

4193ch15.qxd 8/14/05 2:55 PM Page 513

CHAPTER 15 ■ UNDERSTANDING CIL AND THE ROLE OF DYNAMIC ASSEMBLIES514

Summary
This chapter provided an overview of the syntax and semantics of CIL. Unlike higher-level managed
languages such as C#, CIL does not simply define a set of keywords, but provides directives (used to
define the structure of an assembly and its types), attributes (which further qualify a given directive),
and opcodes (which are used to implementation type members). You were introduced to the CIL
compiler (ilasm.exe) and learned how to alter the contents of a .NET assembly with new CIL code
and also the basic process of building a .NET assembly using raw CIL.

The latter half of this chapter introduced you to the System.Reflection.Emit namespace. Using
these types, you are able to emit a .NET assembly on the fly to memory. As well, if you so choose, you
may persist this in-memory image to a physical file. Recall that many types of System.Reflection.Emit
will automatically generate the correct CIL directives and attributes using friendly types such as
ConstructorBuilder, TypeBuilder, and so forth. The ILGenerator type can be used to inject the nec-
essary CIL opcodes into a given member. While we do have a number of helper types that attempt
to make the process of programming with the CIL opcode set more palatable, you must have an
understanding of CIL when programming with dynamic assemblies.

4193ch15.qxd 8/14/05 2:55 PM Page 514

Programming with the
.NET Libraries

P A R T 4

■ ■ ■

4193ch16.qxd 8/14/05 2:57 PM Page 515

4193ch16.qxd 8/14/05 2:57 PM Page 516

The System.IO Namespace

When you are creating full-blown desktop applications, the ability to save information between
user sessions is imperative. This chapter examines a number of I/O-related topics as seen through
the eyes of the .NET Framework. The first order of business is to explore the core types defined in
the System.IO namespace and come to understand how to programmatically modify a machine’s
directory and file structure. Once you can do so, the next task is to explore various ways to read
from and write to character-based, binary-based, string-based, and memory-based data stores.

Exploring the System.IO Namespace
In the framework of .NET, the System.IO namespace is the region of the base class libraries devoted
to file-based (and memory-based) input and output (I/O) services. Like any namespace, System.IO
defines a set of classes, interfaces, enumerations, structures, and delegates, most of which are con-
tained in mscorlib.dll. In addition to the types contained within mscorlib.dll, the System.dll
assembly defines additional members of the System.IO namespace (given that all Visual Studio 2005
projects automatically set a reference to both assemblies, you should be ready to go).

Many of the types within the System.IO namespace focus on the programmatic manipulation
of physical directories and files. However, additional types provide support to read data from and
write data to string buffers as well as raw memory locations. To give you a road map of the function-
ality in System.IO, Table 16-1 outlines the core (nonabstract) classes.

Table 16-1. Key Members of the System.IO Namespace

Nonabstract I/O Class Type Meaning in Life

BinaryReader These types allow you to store and retrieve primitive data types
BinaryWriter (integers, Booleans, strings, and whatnot) as a binary value.

BufferedStream This type provides temporary storage for a stream of bytes that
may be committed to storage at a later time.

Directory These types are used to manipulate a machine’s directory
DirectoryInfo structure. The Directory type exposes functionality primarily as

static methods. The DirectoryInfo type exposes similar
functionality from a valid object variable.

DriveInfo This type (new to .NET 2.0) provides detailed information
regarding the drives on a given machine.

Continued

517

C H A P T E R 1 6

■ ■ ■

4193ch16.qxd 8/14/05 2:57 PM Page 517

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE518

Table 16-1. (Continued)

Nonabstract I/O Class Type Meaning in Life

File These types are used to manipulate a machine’s set of files. The
FileInfo File type exposes functionality primarily as static methods. The

FileInfo type exposes similar functionality from a valid object
variable.

FileStream This type allows for random file access (e.g., seeking capabilities)
with data represented as a stream of bytes.

FileSystemWatcher This type allows you to monitor the modification of a given
external file.

MemoryStream This type provides random access to streamed data stored in
memory rather than a physical file.

Path This type performs operations on System.String types that contain
file or directory path information in a platform-neutral manner.

StreamWriter These types are used to store (and retrieve) textual information
StreamReader to (or from) a file. These types do not support random file access.

StringWriter Like the StreamReader/StreamWriter types, these classes also
StringReader work with textual information. However, the underlying storage

is a string buffer rather than a physical file.

In addition to these creatable class types, System.IO defines a number of enumerations, as well
as a set of abstract classes (Stream, TextReader, TextWriter, and so forth), that define a shared poly-
morphic interface to all descendents. You will read about many of these types in this chapter.

The Directory(Info) and File(Info) Types
System.IO provides four types that allow you to manipulate individual files, as well as interact with
a machine’s directory structure. The first two types, Directory and File, expose creation, deletion,
copying, and moving operations using various static members. The closely related FileInfo and
DirectoryInfo types expose similar functionality as instance-level methods (and therefore must be
“new-ed”). In Figure 16-1, notice that the Directory and File types directly extend System.Object,
while DirectoryInfo and FileInfo derive from the abstract FileSystemInfo type.

Figure 16-1. The File- and Directory-centric types

4193ch16.qxd 8/14/05 2:57 PM Page 518

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 519

Generally speaking, FileInfo and DirectoryInfo are better choices for recursive operations
(such as enumerating all subdirectories under a given root), as the Directory and File class mem-
bers tend to return string values rather than strongly typed objects.

The Abstract FileSystemInfo Base Class
The DirectoryInfo and FileInfo types receive many behaviors from the abstract FileSystemInfo
base class. For the most part, the members of the FileSystemInfo class are used to discover general
characteristics (such as time of creation, various attributes, and so forth) about a given file or direc-
tory. Table 16-2 lists some core properties of interest.

Table 16-2. FileSystemInfo Properties

Property Meaning in Life

Attributes Gets or sets the attributes associated with the current file that are
represented by the FileAttributes enumeration.

CreationTime Gets or sets the time of creation for the current file or directory.

Exists Can be used to determine if a given file or directory exists.

Extension Retrieves a file’s extension.

FullName Gets the full path of the directory or file.

LastAccessTime Gets or sets the time the current file or directory was last accessed.

LastWriteTime Gets or sets the time when the current file or directory was last written to.

Name For files, gets the name of the file. For directories, gets the name of the last
directory in the hierarchy if a hierarchy exists. Otherwise, the Name property
gets the name of the directory.

The FileSystemInfo type also defines the Delete() method. This is implemented by derived
types to delete a given file or directory from the hard drive. As well, Refresh() can be called prior to
obtaining attribute information to ensure that the statistics regarding the current file (or directory)
are not outdated.

Working with the DirectoryInfo Type
The first creatable I/O-centric type you will examine is the DirectoryInfo class. This class contains
a set of members used for creating, moving, deleting, and enumerating over directories and subdi-
rectories. In addition to the functionality provided by its base class (FileSystemInfo), DirectoryInfo
offers the key members in Table 16-3.

Table 16-3. Key Members of the DirectoryInfo Type

Members Meaning in Life

Create() Create a directory (or set of subdirectories), given a path name
CreateSubdirectory()

Delete() Deletes a directory and all its contents

GetDirectories() Returns an array of strings that represent all subdirectories in the
current directory

Continued

4193ch16.qxd 8/14/05 2:57 PM Page 519

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE520

Table 16-3. (Continued)

Members Meaning in Life

GetFiles() Retrieves an array of FileInfo types that represent a set of files in the
given directory

MoveTo() Moves a directory and its contents to a new path

Parent Retrieves the parent directory of the specified path

Root Gets the root portion of a path

You begin working with the DirectoryInfo type by specifying a particular directory path as
a constructor parameter. If you want to obtain access to the current application directory (i.e., the
directory of the executing application), use the "." notation. Here are some examples:

// Bind to the current application directory.
DirectoryInfo dir1 = new DirectoryInfo(".");

// Bind to C:\Windows,
// using a verbatim string.
DirectoryInfo dir2 = new DirectoryInfo(@"C:\Windows");

In the second example, you are making the assumption that the path passed into the construc-
tor (C:\Windows) already exists on the physical machine. However, if you attempt to interact with
a nonexistent directory, a System.IO.DirectoryNotFoundException is thrown. Thus, if you specify
a directory that is not yet created, you will need to call the Create() method before proceeding:

// Bind to a nonexistent directory, then create it.
DirectoryInfo dir3 = new DirectoryInfo(@"C:\Windows\Testing");
dir3.Create();

Once you have created a DirectoryInfo object, you can investigate the underlying directory
contents using any of the properties inherited from FileSystemInfo. To illustrate, the following class
creates a new DirectoryInfo object mapped to C:\Windows (adjust your path if need be) and displays
a number of interesting statistics (see Figure 16-2 for output):

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Directory(Info) *****\n");
DirectoryInfo dir = new DirectoryInfo(@"C:\Windows");

// Dump directory information.
Console.WriteLine("***** Directory Info *****");
Console.WriteLine("FullName: {0} ", dir.FullName);
Console.WriteLine("Name: {0} ", dir.Name);
Console.WriteLine("Parent: {0} ", dir.Parent);
Console.WriteLine("Creation: {0} ", dir.CreationTime);
Console.WriteLine("Attributes: {0} ", dir.Attributes);
Console.WriteLine("Root: {0} ", dir.Root);
Console.WriteLine("**************************\n");

}
}

4193ch16.qxd 8/14/05 2:57 PM Page 520

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 521

The FileAttributes Enumeration
The Attributes property exposed by FileSystemInfo provides various traits for the current directory
or file, all of which are represented by the FileAttributes enumeration (enum). While the names of
this enum are fairly self-describing, some of the less obvious names are documented here (consult
the .NET Framework 2.0 SDK documentation for full details):

public enum FileAttributes
{

ReadOnly,
Hidden,
// The file is part of the operating system or is used
// exclusively by the operating system
System,
Directory,
Archive,
// This name is reserved for future use.
Device,
// The file is 'normal' as it has no other attributes set.
Normal,
Temporary,
// Sparse files are typically large files whose data are mostly zeros.
SparseFile,
// A block of user-defined data associated with a file or a directory
ReparsePoint,
Compressed,
Offline,
// The file will not be indexed by the operating system's
// content indexing service.
NotContentIndexed,
Encrypted

}

Enumerating Files with the DirectoryInfo Type
In addition to obtaining basic details of an existing directory, you can extend the current example to
use some methods of the DirectoryInfo type. First, let’s leverage the GetFiles() method to obtain
information about all *.bmp files located under the C:\Windows directory. This method returns an
array of FileInfo types, each of which exposes details of a particular file (full details of the FileInfo
type are explored later in this chapter):

Figure 16-2. Information about your Windows directory

4193ch16.qxd 8/14/05 2:57 PM Page 521

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Directory(Info) *****\n");
DirectoryInfo dir = new DirectoryInfo(@"C:\Windows");
...
// Get all files with a *.bmp extension.
FileInfo[] bitmapFiles = dir.GetFiles("*.bmp");

// How many were found?
Console.WriteLine("Found {0} *.bmp files\n", bitmapFiles.Length);

// Now print out info for each file.
foreach (FileInfo f in bitmapFiles)
{

Console.WriteLine("***************************\n");
Console.WriteLine("File name: {0} ", f.Name);
Console.WriteLine("File size: {0} ", f.Length);
Console.WriteLine("Creation: {0} ", f.CreationTime);
Console.WriteLine("Attributes: {0} ", f.Attributes);
Console.WriteLine("***************************\n");

}
}

}

Once you run the application, you see a listing something like that shown in Figure 16-3. (Your
bitmaps may vary!)

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE522

Figure 16-3. Bitmap file information

Creating Subdirectories with the DirectoryInfo Type
You can programmatically extend a directory structure using the DirectoryInfo.CreateSubdirectory()
method. This method can create a single subdirectory, as well as multiple nested subdirectories, in
a single function call. To illustrate, here is a block of code that extends the directory structure of
C:\Windows with some custom subdirectories:

4193ch16.qxd 8/14/05 2:57 PM Page 522

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 523

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Directory(Info) *****\n");
DirectoryInfo dir = new DirectoryInfo(@"C:\Windows");
...
// Create \MyFoo off initial directory.
dir.CreateSubdirectory("MyFoo");

// Create \MyBar\MyQaaz off initial directory.
dir.CreateSubdirectory(@"MyBar\MyQaaz");

}
}

If you examine your Windows directory using Windows Explorer, you will see that the new sub-
directories are present and accounted for (see Figure 16-4).

Figure 16-4. Creating subdirectories

Although you are not required to capture the return value of the CreateSubdirectory() method,
be aware that a DirectoryInfo type representing the newly created item is passed back on successful
execution:

// CreateSubdirectory() returns a DirectoryInfo item representing the new item.
DirectoryInfo d = dir.CreateSubdirectory("MyFoo");
Console.WriteLine("Created: {0} ", d.FullName);

d = dir. CreateSubdirectory(@"MyBar\MyQaaz");
Console.WriteLine("Created: {0} ", d.FullName);

Working with the Directory Type
Now that you have seen the DirectoryInfo type in action, you can learn about the Directory type.
For the most part, the members of Directory mimic the functionality provided by the instance-level
members defined by DirectoryInfo. Recall, however, that the members of Directory typically return
string types rather than strongly typed FileInfo/DirectoryInfo types.

To illustrate some functionality of the Directory type, the final iteration of this example displays
the names of all drives mapped to the current computer (via the Directory.GetLogicalDrives()
method) and uses the static Directory.Delete() method to remove the \MyFoo and \MyBar\MyQaaz
subdirectories previously created:

4193ch16.qxd 8/14/05 2:57 PM Page 523

class Program
{

static void Main(string[] args)
{

...
// List all drives on current computer.
string[] drives = Directory.GetLogicalDrives();
Console.WriteLine("Here are your drives:");
foreach(string s in drives)

Console.WriteLine("—>{0} ", s);

// Delete what was created.
Console.WriteLine("Press Enter to delete directories");
Console.ReadLine();
try
{

Directory.Delete(@"C:\Windows\MyFoo");

// The second parameter specifies if you
// wish to destroy any subdirectories.
Directory.Delete(@"C:\Windows\MyBar", true);

}
catch(IOException e)
{

Console.WriteLine(e.Message);
}

}
}

■Source Code The MyDirectoryApp project is located under the Chapter 16 subdirectory.

Working with the DriveInfo Class Type
As of .NET 2.0, the System.IO namespace provides a class named DriveInfo. Like Directory.
GetLogicalDrives(), the static DriveInfo.GetDrives() method allows you to discover the names of
a machine’s drives. Unlike Directory.GetLogicalDrives(), however, DriveInfo provides numerous
other details (such as the drive type, available free space, volume label, and whatnot). Consider the
following sample code:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with DriveInfo *****\n");

// Get info regarding all drives.
DriveInfo[] myDrives = DriveInfo.GetDrives();

// Now print drive stats.
foreach(DriveInfo d in myDrives)
{

Console.WriteLine("Name: {0}", d.Name);
Console.WriteLine("Type: {0}", d.DriveType);

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE524

4193ch16.qxd 8/14/05 2:57 PM Page 524

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 525

// Check to see if the drive is mounted.
if (d.IsReady)
{

Console.WriteLine("Free space: {0}", d.TotalFreeSpace);
Console.WriteLine("Format: {0}", d.DriveFormat);
Console.WriteLine("Label: {0}\n", d.VolumeLabel);

}
}
Console.ReadLine();

}
}

Figure 16-5 shows the output based on my current machine.

Figure 16-5. Gather drive details via DriveInfo

At this point, you have investigated some core behaviors of the Directory, DirectoryInfo, and
DriveInfo classes. Next, you’ll learn how to create, open, close, and destroy the files that populate
a given directory.

■Source Code The DriveTypeApp project is located under the Chapter 16 subdirectory.

Working with the FileInfo Class
As shown in the MyDirectoryApp example, the FileInfo class allows you to obtain details regarding
existing files on your hard drive (time created, size, file attributes, and so forth) and aids in the cre-
ation, copying, moving, and destruction of files. In addition to the set of functionality inherited by
FileSystemInfo are some core members unique to the FileInfo class, which are described in Table 16-4.

4193ch16.qxd 8/14/05 2:57 PM Page 525

Table 16-4. FileInfo Core Members

Member Meaning in Life

AppendText() Creates a StreamWriter type (described later) that appends text to a file

CopyTo() Copies an existing file to a new file

Create() Creates a new file and returns a FileStream type (described later) to interact
with the newly created file

CreateText() Creates a StreamWriter type that writes a new text file

Delete() Deletes the file to which a FileInfo instance is bound

Directory Gets an instance of the parent directory

DirectoryName Gets the full path to the parent directory

Length Gets the size of the current file or directory

MoveTo() Moves a specified file to a new location, providing the option to specify a new
filename

Name Gets the name of the file

Open() Opens a file with various read/write and sharing privileges

OpenRead() Creates a read-only FileStream

OpenText() Creates a StreamReader type (described later) that reads from an existing text file

OpenWrite() Creates a write-only FileStream type

It is important to understand that a majority of the members of the FileInfo class return a spe-
cific I/O-centric object (FileStream, StreamWriter, and so forth) that allows you to begin reading
and writing data to (or reading from) the associated file in a variety of formats. You will check out
these types in just a moment, but until then, let’s examine various ways to obtain a file handle using
the FileInfo class type.

The FileInfo.Create() Method
The first way you can create a file handle is to make use of the FileInfo.Create() method:

public class Program
{

static void Main(string[] args)
{

// Make a new file on the C drive.
FileInfo f = new FileInfo(@"C:\Test.dat");
FileStream fs = f.Create();

// Use the FileStream object...

// Close down file stream.
fs.Close();

}
}

Notice that the FileInfo.Create() method returns a FileStream type, which exposes synchronous
and asynchronous write/read operations to/from the underlying file. Do know that the FileStream
object returned by FileInfo.Create() grants full read/write access to all users.

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE526

4193ch16.qxd 8/14/05 2:57 PM Page 526

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 527

The FileInfo.Open() Method
You can use the FileInfo.Open() method to open existing files as well as create new files with far
more precision than FileInfo.Create(). Once the call to Open() completes, you are returned
a FileStream object. Ponder the following logic:

static void Main(string[] args)
{
...

// Make a new file via FileInfo.Open().
FileInfo f2 = new FileInfo(@"C:\Test2.dat");
FileStream fs2 = f2.Open(FileMode.OpenOrCreate,

FileAccess.ReadWrite, FileShare.None);

// Use the FileStream object...

// Close down file stream.
fs2.Close();

}

This version of the overloaded Open() method requires three parameters. The first parameter
specifies the general flavor of the I/O request (e.g., make a new file, open an existing file, append to
a file, etc.), which is specified using the FileMode enumeration:

public enum FileMode
{

// Specifies that the operating system should create a new file.
// If the file already exists, a System.IO.IOException is thrown.
CreateNew,
// Specifies that the operating system should create a new file.
// If the file already exists, it will be overwritten.
Create,
Open,
// Specifies that the operating system should open a file if it exists;
otherwise, a new file should be created.
OpenOrCreate,
Truncate,
Append

}

The second parameter, a value from the FileAccess enumeration, is used to determine the
read/write behavior of the underlying stream:

public enum FileAccess
{

Read,
Write,
ReadWrite

}

Finally, you have the third parameter, FileShare, which specifies how the file is to be shared
among other file handlers. Here are the core names:

public enum FileShare
{

None,
Read,
Write,
ReadWrite

}

4193ch16.qxd 8/14/05 2:57 PM Page 527

The FileInfo.OpenRead() and FileInfo.OpenWrite() Methods
While the FileInfo.Open() method allows you to obtain a file handle in a very flexible manner, the
FileInfo class also provides members named OpenRead() and OpenWrite(). As you might imagine,
these methods return a properly configured read-only or write-only FileStream type, without the
need to supply various enumeration values. Like FileInfo.Create() and FileInfo.Open(), OpenRead()
and OpenWrite() return a FileStream object:

static void Main(string[] args)
{
...

// Get a FileStream object with read-only permissions.
FileInfo f3 = new FileInfo(@"C:\Test3.dat");
FileStream readOnlyStream = f3.OpenRead();

// Use the FileStream object...

readOnlyStream.Close();

// Now get a FileStream object with write-only permissions.
FileInfo f4 = new FileInfo(@"C:\ Test4.dat");
FileStream writeOnlyStream = f4.OpenWrite();

// Use the FileStream object...

writeOnlyStream.Close();
}

The FileInfo.OpenText() Method
Another open-centric member of the FileInfo type is OpenText(). Unlike Create(), Open(), OpenRead(),
and OpenWrite(), the OpenText() method returns an instance of the StreamReader type, rather than
a FileStream type:

static void Main(string[] args)
{
...

// Get a StreamReader object.
FileInfo f5 = new FileInfo(@"C:\boot.ini");
StreamReader sreader = f5.OpenText();

// Use the StreamReader object...

sreader.Close();
}

As you will see shortly, the StreamReader type provides a way to read character data from the
underlying file.

The FileInfo.CreateText() and FileInfo.AppendText() Methods
The final two methods of interest at this point are CreateText() and AppendText(), both of which
return a StreamWriter reference, as shown here:

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE528

4193ch16.qxd 8/14/05 2:57 PM Page 528

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 529

static void Main(string[] args)
{
...

FileInfo f6 = new FileInfo(@"C:\Test5.txt");
StreamWriter swriter = f6.CreateText();

// Use the StreamWriter object...

swriter.Close();

FileInfo f7 = new FileInfo(@"C:\FinalTest.txt");
StreamWriter swriterAppend = f7.AppendText();

// Use the StreamWriter object...

swriterAppend.Close();
}

As you would guess, the StreamWriter type provides a way to write character data to the under-
lying file.

Working with the File Type
The File type provides functionality almost identical to that of the FileInfo type, using a number
of static members. Like FileInfo, File supplies AppendText(), Create(), CreateText(), Open(),
OpenRead(), OpenWrite(), and OpenText() methods. In fact, in many cases, the File and FileStream
types may be used interchangeably. To illustrate, each of the previous FileStream examples can be
simplified by using the File type instead:

static void Main(string[] args)
{

// Obtain FileStream object via File.Create().
FileStream fs = File.Create(@"C:\Test.dat");
fs.Close();

// Obtain FileStream object via File.Open().
FileStream fs2 = File.Open(@"C:\Test2.dat",

FileMode.OpenOrCreate,
FileAccess.ReadWrite, FileShare.None);

fs2.Close();

// Get a FileStream object with read-only permissions.
FileStream readOnlyStream = File.OpenRead(@"Test3.dat");
readOnlyStream.Close();

// Get a FileStream object with write-only permissions.
FileStream writeOnlyStream = File.OpenWrite(@"Test4.dat");
writeOnlyStream.Close();

// Get a StreamReader object.
StreamReader sreader = File.OpenText(@"C:\boot.ini");
sreader.Close();

4193ch16.qxd 8/14/05 2:57 PM Page 529

// Get some StreamWriters.
StreamWriter swriter = File.CreateText(@"C:\Test3.txt");
swriter.Close();
StreamWriter swriterAppend = File.AppendText(@"C:\FinalTest.txt");
swriterAppend.Close();

}

New .NET 2.0 File Members
Unlike FileInfo, the File type supports a few unique members (as of .NET 2.0) shown in Table 16-5,
which can greatly simplify the processes of reading and writing textual data.

Table 16-5. Methods of the File Type

Method Meaning in Life

ReadAllBytes() Opens the specified file, returns the binary data as an array of bytes, and
then closes the file

ReadAllLines() Opens a specified file, returns the character data as an array of strings, and
then closes the file

ReadAllText() Opens a specified file, returns the character data as a System.String, and
then closes the file

WriteAllBytes() Opens the specified file, writes out the byte array, and then closes the file

WriteAllLines() Opens a specified file, writes out an array of strings, and then closes the file

WriteAllText() Opens a specified file, writes the character data, and then closes the file

Using these new methods of the File type, you are able to read and write batches of data in just
a few lines of code. Even better, each of these new members automatically closes down the underly-
ing file handle, for example:

class Program
{

static void Main(string[] args)
{

string[] myTasks = {
"Fix bathroom sink",
"Call Dave",
"Call Mom and Dad",
"Play XBox"};

// Write out all data to file on C drive.
File.WriteAllLines(@"C:\tasks.txt", myTasks);

// Read it all back and print out.
foreach (string task in File.ReadAllLines(@"C:\tasks.txt"))
{

Console.WriteLine("TODO: {0}", task);
}

}
}

Clearly, when you wish to quickly obtain a file handle, the File type will save you some keystrokes.
However, one benefit of first creating a FileInfo object is that you are able to investigate the file using
the members of the abstract FileSystemInfo base class:

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE530

4193ch16.qxd 8/14/05 2:57 PM Page 530

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 531

static void Main(string[] args)
{

// Display info about boot.ini and then open
// for read-only access.
FileInfo bootFile = new FileInfo(@"C:\boot.ini");
Console.WriteLine(bootFile.CreationTime);
Console.WriteLine(bootFile.LastAccessTime);
FileStream readOnlyStream = bootFile.OpenRead();
readOnlyStream.Close();

}

The Abstract Stream Class
At this point, you have seen numerous ways to obtain FileStream, StreamReader, and StreamWriter
objects, but you have yet to read data from, or written data to, a file using these types. To under-
stand how to do so, you’ll need to become familiar with the concept of a stream. In the world of I/O
manipulation, a stream represents a chunk of data. Streams provide a common way to interact with
a sequence of bytes, regardless of what kind of device (file, network connection, printer, etc.) is storing
or displaying the bytes in question.

The abstract System.IO.Stream class defines a number of members that provide support for
synchronous and asynchronous interactions with the storage medium (e.g., an underlying file or
memory location). Figure 16-6 shows a few descendents of the Stream type.

Figure 16-6. Stream-derived types

■Note Be aware that the concept of a stream is not limited to files or memory locations. To be sure, the .NET
libraries provide stream access to networks and other stream-centric abstractions.

Again, Stream descendents represent data as a raw stream of bytes; therefore, working with raw
streams can be quite cryptic. Some Stream-derived types support seeking, which refers to the process
of obtaining and adjusting the current position in the stream. To begin understanding the function-
ality provided by the Stream class, take note of the core members described in Table 16-6.

4193ch16.qxd 8/14/05 2:57 PM Page 531

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE532

Table 16-6. Abstract Stream Members

Members Meaning in Life

CanRead Determine whether the current stream supports reading, seeking, and/or
CanSeek writing.
CanWrite

Close() Closes the current stream and releases any resources (such as sockets and file
handles) associated with the current stream.

Flush() Updates the underlying data source or repository with the current state of the
buffer and then clears the buffer. If a stream does not implement a buffer, this
method does nothing.

Length Returns the length of the stream, in bytes.

Position Determines the position in the current stream.

Read() Read a sequence of bytes (or a single byte) from the current stream and advance
ReadByte() the current position in the stream by the number of bytes read.

Seek() Sets the position in the current stream.

SetLength() Sets the length of the current stream.

Write() Write a sequence of bytes (or a single byte) to the current stream and advance
WriteByte() the current position in this stream by the number of bytes written.

Working with FileStreams
The FileStream class provides an implementation for the abstract Stream members in a manner
appropriate for file-based streaming. It is a fairly primitive stream; it can read or write only a single
byte or an array of bytes. In reality, you will not often need to directly interact with the members of
the FileStream type. Rather, you will most likely make use of various stream wrappers, which make
it easier to work with textual data or .NET types. Nevertheless, for illustrative purposes, let’s experi-
ment with the synchronous read/write capabilities of the FileStream type.

Assume you have a new console application named FileStreamApp. Your goal is to write a sim-
ple text message to a new file named myMessage.dat. However, given that FileStream can operate
only on raw bytes, you will be required to encode the System.String type into a corresponding byte
array. Luckily, the System.Text namespace defines a type named Encoding, which provides members
that encode and decode strings to (or from) an array of bytes (check out the .NET Framework 2.0
SDK documentation for full details of the Encoding type).

Once encoded, the byte array is persisted to file using the FileStream.Write() method. To read
the bytes back into memory, you must reset the internal position of the stream (via the Position
property) and call the ReadByte() method. Finally, you display the raw byte array and the decoded
string to the console. Here is the complete Main() method:

// Don't forget to 'use' System.Text.
static void Main(string[] args)
{

Console.WriteLine("***** Fun with FileStreams *****\n");

// Obtain a FileStream object.
FileStream fStream = File.Open(@"C:\myMessage.dat",

FileMode.Create);

4193ch16.qxd 8/14/05 2:57 PM Page 532

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 533

// Encode a string as an array of bytes.
string msg = "Hello!";
byte[] msgAsByteArray = Encoding.Default.GetBytes(msg);

// Write byte[] to file.
fStream.Write(msgAsByteArray, 0, msgAsByteArray.Length);

// Reset internal position of stream.
fStream.Position = 0;

// Read the types from file and display to console.
Console.Write("Your message as an array of bytes: ");
byte[] bytesFromFile = new byte[msgAsByteArray.Length];
for (int i = 0; i < msgAsByteArray.Length; i++)
{

bytesFromFile[i] = (byte)fStream.ReadByte();
Console.Write(bytesFromFile[i]);

}

// Display decoded messages.
Console.Write("\nDecoded Message: ");
Console.WriteLine(Encoding.Default.GetString(bytesFromFile));

// Close stream.
fStream.Close();

}

While this example does indeed populate the file with data, it punctuates the major downfall of
working directly with the FileStream type: it demands to operate on raw bytes. Other Stream-derived
types operate in a similar manner. For example, if you wish to write a sequence of bytes to a region
of memory, you can allocate a MemoryStream. Likewise, if you wish to push an array of bytes through
a network connection, you can make use of the NetworkStream type.

Thankfully, the System.IO namespace provides a number of “reader” and “writer” types that
encapsulate the details of working with Stream-derived types.

■Source Code The FileStreamApp project is included under the Chapter 16 subdirectory.

Working with StreamWriters and StreamReaders
The StreamWriter and StreamReader classes are useful whenever you need to read or write character-
based data (e.g., strings). Both of these types work by default with Unicode characters; however, you
can change this by supplying a properly configured System.Text.Encoding object reference. To keep
things simple, let’s assume that the default Unicode encoding fits the bill.

StreamReader derives from an abstract type named TextReader, as does the related StringReader
type (discussed later in this chapter). The TextReader base class provides a very limited set of func-
tionality to each of these descendents, specifically the ability to read and peek into a character stream.

The StreamWriter type (as well as StringWriter, also examined later in this chapter) derives
from an abstract base class named TextWriter. This class defines members that allow derived types
to write textual data to a given character stream. The relationship between each of these new I/O-
centric types is shown in Figure 16-7.

4193ch16.qxd 8/14/05 2:57 PM Page 533

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE534

To aid in your understanding of the core writing capabilities of the StreamWriter and StringWriter
classes, Table 16-7 describes the core members of the abstract TextWriter base class.

Table 16-7. Core Members of TextWriter

Member Meaning in Life

Close() Closes the writer and frees any associated resources. In the process, the buffer is
automatically flushed.

Flush() Clears all buffers for the current writer and causes any buffered data to be
written to the underlying device, but does not close the writer.

NewLine Indicates the newline constant for the derived writer class. The default line
terminator is a carriage return followed by a line feed (\r\n).

Write() Writes a line to the text stream without a newline constant.

WriteLine() Writes a line to the text stream with a newline constant.

■Note The last two members of the TextWriter class probably look familiar to you. If you recall, the System.
Console type has Write() and WriteLine() members that push textual data to the standard output device. In
fact, the Console.In property wraps a TextWriter, and the Console.Out property wraps a TextReader.

The derived StreamWriter class provides an appropriate implementation for the Write(), Close(),
and Flush() methods, and it defines the additional AutoFlush property. This property, when set to
true, forces StreamWriter to flush all data every time you perform a write operation. Be aware that
you can gain better performance by setting AutoFlush to false, provided you always call Close()
when you are done writing with a StreamWriter.

Writing to a Text File
Now for an example of working with the StreamWriter type. The following class creates a new file
named reminders.txt using the File.CreateText() method. Using the obtained StreamWriter object,
you add some textual data to the new file, as shown here:

Figure 16-7. Readers and writers

4193ch16.qxd 8/14/05 2:57 PM Page 534

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 535

static void Main(string[] args)
{

Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");

// Get a StreamWriter and write string data.
StreamWriter writer = File.CreateText("reminders.txt");
writer.WriteLine("Don't forget Mother's Day this year...");
writer.WriteLine("Don't forget Father's Day this year...");
writer.WriteLine("Don't forget these numbers:");
for(int i = 0; i < 10; i++)

writer.Write(i + " ");

// Insert a new line.
writer.Write(writer.NewLine);

// Closing automatically flushes!
writer.Close();
Console.WriteLine("Created file and wrote some thoughts...");

}

Once you run this program, you can examine the contents of this new file (see Figure 16-8).

Figure 16-8. The contents of your *.txt file

Reading from a Text File
Now you need to understand how to programmatically read data from a file using the corresponding
StreamReader type. As you recall, this class derives from TextReader, which offers the functionality
described in Table 16-8.

Table 16-8. TextReader Core Members

Member Meaning in Life

Peek() Returns the next available character without actually changing the position of
the reader. A value of –1 indicates you are at the end of the stream.

Read() Reads data from an input stream.

ReadBlock() Reads a maximum of count characters from the current stream and writes the
data to a buffer, beginning at index.

ReadLine() Reads a line of characters from the current stream and returns the data as
a string (a null string indicates EOF).

ReadToEnd() Reads all characters from the current position to the end of the stream and
returns them as a single string.

If you now extend the current MyStreamWriterReader class to use a StreamReader, you can read
in the textual data from the reminders.txt file as shown here:

4193ch16.qxd 8/14/05 2:57 PM Page 535

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE536

static void Main(string[] args)
{

Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");
...

// Now read data from file.
Console.WriteLine("Here are your thoughts:\n");
StreamReader sr = File.OpenText("reminders.txt");

string input = null;
while ((input = sr.ReadLine()) != null)
{

Console.WriteLine (input);
}

}

Once you run the program, you will see the character data within Thoughts.txt displayed to
the console.

Directly Creating StreamWriter/StreamReader Types
One of the slightly confusing aspects of working with the types within System.IO is that you can
often achieve an identical result using numerous approaches. For example, you have already seen
that you can obtain a StreamWriter via the File or FileInfo type using the CreateText() method. In
reality, there is yet another way in which you can work with StreamWriters and StreamReaders: create
them directly. For example, the current application could be retrofitted as so:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with StreamWriter / StreamReader *****\n");

// Get a StreamWriter and write string data.
StreamWriter writer = new StreamWriter("reminders.txt");
...

// Now read data from file.
StreamReader sr = new StreamReader("reminders.txt");
...

}

Although it can be a bit confusing to see so many seemingly identical approaches to file I/O,
keep in mind that the end result is greater flexibility. In any case, now that you have seen how to
move character data to and from a given file using the StreamWriter and StreamReader types, you
will next examine the role of the StringWriter and StringReader classes.

■Source Code The StreamWriterReaderApp project is included under the Chapter 16 subdirectory.

Working with StringWriters and StringReaders
Using the StringWriter and StringReader types, you can treat textual information as a stream of
in-memory characters. This can prove helpful when you wish to append character-based informa-
tion to an underlying buffer. To illustrate, the following example writes a block of string data to
a StringWriter object rather than a file on the local hard drive:

4193ch16.qxd 8/14/05 2:57 PM Page 536

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 537

static void Main(string[] args)
{

Console.WriteLine("***** Fun with StringWriter / StringReader *****\n");

// Create a StringWriter and emit character data to memory.
StringWriter strWriter = new StringWriter();
strWriter.WriteLine("Don't forget Mother's Day this year...");
strWriter.Close();

// Get a copy of the contents (stored in a string) and pump
// to console.
Console.WriteLine("Contents of StringWriter:\n{0}", strWriter);

}

Because StringWriter and StreamWriter both derive from the same base class (TextWriter), the
writing logic is more or less identical. However, given that nature of StringWriter, be aware that this
class allows you to extract a System.Text.StringBuilder object via the GetStringBuilder() method:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with StringWriter / StringReader *****\n");

// Create a StringWriter and emit character data to memory.
StringWriter strWriter = new StringWriter();

...
// Get the internal StringBuilder.
StringBuilder sb = strWriter.GetStringBuilder();
sb.Insert(0, "Hey!! ");
Console.WriteLine("-> {0}", sb.ToString());
sb.Remove(0, "Hey!! ".Length);
Console.WriteLine("-> {0}", sb.ToString());

}

When you wish to read from a stream of character data, make use of the corresponding
StringReader type, which (as you would expect) functions identically to the related StreamReader
class. In fact, the StringReader class does nothing more than override the inherited members to
read from a block of character data, rather than a file, as shown here:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with StringWriter / StringReader *****\n");

// Create a StringWriter and emit character data to memory.
StringWriter strWriter = new StringWriter();

...
// Read data from the StringWriter.
StringReader strReader = new StringReader(writer.ToString());
string input = null;
while ((input = strReader.ReadLine()) != null)
{

Console.WriteLine (input);
}
strReader.Close();

}

■Source Code The StringReaderWriterApp is included under the Chapter 16 subdirectory.

4193ch16.qxd 8/14/05 2:57 PM Page 537

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE538

Working with BinaryWriters and BinaryReaders
The final writer/reader sets you will examine here are BinaryReader and BinaryWriter, both of
which derive directly from System.Object. These types allow you to read and write discrete data
types to an underlying stream in a compact binary format. The BinaryWriter class defines a highly
overloaded Write() method to place a data type in the underlying stream. In addition to Write(),
BinaryWriter provides additional members that allow you to get or set the Stream-derived type and
offers support for random access to the data (see Table 16-9).

Table 16-9. BinaryWriter Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryWriter object.

Close() This method closes the binary stream.

Flush() This method flushes the binary stream.

Seek() This method sets the position in the current stream.

Write() This method writes a value to the current stream.

The BinaryReader class complements the functionality offered by BinaryWriter with the members
described in Table 16-10.

Table 16-10. BinaryReader Core Members

Member Meaning in Life

BaseStream This read-only property provides access to the underlying stream used with the
BinaryReader object.

Close() This method closes the binary reader.

PeekChar() This method returns the next available character without actually advancing the
position in the stream.

Read() This method reads a given set of bytes or characters and stores them in the
incoming array.

ReadXXXX() The BinaryReader class defines numerous ReadXXXX() methods that grab the next
type from the stream (ReadBoolean(), ReadByte(), ReadInt32(), and so forth).

The following example writes a number of data types to a new *.dat file:

static void Main(string[] args)
{

// Open a binary writer for a file.
FileInfo f = new FileInfo("BinFile.dat");
BinaryWriter bw = new BinaryWriter(f.OpenWrite());

// Print out the type of BaseStream.
// (System.IO.FileStream in this case).
Console.WriteLine("Base stream is: {0}", bw.BaseStream);

// Create some data to save in the file
double aDouble = 1234.67;
int anInt = 34567;
char[] aCharArray = { 'A', 'B', 'C' };

4193ch16.qxd 8/14/05 2:57 PM Page 538

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 539

// Write the data
bw.Write(aDouble);
bw.Write(anInt);
bw.Write(aCharArray);
bw.Close();

}

Notice how the FileStream object returned from FileInfo.OpenWrite() is passed to the con-
structor of the BinaryWriter type. Using this technique, it is very simple to “layer in” a stream before
writing out the data. Do understand that the constructor of BinaryWriter takes any Stream-derived
type (e.g., FileStream, MemoryStream, or BufferedStream). Thus, if you would rather write binary data
to memory, simply supply a valid MemoryStream object.

To read the data out of the BinFile.dat file, the BinaryReader type provides a number of options.
Here, you will make use of PeekChar() to determine if the stream still has data to provide and, if so,
use ReadByte() to obtain the value. Note that you are formatting the bytes in hexadecimal and
inserting seven spaces between each:

static void Main(string[] args)
{

// Open a binary writer for a file.
FileInfo f = new FileInfo("BinFile.dat");

...
// Read the data as raw bytes
BinaryReader br = new BinaryReader(f.OpenRead());
int temp = 0;
while (br.PeekChar() != -1)
{

Console.Write("{0,7:x} ", br.ReadByte());
if (++temp == 4)
{

// Write a new line every 4 bytes
Console.WriteLine();
temp = 0;

}
}
Console.WriteLine();

}

The output of this program appears in Figure 16-9.

Figure 16-9. Reading bytes from a binary file

4193ch16.qxd 8/14/05 2:57 PM Page 539

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE540

■Source Code The BinaryWriterReader application is included under the Chapter 16 subdirectory.

Programmatically “Watching” Files
Now that you have a better handle on the use of various readers and writers, next you’ll look at the
role of the FileSystemWatcher class. This type can be quite helpful when you wish to programmatically
monitor (or “watch”) files on your system. Specifically, the FileSystemWatcher type can be instructed
to monitor files for any of the actions specified by the NotifyFilters enumeration (while many of
these members are self-explanatory, check the online help for further details):

public enum System.IO.NotifyFilters
{

Attributes, CreationTime,
DirectoryName, FileName,
LastAccess, LastWrite,
Security, Size,

}

The first step you will need to take to work with the FileSystemWatcher type is to set the Path
property to specify the name (and location) of the directory that contains the files to be monitored,
as well as the Filter property that defines the file extensions of the files to be monitored.

At this point, you may choose to handle the Changed, Created, and Deleted events, all of which
work in conjunction with the FileSystemEventHandler delegate. This delegate can call any method
matching the following pattern:

// The FileSystemEventHandler delegate must point
// to methods matching the following signature.
void MyNotificationHandler(object source, FileSystemEventArgs e)

As well, the Renamed event may also be handled via the RenamedEventHandler delegate type,
which can call methods matching the following signature:

// The RenamedEventHandler delegate must point
// to methods matching the following signature.
void MyNotificationHandler(object source, RenamedEventArgs e)

To illustrate the process of watching a file, assume you have created a new directory on your C
drive named MyFolder that contains various *.txt files (named whatever you wish). The following
console application will monitor the *.txt files within the MyFolder and print out messages in the
event that the files are created, deleted, modified, or renamed:

static void Main(string[] args)
{

Console.WriteLine("***** The Amazing File Watcher App *****\n");

// Establish the path to the directory to watch.
FileSystemWatcher watcher = new FileSystemWatcher();
try{

watcher.Path = @"C:\MyFolder";
}
catch(ArgumentException ex) {

Console.WriteLine(ex.Message);
return;

}

4193ch16.qxd 8/14/05 2:57 PM Page 540

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 541

// Set up the things to be on the
// lookout for.
watcher.NotifyFilter = NotifyFilters.LastAccess

| NotifyFilters.LastWrite
| NotifyFilters.FileName
| NotifyFilters.DirectoryName;

// Only watch text files.
watcher.Filter = "*.txt";

// Add event handlers.
watcher.Changed += new FileSystemEventHandler(OnChanged);
watcher.Created += new FileSystemEventHandler(OnChanged);
watcher.Deleted += new FileSystemEventHandler(OnChanged);
watcher.Renamed += new RenamedEventHandler(OnRenamed);

// Begin watching the directory.
watcher.EnableRaisingEvents = true;

// Wait for the user to quit the program.
Console.WriteLine(@"Press 'q' to quit app.");
while(Console.Read()!='q');

}

The two event handlers simply print out the current file modification:

static void OnChanged(object source, FileSystemEventArgs e)
{

// Specify what is done when a file is changed, created, or deleted.
Console.WriteLine("File: {0} {1}!", e.FullPath, e.ChangeType);

}

static void OnRenamed(object source, RenamedEventArgs e)
{

// Specify what is done when a file is renamed.
Console.WriteLine("File: {0} renamed to\n{1}", e.OldFullPath, e.FullPath);

}

To test this program, run the application and open Windows Explorer. Try renaming your files,
creating a *.txt file, deleting a *.txt file, or whatnot. You will see the console application print out
various bits of information regarding the state of the text files within MyFolder (see Figure 16-10).

Figure 16-10. Watching some text files

4193ch16.qxd 8/14/05 2:57 PM Page 541

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE542

■Source Code The MyDirectoryWatcher application is included under the Chapter 16 subdirectory.

Performing Asynchronous File I/O
To conclude our examination of the System.IO namespace, let’s see how to interact with FileStream
types asynchronously. You have already seen the asynchronous support provided by the .NET Frame-
work during the examination of multithreading (see Chapter 14). Because I/O can be a lengthy task,
all types deriving from System.IO.Stream inherit a set of methods that enable asynchronous process-
ing of the data. As you would expect, these methods work in conjunction with the IAsyncResult type:

public abstract class System.IO.Stream :
MarshalByRefObject,
IDisposable

{
...

public virtual IAsyncResult BeginRead(byte[] buffer, int offset,
int count, AsyncCallback callback, object state);

public virtual IAsyncResult BeginWrite(byte[] buffer, int offset,
int count, AsyncCallback callback, object state);

public virtual int EndRead(IAsyncResult asyncResult);
public virtual void EndWrite(IAsyncResult asyncResult);

}

The process of working with the asynchronous behavior of Stream-derived types is identical to
working with asynchronous delegates and asynchronous remote method invocations. While it’s
unlikely that asynchronous behaviors will greatly improve file access, other streams (e.g., socket
based) are much more likely to benefit from asynchronous handling. In any case, the following
example illustrates one manner in which you can asynchronously interact with a FileStream type:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("Main thread started. ThreadID = {0}",
Thread.CurrentThread.GetHashCode());

// Must use this ctor to get a FileStream with asynchronous
// read or write access.
FileStream fs = new FileStream("logfile.txt", FileMode.Append,

FileAccess.Write, FileShare.None, 4096, true);

string msg = "this is a test";
byte[] buffer = Encoding.ASCII.GetBytes(msg);

// Start the asynchronous write. WriteDone invoked when finished.
// Note that the FileStream object is passed as state info to the
// callback method.
fs.BeginWrite(buffer, 0, buffer.Length,

new AsyncCallback(WriteDone), fs);
}

4193ch16.qxd 8/14/05 2:57 PM Page 542

CHAPTER 16 ■ THE SYSTEM.IO NAMESPACE 543

private static void WriteDone(IAsyncResult ar)
{

Console.WriteLine("AsyncCallback method on ThreadID = {0}",
Thread.CurrentThread.GetHashCode());

Stream s = (Stream)ar.AsyncState;
s.EndWrite(ar);
s.Close();

}
}

The only point of interest in this example (assuming you recall the process of working with del-
egates!) is that in order to enable the asynchronous behavior of the FileStream type, you must make
use of a specific constructor (shown here). The final System.Boolean parameter (when set to true)
informs the FileStream object to perform its work on a secondary thread of execution.

■Source Code The AsyncFileStream application is included under the Chapter 16 subdirectory.

Summary
This chapter began by examining the use of the Directory(Info) and File(Info) types (including
several new members of the File type brought about with .NET 2.0). As you learned, these classes
allow you to manipulate a physical file or directory on your hard drive. Next, you examined a number
of types derived from the abstract Stream class, specifically FileStream. Given that Stream-derived
types operate on a raw stream of bytes, the System.IO namespace provides numerous reader/writer
types (StreamWriter, StringWriter, BinaryWriter, etc.) that simplify the process.

Along the way, you also checked out a new I/O-centric type provided by .NET 2.0 (DriveType),
and you learned how to monitor files using the FileSystemWatcher type and how to interact with
streams in an asynchronous manner.

4193ch16.qxd 8/14/05 2:57 PM Page 543

4193ch16.qxd 8/14/05 2:57 PM Page 544

Understanding Object Serialization

In Chapter 16, you learned about the functionality provided by the System.IO namespace. As shown,
this namespace provides numerous reader/writer types that can be used to persist data to a given
location (in a given format). This chapter examines the related topic of object serialization. Using object
serialization, you are able to persist and retrieve the state of an object to (or from) any System.IO.Stream-
derived type.

As you might imagine, the ability to serialize types is critical when attempting to copy an object
to a remote machine (the subject of the next chapter). Understand, however, that serialization is quite
useful in its own right and will likely play a role in many of your .NET applications (distributed or not).
Over the course of this chapter, you will be exposed to numerous aspects of the .NET serialization
scheme, including a set of new attributes introduced with .NET 2.0 that allow you to customize the
process.

Understanding Object Serialization
The term serialization describes the process of persisting (and possibly transferring) the state of
an object to a stream. The persisted data sequence contains all necessary information needed to
reconstruct (or deserialize) the state of the object for use later. Using this technology, it is trivial to
save vast amounts of data (in various formats) with minimal fuss and bother. In fact, in many cases,
saving application data using serialization services is much less cumbersome than making direct use
of the readers/writers found within the System.IO namespace.

For example, assume you have created a GUI-based desktop application and wish to provide
a way for end users to save their preferences. To do so, you might define a class named UserPrefs that
encapsulates 20 or so pieces of field data. If you were to make use of a System.IO.BinaryWriter type,
you would need to manually save each field of the UserPrefs object. Likewise, when you wish to load
the data from file back into memory, you would need to make use of a System.IO.BinaryReader and
(once again) manually read in each value to reconfigure a new UserPrefs object.

While this is certainly doable, you would save yourself a good amount of time simply by marking
the UserPrefs class with the [Serializable] attribute. In this case, the entire state of the object can
be persisted out using a few lines of code:

static void Main(string[] args)
{

// Assume UserPrefs has been marked [Serializable].
UserPrefs userData= new UserPrefs();
userData.WindowColor = "Yellow";
userData.FontSize = "50";
userData.IsPowerUser = false;

545

C H A P T E R 1 7

■ ■ ■

4193ch17.qxd 8/14/05 2:58 PM Page 545

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION546

Figure 17-1. A simple object graph

// Now save object to a file named user.dat.
BinaryFormatter binFormat = new BinaryFormatter();
Stream fStream = new FileStream("user.dat",

FileMode.Create, FileAccess.Write, FileShare.None);
binFormat.Serialize(fStream, userData);
fStream.Close();
Console.ReadLine();

}

While it is quite simple to persist objects using .NET object serialization, the processes used
behind the scenes are quite sophisticated. For example, when an object is persisted to a stream, all
associated data (base classes, contained objects, etc.) are automatically serialized as well. Therefore,
if you are attempting to persist a derived class, all data up the chain of inheritance comes along for
the ride. As you will see, a set of interrelated objects is represented using an object graph.

.NET serialization services also allow you to persist an object graph in a variety of formats. The
previous code example made use of the BinaryFormatter type; therefore, the state of the UserPrefs
object was persisted as a compact binary format. You are also able to persist an object graph into
a Simple Object Access Protocol (SOAP) or XML format using other types. These formats can be quite
helpful when you wish to ensure that your persisted objects travel well across operating systems,
languages, and architectures.

Finally, understand that an object graph can be persisted into any System.IO.Stream-derived
type. In the previous example, you persisted a UserPrefs object into a local file via the FileStream type.
However, if you would rather persist an object to memory, you could make use of a MemoryStream type
instead. All that matters is the fact that the sequence of data correctly represents the state of objects
within the graph.

The Role of Object Graphs
As mentioned, when an object is serialized, the CLR will account for all related objects. The set of
related objects is collectively referred to as an object graph. Object graphs provide a simple way to doc-
ument how a set of objects refer to each other and do not necessarily map to classic OO relationships
(such as the “is-a” or “has-a” relationship), although they do model this paradigm quite well.

Each object in an object graph is assigned a unique numerical value. Keep in mind that the
numbers assigned to the members in an object graph are arbitrary and have no real meaning to the
outside world. Once all objects have been assigned a numerical value, the object graph can record each
object’s set of dependencies.

As a simple example, assume you have created a set of classes that model some automobiles (of
course). You have a base class named Car, which “has-a” Radio. Another class named JamesBondCar
extends the Car base type. Figure 17-1 shows a possible object graph that models these relationships.

4193ch17.qxd 8/14/05 2:58 PM Page 546

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 547

When reading object graphs, you can use the phrase “depends on” or “refers to” when connect-
ing the arrows. Thus, in Figure 17-1 you can see that the Car class refers to the Radio class (given the
“has-a” relationship). JamesBondCar refers to Car (given the “is-a” relationship) as well as Radio (as it
inherits this protected member variable).

Of course, the CLR does not paint pictures in memory to represent a graph of related objects.
Rather, the relationship documented in the previous diagram is represented by a more mathemati-
cal formula that looks something like this:

[Car 3, ref 2], [Radio 2], [JamesBondCar 1, ref 3, ref 2]

If you parse this formula, you can again see that object 3 (the Car) has a dependency on object 2
(the Radio). Object 2, the Radio, is a lone wolf and requires nobody. Finally, object 1 (the JamesBondCar)
has a dependency on object 3 as well as object 2. In any case, when you serialize or deserialize an
instance of JamesBondCar, the object graph ensures that the Radio and Car types also participate in
the process.

The beautiful thing about the serialization process is that the graph representing the relation-
ships among your objects is established automatically behind the scenes. As you will see later in this
chapter, however, if you do wish to become more involved in the construction of a given object graph,
it is possible to do so.

Configuring Objects for Serialization
To make an object available to .NET serialization services, all you need to do is decorate each related
class with the [Serializable] attribute. That’s it (really). If you determine that a given class has some
member data that should not (or perhaps cannot) participate in the serialization scheme, you can
mark such fields with the [NonSerialized] attribute. This can be helpful if you have member vari-
ables in a serializable class that do not need to be “remembered” (e.g., fixed values, random values,
transient data, etc.) and you wish to reduce the size of the persisted graph.

To get the ball rolling, here is the Radio class, which has been marked [Serializable], excluding
a single member variable (radioID) that has been marked [NonSerialized] and will therefore not be
persisted into the specified data stream:

[Serializable]
public class Radio
{

public bool hasTweeters;
public bool hasSubWoofers;
public double[] stationPresets;

[NonSerialized]
public string radioID = "XF-552RR6";

}

The JamesBondCar class and Car base class are also marked [Serializable] and define the following
pieces of field data:

[Serializable]
public class Car
{

public Radio theRadio = new Radio();
public bool isHatchBack;

}

4193ch17.qxd 8/14/05 2:58 PM Page 547

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION548

[Serializable]
public class JamesBondCar : Car
{

public bool canFly;
public bool canSubmerge;

}

Be aware that the [Serializable] attribute cannot be inherited. Therefore, if you derive a class
from a type marked [Serializable], the child class must be marked [Serializable] as well, or it
cannot be persisted. In fact, all objects in an object graph must be marked with the [Serializable]
attribute. If you attempt to serialize a nonserializable object using the BinaryFormatter or
SoapFormatter, you will receive a SerializationException at runtime.

Public Fields, Private Fields, and Public Properties
Notice that in each of these classes, I have defined the field data as public, just to simplify the example.
Of course, private data exposed using public properties would be preferable from an OO point of
view. Also, for the sake of simplicity, I have not defined any custom constructors on these types, and
therefore all unassigned field data will receive the expected default values.

OO design principles aside, you may wonder how the various formatters expect a type’s field
data to be defined in order to be serialized into a stream. The answer is, it depends. If you are persist-
ing an object using the BinaryFormatter, it makes absolutely no difference. This type is programmed
to serialize all serializable fields of a type, regardless of whether they are public fields, private fields,
or private fields exposed through type properties. The situation is quite different if you make use of
the XmlSerializer or SoapFormatter type, however. These types will only serialize public pieces of
field data or private data exposed through public properties.

Do recall, however, that if you have points of data that you do not want to be persisted into the
object graph, you can selectively mark public or private fields as [NonSerialized], as done with the
string field of the Radio type.

Choosing a Serialization Formatter
Once you have configured your types to participate in the .NET serialization scheme, your next step
is to choose which format should be used when persisting your object graph. As of .NET 2.0, you have
three choices out of the box:

• BinaryFormatter

• SoapFormatter

• XmlSerializer

The BinaryFormatter type serializes your object graph to a stream using a compact binary format.
This type is defined within the System.Runtime.Serialization.Formatters.Binary namespace that
is part of mscorlib.dll. Therefore, to serialize your objects using a binary format, all you need to do
is specify the following C# using directive:

// Gain access to the BinaryFormatter in mscorlib.dll.
using System.Runtime.Serialization.Formatters.Binary;

The SoapFormatter type represents your graph as a SOAP message. This type is defined within the
System.Runtime.Serialization.Formatters.Soap namespace that is defined within a separate assembly.
Thus, to format your object graph into a SOAP message, you must set a reference to System.Runtime.
Serialization.Formatters.Soap.dll and specify the following C# using directive:

4193ch17.qxd 8/14/05 2:58 PM Page 548

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 549

// Must reference System.Runtime.Serialization.Formatters.Soap.dll!
using System.Runtime.Serialization.Formatters.Soap;

Finally, if you wish to persist an object graph as an XML document, you will need to specify that
you are using the System.Xml.Serialization namespace, which is also defined in a separate assembly:
System.Xml.dll. As luck would have it, all Visual Studio 2005 project templates automatically reference
System.Xml.dll, therefore you will simply need to use the following namespace:

// Defined within System.Xml.dll.
using System.Xml.Serialization;

The IFormatter and IRemotingFormatting Interfaces
Regardless of which formatter you choose to make use of, be aware that each of them derives
directly from System.Object, and therefore they do not share a common set of members from
a serialization-centric base class. However, the BinaryFormatter and SoapFormatter types do support
common members through the implementation of the IFormatter and IRemotingFormatter interfaces
(of which XmlSerializer implements neither).

System.Runtime.Serialization.IFormatter defines the core Serialize() and Deserialize()
methods, which do the grunt work to move your object graphs into and out of a specific stream.
Beyond these members, IFormatter defines a few properties that are used behind the scenes by the
implementing type:

public interface IFormatter
{

SerializationBinder Binder { get; set; }
StreamingContext Context { get; set; }
ISurrogateSelector SurrogateSelector { get; set; }
object Deserialize(System.IO.Stream serializationStream);
void Serialize(System.IO.Stream serializationStream, object graph);

}

The System.Runtime.Remoting.Messaging.IRemotingFormatter interface (which is leveraged
internally by the .NET remoting layer) overloads the Serialize() and Deserialize() members into
a manner more appropriate for distributed persistence. Note that IRemotingFormatter derives from
the more general IFormatter interface:

public interface IRemotingFormatter : IFormatter
{

object Deserialize(Stream serializationStream,
HeaderHandler handler);

void Serialize(Stream serializationStream, object graph,
Header[] headers);

}

Although you may not need to directly interact with these interfaces for most of your serialization
endeavors, recall that interface-based polymorphism allows you to hold an instance of BinaryFormatter
or SoapFormatter using an IFormatter reference. Therefore, if you wish to build a method that can
serialize an object graph using either of these classes, you could write the following:

static void SerializeObjectGraph(IFormatter itfFormat,
Stream destStream, object graph)

{
itfFormat.Serialize(destStream, graph);

}

4193ch17.qxd 8/14/05 2:58 PM Page 549

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION550

Type Fidelity Among the Formatters
The most obvious difference among the three formatters is how the object graph is persisted to stream
(binary, SOAP, or pure XML). You should be aware of a few more subtle points of distinction, specifically
how the formatters contend with type fidelity. When you make use of the BinaryFormatter type, it will
not only persist the field data of the objects in the object graph, but also each type’s fully qualified name
and the full name of the defining assembly. These extra points of data make the BinaryFormatter an
ideal choice when you wish to transport objects by value (e.g., as a full copy) across machine bound-
aries (see Chapter 18). As noted, to achieve this level of type fidelity, the BinaryFormatter will account
for all field data of a type (public or private).

The SoapFormatter and XmlSerializer, on the other hand, do not attempt to preserve full type
fidelity and therefore do not record the type’s fully qualified name or assembly of origin, and only
persist public field data/public properties. While this may seem like a limitation at first glance, the
reason has to do with the open-ended nature of XML data representation. If you wish to persist object
graphs that can be used by any operating system (Windows XP, Mac OS X, and *nix distributions),
application framework (.NET, J2EE, COM, etc.), or programming language, you do not want to
maintain full type fidelity, as you cannot assume all possible recipients can understand .NET-specific
data types. Given this, SoapFormatter and XmlSerializer are ideal choices when you wish to ensure
as broad a reach as possible for the persisted object graph.

Serializing Objects Using the BinaryFormatter
To illustrate how easy it is to persist an instance of the JamesBondCar to a physical file, let’s make use
of the BinaryFormatter type. Again, the two key methods of the BinaryFormatter type to be aware of
are Serialize() and Deserialize():

• Serialize(): Persists an object graph to a specified stream as a sequence of bytes

• Deserialize(): Converts a persisted sequence of bytes to an object graph

Assume you have created an instance of JamesBondCar, modified some state data, and want to per-
sist your spymobile into a *.dat file. The first task is to create the *.dat file itself. This can be achieved
by creating an instance of the System.IO.FileStream type (see Chapter 16). At this point, simply create
an instance of the BinaryFormatter and pass in the FileStream and object graph to persist:

using System.Runtime.Serialization.Formatters.Binary;
using System.IO;
...
static void Main(string[] args)
{

Console.WriteLine("***** Fun with Object Serialization *****\n");

// Make a JamesBondCar and set state.
JamesBondCar jbc = new JamesBondCar();
jbc.canFly = true;
jbc.canSubmerge = false;
jbc.theRadio.stationPresets = new double[]{89.3, 105.1, 97.1};
jbc.theRadio.hasTweeters = true;

// Save object to a file named CarData.dat in binary.
BinaryFormatter binFormat = new BinaryFormatter();
Stream fStream = new FileStream("CarData.dat",

FileMode.Create, FileAccess.Write, FileShare.None);

4193ch17.qxd 8/14/05 2:58 PM Page 550

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 551

binFormat.Serialize(fStream, jbc);
fStream.Close();
Console.ReadLine();

}

As you can see, the BinaryFormatter.Serialize() method is the member responsible for com-
posing the object graph and moving the byte sequence to some Stream-derived type. In this case,
the stream happens to be a physical file. However, you could also serialize your object types to any
Stream-derived type such as a memory location, given that MemoryStream is a descendent of the
Stream type.

Deserializing Objects Using the BinaryFormatter
Now suppose you want to read the persisted JamesBondCar from the binary file back into an object
variable. Once you have programmatically opened CarData.dat (via the File.OpenRead() method),
simply call the Deserialize() method of the BinaryFormatter. Be aware that Deserialize() returns
a generic System.Object type, so you need to impose an explicit cast, as shown here:

static void Main(string[] args)
{
...

// Read the JamesBondCar from the binary file.
fStream = File.OpenRead("CarData.dat");
JamesBondCar carFromDisk =

(JamesBondCar)binFormat.Deserialize(fStream);
Console.WriteLine("Can this car fly? : {0}", carFromDisk.canFly);
fStream.Close();
Console.ReadLine();

}

Notice that when you call Deserialize(), you pass the Stream-derived type that represents the
location of the persisted object graph (again, a file stream in this case). Now if that is not painfully
simple, I’m not sure what is. In a nutshell, mark each class you wish to persist to a stream with the
[Serializable] attribute. After this point, use the BinaryFormatter type to move your object graph
to and from a binary stream. At this point, you can view the binary image that represents this instance
of the JamesBondCar (see Figure 17-2).

Figure 17-2. JamesBondCar serialized using a BinaryFormatter

4193ch17.qxd 8/14/05 2:58 PM Page 551

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION552

Serializing Objects Using the SoapFormatter
Your next choice of formatter is the SoapFormatter type. The SoapFormatter will persist an object
graph into a SOAP message, which makes this formatter a solid choice when you wish to distribute
objects remotely using the HTTP protocol. If you are unfamiliar with the SOAP specification, don’t
sweat the details right now. In a nutshell, SOAP defines a standard process in which methods may
be invoked in a platform- and OS-neutral manner (we’ll examine SOAP in a bit more detail in the
final chapter of this book during a discussion of XML web services).

Assuming you have set a reference to the System.Runtime.Serialization.Formatters.Soap.dll
assembly, you could persist and retrieve a JamesBondCar as a SOAP message simply by replacing each
occurrence of BinaryFormatter with SoapFormatter. Consider the following code, which serializes
an object to a local file named CarData.soap:

using System.Runtime.Serialization.Formatters.Soap;
...
static void Main(string[] args)
{
...

// Save object to a file named CarData.soap in SOAP format.
SoapFormatter soapFormat = new SoapFormatter();
fStream = new FileStream("CarData.soap",
FileMode.Create, FileAccess.Write, FileShare.None);

soapFormat.Serialize(fStream, jbc);
fStream.Close();
Console.ReadLine();

}

As before, simply use Serialize() and Deserialize() to move the object graph in and out of
the stream. If you open the resulting *.soap file, you can locate the XML elements that mark the
stateful values of the current JamesBondCar as well as the relationship between the objects in the graph
via the #ref tokens. Consider the following end result (XML namespaces snipped for brevity):

<SOAP-ENV:Envelope xmlns:xsi="...">
<SOAP-ENV:Body>

<a1:JamesBondCar id="ref-1" xmlns:a1="...">
<canFly>true</canFly>
<canSubmerge>false</canSubmerge>
<theRadio href="#ref-3"/>
<isHatchBack>false</isHatchBack>

</a1:JamesBondCar>
<a1:Radio id="ref-3" xmlns:a1="...">

<hasTweeters>true</hasTweeters>
<hasSubWoofers>false</hasSubWoofers>
<stationPresets href="#ref-4"/>

</a1:Radio>
<SOAP-ENC:Array id="ref-4" SOAP-ENC:arrayType="xsd:double[3]">

<item>89.3</item>
<item>105.1</item>
<item>97.1</item>

</SOAP-ENC:Array>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

4193ch17.qxd 8/14/05 2:58 PM Page 552

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 553

Serializing Objects Using the XmlSerializer
In addition to the SOAP and binary formatters, the System.Xml.dll assembly provides a third format-
ter, System.Xml.Serialization.XmlSerializer, which can be used to persist the state of a given object
as pure XML, as opposed to XML data wrapped within a SOAP message. Working with this type is a bit
different from working with the SoapFormatter or BinaryFormatter type. Consider the following code:

using System.Xml.Serialization;
...
static void Main(string[] args)
{
...

// Save object to a file named CarData.xml in XML format.
XmlSerializer xmlFormat = new XmlSerializer(typeof(JamesBondCar),

new Type[] { typeof(Radio), typeof(Car) });

fStream = new FileStream("CarData.xml",
FileMode.Create, FileAccess.Write, FileShare.None);

xmlFormat.Serialize(fStream, jbc);
fStream.Close();

...
}

The key difference is that the XmlSerializer type requires you to specify type information that
represents the items in the object graph. Notice that the first constructor argument of the XmlSerializer
defines the root element of the XML file, while the second argument is an array of System.Type types
that hold metadata regarding the subelements. If you were to look within the newly generated
CarData.xml file, you would find the following (abbreviated) XML data:

<?xml version="1.0" encoding="utf-8"?>
<JamesBondCar xmlns:xsi="...">
<theRadio>
<hasTweeters>true</hasTweeters>
<hasSubWoofers>false</hasSubWoofers>
<stationPresets>
<double>89.3</double>
<double>105.1</double>
<double>97.1</double>

</stationPresets>
</theRadio>
<isHatchBack>false</isHatchBack>
<canFly>true</canFly>
<canSubmerge>false</canSubmerge>

</JamesBondCar>

■Note The XmlSerializer demands that all serialized types in the object graph support a default construc-
tor (so be sure to add it back if you define custom constructors). If this is not the case, you will receive an
InvalidOperationException at runtime.

Controlling the Generated XML Data
If you have a background in XML technologies, you are well aware that it is often critical to ensure
the elements within an XML document conform to a set of rules that establish the “validity” of the
data. Understand that a “valid” XML document does not have to do with the syntactic well-being of

4193ch17.qxd 8/14/05 2:58 PM Page 553

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION554

the XML elements (e.g., all opening elements must have a closing element). Rather, valid documents
conform to agreed-upon formatting rules (e.g., field X must be an expressed as an attribute and not
a subelement), which are typically defined by an XML schema or document-type definition (DTD) file.

By default, all field data of a [Serializable] type is formatted as elements rather than XML
attributes. If you wish to control how the XmlSerializer generates the resulting XML document,
you may decorate your [Serializable] types with any number of additional attributes from the
System.Xml.Serialization namespace. Table 17-1 documents some (but not all) of the attributes
that influence how XML data is encoded to a stream.

Table 17-1. Serialization-centric Attributes of the System.Xml.Serialization Namespace

Attribute Meaning in Life

XmlAttributeAttribute The member will be serialized as an XML attribute.

XmlElementAttribute The field or property will be serialized as an XML element.

XmlEnumAttribute The element name of an enumeration member.

XmlRootAttribute This attribute controls how the root element will be constructed
(namespace and element name).

XmlTextAttribute The property or field should be serialized as XML text.

XmlTypeAttribute The name and namespace of the XML type.

By way of a simple example, first consider how the field data of JamesBondCar is currently persisted
as XML:

<?xml version="1.0" encoding="utf-8"?>
<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

...
<canFly>true</canFly>
<canSubmerge>false</canSubmerge>

</JamesBondCar>

If you wished to specify a custom XML namespace that qualifies the JamesBondCar as well as
encodes the canFly and canSubmerge values as XML attributes, you can do so by modifying the C#
definition of JamesBondCar as so:

[Serializable,
XmlRoot(Namespace = "http://www.intertechtraining.com")]
public class JamesBondCar : Car
{
...

[XmlAttribute]
public bool canFly;
[XmlAttribute]
public bool canSubmerge;

}

This would yield the following XML document (note the opening <JamesBondCar> element):

<?xml version="1.0" encoding="utf-8"?>
<JamesBondCar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
canFly="true" canSubmerge="false"
xmlns="http://www.intertechtraining.com">

...
</JamesBondCar>

4193ch17.qxd 8/14/05 2:58 PM Page 554

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 555

Of course, there are numerous other attributes that can be used to control how the XmlSerializer
generates the resulting XML document. If you wish to see all of your options, look up the System.Xml.
Serialization namespace using the .NET Framework 2.0 SDK documentation.

Persisting Collections of Objects
Now that you have seen how to persist a single object to a stream, let’s examine how to save a set of
objects. As you may have noticed, the Serialize() method of the IFormatter interface does not pro-
vide a way to specify an arbitrary number of objects (only a single System.Object). On a related note,
the return value of Deserialize() is, again, a single System.Object:

public interface IFormatter
{
...

object Deserialize(System.IO.Stream serializationStream);
void Serialize(System.IO.Stream serializationStream, object graph);

}

Recall that the System.Object in fact represents a complete object graph. Given this, if you pass
in an object that has been marked as [Serializable] and contains other [Serializable] objects,
the entire set of objects is persisted right away. As luck would have it, most of the types found within
the System.Collections and System.Collections.Generic namespaces have already been marked as
[Serializable]. Therefore, if you wish to persist a set of objects, simply add the set to the container
(such as an ArrayList or List<>) and serialize the object to your stream of choice.

Assume you have updated the JamesBondCar class with a two-argument constructor to set a few
pieces of state data (note that you add back the default constructor as required by the XmlSerializer):

[Serializable,
XmlRoot(Namespace = "http://www.intertechtraining.com")]
public class JamesBondCar : Car
{

public JamesBondCar(bool skyWorthy, bool seaWorthy)
{

canFly = skyWorthy;
canSubmerge = seaWorthy;

}
// The XmlSerializer demands a default constructor!
public JamesBondCar(){}

...
}

With this, you are not able to persist any number of JamesBondCars as so:

static void Main(string[] args)
{
...

// Now persist a List<> of JamesBondCars.
List<JamesBondCar> myCars = new List<JamesBondCar>();
myCars.Add(new JamesBondCar(true, true));
myCars.Add(new JamesBondCar(true, false));
myCars.Add(new JamesBondCar(false, true));
myCars.Add(new JamesBondCar(false, false));

fStream = new FileStream("CarCollection.xml",
FileMode.Create, FileAccess.Write, FileShare.None);

4193ch17.qxd 8/14/05 2:58 PM Page 555

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION556

xmlFormat = new XmlSerializer(typeof(List<JamesBondCar>),
new Type[] { typeof(JamesBondCar), typeof(Car), typeof(Radio) });

xmlFormat.Serialize(fStream, myCars);
fStream.Close();
Console.ReadLine();

}

Again, because you made use of the XmlSerializer, you are required to specify type informa-
tion for each of the subobjects within the root object (which in this case is the ArrayList). Had you
made use of the BinaryFormatter or SoapFormatter type, the logic would be even more straightforward,
for example:

static void Main(string[] args)
{

...
// Save ArrayList object (myCars) as binary.
List<JamesBondCar> myCars = new List<JamesBondCar>();

...
BinaryFormatter binFormat = new BinaryFormatter();
Stream fStream = new FileStream("AllMyCars.dat",

FileMode.Create, FileAccess.Write, FileShare.None);
binFormat.Serialize(fStream, myCars);
fStream.Close();
Console.ReadLine();

}

Excellent! At this point, you should see how you can use object serialization services to simplify
the process of persisting and resurrecting your application’s data. Next up, allow me to illustrate how
you can customize the default serialization process.

■Source Code The SimpleSerialize application is located under the Chapter 17 subdirectory.

Customizing the Serialization Process
In a vast majority of cases, the default serialization scheme provided by the .NET platform will be
exactly what you require. Simply apply the [Serializable] attribute and pass the object graph to
your formatter of choice. In some cases, however, you may wish to become more involved with how
an object graph is handled during the serialization process. For example, maybe you have a business
rule that says all field data must be persisted in uppercase format, or perhaps you wish to add addi-
tional bits of data to the stream that do not directly map to fields in the object being persisted (time
stamps, unique identifiers, or whatnot).

When you wish to become more involved with the process of object serialization, the System.
Runtime.Serialization namespace provides several types that allow you to do so. Table 17-2 describes
some of the core types to be aware of.

4193ch17.qxd 8/14/05 2:58 PM Page 556

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 557

Table 17-2. System.Runtime.Serialization Namespace Core Types

Type Meaning in Life

ISerializable As of .NET 1.1, implementing this interface was the preferred way to
perform custom serialization. As of .NET 2.0, the preferred way to
customize the serialization process is to apply a new set of attributes
(described in just a bit).

ObjectIDGenerator This type generates IDs for members in an object graph.

OnDeserializedAttribute This .NET 2.0 attribute allows you to specify a method that will be
called immediately after the object has been deserialized.

OnDeserializingAttribute This .NET 2.0 attribute allows you to specify a method that will be
called during the deserialization process.

OnSerializedAttribute This .NET 2.0 attribute allows you to specify a method that will be
called immediately after the object has been serialized.

OnSerializingAttribute This .NET 2.0 attribute allows you to specify a method that will be
called during the serialization process.

OptionalFieldAttribute This .NET 2.0 attribute allows you to define a field on a type that can be
missing from the specified stream.

SerializationInfo In essence, this class is a “property bag” that maintains name/value
pairs representing the state of an object during the serialization
process.

A Deeper Look at Object Serialization
Before we examine various ways in which you can customize the serialization process, it will be help-
ful to take a deeper look at what takes place behind the scenes. When the BinaryFormatter serializes
an object graph, it is in charge of transmitting the following information into the specified stream:

• The fully qualified name of the objects in the graph (e.g., MyApp.JamesBondCar)

• The name of the assembly defining the object graph (e.g., MyApp.exe)

• An instance of the SerializationInfo class that contains all stateful data maintained by the
members in the object graph

During the deserialization process, the BinaryFormatter uses this same information to build an
identical copy of the object, using the information extracted from the underlying stream.

■Note Recall that the SoapFormatter and XmlSerializer do not persist a type’s fully qualified name or the
name of the defining assembly. These types are concerned only with persisting exposed field data.

The big picture can be visualized as shown in Figure 17-3.

4193ch17.qxd 8/14/05 2:58 PM Page 557

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION558

Beyond moving the required data into and out of a stream, formatters also analyze the members
in the object graph for the following pieces of infrastructure:

• A check is made to determine whether the object is marked with the [Serializable] attribute.
If the object is not, a SerializationException is thrown.

• If the object is marked [Serializable], a check is made to determine if the object implements
the ISerializable interface. If this is the case, GetObjectData() is called on the object.

• If the object does not implement ISerializable, the default serialization process is used,
serializing all fields not marked as [NonSerialized].

In addition to determining if the type supports ISerializable, formatters (as of .NET 2.0) are
also responsible for discovering if the types in question support members that have been adorned
with the [OnSerializing], [OnSerialized], [OnDeserializing], or [OnDeserialized] attribute. We’ll
examine the role of these attributes in just a bit, but first let’s look at the role of ISerializable.

Customizing Serialization Using ISerializable
Objects that are marked [Serializable] have the option of implementing the ISerializable inter-
face. By doing so, you are able to “get involved” with the serialization process and perform any
pre- or post-data formatting. This interface is quite simple, given that it defines only a single method,
GetObjectData():

// When you wish to tweak the serialization process,
// implement ISerializable.
public interface ISerializable
{

void GetObjectData(SerializationInfo info,
StreamingContext context);

}

The GetObjectData() method is called automatically by a given formatter during the serializa-
tion process. The implementation of this method populates the incoming SerializationInfo
parameter with a series of name/value pairs that (typically) map to the field data of the object being
persisted. SerializationInfo defines numerous variations on the overloaded AddValue() method,
in addition to a small set of properties that allow the type to get and set the type’s name, defining
assembly, and member count. Here is a partial snapshot:

Figure 17-3. The serialization process

4193ch17.qxd 8/14/05 2:58 PM Page 558

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 559

public sealed class SerializationInfo : object
{

public SerializationInfo(Type type, IFormatterConverter converter);
public string AssemblyName { get; set; }
public string FullTypeName { get; set; }
public int MemberCount { get; }
public void AddValue(string name, short value);
public void AddValue(string name, UInt16 value);
public void AddValue(string name, int value);

...
}

Types that implement the ISerializable interface must also define a special constructor taking
the following signature:

// You must supply a custom constructor with this signature
// to allow the runtime engine to set the state of your object.
[Serializable]
class SomeClass : ISerializable
{

private SomeClass (SerializationInfo si, StreamingContext ctx) {...}
...
}

Notice that the visibility of this constructor is set as private. This is permissible given that the for-
matter will have access to this member regardless of its visibility. These special constructors tend to be
marked as private to ensure that the casual object user would never create an object in this manner.
As you can see, the first parameter of this constructor is an instance of the SerializationInfo type
(seen previously).

The second parameter of this special constructor is a StreamingContext type, which contains
information regarding the source or destination of the bits. The most informative member of this
type is the State property, which represents a value from the StreamingContextStates enumeration.
The values of this enumeration represent the basic composition of the current stream.

To be honest, unless you are implementing some low-level custom remoting services, you will
seldom need to deal with this enumeration directly. Nevertheless, here are the possible names of the
StreamingContextStates enum (consult the .NET Framework 2.0 SDK documentation for full details):

public enum StreamingContextStates
{

CrossProcess,
CrossMachine,
File,
Persistence,
Remoting,
Other,
Clone,
CrossAppDomain,
All

}

To illustrate customizing the serialization process using ISerializable, assume you have
a class type that defines two points of string data. Furthermore, assume that you must ensure the
string values are serialized to the stream in all uppercase and deserialized from the stream in all
lowercase. To account for such rules, you could implement ISerializable as so (be sure to “use” the
System.Runtime.Serialization namespace):

4193ch17.qxd 8/14/05 2:58 PM Page 559

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION560

[Serializable]
class MyStringData : ISerializable
{

public string dataItemOne, dataItemTwo;

public MyStringData(){}
private MyStringData(SerializationInfo si, StreamingContext ctx)
{

// Rehydrate member variables from stream.
dataItemOne = si.GetString("First_Item").ToLower();
dataItemTwo = si.GetString("dataItemTwo").ToLower();

}

void ISerializable.GetObjectData(SerializationInfo info, StreamingContext ctx)
{

// Fill up the SerializationInfo object with the formatted data.
info.AddValue("First_Item", dataItemOne.ToUpper());
info.AddValue("dataItemTwo", dataItemTwo.ToUpper());

}
}

Notice that when you are filling the SerializationInfo type from within the GetObjectData()
method, you are not required to name the data points identically to the type’s internal member vari-
ables. This can obviously be helpful if you need to further decouple the type’s data from the persisted
format. Do be aware, however, that you will need to obtain the values from within the private
constructor using the same names assigned within GetObjectData().

To test your customization, assume you have persisted an instance of MyStringData using
a SoapFormatter. When you view the resulting *.soap file, you will note that the string fields have indeed
been persisted in uppercase:

<SOAP-ENV:Envelope xmlns:xsi="...">
<SOAP-ENV:Body>

<a1:MyStringData id="ref-1" xmlns:a1="...">
<First_Item id="ref-3">THIS IS SOME DATA.</First_Item>
<dataItemTwo id="ref-4">HERE IS SOME MORE DATA</dataItemTwo>

</a1:MyStringData>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Customizing Serialization Using Attributes
Although implementing the ISerializable interface is still possible under .NET 2.0, the preferred
manner to customize the serialization process is to define methods that are attributed with any of
the new serialization-centric attributes ([OnSerializing], [OnSerialized], [OnDeserializing], or
[OnDeserialized]). Using these attributes is less cumbersome than implementing ISerializable,
given that you do not need to manually interact with an incoming SerializationInfo parameter.
Instead, you are able to directly modify your state data while the formatter is operating on the type.

When applying these attributes, the methods must be defined to receive a StreamingContext
parameter and return nothing (otherwise, you will receive a runtime exception). Do note that you
are not required to account for each of the serialization-centric attributes, and you can simply con-
tend with the stages of serialization you are interested in intercepting. To illustrate, here is a new
[Serializable] type that has the same requirements as MyStringData, this time accounted for using
the [OnSerializing] and [OnDeserialized] attributes:

4193ch17.qxd 8/14/05 2:58 PM Page 560

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 561

[Serializable]
class MoreData
{

public string dataItemOne, dataItemTwo;

[OnSerializing]
internal void OnSerializing(StreamingContext context)
{

// Called during the serialization process.
dataItemOne = dataItemOne.ToUpper();
dataItemTwo = dataItemTwo.ToUpper();

}

[OnDeserialized]
internal void OnDeserialized(StreamingContext context)
{

// Called once the deserialization process is complete.
dataItemOne = dataItemOne.ToLower();
dataItemTwo = dataItemTwo.ToLower();

}
}

If you were to serialize this new type, you would again find that the data has been persisted as
uppercase and deserialized as lowercase.

■Source Code The CustomSerialization project is included under the Chapter 17 subdirectory.

Versioning Serializable Objects
To wrap up this chapter, the final topic to address is the process of versioning serializable objects. To
understand why this may be necessary, consider the following scenario. Assume you have created the
UserPrefs class (mentioned at the beginning of the chapter) as so:

[Serializable]
class UserPrefs
{

public string objVersion = "1.0";
public ConsoleColor BackgroundColor;
public ConsoleColor ForegroundColor;

public UserPrefs()
{

BackgroundColor = ConsoleColor.Black;
ForegroundColor = ConsoleColor.Red;

}
}

Now, assume you have an application that serializes an instance of this class using a
BinaryFormatter:

static void Main(string[] args)
{

UserPrefs up = new UserPrefs();
up.BackgroundColor = ConsoleColor.DarkBlue;
up.ForegroundColor = ConsoleColor.White;

4193ch17.qxd 8/14/05 2:58 PM Page 561

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION562

// Save an instance of UserPrefs to file.
BinaryFormatter binFormat = new BinaryFormatter();
Stream fStream = new FileStream(@"C:\user.dat",

FileMode.Create, FileAccess.Write, FileShare.None);
binFormat.Serialize(fStream, up);
fStream.Close();
Console.ReadLine();

}

At this point, an instance of UserPrefs (version 1.0) has been persisted to C:\user.dat. Now, what
if you updated the definition of UserPrefs class with two new fields:

[Serializable]
class UserPrefs
{

public string objVersion = "2.0";
public ConsoleColor BackgroundColor;
public ConsoleColor ForegroundColor;

// New!
public int BeepFreq;
public string ConsoleTitle;

public UserPrefs()
{

BeepFreq = 1000;
ConsoleTitle = "My Console";
BackgroundColor = ConsoleColor.Black;
ForegroundColor = ConsoleColor.Red;

}
}

Imagine this same application now attempts to deserialize the instance of the persisted UserPrefs
object version 1.0 as so (note the previous serialization logic has been removed in order for this
example to work):

static void Main(string[] args)
{

// Load an instance of UserPrefs (1.0) to memory?
UserPrefs up = null;
BinaryFormatter binFormat = new BinaryFormatter();
Stream fStream = new FileStream(@"C:\user.dat",

FileMode.Open, FileAccess.Read, FileShare.None);
up = (UserPrefs)binFormat.Deserialize(fStream);
fStream.Close();
Console.ReadLine();

}

You will find a runtime exception is thrown:

Unhandled Exception: System.Runtime.Serialization.SerializationException:
Member 'BeepFreq' in class ' VersionedObject.UserPrefs' is not present in the
serialized stream and is not marked with
System.Runtime.Serialization.OptionalFieldAttribute.

The problem is that the original UserPrefs object persisted to C:\user.dat did not have storage
for the two new fields found in your updated class definition (BeepFreq and ConsoleTitle). Clearly,
this is problematic, as it is quite natural for a serialized object to evolve over its lifetime.

Prior to .NET 2.0, the only way to account for the possibility that previously persisted objects
may not have each and every field of the latest and greatest version of the class was to implement

4193ch17.qxd 8/14/05 2:58 PM Page 562

CHAPTER 17 ■ UNDERSTANDING OBJECT SERIALIZATION 563

ISerializable and take matters into your own hands. However, as of .NET 2.0, new fields can now be
explicitly marked with the [OptionalField] attribute (found within the System.Runtime.Serialization
namespace):

[Serializable]
class UserPrefs
{

public ConsoleColor BackgroundColor;
public ConsoleColor ForegroundColor;

// New!
[OptionalField]
public int BeepFreq;
[OptionalField]
public string ConsoleTitle;

public UserPrefs()
{

BeepFreq = 1000;
ConsoleTitle = "My Console";
BackgroundColor = ConsoleColor.Black;
ForegroundColor = ConsoleColor.Red;

}
}

When a formatter deserializes an object that does not contain fields such optional fields, it will no
longer throw a runtime exception. Rather, the data that is preserved is mapped back into the existing
fields (BackgroundColor and ForegroundColor, in this case), while the remaining fields are simply
assigned their default values.

■Note Understand that the use of [OptionalField] does not completely solve the process of versioning
persisted objects. However, this attribute does provide a workaround for the most common headache of the
versioning process (adding new field data). More elaborate versioning tasks may still require implementing the
ISerializable interface.

■Source Code The VersionedObject project is included under the Chapter 17 subdirectory.

Summary
This chapter introduced the topic of object serialization services. As you have seen, the .NET plat-
form makes use of an object graph to correctly account for the full set of related objects that are to
be persisted to a stream. As long as each member in the object graph has been marked with the
[Serializable] attribute, the data is persisted using your format of choice (binary, SOAP, or XML).

You also learned that it is possible to customize the out-of-the-box serialization process using
two possible approaches. First, you learned how to implement the ISerializable interface (and sup-
port a special private constructor) to become more involved with how formatters persist the supplied
data. Next, you came to know a set of new attributes introduced with .NET 2.0, which simplifies the
process of custom serialization. Just apply the [OnSerializing], [OnSerialized], [OnDeserializing],
or [OnDeserialized] attribute on members taking a StreamingContext parameter, and the formatters
will invoke them accordingly. The chapter wrapped up with an examination of a final attribute,
[OptionalField], which can be used to gracefully version a serializable type.

4193ch17.qxd 8/14/05 2:58 PM Page 563

4193ch17.qxd 8/14/05 2:58 PM Page 564

The .NET Remoting Layer

Developers who are new to the .NET platform often assume that .NET is all about building Internet-
centric applications (given that the term “.NET” often conjures the notion of “interNET” software).
As you have already seen, however, this is simply not the case. In fact, the construction of web-centric
programs is simply one tiny (but quite well-touted) aspect of the .NET platform. In this same vein of
misinformation, many new .NET developers tend to assume that XML web services are the only way
to interact with remote objects. Again, this is not true. Using the .NET remoting layer, you are able
to build peer-to-peer distributed applications that have nothing to do with HTTP or XML (if you so
choose).

The first goal of this chapter is to examine the low-level grunge used by the CLR to move infor-
mation between application boundaries. Along the way, you will come to understand the numerous
terms used when discussing .NET remoting, such as proxies, channels, marshaling by reference (as
opposed to by value), server-activated (versus client-activated) objects, and so forth. After these
background elements are covered, the remainder of the chapter offers numerous code examples
that illustrate the process of building distributed systems using the .NET platform.

Defining .NET Remoting
As you recall from your reading in Chapter 13, an application domain (AppDomain) is a logical
boundary for a .NET assembly, which is itself housed within a Win32 process. Understanding this
concept is critical when discussing distributed computing under .NET, given that remoting is noth-
ing more than the act of two objects communicating across application domains. The two application
domains in question could be physically configured in any of the following manners:

• Two application domains in the same process (and thus on the same machine)

• Two application domains in separate processes on the same machine

• Two application domains in separate processes on different machines

Given these three possibilities, you can see that remoting does not necessarily need to involve
two networked computers. In fact, each of the examples presented in this chapter can be success-
fully run on a single, stand-alone machine. Regardless of the distance between two objects, it is
common to refer to each agent using the terms “client” and “server.” Simply put, the client is the
entity that attempts to interact with remote objects. The server is the software agent that houses the
remote objects.

565

C H A P T E R 1 8

■ ■ ■

4193ch18.qxd 8/14/05 2:59 PM Page 565

CHAPTER 18 ■ THE .NET REMOTING LAYER566

The .NET Remoting Namespaces
Before we dive too deep into the details of the .NET remoting layer, we need to check out the func-
tionality provided by the remoting-centric namespaces. The .NET base class libraries provide
numerous namespaces that allow you to build distributed applications. The bulk of the types found
within these namespaces are contained within mscorlib.dll, but the System.Runtime.Remoting.dll
assembly does complement and extend the core namespaces. Table 18-1 briefly describes the role
of the remoting-centric namespaces as of .NET 2.0.

Table 18-1. .NET Remoting-centric Namespaces

Namespace Meaning in Life

System.Runtime.Remoting This is the core namespace you must use
when building any sort of distributed .NET
application.

System.Runtime.Remoting.Activation This relatively small namespace defines
a handful of types that allow you to fine-tune
the process of activating a remote object.

System.Runtime.Remoting.Channels This namespace contains types that
represent channels and channel sinks.

System.Runtime.Remoting.Channels.Http This namespace contains types that use the
HTTP protocol to transport messages and
objects to and from remote locations.

System.Runtime.Remoting.Channels.Ipc This namespace (which is new to .NET 2.0)
contains types that leverage the Win32
interprocess communication (IPC)
architecture. As you may know, IPC proves
fast communications between AppDomains
on the same physical machine.

System.Runtime.Remoting.Channels.Tcp This namespace contains types that use the
TCP protocol to transport messages and
objects to and from remote locations.

System.Runtime.Remoting.Contexts This namespace allows you to configure the
details of an object’s context.

System.Runtime.Remoting.Lifetime This namespace contains types that manage
the lifetime of remote objects.

System.Runtime.Remoting.Messaging This namespace contains types used to create
and transmit message objects.

System.Runtime.Remoting.Metadata This namespace contains types that can be
used to customize the generation and
processing of SOAP formatting.

System.Runtime.Remoting.Metadata.W3cXsd2001 Closely related to the previous namespace,
this namespace contains types that represent
the XML Schema Definition (XSD) defined
by the World Wide Web Consortium (W3C)
in 2001.

System.Runtime.Remoting.MetadataServices This namespace contains the types used by
the soapsuds.exe command-line tool to
convert .NET metadata to and from an XML
schema for the remoting infrastructure.

4193ch18.qxd 8/14/05 2:59 PM Page 566

CHAPTER 18 ■ THE .NET REMOTING LAYER 567

Namespace Meaning in Life

System.Runtime.Remoting.Proxies This namespace contains types that provide
functionality for proxy objects.

System.Runtime.Remoting.Services This namespace defines a number of
common base classes (and interfaces) that
are typically only leveraged by other intrinsic
remoting agents.

Understanding the .NET Remoting Framework
When clients and servers exchange information across application boundaries, the CLR makes use
of several low-level primitives to ensure the entities in question are able to communicate with each
other as transparently as possible. This means that as a .NET programmer, you are not required to
provide reams and reams of grungy networking code to invoke a method on a remote object. Like-
wise, the server process is not required to manually pluck a network packet out of the queue and
reformat the message into terms the remote object can understand. As you would hope, the CLR
takes care of such details automatically using a default set of remoting primitives (although you are
certainly able to get involved with the process if you so choose).

In a nutshell, the .NET remoting layer revolves around a careful orchestration that takes place
between four key players:

• Proxies

• Messages

• Channels

• Formatters

Let’s check out each entity in turn and see how their combined functionality facilitates remote
method invocations.

Understanding Proxies and Messages
Clients and server objects do not communicate via a direct connection, but rather through the use
of an intermediary termed a proxy. The role of a .NET proxy is to fool the client into believing it is
communicating with the requested remote object in the same application domain. To facilitate this
illusion, a proxy has the identical interface (i.e., members, properties, fields, and whatnot) as the
remote type it represents. As far as the client is concerned, a given proxy is the remote object. Under
the hood, however, the proxy is forwarding calls to the remote object.

Formally speaking, the proxy invoked directly by the client is termed the transparent proxy. This
CLR autogenerated entity is in charge of ensuring that the client has provided the correct number of
(and type of) parameters to invoke the remote method. Given this, you can regard the transparent
proxy as a fixed interception layer that cannot be modified or extended programmatically.

Assuming the transparent proxy is able to verify the incoming arguments, this information is
packaged up into another CLR-generated type termed the message object. By definition, all message
objects implement the System.Runtime.Remoting.Messaging.IMessage interface:

public interface IMessage
{

IDictionary Properties { get; }
}

4193ch18.qxd 8/14/05 2:59 PM Page 567

CHAPTER 18 ■ THE .NET REMOTING LAYER568

As you can see, the IMessage interface defines a single property (named Properties) that pro-
vides access to a collection used to hold the client-supplied arguments. Once this message object
has been populated by the CLR, it is then passed into a closely related type termed the real proxy.

The real proxy is the entity that actually passes the message object into the channel (described
momentarily). Unlike the transparent proxy, the real proxy can be extended by the programmer and
is represented by a base class type named (of course) RealProxy. Again, it is worth pointing out that
the CLR will always generate a default implementation of the client-side real proxy, which will serve
your needs most (if not all) of the time. Nevertheless, to gain some insight into the functionality
provided by the abstract RealProxy base class, ponder the formal definition type:

public abstract class RealProxy : object
{

public virtual ObjRef CreateObjRef(Type requestedType);
public virtual bool Equals(object obj);
public virtual IntPtr GetCOMIUnknown(bool fIsMarshalled);
public virtual int GetHashCode();
public virtual void GetObjectData(SerializationInfo info,

StreamingContext context);
public Type GetProxiedType();
public static object GetStubData(RealProxy rp);
public virtual object GetTransparentProxy();
public Type GetType();
public IConstructionReturnMessage InitializeServerObject(

IConstructionCallMessage ctorMsg);
public virtual IMessage Invoke(IMessage msg);
public virtual void SetCOMIUnknown(IntPtr i);
public static void SetStubData(RealProxy rp, object stubData);
public virtual IntPtr SupportsInterface(ref Guid iid);
public virtual string ToString();

}

Unless you are interested in building a custom implementation of the client-side real proxy,
the only member of interest is RealProxy.Invoke(). Under the hood, the CLR-generated transparent
proxy passes the formatted message object into the RealProxy type via its Invoke() method.

Understanding Channels
Once the proxies have validated and formatted the client-supplied arguments into a message object,
this IMessage-compatible type is passed from the real proxy into a channel object. Channels are the
entities in charge of transporting a message to the remote object and, if necessary, ensuring that any
member return value is passed from the remote object back to the client. The .NET 2.0 base class
libraries provide three channel implementations out of the box:

• TCP channel

• HTTP channel

• IPC channel

The TCP channel is represented by the TcpChannel class type and is used to pass messages using
the TCP/IP network protocol. TcpChannel is helpful in that the formatted packets are quite lightweight,
given that the messages are converted into a tight binary format using a related BinaryFormatter
(yes, the same BinaryFormatter you saw in Chapter 17). Use of the TcpChannel type tends to result in
faster remote access. The downside is that TCP channels are not firewall-friendly and may require
the services of a system administrator to allow messages to pass across machine boundaries.

4193ch18.qxd 8/14/05 2:59 PM Page 568

CHAPTER 18 ■ THE .NET REMOTING LAYER 569

In contrast, the HTTP channel is represented by the HttpChannel class type, which converts
message objects into a SOAP format using a related SOAP formatter. As you have seen, SOAP is
XML-based and thus tends to result in beefier payloads than the payloads used by the TcpChannel type.
Given this, using the HttpChannel can result in slightly slower remote access. On the plus side, HTTP
is far more firewall-friendly, given that most firewalls allow textual packets to be passed over port 80.

Finally, as of .NET 2.0, we have access to the IPC channel, represented by the IpcChannel type,
which defines a communication channel for remoting using the IPC system of the Windows operat-
ing system. Because IpcChannel bypasses traditional network communication to cross
AppDomains, the IpcChannel is much faster than the HTTP and TCP channels; however, it can be
used only for communication between application domains on the same physical computer. Given
this, you could never use IpcChannel to build a distributed application that spans multiple physical
computers. IpcChannel can be an ideal option, however, when you wish to have two local programs
share information in the fastest possible manner.

Regardless of which channel type you choose to use, understand that the HttpChannel, TcpChannel,
and IpcChannel types all implement the IChannel, IChannelSender, and IChannelReceiver interfaces.
The IChannel interface (as you will see in just a bit) defines a small set of members that provide
common functionality to all channel types. The role of IChannelSender is to define a common set of
members for channels that are able to send information to a specific receiver. On the other hand,
IChannelReceiver defines a set of members that allow a channel to receive information from a given
sender.

To allow the client and server applications to register their channel of choice, you will make use
of the ChannelServices.RegisterChannel() method, which takes a type implementing IChannel. Just
to preview things to come, the following code snippet illustrates how a server-side application domain
can register an HTTP channel on port 32469 (you’ll see the client’s role shortly):

// Create and register a server-side HttpChannel on port 32469.
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);

Revisiting the Role of .NET Formatters
The final piece of the .NET remoting puzzle is the role of formatter objects. The TcpChannel and
HttpChannel types both leverage an internal formatter, whose job it is to translate the message object
into protocol-specific terms. As mentioned, the TcpChannel type makes use of the BinaryFormatter
type, while the HttpChannel type uses the functionality provided by the SoapFormatter type. Given
your work in the previous chapter, you should already have some insights as to how a given channel
will format the incoming messages.

Once the formatted message has been generated, it is passed into the channel, where it will
eventually reach its destination application domain, at which time the message is formatted from
protocol-specific terms back to .NET-specific terms, at which point an entity termed the dispatcher
invokes the correct method on the remote object.

All Together Now!
If your head is spinning from reading the previous sections, fear not! The transparent proxy, real
proxy, message object, and dispatcher can typically be completely ignored, provided you are happy
with the default remoting plumbing. To help solidify the sequence of events, ponder Figure 18-1,
which illustrates the basic process of two objects communicating across distinct application domains.

4193ch18.qxd 8/14/05 2:59 PM Page 569

CHAPTER 18 ■ THE .NET REMOTING LAYER570

Figure 18-1. A high-level view of the default .NET remoting architecture

A Brief Word Regarding Extending the Default Plumbing
A key aspect of the .NET remoting layer is the fact that most of the default remoting layers can be
extended or completely replaced at the whim of the developer. Thus, if you truly want (or possibly
need) to build a custom message dispatcher, custom formatter, or custom real proxy, you are free to
do so. You are also able to inject additional levels of indirection by plugging in custom types that
stand between a given layer (e.g., a custom sink used to perform preprocessing or postprocessing of
a given message). Now, to be sure, you may never need to retrofit the core .NET remoting layer in
such ways. However, the fact remains that the .NET platform does provide the namespaces to allow
you to do so.

■Note This chapter does not address the topic of extending the default .NET remoting layer. If you wish to learn
how to do so, check out Advanced .NET Remoting by Ingo Rammer (Apress, 2002).

Terms of the .NET Remoting Trade
Like any new paradigm, .NET remoting brings a number of TLAs (three-letter acronyms) into the
mix. Thus, before you see your first code example, we do need to define a few terms used when
describing the composition of a .NET remoting application. As you would guess, this terminology is
used to describe a number of details regarding common questions that arise during the construction
of a distributed application: How do we pass a type across application domain boundaries? When
exactly is a remote type activated? How do we manage the lifetime of a remote object (and so forth)?
Once you have an understanding of the related terminology, the act of building a distributed .NET
application will be far less perplexing.

Object Marshaling Choices: MBR or MBV?
Under the .NET platform, you have two options regarding how a remote object is marshaled to the
client. Simply put, marshaling describes how a remote object is passed between application domains.
When you are designing a remotable object, you may choose to employ marshal-by-reference (MBR)
or marshal-by-value (MBV) semantics. The distinction is as follows:

4193ch18.qxd 8/14/05 2:59 PM Page 570

CHAPTER 18 ■ THE .NET REMOTING LAYER 571

• MBR objects: The caller receives a proxy to the remote object.

• MBV objects: The caller receives a full copy of the object in its own application domain.

If you configure an MBR object type, the CLR ensures that the transparent and real proxies are
created in the client’s application domain, while the MBR object itself remains in the server’s appli-
cation domain. As the client invokes methods on the remote type, the .NET remoting plumbing
(examined previously) takes over the show and will package, pass, and return information between
application domain boundaries. To be sure, MBR objects have a number of traits above and beyond
their physical location. As you will see, MBR objects have various configuration options regarding
their activation options and lifetime management.

MBV objects, on the other hand, are local copies of remote objects (which leverage the .NET
serialization protocol examined in Chapter 17). MBV objects have far fewer configuration settings,
given that their lifetime is directly controlled by the client. Like any .NET object, once a client has
released all references to an MBV type, it is a candidate for garbage collection. Given that MBV
types are local copies of remote objects, as a client invokes members on the type, no network activ-
ity occurs during the process.

Now, understand that it will be quite common for a single server to provide access to numerous
MBR and MBV types. As you may also suspect, MBR types tend to support methods that return vari-
ous MBV types, which gives way to the familiar factory pattern (e.g., an object that creates and returns
other related objects). The next question is, how do you configure your custom class types as MBR
or MBV entities?

Configuring an MBV Object
The process of configuring an object as an MBV type is identical to the process of configuring an
object for serialization. Simply annotate the type with the [Serializable] attribute:

[Serializable]
public class SportsCar
{...}

Configuring an MBR Object
MBR objects are not marked as such using a .NET attribute, but rather by deriving (directly or indi-
rectly) from the System.MarshalByRefObject base class:

public class SportsCarFactory : MarshalByRefObject
{...}

Formally, the MarshalByRefObject type is defined as follows:

public abstract class MarshalByRefObject : object
{

public virtual ObjRef CreateObjRef(Type requestedType);
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public virtual object GetLifetimeService();
public Type GetType();
public virtual object InitializeLifetimeService();
public virtual string ToString();

}

Beyond the expected functionality provided by System.Object, Table 18-2 describes the role of
the remaining members.

4193ch18.qxd 8/14/05 2:59 PM Page 571

CHAPTER 18 ■ THE .NET REMOTING LAYER572

Table 18-2. Key Members of System.MarshalByRefObject

Member Meaning in Life

CreateObjRef() Creates an object that contains all the relevant information
required to generate a proxy used to communicate with
a remote object

GetLifetimeServices() Retrieves the current lifetime service object that controls the
lifetime policy for this instance

InitializeLifetimeServices() Obtains a lifetime service object to control the lifetime policy
for this instance

As you can tell, the gist of MarshalByRefObject is to define members that can be overridden to
programmatically control the lifetime of the MBR object (more on lifetime management later in this
chapter).

■Note Just because you have configured a type as an MBV or MBR entity does not mean it is only usable within
a remoting application, just that it may be used in a remoting application. For example, the System.Windows.Forms.
Form type is a descendent of MarshalByRefObject; thus, if accessed remotely it is realized as an MBR type. If
not, it is just another local object in the client’s application domain.

■Note As a corollary to the previous note, understand that if a .NET type is not serializable and does not include
MarshalByRefObject in its inheritance chain, the type in question can only be activated and used in the originat-
ing application domain (meaning, the type is context bound; see Chapter 13 for more details).

Now that you understand the distinct traits of MBR and MBV types, let’s check out some issues
that are specific to MBR types (MBV types need not apply).

Activation Choices for MBR Types: WKO or CAO?
Another remoting-centric choice you face as a .NET programmer has to do with exactly when an
MBR object is activated and when it should be a candidate for garbage collection on the server. This
might seem like a strange choice to make, as you might naturally assume that MBR objects are cre-
ated when the client requests them and die when the client is done with them. While it is true that
the client is the entity in charge of instructing the remoting layer it wishes to communicate with
a remote type, the server application domain may (or may not) create the type at the exact moment
the client’s code base requests it.

The reason for this seemingly strange behavior has to do with the optimization. Specifically,
every MBR type may be configured to be activated using one of two techniques:

• As a well-known object (WKO)

• As a client-activated object (CAO)

■Note A potential point of confusion is that fact that the acronym WKO is also called a server-activated object
(SAO) in the .NET literature. In fact, you may see the SAO acronym in various .NET-centric articles and books. In
keeping with the current terminology, I will use WKO throughout this chapter.

4193ch18.qxd 8/14/05 2:59 PM Page 572

CHAPTER 18 ■ THE .NET REMOTING LAYER 573

WKO objects are MBR types whose lifetimes are directly controlled by the server’s application
domain. The client-side application activates the remote type using a friendly, well-known string
name (hence the term WKO). The server’s application domain allocates WKO types when the client
makes the first method call on the object (via the transparent proxy), not when the client’s code
base makes use of the new keyword or via the static Activator.GetObject() method, for example:

// Get a proxy to remote object. This line does NOT create the WKO type!
object remoteObj = Activator.GetObject(/* params seen later... */);

// Invoke a method on remote WKO type. This WILL create the WKO object
// and invoke the ReturnMessage() method.
RemoteMessageObject simple = (RemoteMessageObject)remoteObj;
Console.WriteLine("Server says: {0}", simple.ReturnMessage());

The rationale for this behavior? This approach saves a network round-trip solely for the pur-
pose of creating the object. As another interesting corollary, WKO types can be created only via the
type’s default constructor. This should make sense, given that the remote type’s constructor is trig-
gered only when the client makes the initial member invocation. Thus, the runtime has no other
option than to invoke the type’s default constructor.

■Note Always remember: All WKO types must support a default constructor!

If you wish to allow the client to create a remote MBR object using a custom constructor, the
server must configure the object as a CAO. CAO objects are entities whose lifetime is controlled by
the client’s application domain. When accessing a CAO type, a round-trip to the server occurs at
the time the client makes use of the new keyword (using any of the type’s constructors) or via the
Activator type.

Stateful Configuration of WKO Types: Singleton or Single Call?
The final .NET design choice to consider with regard to MBR types has to do with how the server
should handle multiple requests to a WKO type. CAO types need not apply, given that there is
always a one-to-one correspondence between a client and a remote CAO type (because they are
stateful).

Your first option is to configure a WKO type to function as a singleton type. The CLR will create
a single instance of the remote type that will take requests from any number of clients, and it is
a natural choice if you need to maintain stateful information among multiple remote callers. Given
the fact that multiple clients could invoke the same method at the same time, the CLR places each
client invocation on a new thread. It is your responsibility, however, to ensure that your objects are
thread-safe using the same techniques described in Chapter 14.

In contrast, a single call object is a WKO type that exists only during the context of a single method
invocation. Thus, if there are 20 clients making use of a WKO type configured with single call semantics,
the server will create 20 distinct objects (one for each client), all of which are candidates for garbage
collection directly after the method invocation. As you can guess, single call objects are far more scala-
ble than singleton types, given that they are invariably stateless entities.

The server is the entity in charge of determining the stateful configuration of a given WKO type.
Programmatically, these options are expressed via the System.Runtime.Remoting.WellKnownObjectMode
enumeration:

public enum WellKnownObjectMode
{

SingleCall,
Singleton

4193ch18.qxd 8/14/05 2:59 PM Page 573

CHAPTER 18 ■ THE .NET REMOTING LAYER574

Summarizing the Traits of MBR Object Types
As you have seen, configuring an MBV object is a no-brainer: Apply the [Serializable] attribute to
allow copies of the type to be returned to the client’s application domain. At this point, all interac-
tion with the MBV type takes place in the client’s locale. When the client is finished using the MBV
type, it is a candidate for garbage collection, and all is well with the world.

With MBR types, however, you have a number of possible configuration choices. As you have
seen, a given MBR type can be configured with regard to its time of activation, statefulness, and life-
time management. To summarize the array of possibilities, Table 18-3 documents how WKO and
CAO types stack up against the traits you have just examined.

Table 18-3. Configuration Options for MBR Types

MBR Object Trait WKO Behavior CAO Behavior

Instantiation options WKO types can only be activated CAO types can be activated
using the default constructor of using any constructor of the
the type, which is triggered when type. The remote object is
the client makes the first method created at the point the caller
invocation. makes use of constructor

semantics (or via the Activator
type).

State management WKO types can be configured as The lifetime of a CAO type is
singleton or single call entities. dictated by the caller; therefore,
Singleton types can service CAO types are stateful entities.
multiple clients and are therefore
stateful.
Single call types are alive only
during a specific client-side
invocation and are therefore
stateless.

Lifetime management Singleton WKO types make use of CAO types make use of a lease
a lease-based management -based management scheme
scheme (described later in (described later in this
this chapter). chapter).
Single call WKO types are
candidates for garbage collection
after the current method
invocation.

Basic Deployment of a .NET Remoting Project
Enough acronyms! At this point you are almost ready to build your first .NET remoting application.
Before you do, however, I need to discuss one final detail: deployment. When you are building
a .NET remoting application, you are almost certain to end up with three (yes, three, not two) dis-
tinct .NET assemblies that will constitute the entirety of your remote application. I am sure you can
already account for the first two assemblies:

• The client: This assembly is the entity that is interested in obtaining access to a remote object
(such as a Windows Forms or console application).

• The server: This assembly is the entity that receives channel requests from the remote client
and hosts the remote objects.

So then, where does the third assembly fit in? In many cases, the server application is typically
a host to a third assembly that defines and implements the remote objects. For convenience, I’ll call

4193ch18.qxd 8/14/05 2:59 PM Page 574

CHAPTER 18 ■ THE .NET REMOTING LAYER 575

this assembly the general assembly. This decoupling of the assembly containing the remote objects
and server host is quite important, in that both the client and the server assemblies typically set
a reference to the general assembly to obtain the metadata definitions of the remotable types.

In the simplest case, the general assembly is placed into the application directory of the client
and server. The only possible drawback to this approach is the fact that the client has a reference to
an assembly that contains CIL code that is never used (which may be a problem if you wish to
ensure that the end user cannot view proprietary code). Specifically, the only reason the client
requires a reference to the general assembly is to obtain the metadata descriptions of the remotable
types. You can overcome this glitch in several ways, for example:

• Construct your remote objects to make use of interface-based programming techniques.
Given this, the client is able to set a reference to a .NET binary that contains nothing but
interface definitions.

• Make use of the soapsuds.exe command-line application. Using this tool, you are able to
generate an assembly that contains nothing but metadata descriptions of the remote types.

• Manually build an assembly that contains nothing but metadata descriptions of the remote
types.

To keep things simple over the course of this chapter, you will build and deploy general assem-
blies that contain the required metadata as well as the CIL implementation.

■Note If you wish to examine how to implement general assemblies using each of these alternatives, check out
Distributed .NET Programming in C# by Tom Barnaby (Apress, 2002).

Building Your First Distributed Application
There is nothing more satisfying than building a distributed application using a new platform. To
illustrate how quickly you’re able to get up and running with the .NET remoting layer, let’s build
a simple example. As mentioned, the entirety of this example consists of three .NET assemblies:

• A general assembly named SimpleRemotingAsm.dll

• A client assembly named SimpleRemoteObjectClient.exe

• A server assembly named SimpleRemoteObjectServer.exe

Building the General Assembly
First, let’s create the general assembly, SimpleRemotingAsm.dll, which will be referenced by both
the server and client applications. SimpleRemotingAsm.dll defines a single MBR type named
RemoteMessageObject, which supports two public members. The DisplayMessage() method prints
a client-supplied message on the server’s console window, while ReturnMessage() returns a message
to the client. Here is the complete code of this new C# class library:

namespace SimpleRemotingAsm
{

// This is a type that will be
// marshaled by reference (MBR) if accessed remotely.
public class RemoteMessageObject: MarshalByRefObject
{

public RemoteMessageObject()
{ Console.WriteLine("Constructing RemoteMessageObject!"); }

4193ch18.qxd 8/14/05 2:59 PM Page 575

CHAPTER 18 ■ THE .NET REMOTING LAYER576

// This method takes an input string
// from the caller.
public void DisplayMessage(string msg)
{ Console.WriteLine("Message is: {0}", msg);}

// This method returns a value to the caller.
public string ReturnMessage()
{ return "Hello from the server!"; }

}
}

The major point of interest is the fact that the type derives from the System.MarshalByRefObject
base class, which ensures that the derived class will be accessible via a client-side proxy. Also note
the custom default constructor that will print out a message when an instance of the type comes to
life. That’s it. Go ahead and build your new SimpleRemotingAsm.dll assembly.

Building the Server Assembly
Recall that server assemblies are essentially hosts for general assemblies that contain the remotable
objects. Create a console program named SimpleRemoteObjectServer. The role of this assembly is to
open a channel for the incoming requests and register RemoteMessageObject as a WKO. To begin, ref-
erence the System.Runtime.Remoting.dll and SimpleRemotingAsm.dll assemblies, and update Main()
as follows:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using SimpleRemotingAsm;

namespace SimpleRemoteObjectServer
{

class SimpleObjServer
{

static void Main(string[] args)
{

Console.WriteLine("***** SimpleRemoteObjectServer started! *****");
Console.WriteLine("Hit enter to end.");

// Register a new HttpChannel
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);

// Register a WKO type, using singleton activation.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.Singleton);

Console.ReadLine();
}

}
}

Main() begins by creating a new HttpChannel type using an arbitrary port ID. This port is
opened on registering the channel via the static ChannelServices.RegisterChannel() method. Once
the channel as been registered, the remote server assembly is now equipped to process incoming
messages via port number 32469.

4193ch18.qxd 8/14/05 2:59 PM Page 576

CHAPTER 18 ■ THE .NET REMOTING LAYER 577

■Note The number you assign to a port is typically up to you (or your system administrator). Do be aware, how-
ever, that port IDs below 1024 are reserved for system use.

Next, to register the SimpleRemotingAsm.RemoteMessageObject type as a WKO requires the
use of the RemotingConfiguration.RegisterWellKnownServiceType() method. The first argument
to this method is the type information of the type to be registered. The second parameter to
RegisterWellKnownServiceType() is a simple string (of your choosing) that will be used to identify
the object across application domain boundaries. Here, you are informing the CLR that this object
is to be realized by the client using the name RemoteMsgObj.soap.

The final parameter is a member of the WellKnownObjectMode enumeration, which you have
specified as WellKnownObjectMode.Singleton. Recall that singleton WKO types ensure that a single
instance of the RemoteMessageObject will service all incoming requests. Build your server assembly
and let’s move on to the client-side code.

Building the SimpleRemoteObjectClient.exe Assembly
Now that you have a listener that is hosting your remotable object, the final step is to build an assem-
bly that will request access to its services. Again, let’s use a simple console application. Set a reference
to System.Runtime.Remoting.dll and SimpleRemotingAsm.dll. Implement Main() as follows:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using SimpleRemotingAsm;

namespace SimpleRemoteObjectClient
{

class SimpleObjClient
{

static void Main(string[] args)
{

Console.WriteLine("***** SimpleRemoteObjectClient started! *****");
Console.WriteLine("Hit enter to end.");

// Create a new HttpChannel.
HttpChannel c = new HttpChannel();
ChannelServices.RegisterChannel(c);

// Get a proxy to remote WKO type.
object remoteObj = Activator.GetObject(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"http://localhost:32469/RemoteMsgObj.soap");

// Now use the remote object.
RemoteMessageObject simple = (RemoteMessageObject)remoteObj;
simple.DisplayMessage("Hello from the client!");
Console.WriteLine("Server says: {0}", simple.ReturnMessage());
Console.ReadLine();

}
}

}

4193ch18.qxd 8/14/05 2:59 PM Page 577

CHAPTER 18 ■ THE .NET REMOTING LAYER578

Figure 18-2. The server’s output

Figure 18-3. The client’s output

A few notes about this client application. First, notice that the client is also required to register
an HTTP channel, but the client does not specify a port ID, as the end point is specified by the client-
supplied activation URL. Given that the client is interacting with a registered WKO type, you are limited
to triggering the type’s default constructor. To do so, make use of the Activator.GetObject() method,
specifying two parameters. The first is the type information that describes the remote object you are
interested in interacting with. Read that last sentence again. Given that the Activator.GetObject()
method requires the object’s metadata description, it should make more sense as to why the client
is also required to reference the general assembly! Again, at the end of the chapter you’ll examine
various ways to clean up this aspect of your client-side assembly.

The second parameter to Activator.GetObject() is termed the activation URL. Activation
URLs that describe a WKO type can be generalized into the following format:

ProtocolScheme://ComputerName:Port/ObjectUri

Finally, note that the Activator.GetObject() method returns a generic System.Object type, and
thus you must make use of an explicit cast to gain access to the members of the RemoteMessageObject.

Testing the Remoting Application
To test your application, begin by launching the server application, which will open an HTTP chan-
nel and register RemoteMessageObject for remote for access. Next, launch an instance of the client
application. If all is well, your server window should appear as shown in Figure 18-2, while the client
application displays what you see in Figure 18-3.

Understanding the ChannelServices Type
As you have seen, when a server application wishes to advertise the existence of a remote type, it
makes use of the System.Runtime.Remoting.Channels.ChannelServices type. ChannelServices pro-
vides a small set of static methods that aid in the process of remoting channel registration, resolution,
and URL discovery. Table 18-4 documents some of the core members.

4193ch18.qxd 8/14/05 2:59 PM Page 578

CHAPTER 18 ■ THE .NET REMOTING LAYER 579

Figure 18-4. Enumerating client-side channels

Table 18-4. Select Members of the ChannelServices Type

Member Meaning in Life

RegisteredChannels This property gets or sets a list of currently registered channels, each of
which is represented by the IChannel interface.

DispatchMessage() This method dispatches incoming remote calls.

GetChannel() This method returns a registered channel with the specified name.

GetUrlsForObject() This method returns an array of all the URLs that can be used to reach
the specified object.

RegisterChannel() This method registers a channel with the channel services.

UnregisterChannel() This method unregisters a particular channel from the registered
channels list.

In addition to the aptly named RegisterChannel() and UnregisterChannel() methods,
ChannelServices defines the RegisteredChannels property. This member returns an array of
IChannel interfaces, each representing a handle to each channel registered in a given application
domain. The definition of the IChannel interface is quite straightforward:

public interface IChannel
{

string ChannelName { get; }
int ChannelPriority { get; }
string Parse(string url, ref String objectURI);

}

As you can see, each channel is given a friendly string name as well as a priority level. To illustrate,
if you were to update the Main() method of the SimpleRemoteObjectClient application with the fol-
lowing logic:

// List all registered channels.
IChannel[] channelObjs = ChannelServices.RegisteredChannels;
foreach(IChannel i in channelObjs)
{

Console.WriteLine("Channel name: {0}", i.ChannelName);
Console.WriteLine("Channel Priority: {0}", i.ChannelPriority);

}

you would find the client-side console now looks like Figure 18-4.

4193ch18.qxd 8/14/05 2:59 PM Page 579

CHAPTER 18 ■ THE .NET REMOTING LAYER580

Understanding the RemotingConfiguration Type
Another key remoting-centric type is RemotingConfiguration, which as its name suggests is used to
configure various aspects of a remoting application. Currently, you have seen this type in use on the
server side (via the call to the RegisterWellKnownServiceType() method). Table 18-5 lists additional
static members of interest, some of which you’ll see in action over the remainder of this chapter.

Table 18-5. Members of the RemotingConfiguration Type

Member Meaning in Life

ApplicationId Gets the ID of the currently executing application

ApplicationName Gets or sets the name of a remoting application

ProcessId Gets the ID of the currently executing process

Configure() Reads the configuration file and configures the
remoting infrastructure

GetRegisteredActivatedClientTypes() Retrieves an array of object types registered on the
client as types that will be activated remotely

GetRegisteredActivatedServiceTypes() Retrieves an array of object types registered on the
service end that can be activated on request from
a client

GetRegisteredWellKnownClientTypes() Retrieves an array of object types registered on the
client end as well-known types

GetRegisteredWellKnownServiceTypes() Retrieves an array of object types registered on the
service end as well-known types

IsWellKnownClientType() Checks whether the specified object type is registered
as a well-known client type

RegisterActivatedClientType() Registers an object on the client end as a type that can
be activated on the server

RegisterWellKnownClientType() Registers an object on the client end as a well-known
type (single call or singleton)

RegisterWellKnownServiceType() Registers an object on the service end as a well-
known type (single call or singleton)

Recall that the .NET remoting layer distinguishes between two types of MBR objects: WKO
(server-activated) and CAO (client-activated). Furthermore, WKO types can be configured to make
use of singleton or single call activations. Using the functionality of the RemotingConfiguration type,
you are able to dynamically obtain such information at runtime. For example, if you update the Main()
method of your SimpleRemoteObjectServer application with the following:

static void Main(string[] args)
{
...

// Set a friendly name for this server app.
RemotingConfiguration.ApplicationName = "First server app!";
Console.WriteLine("App Name: {0}",

RemotingConfiguration.ApplicationName);

// Get an array of WellKnownServiceTypeEntry types
// that represent all the registered WKOs.
WellKnownServiceTypeEntry[] WKOs =

RemotingConfiguration.GetRegisteredWellKnownServiceTypes();
// Now print their statistics.

4193ch18.qxd 8/14/05 2:59 PM Page 580

CHAPTER 18 ■ THE .NET REMOTING LAYER 581

Figure 18-5. Server-side statistics

foreach(WellKnownServiceTypeEntry wko in WKOs)
{

Console.WriteLine("Asm name containing WKO: {0}", wko.AssemblyName);
Console.WriteLine("URL to WKO: {0}", wko.ObjectUri);
Console.WriteLine("Type of WKO: {0}", wko.ObjectType);
Console.WriteLine("Mode of WKO: {0}", wko.Mode);

}
}

you would find a list of all WKO types registered by this server application domain. As you iterate
over the array of WellKnownServiceTypeEntry types, you are able to print out various points of
interest regarding each WKO. Given that your server’s application registered only a single type
(SimpleRemotingAsm.RemoteMessageObject), you’ll receive the output shown in Figure 18-5.

The other major method of the RemotingConfiguration type is Configure(). As you’ll see in just
a bit, this static member allows the client- and server-side application domains to make use of remot-
ing configuration files.

Revisiting the Activation Mode of WKO Types
Recall that WKO types can be configured to function under singleton or single call activation.
Currently, your server application has registered your WKO to employ singleton activation semantics:

// Singletons can service multiple clients.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.Singleton);

Again, singleton WKOs are capable of receiving requests from multiple clients. Thus, singleton
objects maintain a one-to-many relationship between themselves and the remote clients. To test
this behavior for yourself, run the server application (if it is not currently running) and launch three
separate client applications. If you look at the output for the server, you will find a single call to the
RemoteMessageObject’s default constructor.

Now to test the behavior of single call objects, modify the server to register the WKO to support
single call activation:

// Single call types maintain a 1-to-1 relationship
// between client and WKO.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.SingleCall);

4193ch18.qxd 8/14/05 2:59 PM Page 581

CHAPTER 18 ■ THE .NET REMOTING LAYER582

Once you have recompiled and run the server application, again launch three clients. This time
you can see that a new RemoteMessageObject is created for each client request. As you might be able
to gather, if you wish to share stateful data between multiple remote clients, singleton activation
provides one possible alternative, as all clients are communicating with a single instance of the
remote object.

■Source Code The SimpleRemotingAsm, SimpleRemoteObjectServer, and SimpleRemoteObjectClient projects
are located under the Chapter 18 directory.

Deploying the Server to a Remote Machine
At this point, you have just crossed an application and process boundary on a single machine. If
you’re connected to an additional machine, let’s extend this example to allow the client to interact
with the RemoteMessageObject type across a machine boundary. To do so, follow these steps:

1. On your server machine, create and share a folder to hold your server-side assemblies.

2. Copy the SimpleRemoteObjectServer.exe and SimpleRemotingAsm.dll assemblies to this
server-side share point.

3. Open your SimpleRemoteObjectClient project workspace and retrofit the activation URL to
specify the name of the remote machine, for example:

// Get a proxy to remote object.
object remoteObj = Activator.GetObject(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"http://YourRemoteBoxName:32469/RemoteMsgObj.soap");

4. Execute the SimpleRemoteObjectServer.exe application on the server machine.

5. Execute the SimpleRemoteObjectClient.exe application on the client machine.

6. Sit back and grin.

■Note Activation URLs may specify a machine’s IP address in place of its friendly name.

Leveraging the TCP Channel
Currently, your remote object is accessible via the HTTP network protocol. As mentioned, this pro-
tocol is quite firewall-friendly, but the resulting SOAP packets are a bit on the bloated side (given the
nature of XML data representation). To lighten the payload, you can update the client and server
assemblies to make use of the TCP channel, and therefore make use of the BinaryFormatter type
behind the scenes. Here are the relevant updates to the server assembly:

■Note When you are defining an object to be URI-accessible via a TCP endpoint, it is common (but not required)
to make use of the *.rem (i.e., remote) extension.

// Server adjustments!
using System.Runtime.Remoting.Channels.Tcp;
...
static void Main(string[] args)

4193ch18.qxd 8/14/05 2:59 PM Page 582

CHAPTER 18 ■ THE .NET REMOTING LAYER 583

{
...

// Create a new TcpChannel
TcpChannel c = new TcpChannel(32469);
ChannelServices.RegisterChannel(c);

// Register a 'well-known' object in single call mode.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.rem",
WellKnownObjectMode.SingleCall);

Console.ReadLine();
}

Notice that you are now registering a System.Runtime.Remoting.Channels.Tcp.TcpChannel type
to the .NET remoting layer. Also note that the object URI has been altered to support a more generic
name (RemoteMsgObj.rem) rather than the SOAP-centric *.soap extension. The client-side updates
are equally as simple:

// Client adjustments!
using System.Runtime.Remoting.Channels.Tcp;
...
static void Main(string[] args)
{
...

// Create a new TcpChannel
TcpChannel c = new TcpChannel();
ChannelServices.RegisterChannel(c);
// Get a proxy to remote object.
object remoteObj = Activator.GetObject(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"tcp://localhost:32469/RemoteMsgObj.rem");

// Use object.
RemoteMessageObject simple = (RemoteMessageObject)remoteObj;
simple.DisplayMessage("Hello from the client!");
Console.WriteLine("Server says: {0}", simple.ReturnMessage());
Console.ReadLine();

}

The only point to be aware of here is that the client’s activation URL now must specify the
tcp:// channel qualifier rather than http://. Beyond that, the bulk of the code base is identical to
the previous HttpChannel logic.

■Source Code The TCPSimpleRemoteObjectServer and TCPSimpleRemoteObjectClient projects are located
under the Chapter 18 directory (both projects use the SimpleRemotingAsm.dll created previously).

A Brief Word Regarding the IpcChannel
Before moving on to an examination of remoting configuration files, recall that .NET 2.0 also pro-
vides the IpcChannel type, which provides the fastest possible manner in which two applications on
the same machine can exchange information. Given that this chapter is geared toward covering dis-
tributed programs that involve two or more computers, interested readers should look up IpcChannel
in the .NET Framework 2.0 SDK documentation (as you might guess, the code is just about identical
to working with HttpChannel and TcpChannel).

4193ch18.qxd 8/14/05 2:59 PM Page 583

CHAPTER 18 ■ THE .NET REMOTING LAYER584

Remoting Configuration Files
At this point you have successfully built a distributed application using the .NET remoting layer.
One issue you may have noticed in these first examples is the fact that the client and the server
applications have a good deal of hard-coded logic within their respective binaries. For example, the
server specifies a fixed port ID, fixed activation mode, and fixed channel type. The client, on the other
hand, hard-codes the name of the remote object it is attempting to interact with.

As you might agree, it is wishful thinking to assume that initial design notes remain unchanged
once an application is deployed. Ideally, details such as port ID and object activation mode (and what-
not) could be altered on the fly without needing to recompile and redistribute the client or server code
bases. Under the .NET remoting scheme, all the aforementioned issues can be circumvented using
the remoting configuration file.

As you will recall from Chapter 11, *.config can be used to provide hints to the CLR regarding
the loading of externally referenced assemblies. The same *.config files can be used to inform the
CLR of a number of remoting-related details, on both the client side and the server side.

When you build a remoting *.config file, the <system.runtime.remoting> element is used to
hold various remoting-centric details. Do be aware that if you’re building an application that already
has a *.config file that specifies assembly resolution details, you’re free to add remoting elements
within the same file. Thus, a single *.config file that contains remoting and binding information
would look something like this:

<configuration>
<system.runtime.remoting>

<! -- configure client/server remoting settings here -- >
</system.runtime.remoting>
<runtime>

<! -- binding assembly settings here -- >
</runtime>

</configuration>

If your configuration file has no need to specify assembly binding logic, you can omit the
<runtime> element and make use of the following skeleton *.config file:

<configuration>
<system.runtime.remoting>

<! -- configure client/server remoting settings here -- >
</system.runtime.remoting>

</configuration>

Building Server-Side *.config Files
Server-side configuration files allow you to declare the objects that are to be reached via remote
invocations as well as channel and port information. Basically, using the <service>, <wellknown>,
and <channels> elements, you are able to replace the following server-side logic:

// Hard-coded HTTP server logic.
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.Singleton);

with the following *.config file:

4193ch18.qxd 8/14/05 2:59 PM Page 584

CHAPTER 18 ■ THE .NET REMOTING LAYER 585

<configuration>
<system.runtime.remoting>
<application>
<service>
<wellknown
mode="Singleton"
type="SimpleRemotingAsm.RemoteMessageObject, SimpleRemotingAsm"
objectUri="RemoteMsgObj.soap"/>

</service>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Notice that much of the relevant server-side remoting information is wrapped within the scope
of the <service> (not server) element. The child <wellknown> element makes use of three attributes
(mode, type, and objectUri) to specify the well-known object to register with the .NET remoting
layer. The child <channels> element contains any number of <channel> elements that allow you to
define the type of channel (in this case, HTTP) to open on the server. TCP channels would simply
make use of the tcp string token in place of http.

As the SimpleRemoteObjectServer.exe.config file contains all the necessary information, the
server-side Main() method cleans up considerably. All you are required to do is make a single call to
RemotingConfiguration.Configure() and specify the name of your configuration file.

static void Main(string[] args)
{

// Register a 'well-known' object using a *.config file.
RemotingConfiguration.Configure("SimpleRemoteObjectServer.exe.config");
Console.WriteLine("Server started! Hit enter to end");
Console.ReadLine();

}

Building Client-Side *.config Files
Clients are also able to leverage remoting-centric *.config files. Unlike a server-side configuration
file, client-side configuration files make use of the <client> element to identify the name of the
well-known object the caller wishes to interact with. In addition to providing the ability to dynami-
cally change the remoting information without the need to recompile the code base, client-side
*.config files allow you to create the proxy type directly using the C# new keyword, rather than the
Activator.GetObject() method. Thus, if you have the following client-side *.config file:

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "SimpleRemoteObjectClient">

<wellknown
type="SimpleRemotingAsm.RemoteMessageObject, SimpleRemotingAsm"
url="http://localhost:32469/RemoteMsgObj.soap"/>

</client>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

4193ch18.qxd 8/14/05 2:59 PM Page 585

CHAPTER 18 ■ THE .NET REMOTING LAYER586

you are able to update the client’s Main() method as follows:

static void Main(string[] args)
{

RemotingConfiguration.Configure("SimpleRemoteObjectClient.exe.config");
// Using *.config file, the client is able to directly 'new' the type.
RemoteMessageObject simple = new RemoteMessageObject();
simple.DisplayMessage("Hello from the client!");
Console.WriteLine("Server says: {0}", simple.ReturnMessage());
Console.WriteLine("Client started! Hit enter to end");
Console.ReadLine();

}

Of course, when you run the application, the output is identical. If the client wishes to make
use of the TCP channel, the url property of the <wellknown> element and <channel> ref property
must make use of the tcp token in place of http.

■Source Code The SimpleRemoteObjectServerWithConfig and SimpleRemoteObjectClientWithConfig projects
are located under the Chapter 18 subdirectory (both of which make use of the SimpleRemotingAsm.dll created
previously).

Working with MBV Objects
Our first remoting applications allowed client-side access to a single WKO type. Recall that WKO
types are (by definition) MBR types, and therefore client access takes place via an intervening proxy.
In contrast, MBV types are local copies of a server-side object, which are typically returned from
a public member of an MBR type. Although you already know how to configure an MBV type (mark
a class with the [Serializable] attribute), you have not yet seen an example of MBV types in action
(beyond passing string data between the two parties). To illustrate the interplay of MBR and MBV
types, let’s see another example involving three assemblies:

• The general assembly named CarGeneralAsm.dll

• The client assembly named CarProviderClient.exe

• The server assembly named CarProviderServer.exe

As you might assume, the code behind the client and server applications is more or less identi-
cal to the previous example, especially since these applications will again make use of *.config
files. Nevertheless, let’s step through the process of building each assembly one at a time.

Building the General Assembly
During our examination of object serialization in Chapter 17, you created a type named JamesBondCar
(in addition to the dependent Radio and Car classes). The CarGeneralAsm.dll code library will reuse
these types, so begin by using the Project ➤ Add Existing Item menu command and include these *.cs
files into this new Class Library project (the automatically provided Class1.cs file can be deleted).
Given that each of these types has already been marked with the [Serializable] attribute, they are
ready to be marshaled by value to a remote client.

All you need now is an MBR type that provides access to the JamesBondCar type. To make things
a bit more interesting, however, your MBR object (CarProvider) will maintain a generic List<> of
JamesBondCar types. CarProvider will also define two members that allow the caller to obtain a spe-
cific JamesBondCar as well as receive the entire List<> of types. Here is the complete code for the
new class type:

4193ch18.qxd 8/14/05 2:59 PM Page 586

CHAPTER 18 ■ THE .NET REMOTING LAYER 587

namespace CarGeneralAsm
{

// This type is an MBR object that provides
// access to related MBV types.
public class CarProvider : MarshalByRefObject
{

private List<JamesBondCar> theJBCars =
new List<JamesBondCar>();

// Add some cars to the list.
public CarProvider()
{

Console.WriteLine("Car provider created");
theJBCars.Add(new JamesBondCar("QMobile", 140, true, true));
theJBCars.Add(new JamesBondCar("Flyer", 140, true, false));
theJBCars.Add(new JamesBondCar("Swimmer", 140, false, true));
theJBCars.Add(new JamesBondCar("BasicJBC", 140, false, false));

}
// Get all the JamesBondCars.
public List<JamesBondCar> GetAllAutos()
{ return theJBCars; }
// Get one JamesBondCar.
public JamesBondCar GetJBCByIndex(int i)
{ return (JamesBondCar)theJBCars[i]; }

}
}

Notice that the GetAllAutos() method returns the internal List<> type. The obvious question is
how this member of the System.Collections.Generic namespace is marshaled back to the caller. If
you look up this type using the .NET Framework 2.0 SDK documentation, you will find that List<>
has been decorated with the [Serializable] attribute:

[SerializableAttribute()]
public class List<T> : IList, ICollection, IEnumerable

Therefore, the entire contents of the List<> type will be marshaled by value to the caller (pro-
vided the contained types are also serializable)! This brings up a very good point regarding .NET
remoting and members of the base class libraries. In addition to the custom MBV and MBR types
you may create yourself, understand that any type in the base class libraries that is decorated with
the [Serializable] attribute is able to function as an MBV type in the .NET remoting architecture.
Likewise, any type that derives (directly or indirectly) from MarshalByRefObject will function as an
MBR type.

■Note Be aware that the SoapFormatter does not support serialization of generic types. If you build methods
that receive or return generic types (such as the List<>), you must make use of the BinaryFormatter and the
TcpChannel object.

Building the Server Assembly
The server host assembly (CarProviderServer.exe) has the following logic within Main():

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using CarGeneralAsm;

4193ch18.qxd 8/14/05 2:59 PM Page 587

CHAPTER 18 ■ THE .NET REMOTING LAYER588

namespace CarProviderServer
{

class CarServer
{

static void Main(string[] args)
{

RemotingConfiguration.Configure("CarProviderServer.exe.config");
Console.WriteLine("Car server started! Hit enter to end");
Console.ReadLine();

}
}

}

The related *.config file is just about identical to the server-side *.config file you created in
the previous example. The only point of interest is to define an object URI value that makes sense
for the CarProvider type:

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown mode="Singleton"
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
objectUri="carprovider.rem" />

</service>
<channels>

<channel ref="tcp" port="32469" />
</channels>

</application>
</system.runtime.remoting>

</configuration>

Building the Client Assembly
Last but not least, we have the client application that will make use of the MBR CarProvider type in
order to obtain discrete JamesBondCars types as well as the List<> type. Once you obtain a type from
the CarProvider, you’ll send it into the UseCar() helper function from processing:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using CarGeneralAsm;
using System.Collections.Generic;

namespace CarProviderClient
{

class CarClient
{

private static void UseCar(JamesBondCar c)
{

Console.WriteLine("-> Name: {0}", c.PetName);
Console.WriteLine("-> Max speed: {0}", c.MaxSpeed);
Console.WriteLine("-> Seaworthy? : {0}", c.isSeaWorthy);
Console.WriteLine("-> Flight worthy? : {0}", c.isFlightWorthy);
Console.WriteLine();

}

4193ch18.qxd 8/14/05 2:59 PM Page 588

CHAPTER 18 ■ THE .NET REMOTING LAYER 589

static void Main(string[] args)
{

RemotingConfiguration.Configure("CarProviderClient.exe.config");
// Make the car provider.
CarProvider cp = new CarProvider();
// Get first JBC.
JamesBondCar qCar = cp.GetJBCByIndex(0);
// Get all JBCs.
List<JamesBondCar> allJBCs = cp.GetAllAutos();
// Use first car.
UseCar(qCar);
// Use all cars in List<>.
foreach(JamesBondCar j in allJBCs)

UseCar(j);
Console.WriteLine("Client started! Hit enter to end");
Console.ReadLine();

}
}

}

The client side *.config file is also what you would expect. Simply update the activation URL:

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "CarClient">

<wellknown
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
url="tcp://localhost:32469/carprovider.rem"/>

</client>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Now, run your server and client applications (in that order, of course) and observe the output.
Your client-side console window will whirl through the JamesBondCars and print out the statistics of
each type. Recall that as you interact with the List<> and JamesBondCar types, you are operating on
their members within the client’s application domain, as they have both been marked with the
[Serializable] attribute.

To prove that point, update the UseCar() helper function to call the TurnOnRadio() method on
the incoming JamesBondCar. Now, run the server and client applications once again. Notice that the
message box appears on the client machine! Had the Car, Radio, and JamesBondCar types been con-
figured as MBR types, the server would be the machine displaying the message box prompts. If you
wish to verify this, derive each type from MarshalByRefObject and recompile all three assemblies (to
ensure Visual Studio 2005 copies the latest CarGeneralAsm.dll into the client’s and server’s applica-
tion directory). When you run the application once again, the message boxes appear on the remote
machine.

■Source Code The CarGeneralAsm, CarProviderServer, and CarProviderClient projects are located under the
Chapter 18 subdirectory.

4193ch18.qxd 8/14/05 2:59 PM Page 589

CHAPTER 18 ■ THE .NET REMOTING LAYER590

Understanding Client-Activated Objects
All of these current remoting examples have made use of WKOs. Recall that WKOs have the follow-
ing characteristics:

• WKOs can be configured either as singleton or single call.

• WKOs can only be activated using the type’s default constructor.

• WKOs are instantiated on the server on the first client-side member invocation.

CAO types on the other hand, can be instantiated using any constructor on the type and are
created at the point the client makes use of the C# new keyword or Activator type. Furthermore, the
lifetime of CAO types is monitored by the .NET leasing mechanism. Do be aware that when you
configure a CAO type, the .NET remoting layer will generate a specific CAO remote object to service
each client. Again, the big distinction is the fact that CAOs are always alive (and therefore stateful)
beyond a single method invocation.

To illustrate the construction, hosting, and consumption of CAO types, let’s retrofit the previ-
ous automobile-centric general assembly. Assume that your MBR CarProvider class has defined an
additional constructor that allows the client to pass in an array of JamesBondCar types that will be
used to populate the generic List<>:

public class CarProvider : MarshalByRefObject
{

private List<JamesBondCar> theJBCars
= new List<JamesBondCar>();

public CarProvider(JamesBondCar[] theCars)
{

Console.WriteLine("Car provider created with custom ctor");
theJBCars.AddRange(theCars);

}
...
}

To allow the caller to activate the CarProvider using your new constructor syntax, you need to
build a server application that registers CarProvider as a CAO type rather than a WKO type. This
may be done programmatically (à la the RemotingConfiguration.RegisterActivatedServiceType()
method) or using a server-side *.config file. If you wish to hard-code the name of the CAO object
within the host server’s code base, all you need to do is pass in the type information of the type(s)
(after creating and registering a channel) as follows:

// Hard-code the fact that CarProvider is a CAO type.
RemotingConfiguration.RegisterActivatedServiceType(

typeof(CAOCarGeneralAsm.CarProvider));

If you would rather leverage the *.config file, replace the <wellknown> element with the
<activated> element as follows:

<configuration>
<system.runtime.remoting>

<application>
<service>

<activated type = "CAOCarGeneralAsm.CarProvider,
CAOCarGeneralAsm"/>

</service>
<channels>

<channel ref="tcp" port="32469" />
</channels>

4193ch18.qxd 8/14/05 2:59 PM Page 590

CHAPTER 18 ■ THE .NET REMOTING LAYER 591

</application>
</system.runtime.remoting>

</configuration>

Finally, you need to update the client application, not only by way of the *.config file (or pro-
grammatically in the code base) to request access to the remote CAO, but also to indeed trigger the
custom constructor of the CarProvider type. Here are the relevant updates to the client-side Main()
method:

static void Main(string[] args)
{

// Read updated *.config file.
RemotingConfiguration.Configure("CAOCarProviderClient.exe.config");
// Create array of types to pass to provider.
JamesBondCar[] cars =
{

new JamesBondCar("Viper", 100, true, false),
new JamesBondCar("Shaken", 100, false, true),
new JamesBondCar("Stirred", 100, true, true)

};
// Now trigger the custom ctor.
CarProvider cp = new CarProvider(cars);

...
}

The updated client-side *.config file also makes use of the <activated> element, as opposed to
<wellknown>. In addition, the <client> element now requires the url property to define the location
of the registered CAO. Recall that when the server registered the CarProvider as a WKO, the client
specified such information within the <wellknown> element.

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "CarClient"

url = "tcp://localhost:32469">
<activated type = "CAOCarGeneralAsm.CarProvider, CAOCarGeneralAsm" />

</client>
<channels>

<channel ref="tcp"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

If you would rather hard-code the client’s request to the CAO type, you can make use of the
RegistrationServices.RegisterActivatedClientType() method as follows:

static void Main(string[] args)
{

// Use hard-coded values.
RemotingConfiguration.RegisterActivatedClientType(

typeof(CAOCarGeneralAsm.CarProvider),
"tcp://localhost:32469");

...
}

If you now execute the updated server and client assemblies, you will be pleased to find that
you are able to pass your custom array of JamesBondCar types to the remote CarProvider via the
overloaded constructor.

4193ch18.qxd 8/14/05 2:59 PM Page 591

CHAPTER 18 ■ THE .NET REMOTING LAYER592

■Source Code The CAOCarGeneralAsm, CAOCarProviderServer, and CAOCarProviderClient projects are located
under the Chapter 18 subdirectory.

The Lease-Based Lifetime of CAO/WKO-Singleton
Objects
As you have seen, WKO types configured with single call activation are alive only for the duration of
the current method call. Given this fact, WKO single call types are stateless entities. As soon as the
current invocation has completed, the WKO single call type is a candidate for garbage collection.

On the other hand, CAO types and WKO types that have been configured to use singleton acti-
vation are both, by their nature, stateful entities. Given these two object configuration settings, the
question that must be asked is, how does the server process know when to destroy these MBR
objects? Clearly, it would be a huge problem if the server machine garbage-collected MBR objects
that were currently in use by a remote client. If the server machine waits too long to release its set of
MBR types, this may place undo stress on the system, especially if the MBR object(s) in question
maintain valuable system resources (database connections, unmanaged types, and whatnot).

The lifetime of a CAO or WKO-singleton MBR type is governed by a “lease time” that is tightly
integrated with the .NET garbage collector. If the lease time of a CAO or WKO-singleton MBR type
expires, the object is ready to be garbage-collected on the next collection cycle. Like any .NET type,
if the remote object has overridden System.Object.Finalize() (via the C# destructor syntax), the
.NET runtime will indeed trigger the finalization logic.

The Default Leasing Behavior
CAO and WKO-singleton MBR types have what is known as a default lease, which lasts for five min-
utes. If the runtime detects five minutes of inactivity have passed for a CAO or WKO-singleton MBR
type, the assumption is that the client is no longer making use of the object and therefore the remote
object may be garbage-collected. However, when the default lease expires, this does not imply that
the object is immediately marked for garbage collection. In reality, there are many ways to influence
the behavior of the default lease.

First and foremost, anytime the remote client invokes a member of the remote CAO or WKO-
singleton MBR type, the lease is renewed back to its five-minute limit. In addition to the automatic
client-invocation-centric renew policy, the .NET runtime provides three additional alternatives:

• *.config files can be authored that override the default lease settings for remote objects.

• Server-side lease sponsors can be used to act on behalf of a remote object whose lease time
has expired.

• Client-side lease sponsors can be used to act on behalf of a remote object whose lease time
has expired.

We will check out these options over the next several sections, but for the time being let’s exam-
ine the default lease settings of a remote type. Recall that the MarshalByRefObject base class defines
a member named GetLifetimeService(). This method returns a reference to an internally implemented
object that supports the System.Runtime.Remoting.Lifetime.ILease interface. As you would guess,
the ILease interface can be used to interact with the leasing behavior of a given CAO or WKO-singleton
type. Here is the formal definition:

public interface ILease
{

TimeSpan CurrentLeaseTime { get; }

4193ch18.qxd 8/14/05 2:59 PM Page 592

CHAPTER 18 ■ THE .NET REMOTING LAYER 593

LeaseState CurrentState { get; }
TimeSpan InitialLeaseTime { get; set; }
TimeSpan RenewOnCallTime { get; set; }
TimeSpan SponsorshipTimeout { get; set; }
void Register(System.Runtime.Remoting.Lifetime.ISponsor obj);
void Register(System.Runtime.Remoting.Lifetime.ISponsor obj,

TimeSpan renewalTime);
TimeSpan Renew(TimeSpan renewalTime);
void Unregister(System.Runtime.Remoting.Lifetime.ISponsor obj);

}

The ILease interface not only allows you to obtain information regarding the current lease (via
CurrentLeaseTime, CurrentState, and InitialLeaseTime), but also provides the ability to build lease
“sponsors” (more details on this later). Table 18-6 documents role of each ILease member.

Table 18-6. Members of the ILease Interface

Member Meaning in Life

CurrentLeaseTime Gets the amount of time remaining before the object deactivates, if it
does not receive further method invocations.

CurrentState Gets the current state of the lease, represented by the LeaseState
enumeration.

InitialLeaseTime Gets or sets the initial amount of time for a given lease.
The initial lease time of an object is the amount of time following the
initial activation before the lease expires if no other method calls occur.

RenewOnCallTime Gets or sets the amount of time by which a call to the remote object
increases the CurrentLeaseTime.

SponsorshipTimeout Gets or sets the amount of time to wait for a sponsor to return with
a lease renewal time.

Register() Overloaded. Registers a sponsor for the lease.

Renew() Renews a lease for the specified time.

Unregister() Removes a sponsor from the sponsor list.

To illustrate the characteristics of the default lease of a CAO or WKO-singleton remote object,
assume that your current CAOCarGeneralAsm project has defined a new internal class named
LeaseInfo. LeaseInfo supports a static member named LeaseStats(), which dumps select statistics
regarding the current lease for the CarProvider type to the server-side console window (be sure to
specify a using directive for the System.Runtime.Remoting.Lifetime namespace to inform the com-
piler where the ILease type is defined):

internal class LeaseInfo
{

public static void LeaseStats(ILease itfLease)
{

Console.WriteLine("***** Lease Stats *****");
Console.WriteLine("Lease state: {0}", itfLease.CurrentState);
Console.WriteLine("Initial lease time: {0}:{1}",

itfLease.InitialLeaseTime.Minutes,
itfLease.InitialLeaseTime.Seconds);

Console.WriteLine("Current lease time: {0}:{1}",
itfLease.CurrentLeaseTime.Minutes,
itfLease.CurrentLeaseTime.Seconds);

Console.WriteLine("Renew on call time: {0}:{1}",
itfLease.RenewOnCallTime.Minutes,

4193ch18.qxd 8/14/05 2:59 PM Page 593

CHAPTER 18 ■ THE .NET REMOTING LAYER594

Figure 18-6. The default lease information for CarProvider

itfLease.RenewOnCallTime.Seconds);
Console.WriteLine();

}
}

Now that you have this helper type in place, assume LeaseInfo.LeaseStats() is called within
the GetJBCByIndex() and GetAllAutos() methods of the CarProvider type. Once you recompile the
server and client assemblies (again, simply to ensure Visual Studio 2005 copies the latest and greatest
version of the CarGeneralAsm.dll to the client and server application directories), run the application
once again. Your server’s console window should now look something like Figure 18-6.

Altering the Default Lease Characteristics
Obviously, the default lease characteristics of a CAO/WKO-singleton type may not be appropriate
for each and every CAO or WKO-singleton remote object. If you wish to alter these default settings,
you have two approaches:

• You can adjust the default lease settings using a server-side *.config file.

• You can programmatically alter the settings of a type’s default lease by overriding members
of the MarshalByRefObject base class.

While each of these options will indeed alter the default lease settings, there is a key difference.
When you make use of a server-side *.config file, the lease settings affect all objects hosted by the
server process. In contrast, when you override select members of the MarshalByRefObject type, you
are able to change lease settings on an object-by-object basis.

To illustrate changing the default lease settings via a remoting *.config file, assume you have
updated the server-side XML data with the following additional <lifetime> element:

<configuration>
<system.runtime.remoting>

<application>
<lifetime leaseTime = "15M" renewOnCallTime = "5M"/>
<service>

<activated type = "CarGeneralAsm.CarProvider, CarGeneralAsm"/>
</service>
<channels>

<channel ref="tcp" port="32469" />
</channels>

</application>
</system.runtime.remoting>

</configuration>

4193ch18.qxd 8/14/05 2:59 PM Page 594

CHAPTER 18 ■ THE .NET REMOTING LAYER 595

Notice how the leaseTime and renewOnCallTime properties have been marked with the M suffix,
which as you might guess stands for the number of minutes to set for each lease-centric unit of
time. If you wish, your <lifetime> element may also suffix the numerical values with MS (millisec-
onds), S (seconds), H (hours), or even D (days).

Now recall that when you update the server’s *.config file, you have effectively changed the
leasing characteristics for each CAO/WKO-singleton object hosted by the server. As an alternative,
you may choose to programmatically override the InitializeLifetime() method in a specific
remote type:

public class CarProvider : MarshalByRefObject
{

public override object InitializeLifetimeService()
{

// Obtain the current lease info.
ILease itfLeaseInfo =

(ILease) base.InitializeLifetimeService();
// Adjust settings.
itfLeaseInfo.InitialLeaseTime = TimeSpan.FromMinutes(50);
itfLeaseInfo.RenewOnCallTime = TimeSpan.FromMinutes(10);
return itfLeaseInfo;

}
...
}

Here, the CarProvider has altered its InitialLeaseTime value to 50 minutes and its RenewOn-
CallTime value to 10. Again, the benefit of overriding InitializeLifetimeServices() is the fact that
you can configure each remote type individually.

Finally, on an odd note, if you wish to disable lease-based lifetime for a given CAO/WKO-sin-
gleton object type, you may override InitializeLifetimeServices() and simply return null. If you
do so, you have basically configured an MBR type that will never die as long as the hosting server
application is alive and kicking.

Server-Side Lease Adjustment
As you have just seen, when an MBR type overrides InitializeLifetimeServices(), it is able to
change its default leasing behavior at the time of activation. However, for the sake of argument,
what if a remote type desires to change its current lease after its activation cycle? For example,
assume the CarProvider has a new method whose implementation requires a lengthy operation
(such as connecting to a remote database and reading a large set of records). Before beginning
the task, you may programmatically adjust your lease such that if you have less than one
minute, you renew the lease time to ten minutes. To do so, you can make use of the inherited
MarshalByRefObject.GetLifetimeService() and ILease.Renew() methods as follows:

// Server-side lease adjustment.
// Assume this new method is of the CarProvider type.
public void DoLengthyOperation()
{

ILease itfLeaseInfo = (ILease)this.GetLifetimeService();
if(itfLeaseInfo.CurrentLeaseTime.TotalMinutes < 1.0)

itfLeaseInfo.Renew(TimeSpan.FromMinutes(10));

// Do lengthy task...
}

4193ch18.qxd 8/14/05 2:59 PM Page 595

CHAPTER 18 ■ THE .NET REMOTING LAYER596

Client-Side Lease Adjustment
On an additional ILease-related note, it is possible for the client’s application domain to adjust the
current lease properties for a CAO/WKO-singleton type it is communicating with across the wire.
To do so, the client makes use of the static RemotingServices.GetLifetimeService() method. As
a parameter to this member, the client passes in the reference to the remote type as follows:

// Client-side lease adjustment.
CarProvider cp = new CarProvider(cars);
ILease itfLeaseInfo = (ILease)RemotingServices.GetLifetimeService(cp);
if(itfLeaseInfo.CurrentLeaseTime.TotalMinutes < 10.0)

itfLeaseInfo.Renew(TimeSpan.FromMinutes(1000));

This approach can be helpful if the client’s application domain is about to enter a lengthy process
on the same thread of execution that is using the remote type. For example, if a single-threaded applica-
tion is about to print out a 100-page document, the chances are quite good that a remote CAO/WKO-
singleton type may time out during the process. The other (more elegant) solution, of course, is to
spawn a secondary thread of execution, but I think you get the general idea.

Server-Side (and Client-Side) Lease Sponsorship
The final topic regarding the lease-based lifetime of a CAO/WKO-singleton object to consider is the
notion of lease sponsorship. As you have just seen, every CAO/WKO-singleton entity has a default
lease, which may be altered in a number of ways on both the server side as well as the client side.
Now, regardless of the type’s lease configuration, eventually an MBR object’s time will be up. At this
point, the runtime will garbage-collect the entity . . . well, almost.

The truth of the matter is that before an expired type is truly marked for garbage collection, the
runtime will check to see if the MBR object in question has any registered lease sponsors. Simply
put, a sponsor is a type that implements the ISponsor interface, which is defined as follows:

public interface System.Runtime.Remoting.Lifetime.ISponsor
{

TimeSpan Renewal(ILease lease);
}

If the runtime detects that an MBR object has a sponsor, it will not garbage-collect the type, but
rather call the Renewal() method of the sponsor object to (once again) add time to the current lease.
On the other hand, if the MBR has no sponsor, the object’s time is truly up.

Assuming that you have created a custom class that implements ISponsor, and thus implements
Renewal() to return a specific unit of time (via the TimeSpan type), the next question is how exactly
to associate the type to a given remote object. Again, this operation may be performed by either the
server’s application domain or the client’s application domain.

To do so, the interested party obtains an ILease reference (via the inherited GetLifetimeService()
method on the server or using the static RemotingServices.GetLifetimeService() method on the
client) and calls Register():

// Server-side sponsor registration.
CarSponsor mySponsor = new CarSponsor();
ILease itfLeaseInfo = (ILease)this.GetLifetimeService();
itfLeaseInfo.Register(mySponsor);

// Client-side sponsor registration.
CarSponsor mySponsor = new CarSponsor();
CarProvider cp = new CarProvider(cars);
ILease itfLeaseInfo = (ILease)RemotingServices.GetLifetimeService(cp);
itfLeaseInfo.Register(mySponsor);

4193ch18.qxd 8/14/05 2:59 PM Page 596

CHAPTER 18 ■ THE .NET REMOTING LAYER 597

In either case, if a client or server wishes to revoke sponsorship, it may do so using the ILease.
Unregister() method, for example:

// Remove the sponsor for a given object.
itfLeaseInfo.Unregister(mySponsor);

■Note Client-side sponsored objects, in addition to implementing ISponsor, must also derive from
MarshalByRefObject, given that the client must pass the sponsor to the remote application domain!

So, as you can see, the lifetime management of stateful MBR types is a bit more complex than
a standard garbage collection. On the plus side, you have a ton of control regarding when a remote
type is destined to meet its maker. However, as you may have gathered, there is the chance that
a remote type may be removed from memory without the client’s knowledge. Should a client attempt
to invoke members on a type that has already been removed from memory, the runtime will throw
a System.Runtime.Remoting.RemotingException, at which point the client may create a brand-new
instance of the remote type or simply take an alternative course of action.

■Source Code The CAOCarGeneralAsmLease, CAOCarProviderServerLease, and CAOCarProviderClientLease
projects are located under the Chapter 18 subdirectory.

Alternative Hosts for Remote Objects
Over the course of this chapter, you have constructed numerous console-based server hosts, which
provide access to some set of remote objects. If you have a background in the classic Distributed
Component Object Model (DCOM), this step may have seemed a bit odd. In the world of DCOM, it
was not unusual to build a single server-side COM server that contained the remote objects and was
also in charge of receiving incoming requests from some remote client. This single *.exe DCOM
application would quietly load in the background without presenting a looming command window.

When you are building a .NET server assembly, the chances are quite good that the remote machine
does not need to display any sort of UI. Rather, all you really wish to do is build a server-side entity that
opens the correct channel(s) and registers the remote object(s) for client-side access. Moreover, when
you build a simple console host, you (or someone) is required to manually run the server-side *.exe
assembly, due to the fact that .NET remoting will not automatically run a server-side *.exe when called
by a remote client.

Given these two issues, the question then becomes, how can you build an invisible listener that
loads automatically? .NET programmers have two major choices at their disposal when they wish to
build a transparent host for various remote objects:

• Build a .NET Windows service application to host the remote objects.

• Allow IIS to host the remote objects.

Hosting Remote Objects Using a Windows Service
Perhaps the ideal host for remote objects is a Windows service, given that it

• Can be configured to load automatically on system startup

• Runs as an invisible background process

• Can be run under specific user accounts

4193ch18.qxd 8/14/05 2:59 PM Page 597

CHAPTER 18 ■ THE .NET REMOTING LAYER598

Figure 18-7. Creating a new Windows Service project workspace

As luck would have it, building a custom Windows service using the .NET platform is extremely
simple when contrasted to the raw Win32 API. To illustrate, let’s create a Windows Service project
named CarWinService (see Figure 18-7) that will be in charge of hosting the remote types contained
within the CarGeneralAsm.dll.

Visual Studio 2005 responds by generating a partial class (named Service1 by default), which
derives from System.ServiceProcess.ServiceBase, and another class (Program), which implements
the service’s Main() method. Given that Service1 is a rather nondescript name for your custom
service, the first order of business is to change the values of the (Name) and ServiceName properties
to CarService using the IDE’s Properties window. The distinction between these two settings is that
the (Name) value is used to define the name used to refer to your type in the code base, while the
ServiceName property marks the name to display to Windows service–centric configuration tools.

Before moving on, be sure you set a reference to the CarGeneralAsm.dll and System.Remoting.
dll assemblies, and specify the following additional using directives to the file containing the
CarService class definition:

using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Diagnostics;

Implementing the Main() Method
The Main() method of the Program class is in charge of running each service defined in the project
by passing an array of ServiceBase types into the static Service.Run() method. Given that you have
renamed your custom service from Service1 to CarService, you should find the following class defi-
nition (comments deleted for clarity):

4193ch18.qxd 8/14/05 2:59 PM Page 598

CHAPTER 18 ■ THE .NET REMOTING LAYER 599

static class Program
{

static void Main()
{

ServiceBase[] ServicesToRun;
ServicesToRun = new ServiceBase[] { new CarService() };
ServiceBase.Run(ServicesToRun);

}
}

Implementing CarService.OnStart()
You can likely already assume what sort of logic should happen when your custom service is started
on a given machine. Recall that the role of CarService is to perform the same tasks as your custom
console-based service. Thus, if you wish to register CarService as a WKO-singleton type that is avail-
able via HTTP, you could add the following code to the OnStart() method (as you would hope, you
may make use of the RemotingConfiguration type to load up a server-side remoting *.config file, rather
than hard-coding your implementation, when hosting remote objects using a Windows service):

protected override void OnStart(string[] args)
{

// Create a new HttpChannel.
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);
// Register as single call WKO.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(CarGeneralAsm.CarProvider),
"CarProvider.soap",
WellKnownObjectMode.SingleCall);

// Log successful startup.
EventLog.WriteEntry("CarWinService",

"CarWinService started successfully!",
EventLogEntryType.Information);

}

Note that once the type has been registered, you log a custom message to the Windows event
log (via the System.Diagnostics.EventLog type) to document that the host machine successfully
started your service.

Implementing OnStop()
Technically speaking, the CarService does not demand any sort of shutdown logic. For illustrative
purposes, let’s post another event to the EventLog to log the termination of the custom Windows
service:

protected override void OnStop()
{

EventLog.WriteEntry("CarWinService",
"CarWinService stopped",
EventLogEntryType.Information);

}

Now that the service is complete, the next task is to install this service on the remote machine.

4193ch18.qxd 8/14/05 2:59 PM Page 599

CHAPTER 18 ■ THE .NET REMOTING LAYER600

Figure 18-8. Including an installer for the custom Windows service

Figure 18-9. Establishing the identity of the CarService

Adding a Service Installer
Before you can install your service on a given machine, you need to add an additional type into your
current CarWinService project. Specifically, any Windows service (written using .NET or the Win32
API) requires a number of registry entries to be made to allow the OS to interact with the service itself.
Rather than making these entries manually, you can simply add an Installer type to a Windows
service project, which will configure your ServiceBase-derived type correctly when installed on the
target machine.

To add an installer for the CarService, open the design-time service editor (by double-clicking
the CarService.cs file from Solution Explorer), right-click anywhere within the designer, and select
Add Installer (see Figure 18-8).

This selection will add a new component that derives from the System.Configuration.Install.
Installer base class. On your designer will be two components. The serviceInstaller1 type repre-
sents a specific service installer for a specific service in your project. If you select this icon and view
the Properties window, you will find that the ServiceName property has been set to the CarService
class type.

The second component (serviceProcessInstaller1) allows you to establish the identity under
which the installed service will execute. By default, the Account property is set to User. Using the
Properties window of Visual Studio 2005, change this value to LocalService (see Figure 18-9).

4193ch18.qxd 8/14/05 2:59 PM Page 600

CHAPTER 18 ■ THE .NET REMOTING LAYER 601

Figure 18-10. The Windows Services applet

That’s it! Now compile your project.

Installing the CarWinService
Installing CarService.exe on a given machine (local or remote) requires two steps:

1. Move the compiled service assembly (and any necessary external assemblies; CarGeneralAsm.
dll in this example) to the remote machine.

2. Run the installutil.exe command-line tool, specifying your service as an argument.

Assuming step 1 is complete, open a Visual Studio 2005 command window, navigate to the
location of the CarWinService.exe assembly, and issue the following command (note that this same
tool can be used to uninstall a service as well):

installutil carwinservice.exe

Once this Windows service has been properly installed, you are now able to start and configure
it using the Services applet, which is located under the Administrative Tools folder of your system’s
Control Panel. Once you have located your CarService (see Figure 18-10), click the Start link to load
and run the binary.

■Source Code The CarWinService project is located under the Chapter 18 subdirectory.

Hosting Remote Objects Using IIS
Hosting a remote assembly under IIS is even simpler than building a Windows service, as IIS is
preprogrammed to allow incoming HTTP requests via port 80. Now, given the fact that IIS is a web
server, it should stand to reason that IIS is only able to host remote objects using the HttpChannel
type (unlike a Windows service, which can also leverage the TcpChannel type). Assuming this is not
perceived as a limitation, follow these steps to leverage the remoting support of IIS:

4193ch18.qxd 8/14/05 2:59 PM Page 601

CHAPTER 18 ■ THE .NET REMOTING LAYER602

1. On your hard drive, create a new folder to hold your CarGeneralAsm.dll. Within this folder,
create a subdirectory named \Bin. Now, copy the CarGeneralAsm.dll to this subdirectory
(e.g., C:\IISCarService\Bin).

2. Open the Internet Information Services applet on the host machine (located under the
Administrative Tools folder in your system’s Control Panel).

3. Right-click the Default Web Site node and select New ➤ Virtual Directory.

4. Create a virtual directory that maps to the root folder you just created (C:\IISCarService).
The remaining default settings presented by the New Virtual Directory Wizard are fine.

5. Finally, create a new configuration file named web.config to control how this virtual direc-
tory should register the remote type (see the following code). Make sure this file is saved
under the root folder (in this example, C:\IISCarService).

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown mode="Singleton"
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
objectUri="carprovider.soap" />

</service>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Now that your CarGeneralAsm.dll has been configured to be reachable via HTTP
requests under IIS, you can update your client-side *.config file as follows (using the name
of your IIS host, of course):

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "CarClient">

<wellknown
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
url="http://NameTheRemoteIISHost/IISCarHost/carprovider.soap"/>

</client>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

At this point, you are able to run your client application as before.

Asynchronous Remoting
To wrap things up, let’s examine how to invoke members of a remote type asynchronously. In
Chapter 14, you were first introduced to the topic of asynchronous method invocations using dele-
gate types. As you would expect, if a client assembly wishes to call a remote object asynchronously,

4193ch18.qxd 8/14/05 2:59 PM Page 602

CHAPTER 18 ■ THE .NET REMOTING LAYER 603

the first step is to define a custom delegate to represent the remote method in question. At this
point, the caller can make use of any of the techniques seen in Chapter 14 to invoke and receive
the method return value.

By way of a simple illustration, create a new console application (AsyncWKOCarProviderClient)
and set a reference to the first iteration of the CarGeneralAsm.dll assembly. Now, update the Program
class as so:

class Program
{

// The delegate for the GetAllAutos() method.
internal delegate List<JamesBondCar> GetAllAutosDelegate();

static void Main(string[] args)
{

Console.WriteLine("Client started! Hit enter to end");
RemotingConfiguration.Configure

("AsyncWKOCarProviderClient.exe.config");
// Make the car provider.
CarProvider cp = new CarProvider();

// Make the delegate.
GetAllAutosDelegate getCarsDel =

new GetAllAutosDelegate(cp.GetAllAutos);
// Call GetAllAutos() asynchronously.
IAsyncResult ar = getCarsDel.BeginInvoke(null, null);

// Simulate client-side activity.
while(!ar.IsCompleted)
{ Console.WriteLine("Client working..."); }

// All done! Get return value from delegate.
List<JamesBondCar> allJBCs = getCarsDel.EndInvoke(ar);

// Use all cars in List.
foreach(JamesBondCar j in allJBCs)

UseCar(j);
Console.ReadLine();

}
}

Notice how the client application first declares a delegate that matches the signature of the
GetAllAutos() method of the remote CarProvider type. When the delegate is created, you pass in
the name of the method to call (GetAllAutos), as always. Next, you trigger the BeginInvoke() method,
cache the resulting IAsyncResult interface, and simulate some work on the client side (recall that
the IAsyncResult.IsCompleted property allows you to monitor if the associated method has com-
pleted processing). Finally, once the client’s work has completed, you obtain the List<> returned
from the CarProvider.GetAllAutos() method by invoking the EndInvoke() member, and pass each
JamesBondCar into a static helper function named UseCar():

public static void UseCar(JamesBondCar j)
{

Console.WriteLine("Can car fly? {0}", j.isFlightWorthy);
Console.WriteLine("Can car swim? {0}", j.isSeaWorthy);

}

Again, the beauty of the .NET delegate type is the fact that the logic used to invoke remote
methods asynchronously is identical to the process of local method invocations.

4193ch18.qxd 8/14/05 2:59 PM Page 603

CHAPTER 18 ■ THE .NET REMOTING LAYER604

■Source Code The AsyncWKOCarProviderClient project is located under the Chapter 18 subdirectory.

The Role of the [OneWay] Attribute
Imagine that your CarProvider has a new method named AddCar(), which takes a JamesBondCar
input parameter and returns nothing. The key point is that it returns nothing. As you might assume
given the name of the System.Runtime.Remoting.Messaging.OneWayAttribute class, the .NET remoting
layer passes the call to the remote one-way method, but does not bother to set up the infrastructure
used to return a given value (hence the name one-way). Here is the update:

// Home of the [OneWay] attribute.
using System.Runtime.Remoting.Messaging;
...
namespace CarGeneralAsm
{

public class CarProvider : MarshalByRefObject
{

...
// The client can 'fire and forget' when calling this method.
[OneWay]
public void AddCar(JamesBondCar newJBC)
{ theJBCars.Add(newJBC);}

}
}

Callers would invoke this method directly as always:

// Make the car provider.
CarProvider cp = new CarProvider();
// Add a new car.
cp.AddCar(new JamesBondCar("Zippy", 200, false, false));

From the client’s point of view, the call to AddCar() is completely asynchronous, as the CLR will
ensure that a background thread is used to remotely trigger the method. Given that AddCar() has
been decorated with the [OneWay] attribute, the client is unable to obtain any return value from the
call. Because AddCar() returns void, this is not an issue.

In addition to this restriction, also be aware that if you have a [OneWay] method that defines
output or reference parameters (via the out or ref keyword), the caller will not be able to obtain the
callee’s modification(s). Furthermore, if the [OneWay] method happens to throw an exception (of
any type), the caller is completely oblivious of this fact. In a nutshell, remote objects can mark select
methods as [OneWay] to allow the caller to employ a fire-and-forget mentality.

Summary
In this chapter, you examined how to configure distinct .NET assemblies to share types between
application boundaries. As you have seen, a remote object may be configured as an MBV or MBR
type. This choice ultimately controls how a remote type is realized in the client’s application domain
(a copy or transparent proxy).

If you have configured a type to function as an MBR entity, you are suddenly faced with a number
of related choices (WKO versus CAO, single call versus singleton, and so forth), each of which was
addressed during this chapter. As well, you examined the process of tracking the lifetime of a remote
object via the use of leases and lease sponsorship. Finally, you revisited of the role of the .NET dele-
gate type to understand how to asynchronously invoke a remote method (which, as luck would have
it, is identical to the process of asynchronously invoking a local type).

4193ch18.qxd 8/14/05 2:59 PM Page 604

Building a Better Window with
System.Windows.Forms

If you have read through the previous 18 chapters, you should have a solid handle on the C# pro-
gramming language as well as the foundation of the .NET architecture. While you could take your
newfound knowledge and begin building the next generation of console applications (boring!), you
are more likely to be interested in building an attractive graphical user interface (GUI) to allow users
to interact with your system.

This chapter is the first of three aimed at introducing you to the process of building traditional
form-based desktop applications. Here, you’ll learn how to build a highly stylized main window
using the Form and Application classes. This chapter also illustrates how to capture and respond to
user input (i.e., handle mouse and keyboard events) within the context of a GUI desktop environ-
ment. Finally, you will learn to construct menu systems, toolbars, status bars, and multiple-document
interface (MDI) applications, both by hand and using the designers incorporated into Visual Studio 2005.

Overview of the System.Windows.Forms Namespace
Like any namespace, System.Windows.Forms is composed of various classes, structures, delegates,
interfaces, and enumerations. Although the difference in appearance between a console UI (CUI)
and graphical UI (GUI) seems at first glance like night and day, in reality the process of building
a Windows Forms application involves nothing more than learning how to manipulate a new set of
types using the C# syntax you already know. From a high level, the hundreds of types within the
System.Windows.Forms namespace can be grouped into the following broad categories:

• Core infrastructure: These are types that represent the core operations of a .NET Forms pro-
gram (Form, Application, etc.) and various types to facilitate interoperability with legacy ActiveX
controls.

• Controls: These are types used to create rich UIs (Button, MenuStrip, ProgressBar,
DataGridView, etc.), all of which derive from the Control base class. Controls are config-
urable at design time and are visible (by default) at runtime.

• Components: These are types that do not derive from the Control base class but still provide
visual features to a .NET Forms program (ToolTip, ErrorProvider, etc.). Many components
(such as the Timer) are not visible at runtime, but can be configured visually at design time.

• Common dialog boxes: Windows Forms provides a number of canned dialog boxes for com-
mon operations (OpenFileDialog, PrintDialog, etc.). As you would hope, you can certainly
build your own custom dialog boxes if the standard dialog boxes do not suit your needs.

605

C H A P T E R 1 9

■ ■ ■

4193ch19.qxd 8/14/05 2:59 PM Page 605

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS606

Given that the total number of types within System.Windows.Forms is well over 100 strong, it
would be redundant (not to mention a terrible waste of paper) to list every member of the Windows
Forms family. To set the stage for the next several chapters, however, Table 19-1 lists some of the
core .NET 2.0 System.Windows.Forms types (consult the .NET Framework 2.0 SDK documentation for
full details).

Table 19-1. Core Types of the System.Windows.Forms Namespace

Classes Meaning in Life

Application This class encapsulates the runtime operation of a Windows
Forms application.

Button, CheckBox, ComboBox, These classes (in addition to many others) correspond to
DateTimePicker, ListBox, various GUI widgets. You’ll examine many of these items in
LinkLabel, MaskedTextBox, detail in Chapter 21.
MonthCalendar, PictureBox,
TreeView

FlowLayoutPanel, .NET 2.0 now supplies various “layout managers” that
TableLayoutPanel automatically arrange a Form’s controls during resizing.

Form This type represents a main window, dialog box, or MDI
child window of a Windows Forms application.

ColorDialog, OpenFileDialog, These are various standard dialog boxes for common GUI
SaveFileDialog, FontDialog, operations.
PrintPreviewDialog,
FolderBrowserDialog

Menu, MainMenu, MenuItem, These types are used to build topmost and context-
ContextMenu, MenuStrip, sensitive menu systems. The new (.NET 2.0) MenuStrip and
ContextMenuStrip, ContextMenuStrip controls allow you to build menus that

may contain traditional drop-down menu items as well as
other controls (text boxes, combo boxes, and so forth).

StatusBar, Splitter, ToolBar, These types are used to adorn a Form with common child
ScrollBar, StatusStrip, ToolStrip controls.

■Note In addition to System.Windows.Forms, the System.Windows.Forms.dll assembly defines additional
GUI-centric namespaces. For the most part, these additional types are used internally by the Forms engine and/or
the designer tools of Visual Studio 2005. Given this fact, we will keep focused on the core
System.Windows.Forms namespace.

Working with the Windows Forms Types
When you build a Windows Forms application, you may choose to write all the relevant code by
hand (using Notepad or TextPad, perhaps) and feed the resulting *.cs files into the C# compiler
using the /target:winexe flag. Taking time to build some Windows Forms applications by hand not
only is a great learning experience, but also helps you understand the code generated by the various
graphics designers found within various .NET IDEs.

To make sure you truly understand the basic process of building a Windows Forms application,
the initial examples in this chapter will avoid the use of graphics designers. Once you feel comfort-
able with the process of building a Windows Forms application “wizard-free,” you will then leverage
the various designer tools provided by Visual Studio 2005.

4193ch19.qxd 8/14/05 2:59 PM Page 606

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 607

Building a Main Window by Hand
To begin learning about Windows Forms programming, you’ll build a minimal main window from
scratch. Create a new folder on your hard drive (e.g., C:\MyFirstWindow) and create a new file
within this directory named MainWindow.cs using your editor of choice.

In the world of Windows Forms, the Form class is used to represent any window in your applica-
tion. This includes a topmost main window in a single-document interface (SDI) application,
modeless and modal dialog boxes, and the parent and child windows of a multiple-document inter-
face (MDI) application. When you are interested in creating and displaying the main window in
your program, you have two mandatory steps:

1. Derive a new class from System.Windows.Forms.Form.

2. Configure your application’s Main() method to invoke Application.Run(), passing an
instance of your Form-derived type as an argument.

Given this, update your MainWindow.cs file with the following class definition:

using System;
using System.Windows.Forms;

namespace MyWindowsApp
{

public class MainWindow : Form
{

// Run this application and identify the main window.
static void Main(string[] args)
{

Application.Run(new MainWindow());
}

}
}

In addition to the always present mscorlib.dll, a Windows Forms application needs to refer-
ence the System.dll and System.Windows.Forms.dll assemblies. As you may recall from Chapter 2,
the default C# response file (csc.rsp) instructs csc.exe to automatically include these assemblies
during the compilation process, so you are good to go. Also recall that the /target:winexe option of
csc.exe instructs the compiler to generate a Windows executable.

■Note Technically speaking, you can build a Windows application at the command line using the /target:exe
option; however, if you do, you will find that a command window will be looming in the background (and it will stay
there until you shut down the main window). When you specify /target:winexe, your executable runs as a native
Windows Forms application (without the looming command window).

To compile your C# code file, open a Visual Studio 2005 command prompt and issue the fol-
lowing command:

csc /target:winexe *.cs

Figure 19-1 shows a test run.

4193ch19.qxd 8/14/05 2:59 PM Page 607

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS608

Figure 19-1. A simple main window à la Windows Forms

Granted, the Form is not altogether that interesting at this point. But simply by deriving from
Form, you have a minimizable, maximizable, resizable, and closable main window (with a default
system-supplied icon to boot!). Unlike other Microsoft GUI frameworks you may have used in the
past (Microsoft Foundation Classes, in particular), there is no need to bolt in hundreds of lines of
coding infrastructure (frames, documents, views, applications, or message maps). Unlike a C-based
Win32 API Windows application, there is no need to manually implement WinProc() or WinMain()
procedures. Under the .NET platform, those dirty details have been encapsulated within the Form
and Application types.

Honoring the Separation of Concerns
Currently, the MainWindow class defines the Main() method directly within its scope. If you prefer, you
may create a second static class (I named mine Program) that is responsible for the task of launching
the main window, leaving the Form-derived class responsible for representing the window itself:

namespace MyWindowsApp
{

// The main window.
public class MainWindow : Form { }

// The application object.
public static class Program
{

static void Main(string[] args)
{

// Don't forget to 'use' System.Windows.Forms!
Application.Run(new MainWindow());

}
}

}

By doing so, you are abiding by an OO principal termed the separation of concerns. Simply put,
this rule of OO design states that a class should be in charge of doing the least amount of work pos-
sible. Given that you have refactored the initial class into two unique classes, you have decoupled
the Form from the class that creates it. The end result is a more portable window, as it can be dropped
into any project without carrying the extra baggage of a project-specific Main() method.

■Source Code The MyFirstWindow project can be found under the Chapter 19 subdirectory.

4193ch19.qxd 8/14/05 2:59 PM Page 608

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 609

The Role of the Application Class
The Application class defines numerous static members that allow you to control various low-level
behaviors of a Windows Forms application. For example, the Application class defines a set of events
that allow you to respond to events such as application shutdown and idle-time processing. In addi-
tion to the Run() method, here are some other methods to be aware of:

• DoEvents(): Provides the ability for an application to process messages currently in the message
queue during a lengthy operation.

• Exit(): Terminates the Windows application and unloads the hosting AppDomain.

• EnableVisualStyles(): Configures your application to support Windows XP visual styles. Do
note that if you enable XP styles, this method must be called before loading your main window
via Application.Run().

The Application class also defines a number of properties, many of which are read-only in nature.
As you examine Table 19-2, note that most of these properties represent an “application-level” trait
such as company name, version number, and so forth. In fact, given what you already know about
assembly-level attributes (see Chapter 12), many of these properties should look vaguely familiar.

Table 19-2. Core Properties of the Application Type

Property Meaning in Life

CompanyName Retrieves the value of the assembly-level [AssemblyCompany] attribute

ExecutablePath Gets the path for the executable file

ProductName Retrieves the value of the assembly-level [AssemblyProduct] attribute

ProductVersion Retrieves the value of the assembly-level [AssemblyVersion] attribute

StartupPath Retrieves the path for the executable file that started the application

Finally, the Application class defines various static events, some of which are as follows:

• ApplicationExit: Occurs when the application is just about to shut down

• Idle: Occurs when the application’s message loop has finished processing the current batch
of messages and is about to enter an idle state (as there are no messages to process at the
current time)

• ThreadExit: Occurs when a thread in the application is about to terminate

Fun with the Application Class
To illustrate some of the functionality of the Application class, let’s enhance your current MainWindow
to perform the following:

• Reflect over select assembly-level attributes.

• Handle the static ApplicationExit event.

The first task is to make use of select properties in the Application class to reflect over some
assembly-level attributes. To begin, add the following attributes to your MainWindow.cs file (note you
are now using the System.Reflection namespace):

using System;
using System.Windows.Forms;
using System.Reflection;

4193ch19.qxd 8/14/05 2:59 PM Page 609

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS610

Figure 19-2. Reading attributes via the Application type

// Some attributes regarding this assembly.
[assembly:AssemblyCompany("Intertech Training")]
[assembly:AssemblyProduct("A Better Window")]
[assembly:AssemblyVersion("1.1.0.0")]

namespace MyWindowsApp
{

...
}

Rather than manually reflecting over the [AssemblyCompany] and [AssemblyProduct] attributes
using the techniques illustrated in Chapter 12, the Application class will do so automatically using
various static properties. To illustrate, implement the default constructor of MainForm as so:

public class MainWindow : Form
{

public MainWindow()
{

MessageBox.Show(Application.ProductName,
string.Format("This app brought to you by {0}",
Application.CompanyName));

}
}

When you run this application, you’ll see a message box that displays various bits of informa-
tion (see Figure 19-2).

Now, let’s equip this Form to respond to the ApplicationExit event. When you wish to respond
to events from within a Windows Forms application, you will be happy to find that the same event
syntax detailed in Chapter 8 is used to handle GUI-based events. Therefore, if you wish to intercept
the static ApplicationExit event, simply register an event handler using the += operator:

public class MainForm : Form
{

public MainForm()
{

...
// Intercept the ApplicationExit event.
Application.ApplicationExit += new EventHandler(MainWindow_OnExit);

}
private void MainWindow_OnExit(object sender, EventArgs evArgs)
{

MessageBox.Show(string.Format("Form version {0} has terminated.",
Application.ProductVersion));

}
}

4193ch19.qxd 8/14/05 2:59 PM Page 610

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 611

The System.EventHandler Delegate
Notice that the ApplicationExit event works in conjunction with the System.EventHandler delegate.
This delegate must point to methods that conform to the following signature:

delegate void EventHandler(object sender, EventArgs e);

System.EventHandler is the most primitive delegate used to handle events within Windows
Forms, but many variations do exist for other events. As far as EventHandler is concerned, the first
parameter of the assigned method is of type System.Object, which represents the object sending the
event. The second EventArgs parameter (or a descendent thereof) contains any relevant informa-
tion regarding the current event.

■Note EventArgs is the base class to numerous derived types that contain information for a family of related
events. For example, mouse events work with the MouseEventArgs parameter, which contains details such as the
(x, y) position of the cursor. Many keyboard events work with the KeyEventArgs type, which contains details
regarding the current keypress, and so forth.

In any case, if you now recompile and run the application, you will find your message box
appear upon the termination of the application.

■Source Code The AppClassExample project can be found under the Chapter 19 subdirectory.

The Anatomy of a Form
Now that you understand the role of the Application type, the next task is to examine the function-
ality of the Form class itself. Not surprisingly, the Form class inherits a great deal of functionality from
its parent classes. Figure 19-3 shows the inheritance chain (including the set of implemented inter-
faces) of a Form-derived type using the Visual Studio 2005 Object Browser.

Figure 19-3. The derivation of the Form type

4193ch19.qxd 8/14/05 2:59 PM Page 611

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS612

Although the complete derivation of a Form type involves numerous base classes and interfaces,
do understand that you are not required to learn the role of each and every member from each and
every parent class or implemented interface to be a proficient Windows Forms developer. In fact, the
majority of the members (properties and events in particular) you will use on a daily basis are easily
set using the Visual Studio 2005 IDE Properties window. Before we move on to examine some specific
members inherited from these parent classes, Table 19-3 outlines the basic role of each base class.

Table 19-3. Base Classes in the Form Inheritance Chain

Parent Class Meaning in Life

System.Object Like any class in .NET, a Form “is-a” object.

System.MarshalByRefObject Recall during our examination of .NET remoting
(see Chapter 18) that types deriving from this
class are accessed remotely via a reference (not
a copy) of the remote type.

System.ComponentModel.Component This class provides a default implementation of
the IComponent interface. In the .NET universe,
a component is a type that supports design-time
editing, but is not necessarily visible at runtime.

System.Windows.Forms.Control This class defines common UI members for all
Windows Forms UI controls, including the Form
type itself.

System.Windows.Forms.ScrollableControl This class defines support for auto-scrolling
behaviors.

System.Windows.Forms.ContainerControl This class provides focus-management functionality
for controls that can function as a container for
other controls.

System.Windows.Forms.Form This class represents any custom Form, MDI child,
or dialog box.

As you might guess, detailing each and every member of each class in the Form’s inheritance
chain would require a large book in itself. However, it is important to understand the behavior sup-
plied by the Control and Form types. I’ll assume that you will spend time examining the full details
behind each class at your leisure using the .NET Framework 2.0 SDK documentation.

The Functionality of the Control Class
The System.Windows.Forms.Control class establishes the common behaviors required by any GUI
type. The core members of Control allow you to configure the size and position of a control, capture
keyboard and mouse input, get or set the focus/visibility of a member, and so forth. Table 19-4
defines some (but not all) properties of interest, grouped by related functionality.

4193ch19.qxd 8/14/05 2:59 PM Page 612

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 613

Table 19-4. Core Properties of the Control Type

Properties Meaning in Life

BackColor, ForeColor, These properties define the core UI of the control (colors,
BackgroundImage, Font, Cursor font for text, mouse cursor to display when the mouse is over

the widget, etc.).

Anchor, Dock, AutoSize These properties control how the control should be
positioned within the container.

Top, Left, Bottom, Right, Bounds, These properties specify the current dimensions of the
ClientRectangle, Height, Width control.

Enabled, Focused, Visible These properties each return a Boolean that specifies the
state of the current control.

ModifierKeys This static property checks the current state of the modifier
keys (Shift, Ctrl, and Alt) and returns the state in a Keys type.

MouseButtons This static property checks the current state of the mouse
buttons (left, right, and middle mouse buttons) and returns
this state in a MouseButtons type.

TabIndex, TabStop These properties are used to configure the tab order of the
control.

Opacity This property determines the opacity of the control, in
fractions (0.0 is completely transparent; 1.0 is completely
opaque).

Text This property indicates the string data associated with this
control.

Controls This property allows you to access a strongly typed collection
(ControlsCollection) that contains any child controls within
the current control.

As you would guess, the Control class also defines a number of events that allow you to inter-
cept mouse, keyboard, painting, and drag-and-drop activities (among other things). Table 19-5 lists
some (but not all) events of interest, grouped by related functionality.

Table 19-5. Events of the Control Type

Events Meaning in Life

Click, DoubleClick, MouseEnter, Various events that allow you to interact with the mouse
MouseLeave, MouseDown, MouseUp,
MouseMove, MouseHover, MouseWheel

KeyPress, KeyUp, KeyDown Various events that allow you to interact with the keyboard

DragDrop, DragEnter, Various events used to monitor drag-and-drop activity
DragLeave, DragOver

Paint This event allows you to interact with GDI+ (see Chapter 20)

Finally, the Control base class also defines a number of methods that allow you to interact with
any Control-derived type. As you examine the methods of the Control type, you will notice that
a good number of them have an On prefix followed by the name of a specific event (OnMouseMove,
OnKeyUp, OnPaint, etc.). Each of these On-prefixed virtual methods is the default event handler for its
respective event. If you override any of these virtual members, you gain the ability to perform any
necessary pre- or postprocessing of the event before (or after) invoking your parent’s default imple-
mentation:

4193ch19.qxd 8/14/05 2:59 PM Page 613

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS614

public class MainWindow : Form
{

protected override void OnMouseDown(MouseEventArgs e)
{

// Add code for MouseDown event.

// Call parent implementation when finished.
base.OnMouseDown(e);

}
}

While this can be helpful in some circumstances (especially if you are building a custom control
that derives from a standard control; see Chapter 21), you will often handle events using the stan-
dard C# event syntax (in fact, this is the default behavior of the Visual Studio 2005 designers). When
you do so, the framework will call your custom event handler once the parent’s implementation has
completed:

public class MainWindow : Form
{

public MainWindow()
{

MouseDown += new MouseEventHandler(MainWindow_MouseDown);
}

void MainWindow_MouseDown(object sender, MouseEventArgs e)
{

// Add code for MouseDown event.
}

}

Beyond these OnXXX() methods, here are a few other methods to be aware of:

• Hide(): Hides the control and sets the Visible property to false

• Show(): Shows the control and sets the Visible property to true

• Invalidate(): Forces the control to redraw itself by sending a Paint event

To be sure, the Control class does define additional properties, methods, and events beyond
the subset you’ve just examined. You should, however, now have a solid understanding regarding
the overall functionality of this base class. Let’s see it in action.

Fun with the Control Class
To illustrate the usefulness of some members from the Control class, let’s build a new Form that is
capable of handling the following events:

• Respond to the MouseMove and MouseDown events.

• Capture and process keyboard input via the KeyUp event.

To begin, create a new class derived from Form. In the default constructor, you’ll make use of
various inherited properties to establish the initial look and feel. Note you’re now using the System.
Drawing namespace to gain access to the Color structure (you’ll examine this namespace in detail in
the next chapter):

using System;
using System.Windows.Forms;
using System.Drawing;

4193ch19.qxd 8/14/05 2:59 PM Page 614

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 615

namespace MyWindowsApp
{

public class MainWindow : Form
{

public MainWindow()
{

// Use inherited properties to set basic UI.
Text = "My Fantastic Form";
Height = 300;
Width = 500;
BackColor = Color.LemonChiffon;
Cursor = Cursors.Hand;

}
}

public static class Program
{

static void Main(string[] args)
{

Application.Run(new MainWindow());
}

}
}

Compile your application at this point, just to make sure you have not injected any typing
errors:

csc /target:winexe *.cs

Responding to the MouseMove Event
Next, you need to handle the MouseMove event. The goal is to display the current (x, y) location within
the Form’s caption area. All mouse-centric events (MouseMove, MouseUp, etc.) work in conjunction with
the MouseEventHandler delegate, which can call any method matching the following signature:

void MyMouseHandler(object sender, MouseEventArgs e);

The incoming MouseEventArgs structure extends the general EventArgs base class by adding
a number of members particular to the processing of mouse activity (see Table 19-6).

Table 19-6. Properties of the MouseEventArgs Type

Property Meaning in Life

Button Gets which mouse button was pressed, as defined by the MouseButtons enumeration

Clicks Gets the number of times the mouse button was pressed and released

Delta Gets a signed count of the number of detents the mouse wheel has rotated

X Gets the x-coordinate of a mouse click

Y Gets the y-coordinate of a mouse click

Here, then, is the updated MainForm class that handles the MouseMove event as intended:

public class MainForm : Form
{

public MainForm()
{

4193ch19.qxd 8/14/05 2:59 PM Page 615

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS616

Figure 19-4. Monitoring mouse movement

...
// Handle the MouseMove event
MouseMove += new MouseEventHandler(MainForm_MouseMove);

}
// MouseMove event handler.
public void MainForm_MouseMove(object sender, MouseEventArgs e)
{

Text = string.Format("Current Pos: ({0}, {1})", e.X, e.Y);
}

}

If you now run your program and move the mouse over your Form, you will find the current (x, y)
value display on the caption area (see Figure 19-4).

Determining Which Mouse Button Was Clicked
One thing to be aware of is that the MouseUp (or MouseDown) event is sent whenever any mouse button
is clicked. If you wish to determine exactly which button was clicked (such as left, right, or middle),
you need to examine the Button property of the MouseEventArgs class. The value of the Button prop-
erty is constrained by the related MouseButtons enumeration. Assume you have updated your default
constructor to handle the MouseUp event as so:

public MainWindow()
{
...

// Handle the MouseUp event.
MouseUp += new MouseEventHandler(MainForm_MouseUp);

}

The following MouseUp event handler displays which mouse button was clicked inside
a message box:

public void MainForm_MouseUp (object sender, MouseEventArgs e)
{

// Which mouse button was clicked?
if(e.Button == MouseButtons.Left)

MessageBox.Show("Left click!");
if(e.Button == MouseButtons.Right)

4193ch19.qxd 8/14/05 2:59 PM Page 616

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 617

MessageBox.Show("Right click!");
if (e.Button == MouseButtons.Middle)

MessageBox.Show("Middle click!");
}

Responding to Keyboard Events
Processing keyboard input is almost identical to responding to mouse activity. The KeyUp and KeyDown
events work in conjunction with the KeyEventHandler delegate, which can point to any method taking
an object as the first parameter and KeyEventArgs as the second:

void MyKeyboardHandler(object sender, KeyEventArgs e);

KeyEventArgs has the members of interest shown in Table 19-7.

Table 19-7. Properties of the KeyEventArgs Type

Property Meaning in Life

Alt Gets a value indicating whether the Alt key was pressed

Control Gets a value indicating whether the Ctrl key was pressed

Handled Gets or sets a value indicating whether the event was fully handled in your handler

KeyCode Gets the keyboard code for a KeyDown or KeyUp event

Modifiers Indicates which modifier keys (Ctrl, Shift, and/or Alt) were pressed

Shift Gets a value indicating whether the Shift key was pressed

Update your MainForm to handle the KeyUp event. Once you do, display the name of the key that
was pressed inside a message box using the KeyCode property.

public class MainForm : Form
{

public MainForm()
{

...
// Listen for the KeyUp Event.
KeyUp += new KeyEventHandler(MainForm_KeyUp);

}
private void MainForm_KeyUp (object sender, KeyEventArgs e)
{

MessageBox.Show(e.KeyCode.ToString(), "Key Pressed!");
}

}

Now compile and run your program. You should be able to determine not only which mouse
button was clicked, but also which keyboard key was pressed.

That wraps up our look at the core functionality of the Control base class. Next up, let’s check
out the role of Form.

■Source Code The ControlBehaviors project is included under the Chapter 19 subdirectory.

4193ch19.qxd 8/14/05 2:59 PM Page 617

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS618

The Functionality of the Form Class
The Form class is typically (but not necessarily) the direct base class for your custom Form types.
In addition to the large set of members inherited from the Control, ScrollableControl, and
ContainerControl classes, the Form type adds additional functionality in particular to main windows,
MDI child windows, and dialog boxes. Let’s start with the core properties in Table 19-8.

Table 19-8. Properties of the Form Type

Properties Meaning in Life

AcceptButton Gets or sets the button on the Form that is clicked when the user
presses the Enter key.

ActiveMDIChild Used within the context of an MDI application.
IsMDIChild
IsMDIContainer

CancelButton Gets or sets the button control that will be clicked when the user
presses the Esc key.

ControlBox Gets or sets a value indicating whether the Form has a control box.

FormBorderStyle Gets or sets the border style of the Form. Used in conjunction with the
FormBorderStyle enumeration.

Menu Gets or sets the menu to dock on the Form.

MaximizeBox Used to determine if this Form will enable the maximize and minimize
MinimizeBox boxes.

ShowInTaskbar Determines if this Form will be seen on the Windows taskbar.

StartPosition Gets or sets the starting position of the Form at runtime, as specified by
the FormStartPosition enumeration.

WindowState Configures how the Form is to be displayed on startup. Used in
conjunction with the FormWindowState enumeration.

In addition to the expected On-prefixed default event handlers, Table 19-9 gives a list of some
core methods defined by the Form type.

Table 19-9. Key Methods of the Form Type

Method Meaning in Life

Activate() Activates a given Form and gives it focus.

Close() Closes a Form.

CenterToScreen() Places the Form in the dead-center of the screen.

LayoutMDI() Arranges each child Form (as specified by the LayoutMDI enumeration)
within the parent Form.

ShowDialog() Displays a Form as a modal dialog box. More on dialog box
programming in Chapter 21.

Finally, the Form class defines a number of events, many of which fire during the form’s lifetime.
Table 19-10 hits the highlights.

4193ch19.qxd 8/14/05 2:59 PM Page 618

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 619

Table 19-10. Select Events of the Form Type

Events Meaning in Life

Activated Occurs whenever the Form is activated, meaning the Form has been
given the current focus on the desktop

Closed, Closing Used to determine when the Form is about to close or has closed

Deactivate Occurs whenever the Form is deactivated, meaning the Form has lost
current focus on the desktop

Load Occurs after the Form has been allocated into memory, but is not yet
visible on the screen

MDIChildActive Sent when a child window is activated

The Life Cycle of a Form Type
If you have programmed user interfaces using GUI toolkits such as Java Swing, Mac OS X Cocoa, or
the raw Win32 API, you are aware that “window types” have a number of events that fire during their
lifetime. The same holds true for Windows Forms. As you have seen, the life of a Form begins when
the type constructor is called prior to being passed into the Application.Run() method.

Once the object has been allocated on the managed heap, the framework fires the Load event.
Within a Load event handler, you are free to configure the look and feel of the Form, prepare any
contained child controls (such as ListBoxes, TreeViews, and whatnot), or simply allocate resources
used during the Form’s operation (database connections, proxies to remote objects, and whatnot).

Once the Load event has fired, the next event to fire is Activated. This event fires when the Form
receives focus as the active window on the desktop. The logical counterpart to the Activated event
is (of course) Deactivate, which fires when the Form loses focus as the active window. As you can
guess, the Activated and Deactivate events can fire numerous times over the life of a given Form
type as the user navigates between active applications.

When the user has chosen to close the Form in question, two close-centric events fire: Closing
and Closed. The Closing event is fired first and is an ideal place to prompt the end user with the much
hated (but useful) “Are you sure you wish to close this application?” message. This confirmational step
is quite helpful to ensure the user has a chance to save any application-centric data before terminating
the program.

The Closing event works in conjunction with the CancelEventHandler delegate defined in the
System.ComponentModel namespace. If you set the CancelEventArgs.Cancel property to true, you
prevent the Form from being destroyed and instruct it to return to normal operation. If you set
CancelEventArgs.Cancel to false, the Close event fires and the Windows Forms application termi-
nates, which unloads the AppDomain and terminates the process.

To solidify the sequence of events that take place during a Form’s lifetime, assume you have
a new MainWindow.cs file that handles the Load, Activated, Deactivate, Closing, and Close events
within the class constructor (be sure to add a using directive for the System.ComponentModel name-
space to obtain the definition of CancelEventArgs):

public MainForm()
{

// Handle various lifetime events.
Closing += new CancelEventHandler(MainForm_Closing);
Load += new EventHandler(MainForm_Load);
Closed += new EventHandler(MainForm_Closed);
Activated += new EventHandler(MainForm_Activated);
Deactivate += new EventHandler(MainForm_Deactivate);

}

4193ch19.qxd 8/14/05 2:59 PM Page 619

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS620

Figure 19-5. The life and times of a Form-derived type

In the Load, Closed, Activated, and Deactivate event handlers, you are going to update the
value of a new Form-level System.String member variable (named lifeTimeInfo) with a simple
message that displays the name of the event that has just been intercepted. As well, notice that
within the Closed event handler, you will display the value of this string within a message box:

private void MainForm_Load(object sender, System.EventArgs e)
{ lifeTimeInfo += "Load event\n"; }
private void MainForm_Activated(object sender, System.EventArgs e)
{ lifeTimeInfo += "Activate event\n"; }
private void MainForm_Deactivate(object sender, System.EventArgs e)
{ lifeTimeInfo += "Deactivate event\n"; }
private void MainForm_Closed(object sender, System.EventArgs e)
{

lifeTimeInfo += "Closed event\n";
MessageBox.Show(lifeTimeInfo);

}

Within the Closing event handler, you will prompt the user to ensure she wishes to terminate
the application using the incoming CancelEventArgs:

private void MainForm_Closing(object sender, CancelEventArgs e)
{

DialogResult dr = MessageBox.Show("Do you REALLY want to close this app?",
"Closing event!", MessageBoxButtons.YesNo);

if (dr == DialogResult.No)
e.Cancel = true;

else
e.Cancel = false;

}

Notice that the MessageBox.Show() method returns a DialogResult type, which has been set to
a value representing the button clicked by the end user (Yes or No). Now, compile your code at the
command line:

csc /target:winexe *.cs

Now run your application and shift the Form into and out of focus a few times (to trigger the
Activated and Deactivate events). Once you shut down the Form, you will see a message box that
looks something like Figure 19-5.

Now, most of the really interesting aspects of the Form type have to do with its ability to create
and host menu systems, toolbars, and status bars. While the code to do so is not complex, you will
be happy to know that Visual Studio 2005 defines a number of graphical designers that take care of

4193ch19.qxd 8/14/05 2:59 PM Page 620

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 621

Figure 19-6. The Visual Studio 2005 Windows Application project

most of the mundane code on your behalf. Given this, let’s say good-bye to the command-line compiler
for the time being and turn our attention to the process of building Windows Forms applications
using Visual Studio 2005.

■Source Code The FormLifeTime project can be found under the Chapter 19 subdirectory.

Building Windows Applications with Visual
Studio 2005
Visual Studio 2005 has a specific project type dedicated to the creation of Windows Forms applications.
When you select the Windows Application project type, you not only receive an application object with
a proper Main() method, but also are provided with an initial Form-derived type. Better yet, the IDE pro-
vides a number of graphical designers that make the process of building a UI child’s play. Just to learn
the lay of the land, create a new Windows Application project workspace (see Figure 19-6). You are not
going to build a working example just yet, so name this project whatever you desire.

Once the project has loaded, you will no doubt notice the Forms designer, which allows you to
build a UI by dragging controls/components from the Toolbox (see Figure 19-7) and configuring
their properties and events using the Properties window (see Figure 19-8).

4193ch19.qxd 8/14/05 2:59 PM Page 621

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS622

As you can see, the Toolbox groups UI controls by various categories. While most are self-
explanatory (e.g., Printing contains printing controls, Menus & Toolbars contains recommended
menu/toolbar controls, etc.), a few categories deserve special mention:

• Common Controls: Members in this category are considered the “recommended set” of com-
mon UI controls.

• All Windows Forms: Here you will find the full set of Windows Forms controls, including vari-
ous .NET 1.x controls that are considered depreciated.

The second bullet point is worth reiterating. If you have worked with Windows Forms using
.NET 1.x, be aware that many of your old friends (such as the DataGrid control) have been placed
under the All Windows Forms category. Furthermore, the common UI controls you may have used
under .NET 1.x (such as MainMenu, ToolBar, and StatusBar) are not shown in the Toolbox by default.

Figure 19-7. The Visual Studio 2005 Toolbox

Figure 19-8. The Visual Studio 2005 Properties window

4193ch19.qxd 8/14/05 2:59 PM Page 622

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 623

Enabling the Deprecated Controls
The first bit of good news is that these (deprecated) UI elements are still completely usable under
.NET 2.0. The second bit of good news is that if you still wish to program with them, you can add
them back to the Toolbox by right-clicking anywhere in the Toolbox and selecting Choose Items.
From the resulting dialog box, check off the items of interest (see Figure 19-9).

■Note At first glance, it might appear that there are redundant listings for a given control (such as the ToolBar).
In reality, each listing is unique, as a control may be versioned (1.0 versus 2.0) and/or may be a member of the
.NET Compact Framework. Be sure to examine the directory path to select the correct item.

At this point, I am sure you are wondering why many of these old standbys have been hidden
from view. The reason is that .NET 2.0 provides a set of new menu, toolbar, and status bar–centric
controls that are now favored. For example, rather than using the legacy MainMenu control to build
a menu, you can use the MenuStrip control, which provides a number of new bells and whistles in
addition to the functionality found within MainMenu.

■Note In this chapter, I will favor the use of this new recommend set of UI elements. If you wish to work with the
legacy MainMenu, StatusBar, or ToolBar types, consult the .NET Framework 2.0 SDK documentation.

Dissecting a Visual Studio 2005 Windows Forms Project
Each Form in a Visual Studio 2005 Windows Application project is composed of two related C# files,
which can be verified using Solution Explorer (see Figure 19-10).

Figure 19-9. Adding additional controls to the Toolbox

4193ch19.qxd 8/14/05 2:59 PM Page 623

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS624

Right-click the Form1.cs icon and select View Code. Here you will see a partial class that con-
tains all of the Form’s event handlers, constructors, overrides, and any member you author yourself
(note that I renamed this initial class from Form1 to MainWindow using the Rename refactoring):

namespace MyVisualStudioWinApp
{

public partial class MainWindow : Form
{

public MainWindow()
{

InitializeComponent();
}

}
}

The default constructor of your Form makes a call to a method named InitializeComponent(),
which is defined within the related *.Designer.cs file. This method is maintained on your behalf by
Visual Studio 2005, and it contains all of the code representing your design-time modifications.

To illustrate, switch back to the Forms designer and locate the Text property in the Properties
window. Change this value to something like My Test Window. Now open your Form1.Designer.cs
file and notice that InitializeComponent() has been updated accordingly:

private void InitializeComponent()
{
...

this.Text = "My Test Window";
}

In addition to maintaining InitializeComponent(), the *.Designer.cs file will define the mem-
ber variables that represent each control placed on the designer. Again, to illustrate, drag a Button
control onto the Forms designer. Now, using the Properties window, rename your member variable
from button1 to btnTestButton via the Name property.

■Note It is always a good idea to rename the controls you place on the designer before handling events. If you
fail to do so, you will most likely end up with a number of nondescript event handlers, such as button27_Click,
given that the default names simply suffix a numerical value to the variable name.

Figure 19-10. Each Form is composed of two *.cs files.

4193ch19.qxd 8/14/05 2:59 PM Page 624

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 625

Handling Events at Design Time
Notice that the Properties window has a button depicting a lightning bolt. Although you are always
free to handle Form-level events by authoring the necessary logic by hand (as done in the previous
examples), this event button allows you to visually handle an event for a given control. Simply select
the control you wish to interact with from the drop-down list box (mounted at the top of the Properties
window), locate the event you are interested in handling, and type in the name to be used as an event
handler (or simply double-click the event to generate a default name of the form ControlName_
EventName).

Assuming you have handled the Click event for the Button control, you will find that the
Form1.cs file contains the following event handler:

public partial class MainWindow : Form
{

public MainWindow()
{

InitializeComponent();
}
private void btnButtonTest_Click(object sender, EventArgs e)
{
}

}

As well, the Form1.Designer.cs file contains the necessary infrastructure and member variable
declaration:

partial class MainWindow
{
...

private void InitializeComponent()
{

...
this.btnButtonTest.Click +=

new System.EventHandler(this.btnButtonTest_Click);
}
private System.Windows.Forms.Button btnButtonTest;

}

■Note Every control has a default event, which refers to the event that will be handled if you double-click the
item on the control using the Forms designer. For example, a Form’s default event is Load, and if you double-click
anywhere on a Form type, the IDE will automatically write code to handle this event.

The Program Class
Beyond the Form-centric files, a Visual Studio 2005 Windows application defines a second class that
represents the application object (e.g., the type defining the Main() method). Notice that the Main()
method has been configured to call Application.EnableVisualStyles() as well as Application.Run():

static class Program
{

[STAThread]
static void Main()
{

Application.EnableVisualStyles();

4193ch19.qxd 8/14/05 2:59 PM Page 625

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS626

Application.Run(new MainWindow());
}

}

■Note The [STAThread] attribute instructs the CLR to host any legacy COM objects (including ActiveX controls)
in a single-threaded apartment (STA). If you have a background in COM, you may recall that the STA was used to
ensure access to a COM type occurred in a synchronous (hence, thread-safe) manner.

Autoreferenced Assemblies
Finally, if you examine Solution Explorer, you will notice that a Windows Forms project automatically
references a number of assemblies, including System.Windows.Forms.dll and System.Drawing.dll.
Again, the details of System.Drawing.dll will be examined in the next chapter.

Working with MenuStrips and ContextMenuStrips
As of .NET 2.0, the recommended control for building a menu system is MenuStrip. This control
allows you to create “normal” menu items such as File ➤ Exit, and you may also configure it to con-
tain any number of relevant controls within the menu area. Here are some common UI elements
that may be contained within a MenuStrip:

• ToolStripMenuItem: A traditional menu item

• ToolStripComboBox: An embedded ComboBox

• ToolStripSeparator: A simple line that separates content

• ToolStripTextBox: An embedded TextBox

Programmatically speaking, the MenuStrip control contains a strongly typed collection named
ToolStripItemCollection. Like other collection types, this object supports members such as Add(),
AddRange(), Remove(), and the Count property. While this collection is typically populated indirectly
using various design-time tools, you are able to manually manipulate this collection if you so
choose.

To illustrate the process of working with the MenuStrip control, create a new Windows Forms
application named MenuStripApp. Using the Forms designer, place a MenuStrip control named
mainMenuStrip onto your Form. When you do so, your *.Designer.cs file is updated with a new
MenuStrip member variable:

private System.Windows.Forms.MenuStrip mainMenuStrip;

MenuStrips can be highly customized using the Visual Studio 2005 Forms designer. For exam-
ple, if you look at the extreme upper-left of the control, you will notice a small arrow icon. After you
select this icon, you are presented with a context-sensitive “inline editor,” as shown in Figure 19-11.

4193ch19.qxd 8/14/05 2:59 PM Page 626

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 627

Many Windows Forms controls support such context-sensitive inline editors. As far as MenuStrip
is concerned, the editor allows you to quickly do the following:

• Insert a “standard” menu system (File, Save, Tools, Help, etc.) using the Insert Standard Items
link.

• Change the docking and gripping behaviors of the MenuStrip.

• Edit each item in the MenuStrip (this is simply a shortcut to selecting a specific item in the
Properties window).

For this example, you’ll ignore the options of the inline editor and stay focused on the design of the
menu system. To begin, select the MenuStrip control on the designer and define a standard File ➤ Exit
menu by typing in the names within the Type Here prompts (see Figure 19-12).

Figure 19-11. The inline MenuStrip editor

Figure 19-12. Designing a menu system

4193ch19.qxd 8/14/05 2:59 PM Page 627

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS628

■Note As you may know, when the ampersand character (&) is placed before a letter in a menu item, it denotes
the item’s shortcut key. In this example, you are creating &File ➤ E&xit; therefore, the user may activate the Exit
menu by pressing Alt+f, and then x.

Each menu item you type into the designer is represented by the ToolStripMenuItem class type.
If you open your *.Designer.cs file, you will find two new member variables for each item:

partial class MainWindow
{
...

private System.Windows.Forms.MenuStrip mainMenuStrip;
private System.Windows.Forms.ToolStripMenuItem fileToolStripMenuItem;
private System.Windows.Forms.ToolStripMenuItem exitToolStripMenuItem;

}

When you use the menu editor, the InitializeComponent() method is updated accordingly.
Notice that the MenuStrip’s internal ToolStripItemCollection has been updated to contain the new
topmost menu item (fileToolStripMenuItem). In a similar fashion, the fileToolStripMenuItem variable
has been updated to insert the exitToolStripMenuItem variable into its ToolStripItemCollection
collection via the DropDownItems property:

private void InitializeComponent()
{
...

//
// menuStrip1
//
this.menuStrip1.Items.AddRange(new System.Windows.Forms.ToolStripItem[] {
this.fileToolStripMenuItem});

...
//
// fileToolStripMenuItem
//
this.fileToolStripMenuItem.DropDownItems.AddRange(new
System.Windows.Forms.ToolStripItem[] {
this.exitToolStripMenuItem});

...
//
// MainWindow
//
this.Controls.Add(this.menuStrip1);

}

Last but not least, notice that the MenuStrip control is inserted to the Form’s controls collection.
This collection will be examined in greater detail in Chapter 21, but for the time being, just know
that in order for a control to be visible at runtime, it must be a member of this collection.

To finish the initial code of this example, return to the designer and handle the Click event for
the Exit menu item using the events button of the Properties window. Within the generated event
handler, make a call to Application.Exit:

private void exitToolStripMenuItem_Click(object sender, EventArgs e)
{

Application.Exit();
}

4193ch19.qxd 8/14/05 2:59 PM Page 628

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 629

At this point, you should be able to compile and run your program. Verify that you can termi-
nate the application via File ➤ Exit as well as pressing Alt+f and then x on the keyboard.

Adding a TextBox to the MenuStrip
Now, let’s create a new topmost menu item named Change Background Color. The subitem in this
case will not be a menu item, but a ToolStripTextBox (see Figure 19-13). Once you have added the
new control, rename this control to toolStripTextBoxColor using the Properties window.

The goal here is to allow the user to enter the name of a color (red, green, pink, etc.) that will
be used to set the BackColor property of the Form. First, handle the LostFocus event on the new
ToolStripTextBox member variable within the Form’s constructor (as you would guess, this event
fires when the TextBox within the ToolStrip is no longer the active UI element):

public MainWindow()
{
...

toolStripTextBoxColor.LostFocus
+= new EventHandler(toolStripTextBoxColor_LostFocus);

}

Within the generated event handler, you will extract the string data entered within the
ToolStripTextBox (via the Text property) and make use of the System.Drawing.Color.FromName()
method. This static method will return a Color type based on a known string value. To account for
the possibility that the user enters an unknown color (or types bogus data), you will make use of
some simple try/catch logic:

void toolStripTextBoxColor_LostFocus(object sender, EventArgs e)
{

try
{

BackColor = Color.FromName(toolStripTextBoxColor.Text);
} catch { } // Just do nothing if the user provides bad data.

}

Figure 19-13. Adding TextBoxes to a MenuStrip

4193ch19.qxd 8/14/05 2:59 PM Page 629

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS630

Go ahead and take your updated application out for another test drive and try entering in the
names of various colors. Once you do, you should see your Form’s background color change. If you
are interested in checking out some valid color names, look up the System.Drawing.Color type using
the Visual Studio 2005 Object Browser or the .NET Framework 2.0 SDK documentation.

Creating a Context Menu
Let’s now examine the process of building a context-sensitive pop-up (i.e., right-click) menu. Under
.NET 1.1, the ContextMenu type was the class of choice for building context menus, but under
.NET 2.0 the preferred type is ContextMenuStrip. Like the MenuStrip type, ContextMenuStrip main-
tains a ToolStripItemCollection to represent the possible subitems (such as ToolStripMenuItem,
ToolStripComboBox, ToolStripSeperator, ToolStripTextBox, etc.).

Drag a new ContextMenuStrip control from the Toolbox onto the Forms designer and rename
the control to fontSizeContextStrip using the Properties window. Notice that you are able to popu-
late the subitems graphically in much the same way you would edit the Form’s main MenuStrip
(a welcome change from the method used in Visual Studio .NET 2003). For this example, add three
ToolStripMenuItems named Huge, Normal, and Tiny (see Figure 19-14).

This context menu will be used to allow the user to select the size to render a message within
the Form’s client area. To facilitate this endeavor, create an enum type named TextFontSize within
the MenuStripApp namespace and declare a new member variable of this type within your Form type
(set to TextFontSize.FontSizeNormal):

namespace MainForm
{

// Helper enum for font size.
enum TextFontSize
{

FontSizeHuge = 30,
FontSizeNormal = 20,
FontSizeTiny = 8

}

public class MainForm : Form
{

Figure 19-14. Designing a ContextMenuStrip

4193ch19.qxd 8/14/05 2:59 PM Page 630

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 631

// Current size of font.
private TextFontSize currFontSize

= TextFontSize.FontSizeNormal;
...

}
}

The next step is to handle the Form’s Paint event using the Properties window. As described in
greater detail in the next chapter, the Paint event allows you to render graphical data (including stylized
text) onto a Form’s client area. Here, you are going to draw a textual message using a font of user-
specified size. Don’t sweat the details at this point, but do update your Paint event handler as so:

private void MainWindow_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
g.DrawString("Right click on me...",

new Font("Times New Roman", (float)currFontSize),
new SolidBrush(Color.Black), 50, 50);

}

Last but not least, you need to handle the Click events for each of the ToolStripMenuItem
types maintained by the ContextMenuStrip. While you could have a separate Click event handler
for each, you will simply specify a single event handler that will be called when any of the three
ToolStripMenuItems have been clicked. Using the Properties window, specify the name of the Click
event handler as ContextMenuItemSelection_Clicked for each of the three ToolStripMenuItems and
implement this method as so:

private void ContextMenuItemSelection_Clicked(object sender, EventArgs e)
{

// Obtain the currently clicked ToolStripMenuItem.
ToolStripMenuItem miClicked =

miClicked = (ToolStripMenuItem)sender;

// Figure out which item was clicked using its Name.
if (miClicked.Name == "hugeToolStripMenuItem")

currFontSize = TextFontSize.FontSizeHuge;
if (miClicked.Name == "normalToolStripMenuItem")

currFontSize = TextFontSize.FontSizeNormal;
if (miClicked.Name == "tinyToolStripMenuItem")

currFontSize = TextFontSize.FontSizeTiny;

// Tell the Form to repaint itself.
Invalidate();

}

Notice that using the “sender” argument, you are able to determine the name of the
ToolStripMenuItem member variable in order to set the current text size. Once you have done so,
the call to Invalidate() fires the Paint event, which will cause your Paint event handler to execute.

The final step is to inform the Form which ContextMenuStrip it should display when the right
mouse button is clicked in its client area. To do so, simply use the Properties window to set the
ContextMenuStrip property equal to the name of your context menu item. Once you have done so,
you will find the following line within InitializeComponent():

this.ContextMenuStrip = this.fontSizeContextStrip;

4193ch19.qxd 8/14/05 2:59 PM Page 631

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS632

■Note Be aware that any control can be assigned a context menu via the ContextMenuStrip property. For
example, you could create a Button object on a dialog box that responds to a particular context menu. In this way,
the menu would be displayed only if the mouse button were right-clicked within the bounding rectangle of the button.

If you now run the application, you should be able to change the size of the rendered text message
via a right-click of your mouse.

Checking Menu Items
ToolStripMenuItem defines a number of members that allow you to check, enable, and hide a given
item. Table 19-11 gives a rundown of some (but not all) of the interesting properties.

Table 19-11. Members of the ToolStripMenuItem Type

Member Meaning in Life

Checked Gets or sets a value indicating whether a check mark appears beside the
text of the ToolStripMenuItem

CheckOnClick Gets or sets a value indicating whether the ToolStripMenuItem should
automatically appear checked/unchecked when clicked

Enabled Gets or sets a value indicating whether the ToolStripMenuItem is enabled

Let’s extend the previous pop-up menu to display a check mark next to the currently selected
menu item. Setting a check mark on a given menu item is not at all difficult (just set the Checked
property to true). However, tracking which menu item should be checked does require some addi-
tional logic. One possible approach is to define a distinct ToolStripMenuItem member variable that
represents the currently checked item:

public class MainWindow : Form
{
...

// Marks the item checked.
private ToolStripMenuItem currentCheckedItem;

}

Recall that the default text size is TextFontSize.FontSizeNormal. Given this, the initial item to
be checked is the normalToolStripMenuItem ToolStripMenuItem member variable. Update your
Form’s constructor as so:

public MainWindow()
{

// Inherited method to center the Form.
CenterToScreen();
InitializeComponent();

// Now check the 'Normal' menu item.
currentCheckedItem = normalToolStripMenuItem;
currentCheckedItem.Checked = true;

}

Now that you have a way to programmatically identify the currently checked item, the last step
is to update the ContextMenuItemSelection_Clicked() event handler to uncheck the previous item
and check the new current ToolStripMenuItem object in response to the user selection:

4193ch19.qxd 8/14/05 2:59 PM Page 632

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 633

private void ContextMenuItemSelection_Clicked(object sender, EventArgs e)
{

// Uncheck the currently checked item.
currentCheckedItem.Checked = false;

...
if (miClicked.Name == "hugeToolStripMenuItem")
{

currFontSize = TextFontSize.FontSizeHuge;
currentCheckedItem = hugeToolStripMenuItem;

}
if (miClicked.Name == "normalToolStripMenuItem")
{

currFontSize = TextFontSize.FontSizeNormal;
currentCheckedItem = normalToolStripMenuItem;

}
if (miClicked.Name == "tinyToolStripMenuItem")
{

currFontSize = TextFontSize.FontSizeTiny;
currentCheckedItem = tinyToolStripMenuItem;

}
// Check new item.
currentCheckedItem.Checked = true;

...
}

Figure 19-15 shows the completed MenuStripApp project in action.

■Source Code The MenuStripApp application is located under the Chapter 19 subdirectory.

Working with StatusStrips
In addition to a menu system, many Forms also maintain a status bar that is typically mounted at
the bottom of the Form. A status bar may be divided into any number of “panes” that hold some
textual (or graphical) information such as menu help strings, the current time, or other application-
specific information.

Although status bars have been supported since the release of the .NET platform (via the System.
Windows.Forms.StatusBar type), as of .NET 2.0 the simple StatusBar has been ousted by the new
StatusStrip type. Like a status bar, a StatusStrip can consist of any number of panes to hold tex-
tual/graphical data using a ToolStripStatusLabel type. However, status strips have the ability to
contain additional tool strip items such as the following:

Figure 19-15. Checking/unchecking ToolStripMenuItems

4193ch19.qxd 8/14/05 2:59 PM Page 633

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS634

• ToolStripProgressBar: An embedded progress bar.

• ToolStripDropDownButton: An embedded button that displays a drop-down list of choices
when clicked.

• ToolStripSplitButton: This is similar to the ToolStripDropDownButton, but the items of the
drop-down list are displayed only if the user clicks directly on the drop-down area of the
control. The ToolStripSplitButton also has normal buttonlike behavior and can thus sup-
port the Click event.

In this example, you will build a new MainWindow that supports a simple menu (File ➤ Exit and
Help ➤ About) as well as a StatusStrip. The leftmost pane of the status strip will be used to display
help string data regarding the currently selected menu subitem (e.g., if the user selects the Exit menu,
the pane will display “Exits the app”).

The far right pane will display one of two dynamically created strings that will show either the
current time or the current date. Finally, the middle pane will be a ToolStripDropDownButton type
that allows the user to toggle the date/time display (with a happy face icon to boot!). Figure 19-16
shows the application in its completed form.

Designing the Menu System
To begin, create a new Windows Forms application project named StatusStripApp. Place a MenuStrip
control onto the Forms designer and build the two menu items (File ➤ Exit and Help ➤ About).
Once you have done so, handle the Click and MouseHover events for each subitem (Exit and About)
using the Properties window.

The implementation of the File ➤ Exit Click event handler will simply terminate the application,
while the Help ➤ About Click event handler shows a friendly MessageBox.

private void exitToolStripMenuItem_Click(object sender, EventArgs e)
{ Application.Exit(); }

private void aboutToolStripMenuItem_Click(object sender, EventArgs e)
{ MessageBox.Show("My StatusStripApp!"); }

You will update the MouseHover event handler to display the correct prompt in the leftmost
pane of the StatusStrip in just a bit, so leave them empty for the time being.

Designing the StatusStrip
Next, place a StatusStrip control onto the designer and rename this control to mainStatusStrip.
Understand that by default a StatusStrip contains no panes whatsoever. To add the three panes,
you may take various approaches:

Figure 19-16. The StatusStrip application

4193ch19.qxd 8/14/05 2:59 PM Page 634

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 635

• Author the code by hand without designer support (perhaps using a helper method named
CreateStatusStrip() that is called in the Form’s constructor).

• Add the items via a dialog box activated using the Edit Items link using the StatusStrip
context-sensitive inline editor (see Figure 19-17).

• Add the items one by one via the new item drop-down editor mounted on the StatusStrip
(see Figure 19-18).

Figure 19-17. The StatusStrip context editor

Figure 19-18. Adding items via the StatusStrip new item drop-down editor

4193ch19.qxd 8/14/05 2:59 PM Page 635

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS636

For this example, you will leverage the new item drop-down editor. Add two new
ToolStripStatusLabel types named toolStripStatusLabelMenuState and toolStripStatusLabelClock,
and a ToolStripDropDownButton named toolStripDropDownButtonDateTime. As you would expect, this
will add new member variables in the *.Designer.cs file and update InitializeComponent() accord-
ingly. Note that the StatusStrip maintains an internal collection to hold each of the panes:

partial class MainForm
{

private void InitializeComponent()
{

...
//
// mainStatusStrip
//
this.mainStatusStrip.Items.AddRange(new System.Windows.Forms.ToolStripItem[] {

this.toolStripStatusLabelMenuState,
this.toolStripStatusLabelClock,
this.toolStripDropDownButtonDateTime});

...
}

private System.Windows.Forms.StatusStrip mainStatusStrip;
private System.Windows.Forms.ToolStripStatusLabel

toolStripStatusLabelMenuState;
private System.Windows.Forms.ToolStripStatusLabel

toolStripStatusLabelClock;
private System.Windows.Forms.ToolStripDropDownButton

toolStripDropDownButtonDateTime;
...
}

Now, select the ToolStripDropDownButton on the designer and add two new menu items named
currentTimeToolStripMenuItem and dayoftheWeekToolStripMenuItem (see Figure 19-19).

Figure 19-19. Adding menu items to the ToolStripDropDownButton

To configure your panes to reflect the look and feel shown in Figure 19-19, you will need to set
several properties, which you do using the Visual Studio 2005 Properties window. Table 19-12 docu-
ments the necessary properties to set and events to handle for each item on your StatusStrip (of
course, feel free to stylize the panes with additional settings as you see fit).

4193ch19.qxd 8/14/05 2:59 PM Page 636

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 637

Table 19-12. StatusStrip Pane Configuration

Pane Member Variable Properties to Set Events to Handle

toolStripStatusLabelMenuState Spring = true None
Text = (empty)
TextAlign = TopLeft

toolStripStatusLabelClock BorderSides = All None
Text = (empty)

toolStripDropDownButtonDateTime Image = (see text that follows) None

dayoftheWeekToolStripMenuItem Text = “Day of the Week” MouseHover
Click

currentTimeToolStripMenuItem Text = “Current Time” MouseHover
Click

The Image property of the toolStripDropDownButtonDateTime member can be set to any image
file on your machine (of course, extremely large image files will be quite skewed). For this example,
you may wish to use the happyDude.bmp file included with this book’s downloadable source code
(please visit the Downloads section of the Apress website, http://www.apress.com).

So at this point, the GUI design is complete! Before you implement the remaining event handlers,
you need to get to know the role of the Timer component.

Working with the Timer Type
Recall that the second pane should display the current time or current date based on user preference.
The first step to take to achieve this design goal is to add a Timer member variable to the Form. A Timer
is a component that calls some method (specified using the Tick event) at a given interval (specified
by the Interval property).

Drag a Timer component onto your Forms designer and rename it to timerDateTimeUpdate.
Using the Properties window, set the Interval property to 1,000 (the value in milliseconds) and set
the Enabled property to true. Finally, handle the Tick event. Before implementing the Tick event
handler, define a new enum type in your project named DateTimeFormat. This enum will be used to
determine whether the second ToolStripStatusLabel should display the current time or the current
day of the week:

enum DateTimeFormat
{

ShowClock,
ShowDay

}

With this enum in place, update your MainWindow with the following code:

public partial class MainWindow : Form
{

// Which format to display?
DateTimeFormat dtFormat = DateTimeFormat.ShowClock;

...
private void timerDateTimeUpdate_Tick(object sender, EventArgs e)
{

string panelInfo = "";

// Create current format.
if (dtFormat == DateTimeFormat.ShowClock)

panelInfo = DateTime.Now.ToLongTimeString();

4193ch19.qxd 8/14/05 2:59 PM Page 637

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS638

else
panelInfo = DateTime.Now.ToLongDateString();

// Set text on pane.
toolStripStatusLabelClock.Text = panelInfo;

}
}

Notice that the Timer event handler makes use of the DateTime type. Here, you simply find
the current system time or date using the Now property and use it to set the Text property of the
toolStripStatusLabelClock member variable.

Toggling the Display
At this point, the Tick event handler should be displaying the current time within the
toolStripStatusLabelClock pane, given that the default value of your DateTimeFormat member vari-
able as been set to DateTimeFormat.ShowClock. To allow the user to toggle between the date and time
display, update your MainWindow as so (note you are also toggling which of the two menu items in
the ToolStripDropDownButton should be checked):

public partial class MainWindow : Form
{

// Which format to display?
DateTimeFormat dtFormat = DateTimeFormat.ShowClock;

// Marks the item checked.
private ToolStripMenuItem currentCheckedItem;

public MainWindow()
{

InitializeComponent();

// These properties can also be set
// with the Properties window.
Text = "Status Strip Example";
CenterToScreen();
BackColor = Color.CadetBlue;
currentCheckedItem = currentTimeToolStripMenuItem;
currentCheckedItem.Checked = true;

}
...

private void currentTimeToolStripMenuItem_Click(object sender, EventArgs e)
{

// Toggle check mark and set pane format to time.
currentCheckedItem.Checked = false;
dtFormat = DateTimeFormat.ShowClock;
currentCheckedItem = currentTimeToolStripMenuItem;
currentCheckedItem.Checked = true;

}
private void dayoftheWeekToolStripMenuItem_Click(object sender, EventArgs e)
{

// Toggle check mark and set pane format to date.
currentCheckedItem.Checked = false;
dtFormat = DateTimeFormat.ShowDay;
currentCheckedItem = dayoftheWeekToolStripMenuItem;
currentCheckedItem.Checked = true;

}
}

4193ch19.qxd 8/14/05 2:59 PM Page 638

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 639

Displaying the Menu Selection Prompts
Finally, you need to configure the first pane to hold menu help strings. As you know, most applica-
tions send a small bit of text information to the first pane of a status bar whenever the end user
selects a menu item (e.g., “This terminates the application”). Given that you have already handled
the MouseHover events for each submenu on the MenuStrip and TooStripDropDownButton, all you
need to do is assign a proper value to the Text property for the toolStripStatusLabelMenuState
member variable, for example:

private void exitToolStripMenuItem_MouseHover(object sender, EventArgs e)
{ toolStripStatusLabelMenuState.Text = "Exits the app."; }

private void aboutToolStripMenuItem_MouseHover(object sender, EventArgs e)
{ toolStripStatusLabelMenuState.Text = "Shows about box."; }

private void dayoftheWeekToolStripMenuItem_MouseHover(object sender, EventArgs e)
{ toolStripStatusLabelMenuState.Text = "Shows the day of the week."; }

private void currentTimeToolStripMenuItem_MouseHover(object sender, EventArgs e)
{ toolStripStatusLabelMenuState.Text = "Shows the current time."; }

Take your updated project out for a test drive. You should now be able to find these informa-
tional help strings in the first pane of your StatusStrip as you select each menu item.

Establishing a “Ready” State
The final thing to do for this example is ensure that when the user deselects a menu item, the first
text pane is set to a default message (e.g., “Ready”). With the current design, the previously selected
menu prompt remains on the leftmost text pane, which is confusing at best. To rectify this issue,
handle the MouseLeave event for the Exit, About, Day of the Week, and Current Time menu items.
However, rather than generating a new event handler for each item, have them all call a method
named SetReadyPrompt():

private void SetReadyPrompt(object sender, EventArgs e)
{ toolStripStatusLabelMenuState.Text = "Ready."; }

With this, you should find that the first pane resets to this default message as soon as the mouse
cursor leaves any of your four menu items.

■Source Code The StatusBarApp project is included under the Chapter 19 subdirectory.

Working with ToolStrips
The next Form-level GUI item to examine in this chapter is the .NET 2.0 ToolStrip type, which over-
shadows the functionality found within the depreciated .NET 1.x ToolBar class. As you know, toolbars
typically provide an alternate means to activate a given menu item. Thus, if the user clicks a Save
button, this has the same effect as selecting File ➤ Save. Much like MenuStrip and StatusStrip, the
ToolStrip type can contain numerous toolbar items, some of which you have already encountered
in previous examples:

• ToolStripButton

• ToolStripLabel

• ToolStripSplitButton

4193ch19.qxd 8/14/05 2:59 PM Page 639

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS640

• ToolStripDropDownButton

• ToolStripSeparator

• ToolStripComboBox

• ToolStripTextBox

• ToolStripProgressBar

Like other Windows Forms controls, the ToolStrip supports an inline editor that allows you to
quickly add standard button types (File, Exit, Help, Copy, Paste, etc.) to a ToolStrip, change the docking
position, and embed the ToolStrip in a ToolStripContainer (more details in just a bit). Figure 19-20
illustrates the designer support for ToolStrips.

Figure 19-20. Designing ToolStrips

Like MenuStrips and StatusStrips, individual ToolStrip controls are added to the ToolStrip’s
internal collection via the Items property. If you click the Insert Standard Items link on the inline
ToolStrip editor, your InitializeComponent() method is updated to insert an array of ToolStripItem-
derived types that represent each item:

private void InitializeComponent()
{
...

// Autogenerated code to prep a ToolStrip.
this.toolStrip1.Items.AddRange(new System.Windows.Forms.ToolStripItem[] {

this.newToolStripButton, this.openToolStripButton,
this.saveToolStripButton, this.printToolStripButton,
this.toolStripSeparator, this.cutToolStripButton,
this.copyToolStripButton, this.pasteToolStripButton,
this.toolStripSeparator1, this.helpToolStripButton});

...
}

4193ch19.qxd 8/14/05 2:59 PM Page 640

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 641

To illustrate working with ToolStrips, the following Windows Forms application creates
a ToolStrip containing two ToolStripButton types (named toolStripButtonGrowFont and
toolStripButtonShrinkFont), aToolBarSeparator, and aToolBarTextBox (named toolStripTextBoxMessage).

The end user is able to enter a message to be rendered on the Form via the ToolBarTextBox, and
the two ToolBarButton types will be used to increase or decrease the font size. Figure 19-21 shows the
end result of the project you will construct.

Figure 19-21. ToolStripApp in action

By now I’d guess you have a handle on working with the Visual Studio 2005 Forms designer, so
I won’t belabor the point of building the ToolStrip. Do note, however, that each ToolStripButton
has a custom (albeit poorly drawn by yours truly) icon that was created using the Visual Studio 2005
image editor. If you wish to create image files for your project, simply select the Project ➤ Add New
Item menu option, and from the resulting dialog box add a new icon file (see Figure 19-22).

Figure 19-22. Inserting new image files

4193ch19.qxd 8/14/05 2:59 PM Page 641

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS642

Once you have done so, you are able to edit your images using the Colors tab on the Toolbox
and the Image Editor toolbox. In any case, once you have designed your icons, you are able to asso-
ciate them with the ToolStripButton types via the Image property in the Properties window. Once
you are happy with the ToolStrip’s look and feel, handle the Click event for each ToolStripButton.

Here is the relevant code in the InitializeComponent() method for the first ToolStripButton
type (the second ToolStripButton will look just about the same):

private void InitializeComponent()
{
...

// toolStripButtonGrowFont
//
this.toolStripButtonGrowFont.DisplayStyle =

System.Windows.Forms.ToolStripItemDisplayStyle.Image;
this.toolStripButtonGrowFont.Image =
((System.Drawing.Image)
(resources.GetObject("toolStripButtonGrowFont.Image")));
this.toolStripButtonGrowFont.ImageTransparentColor =

System.Drawing.Color.Magenta;
this.toolStripButtonGrowFont.Name = "toolStripButtonGrowFont";
this.toolStripButtonGrowFont.Text = "toolStripButton2";
this.toolStripButtonGrowFont.ToolTipText = "Grow Font";
this.toolStripButtonGrowFont.Click += new

System.EventHandler(this.toolStripButtonGrowFont_Click);
...
}

■Note Notice that the value assigned to the Image of a ToolStripButton is obtained using a method named
GetObject(). As explained in the next chapter, this method is used to extract embedded resources used by your
assembly.

The remaining code is extremely straightforward. In the following updated MainWindow, notice
that the current font size is constrained between 12 and 70:

public partial class MainWindow : Form
{

// The current, max and min font sizes.
int currFontSize = 12;
const int MinFontSize = 12;
const int MaxFontSize = 70;

public MainWindow()
{

InitializeComponent();
CenterToScreen();
Text = string.Format("Your Font size is: {0}", currFontSize);

}

private void toolStripButtonShrinkFont_Click(object sender, EventArgs e)
{

// Reduce font size by 5 and refresh display.
currFontSize -= 5;
if (currFontSize <= MinFontSize)

currFontSize = MinFontSize;

4193ch19.qxd 8/14/05 2:59 PM Page 642

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 643

Text = string.Format("Your Font size is: {0}", currFontSize);
Invalidate();

}

private void toolStripButtonGrowFont_Click(object sender, EventArgs e)
{

// Increase font size by 5 and refresh display.
currFontSize += 5;
if (currFontSize >= MaxFontSize)

currFontSize = MaxFontSize;
Text = string.Format("Your Font size is: {0}", currFontSize);
Invalidate();

}

private void MainWindow_Paint(object sender, PaintEventArgs e)
{

// Paint the user-defined message.
Graphics g = e.Graphics;
g.DrawString(toolStripTextBoxMessage.Text,

new Font("Times New Roman", currFontSize),
Brushes.Black, 10, 60);

}
}

As a final enhancement, if you wish to ensure that the user message is updated as soon as the
ToolStripTextBox loses focus, you can handle the LostFocus event and Invalidate() your Form
within the generated event handler:

public partial class MainWindow : Form
{
...

public MainWindow()
{

...
this.toolStripTextBoxMessage.LostFocus

+= new EventHandler(toolStripTextBoxMessage_LostFocus);
}
void toolStripTextBoxMessage_LostFocus(object sender, EventArgs e)
{

Invalidate();
}

...
}

Working with ToolStripContainers
ToolStrips, if required, can be configured to be “dockable” against any or all sides of the Form that
contains it. To illustrate how you can accomplish this, right-click your current ToolStrip using the
designer and select the Embed in ToolStripContainer menu option. Once you have done so, you will
find that the ToolStrip has been contained within a ToolStripContainer. For this example, select
the Dock Fill in Form option (see Figure 19-23).

4193ch19.qxd 8/14/05 2:59 PM Page 643

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS644

If you run your current update, you will find that the ToolStrip can be moved and docked to
each side of the container. However, your custom message has now vanished. The reason for this is
that ToolStripContainers are actually child controls of the Form. Therefore, the graphical render is
still taking place, but the output is being hidden by the container that now sits on top of the Form’s
client area.

To fix this problem, you will need to handle the Paint event on the ToolStripContainer rather
than on the Form. First, locate the Form’s Paint event within the Properties window and right-click
the current event handler. From the context menu, select Reset (see Figure 19-24).

Figure 19-23. Docking the ToolStripContainer within the entire Form

Figure 19-24. Resetting an event

This will remove the event handling logic in InitializeComponent(), but it will leave the event
handler in place (just to ensure you don’t lose code you would like to maintain).

Now, handle the Paint event for the ToolStripContainer and move the rendering code from
the existing Form’s Paint event handler into the container’s Paint event handler. Once you have
done so, you can delete the (now empty) MainWindow_Paint() method. Finally, you will need to
replace each occurrence of the call to the Form’s Invalidate() method to the container’s Invalidate()
method. Here are the relevant code updates:

4193ch19.qxd 8/14/05 2:59 PM Page 644

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 645

public partial class MainWindow : Form
{
...

void toolStripTextBoxMessage_LostFocus(object sender, EventArgs e)
{

toolStripContainer1.Invalidate(true);
}

private void toolStripButtonShrinkFont_Click(object sender, EventArgs e)
{

...
toolStripContainer1.Invalidate(true);

}
private void toolStripButtonGrowFont_Click(object sender, EventArgs e)
{

...
toolStripContainer1.Invalidate(true);

}
// We are now painting on the container, not the form!
private void ContentPanel_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
g.DrawString(toolStripTextBoxMessage.Text,

new Font("Times New Roman", currFontSize),
Brushes.Black, 10, 60);

}
}

Of course, the ToolStripContainer can be configured in various ways to tweak how it operates.
I leave it to you to check out the .NET Framework 2.0 SDK documentation for complete details.
Figure 19-25 shows the completed project.

■Source Code The ToolStripApp project is included under the Chapter 19 subdirectory.

Figure 19-25. ToolStripApp, now with a dockable ToolStrip

4193ch19.qxd 8/14/05 2:59 PM Page 645

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS646

Building an MDI Application
To wrap up our initial look at Windows Forms, I’ll close this chapter by discussing how to configure
a Form to function as a parent to any number of child windows (i.e., an MDI container). MDI appli-
cations allow users to have multiple child windows open at the same time within the same topmost
window. In the world of MDIs, each window represents a given “document” of the application. For
example, Visual Studio 2005 is an MDI application in that you are able to have multiple documents
open from within an instance of the application.

When you are building MDI applications using Windows Forms, your first task is to (of course)
create a brand-new Windows application. The initial Form of the application typically hosts a menu
system that allows you to create new documents (such as File ➤ New) as well as arrange existing open
windows (cascade, vertical tile, and horizontal tile).

Creating the child windows is interesting, as you typically define a prototypical Form that func-
tions as a basis for each child window. Given that Forms are class types, any private data defined in
the child Form will be unique to a particular instance. For example, if you were to create an MDI word
processing application, you might create a child Form that maintains a StringBuilder to represent
the text. If a user created five new child windows, each Form would maintain its own StringBuilder
instance, which could be individually manipulated.

Additionally, MDI applications allow you to “merge menus.” As mentioned previously, parent
windows typically have a menu system that allows the user to spawn and organize additional child
windows. However, what if the child window also maintains a menuing system? If the user maximizes
a particular child window, you need to merge the child’s menu system within the parent Form to
allow the user to activate items from each menu system. The Windows Forms namespace defines
a number of properties, methods, and events that allow you to programmatically merge menu
systems. In addition, there is a “default merge” system, which works in a good number of cases.

Building the Parent Form
To illustrate the basics of building an MDI application, begin by creating a brand-new Windows
application named SimpleMdiApp. Almost all of the MDI infrastructure can be assigned to your
initial Form using various design-time tools. To begin, locate the IsMdiContainer property in the
Properties window and set it to true. If you look at the design-time Form, you’ll see that the client
area has been modified to visually represent a container of child windows.

Next, place a new MenuStrip control on your main Form. This menu specifies three topmost
items named File, Window, and Arrange Windows. The File menu contains two subitems named
New and Exit. The Window menu does not contain any subitems, because you will programmati-
cally add new items as the user creates additional child windows. Finally, the Arrange Window menu
defines three subitems named Cascade, Vertical, and Horizontal.

Once you have created the menu UI, handle the Click event for the Exit, New, Cascade, Vertical,
and Horizontal menu items (remember, the Window menu does not have any subitems just yet).
You’ll implement the File ➤ New handler in the next section, but for now here is the code behind
the remaining menu selections:

// Handle File | Exit event and arrange all child windows.
private void cascadeToolStripMenuItem_Click(object sender, EventArgs e)
{

LayoutMdi(MdiLayout.Cascade);
}
private void verticalToolStripMenuItem_Click(object sender, EventArgs e)
{

LayoutMdi(MdiLayout.TileVertical);
}
private void horizontalToolStripMenuItem_Click(object sender, EventArgs e)

4193ch19.qxd 8/14/05 2:59 PM Page 646

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS 647

{
LayoutMdi(MdiLayout.TileHorizontal);

}
private void exitToolStripMenuItem_Click(object sender, EventArgs e)
{

Application.Exit();
}

The main point of interest here is the use of the LayoutMdi() method and the corresponding
MdiLayout enumeration. The code behind each menu select handler should be quite clear. When
the user selects a given arrangement, you tell the parent Form to automatically reposition any and
all child windows.

Before you move on to the construction of the child Form, you need to set one additional prop-
erty of the MenuStrip. The MdiWindowListItem property is used to establish which topmost menu item
should be used to automatically list the name of each child window as a possible menu selection.
Set this property to the windowToolStripMenuItem member variable. By default, this list is the value
of the child’s Text property followed by a numerical suffix (i.e., Form1, Form2, Form3, etc.).

Building the Child Form
Now that you have the shell of an MDI container, you need to create an additional Form that functions
as the prototype for a given child window. Begin by inserting a new Form type into your current proj-
ect (using Project ➤ Add Windows Form) named ChildPrototypeForm and handle the Click event for
this Form. In the generated event handler, randomly set the background color of the client area. In
addition, print out the “stringified” value of the new Color object into the child’s caption bar. The
following logic should do the trick:

private void ChildPrototypeForm_Click(object sender, EventArgs e)
{

// Get three random numbers
int r, g, b;
Random ran = new Random();
r = ran.Next(0, 255);
g = ran.Next(0, 255);
b = ran.Next(0, 255);

// Now create a color for the background.
Color currColor = Color.FromArgb(r, g, b);
this.BackColor = currColor;
this.Text = currColor.ToString();

}

Spawning Child Windows
Your final order of business is to flesh out the details behind the parent Form’s File ➤ New event
handler. Now that you have defined a child Form, the logic is simple: create and show a new instance
of the ChildPrototypeForm type. As well, you need to set the value of the child Form’s MdiParent
property to point to the containing Form (in this case, your main window). Here is the update:

private void newToolStripMenuItem_Click(object sender, EventArgs e)
{

// Make a new child window.
ChildPrototypeForm newChild = new ChildPrototypeForm();

// Set the Parent Form of the Child window.
newChild.MdiParent = this;

4193ch19.qxd 8/14/05 2:59 PM Page 647

CHAPTER 19 ■ BUILDING A BETTER WINDOW WITH SYSTEM.WINDOWS.FORMS648

// Display the new form.
newChild.Show();

}

■Note A child Form may access the MdiParent property directly whenever it needs to manipulate (or communi-
cate with) its parent window.

To take this application out for a test drive, begin by creating a set of new child windows and
click each one to establish a unique background color. If you examine the subitems under the
Windows menu, you should see each child Form present and accounted for. As well, if you access
the Arrange Window menu items, you can instruct the parent Form to vertically tile, horizontally
tile, or cascade the child Forms. Figure 19-26 shows the completed application.

■Source Code The SimpleMdiApp project can be found under the Chapter 19 subdirectory.

Summary
This chapter introduced the fine art of building a UI with the types contained in the System.Windows.
Forms namespace. You began by building a number of applications by hand, and you learned along
the way that at a minimum, a GUI application needs a class that derives from Form and a Main()
method that invokes Application.Run().

During the course of this chapter, you learned how to build topmost menus (and pop-up menus)
and how to respond to a number of menu events. You also came to understand how to further enhance
your Form types using toolbars and status bars. As you have seen, .NET 2.0 prefers to build such UI
elements using MenuStrips, ToolStrips, and StatusStrips rather than the older .NET 1.x MainMenu,
ToolBar, and StatusBar types (although these deprecated types are still supported). Finally, this chapter
wrapped up by illustrating how to construct MDI applications using Windows Forms.

Figure 19-26. An MDI application

4193ch19.qxd 8/14/05 2:59 PM Page 648

Rendering Graphical Data with GDI+

The previous chapter introduced you to the process of building a GUI-based desktop application
using System.Windows.Forms. The point of this chapter is to examine the details of rendering graphics
(including stylized text and image data) onto a Form’s surface area. We’ll begin by taking a high-level
look at the numerous drawing-related namespaces, and we’ll examine the role of the Paint
event,and the almighty Graphics object.

The remainder of this chapter covers how to manipulate colors, fonts, geometric shapes, and
graphical images. This chapter also explores a number of rendering-centric programming techniques,
such as nonrectangular hit testing, drag-and-drop logic, and the .NET resource format. While tech-
nically not part of GDI+ proper, resources often involve the manipulation of graphical data (which,
in my opinion, is “GDI+-enough” to be presented here).

■Note If you are a web programmer by trade, you may think that GDI+ is of no use to you. However, GDI+ is not
limited to traditional desktop applications and is extremely relevant for web applications.

A Survey of the GDI+ Namespaces
The .NET platform provides a number of namespaces devoted to two-dimensional graphical ren-
dering. In addition to the basic functionality you would expect to find in a graphics toolkit (colors,
fonts, pens, brushes, etc.), you also find types that enable geometric transformations, antialiasing,
palette blending, and document printing support. Collectively speaking, these namespaces make
up the .NET facility we call GDI+, which is a managed alternative to the Win32 Graphical Device
Interface (GDI) API. Table 20-1 gives a high-level view of the core GDI+ namespaces.

649

C H A P T E R 2 0

■ ■ ■

4193ch20.qxd 8/14/05 3:01 PM Page 649

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+650

Table 20-1. Core GDI+ Namespaces

Namespace Meaning in Life

System.Drawing This is the core GDI+ namespace that defines numerous types for
basic rendering (fonts, pens, basic brushes, etc.) as well as the
almighty Graphics type.

System.Drawing.Drawing2D This namespace provides types used for more advanced two-
dimensional/vector graphics functionality (e.g., gradient brushes,
pen caps, geometric transforms, etc.).

System.Drawing.Imaging This namespace defines types that allow you to manipulate
graphical images (e.g., change the palette, extract image metadata,
manipulate metafiles, etc.).

System.Drawing.Printing This namespace defines types that allow you to render images to
the printed page, interact with the printer itself, and format the
overall appearance of a given print job.

System.Drawing.Text This namespace allows you to manipulate collections of fonts.

■Note All of the GDI+ namespaces are defined within the System.Drawing.dll assembly. While many Visual
Studio 2005 project types automatically set a reference to this code library, you can manually reference
System.Drawing.dll using the Add References dialog box if necessary.

An Overview of the System.Drawing Namespace
The vast majority of the types you’ll use when programming GDI+ applications are found within the
System.Drawing namespace. As you would expect, there are classes that represent images, brushes,
pens, and fonts. Furthermore, System.Drawing defines a number of related utility types such as
Color, Point, and Rectangle. Table 20-2 lists some (but not all) of the core types.

Table 20-2. Core Types of the System.Drawing Namespace

Type Meaning in Life

Bitmap This type encapsulates image data (*.bmp or otherwise).

Brush Brush objects are used to fill the interiors of graphical shapes such as
Brushes rectangles, ellipses, and polygons.
SolidBrush
SystemBrushes
TextureBrush

BufferedGraphics This new .NET 2.0 type provides a graphics buffer for double buffering,
which is used to reduce or eliminate flicker caused by redrawing
a display surface.

Color The Color and SystemColors types define a number of static read-only
SystemColors properties used to obtain specific colors for the construction of various

pens/brushes.

Font The Font type encapsulates the characteristics of a given font (i.e., type
FontFamily name, bold, italic, point size, etc.). FontFamily provides an abstraction

for a group of fonts having a similar design but with certain variations
in style.

Graphics This core class represents a valid drawing surface, as well as a number
of methods to render text, images, and geometric patterns.

4193ch20.qxd 8/14/05 3:01 PM Page 650

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 651

Type Meaning in Life

Icon These classes represent custom icons, as well as the set of standard
SystemIcons system-supplied icons.

Image Image is an abstract base class that provides functionality for the
ImageAnimator Bitmap, Icon, and Cursor types. ImageAnimator provides a way to iterate

over a number of Image-derived types at some specified interval.

Pen Pens are objects used to draw lines and curves. The Pens type defines
Pens a number of static properties that return a new Pen of a given color.
SystemPens

Point These structures represent an (x, y) coordinate mapping to an
PointF underlying integer or float, respectively.

Rectangle These structures represent a rectangular dimension (again mapping to
RectangleF an underlying integer or float).

Size These structures represent a given height/width (again mapping to an
SizeF underlying integer or float).

StringFormat This type is used to encapsulate various features of textual layout (i.e.,
alignment, line spacing, etc.).

Region This type describes the interior of a geometric image composed of
rectangles and paths.

The System.Drawing Utility Types
Many of the drawing methods defined by the System.Drawing.Graphics object require you to
specify the position or area in which you wish to render a given item. For example, the DrawString()
method requires you to specify the location to render the text string on the Control-derived type.
Given that DrawString() has been overloaded a number of times, this positional parameter may be
specified using an (x, y) coordinate or the dimensions of a “box” to draw within. Other GDI+ type
methods may require you to specify the width and height of a given item, or the internal bounds of
a geometric image.

To specify such information, the System.Drawing namespace defines the Point, Rectangle,
Region, and Size types. Obviously, a Point represents an (x, y) coordinate. Rectangle types capture
a pair of points representing the upper-left and bottom-right bounds of a rectangular region. Size
types are similar to Rectangles, but this structure represent a particular dimension using a given
length and width. Finally, Regions provide a way to represent and qualify nonrectangular surfaces.

The member variables used by the Point, Rectangle, and Size types are internally represented
as an integer data type. If you need a finer level of granularity, you are free to make use of the corre-
sponding PointF, RectangleF, and SizeF types, which (as you might guess) map to an underlying
float. Regardless of the underlying data representation, each type has an identical set of members,
including a number of overloaded operators.

The Point(F) Type
The first utility type you should be aware of is System.Drawing.Point(F). Unlike the illustrative
Point types created in previous chapters, the GDI+ Point(F) type supports a number of helpful
members, including

• +, -, ==, !=: The Point type overloads various C# operators.

• X, Y: These members provide access to the underlying (x, y) values of the Point.

• IsEmpty: This member returns true if x and y are both set to 0.

4193ch20.qxd 8/14/05 3:01 PM Page 651

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+652

To illustrate working with the GDI+ utility types, here is a console application (named UtilTypes)
that makes use of the System.Drawing.Point type (be sure to set a reference to System.Drawing.dll).

using System;
using System.Drawing;

namespace UtilTypes
{

public class Program
{

static void Main(string[] args)
{

// Create and offset a point.
Point pt = new Point(100, 72);
Console.WriteLine(pt);
pt.Offset(20, 20);
Console.WriteLine(pt);

// Overloaded Point operators.
Point pt2 = pt;
if(pt == pt2)

WriteLine("Points are the same");
else

WriteLine("Different points");

// Change pt2's X value.
pt2.X = 4000;

// Now show each X value:
Console.WriteLine("First point: {0} ", pt);
Console.WriteLine("Second point: {0} ", pt2);
Console.ReadLine();

}
}

}

The Rectangle(F) Type
Rectangles, like Points, are useful in many applications (GUI-based or otherwise). One of the more
useful methods of the Rectangle type is Contains(). This method allows you to determine if a given
Point or Rectangle is within the current bounds of another object. Later in this chapter, you’ll see
how to make use of this method to perform hit testing of GDI+ images. Until then, here is a simple
example:

static void Main(string[] args)
{

...
// Point is initially outside of rectangle's bounds.
Rectangle r1 = new Rectangle(0, 0, 100, 100);
Point pt3 = new Point(101, 101);
if(r1.Contains(pt3))

Console.WriteLine("Point is within the rect!");
else

Console.WriteLine("Point is not within the rect!");

// Now place point in rectangle's area.
pt3.X = 50;
pt3.Y = 30;

4193ch20.qxd 8/14/05 3:01 PM Page 652

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 653

if(r1.Contains(pt3))
Console.WriteLine("Point is within the rect!");

else
Console.WriteLine("Point is not within the rect!");

Console.ReadLine();
}

The Region Class
The Region type represents the interior of a geometric shape. Given this last statement, it should
make sense that the constructors of the Region class require you to send an instance of some exist-
ing geometric pattern. For example, assume you have created a 100×100 pixel rectangle. If you wish
to gain access to the rectangle’s interior region, you could write the following:

// Get the interior of this rectangle.
Rectangle r = new Rectangle(0, 0, 100, 100);
Region rgn = new Region(r);

Once you have the interior dimensions of a given shape, you may manipulate it using various
members such as the following:

• Complement(): Updates this Region to the portion of the specified graphics object that does
not intersect with this Region

• Exclude(): Updates this Region to the portion of its interior that does not intersect with the
specified graphics object

• GetBounds(): Returns a Rectangle(F) that represents a rectangular region that bounds this
Region

• Intersect(): Updates this Region to the intersection of itself with the specified graphics
object

• Transform(): Transforms a Region by the specified Matrix object

• Union(): Updates this Region to the union of itself and the specified graphics object

• Translate(): Offsets the coordinates of this Region by a specified amount

I’m sure you get the general idea behind these coordinate primitives; please consult the .NET
Framework 2.0 SDK documentation if you require further details.

■Note The Size and SizeF types require little comment. These types each define Height and Width properties
and a handful of overloaded operators.

■Source Code The UtilTypes project is included under the Chapter 20 subdirectory.

Understanding the Graphics Class
The System.Drawing.Graphics class is the gateway to GDI+ rendering functionality. This class not
only represents the surface you wish to draw upon (such as a Form’s surface, a control’s surface, or
region of memory), but also defines dozens of members that allow you to render text, images (icons,
bitmaps, etc.), and numerous geometric patterns. Table 20-3 gives a partial list of members.

4193ch20.qxd 8/14/05 3:01 PM Page 653

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+654

Table 20-3. Members of the Graphics Class

Methods Meaning in Life

FromHdc() These static methods provide a way to obtain a valid Graphics object
FromHwnd() from a given image (e.g., icon, bitmap, etc.) or GUI widget.
FromImage()

Clear() Fills a Graphics object with a specified color, erasing the current
drawing surface in the process.

DrawArc() These methods are used to render a given image or geometric pattern.
DrawBezier() As you will see, DrawXXX() methods require the use of GDI+ Pen objects.
DrawBeziers()
DrawCurve()
DrawEllipse()
DrawIcon()
DrawLine()
DrawLines()
DrawPie()
DrawPath()
DrawRectangle()
DrawRectangles()
DrawString()

FillEllipse() These methods are used to fill the interior of a given geometric shape.
FillPath() As you will see, FillXXX() methods require the use of GDI+ Brush objects.
FillPie()
FillPolygon()
FillRectangle()

As well as providing a number of rendering methods, the Graphics class defines additional members
that allow you to configure the “state” of the Graphics object. By assigning values to the properties
shown in Table 20-4, you are able to alter the current rendering operation.

Table 20-4. Stateful Properties of the Graphics Class

Properties Meaning in Life

Clip These properties allow you to set the clipping options used with the
ClipBounds current Graphics object.
VisibleClipBounds
IsClipEmpty
IsVisibleClipEmpty

Transform This property allows you to transform “world coordinates” (more
details on this later).

PageUnit These properties allow you to configure the point of origin for your
PageScale rendering operations, as well as the unit of measurement.
DpiX
DpiY

SmoothingMode These properties allow you to configure the smoothness of geometric
PixelOffsetMode objects and text.
TextRenderingHint

CompositingMode The CompositingMode property determines whether drawing overwrites
CompositingQuality the background or is blended with the background.

InterpolationMode This property specifies how data is interpolated between endpoints.

4193ch20.qxd 8/14/05 3:01 PM Page 654

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 655

■Note As of .NET 2.0, the System.Drawing namespace provides a BufferedGraphics type that allows you to
render graphics using a double-buffering system to minimize or eliminate the flickering that can occur during
a rendering operation. Consult the .NET Framework 2.0 SDK documentation for full details.

Now, despite what you may be thinking, the Graphics class is not directly creatable via the new
keyword, as there are no publicly defined constructors. How, then, do you obtain a valid Graphics
object? Glad you asked.

Understanding Paint Sessions
The most common way to obtain a Graphics object is to interact with the Paint event. Recall from
the previous chapter that the Control class defines a virtual method named OnPaint(). When you
want a Form to render graphical data to its surface, you may override this method and extract
a Graphics object from the incoming PaintEventArgs parameter. To illustrate, create a new Windows
Forms application named BasicPaintForm, and update the Form-derived class as so:

public partial class MainForm : Form
{

public MainForm()
{

InitializeComponent();
CenterToScreen();
this.Text = "Basic Paint Form";

}

protected override void OnPaint(PaintEventArgs e)
{

// If overriding OnPaint(), be sure to call base class implementation.
base.OnPaint(e);

// Obtain a Graphics object from the incoming
// PaintEventArgs.
Graphics g = e.Graphics;

// Render a textual message in a given font and color.
g.DrawString("Hello GDI+", new Font("Times New Roman", 20),

Brushes.Green, 0, 0);
}

}

While overriding OnPaint() is permissible, it is more common to handle the Paint event using
the associated PaintEventHandler delegate (in fact, this is the default behavior taken by Visual Studio
2005 when handling events with the Properties window). This delegate can point to any method
taking a System.Object as the first parameter and a PaintEventArgs as the second. Assuming you
have handled the Paint event (via the Visual Studio 2005 designers or manually in code), you are
once again able to extract a Graphics object from the incoming PaintEventArgs. Here is the update:

public partial class MainForm : Form
{

public MainForm()
{

InitializeComponent();
CenterToScreen();

4193ch20.qxd 8/14/05 3:01 PM Page 655

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+656

this.Text = "Basic Paint Form";

// Visual Studio 2005 places this
// code within InitializeComponent().
this.Paint += new PaintEventHandler(MainForm_Paint);

}

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
g.DrawString("Hello GDI+", new Font("Times New Roman", 20),

Brushes.Green, 0, 0);
}

}

Regardless of how you respond to the Paint event, be aware that whenever a window becomes
“dirty,” the Paint event will fire. As you may be aware, a window is considered “dirty” whenever it is
resized, uncovered by another window (partially or completely), or minimized and then restored. In
all these cases, the .NET platform ensures that when your Form needs to be redrawn, the Paint event
handler (or overridden OnPaint() method) is called automatically.

Invalidating the Form’s Client Area
During the flow of a GDI+ application, you may need to explicitly fire the Paint event, rather than
waiting for the window to become “naturally dirty.” For example, you may be building a program
that allows the user to select from a number of bitmap images using a custom dialog box. Once the
dialog box is dismissed, you need to draw the newly selected image onto the Form’s client area.
Obviously, if you waited for the window to become “naturally dirty,” the user would not see the
change take place until the window was resized or uncovered by another window. To force a window
to repaint itself programmatically, simply call the inherited Invalidate() method:

public partial class MainForm: Form
{
...

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
// Render a bitmap here.

}

private void GetNewBitmap()
{

// Show dialog box and get new image.
// Repaint the entire client area.
Invalidate();

}
}

The Invalidate() method has been overloaded a number of times to allow you to specify
a specific rectangular region to repaint, rather than repainting the entire client area (which is the
default). If you wish to only update the extreme upper-left rectangle of the client area, you could
write the following:

// Repaint a given rectangular area of the Form.
private void UpdateUpperArea()
{

4193ch20.qxd 8/14/05 3:01 PM Page 656

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 657

Rectangle myRect = new Rectangle(0, 0, 75, 150);
Invalidate(myRect);

}

Obtaining a Graphics Object Outside of a Paint Event Handler
In some rare cases, you may need to access a Graphics object outside the scope of a Paint event
handler. For example, assume you wish to draw a small circle at the (x, y) position where the mouse
has been clicked. To obtain a valid Graphics object from within the scope of a MouseDown event han-
dler, one approach is to call the static Graphics.FromHwnd() method. Based on your background in
Win32 development, you may know that an HWND is a data structure that represents a given Win32
window. Under the .NET platform, the inherited Handle property extracts the underlying HWND,
which can be used as a parameter to Graphics.FromHwnd():

private void MainForm_MouseDown(object sender, MouseEventArgs e)
{

// Grab a Graphics object via Hwnd.
Graphics g = Graphics.FromHwnd(this.Handle);

// Now draw a 10*10 circle at mouse click.
g.FillEllipse(Brushes.Firebrick, e.X, e.Y, 10, 10);

// Dispose of all Graphics objects you create directly.
g.Dispose();

}

While this logic renders a circle outside an OnPaint() event handler, it is very important to
understand that when the form is invalidated (and thus redrawn), each of the circles is erased! This
should make sense, given that this rendering happens only within the context of a MouseDown event.
A far better approach is to have the MouseDown event handler create a new Point type, which is then
added to an internal collection (such as a List<T>), followed by a call to Invalidate(). At this point,
the Paint event handler can simply iterate over the collection and draw each Point:

public partial class MainForm : Form
{

// Used to hold all the points.
private List<Point> myPts = new List<Point>();

public MainForm()
{

...
this.MouseDown += new MouseEventHandler(MainForm_MouseDown);

}

private void MainForm_MouseDown(object sender, MouseEventArgs e)
{

// Add to points collection.
myPts.Add(new Point(e.X, e.Y));
Invalidate();

}

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
g.DrawString("Hello GDI+", new Font("Times New Roman", 20),

new SolidBrush(Color.Black), 0, 0);
foreach(Point p in myPts)

4193ch20.qxd 8/14/05 3:01 PM Page 657

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+658

Figure 20-1. A simple painting application

g.FillEllipse(Brushes.Firebrick, p.X, p.Y, 10, 10);
}

}

Using this approach, the rendered circles are always present and accounted for, as the graphi-
cal rendering has been handled within the Paint event. Figure 20-1 shows a test run of this initial
GDI+ application.

■Source Code The BasicPaintForm project is included under the Chapter 20 subdirectory.

Regarding the Disposal of a Graphics Object
If you were reading closely over the last several pages, you may have noticed that some of the sam-
ple code directly called the Dispose() method of the Graphics object, while other sample code did
not. Given that a Graphics type is manipulating various underlying unmanaged resources, it should
make sense that it would be advantageous to release said resources via Dispose() as soon as possi-
ble (rather than via the garbage collector in the finalization process). The same can be said for any
type that supports the IDisposable interface. When working with GDI+ Graphics objects, remember
the following rules of thumb:

• If you directly create a Graphics object, dispose of it when you are finished.

• If you reference an existing Graphics object, do not dispose of it.

To clarify, consider the following Paint event handler:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

// Load a local *.jpg file.
Image myImageFile = Image.FromFile("landscape.jpg");

// Create new Graphics object based on the image.
Graphics imgGraphics = Graphics.FromImage(myImageFile);

// Render new data onto the image.
imgGraphics.FillEllipse(Brushes.DarkOrange, 50, 50, 150, 150);

// Draw image to Form.
Graphics g = e.Graphics;
g.DrawImage(myImageFile, new PointF(0.0F, 0.0F));

// Release Graphics object we created.
imgGraphics.Dispose();

}

4193ch20.qxd 8/14/05 3:01 PM Page 658

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 659

Now at this point in the chapter, don’t become concerned if some of this GDI+ logic looks a bit
foreign. However, notice that you are obtaining a Graphics object from a *.jpg file loaded from the
local application directory (via the static Graphics.FromImage() method). Because you have explicitly
created this Graphics object, best practice states that you should Dispose() of the object when you
have finished making use of it, to free up the internal resources for use by other parts of the system.

However, notice that you did not explicitly call Dispose() on the Graphics object you obtained
from the incoming PaintEventArgs. This is due to the fact that you did not directly create the object
and cannot ensure other parts of the program are making use of it. Clearly, it would be a problem if
you released a Graphics object used elsewhere!

On a related note, recall from our examination of the .NET garbage collector in Chapter 5 that if
you do forget to call Dispose() on a method implementing IDisposable, the internal resources will
eventually be freed when the object is garbage-collected at a later time. In this light, the manual
disposal of the imgGraphics object is not technically necessary. Although explicitly disposing of
GDI+ objects you directly created is smart programming, in order to keep the code examples in
this chapter crisp, I will not manually dispose of each GDI+ type.

The GDI+ Coordinate Systems
Our next task is to examine the underlying coordinate system. GDI+ defines three distinct coordinate
systems, which are used by the runtime to determine the location and size of the content to be ren-
dered. First we have what are known as world coordinates. World coordinates represent an abstraction
of the size of a given GDI+ type, irrespective of the unit of measurement. For example, if you draw
a rectangle using the dimensions (0, 0, 100, 100), you have specified a rectangle 100×100 “things” in
size. As you may guess, the default “thing” is a pixel; however, it can be configured to be another unit
of measure (inch, centimeter, etc.).

Next, we have page coordinates. Page coordinates represent an offset applied to the original
world coordinates. This is helpful in that you are not the one in charge of manually applying offsets
in your code (should you need them). For example, if you have a Form that needs to maintain
a 100×100 pixel border, you can specify a (100*100) page coordinate to allow all rending to begin at
point (100*100). In your code base, however, you are able to specify simple world coordinates (thereby
avoiding the need to manually calculate the offset).

Finally, we have device coordinates. Device coordinates represent the result of applying page
coordinates to the original world coordinates. This coordinate system is used to determine exactly
where the GDI+ type will be rendered. When you are programming with GDI+, you will typically
think in terms of world coordinates, which are the baseline used to determine the size and location
of a GDI+ type. To render in world coordinates requires no special coding actions—simply pass in
the dimensions for the current rendering operation:

void MainForm_Paint(object sender, PaintEventArgs e)
{

// Render a rectangle in world coordinates.
Graphics g = e.Graphics;
g.DrawRectangle(Pens.Black, 10, 10, 100, 100);

}

Under the hood, your world coordinates are automatically mapped in terms of page coordinates,
which are then mapped into device coordinates. In many cases, you will never directly make use of
page or device coordinates unless you wish to apply some sort of graphical transformation. Given
that the previous code did not specify any transformational logic, the world, page, and device coor-
dinates are identical.

If you do wish to apply various transformations before rendering your GDI+ logic, you will
make use of various members of the Graphics type (such as the TranslateTransform() method) to

4193ch20.qxd 8/14/05 3:01 PM Page 659

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+660

Figure 20-2. The default coordinate system of GDI+

specify various “page coordinates” to your existing world coordinate system before the rendering
operation. The result is the set of device coordinates that will be used to render the GDI+ type to the
target device:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

// Specify page coordinate offsets (10 * 10).
Graphics g = e.Graphics;
g.TranslateTransform(10, 10);
g.DrawRectangle(10, 10, 100, 100);

}

In this case, the rectangle is actually rendered with a top-left point of (20, 20), given that the
world coordinates have been offset by the call to TranslateTransform().

The Default Unit of Measure
Under GDI+, the default unit of measure is pixel-based. The origin begins in the upper-left corner
with the x-axis increasing to the right and the y-axis increasing downward (see Figure 20-2).

Thus, if you render a Rectangle using a 5-pixel thick red pen as follows:

void MainForm_Paint(object sender, PaintEventArgs e)
{

// Set up world coordinates using the default unit of measure.
Graphics g = e.Graphics;
g.DrawRectangle(new Pen(Color.Red, 5), 10, 10, 100, 100);

}

you would see a square rendered 10 pixels down and in from the top-left client edge of the Form, as
shown in Figure 20-3.

4193ch20.qxd 8/14/05 3:01 PM Page 660

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 661

Figure 20-4. Rendering using inch units

Specifying an Alternative Unit of Measure
If you do not wish to render images using a pixel-based unit of measure, you are able to change this
default setting by setting the PageUnit property of the Graphics object to alter the units used by the
page coordinate system. The PageUnit property can be assigned any member of the GraphicsUnit
enumeration:

public enum GraphicsUnit
{

// Specifies world coordinates.
World,
// Pixels for video displays and 1/100 inch for printers.
Display,
// Specifies a pixel.
Pixel,
// Specifies a printer's point (1/72 inch).
Point,
// Specifies an inch.
Inch,
// Specifies a document unit (1/300 inch).
Document,
// Specifies a millimeter.
Millimeter

}

To illustrate how to change the underlying GraphicsUnit, update the previous rendering code
as follows:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

// Draw a rectangle in inches...not pixels.
Graphics g = e.Graphics;
g.PageUnit = GraphicsUnit.Inch;
g.DrawRectangle(new Pen(Color.Red, 5), 0, 0, 100, 100);

}

You would find a radically different rectangle, as shown in Figure 20-4.

4193ch20.qxd 8/14/05 3:01 PM Page 661

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+662

Figure 20-5. The result of applying page offsets

The reason that 95 percent (or so) of the Form’s client area is now filled with red is because you
have configured a Pen with a 5-inch nib! The rectangle itself is 100×100 inches in size. In fact, the
small gray box you see located in the lower-right corner is the upper-left interior of the rectangle.

Specifying an Alternative Point of Origin
Recall that when you make use of the default coordinate and measurement system, point (0, 0) is at
the extreme upper left of the surface area. While this is often what you desire, what if you wish to
alter the location where rendering begins? For example, let’s assume that your application always
needs to reserve a 100-pixel boundary around the Form’s client area (for whatever reason). You need
to ensure that all GDI+ operations take place somewhere within this internal region.

One approach you could take is to offset all your rendering code manually. This, of course, would
be bothersome, as you would need to constantly apply some offset value to each and every rendering
operation. It would be far better (and simpler) if you could set a property that says in effect, “Although
I might say render a rectangle with a point of origin at (0, 0), make sure you begin at point (100, 100).”
This would simplify your life a great deal, as you could continue to specify your plotting points with-
out modification.

In GDI+, you can adjust the point of origin by setting the transformation value using the Trans-
lateTransform() method of the Graphics class, which allows you to specify a page coordinate
system that will be applied to your original world coordinate specifications, for example:

void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
// Set page coordinate to (100, 100).
g.TranslateTransform(100, 100);

// World origin is still (0, 0, 100, 100),
// however, device origin is now (100, 100, 200, 200).
g.DrawRectangle(new Pen(Color.Red, 5), 0, 0, 100, 100);

}

Here, you have set the world coordinate values (0, 0, 100, 100). However, the page coordinate
values have specified an offset of (100, 100). Given this, the device coordinates map to (100, 100,
200, 200). Thus, although the call to DrawRectangle() looks as if you are rendering a rectangle on the
upper left of the Form, the rendering shown in Figure 20-5 has taken place.

4193ch20.qxd 8/14/05 3:01 PM Page 662

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 663

Figure 20-6. Altering coordinate and measurement modes

To help you experiment with some of the ways to alter the GDI+ coordinate system, this book’s
downloadable source code (visit the Downloads section of the Apress website at www.apress.com)
provides a sample application named CoorSystem. Using two menu items, you are able to alter the
point of origin as well as the unit of measurement (see Figure 20-6).

Now that you have a better understanding of the underlying transformations used to determine
where to render a given GDI+ type onto a target device, the next order of business is to examine details
of color manipulation.

■Source Code The CoorSystem project is included under the Chapter 20 subdirectory.

Defining a Color Value
Many of the rendering methods defined by the Graphics class require you to specify the color that
should be used during the drawing process. The System.Drawing.Color structure represents an
alpha-red-green-blue (ARGB) color constant. Most of the Color type’s functionality comes by way of
a number of static read-only properties, which return a specific Color type:

// One of many predefined colors...
Color c = Color.PapayaWhip;

If the default color values do not fit the bill, you are also able to create a new Color type and
specify the A, R, G, and B values using the FromArgb() method:

// Specify ARGB manually.
Color myColor = Color.FromArgb(0, 255, 128, 64);

As well, using the FromName() method, you are able to generate a Color type given a string value.
The characters in the string parameter must match one of the members in the KnownColor enumera-
tion (which includes values for various Windows color elements such as KnownColor.WindowFrame and
KnownColor.WindowText):

// Get Color from a known name.
Color myColor = Color.FromName("Red");

Regardless of the method you use, the Color type can be interacted with using a variety of
members:

4193ch20.qxd 8/14/05 3:01 PM Page 663

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+664

• GetBrightness(): Returns the brightness of the Color type based on hue-saturation-brightness
(HSB) measurements

• GetSaturation(): Returns the saturation of the Color type based on HSB measurements

• GetHue(): Returns the hue of the Color type based on HSB measurements

• IsSystemColor: Determines if the Color type is a registered system color

• A, R, G, B: Returns the value assigned to the alpha, red, green, and blue aspects of a Color type

The ColorDialog Class
If you wish to provide a way for the end user of your application to configure a Color type, the
System.Windows.Forms namespace provides a predefined dialog box class named ColorDialog (see
Figure 20-7).

Working with this dialog box is quite simple. Using a valid instance of the ColorDialog type, call
ShowDialog() to display the dialog box modally. Once the user has closed the dialog box, you can
extract the corresponding Color object using the ColorDialog.Color property.

Assume you wish to allow the user to configure the background color of the Form’s client area
using the ColorDialog. To keep things simple, you will display the ColorDialog when the user clicks
anywhere on the client area:

public partial class MainForm : Form
{

private ColorDialog colorDlg;
private Color currColor = Color.DimGray;

public MainForm()
{

InitializeComponent();
colorDlg = new ColorDialog();
Text = "Click on me to change the color";
this.MouseDown += new MouseEventHandler(MainForm_MouseDown);

}

Figure 20-7. The Windows Forms color dialog box

4193ch20.qxd 8/14/05 3:01 PM Page 664

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 665

private void MainForm_MouseDown(object sender, MouseEventArgs e)
{

if (colorDlg.ShowDialog() != DialogResult.Cancel)
{

currColor = colorDlg.Color;
this.BackColor = currColor;
string strARGB = colorDlg.Color.ToString();
MessageBox.Show(strARGB, "Color is:");

}
}

}

■Source Code The ColorDlg application is included under the Chapter 20 subdirectory.

Manipulating Fonts
Next, let’s examine how to programmatically manipulate fonts. The System.Drawing.Font type rep-
resents a given font installed on the user’s machine. Font types can be defined using any number of
overloaded constructors. Here are a few examples:

// Create a Font of a given type name and size.
Font f = new Font("Times New Roman", 12);

// Create a Font with a given name, size, and style set.
Font f2 = new Font("WingDings", 50, FontStyle.Bold | FontStyle.Underline);

Here, f2 has been created by OR-ing together a set of values from the FontStyle enumeration:

public enum FontStyle
{

Regular, Bold,
Italic, Underline, Strikeout

}

Once you have configured the look and feel of your Font object, the next task is to pass it as
a parameter to the Graphics.DrawString() method. Although DrawString() has also been overloaded
a number of times, each variation typically requires the same basic information: the text to draw,
the font to draw it in, a brush used for rendering, and a location in which to place it.

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;

// Specify (String, Font, Brush, Point) as args.
g.DrawString("My string", new Font("WingDings", 25),

Brushes.Black, new Point(0,0));

// Specify (String, Font, Brush, int, int)
g .DrawString("Another string", new Font("Times New Roman", 16),

Brushes.Red, 40, 40);
}

4193ch20.qxd 8/14/05 3:01 PM Page 665

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+666

Working with Font Families
The System.Drawing namespace also defines the FontFamily type, which abstracts a group of typefaces
having a similar basic design but with certain style variations. A family of fonts, such as Verdana, can
include several fonts that differ in style and size. For example, Verdana 12-point bold and Verdana
24-point italic are different fonts within the Verdana font family.

The constructor of the FontFamily type takes a string representing the name of the font family
you are attempting to capture. Once you create the “generic family,” you are then able to create
a more specific Font object:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;

// Make a family of fonts.
FontFamily myFamily = new FontFamily("Verdana");

// Pass family into ctor of Font.
Font myFont = new Font(myFamily, 12);
g.DrawString("Hello!", myFont, Brushes.Blue, 10, 10);

}

Of greater interest is the ability to gather statistics regarding a given family of fonts. For exam-
ple, say you are building a text-processing application and wish to determine the average width of
a character in a particular FontFamily. What if you wish to know the ascending and descending val-
ues for a given character? To answer such questions, the FontFamily type defines the key members
shown in Table 20-5.

Table 20-5. Members of the FontFamily Type

Member Meaning in Life

GetCellAscent() Returns the ascender metric for the members in this family

GetCellDescent() Returns the descender metric for members in this family

GetLineSpacing() Returns the distance between two consecutive lines of text for this
FontFamily with the specified FontStyle

GetName() Returns the name of this FontFamily in the specified language

IsStyleAvailable() Indicates whether the specified FontStyle is available

To illustrate, here is a Paint event handler that prints a number of characteristics of the Ver-
dana font family:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
FontFamily myFamily = new FontFamily("Verdana");
Font myFont = new Font(myFamily, 12);
int y = 0;
int fontHeight = myFont.Height;

// Show units of measurement for FontFamily members.
this.Text = "Measurements are in GraphicsUnit." + myFont.Unit;
g.DrawString("The Verdana family.", myFont, Brushes.Blue, 10, y);
y += 20;

4193ch20.qxd 8/14/05 3:01 PM Page 666

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 667

Figure 20-8. Gathering statistics of the Verdana font family

// Print our family ties...
g.DrawString("Ascent for bold Verdana: " +

myFamily.GetCellAscent(FontStyle.Bold),
myFont, Brushes.Black, 10, y + fontHeight);

y += 20;
g.DrawString("Descent for bold Verdana: " +

myFamily.GetCellDescent(FontStyle.Bold),
myFont, Brushes.Black, 10, y + fontHeight);

y += 20;
g.DrawString("Line spacing for bold Verdana: " +

myFamily.GetLineSpacing(FontStyle.Bold),
myFont, Brushes.Black, 10, y + fontHeight);

y += 20;
g.DrawString("Height for bold Verdana: " +

myFamily.GetEmHeight(FontStyle.Bold),
myFont, Brushes.Black, 10, y + fontHeight);

y += 20;
}

Figure 20-8 shows the result.

Note that these members of the FontFamily type return values using GraphicsUnit.Point (not
Pixel) as the unit of measure, which corresponds to 1/72 inch. You are free to transform these val-
ues to other units of measure as you see fit.

■Source Code The FontFamilyApp application is included under the Chapter 20 subdirectory.

Working with Font Faces and Font Sizes
Next, you’ll build a more complex application that allows the user to manipulate a Font object
maintained by a Form. The application will allow the user to select the current font face from a pre-
defined set using the Configure ➤ Font Face menu selection. You’ll also allow the user to indirectly
control the size of the Font object using a Windows Forms Timer object. If the user activates the
Timer using the Configure ➤ Swell? menu item, the size of the Font object increases at a regular
interval (to a maximum upper limit). In this way, the text appears to swell and thus provides an ani-
mation of “breathing” text. Finally, you’ll use a final menu item under the Configure menu named
List All Fonts, which will be used to list all fonts installed on the end user’s machine. Figure 20-9
shows the menu UI logic.

4193ch20.qxd 8/14/05 3:01 PM Page 667

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+668

To begin implementing the application, update the Form with a Timer member variable (named
swellTimer), a string (strFontFace) to represent the current font face, and an integer (swellValue) to
represent the amount to adjust the font size. Within the Form’s constructor, configure the Timer to
emit a Tick event every 100 milliseconds:

public partial class MainForm : Form
{

private Timer swellTimer = new Timer();
private int swellValue;
private string strFontFace = "WingDings";

public MainForm()
{

InitializeComponent();
BackColor = Color.Honeydew;
CenterToScreen();

// Configure the Timer.
swellTimer.Enabled = true;
swellTimer.Interval = 100;
swellTimer.Tick += new EventHandler(swellTimer_Tick);

}
}

In the Tick event handler, increase the value of the swellValue data member by 5. Recall that
the swellValue integer will be added to the current font size to provide a simple animation (assume
swellValue has a maximum upper limit of 50). To help reduce the flicker that can occur when
redrawing the entire client area, notice how the call to Invalidate() is only refreshing the upper
rectangular area of the Form:

private void swellTimer_Tick(object sender, EventArgs e)
{

// Increase current swellValue by 5.
swellValue += 5;
// If this value is greater than or equal to 50, reset to zero.
if(swellValue >= 50)

swellValue = 0;

Figure 20-9. Menu layout of the FontApp project

4193ch20.qxd 8/14/05 3:01 PM Page 668

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 669

// Just invalidate the minimal dirty rectangle to help reduce flicker.
Invalidate(new Rectangle(0, 0, ClientRectangle.Width, 100));

}

Now that the upper 100 pixels of your client area are refreshed with each tick of the Timer, you
had better have something to render! In the Form’s Paint handler, create a Font object based on the
user-defined font face (as selected from the appropriate menu item) and current swellValue (as dic-
tated by the Timer). Once you have your Font object fully configured, render a message into the
center of the dirty rectangle:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
// Our font size can be between 12 and 62,
// based on the current swellValue.
Font theFont = new Font(strFontFace, 12 + swellValue);
string message = "Hello GDI+";

// Display message in the center of the rect.
float windowCenter = this.DisplayRectangle.Width/2;
SizeF stringSize = g.MeasureString(message, theFont);
float startPos = windowCenter - (stringSize.Width/2);
g.DrawString(message, theFont, new SolidBrush(Color.Blue), startPos, 10);

}

As you would guess, if a user selects a specific font face, the Clicked handler for each menu selec-
tion is in charge of updating the fontFace string variable and invalidating the client area, for example:

private void arialToolStripMenuItem_Click(object sender, EventArgs e)
{

strFontFace = "Arial";
Invalidate();

}

The Click menu handler for the Swell menu item will be used to allow the user to stop or start
the swelling of the text (i.e., enable or disable the animation). To do so, toggle the Enabled property
of the Timer as follows:

private void swellToolStripMenuItem_Click(object sender, EventArgs e)
{

swellTimer.Enabled = !swellTimer.Enabled;
}

Enumerating Installed Fonts
Next, let’s expand this program to display the set of installed fonts on the target machine using
types within System.Drawing.Text. This namespace contains a handful of types that can be used to
discover and manipulate the set of fonts installed on the target machine. For our purposes, we are
only concerned with the InstalledFontCollection class.

When the user selects the Configure ➤ List Installed Fonts menu item, the corresponding
Clicked handler creates an instance of the InstalledFontCollection class. This class maintains an
array named FontFamily, which represents the set of all fonts on the target machine and may be
obtained using the InstalledFontCollection.Families property. Using the FontFamily.Name property,
you are able to extract the font face (e.g., Times New Roman, Arial, etc.) for each font.

Add a private string data member to your Form named installedFonts to hold each font face.
The logic in the List Installed Fonts menu handler creates an instance of the InstalledFontCollection
type, reads the name of each string, and adds the new font face to the private installedFonts data
member:

4193ch20.qxd 8/14/05 3:01 PM Page 669

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+670

public partial class MainForm : Form
{

// Holds the list of fonts.
private string installedFonts;

// Menu handler to get the list of installed fonts.
private void mnuConfigShowFonts_Clicked(object sender, EventArgs e)
{

InstalledFontCollection fonts = new InstalledFontCollection();
for(int i = 0; i < fonts.Families.Length; i++)

installedFonts += fonts.Families[i].Name + " ";

// This time, we need to invalidate the entire client area,
// as we will paint the installedFonts string on the lower half
// of the client rectangle.
Invalidate();

}
...
}

The final task is to render the installedFonts string to the client area, directly below the screen
real estate that is used for your swelling text:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
Font theFont = new Font(strFontFace, 12 + swellValue);
string message = "Hello GDI+";

// Display message in the center of the window!
float windowCenter = this.DisplayRectangle.Width/2;
SizeF stringSize = e.Graphics.MeasureString(message, theFont);
float startPos = windowCenter - (stringSize.Width/2);
g.DrawString(message, theFont, Brushes.Blue, startPos, 10);

// Show installed fonts in the rectangle below the swell area.
Rectangle myRect = new Rectangle(0, 100,

ClientRectangle.Width, ClientRectangle.Height);

// Paint this area of the Form black.
g.FillRectangle(new SolidBrush(Color.Black), myRect);
g.DrawString(installedFonts, new Font("Arial", 12),

Brushes.White, myRect);
}

Recall that the size of the “dirty rectangle” has been mapped to the upper 100 pixels of the client
rectangle. Because your Tick handler invalidates only a portion of the Form, the remaining area is
not redrawn when the Tick event has been sent (to help optimize the rendering of the client area).

As a final touch to ensure proper redrawing, let’s handle the Form’s Resize event to ensure that
if the user resizes the Form, the lower part of client rectangle is redrawn correctly:

private void MainForm_Resize(object sender, System.EventArgs e)
{

Rectangle myRect = new Rectangle(0, 100,
ClientRectangle.Width, ClientRectangle.Height);

Invalidate(myRect);
}

Figure 20-10 shows the result (with the text rendered in Wingdings!).

4193ch20.qxd 8/14/05 3:01 PM Page 670

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 671

■Source Code The SwellingFontApp project is included under the Chapter 20 subdirectory.

The FontDialog Class
As you might assume, there is an existing font dialog box (FontDialog), as shown in Figure 20-11.

Like the ColorDialog type examined earlier in this chapter, when you wish to work with the
FontDialog, simply call the ShowDialog() method. Using the Font property, you may extract the

Figure 20-10. The FontApp application in action

Figure 20-11. The Windows Forms Font dialog box

4193ch20.qxd 8/14/05 3:01 PM Page 671

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+672

characteristics of the current selection for use in the application. To illustrate, here is a Form that
mimics the logic of the previous ColorDlg project. When the user clicks anywhere on the Form, the
Font dialog box displays and renders a message with the current selection:

public partial class MainForm : Form
{

private FontDialog fontDlg = new FontDialog();
private Font currFont = new Font("Times New Roman", 12);
public MainForm()
{

InitializeComponent();
CenterToScreen();

}
private void MainForm_MouseDown(object sender, MouseEventArgs e)
{

if (fontDlg.ShowDialog() != DialogResult.Cancel)
{

currFont = fontDlg.Font;
this.Text = string.Format("Selected Font: {0}", currFont);
Invalidate();

}
}
private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
g.DrawString("Testing...", currFont, Brushes.Black, 0, 0);

}
}

■Source Code The FontDlgForm application is included under the Chapter 20 subdirectory.

Survey of the System.Drawing.Drawing2D Namespace
Now that you have manipulated Font types, the next task is to examine how to manipulate Pen and
Brush objects to render geometric patterns. While you could do so making use of nothing more than
Brushes and Pens helper types to obtain preconfigured types in a solid color, you should be aware
that many of the more “exotic” pens and brushes are found within the System.Drawing.Drawing2D
namespace.

This additional GDI+ namespace provides a number of classes that allow you to modify the
end cap (triangle, diamond, etc.) used for a given pen, build textured brushes, and work with vector
graphic manipulations. Some core types to be aware of (grouped by related functionality) are shown
in Table 20-6.

Table 20-6. Classes of System.Drawing.Drawing2D

Classes Meaning in Life

AdjustableArrowCap Pen caps are used to paint the beginning and end points of a given line.
CustomLineCap These types represent an adjustable arrow-shaped and user-defined cap.

Blend These classes are used to define a blend pattern (and colors) used in
ColorBlend conjunction with a LinearGradientBrush.

4193ch20.qxd 8/14/05 3:01 PM Page 672

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 673

Classes Meaning in Life

GraphicsPath A GraphicsPath object represents a series of lines and curves. This class
GraphicsPathIterator allows you to insert just about any type of geometrical pattern (arcs,
PathData rectangles, lines, strings, polygons, etc.) into the path. PathData holds

the graphical data that makes up a path.

HatchBrush These are exotic brush types.
LinearGradientBrush
PathGradientBrush

Also be aware that the System.Drawing.Drawing2D namespace defines another set of enumerations
(DashStyle, FillMode, HatchStyle, LineCap, and so forth) that are used in conjunction with these
core types.

Working with Pens
GDI+ Pen types are used to draw lines between two end points. However, a Pen in and of itself is of
little value. When you need to render a geometric shape onto a Control-derived type, you send
a valid Pen type to any number of render methods defined by the Graphics class. In general, the
DrawXXX() methods are used to render some set of lines to a graphics surface and are typically used
with Pen objects.

The Pen type defines a small set of constructors that allow you to determine the initial color
and width of the pen nib. Most of a Pen’s functionality comes by way of its supported properties.
Table 20-7 gives a partial list.

Table 20-7. Pen Properties

Properties Meaning in Life

Brush Determines the Brush used by this Pen.

Color Determines the Color type used by this Pen.

CustomStartCap Gets or sets a custom cap style to use at the beginning or end of lines
CustomEndCap drawn with this Pen. Cap style is simply the term used to describe how

the initial and final stroke of the Pen should look and feel. These properties
allow you to build custom caps for your Pen types.

DashCap Gets or sets the cap style used at the beginning or end of dashed lines
drawn with this Pen.

DashPattern Gets or sets an array of custom dashes and spaces. The dashes are made
up of line segments.

DashStyle Gets or sets the style used for dashed lines drawn with this Pen.

StartCap Gets or sets the predefined cap style used at the beginning or end of
EndCap lines drawn with this Pen. Set the cap of your Pen using the LineCap

enumeration defined in the System.Drawing.Drawing2D namespace.

Width Gets or sets the width of this Pen.

DashOffset Gets or sets the distance from the start of a line to the beginning of
a dash pattern.

Remember that in addition to the Pen type, GDI+ provides a Pens collection. Using a number
of static properties, you are able to retrieve a Pen (or a given color) on the fly, rather than creating
a custom Pen by hand. Be aware, however, that the Pen types returned will always have a width of 1.

4193ch20.qxd 8/14/05 3:01 PM Page 673

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+674

If you require a more exotic pen, you will need to build a Pen type by hand. This being said, let’s ren-
der some geometric images using simple Pen types. Assume you have a main Form object that is
capable of responding to paint requests. The implementation is as follows:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
// Make a big blue pen.
Pen bluePen = new Pen(Color.Blue, 20);

// Get a stock pen from the Pens type.
Pen pen2 = Pens.Firebrick;

// Render some shapes with the pens.
g.DrawEllipse(bluePen, 10, 10, 100, 100);
g.DrawLine(pen2, 10, 130, 110, 130);
g.DrawPie(Pens.Black, 150, 10, 120, 150, 90, 80);

// Draw a purple dashed polygon as well...
Pen pen3 = new Pen(Color.Purple, 5);
pen3.DashStyle = DashStyle.DashDotDot;
g.DrawPolygon(pen3, new Point[]{new Point(30, 140),

new Point(265, 200), new Point(100, 225),
new Point(190, 190), new Point(50, 330),
new Point(20, 180)});

// And a rectangle containing some text...
Rectangle r = new Rectangle(150, 10, 130, 60);
g.DrawRectangle(Pens.Blue, r);
g.DrawString("Hello out there...How are ya?",

new Font("Arial", 12), Brushes.Black, r);
}

Notice that the Pen used to render your polygon makes use of the DashStyle enumeration
(defined in System.Drawing.Drawing2D):

public enum DashStyle
{

Solid, Dash, Dot,
DashDot, DashDotDot, Custom

}

In addition to the preconfigured DashStyles, you are able to define custom patterns using the
DashPattern property of the Pen type:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
...

// Draw custom dash pattern all around the border of the form.
Pen customDashPen = new Pen(Color.BlueViolet, 10);
float[] myDashes = { 5.0f, 2.0f, 1.0f, 3.0f };
customDashPen.DashPattern = myDashes;
g.DrawRectangle(customDashPen, ClientRectangle);

}

Figure 20-12 shows the final output of this Paint event handler.

4193ch20.qxd 8/14/05 3:01 PM Page 674

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 675

■Source Code The CustomPenApp project is included under the Chapter 20 subdirectory.

Working with Pen Caps
If you examine the output of the previous pen example, you should notice that the beginning and
end of each line was rendered using a standard pen protocol (an end cap composed of 90 degree
angles). Using the LineCap enumeration, however, you are able to build Pens that exhibit a bit more
flair:

public enum LineCap
{

Flat, Square, Round,
Triangle, NoAnchor,
SquareAnchor, RoundAnchor,
DiamondAnchor, ArrowAnchor,
AnchorMask, Custom

}

To illustrate, the following Pens application draws a series of lines using each of the LineCap
styles. The end result can be seen in Figure 20-13.

Figure 20-12. Working with Pen types

4193ch20.qxd 8/14/05 3:01 PM Page 675

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+676

The code simply loops through each member of the LineCap enumeration and prints out the
name of the item (e.g., ArrowAnchor). It then configures and draws a line with the current cap:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
Pen thePen = new Pen(Color.Black, 10);
int yOffSet = 10;
// Get all members of the LineCap enum.
Array obj = Enum.GetValues(typeof(LineCap));

// Draw a line with a LineCap member.
for(int x = 0; x < obj.Length; x++)
{

// Get next cap and configure pen.
LineCap temp = (LineCap)obj.GetValue(x);
thePen.StartCap = temp;
thePen.EndCap = temp;

// Print name of LineCap enum.
g.DrawString(temp.ToString(), new Font("Times New Roman", 10),

new SolidBrush(Color.Black), 0, yOffSet);

// Draw a line with the correct cap.
g.DrawLine(thePen, 100, yOffSet, Width - 50, yOffSet);
yOffSet += 40;

}
}

Figure 20-13. Working with pen caps

4193ch20.qxd 8/14/05 3:01 PM Page 676

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 677

■Source Code The PenCapApp project is included under the Chapter 20 subdirectory.

Working with Brushes
System.Drawing.Brush-derived types are used to fill a region with a given color, pattern, or image.
The Brush class itself is an abstract type and cannot be directly created. However, Brush serves as
a base class to the other related brush types (e.g., SolidBrush, HatchBrush, LinearGradientBrush, and
so forth). In addition to specific Brush-derived types, the System.Drawing namespace also defines
two helper classes that return a configured brush using a number of static properties: Brushes and
SystemBrushes. In any case, once you obtain a brush, you are able to call any number of the FillXXX()
methods of the Graphics type.

Interestingly enough, you are also able to build a custom Pen type based on a given brush. In
this way, you are able to build some brush of interest (e.g., a brush that paints a bitmap image) and
render geometric patterns with configured Pen. To illustrate, here is a small sample program that
makes use of various Brushes:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;

// Make a blue SolidBrush.
SolidBrush blueBrush = new SolidBrush(Color.Blue);
// Get a stock brush from the Brushes type.
SolidBrush pen2 = (SolidBrush)Brushes.Firebrick;
// Render some shapes with the brushes.
g.FillEllipse(blueBrush, 10, 10, 100, 100);
g.FillPie(Brushes.Black, 150, 10, 120, 150, 90, 80);
// Draw a purple polygon as well...
SolidBrush brush3= new SolidBrush(Color.Purple);
g.FillPolygon(brush3, new Point[]{ new Point(30, 140),

new Point(265, 200), new Point(100, 225),
new Point(190, 190), new Point(50, 330),
new Point(20, 180)});

// And a rectangle with some text...
Rectangle r = new Rectangle(150, 10, 130, 60);
g.FillRectangle(Brushes.Blue, r);
g.DrawString("Hello out there...How are ya?",

new Font("Arial", 12), Brushes.White, r);
}

If you can’t tell, this application is little more than the CustomPenApp program, this time mak-
ing use of the FillXXX() methods and SolidBrush types, rather than pens and the related DrawXXX()
methods. Figure 20-14 shows the output.

4193ch20.qxd 8/14/05 3:01 PM Page 677

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+678

■Source Code The SolidBrushApp project is included under the Chapter 20 subdirectory.

Working with HatchBrushes
The System.Drawing.Drawing2D namespace defines a Brush-derived type named HatchBrush. This
type allows you to fill a region using a (very large) number of predefined patterns, represented by
the HatchStyle enumeration. Here is a partial list of names:

public enum HatchStyle
{

Horizontal, Vertical, ForwardDiagonal,
BackwardDiagonal, Cross, DiagonalCross,
LightUpwardDiagonal, DarkDownwardDiagonal,
DarkUpwardDiagonal, LightVertical,
NarrowHorizontal, DashedDownwardDiagonal,
SmallConfetti, LargeConfetti, ZigZag,
Wave, DiagonalBrick, Divot, DottedGrid, Sphere,
OutlinedDiamond, SolidDiamond,

...
}

When constructing a HatchBrush, you need to specify the foreground and background colors to
use during the fill operation. To illustrate, let’s rework the logic seen previously in the PenCapApp
example:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
int yOffSet = 10;

Figure 20-14. Working with Brush types

4193ch20.qxd 8/14/05 3:01 PM Page 678

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 679

// Get all members of the HatchStyle enum.
Array obj = Enum.GetValues(typeof(HatchStyle));
// Draw an oval with first 5 HatchStyle values.
for (int x = 0; x < 5; x++)
{

// Configure Brush.
HatchStyle temp = (HatchStyle)obj.GetValue(x);
HatchBrush theBrush = new HatchBrush(temp,

Color.White, Color.Black);
// Print name of HatchStyle enum.
g.DrawString(temp.ToString(), new Font("Times New Roman", 10),

Brushes.Black, 0, yOffSet);
// Fill a rectangle with the correct brush.
g.FillEllipse(theBrush, 150, yOffSet, 200, 25);
yOffSet += 40;

}
}

The output renders a filled oval for the first five hatch values (see Figure 20-15).

■Source Code The BrushStyles application is included under the Chapter 20 subdirectory.

Working with TextureBrushes
The TextureBrush type allows you to attach a bitmap image to a brush, which can then be used in
conjunction with a fill operation. In just a few pages, you will learn about the details of the GDI+
Image class. For the time being, understand that a TextureBrush is assigned an Image reference for
use during its lifetime. The image itself is typically found stored in some local file (*.bmp, *.gif,
*.jpg) or embedded into a .NET assembly.

Let’s build a sample application that makes use of the TextureBrush type. One brush is used to
paint the entire client area with the image found in a file named clouds.bmp, while the other brush is
used to paint text with the image found within soap bubbles.bmp. The output is shown in Figure 20-16.

Figure 20-15. Select hatch styles

4193ch20.qxd 8/14/05 3:01 PM Page 679

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+680

To begin, your Form-derived class maintains two Brush member variables, which are assigned
to a new TextureBrush in the constructor. Notice that the constructor of the TextureBrush type
requires a type derived from Image:

public partial class MainForm : Form
{

// Data for the image brush.
private Brush texturedTextBrush;
private Brush texturedBGroundBrush;

public MainForm()
{

...
// Load image for background brush.
Image bGroundBrushImage = new Bitmap("Clouds.bmp");
texturedBGroundBrush = new TextureBrush(bGroundBrushImage);

// Now load image for text brush.
Image textBrushImage = new Bitmap("Soap Bubbles.bmp");
texturedTextBrush = new TextureBrush(textBrushImage);

}
}

■Note The *.bmp files used in this example must be in the same folder as the application (or specified using
hard-coded paths). We’ll address this limitation later in this chapter.

Now that you have two TextureBrush types to render with, the Paint event handler is quite
straightforward:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
Rectangle r = ClientRectangle;
// Paint the clouds on the client area.
g.FillRectangle(texturedBGroundBrush, r);
// Some big bold text with a textured brush.
g.DrawString("Bitmaps as brushes! Way cool...",

new Font("Arial", 30,
FontStyle.Bold | FontStyle.Italic), texturedTextBrush, r);

}

Figure 20-16. Bitmaps as brushes

4193ch20.qxd 8/14/05 3:01 PM Page 680

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 681

■Source Code The TexturedBrushes application is included under the Chapter 20 subdirectory.

Working with LinearGradientBrushes
Last but not least is the LinearGradientBrush type, which you can use whenever you want to blend
two colors together in a gradient pattern. Working with this type is just as simple as working with
the other brush types. The only point of interest is that when you build a LinearGradientBrush, you
need to specify a pair of Color types and the direction of the blend via the LinearGradientMode enu-
meration:

public enum LinearGradientMode
{

Horizontal, Vertical,
ForwardDiagonal, BackwardDiagonal

}

To test each value, let’s render a series of rectangles using a LinearGradientBrush:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
Rectangle r = new Rectangle(10, 10, 100, 100);
// A gradient brush.
LinearGradientBrush theBrush = null;
int yOffSet = 10;
// Get all members of the LinearGradientMode enum.
Array obj = Enum.GetValues(typeof(LinearGradientMode));
// Draw an oval with a LinearGradientMode member.
for(int x = 0; x < obj.Length; x++)
{

// Configure Brush.
LinearGradientMode temp = (LinearGradientMode)obj.GetValue(x);
theBrush = new LinearGradientBrush(r, Color.GreenYellow,

Color.Blue, temp);
// Print name of LinearGradientMode enum.
g.DrawString(temp.ToString(), new Font("Times New Roman", 10),

new SolidBrush(Color.Black), 0, yOffSet);
// Fill a rectangle with the correct brush.
g. FillRectangle(theBrush, 150, yOffSet, 200, 50);
yOffSet += 80;

}
}

Figure 20-17 shows the end result.

4193ch20.qxd 8/14/05 3:01 PM Page 681

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+682

■Source Code The GradientBrushes application is included under the Chapter 20 subdirectory.

Rendering Images
At this point, you have examined how to manipulate three of the four major GDI+ types: fonts, pens,
and brushes. The final type you’ll examine in this chapter is the Image class and related subtypes.
The abstract System.Drawing.Image type defines a number of methods and properties that hold var-
ious bits of information regarding the underlying image data it represents. For example, the Image
class supplies the Width, Height, and Size properties to retrieve the dimensions of the image. Other
properties allow you to gain access to the underlying palette. The Image class defines the core mem-
bers shown in Table 20-8.

Table 20-8. Members of the Image Type

Members Meaning in Life

FromFile() This static method creates an Image from the specified file.

FromStream() This static method creates an Image from the specified data stream.

Height These properties return information regarding the dimensions of this Image.
Width
Size
HorizontalResolution
VerticalResolution

Palette This property returns a ColorPalette data type that represents the
underlying palette used for this Image.

GetBounds() This method returns a Rectangle that represents the current size of this
Image.

Save() This method saves the data held in an Image-derived type to file.

Given that the abstract Image class cannot be directly created, you typically make a direct
instance of the Bitmap type. Assume you have some Form-derived class that renders three bitmaps

Figure 20-17. Gradient brushes at work

4193ch20.qxd 8/14/05 3:01 PM Page 682

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 683

into the client area. Once you fill the Bitmap types with the correct image file, simply render each
one within your Paint event handler using the Graphics.DrawImage() method:

public partial class MainForm : Form
{

private Bitmap[] myImages = new Bitmap[3];
public MainForm()
{

// Load some local images.
myImages[0] = new Bitmap("imageA.bmp");
myImages[1] = new Bitmap("imageB.bmp");
myImages[2] = new Bitmap("imageC.bmp");
CenterToScreen();
InitializeComponent();

}

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
// Render all three images.
int yOffset = 10;
foreach (Bitmap b in myImages)
{

g.DrawImage(b, 10, yOffset, 90, 90);
yOffset += 100;

}
}

}

■Note The *.bmp files used in this example must be in the same folder as the application (or specified using
hard-coded paths). We’ll resolve this limitation later in this chapter.

Figure 20-18 shows the output.

Figure 20-18. Rendering images

4193ch20.qxd 8/14/05 3:01 PM Page 683

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+684

Finally, be aware that regardless of its name, the Bitmap class can contain image data stored in
any number of file formats (*.tif, *.gif, *.bmp, etc.).

■Source Code The BasicImages application is included under the Chapter 20 subdirectory.

Dragging and Hit Testing the PictureBox Control
While you are free to render Bitmap images directly onto any Control-derived class, you will find
that you gain far greater control and functionality if you instead choose to make use of a PictureBox
type to contain your image. For example, because the PictureBox type “is-a” Control, you inherit
a great deal of functionality, such as the ability to handle various events, assign a tool tip or context
menu, and so forth. While you could achieve similar behaviors using a raw Bitmap, you would be
required to author a fair amount of boilerplate code.

To showcase the usefulness of the PictureBox type, let’s create a simple “game” that illustrates
the ability to capture mouse activity over a graphical image. If the user clicks the mouse somewhere
within the bounds of the image, he is in “dragging” mode and can move the image around the Form.
To make things more interesting, let’s monitor where the user releases the image. If it is within the
bounds of a GDI+-rendered rectangle, you’ll take some additional course of action (seen shortly). As
you may know, the process of testing for mouse click events within a specific region is termed hit
testing.

The PictureBox type gains most of its functionality from the Control base class. You’ve already
explored a number of Control’s members in the previous chapter, so let’s quickly turn your atten-
tion to the process of assigning an image to the PictureBox member variable using the Image
property (again, the happyDude.bmp file must be in the application directory):

public partial class MainForm : Form
{

// This holds an image of a smiley face.
private PictureBox happyBox = new PictureBox();

public MainForm()
{

// Configure the PictureBox.
happyBox.SizeMode = PictureBoxSizeMode.StretchImage;
happyBox.Location = new System.Drawing.Point(64, 32);
happyBox.Size = new System.Drawing.Size(50, 50);
happyBox.Cursor = Cursors.Hand;
happyBox.Image = new Bitmap("happyDude.bmp");

// Now add to the Form's Controls collection.
Controls.Add(happyBox);

}
}

Beyond the Image property, the only other property of interest is SizeMode, which makes use of
the PictureBoxSizeMode enumeration. This type is used to control how the associated image should
be rendered within the bounding rectangle of the PictureBox. Here, you assigned PictureBoxSize-
Mode.StretchImage, indicating that you wish to skew the image over the entire area of the
PictureBox type (which is set to 50×50 pixels).

The next task is to handle the MouseMove, MouseUp, and MouseDown events for the PictureBox
member variable using the expected C# event syntax:

4193ch20.qxd 8/14/05 3:01 PM Page 684

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 685

public MainForm()
{
...

// Add handlers for the following events.
happyBox.MouseDown += new MouseEventHandler(happyBox_MouseDown);
happyBox.MouseUp += new MouseEventHandler(happyBox_MouseUp);
happyBox.MouseMove += new MouseEventHandler(happyBox_MouseMove);
Controls.Add(happyBox);
InitializeComponent();

}

The MouseDown event handler is in charge of storing the incoming (x, y) location of the cursor
within two System.Int32 member variables (oldX and oldY) for later use, as well as setting
a System.Boolean member variable (isDragging) to true, to indicate that a drag operation is in process.
Add these member variables to your Form and implement the MouseDown event handler as so:

private void happyBox_MouseDown(object sender, MouseEventArgs e)
{

isDragging = true;
oldX = e.X;
oldY = e.Y;

}

The MouseMove event handler simply relocates the position of the PictureBox (using the Top and
Left properties) by offsetting the current cursor location with the integer data captured during the
MouseDown event:

private void happyBox_MouseMove(object sender, MouseEventArgs e)
{

if (isDragging)
{

// Need to figure new Y value based on where the mouse
// down click happened.
happyBox.Top = happyBox.Top + (e.Y - oldY);
// Same process for X (use oldX as a baseline).
happyBox.Left = happyBox.Left + (e.X - oldX);

}
}

The MouseUp event handler sets the isDragging Boolean to false, to signal the end of the drag
operation. As well, if the MouseUp event occurs when the PictureBox is contained within our GDI+-
rendered Rectangle image, you can assume the user has won the (albeit rather simplistic) game.
First, add a Rectangle member variable (named dropRect) to your Form class set to a given size:

public partial class MainForm : Form
{

private PictureBox happyBox = new PictureBox();
private int oldX, oldY;
private bool isDragging;
private Rectangle dropRect = new Rectangle(100, 100, 140, 170);

...
}

The MouseUp event handler can now be implemented as so:

private void happyBox_MouseUp(object sender, MouseEventArgs e)
{

isDragging = false;

// Is the mouse within the area of the drop rect?

4193ch20.qxd 8/14/05 3:01 PM Page 685

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+686

if(dropRect.Contains(happyBox.Bounds))
MessageBox.Show("You win!", "What an amazing test of skill...");

}

Finally, you need to render the rectangular area (maintained by the dropRect member variable)
on the Form within a Paint event handler:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

// Draw the drop box.
Graphics g = e.Graphics;
g.FillRectangle(Brushes.AntiqueWhite, dropRect);
// Display instructions.
g.DrawString("Drag the happy guy in here...",

new Font("Times New Roman", 25), Brushes.Red, dropRect);
}

When you run the application, you are presented with what appears in Figure 20-19.

If you have what it takes to win the game, you are rewarded with the kudos shown in
Figure 20-20.

■Source Code The DraggingImages application is included under the Chapter 20 subdirectory.

Figure 20-19. The amazing happy-dude game

Figure 20-20. You have nerves of steel!

4193ch20.qxd 8/14/05 3:01 PM Page 686

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 687

Hit Testing Rendered Images
Validating a hit test against a Control-derived type (such as the PictureBox) is very simple, as it can
respond directly to mouse events. However, what if you wish to perform a hit test on a geometric
shape rendered directly on the surface of a Form?

To illustrate the process, let’s revisit the previous BasicImages application and add some new
functionality. The goal is to determine when the user clicks one of the three images. Once you dis-
cover which image was clicked, you’ll adjust the Text property of the Form and highlight the image
with a 5-pixel outline.

The first step is to define a new set of member variables in the Form type that represents the
Rectangles you will be testing against in the MouseDown event. When this event occurs, you need to
programmatically figure out if the incoming (x, y) coordinate is somewhere within the bounds of
the Rectangles used to represent the dimension of each Image. If the user does click a given image,
you set a private Boolean member variable (isImageClicked) to true and indicate which image was
selected via another member variable of a custom enumeration named ClickedImage, defined as so:

enum ClickedImage
{

ImageA, ImageB, ImageC
}

With this, here is the initial update to the Form-derived class:

public partial class MainForm : Form
{

private Bitmap[] myImages = new Bitmap[3];
private Rectangle[] imageRects = new Rectangle[3];
private bool isImageClicked = false;
ClickedImage imageClicked = ClickedImage.ImageA;

public MainForm()
{

...
// Set up the rectangles.
imageRects[0] = new Rectangle(10, 10, 90, 90);
imageRects[1] = new Rectangle(10, 110, 90, 90);
imageRects[2] = new Rectangle(10, 210, 90, 90);

}

private void MainForm_MouseDown(object sender, MouseEventArgs e)
{

// Get (x, y) of mouse click.
Point mousePt = new Point(e.X, e.Y);

// See if the mouse is anywhere in the 3 Rectangles.
if (imageRects[0].Contains(mousePt))
{

isImageClicked = true;
imageClicked = ClickedImage.ImageA;
this.Text = "You clicked image A";

}
else if (imageRects[1].Contains(mousePt))
{

isImageClicked = true;
imageClicked = ClickedImage.ImageB;
this.Text = "You clicked image B";

}
else if (imageRects[2].Contains(mousePt))

4193ch20.qxd 8/14/05 3:01 PM Page 687

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+688

{
isImageClicked = true;
imageClicked = ClickedImage.ImageC;
this.Text = "You clicked image C";

}
else // Not in any shape, set defaults.
{

isImageClicked = false;
this.Text = "Hit Testing Images";

}
// Redraw the client area.
Invalidate();

}
}

Notice that the final conditional check sets the isImageClicked member variable to false, indi-
cating that the user did not click one of the three images. This is important, as you want to erase the
outline of the previously selected image. Once all items have been checked, invalidate the client
area. Here is the updated Paint handler:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;

// Render all three images.
...

// Draw outline (if clicked)
if (isImageClicked == true)
{

Pen outline = new Pen(Color.Tomato, 5);
switch (imageClicked)
{

case ClickedImage.ImageA:
g.DrawRectangle(outline, imageRects[0]);
break;

case ClickedImage.ImageB:
g.DrawRectangle(outline, imageRects[1]);
break;

case ClickedImage.ImageC:
g.DrawRectangle(outline, imageRects[2]);
break;

default:
break;

}
}

}

At this point, you should be able to run your application and validate that an outline appears
around each image that has been clicked (and that no outline is present when you click outside the
bounds of said images).

Hit Testing Nonrectangular Images
Now, what if you wish to perform a hit test in a nonrectangular region, rather than a simple square?
Assume you updated your application to render an oddball geometric shape that will also sport an
outline when clicked (see Figure 20-21).

4193ch20.qxd 8/14/05 3:01 PM Page 688

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 689

This geometric image was rendered on the Form using the FillPath() method of the Graphics
type. This method takes an instance of a GraphicsPath object, which encapsulates a series of con-
nected lines, curves, and strings. Adding new items to a GraphicsPath instance is achieved using
a number of related Add methods, as described in Table 20-9.

Table 20-9. Add-Centric Methods of the GraphicsPath Class

Methods Meaning in Life

AddArc() Appends an elliptical arc to the current figure

AddBezier() Adds a cubic Bezier curve (or set of Bezier curves) to the current figure
AddBeziers()

AddClosedCurve() Adds a closed curve to the current figure

AddCurve() Adds a curve to the current figure

AddEllipse() Adds an ellipse to the current figure

AddLine()
AddLines() Appends a line segment to the current figure

AddPath() Appends the specified GraphicsPath to the current figure

AddPie() Adds the outline of a pie shape to the current figure

AddPolygon() Adds a polygon to the current figure

AddRectangle() Adds one (or more) rectangle to the current figure
AddRectangles()

AddString() Adds a text string to the current figure

Specify that you are “using” System.Drawing.Drawing2D and add a new GraphicsPath member
variable to your Form-derived class. In the Form’s constructor, build the set of items that represent
your path as follows:

Figure 20-21. Hit-testing polygons

4193ch20.qxd 8/14/05 3:01 PM Page 689

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+690

public partial class MainForm : Form
{

GraphicsPath myPath = new GraphicsPath();
...

public MainForm()
{

// Create an interesting path.
myPath.StartFigure();
myPath.AddLine(new Point(150, 10), new Point(120, 150));
myPath.AddArc(200, 200, 100, 100, 0, 90);
Point point1 = new Point(250, 250);
Point point2 = new Point(350, 275);
Point point3 = new Point(350, 325);
Point point4 = new Point(250, 350);
Point[] points = { point1, point2, point3, point4} ;
myPath.AddCurve(points);
myPath.CloseFigure();

...
}

}

Notice the calls to StartFigure() and CloseFigure(). When you call StartFigure(), you are
able to insert a new item into the current path you are building. A call to CloseFigure() closes the
current figure and begins a new figure (if you require one). Also know that if the figure contains
a sequence of connected lines and curves (as in the case of the myPath instance), the loop is closed
by connecting a line from the endpoint to the starting point. First, add an additional name to the
ImageClicked enumeration named StrangePath:

enum ClickedImage
{

ImageA, ImageB,
ImageC, StrangePath

}
Next, update your existing MouseDown event handler to test for the presence of the cursor’s (x, y)

position within the bounds of the GraphicsPath. Like a Region type, this can be discovered using the
IsVisible() member:

protected void OnMouseDown (object sender, MouseEventArgs e)
{

// Get (x, y) of mouse click.
Point mousePt = new Point(e.X, e.Y);
...
else if(myPath.IsVisible(mousePt))
{

isImageClicked = true;
imageClicked = ClickedImage.StrangePath;
this.Text = "You clicked the strange shape...";

}
...
}

Finally, update the Paint handler as follows:

private void MainForm_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
...
// Draw the graphics path.
g.FillPath(Brushes.Sienna, myPath);

4193ch20.qxd 8/14/05 3:01 PM Page 690

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 691

// Draw outline (if clicked)
if(isImageClicked == true)
{

Pen outline = new Pen(Color.Red, 5);
switch(imageClicked)
{

...
case ClickedImage.StrangePath:

g.DrawPath(outline, myPath);
break;

default:
break;

}
}

}

■Source Code The HitTestingImages project is included under the Chapter 20 subdirectory.

Understanding the .NET Resource Format
Up to this point in the chapter, each application that made use of external resources (such as bitmap
files) demanded that the image files be within the client’s application directory. Given this, you loaded
your *.bmp files using an absolute name:

// Fill the images with bitmaps.
bMapImageA = new Bitmap("imageA.bmp");
bMapImageB = new Bitmap("imageB.bmp");
bMapImageC = new Bitmap("imageC.bmp");

This logic, of course, demands that the application directory does indeed contain three files
named imageA.bmp, imageB.bmp, and imageC.bmp; otherwise, you will receive a runtime exception.

As you may recall from Chapter 11, an assembly is a collection of types and optional resources.
Given this, your final task of the chapter is to learn how to bundle external resources (such as image
files and strings) into the assembly itself. In this way, your .NET binary is truly self-contained. At the
lowest level, bundling external resources into a .NET assembly involves the following steps:

1. Create an *.resx file that establishes name/value pairs for each resource in your application
via XML data representation.

2. Use the resgen.exe command-line utility to convert your XML-based *.resx file into a binary
equivalent (a *.resources file).

3. Using the /resource flag of the C# compiler, embed the binary *.resources file into your
assembly.

As you might suspect, these steps are automated when using Visual Studio 2005. You’ll examine
how this IDE can assist you in just a moment. For the time being, let’s check out how to generate and
embed .NET resources at the command line.

The System.Resources Namespace
The key to understanding the .NET resource format is to know the types defined within the System.
Resources namespace. This set of types provides the programmatic means to read and write *.resx
(XML-based) and *.resources (binary) files, as well as obtain resources embedded in a given
assembly. Table 20-10 provides a rundown of the core types.

4193ch20.qxd 8/14/05 3:01 PM Page 691

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+692

Table 20-10. Members of the System.Resources Namespace

Members Meaning in Life

ResourceReader These types allow you to read from and write to binary *.resources files.
ResourceWriter

ResXResourceReader These types allow you to read from and write to XML-based *.resx files.
ResXResourceWriter

ResourceManager This type allows you to programmatically obtain embedded resources
from a given assembly.

Programmatically Creating an *.resx File
As mentioned, an *.resx file is a block of XML data that assigns name/value pairs for each resource
in your application. The ResXResourceWriter class provides a set of members that allow you to cre-
ate the *.resx file, add binary and string-based resources, and commit them to storage. To illustrate,
let’s create a simple application (ResXWriter) that will generate an *.resx file containing an entry for
the happyDude.bmp file (first seen in the DraggingImages example) and a single string resource. The GUI
consists of a single Button type (see Figure 20-22).

The Click event handler for the Button adds the happyDude.bmp and string resource to the *.resx
file, which is saved on the local C drive:

private void btnGenResX_Click(object sender, EventArgs e)
{

// Make an resx writer and specify the file to write to.
ResXResourceWriter w =

new ResXResourceWriter(@"C:\ResXForm.resx");
// Add happy dude and string.
Image i = new Bitmap("happyDude.bmp");
w.AddResource("happyDude", i);
w.AddResource("welcomeString", "Hello new resource format!");
// Commit file.
w.Generate();
w.Close();

}

The member of interest is ResXResourceWriter.AddResource(). This method has been over-
loaded a few times to allow you to insert binary data (as you did with the happyDude.bmp image), as
well as textual data (as you have done for your test string). Notice that each version takes two
parameters: the name of a given resource in the *.resx file and the data itself. The Generate()
method commits the information to file. At this point, you have an XML description of the image
and string resources. To verify, open the new ResXForm.resx file using a text editor (see Figure 20-23).

Figure 20-22. The ResX application

4193ch20.qxd 8/14/05 3:01 PM Page 692

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 693

Building the *.resources File
Now that you have an *.resx file, you can make use of the resgen.exe utility to produce the binary
equivalent. To do so, open a Visual Studio 2005 command prompt, navigate to your C drive, and
issue the following command:

resgen resxform.resx resxform.resources

You can now open the new *.resources file using Visual Studio 2005 and view the binary format
(see Figure 20-24).

Binding the *.resources File into a .NET Assembly
At this point, you are able to embed the *.resources file into a .NET assembly using the /resources
command-line argument of the C# compiler. To illustrate, copy the Program.cs, Form1.cs, and
Form1.Designer.cs files to your C drive, open a Visual Studio 2005 command prompt, and issue the
following command:

csc /resource:resxform.resources /r:System.Drawing.dll *.cs

If you were to now open your new assembly using ildasm.exe, you would find the manifest has
been updated as shown in Figure 20-25.

Figure 20-23. *.resx expressed as XML

Figure 20-24. The binary *.resources file

4193ch20.qxd 8/14/05 3:01 PM Page 693

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+694

Working with ResourceWriters
The previous example made use of the ResXResourceWriter types to generate an XML file that con-
tains name/value pairs for each application resource. The resulting *.resx file was then run through
the resgen.exe utility. Finally, the *.resources file was embedded into the assembly using the
/resource flag of the C# compiler. The truth of the matter is that you do not need to build an *.resx
file (although having an XML representation of your resources can come in handy and is readable).
If you do not require an *.resx file, you can make use of the ResourceWriter type to directly create
a binary *.resources file:

private void GenerateResourceFile()
{

// Make a new *.resources file.
ResourceWriter rw;
rw = new ResourceWriter(@"C:\myResources.resources");

// Add 1 image and 1 string.
rw.AddResource("happyDude", new Bitmap("happyDude.bmp"));
rw.AddResource("welcomeString", "Hello new resource format!");
rw.Generate();
rw.Close();

}

At this point, the *.resources file can be bundled into an assembly using the /resources
option:

csc /resource:myresources.resources *.cs

■Source Code The ResXWriter project is included under the Chapter 20 subdirectory.

Generating Resources using Visual Studio 2005
Although it is possible to work with *.resx/*.resources files manually at the command line, the good
news is that Visual Studio 2005 automates the creation and embedding of your project’s resources. To
illustrate, create a new Windows Forms application named MyResourcesWinApp. Now, if you open
Solution Explorer, you will notice that each Form in your application has an associated *.resx file in
place automatically (see Figure 20-26).

Figure 20-25. The embedded resources

4193ch20.qxd 8/14/05 3:01 PM Page 694

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 695

This *.resx file will be maintained automatically while you naturally add resources (such as an
image in a PictureBox widget) using the visual designers. Now, despite what you may be thinking,
you should not manually update this file to specify your custom resources as Visual Studio 2005
regenerates this file with each compilation. To be sure, you will do well if you allow the IDE to man-
age a Form’s *.resx file on your behalf.

When you want to maintain a custom set of resources that are not directly mapped to a given
Form, simply insert a new *.resx file (named MyCustomResources.resx in this example) using the
Project ➤ Add New Item menu item (see Figure 20-27).

If you open your new *.resx file, a friendly GUI editor appears that allows you to insert string
data, image files, sound clips, and other resources. The leftmost drop-down menu item allows you
to select the type of resource you wish to add. First, add a new string resource named WelcomeString
that is set to a message of your liking (see Figure 20-28).

Figure 20-26. The autogenerated *.resx files of Visual Studio 2005

Figure 20-27. Inserting a new *.resx file

4193ch20.qxd 8/14/05 3:01 PM Page 695

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+696

Next, add the happyDude.bmp image file by selecting Images from the leftmost drop-down,
choosing the Add Existing File option (see Figure 20-29), and navigating to the happyDude.bmp file.

At this point, you will find that the *.bmp file has been copied into your application directory. If
you select the happyDude icon from the *.resx editor, you can now specify that this image should
be embedded directly into the assembly (rather than linked as an external stand-alone file) by
adjusting the Persistence property (see Figure 20-30).

Figure 20-28. Inserting new string resources with the *.resx editor

Figure 20-29. Inserting new *.bmp resources with the *.resx editor

Figure 20-30. Embedding specified resources

4193ch20.qxd 8/14/05 3:01 PM Page 696

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+ 697

Furthermore, Solution Explorer now has a new folder named Resources that contains each
item to be embedded into the assembly. As you would guess, if you open a given resource, Visual
Studio 2005 launches an associated editor. In any case, if you were to now compile your application,
the string and image data will be embedded within your assembly.

Programmatically Reading Resources
Now that you understand the process of embedding resources into your assembly (using csc.exe or
Visual Studio 2005), you’ll need to learn how to programmatically read them for use in your program
using the ResourceManager type. To illustrate, add a Button and PictureBox widget on your Form type
(see Figure 20-31).

Next, handle the Button’s Click event. Update the event handler with the following code:

// Be sure to 'use' System.Resources and System.Reflection!
private void btnGetStringData_Click(object sender, EventArgs e)
{

// Make a resource manager.
ResourceManager rm =

new ResourceManager("MyResourcesWinApp.MyCustomResources",
Assembly.GetExecutingAssembly());

// Get the embedded string (case sensitive!)
MessageBox.Show(rm.GetString("WelcomeString"));
// Get the embedded bitmap (case sensitive!)
myPictureBox.Image = (Bitmap)rm.GetObject("HappyDude");
// Clean up.
rm.ReleaseAllResources();

}

Notice that the first constructor argument to the ResourceManager is the fully qualified name of
your *.resx file (minus the file extension). The second parameter is a reference to the assembly that
contains the embedded resource (which is the current assembly in this case). Once you have created
the ResourceManager, you can call GetString() or GetObject() to extract the embedded data. If you
were to run the application and click the button, you would find that the string data is displayed
in the MessageBox and the image data has been extracted from the assembly and placed into the
PictureBox.

Figure 20-31. The updated UI

4193ch20.qxd 8/14/05 3:01 PM Page 697

CHAPTER 20 ■ RENDERING GRAPHICAL DATA WITH GDI+698

■Source Code The MyResourcesWinApp project is included under the Chapter 20 subdirectory.

Well, that wraps up our examination of GDI+ and the System.Drawing namespaces. If you are
interested in exploring GDI+ further (including printing support), be sure to check out GDI+ Pro-
gramming in C# and VB .NET by Nick Symmonds (Apress, 2002).

Summary
GDI+ is the name given to a number of related .NET namespaces, each of which is used to render
graphic images to a Control-derived type. The bulk of this chapter was spent examining how to
work with core GDI+ object types such as colors, fonts, graphics images, pens, and brushes in con-
junction with the almighty Graphics type. Along the way, you examined some GDI+-centric details
such as hit testing and how to drag and drop images.

This chapter wrapped up by examining the new .NET resource format. As shown, a *.resx
denotes resources using a set of name/value pairs describes as XML. This file can be fed into the
resgen.exe utility, resulting in a binary format (*.resources) that can then be embedded into
a related assembly. Finally, the ResourceManager type provides a simple way to programmatically
retrieve embedded resources at runtime.

4193ch20.qxd 8/14/05 3:01 PM Page 698

Programming with Windows Forms
Controls

This chapter is concerned with providing a road map of the controls defined in the System.Windows.
Forms namespace. Chapter 19 already gave you a chance to work with some controls mounted onto
a main Form such as MenuStrip, ToolStrip, and StatusStrip. In this chapter, however, you will
examine various types that tend to exist within the boundaries of a Form’s client area (e.g., Button,
MaskedTextBox, WebBrowser, MonthCalendar, TreeView, and the like). Once you look at the core UI
widgets, you will then cover the process of building custom Windows Forms controls that integrate
into the Visual Studio 2005 IDE.

The chapter then investigates the process of building custom dialog boxes and the role of form
inheritance, which allows you to build hierarchies of related Form types. The chapter wraps up with
a discussion of how to establish the docking and anchoring behaviors for your family of GUI types,
and the role of the FlowControlPanel and TableControlPanel types supplied by .NET 2.0.

The World of Windows Forms Controls
The System.Windows.Forms namespace contains a number of types that represent common GUI
widgets typically used to allow you to respond to user input in a Windows Forms application. Many
of the controls you will work with on a day-to-day basis (such as Button, TextBox, and Label) are quite
intuitive to work with. Other, more exotic controls and components (such as TreeView, ErrorProvider,
and TabControl) require a bit more explanation.

As you learned in Chapter 19, the System.Windows.Forms.Control type is the base class for all
derived widgets. Recall that Control provides the ability to process mouse and keyboard events,
establish the physical dimensions and position of the widget using various properties (Height,
Width, Left, Right, Location, etc.), manipulate background and foreground colors, establish the
active font/cursor, and so forth. As well, the Control base type defines members that control a wid-
get’s anchoring and docking behaviors (explained at the conclusion of this chapter).

As you read through this chapter, remember that the widgets you examine here gain a good
deal of their functionality from the Control base class. Thus, we’ll focus (more or less) on the unique
members of a given widget. Do understand that this chapter does not attempt to fully describe each
and every member of each and every control (that is a task for the .NET Framework 2.0 SDK doc-
umentation). Rest assured, though, that once you complete this chapter, you will have no problem
understanding the widgets I have not directly described.

699

C H A P T E R 2 1

■ ■ ■

4193ch21.qxd 8/14/05 3:01 PM Page 699

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS700

■Note Windows Forms provide a number of controls that allow you to display relational data (DataGridView,
BindingSource, etc.). Some of these data-centric controls are examined in Chapter 22 during our discussion of
ADO.NET.

Adding Controls to Forms by Hand
Regardless of which type of control you choose to place on a Form, you will follow an identical set of
steps to do so. First of all, you must define member variables that represent the controls themselves.
Next, inside the Form’s constructor (or within a helper method called by the constructor), you’ll
configure the look and feel of each control using the exposed properties, methods, and events. Finally
(and most important), once you’ve set the control to its initial state, you must add it into the Form’s
internal controls collection using the inherited Controls property. If you forget this final step, your
widgets will not be visible at runtime.

To illustrate the process of adding controls to a Form, let’s begin by building a Form type
“wizard-free” using your text editor of choice and the C# command-line compiler. Create a new C#
file named ControlsByHand.cs and code a new MainWindow class as so:

using System;
using System.Drawing;
using System.Windows.Forms;

namespace ControlsByHand
{

class MainWindow : Form
{

// Form widget member variables.
private TextBox firstNameBox = new TextBox();
private Button btnShowControls = new Button();

public MainWindow()
{

// Configure Form.
this.Text = "Simple Controls";
this.Width = 300;
this.Height = 200;
CenterToScreen();

// Add a new textbox to the Form.
firstNameBox.Text = "Hello";
firstNameBox.Size = new Size(150, 50);
firstNameBox.Location = new Point(10, 10);
this.Controls.Add(firstNameBox);

// Add a new button to the Form.
btnShowControls.Text = "Click Me";
btnShowControls.Size = new Size(90, 30);
btnShowControls.Location = new Point(10, 70);
btnShowControls.BackColor = Color.DodgerBlue;
btnShowControls.Click +=

new EventHandler(btnShowControls_Clicked);
this.Controls.Add(btnShowControls);

}

4193ch21.qxd 8/14/05 3:01 PM Page 700

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 701

Figure 21-1. Interacting with the Form’s controls collection

// Handle Button's Click event.
private void btnShowControls_Clicked(object sender, EventArgs e)
{

// Call ToString() on each control in the
// Form's Controls collection
string ctrlInfo= "";
foreach (Control c in this.Controls)
{

ctrlInfo += string.Format("Control: {0}\n",
c.ToString());

}
MessageBox.Show(ctrlInfo, "Controls on Form");

}
}

}

Now, add a second class to the ControlsByHand namespace that implements the program’s Main()
method:

class Program
{

public static void Main(string[] args)
{

Application.Run(new MainWindow());
}

}

At this point, compile your C# file at the command line using the following command:

csc /target:winexe *.cs

When you run your program and click the Form’s button, you will find a message box that lists
each item on the Form (see Figure 21-1).

The Control.ControlCollection Type
While the process of adding a new widget to a Form is quite simple, I’d like to discuss the Controls prop-
erty in a bit more detail. This property returns a reference to a nested class named ControlCollection
defined within the Control class. The nested ControlCollection type maintains an entry for each
widget placed on the Form. You can obtain a reference to this collection anytime you wish to “walk
the list” of child widgets:

// Get access to the nested ControlCollection for this Form.
Control.ControlCollection coll = this.Controls;

Once you have a reference to this collection, you can manipulate its contents using the mem-
bers shown in Table 21-1.

4193ch21.qxd 8/14/05 3:01 PM Page 701

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS702

Table 21-1. ControlCollection Members

Member Meaning in Life

Add() Used to insert a new Control-derived type (or array of types) in the
AddRange() collection

Clear() Removes all entries in the collection

Count Returns the number of items in the collection

GetEnumerator() Returns the IEnumerator interface for this collection

Remove() Used to remove a control from the collection
RemoveAt()

Given that a Form maintains a collection of its controls, it is very simple under Windows Forms
to dynamically create, remove, or otherwise manipulate visual elements. For example, assume you
wish to disable all Button types on a given Form (or some such similar operation, such as change
the background color of all TextBoxes). To do so, you can leverage the C# is keyword to determine
who’s who and change the state of the widgets accordingly:

private void DisableAllButtons()
{

foreach (Control c in this.Controls)
{

if (c is Button)
((Button)c).Enabled = false;

}
}

■Source Code The ControlsByHand project is included under the Chapter 21 subdirectory.

Adding Controls to Forms Using Visual Studio 2005
Now that you understand the process of adding controls to a Form by hand, let’s see how Visual
Studio 2005 can automate the process. Create a new Windows Application project for testing purposes
named whatever you choose. Similar to the process of designing menu, toolbar, or status bar controls,
when you drop a control from the Toolbox onto the Forms designer, the IDE responds by automati-
cally adding the correct member variable to the *.Designer.cs file. As well, when you design the look
and feel of the widget using the IDE’s Properties window, the related code changes are added to the
InitializeComponent() member function (also located within the *.Designer.cs file).

■Note Recall that the Properties window also allows you handle events for a given control when you click the
lightning bolt icon. Simply select the widget from the drop-down list and type in the name of the method to be
called for the events you are interested in responding to (or just double-click the event to generate a default event
handler name).

Assume you have added a TextBox and Button type to the Forms designer. Notice that when
you reposition a control on the designer, the Visual Studio 2005 IDE provides visual hints regarding
the spacing and alignment of the current widget (see Figure 21-2).

4193ch21.qxd 8/14/05 3:01 PM Page 702

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 703

Figure 21-2. Alignment and spacing hints

Once you have placed the Button and TextBox on the designer, examine the code generated in
the InitializeComponent() method. Here you will find that the types have been new-ed and inserted
into the Form’s ControlCollection automatically (in addition to any settings you may have made
using the Properties window):

private void InitializeComponent()
{

this.btnMyButton = new System.Windows.Forms.Button();
this.txtMyTextBox = new System.Windows.Forms.TextBox();

...
// MainWindow
//
...
this.Controls.Add(this.txtMyTextBox);
this.Controls.Add(this.btnMyButton);

...
}

As you can see, a tool such as Visual Studio 2005 simply saves you some typing time (and helps
you avoid hand cramps). Although InitializeComponent() is maintained on your behalf, do under-
stand that you are free to configure a given control directly in code anywhere you see necessary
(constructors, event handlers, helper functions, etc.). The role of InitializeComponent() is simply
to establish the initial state of your UI elements. If you want to keep your life simple, I suggest allow-
ing Visual Studio 2005 to maintain InitializeComponent() on your behalf, given that the designers
may ignore or overwrite edits you make within this method.

Working with the Basic Controls
The System.Windows.Forms namespace defines numerous “basic controls” that are commonplace to
any windowing framework (buttons, labels, text boxes, check boxes, etc.). Although I would guess
you are familiar with the basic operations of such types, let’s examine some of the more interesting
aspects of the following basic UI elements:

• Label, TextBox, and MaskedTextBox

• Button

• CheckBox, RadioButton, and GroupBox

• CheckedListBox, ListBox, and ComboBox

4193ch21.qxd 8/14/05 3:01 PM Page 703

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS704

Once you have become comfortable with these basic Control-derived types, we will turn our
attention to more exotic widgets such as MonthCalendar, TabControl, TrackBar, WebBrowser, and so
forth.

Fun with Labels
The Label control is capable of holding read-only information (text or image based) that explains
the role of the other controls to help the user along. Assume you have created a new Visual Studio 2005
Windows Forms project named LabelsAndTextBoxes. Define a method called CreateLabelControl in
your Form-derived type that creates and configures a Label type, and then adds it to the Form’s controls
collection:

private void CreateLabelControl()
{

// Create and configure a Label.
Label lblInstructions = new Label();
lblInstructions.Name = "lblInstructions";
lblInstructions.Text = "Please enter values in all the text boxes";
lblInstructions.Font = new Font("Times New Roman", 9.75F, FontStyle.Bold);
lblInstructions.AutoSize = true;
lblInstructions.Location = new System.Drawing.Point(16, 13);
lblInstructions.Size = new System.Drawing.Size(240, 16);

// Add to Form's controls collection.
Controls.Add(lblInstructions);

}

If you were to call this helper function within your Form’s constructor, you would find your
prompt displayed in the upper portion of the main window:

public MainWindow()
{

InitializeComponent();
CreateLabelControl();
CenterToScreen();

}

Unlike most other widgets, Label controls cannot receive focus via a Tab keypress. However,
under .NET 2.0, it is now possible to create mnemonic keys for any Label by setting the UseMnemonic
property to true (which happens to be the default setting). Once you have done so, a Label’s Text
property can define a shortcut key (via the ampersand symbol, &), which is used to tab to the con-
trol that follows it in the tab order.

■Note You’ll learn more about configuring tab order later in this chapter, but for the time being, understand that
a control’s tab order is established via the TabIndex property. By default, a control’s TabIndex is set based on the
order in which it was added to the Forms designer. Thus, if you add a Label followed by a TextBox, the Label is
set to TabIndex 0 while the TextBox is set to TabIndex 1.

To illustrate, let’s now leverage the Forms designer to build a UI containing a set of three Labels and
three TextBoxes (be sure to leave room on the upper part of the Form to display the Label dynamically
created in the CreateLabelControl() method). In Figure 21-3, note that each label has an underlined
letter that was identified using the & character in the value assigned to the Text property (as you
might know, &-specified characters allow the user to activate an item using the Alt+<some key> key-
stroke).

4193ch21.qxd 8/14/05 3:01 PM Page 704

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 705

Figure 21-3. Assigning mnemonics to Label controls

If you now run your project, you will be able to tab between each TextBox using the Alt+p, Alt+m,
or Alt+u keystrokes.

Fun with TextBoxes
Unlike the Label control, the TextBox control is typically not read-only (although it could be if you
set the ReadOnly property to true), and it is commonly used to allow the user to enter textual data for
processing. The TextBox type can be configured to hold a single line or multiple lines of text, it can be
configured with a password character (such as an asterisk, *), and it may support scroll bars in the case
of multiline text boxes. In addition to the behavior inherited by its base classes, TextBox defines a few
particular properties of interest (see Table 21-2).

Table 21-2. TextBox Properties

Property Meaning in Life

AcceptsReturn Gets or sets a value indicating whether pressing Enter in a multiline TextBox
control creates a new line of text in the control or activates the “default button”
for the Form

CharacterCasing Gets or sets whether the TextBox control modifies the case of characters as
they are typed

PasswordChar Gets or sets the character used to mask characters in a single-line TextBox
control used to enter passwords

ScrollBars Gets or sets which scroll bars should appear in a multiline TextBox control

TextAlign Gets or sets how text is aligned in a TextBox control, using the
HorizontalAlignment enumeration

To illustrate some aspects of the TextBox, let’s configure the three TextBox controls on the current
Form. The first TextBox (named txtPassword) should be configured as a password text box, meaning
the characters typed into the TextBox should not be directly visible, but are instead masked with
a predefined password character via the PasswordChar property.

The second TextBox (named txtMultiline) will be a multiline text area that has been configured
to accept return key processing and displays a vertical scroll bar when the text entered exceeds the
space of the TextBox area. Finally, the third TextBox (named txtUppercase) will be configured to
translate the entered character data into uppercase.

4193ch21.qxd 8/14/05 3:01 PM Page 705

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS706

Configure each TextBox accordingly via the Properties window and use the following (partial)
InitializeComponent() implementation as a guide:

private void InitializeComponent()
{
...

// txtPassword
//
this.txtPassword.PasswordChar = '*';

...
// txtMultiline
//
this.txtMultiline.Multiline = true;
this.txtMultiline.ScrollBars = System.Windows.Forms.ScrollBars.Vertical;

...
// txtUpperCase
//
this.txtUpperCase.CharacterCasing =

System.Windows.Forms.CharacterCasing.Upper;
...
}

Notice that the ScrollBars property is assigned a value from the ScrollBars enumeration,
which defines the following values:

public enum System.Windows.Forms.ScrollBars
{

Both, Horizontal, None, Vertical
}

The CharacterCasing property works in conjunction with the CharacterCasing enum, which is
defined as so:

public enum System.Windows.Forms.CharacterCasing
{

Normal, Upper, Lower
}

Now assume you have placed a Button on the Form (named btnDisplayData) and added an
event handler for the Button’s Click event. The implementation of this method simply displays the
value in each TextBox within a message box:

private void btnDisplayData_Click(object sender, EventArgs e)
{

// Get data from all the text boxes.
string textBoxData = "";
textBoxData += string.Format("MultiLine: {0}\n", txtMultiline.Text);
textBoxData += string.Format("\nPassword: {0}\n", txtPassword.Text);
textBoxData += string.Format("\nUppercase: {0}\n", txtUpperCase.Text);

// Display all the data.
MessageBox.Show(textBoxData, "Here is the data in your TextBoxes");

}

Figure 21-4 shows one possible input session (note that you need to hold down the Alt key to
see the label mnemonics).

4193ch21.qxd 8/14/05 3:01 PM Page 706

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 707

Figure 21-4. The many faces of the TextBox type

Figure 21-5. Extracting values from TextBox types

Figure 21-5 shows the result of clicking the Button type.

Fun with MaskedTextBoxes
As of .NET 2.0, we now have a masked text box that allows us to specify a valid sequence of characters
that will be accepted by the input area (Social Security number, phone number with area code, zip
code, or whatnot). The mask to test against (termed a mask expression) is established using specific
tokens embedded into a string literal. Once you have created a mask expression, this value is assigned
to the Mask property. Table 21-3 documents some (but not all) valid masking tokens.

Table 21-3. Mask Tokens of MaskedTextBox

Mask Token Meaning in Life

0 Represents a mandatory digit with the value 0–9

9 Represents an optional digit or a space

L Required letter (in uppercase or lowercase), A–Z

? Optional letter (in uppercase or lowercase), A–Z

, Represents a thousands separator placeholder

: Represents a time placeholder

/ Represents a date placeholder

$ Represents a currency symbol

4193ch21.qxd 8/14/05 3:01 PM Page 707

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS708

■Note The characters understood by the MaskedTextBox do not directly map to the syntax of regular expressions.
Although .NET provides namespaces to work with proper regular expressions (System.Text.RegularExpressions
and System.Web.RegularExpressions), the MaskedTextBox uses syntax based on the legacy MaskedEdit VB6
COM control.

In addition to the Mask property, the MaskedTextBox has additional members that determine
how this control should respond if the user enters incorrect data. For example, BeepOnError will
cause the control to (obviously) issue a beep when the mask is not honored, and it prevents the ille-
gal character from being processed.

To illustrate the use of the MaskedTextBox, add an additional Label and MaskedTextBox to your
current Form. Although you are free to build a mask pattern directly in code, the Properties window
provides an ellipsis button for the Mask property that will launch a dialog box with a number of pre-
defined masks (see Figure 21-6).

Find a masking pattern (such as Phone number), enable the BeepOnError property, and take
your program out for another test run. You should find that you are unable to enter any alphabetic
characters (in the case of the Phone number mask).

As you would expect, the MaskedTextBox will send out various events during its lifetime, one of
which is MaskInputRejected, which is fired when the end user enters erroneous input. Handle this
event using the Properties window and notice that the second incoming argument of the generated
event handler is of type MaskInputRejectedEventArgs. This type has a property named RejectionHint
that contains a brief description of the input error. For testing purposes, simply display the error on
the Form’s caption.

private void txtMaskedTextBox_MaskInputRejected(object sender,
MaskInputRejectedEventArgs e)

{
this.Text = string.Format("Error: {0}", e.RejectionHint);

}

Figure 21-6. Predefined mask values of the Mask property

4193ch21.qxd 8/14/05 3:01 PM Page 708

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 709

To ensure that this error is not displayed when the user enters valid data, handle the KeyDown event
on the MaskedTextBox and implement the event handler to reset the Form’s caption to a default value:

private void txtMaskedTextBox_KeyDown(object sender, KeyEventArgs e)
{

this.Text = "Fun with Labels and TextBoxes";
}

■Source Code The LabelsAndTextBoxes project is included under the Chapter 21 subdirectory.

Fun with Buttons
The role of the System.Windows.Forms.Button type is to provide a vehicle for user confirmation, typically
in response to a mouse click or keypress. The Button class immediately derives from an abstract
type named ButtonBase, which provides a number of key behaviors for all derived types (such as
CheckBox, RadioButton, and Button). Table 21-4 describes some (but by no means all) of the core
properties of ButtonBase.

Table 21-4. ButtonBase Properties

Property Meaning in Life

FlatStyle Gets or sets the flat style appearance of the Button control, using members of the
FlatStyle enumeration.

Image Configures which (optional) image is displayed somewhere within the bounds
of a ButtonBase-derived type. Recall that the Control class also defines
a BackgroundImage property, which is used to render an image over the entire
surface area of a widget.

ImageAlign Sets the alignment of the image on the Button control, using the ContentAlignment
enumeration.

TextAlign Gets or sets the alignment of the text on the Button control, using the
ContentAlignment enumeration.

The TextAlign property of ButtonBase makes it extremely simple to position text at just about
any location. To set the position of your Button’s caption, use the ContentAlignment enumeration
(defined in the System.Drawing namespace). As you will see, this same enumeration can be used to
place an optional image on the Button type:

public enum System.Drawing.ContentAlignment
{

BottomCenter, BottomLeft, BottomRight,
MiddleCenter, MiddleLeft, MiddleRight,
TopCenter, TopLeft, TopRight

}

FlatStyle is another property of interest. It is used to control the general look and feel of the
Button control, and it can be assigned any value from the FlatStyle enumeration (defined in the
System.Windows.Forms namespace):

public enum System.Windows.Forms.FlatStyle
{

Flat, Popup, Standard, System
}

4193ch21.qxd 8/14/05 3:01 PM Page 709

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS710

To illustrate working with the Button type, create a new Windows Forms application named Buttons.
On the Forms designer, add three Button types (named btnFlat, btnPopup, and btnStandard) and
set each Button’s FlatStyle property value accordingly (e.g., FlatStyle.Flat, FlatStyle.Popup, or
FlatStyle.Standard). As well, set the Text value of each Button to a fitting value and handle the Click
event for the btnStandard Button. As you will see in just a moment, when the user clicks this button,
you will reposition the button’s text using the TextAlign property.

Now, add a final fourth Button (named btnImage) that supports a background image (set via the
BackgroundImage property) and a small bull’s-eye icon (set via the Image property), which will also be
dynamically relocated when the btnStandard Button is clicked. Feel free to use any image files to
assign to the BackgroundImage and Image properties, but do note that the downloadable source code
contains the images used here.

Given that the designer has authored all the necessary UI prep code within InitializeComponent(),
the remaining code makes use of the ContentAlignment enumeration to reposition the location of
the text on btnStandard and the icon on btnImage. In the following code, notice that you are calling
the static Enum.GetValues() method to obtain the list of names from the ContentAlignment enumer-
ation:

partial class MainWindow : Form
{

// Used to hold the current text alignment value.
ContentAlignment currAlignment = ContentAlignment.MiddleCenter;
int currEnumPos = 0;

public MainWindow()
{

InitializeComponent();
CenterToScreen();

}

private void btnStandard_Click (object sender, EventArgs e)
{

// Get all possible values of the ContentAlignment enum.
Array values = Enum.GetValues(currAlignment.GetType());

// Bump the current position in the enum.
// and check for wraparound.
currEnumPos++;
if(currEnumPos >= values.Length)

currEnumPos = 0;

// Bump the current enum value.
currAlignment = (ContentAlignment)Enum.Parse(currAlignment.GetType(),

values.GetValue(currEnumPos).ToString());

// Paint enum value and align text on btnStandard.
btnStandard.TextAlign = currAlignment;

btnStandard.Text = currAlignment.ToString();

// Now assign the location of the icon on btnImage
btnImage.ImageAlign = currAlignment;

}
}

Now run your program. As you click the middle button, you will see its text is set to the current
name and position of the currAlignment member variable. As well, the icon within the btnImage is
repositioned based on the same value. Figure 21-7 shows the output.

4193ch21.qxd 8/14/05 3:01 PM Page 710

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 711

Figure 21-7. The many faces of the Button type

■Source Code The Buttons project is included under the Chapter 21 directory.

Fun with CheckBoxes, RadioButtons, and GroupBoxes
The System.Windows.Forms namespace defines a number of other types that extend ButtonBase,
specifically CheckBox (which can support up to three possible states) and RadioButton (which can be
either selected or not selected). Like the Button, these types also receive most of their functionality
from the Control base class. However, each class defines some additional functionality. First, consider
the core properties of the CheckBox widget described in Table 21-5.

Table 21-5. CheckBox Properties

Property Meaning in Life

Appearance Configures the appearance of a CheckBox control, using the Appearance enumeration.

AutoCheck Gets or sets a value indicating if the Checked or CheckState value and the
CheckBox’s appearance are automatically changed when it is clicked.

CheckAlign Gets or sets the horizontal and vertical alignment of a CheckBox on a CheckBox
control, using the ContentAlignment enumeration (much like the Button type).

Checked Returns a Boolean value representing the state of the CheckBox (checked or
unchecked). If the ThreeState property is set to true, the Checked property
returns true for either checked or indeterminately checked values.

CheckState Gets or sets a value indicating whether the CheckBox is checked, using
a CheckState enumeration rather than a Boolean value.

ThreeState Configures whether the CheckBox supports three states of selection (as specified
by the CheckState enumeration) rather than two.

The RadioButton type requires little comment, given that it is (more or less) just a slightly
redesigned CheckBox. In fact, the members of a RadioButton are almost identical to those of the
CheckBox type. The only notable difference is the CheckedChanged event, which (not surprisingly) is
fired when the Checked value changes. Also, the RadioButton type does not support the ThreeState
property, as a RadioButton must be on or off.

4193ch21.qxd 8/14/05 3:01 PM Page 711

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS712

Typically, multiple RadioButton objects are logically and physically grouped together to function
as a whole. For example, if you have a set of four RadioButton types representing the color choice of
a given automobile, you may wish to ensure that only one of the four types can be checked at a time.
Rather than writing code programmatically to do so, simply use the GroupBox control to ensure all
RadioButtons are mutually exclusive.

To illustrate working with the CheckBox, RadioButton, and GroupBox types, let’s create a new
Windows Forms application named CarConfig, which you will extend over the next few sections.
The main Form allows users to enter (and confirm) information about a new vehicle they intend to
purchase. The order summary is displayed in a Label type once the Confirm Order button has been
clicked. Figure 21-8 shows the initial UI.

Assuming you have leveraged the Forms designer to build your UI, you will now have numer-
ous member variables representing each GUI widget. As well, the InitializeComponent() method
will be updated accordingly. The first point of interest is the construction of the CheckBox type. As
with any Control-derived type, once the look and feel has been established, it must be inserted into
the Form’s internal collection of controls:

private void InitializeComponent()
{
...

// checkFloorMats
//
this.checkFloorMats.Name = "checkFloorMats";
this.checkFloorMats.TabIndex = 0;
this.checkFloorMats.Text = "Extra Floor Mats";

...
this.Controls.Add(this.checkFloorMats);

}

Next, you have the configuration of the GroupBox and its contained RadioButton types. When
you wish to place a control under the ownership of a GroupBox, you want to add each item to the
GroupBox’s Controls collection (in the same way you add widgets to the Form’s Controls collection).
To make things a bit more interesting, use the Properties window to handle the Enter and Leave
events sent by the GroupBox object, as shown here:

Figure 21-8. The initial UI of the CarConfig Form

4193ch21.qxd 8/14/05 3:01 PM Page 712

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 713

private void InitializeComponent()
{
...

// radioRed
//
this.radioRed.Name = "radioRed";
this.radioRed.Size = new System.Drawing.Size(64, 23);
this.radioRed.Text = "Red";
//
// groupBoxColor
//

...
this.groupBoxColor.Controls.Add(this.radioRed);
this.groupBoxColor.Text = "Exterior Color";
this.groupBoxColor.Enter += new System.EventHandler(this.groupBoxColor_Enter);
this.groupBoxColor.Leave += new System.EventHandler(this.groupBoxColor_Leave);

...
}

Understand, of course, that you do not need to capture the Enter or Leave event for a GroupBox.
However, to illustrate, the event handlers update the caption text of the GroupBox as shown here:

// Figure out when the focus is in your group.
private void groupBoxColor_Leave(object sender, EventArgs e)
{

groupBoxColor.Text = "Exterior Color: Thanks for visiting the group...";
}

private void groupBoxColor_Enter(object sender, EventArgs e)
{

groupBoxColor.Text = "Exterior Color: You are in the group...";
}

The final GUI widgets on this Form (the Label and Button types) will also be configured and
inserted in the Form’s Controls collection via InitializeComponent(). The Label is used to display
the order confirmation, which is formatted in the Click event handler of the order Button, as shown
here:

private void btnOrder_Click (object sender, System.EventArgs e)
{

// Build a string to display information.
string orderInfo = "";
if(checkFloorMats.Checked)

orderInfo += "You want floor mats.\n";
if(radioRed.Checked)

orderInfo += "You want a red exterior.\n";
if(radioYellow.Checked)

orderInfo += "You want a yellow exterior.\n";
if(radioGreen.Checked)

orderInfo += "You want a green exterior.\n";
if(radioPink.Checked)

orderInfo += "Why do you want a PINK exterior?\n";
// Send this string to the Label.
infoLabel.Text = orderInfo;

}

Notice that both the CheckBox and RadioButton support the Checked property, which allows you
to investigate the state of the widget. Finally, recall that if you have configured a tri-state CheckBox, you
will need to check the state of the widget using the CheckState property.

4193ch21.qxd 8/14/05 3:01 PM Page 713

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS714

Fun with CheckedListBoxes
Now that you have explored the basic Button-centric widgets, let’s move on to the set of list
selection–centric types, specifically CheckedListBox, ListBox, and ComboBox. The CheckedListBox
widget allows you to group related CheckBox options in a scrollable list control. Assume you have
added such a control to your CarConfig Form that allows users to configure a number of options
regarding an automobile’s sound system (see Figure 21-9).

To insert new items in a CheckedListBox, call Add() for each item, or use the AddRange() method
and send in an array of objects (strings, to be exact) that represent the full set of checkable items. Be
aware that you can fill any of the list types at design time using the Items property located on the
Properties window (just click the ellipsis button and type the string values). Here is the relevant code
within InitializeComponent() that configures the CheckedListBox:

private void InitializeComponent()
{
...

// checkedBoxRadioOptions
//
this.checkedBoxRadioOptions.Items.AddRange(new object[] {

"Front Speakers", "8-Track Tape Player",
"CD Player", "Cassette Player",
"Rear Speakers", "Ultra Base Thumper"});

...
this.Controls.Add (this.checkedBoxRadioOptions);

}

Now update the logic behind the Click event for the Confirm Order button. Ask the CheckedListBox
which of its items are currently selected and add them to the orderInfo string. Here are the relevant
code updates:

private void btnOrder_Click (object sender, EventArgs e)
{

Figure 21-9. The CheckedListBox type

4193ch21.qxd 8/14/05 3:01 PM Page 714

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 715

string orderInfo = "";
...
orderInfo += "--------------------------------\n";

// For each item in the CheckedListBox:
for(int i = 0; i < checkedBoxRadioOptions.Items.Count; i++)
{

// Is the current item checked?
if(checkedBoxRadioOptions.GetItemChecked(i))
{

// Get text of checked item and append to orderinfo string.
orderInfo += "Radio Item: ";
orderInfo += checkedBoxRadioOptions.Items[i].ToString();
orderInfo += "\n";

}
}
...

}

The final note regarding the CheckedListBox type is that it supports the use of multiple
columns through the inherited MultiColumn property. Thus, if you make the following update:

checkedBoxRadioOptions.MultiColumn = true;

you see the multicolumn CheckedListBox shown in Figure 21-10.

Figure 21-10. Multicolumn CheckedListBox type

Fun with ListBoxes
As mentioned earlier, the CheckedListBox type inherits most of its functionality from the ListBox
type. To illustrate using the ListBox type, let’s add another feature to the current CarConfig application:
the ability to select the make (BMW, Yugo, etc.) of the automobile. Figure 21-11 shows the desired UI.

4193ch21.qxd 8/14/05 3:01 PM Page 715

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS716

As always, begin by creating a member variable to manipulate your type (in this case, a ListBox
type). Next, configure the look and feel using the following snapshot from InitializeComponent():

private void InitializeComponent()
{
...

// carMakeList
//
this.carMakeList.Items.AddRange(new object[] {

"BMW", "Caravan", "Ford", "Grand Am",
"Jeep", "Jetta", "Saab", "Viper", "Yugo"});

...
this.Controls.Add (this.carMakeList);

}

The update to the btnOrder_Click() event handler is also simple:

private void btnOrder_Click (object sender, EventArgs e)
{

// Build a string to display information.
string orderInfo = "";
...
// Get the currently selected item (not index of the item).
if(carMakeList.SelectedItem != null)

orderInfo += "Make: " + carMakeList.SelectedItem + "\n";
...

}

Fun with ComboBoxes
Like a ListBox, a ComboBox allows users to make a selection from a well-defined set of possibilities.
However, the ComboBox type is unique in that users can also insert additional items. Recall that ComboBox
derives from ListBox (which then derives from Control). To illustrate its use, add yet another GUI

Figure 21-11. The ListBox type

4193ch21.qxd 8/14/05 3:01 PM Page 716

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 717

widget to the CarConfig Form that allows a user to enter the name of a preferred salesperson. If the
salesperson in question is not on the list, the user can enter a custom name. One possible UI update
is shown in Figure 21-12 (feel free to add your own salesperson monikers).

This modification begins with configuring the ComboBox itself. As you can see here, the logic
looks identical to that for the ListBox:

private void InitializeComponent()
{
...

// comboSalesPerson
//
this.comboSalesPerson.Items.AddRange(new object[] {

"Baby Ry-Ry", "Dan \'the Machine\'",
"Danny Boy", "Tommy Boy"});

...
this.Controls.Add (this.comboSalesPerson);

}

The update to the btnOrder_Click() event handler is again simple, as shown here:

private void btnOrder_Click (object sender, EventArgs e)
{

// Build a string to display information.
string orderInfo = "";
...
// Use the Text property to figure out the user's salesperson.
if(comboSalesPerson.Text != "")

orderInfo += "Sales Person: " + comboSalesPerson.Text + "\n";
else

orderInfo += "You did not select a sales person!" + "\n";
...

}

Figure 21-12. The ComboBox type

4193ch21.qxd 8/14/05 3:01 PM Page 717

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS718

Configuring the Tab Order
Now that you have created a somewhat interesting Form, let’s formalize the issue of tab order. As
you may know, when a Form contains multiple GUI widgets, users expect to be able to shift focus
using the Tab key. Configuring the tab order for your set of controls requires that you understand
two key properties: TabStop and TabIndex.

The TabStop property can be set to true or false, based on whether or not you wish this GUI
item to be reachable using the Tab key. Assuming the TabStop property has been set to true for
a given widget, the TabOrder property is then set to establish its order of activation in the tabbing
sequence (which is zero based). Consider this example:

// Configure tabbing properties.
radioRed.TabIndex = 2;
radioRed.TabStop = true;

The Tab Order Wizard
The Visual Studio 2005 IDE supplies a Tab Order Wizard, which you access by choosing View ➤ Tab
Order (be aware that you will not find this menu option unless the Forms designer is active). Once
activated, your design-time Form displays the current TabIndex value for each widget. To change
these values, click each item in the order you choose (see Figure 21-13).

To exit the Tab Order Wizard, simply press the Esc key.

Figure 21-13. The Tab Order Wizard

4193ch21.qxd 8/14/05 3:01 PM Page 718

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 719

Setting the Form’s Default Input Button
Many user-input forms (especially dialog boxes) have a particular Button that will automatically
respond to the user pressing the Enter key. For the current Form, if you wish to ensure that when the
user presses the Enter key, the Click event handler for btnOrder is invoked, simply set the Form’s
AcceptButton property as so:

// When the Enter key is pressed, it is as if
// the user clicked the btnOrder button.
this.AcceptButton = btnOrder;

■Note Some Forms require the ability to simulate clicking the Form’s Cancel button when the user presses the
Esc key. This can be done by assigning the CancelButton property to the Button object representing the Cancel
button.

Working with More Exotic Controls
At this point, you have seen how to work most of the basic Windows Forms controls (Labels, TextBoxes,
and the like). The next task is to examine some GUI widgets, which are a bit more high-powered in
their functionality. Thankfully, just because a control may seem “more exotic” does not mean it is
hard to work with, only that it requires a bit more elaboration from the outset. Over the next several
pages, we will examine the following GUI elements:

• MonthCalendar

• ToolTip

• TabControl

• TrackBar

• Panel

• UpDown controls

• ErrorProvider

• TreeView

• WebBrower

To begin, let’s wrap up the CarConfig project by examining the MonthCalendar and ToolTip controls.

Fun with MonthCalendars
The System.Windows.Forms namespace provides an extremely useful widget, the MonthCalendar con-
trol, that allows the user to select a date (or range of dates) using a friendly UI. To showcase this new
control, update the existing CarConfig application to allow the user to enter in the new vehicle’s delivery
date. Figure 21-14 shows the updated (and slightly rearranged) Form.

4193ch21.qxd 8/14/05 3:01 PM Page 719

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS720

Although the MonthCalendar control offers a fair bit of functionality, it is very simple to program-
matically capture the range of dates selected by the user. The default behavior of this type is to always
select (and mark) today’s date automatically. To obtain the currently selected date programmatically,
you can update the Click event handler for the order Button, as shown here:

private void btnOrder_Click (object sender, EventArgs e)
{

// Build a string to display information.
string orderInfo = "";
...
// Get ship date.
DateTime d = monthCalendar.SelectionStart;
string dateStr = string.Format("{0}/{1}/{2}", d.Month, d.Day, d.Year);
orderInfo += "Car will be sent: " + dateStr;
...

}

Notice that you can ask the MonthCalendar control for the currently selected date by using the
SelectionStart property. This property returns a DateTime reference, which you store in a local vari-
able. Using a handful of properties of the DateTime type, you can extract the information you need
in a custom format.

At this point, I assume the user will specify exactly one day on which to deliver the new auto-
mobile. However, what if you want to allow the user to select a range of possible shipping dates? In
that case, all the user needs to do is drag the cursor across the range of possible shipping dates. You
already have seen that you can obtain the start of the selection using the SelectionStart property.
The end of the selection can be determined using the SelectionEnd property. Here is the code update:

Figure 21-14. The MonthCalendar type

4193ch21.qxd 8/14/05 3:01 PM Page 720

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 721

private void btnOrder_Click (object sender, EventArgs e)
{

// Build a string to display information.
string orderInfo = "";
...
// Get ship date range....
DateTime startD = monthCalendar.SelectionStart;
DateTime endD = monthCalendar.SelectionEnd;
string dateStartStr =

string.Format("{0}/{1}/{2}", startD.Month, startD.Day, startD.Year);
string dateEndStr =

string.Format("{0}/{1}/{2}", endD.Month, endD.Day, endD.Year);

// The DateTime type supports overloaded operators!
if(dateStartStr != dateEndStr)
{

orderInfo += "Car will be sent between "
+ dateStartStr + " and\ n" + dateEndStr;

}
else // They picked a single date.

orderInfo += "Car will be sent on " + dateStartStr;
...

}

■Note The Windows Forms toolkit also provides the DateTimePicker control, which exposes a MonthCalendar
from a DropDown control.

Fun with ToolTips
As far as the CarConfig Form is concerned, we have one final point of interest. Most modern UIs
support tool tips. In the System.Windows.Forms namespace, the ToolTip type represents this func-
tionality. These widgets are simply small floating windows that display a helpful message when the
cursor hovers over a given item.

To illustrate, add a tool tip to the CarConfig’s Calendar type. Begin by dragging a new ToolTip
control from the Toolbox onto your Forms designer, and rename it to calendarTip. Using the Prop-
erties window, you are able to establish the overall look and feel of the ToolTip widget, for example:

private void InitializeComponent()
{
...

// calendarTip
//
this.calendarTip.IsBalloon = true;
this.calendarTip.ShowAlways = true;
this.calendarTip.ToolTipIcon = System.Windows.Forms.ToolTipIcon.Info;

...
}

To associate a ToolTip with a given control, select the control that should activate the ToolTip
and set the “ToolTip on” property (see Figure 21-15).

4193ch21.qxd 8/14/05 3:01 PM Page 721

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS722

At this point, the CarConfig project is complete. Figure 21-16 shows the ToolTip in action.

■Source Code The CarConfig project is included under the Chapter 21 directory.

Fun with TabControls
To illustrate the remaining “exotic” controls, you will build a new Form that maintains a TabControl.
As you may know, TabControls allow you to selectively hide or show pages of related GUI content
via clicking a given tab. To begin, create a new Windows Forms application named ExoticControls
and rename your initial Form to MainWindow.

Figure 21-15. Associating a ToolTip to a given widget

Figure 21-16. The ToolTip in action

4193ch21.qxd 8/14/05 3:01 PM Page 722

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 723

Next, add a TabControl onto the Forms designer and, using the Properties window, open the
page editor via the TabPages collection (just click the ellipsis button on the Properties window).
A dialog configuration tool displays. Add a total of six pages, setting each page’s Text and Name prop-
erties based on the completed TabControl shown in Figure 21-17.

Figure 21-17. A multipage TabControl

As you are designing your TabControl, be aware that each page is represented by a TabPage
object, which is inserted into the TabControl’s internal collection of pages. Once the TabControl has
been configured, this object (like any other GUI widget within a Form) is inserted into the Form’s
Controls collection. Consider the following partial InitializeComponent() method:

private void InitializeComponent()
{
...

// tabControlExoticControls
//
this.tabControlExoticControls.Controls.Add(this.pageTrackBars);
this.tabControlExoticControls.Controls.Add(this.pagePanels);
this.tabControlExoticControls.Controls.Add(this.pageUpDown);
this.tabControlExoticControls.Controls.Add(this.pageErrorProvider);
this.tabControlExoticControls.Controls.Add(this.pageTreeView);
this.tabControlExoticControls.Controls.Add(this.pageWebBrowser);
this.tabControlExoticControls.Location = new System.Drawing.Point(13, 13);
this.tabControlExoticControls.Name = "tabControlExoticControls";
this.tabControlExoticControls.SelectedIndex = 0;
this.tabControlExoticControls.Size = new System.Drawing.Size(463, 274);
this.tabControlExoticControls.TabIndex = 0;

...
this.Controls.Add(this.tabControlExoticControls);

}

Now that you have a basic Form supporting multiple tabs, you can build each page to illustrate
the remaining exotic controls. First up, let’s check out the role of the TrackBar.

■Note The TabControl widget supports Selected, Selecting, Deselected, and Deselecting events.
These can prove helpful when you need to dynamically generate the elements within a given page.

4193ch21.qxd 8/14/05 3:01 PM Page 723

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS724

Fun with TrackBars
The TrackBar control allows users to select from a range of values, using a scroll bar–like input
mechanism. When working with this type, you need to set the minimum and maximum range, the
minimum and maximum change increments, and the starting location of the slider’s thumb. Each
of these aspects can be set using the properties described in Table 21-6.

Table 21-6. TrackBar Properties

Properties Meaning in Life

LargeChange The number of ticks by which the TrackBar changes when an event
considered a large change occurs (e.g., clicking the mouse button while the
cursor is on the sliding range and using the Page Up or Page Down key).

Maximum Configure the upper and lower bounds of the TrackBar’s range.
Minimum

Orientation The orientation for this TrackBar. Valid values are from the Orientation
enumeration (i.e., horizontally or vertically).

SmallChange The number of ticks by which the TrackBar changes when an event
considered a small change occurs (e.g., using the arrow keys).

TickFrequency Indicates how many ticks are drawn. For a TrackBar with an upper limit of
200, it is impractical to draw all 200 ticks on a control 2 inches long. If you set
the TickFrequency property to 5, the TrackBar draws 20 total ticks (each tick
represents 5 units).

TickStyle Indicates how the TrackBar control draws itself. This affects both where the
ticks are drawn in relation to the movable thumb and how the thumb itself is
drawn (using the TickStyle enumeration).

Value Gets or sets the current location of the TrackBar. Use this property to obtain
the numeric value contained by the TrackBar for use in your application.

To illustrate, you’ll update the first tab of your TabControl with three TrackBars, each of which
has an upper range of 255 and a lower range of 0. As the user slides each thumb, the application
intercepts the Scroll event and dynamically builds a new System.Drawing.Color type based on the
value of each slider. This Color type will be used to display the color within a PictureBox widget
(named colorBox) and the RGB values within a Label type (named lblCurrColor). Figure 21-18
shows the (completed) first page in action.

Figure 21-18. The TrackBar page

4193ch21.qxd 8/14/05 3:01 PM Page 724

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 725

First, place three TrackBars onto the first tab using the Forms designer and rename your member
variables with an appropriate value (redTrackBar, greenTrackBar, and blueTrackBar). Next, handle the
Scroll event for each of your TrackBar controls. Here is the relevant code within InitializeComponent()
for blueTrackBar (the remaining bars look almost identical, with the exception of the name of the
Scroll event handler):

private void InitializeComponent()
{
...

//
// blueTrackBar
//
this.blueTrackBar.Maximum = 255;
this.blueTrackBar.Name = "blueTrackBar";
this.blueTrackBar.TickFrequency = 5;
this.blueTrackBar.TickStyle = System.Windows.Forms.TickStyle.TopLeft;
this.blueTrackBar.Scroll += new System.EventHandler(this.blueTrackBar_Scroll);

...
}

Note that the default minimum value of the TrackBar is 0 and thus does not need to be explicitly
set. In the Scroll event handlers for each TrackBar, you make a call to a yet-to-be-written helper
function named UpdateColor():

private void blueTrackBar_Scroll (object sender, EventArgs e)
{

UpdateColor();
}

UpdateColor() is responsible for two major tasks. First, you read the current value of each TrackBar
and use this data to build a new Color variable using Color.FromArgb(). Once you have the newly
configured color, update the PictureBox member variable (again, named colorBox) with the current
background color. Finally, UpdateColor() formats the thumb values in a string placed on the Label
(lblCurrColor), as shown here:

private void UpdateColor()
{

// Get the new color based on track bars.
Color c = Color.FromArgb(redTrackBar.Value,

greenTrackBar.Value, blueTrackBar.Value);
// Change the color in the PictureBox.
colorBox.BackColor = c;
// Set color label.
lblCurrColor.Text =

string.Format("Current color is: (R:{0}, G:{1}, B:{2})",
redTrackBar.Value, greenTrackBar.Value,
blueTrackBar.Value);

}

The final detail is to set the initial values of each slider when the Form comes to life and render
the current color, as shown here:

public MainWindow()
{

InitializeComponent();
CenterToScreen();
// Set initial position of each slider.
redTrackBar.Value = 100;
greenTrackBar.Value = 255;

4193ch21.qxd 8/14/05 3:01 PM Page 725

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS726

blueTrackBar.Value = 0;
UpdateColor();

}

Fun with Panels
As you saw earlier in this chapter, the GroupBox control can be used to logically bind a number of
controls (such as RadioButtons) to function as a collective. Closely related to the GroupBox is the
Panel control. Panels are also used to group related controls in a logical unit. One difference is that
the Panel type derives from the ScrollableControl class, thus it can support scroll bars, which is not
possible with a GroupBox.

Panels can also be used to conserve screen real estate. For example, if you have a group of con-
trols that takes up the entire bottom half of a Form, you can contain the group in a Panel that is half
the size and set the AutoScroll property to true. In this way, the user can use the scroll bar(s) to view
the full set of items. Furthermore, if a Panel’s BorderStyle property is set to None, you can use this
type to simply group a set of elements that can be easily shown or hidden from view in a manner
transparent to the end user.

To illustrate, let’s update the second page of the TabControl with two Button types (btnShowPanel
and btnHidePanel) and a single Panel that contains a pair of text boxes (txtNormalText and txtUpperText)
and an instructional Label. (Mind you, the widgets on the Panel are not terribly important for this
example.) Figure 21-19 shows the final GUI.

Figure 21-19. The TrackBar page

Using the Properties window, handle the TextChanged event for the first TextBox, and within
the generated event handler, place an uppercase version of the text entered within txtNormalText
into txtUpperText:

private void txtNormalText_TextChanged(object sender, EventArgs e)
{

txtUpperText.Text = txtNormalText.Text.ToUpper();
}

4193ch21.qxd 8/14/05 3:01 PM Page 726

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 727

Now, handle the Click event for each button. As you might suspect, you will simply hide or
show the Panel (and all of its contained UI elements):

private void btnShowPanel_Click(object sender, EventArgs e)
{

panelTextBoxes.Visible = true;
}
private void btnHidePanel_Click(object sender, EventArgs e)
{

panelTextBoxes.Visible = false;
}

If you now run your program and click either button, you will find that the Panel’s contents are
shown and hidden accordingly. While this example is hardly fascinating, I am sure you can see the
possibilities. For example, you may have a menu option (or security setting) that allows the user to
see a “simple” or “complex” view. Rather than having to manually set the Visible property to false
for multiple widgets, you can group them all within a Panel and set its Visible property accordingly.

Fun with the UpDown Controls
Windows Forms provide two widgets that function as spin controls (also known as up/down
controls). Like the ComboBox and ListBox types, these new items also allow the user to choose an
item from a range of possible selections. The difference is that when you’re using a DomainUpDown or
NumericUpDown control, the information is selected using a pair of small up and down arrows. For
example, check out Figure 21-20.

Figure 21-20. Working with UpDown types

Given your work with similar types, you should find working with the UpDown widgets painless.
The DomainUpDown widget allows the user to select from a set of string data. NumericUpDown allows
selections from a range of numeric data points. Each widget derives from a common direct base
class, UpDownBase. Table 21-7 describes some important properties of this class.

4193ch21.qxd 8/14/05 3:01 PM Page 727

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS728

Table 21-7. UpDownBase Properties

Property Meaning in Life

InterceptArrowKeys Gets or sets a value indicating whether the user can use the up arrow
and down arrow keys to select values

ReadOnly Gets or sets a value indicating whether the text can only be changed by
the use of the up and down arrows and not by typing in the control to
locate a given string

Text Gets or sets the current text displayed in the spin control

TextAlign Gets or sets the alignment of the text in the spin control

UpDownAlign Gets or sets the alignment of the up and down arrows on the spin
control, using the LeftRightAlignment enumeration

The DomainUpDown control adds a small set of properties (see Table 21-8) that allow you to con-
figure and manipulate the textual data in the widget.

Table 21-8. DomainUpDown Properties

Property Meaning in Life

Items Allows you to gain access to the set of items stored in the widget

SelectedIndex Returns the zero-based index of the currently selected item (a value of
–1 indicates no selection)

SelectedItem Returns the selected item itself (not its index)

Sorted Configures whether or not the strings should be alphabetized

Wrap Controls if the collection of items continues to the first or last item if
the user continues past the end of the list

The NumericUpDown type is just as simple (see Table 21-9).

Table 21-9. NumericUpDown Properties

Property Meaning in Life

DecimalPlaces Used to configure how the numerical data is to be displayed.
ThousandsSeparator
Hexadecimal

Increment Sets the numerical value to increment the value in the control when the
up or down arrow is clicked. The default is to advance the value by 1.

Minimum Sets the upper and lower limits of the value in the control.
Maximum

Value Returns the current value in the control.

Here is a partial InitializeComponent() that configures this page’s NumericUpDown and DomainUpDown
widgets:

private void InitializeComponent()
{
...

//
// numericUpDown
//

4193ch21.qxd 8/14/05 3:01 PM Page 728

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 729

...
this.numericUpDown.Maximum = new decimal(new int[] {

5000, 0, 0, 0});
this.numericUpDown.Name = "numericUpDown";
this.numericUpDown.ThousandsSeparator = true;
//
// domainUpDown
//
this.domainUpDown.Items.Add("Another Selection");
this.domainUpDown.Items.Add("Final Selection");
this.domainUpDown.Items.Add("Selection One");
this.domainUpDown.Items.Add("Third Selection");
this.domainUpDown.Name = "domainUpDown";
this.domainUpDown.Sorted = true;

...
}

The Click event handler for this page’s Button type simply asks each type for its current value
and places it in the appropriate Label (lblCurrSel) as a formatted string, as shown here:

private void btnGetSelections_Click (object sender, EventArgs e)
{

// Get info from updowns...
lblCurrSel.Text =

string.Format("String: {0}\nNumber: {1}",
domainUpDown.Text, numericUpDown.Value);

}

Fun with ErrorProviders
Most Windows Forms applications will need to validate user input in one way or another. This is
especially true with dialog boxes, as you should inform users if they make a processing error before
continuing forward. The ErrorProvider type can be used to provide a visual cue of user input error.
For example, assume you have a Form containing a TextBox and Button widget. If the user enters
more than five characters in the TextBox and the TextBox loses focus, the error information shown
in Figure 21-21 could be displayed.

Figure 21-21. The ErrorProvider in action

4193ch21.qxd 8/14/05 3:01 PM Page 729

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS730

Here, you have detected that the user entered more than five characters and responded by plac-
ing a small error icon (!) next to the TextBox object. When the user places his cursor over this icon,
the descriptive error text appears as a pop-up. Also, this ErrorProvider is configured to cause the
icon to blink a number of times to strengthen the visual cue (which, of course, you can’t see without
running the application).

If you wish to support this type of input validation, the first step is to understand the properties
of the Control class shown in Table 21-10.

Table 21-10. Control Properties

Property Meaning in Life

CausesValidation Indicates whether selecting this control causes validation on the
controls requiring validation

Validated Occurs when the control is finished performing its validation logic

Validating Occurs when the control is validating user input (e.g., when the control
loses focus)

Every GUI widget can set the CausesValidation property to true or false (the default is true). If
you set this bit of state data to true, the control forces the other controls on the Form to validate
themselves when it receives focus. Once a validating control has received focus, the Validating and
Validated events are fired for each control. In the scope of the Validating event handler, you con-
figure a corresponding ErrorProvider. Optionally, the Validated event can be handled to determine
when the control has finished its validation cycle.

The ErrorProvider type has a small set of members. The most important item for your purposes
is the BlinkStyle property, which can be set t any of the values of the ErrorBlinkStyle enumeration
described in Table 21-11.

Table 21-11. ErrorBlinkStyle Properties

Property Meaning in Life

AlwaysBlink Causes the error icon to blink when the error is first displayed or when
a new error description string is set for the control and the error icon is
already displayed

BlinkIfDifferentError Causes the error icon to blink only if the error icon is already displayed,
but a new error string is set for the control

NeverBlink Indicates the error icon never blinks

To illustrate, update the UI of the Error Provider page with a Button, TextBox, and Label as shown
in Figure 20-21. Next, drag an ErrorProvider widget named tooManyCharactersErrorProvider onto the
designer. Here is the configuration code within InitializeComponent():

private void InitializeComponent()
{
...

//
// tooManyCharactersErrorProvider
//
this.tooManyCharactersErrorProvider.BlinkRate = 500;
this.tooManyCharactersErrorProvider.BlinkStyle =

System.Windows.Forms.ErrorBlinkStyle.AlwaysBlink;

4193ch21.qxd 8/14/05 3:01 PM Page 730

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 731

this.tooManyCharactersErrorProvider.ContainerControl = this;
...
}

Once you have configured how the ErrorProvider looks and feels, you bind the error to the
TextBox within the scope of its Validating event handler, as shown here:

private void txtInput_Validating (object sender, CancelEventArgs e)
{

// Check if the text length is greater than 5.
if(txtInput.Text.Length > 5)
{

errorProvider1.SetError(txtInput, "Can't be greater than 5!");
}
else // Things are OK, don't show anything.

errorProvider1.SetError(txtInput, "");
}

Fun with TreeViews
TreeView controls are very helpful types in that they allow you to visually display hierarchical data
(such as a directory structure or any other type of parent/child relationship). As you would expect,
the Window Forms TreeView control can be highly customized. If you wish, you can add custom
images, node colors, node subcontrols, and other visual enhancements. (I’ll assume interested
readers will consult the .NET Framework 2.0 SDK documentation for full details of this widget.)

To illustrate the basic use of the TreeView, the next page of your TabControl will programmati-
cally construct a TreeView defining a series of topmost nodes that represent a set of Car types. Each
Car node has two subnodes that represent the selected car’s current speed and favorite radio station.
In Figure 21-22, notice that the selected item will be highlighted. Also note that if the selected node
has a parent (or sibling), its name is presented in a Label widget.

Figure 21-22. The TreeView in action

4193ch21.qxd 8/14/05 3:01 PM Page 731

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS732

Assuming your Tree View UI is composed of a TreeView control (named treeViewCars) and
a Label (named lblNodeInfo), insert a new C# file into your ExoticControls project that models
a trivial Car that has-a Radio:

namespace ExoticControls
{

class Car
{

public Car(string pn, int cs)
{

petName = pn;
currSp = cs;

}
public string petName;
public int currSp;
public Radio r;

}

class Radio
{

public double favoriteStation;
public Radio(double station)
{ favoriteStation = station; }

}
}

The Form-derived type will maintain a generic List<> (named listCars) of 100 Car types, which
will be populated in the default constructor of the MainForm type. As well, the constructor will call
a new helper method named BuildCarTreeView(), which takes no arguments and returns void. Here
is the initial update:

public partial class MainWindow : Form
{

// Create a new generic List to hold the Car objects.
private List<Car> listCars = new List<Car>();

public MainWindow()
{

...
// Fill List<> and build TreeView.
double offset = 0.5;
for (int x = 0; x < 100; x++)
{

listCars.Add(new Car(string.Format("Car {0}", x), 10 + x));
offset += 0.5;
listCars[x].r = new Radio(89.0 + offset);

}
BuildCarTreeView();

}
...

}

Note that the petName of each car is based on the current value of x (Car 0, Car 1, Car 2, etc.). As
well, the current speed is set by offsetting x by 10 (10 mph to 109 mph), while the favorite radio sta-
tion is established by offsetting the value 89.0 by 0.5 (90, 90.5, 91, 91.5, etc.).

4193ch21.qxd 8/14/05 3:01 PM Page 732

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 733

Now that you have a list of Cars, you need to map these values to nodes of the TreeView control.
The most important aspect to understand when working with the TreeView widget is that each top-
most node and subnode is represented by a System.Windows.Forms.TreeNode object, derived directly
from MarshalByRefObject. Here are some of the interesting properties of TreeNode:

public class TreeNode : MarshalByRefObject,
ICloneable, ISerializable

{
...

public Color BackColor { get; set; }
public bool Checked { get; set; }
public virtual ContextMenu ContextMenu { get; set; }
public virtual ContextMenuStrip ContextMenuStrip { get; set; }
public Color ForeColor { get; set; }
public int ImageIndex { get; set; }
public bool IsExpanded { get; }
public bool IsSelected { get; }
public bool IsVisible { get; }
public string Name { get; set; }
public TreeNode NextNode { get; }
public Font NodeFont { get; set; }
public TreeNodeCollection Nodes { get; }
public TreeNode PrevNode { get; }
public string Text { get; set; }
public string ToolTipText { get; set; }

...
}

As you can see, each node of a TreeView can be assigned images, colors, fonts, tool tips, and
context menus. As well, the TreeNode provides members to navigate to the next (or previous) TreeNode.
Given this, consider the initial implementation of BuildCarTreeView():

private void BuildCarTreeView()
{

// Don't paint the TreeView until all the nodes have been created.
treeViewCars.BeginUpdate();

// Clear the TreeView of any current nodes.
treeViewCars.Nodes.Clear();

// Add a TreeNode for each Car object in the List<>.
foreach (Car c in listCars)
{

// Add the current Car as a topmost node.
treeViewCars.Nodes.Add(new TreeNode(c.petName));

// Now, get the Car you just added to build
// two subnodes based on the speed and
// internal Radio object.
treeViewCars.Nodes[listCars.IndexOf(c)].Nodes.Add(

new TreeNode(string.Format("Speed: {0}",
c.currSp.ToString())));

treeViewCars.Nodes[listCars.IndexOf(c)].Nodes.Add(
new TreeNode(string.Format("Favorite Station: {0} FM",
c.r.favoriteStation)));

}

4193ch21.qxd 8/14/05 3:01 PM Page 733

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS734

// Now paint the TreeView.
treeViewCars.EndUpdate();

}

As you can see, the construction of the TreeView nodes are sandwiched between a call to
BeginUpdate() and EndUpdate(). This can be helpful when you are populating a massive TreeView
with a great many nodes, given that the widget will wait to display the items until you have finished
filling the Nodes collection. In this way, the end user does not see the gradual rendering of the
TreeView’s elements.

The topmost nodes are added to the TreeView simply by iterating over the generic List<> type
and inserting a new TreeNode object into the TreeView’s Nodes collection. Once a topmost node has
been added, you pluck it from the Nodes collection (via the type indexer) to add its subnodes (which
are also represented by TreeNode objects). As you might guess, if you wish to add subnodes to a cur-
rent subnode, simply populate its internal collection of nodes via the Nodes property.

The next task for this page of the TabControl is to highlight the currently selected node (via the
BackColor property) and display the selected item (as well as any parent or subnodes) within the
Label widget. All of this can be accomplished by handling the TreeView control’s AfterSelect event
via the Properties window. This event fires after the user has selected a node via a mouse click or
keyboard navigation. Here is the complete implementation of the AfterSelect event handler:

private void treeViewCars_AfterSelect(object sender, TreeViewEventArgs e)
{

string nodeInfo = "";

// Build info about selected node.
nodeInfo = string.Format("You selected: {0}\n", e.Node.Text);
if (e.Node.Parent != null)

nodeInfo += string.Format("Parent Node: {0}\n", e.Node.Parent.Text);
if (e.Node.NextNode != null)

nodeInfo += string.Format("Next Node: {0}", e.Node.NextNode.Text);

// Show info and highlight node.
lblNodeInfo.Text = nodeInfo;
e.Node.BackColor = Color.AliceBlue;

}

The incoming TreeViewEventArgs object contains a property named Node, which returns
a TreeNode object representing the current selection. From here, you are able to extract the node’s
name (via the Text property) as well as the parent and next node (via the Parent/NextNode proper-
ties). Note you are explicitly checking the TreeNode objects returned from Parent/NextNode for null,
in case the user has selected the first topmost node or the very last subnode (if you did not do this,
you might trigger a NullReferenceException).

Adding Node Images
To wrap up our examination of the TreeView type, let’s spruce up the current example by defining
three new *.bmp images that will be assigned to each node type. To do so, add a new ImageList
component (named imageListTreeView) to the designer of the MainForm type. Next, add three new
bitmap images to your project via the Project ➤ Add New Item menu selection (or make use of the
supplied *.bmp files within this book’s downloadable code) that represent (or at least closely approx-
imate) a car, radio, and “speed” image. Do note that each of these *.bmp files is 16×16 pixels (set via
the Properties window) so that they have a decent appearance within the TreeView.

Once you have created these image files, select the ImageList on your designer and populate
the Images property with each of these three images, ordered as shown in Figure 21-23, to ensure
you can assign the correct ImageIndex (0, 1, or 2) to each node.

4193ch21.qxd 8/14/05 3:01 PM Page 734

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 735

As you recall from Chapter 20, when you incorporate resources (such as bitmaps) into your
Visual Studio 2005 solutions, the underlying *.resx file is automatically updated. Therefore, these
images will be embedded into your assembly with no extra work on your part. Now, using the
Properties window, set the TreeView control’s ImageList property to your ImageList member variable
(see Figure 21-24).

Figure 21-23. Populating the ImageList

Figure 21-24. Associating the ImageList to the TreeView

Last but not least, update your BuildCarTreeView() method to specify the correct ImageIndex
(via constructor arguments) when creating each TreeNode:

private void BuildCarTreeView()
{
...

foreach (Car c in listCars)
{

treeViewCars.Nodes.Add(new TreeNode(c.petName, 0, 0));

treeViewCars.Nodes[listCars.IndexOf(c)].Nodes.Add(
new TreeNode(string.Format("Speed: {0}",
c.currSp.ToString()), 1, 1));

4193ch21.qxd 8/14/05 3:01 PM Page 735

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS736

treeViewCars.Nodes[listCars.IndexOf(c)].Nodes.Add(
new TreeNode(string.Format("Favorite Station: {0} FM",
c.r.favoriteStation), 2, 2));

}
...
}

Notice that you are specifying each ImageIndex twice. The reason for this is that a given TreeNode
can have two unique images assigned to it: one to display when unselected and another to display
when selected. To keep things simple, you are specifying the same image for both possibilities. In any
case, Figure 21-25 shows the updated TreeView type.

Figure 21-25. The TreeView with images

Fun with WebBrowsers
The final page of this example will make use of the System.Windows.Forms.WebBrowser widget, which
is new to .NET 2.0. This widget is a highly configurable mini web browser that may be embedded
into any Form-derived type. As you would expect, this control defines a Url property that can be set
to any valid URI, formally represented by the System.Uri type. On the Web Browser page, add
a WebBrowser (configured to your liking), a TextBox (to enter the URL), and a Button (to perform the
HTTP request). Figure 21-26 shows the runtime behavior of assigning the Url property to http://
www.intertechtraining.com (yes, a shameless promotion for the company I am employed with).

4193ch21.qxd 8/14/05 3:01 PM Page 736

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 737

The only necessary code to instruct the WebBrowser to display the incoming HTTP request form
data is to assign the Url property, as shown in the following Button Click event handler:

private void btnGO_Click(object sender, EventArgs e)
{

// Set URL based on value within page's TextBox control.
myWebBrowser.Url = new System.Uri(txtUrl.Text);

}

That wraps up our examination of the widgets of the System.Windows.Forms namespace. Although
I have not commented on each possible UI element, you should have no problem investigating the
others further on your own time. Next up, let’s look at the process of building custom Windows Forms
controls.

■Source Code The ExoticControls project is included under the Chapter 21 directory.

Building Custom Windows Forms Controls
The .NET platform provides a very simple way for developers to build custom UI elements. Unlike
(the now legacy) ActiveX controls, Windows Forms controls do not require vast amounts of COM
infrastructure or complex memory management. Rather, .NET developers simply build a new class
deriving from UserControl and populate the type with any number of properties, methods, and
events. To demonstrate this process, during the next several pages you’ll construct a custom control
named CarControl using Visual Studio 2005.

Figure 21-26. The WebBrowser showing the home page of Intertech Training

4193ch21.qxd 8/14/05 3:01 PM Page 737

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS738

■Note As with any .NET application, you are always free to build a custom Windows Forms control using nothing
more than the command-line compiler and a simple text editor. As you will see, custom controls reside in a *.dll
assembly; therefore, you may specify the /target:dll option of csc.exe.

To begin, fire up Visual Studio 2005 and select a new Windows Control Library workspace
named CarControlLibrary (see Figure 21-27).

Figure 21-27. Creating a new Windows Control Library workspace

When you are finished, rename the initial C# class to CarControl. Like a Windows Application
project workspace, your custom control is composed of two partial classes. The *.Designer.cs file
contains all of the designer-generated code, while your primary partial class definition defines a type
deriving from System.Windows.Forms.UserControl:

namespace CarControlLibrary
{

public partial class CarControl : UserControl
{

public CarControl()
{

InitializeComponent();
}

}
}

4193ch21.qxd 8/14/05 3:01 PM Page 738

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 739

Before we get too far along, let’s establish the big picture of where you are going with this exam-
ple. The CarControl type is responsible for animating through a series of bitmaps that will change
based on the internal state of the automobile. If the car’s current speed is safely under the car’s max-
imum speed limit, the CarControl loops through three bitmap images that render an automobile
driving safely along. If the current speed is 10 mph below the maximum speed, the CarControl
loops through four images, with the fourth image showing the car slowly breaking down. Finally, if
the car has surpassed its maximum speed, the CarControl loops over five images, where the fifth
image represents a doomed automobile.

Creating the Images
Given the preceding design notes, the first order of business is to create a set of five *.bmp files for
use by the animation loop. If you wish to create custom images, begin by activating the Project ➤
Add New Item menu selection and insert five new bitmap files. If you would rather not showcase
your artistic abilities, feel free to use the images that accompany this sample application (keep in
mind that I in no way consider myself a graphic artist!). The first of these three images (Lemon1.bmp,
Lemon2.bmp, and Lemon3.bmp) illustrates a car navigating down the road in a safe and orderly fashion.
The final two bitmap images (AboutToBlow.bmp and EngineBlown.bmp) represent a car approaching
its maximum upper limit and its ultimate demise.

Building the Design-Time UI
The next step is to leverage the design-time editor for the CarControl type. As you can see, you are
presented with a Form-like designer that represents the client area of the control under construction.
Using the Toolbox window, add an ImageList type to hold each of the bitmaps (named carImages),
a Timer type to control the animation cycle (named imageTimer), and a PictureBox to hold the current
image (named currentImage). Don’t worry about configuring the size or location of the PictureBox
type, as you will programmatically position this widget within the bounds of the CarControl. How-
ever, be sure to set the SizeMode property of the PictureBox to StretchImage via the Properties window.
Figure 21-28 shows the story thus far.

Figure 21-28. Creating the design-time GUI

4193ch21.qxd 8/14/05 3:01 PM Page 739

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS740

Now, using the Properties window, configure the ImageList’s Images collection by adding each
bitmap to the list. Be aware that you will want to add these items sequentially (Lemon1.bmp, Lemon2.bmp,
Lemon3.bmp, AboutToBlow.bmp, and EngineBlown.bmp) to ensure a linear animation cycle. Also be aware
that the default width and height of *.bmp files inserted by Visual Studio 2005 is 47×47 pixels.
Thus, the ImageSize of the ImageList should also be set to 47×47 (or else you will have with some
skewed rendering). Finally, configure the state of your Timer type such that the Interval property is
set to 200 and is initially disabled.

Implementing the Core CarControl
With this UI prep work out of the way, you can now turn to implementation of the type members. To
begin, create a new public enumeration named AnimFrames, which has a member representing each
item maintained by the ImageList. You will make use of this enumeration to determine the current
frame to render into the PictureBox:

// Helper enum for images.
public enum AnimFrames
{

Lemon1, Lemon2, Lemon3,
AboutToBlow, EngineBlown

}

The CarControl type maintains a good number of private data points to represent the animation
logic. Here is the rundown of each member:

public partial class CarControl : UserControl
{

// State data.
private AnimFrames currFrame = AnimFrames.Lemon1;
private AnimFrames currMaxFrame = AnimFrames.Lemon3;
private bool IsAnim;
private int currSp = 50;
private int maxSp = 100;
private string carPetName= "Lemon";
private Rectangle bottomRect = new Rectangle();

public CarControl()
{

InitializeComponent();
}

}

As you can see, you have data points that represent the current and maximum speed, the pet
name of the automobile, and two members of type AnimFrames. The currFrame variable is used to
specify which member of the ImageList is to be rendered. The currMaxFrame variable is used to mark
the current upper limit in the ImageList (recall that the CarControl loops through three to five images
based on the current speed). The IsAnim data point is used to determine if the car is currently in ani-
mation mode. Finally, you have a Rectangle member (bottomRect), which is used to represent the
bottom region of the CarControl type. Later, you render the pet name of the automobile into this
piece of control real estate.

To divide the CarControl into two rectangular regions, create a private helper function named
StretchBox(). The role of this member is to calculate the correct size of the bottomRect member and
to ensure that the PictureBox widget is stretched out over the upper two-thirds (or so) of the CarControl
type.

4193ch21.qxd 8/14/05 3:01 PM Page 740

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 741

private void StretchBox()
{

// Configure picture box.
currentImage.Top = 0;
currentImage.Left = 0;
currentImage.Height = this.Height - 50;
currentImage.Width = this.Width;
currentImage.Image =

carImages.Images[(int)AnimFrames.Lemon1];
// Figure out size of bottom rect.
bottomRect.X = 0;
bottomRect.Y = this.Height - 50;
bottomRect.Height = this.Height - currentImage.Height;
bottomRect.Width = this.Width;

}

Once you have carved out the dimensions of each rectangle, call StretchBox() from the default
constructor:

public CarControl()
{

InitializeComponent();
StretchBox();

}

Defining the Custom Events
The CarControl type supports two events that are fired back to the host Form based on the current
speed of the automobile. The first event, AboutToBlow, is sent out when the CarControl’s speed
approaches the upper limit. BlewUp is sent to the container when the current speed is greater than
the allowed maximum. Each of these events leverages a custom delegate (CarEventHandler) that can
hold the address of any method returning void and taking a single System.String as its parameter.
You’ll fire these events in just a moment, but for the time being, add the following members to the
public sector of the CarControl:

// Car events/custom delegate.
public delegate void CarEventHandler(string msg);
public event CarEventHandler AboutToBlow;
public event CarEventHandler BlewUp;

■Note Recall that a “prim and proper” delegate (see Chapter 8) would specify two arguments, the first of which
is a System.Object (to represent the sender), and the second of which is a System.EventArgs-derived type. For
this example, however, your delegate fits the bill.

Defining the Custom Properties
Like any class type, custom controls may define a set of properties to allow the outside world to
interact with the state of the widget. For your current purposes, you are interested only in defining
three properties. First, you have Animate. This property enables or disables the Timer type:

// Used to configure the internal Timer type.
public bool Animate
{

get {return IsAnim;}

4193ch21.qxd 8/14/05 3:01 PM Page 741

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS742

set
{

IsAnim = value;
imageTimer.Enabled = IsAnim;

}
}

The PetName property is what you would expect and requires little comment. Do notice, how-
ever, that when the user sets the pet name, you make a call to Invalidate() to render the name of
the CarControl into the bottom rectangular area of the widget (you’ll do this step in just a moment):

// Configure pet name.
public string PetName
{

get{return carPetName;}
set
{

carPetName = value;
Invalidate();

}
}

Next, you have the Speed property. In addition to simply modifying the currSp data member,
Speed is the entity that fires the AboutToBlow and BlewUp events based on the current speed of the
CarControl. Here is the complete logic:

// Adjust currSp and currMaxFrame, and fire our events.
public int Speed
{

get { return currSp; }
set
{

// Within safe speed?
if (currSp <= maxSp)
{

currSp = value;
currMaxFrame = AnimFrames.Lemon3;

}
// About to explode?
if ((maxSp - currSp) <= 10)
{

if (AboutToBlow != null)
{

AboutToBlow("Slow down dude!");
currMaxFrame = AnimFrames.AboutToBlow;

}
}
// Maxed out?
if (currSp >= maxSp)
{

currSp = maxSp;
if (BlewUp != null)
{

BlewUp("Ug...you're toast...");
currMaxFrame = AnimFrames.EngineBlown;

}
}

}
}

4193ch21.qxd 8/14/05 3:01 PM Page 742

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 743

As you can see, if the current speed is 10 mph below the maximum upper speed, you fire the
AboutToBlow event and adjust the upper frame limit to AnimFrames.AboutToBlow. If the user has
pushed the limits of your automobile, you fire the BlewUp event and set the upper frame limit to
AnimFrames.EngineBlown. If the speed is below the maximum speed, the upper frame limit remains
as AnimFrames.Lemon3.

Controlling the Animation
The next detail to attend to is ensuring that the Timer type advances the current frame to render
within the PictureBox. Again, recall that the number of frames to loop through depends on the cur-
rent speed of the automobile. You only want to bother adjusting the image in the PictureBox if the
Animate property has been set to true. Begin by handling the Tick event for the Timer type, and flesh
out the details as follows:

private void imageTimer_Tick(object sender, EventArgs e)
{

if(IsAnim)
currentImage.Image = carImages.Images[(int)currFrame];

// Bump frame.
int nextFrame = ((int)currFrame) + 1;
currFrame = (AnimFrames)nextFrame;
if (currFrame > currMaxFrame)

currFrame = AnimFrames.Lemon1;
}

Rendering the Pet Name
Before you can take your control out for a spin, you have one final detail to attend to: rendering the
car’s moniker. To do this, handle the Paint event for your CarControl, and within the handler, render
the CarControl’s pet name into the bottom rectangular region of the client area:

private void CarControl_Paint(object sender, PaintEventArgs e)
{

// Render the pet name on the bottom of the control.
Graphics g = e.Graphics;
g.FillRectangle(Brushes.GreenYellow, bottomRect);
g.DrawString(PetName, new Font("Times New Roman", 15),

Brushes.Black, bottomRect);
}

At this point, your initial crack at the CarControl is complete. Go ahead and build your project.

Testing the CarControl Type
When you run or debug a Windows Control Library project within Visual Studio 2005, the UserControl
Test Container (a managed replacement for the now legacy ActiveX Control Test Container) auto-
matically loads your control into its designer test bed. As you can see from Figure 21-29, this tool
allows you to set each custom property (as well as all inherited properties) for testing purposes.

4193ch21.qxd 8/14/05 3:01 PM Page 743

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS744

If you set the Animate property to true, you should see the CarControl cycle through the first
three *.bmp files. What you are unable to do with this testing utility, however, is handle events. To
test this aspect of your UI widget, you need to build a custom Form.

Building a Custom CarControl Form Host
As with all .NET types, you are now able to make use of your custom control from any language
targeting the CLR. Begin by closing down the current workspace and creating a new C# Windows
Application project named CarControlTestForm. To reference your custom controls from within the
Visual Studio 2005 IDE, right-click anywhere within the Toolbox window and select the Choose Item
menu selection. Using the Browse button on the .NET Framework Components tab, navigate to
your CarControlLibrary.dll library. Once you click OK, you will find a new icon on the Toolbox
named, of course, CarControl.

Next, place a new CarControl widget onto the Forms designer. Notice that the Animate, PetName,
and Speed properties are all exposed through the Properties window. Again, like the UserControl Test
Container, the control is “alive” at design time. Thus, if you set the Animate property to true, you will
find your car is animating on the Forms designer.

Once you have configured the initial state of your CarControl, add additional GUI widgets that
allow the user to increase and decrease the speed of the automobile, and view the string data sent
by the incoming events as well as the car’s current speed (Label controls will do nicely for these pur-
poses). One possible GUI design is shown in Figure 21-30.

Figure 21-29. Testing the CarControl with the UserControl Test Container

4193ch21.qxd 8/14/05 3:01 PM Page 744

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 745

Provided you have created a GUI identical to mine, the code within the Form-derived type is
quite straightforward (here I am assuming you have handled each of the CarControl events using
the Properties window):

public partial class MainForm : Form
{

public MainForm()
{

InitializeComponent();
lblCurrentSpeed.Text = string.Format("Current Speed: {0}",

this.myCarControl.Speed.ToString());
numericUpDownCarSpeed.Value = myCarControl.Speed;

}
private void numericUpDownCarSpeed_ValueChanged(object sender, EventArgs e)
{

// Assume the min of this NumericUpDown is 0 and max is 300.
this.myCarControl.Speed = (int)numericUpDownCarSpeed.Value;
lblCurrentSpeed.Text = string.Format("Current Speed: {0}",

this.myCarControl.Speed.ToString());
}
private void myCarControl_AboutToBlow(string msg)
{ lblEventData.Text = string.Format("Event Data: {0}", msg); }

private void myCarControl_BlewUp(string msg)
{ lblEventData.Text = string.Format("Event Data: {0}", msg); }

}

At this point, you are able to run your client application and interact with the CarControl. As you
can see, building and using custom controls is a fairly straightforward task, given what you already
know about OOP, the .NET type system, GDI+ (aka System.Drawing.dll), and Windows Forms.

While you now have enough information to continue exploring the process of .NET Windows
controls development, there is one additional programmatic aspect you have to contend with:
design-time functionality. Before I describe exactly what this boils down to, you’ll need to under-
stand the role of the System.ComponentModel namespace.

Figure 21-30. The client-side GUI

4193ch21.qxd 8/14/05 3:01 PM Page 745

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS746

The Role of the System.ComponentModel Namespace
The System.ComponentModel namespace defines a number of attributes (among other types) that
allow you to describe how your custom controls should behave at design time. For example, you
can opt to supply a textual description of each property, define a default event, or group related
properties or events into a custom category for display purposes within the Visual Studio 2005
Properties window. When you are interested in making the sorts of modifications previously men-
tioned, you will want to make use of the core attributes shown in Table 21-12.

Table 21-12. Select Members of System.ComponentModel

Attribute Applied To Meaning in Life

BrowsableAttribute Properties and events Specifies whether a property or an
event should be displayed in the
property browser. By default, all
custom properties and events can be
browsed.

CategoryAttribute Properties and events Specifies the name of the category in
which to group a property or event.

DescriptionAttribute Properties and events Defines a small block of text to be
displayed at the bottom of the
property browser when the user
selects a property or event.

DefaultPropertyAttribute Properties Specifies the default property for the
component. This property is selected
in the property browser when a user
selects the control.

DefaultValueAttribute Properties Defines a default value for a property
that will be applied when the control
is “reset” within the IDE.

DefaultEventAttribute Events Specifies the default event for the
component. When a programmer
double-clicks the control, stub code is
automatically written for the default
event.

Enhancing the Design-Time Appearance of CarControl
To illustrate the use of some of these new attributes, close down the CarControlTestForm project
and reopen your CarControlLibrary project. Let’s create a custom category called “Car Configuration”
to which each property and event of the CarControl belongs. Also, let’s supply a friendly description
for each member and default value for each property. To do so, simply update each of the properties
and events of the CarControl type to support the [Category], [DefaultValue], and [Description]
attributes as required:

public partial class CarControl : UserControl
{

...
[Category("Car Configuration"),
Description("Sent when the car is approaching terminal speed.")]
public event CarEventHandler AboutToBlow;
...
[Category("Car Configuration"),
Description("Name your car!"),
DefaultValue("Lemon")]

4193ch21.qxd 8/14/05 3:01 PM Page 746

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 747

public string PetName {...}
...
}

Now, let me make a comment on what it means to assign a default value to a property, because
I can guarantee you it is not what you would (naturally) assume. Simply put, the [DefaultValue]
attribute does not ensure that the underlying value of the data point wrapped by a given property
will be automatically initialized to the default value. Thus, although you specified a default value of
“No Name” for the PetName property, the carPetName member variable will not be set to “Lemon” unless
you do so via the type’s constructor or via member initialization syntax (as you have already done):

private string carPetName= "Lemon";

Rather, the [DefaultValue] attribute comes into play when the programmer “resets” the value
of a given property using the Properties window. To reset a property using Visual Studio 2005, select
the property of interest, right-click it, and select Reset. In Figure 21-31, notice that the [Description]
value appears in the bottom pane of the Properties window.

Figure 21-31. Resetting a property to the default value

The [Category] attribute will be realized only if the programmer selects the categorized view
of the Properties window (as opposed to the default alphabetical view) as shown in Figure 21-32.

Figure 21-32. The custom category

4193ch21.qxd 8/14/05 3:01 PM Page 747

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS748

Defining a Default Property and Default Event
In addition to describing and grouping like members into a common category, you may want to
configure your controls to support default behaviors. A given control may support a default prop-
erty. When you define the default property for a class using the [DefaultProperty] attribute as
follows:

//Mark the default property for this control.
[DefaultProperty("Animate")]
public partial class CarControl : UserControl
{...}

you ensure that when the user selects this control at design time, the Animate property is automati-
cally highlighted in the Properties window. Likewise, if you configure your control to have a default
event as follows:

// Mark the default event and property for this control.
[DefaultEvent("AboutToBlow"),
DefaultProperty("Animate")]
public partial class CarControl : UserControl
{...}

you ensure that when the user double-clicks the widget at design time, stub code is automatically
written for the default event (which explains why when you double-click a Button, the Click event is
automatically handled; when you double-click a Form, the Load event is automatically handled; and
so on).

Specifying a Custom Toolbox Bitmap
A final design-time bell-and-whistle any polished custom control should sport is a custom toolbox
bitmap image. Currently, when the user selects the CarControl, the IDE will show this type within
the Toolbox using the default “gear” icon. If you wish to specify a custom image, your first step is to
insert a new *.bmp file into your project (CarControl.bmp) that is configured to be 16×16 pixels in
size (established via the Width and Height properties). Here, I simply reused the Car image used in
the TreeView example.

Once you have created the image as you see fit, use the [ToolboxBitmap] attribute (which is
applied at the type level) to assign this image to your control. The first argument to the attribute’s
constructor is the type information for the control itself, while the second argument is the friendly
name of the *.bmp file.

[DefaultEvent("AboutToBlow"),
DefaultProperty("Animate"),
ToolboxBitmap(typeof(CarControl), "CarControl")]
public partial class CarControl : UserControl
{...}

The final step is to make sure you set the Build Action value of the control’s icon image to
Embedded Resource (via the Properties window) to ensure the image data is embedded within your
assembly (see Figure 21-33).

4193ch21.qxd 8/14/05 3:01 PM Page 748

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 749

■Note The reason you are manually embedding the *.bmp file (in contrast to when you make use of the
ImageList type) is that you are not assigning the CarControl.bmp file to a UI element at design time, therefore
the underlying *.resx file will not automatically update.

Once you recompile your Windows Controls library, you can now load your previous CarControlTest-
Form project. Right-click the current CarControl icon within the Toolbox and select Delete. Next, re-add
the CarControl widget to the Toolbox (by right-clicking and selecting Choose Items). This time, you
should see your custom toolbox bitmap (see Figure 21-34).

So, that wraps up our examination of the process of building custom Windows Forms controls.
I hope this example sparked your interest in custom control development. Here, I stuck with the
book’s automobile theme. Imagine, though, the usefulness of a custom control that will render a pie
chart based on the current inventory of a given table in a given database, or a control that extends
the functionality of standard UI widgets.

■Note If you are interested in learning more about developing custom Windows Forms controls, pick up a copy
of User Interfaces in C#: Windows Forms and Custom Controls, by Matthew MacDonald (Apress, 2002).

Figure 21-33. Embedding the image resource

Figure 21-34. The custom toolbox bitmap

4193ch21.qxd 8/14/05 3:01 PM Page 749

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS750

■Source Code The CarControlLibrary and CarControlTestForm projects are included under the Chapter 21
directory.

Building Custom Dialog Boxes
Now that you have a solid understanding of the core Windows Forms controls and the process of
building custom controls, let’s examine the construction of custom dialog boxes. The good news is
that everything you have already learned about Windows Forms applies directly to dialog box pro-
gramming. By and large, creating (and showing) a dialog box is no more difficult than inserting a new
Form into your current project.

There is no “Dialog” base class in the System.Windows.Forms namespace. Rather, a dialog box is
simply a stylized Form. For example, many dialog boxes are intended to be nonsizable, therefore you
will typically want to set the FormBorderStyle property to FormBorderStyle.FixedDialog. As well,
dialog boxes typically set the MinimizeBox and MaximizeBox properties to false. In this way, the dialog
box is configured to be a fixed constant. Finally, if you set the ShowInTaskbar property to false, you
will prevent the Form from being visible in the Windows XP task bar.

To illustrate the process of working with dialog boxes, create a new Windows application named
SimpleModalDialog. The main Form type supports a MenuStrip that contains a File ➤ Exit menu item
as well as Tools ➤ Configure. Build this UI now, and handle the Click event for the Exit and Enter
Message menu items. As well, define a string member variable in your main Form type (named
userMessage), and render this data within a Paint event handler of your main Form. Here is the cur-
rent code within the MainForm.cs file:

public partial class MainWindow : Form
{

private string userMessage = "Default Message";

public MainWindow()
{

InitializeComponent();
}

private void exitToolStripMenuItem_Click(object sender, EventArgs e)
{

Application.Exit();
}

private void configureToolStripMenuItem_Click(object sender, EventArgs e)
{

// We will implement this method in just a bit...
}

private void MainWindow_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
g.DrawString(userMessage, new Font("Times New Roman", 24), Brushes.DarkBlue,

50, 50);
}

}

Now add a new Form to your current project using the Project ➤ Add Windows Form menu
item named UserMessageDialog.cs. Set the ShowInTaskbar, MinimizeBox, and MaximizeBox properties
to false. Next, build a UI that consists of two Button types (for the OK and Cancel buttons), a single

4193ch21.qxd 8/14/05 3:01 PM Page 750

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 751

TextBox (to allow the user to enter her message), and an instructive Label. Figure 21-35 shows one
possible UI.

Finally, expose the Text value of the Form’s TextBox using a custom property named Message:

public partial class UserMessageDialog : Form
{

public UserMessageDialog()
{

InitializeComponent();
}

public string Message
{

set { txtUserInput.Text = value; }
get { return txtUserInput.Text; }

}
}

The DialogResult Property
As a final UI task, select the OK button on the Forms designer and find the DialogResult property.
Assign DialogResult.OK to your OK button and DialogResult.Cancel to your Cancel button. For-
mally, you can assign the DialogResult property to any value from the DialogResult enumeration:

public enum System.Windows.Forms.DialogResult
{

Abort, Cancel, Ignore, No,
None, OK, Retry, Yes

}

So, what exactly does it mean to assign a Button’s DialogResult value? This property can be
assigned to any Button type (as well as the Form itself) and allows the parent Form to determine
which button the end user selected. To illustrate, update the Tools ➤ Configure menu handler on
the MainForm type as so:

private void configureToolStripMenuItem_Click(object sender, EventArgs e)
{

// Create an instance of UserMessageDialog.
UserMessageDialog dlg = new UserMessageDialog();

// Place the current message in the TextBox.
dlg.Message = userMessage;

Figure 21-35. A custom dialog box

4193ch21.qxd 8/14/05 3:01 PM Page 751

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS752

// If user clicked OK button, render his message.
if (DialogResult.OK == dlg.ShowDialog())
{

userMessage = dlg.Message;
Invalidate();

}

// Have dialog clean up internal widgets now, rather
// than when the GC destroys the object.
dlg.Dispose();

}

Here, you are showing the UserMessageDialog via a call to ShowDialog(). This method will launch
the Form as a modal dialog box which, as you may know, means the user is unable to activate the
main form until she dismisses the dialog box. Once the user does dismiss the dialog box (by clicking
the OK or Cancel button), the Form is no longer visible, but it is still in memory. Therefore, you are
able to ask the UserMessageDialog instance (dlg) for its new Message value in the event the user has
clicked the OK button. If so, you render the new message. If not, you do nothing.

■Note If you wish to show a modeless dialog box (which allows the user to navigate between the parent and
dialog Forms), call Show() rather than ShowDialog().

Understanding Form Inheritance
One very appealing aspect of building dialog boxes under Windows Forms is form inheritance. As you
are no doubt aware, inheritance is the pillar of OOP that allows one class to extend the functionality of
another class. Typically, when you speak of inheritance, you envision one non-GUI type (e.g., SportsCar)
deriving from another non-GUI type (e.g., Car). However, in the world of Windows Forms, it is possi-
ble for one Form to derive from another Form and in the process inherit the base class’s widgets and
implementation.

Form-level inheritance is a very powerful technique, as it allows you to build a base Form that
provides core-level functionality for a family of related dialog boxes. If you were to bundle these
base-level Forms into a .NET assembly, other members of your team could extend these types using
the .NET language of their choice.

For the sake of illustration, assume you wish to subclass the UserMessageDialog to build a new
dialog box that also allows the user to specify if the message should be rendered in italics. To do so,
active the Project ➤ Add Windows Form menu item, but this time add a new Inherited Form named
ItalicUserMessageDialog.cs (see Figure 21-36).

4193ch21.qxd 8/14/05 3:01 PM Page 752

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 753

Once you select Add, you will be shown the inheritance picker utility, which allows you to choose
from a Form in your current project or select a Form in an external assembly via the Browse button.
For this example, select your existing UserMessageDialog type. You will find that your new Form type
extends your current dialog type rather than directly from Form. At this point, you are free to extend
this derived Form any way you choose. For test purposes, simply add a new CheckBox control (named
checkBoxItalic) that is exposed through a property named Italic:

public partial class ItalicUserMessageDialog :
SimpleModalDialog.UserMessageDialog

{
public ItalicUserMessageDialog()
{

InitializeComponent();
}
public bool Italic
{

set { checkBoxItalic.Checked = value; }
get { return checkBoxItalic.Checked; }

}
}

Now that you have subclassed the basic UserMessageDialog type, update your MainForm to
leverage the new Italic property. Simply add a new Boolean member variable that will be used to
build an italic Font object, and update your Tools ➤ Configure Click menu handler to make use of
ItalicUserMessageDialog. Here is the complete update:

public partial class MainWindow : Form
{

private string userMessage = "Default Message";
private bool textIsItalic = false;

...
private void configureToolStripMenuItem_Click(object sender, EventArgs e)

Figure 21-36. A derived Form

4193ch21.qxd 8/14/05 3:01 PM Page 753

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS754

{
ItalicUserMessageDialog dlg = new ItalicUserMessageDialog();
dlg.Message = userMessage;
dlg.Italic = textIsItalic;

// If user clicked OK button, render his message.
if (DialogResult.OK == dlg.ShowDialog())
{

userMessage = dlg.Message;
textIsItalic = dlg.Italic;
Invalidate();

}
// Have dialog clean up internal widgets now, rather
// than when the GC destroys the object.
dlg.Dispose();

}

private void MainWindow_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
Font f = null;
if(textIsItalic)

f = new Font("Times New Roman", 24, FontStyle.Italic);
else

f = new Font("Times New Roman", 24);
g.DrawString(userMessage, f, Brushes.DarkBlue,

50, 50);
}

}

■Source Code The SimpleModalDialog application is included under the Chapter 21 directory.

Dynamically Positioning Windows Forms Controls
To wrap up this chapter, let’s examine a few techniques you can use to control the layout of widgets
on a Form. By and large, when you build a Form type, the assumption is that the controls are rendered
using absolute position, meaning that if you placed a Button on your Forms designer 10 pixels down
and 10 pixels over from the upper left portion of the Form, you expect the Button to stay put during
its lifetime.

On a related note, when you are creating a Form that contains UI controls, you need to decide
whether the Form should be resizable. Typically speaking, main windows are resizable, whereas dia-
log boxes are not. Recall that the resizability of a Form is controlled by the FormBorderStyle property,
which can be set to any value of the FormBorderStyle enum.

public enum System.Windows.Forms.FormBorderStyle
{

None, FixedSingle, Fixed3D,
FixedDialog, Sizable,
FixedToolWindow, SizableToolWindow

}

Assume that you have allowed your Form to be resizable. This brings up some interesting questions
regarding the contained controls. For example, if the user makes the Form smaller than the rectangle
needed to display each control, should the controls adjust their size (and possibly location) to morph

4193ch21.qxd 8/14/05 3:01 PM Page 754

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 755

The Anchor Property
In Windows Forms, the Anchor property is used to define a relative fixed position in which the con-
trol should always be rendered. Every Control-derived type has an Anchor property, which can be
set to any of the values from the AnchorStyles enumeration described in Table 21-13.

Table 21-13. AnchorStylesValues

Value Meaning in Life

Bottom The control’s bottom edge is anchored to the bottom edge of its container.

Left The control’s left edge is anchored to the left edge of its container.

None The control is not anchored to any edges of its container.

Right The control’s right edge is anchored to the right edge of its container.

Top The control’s top edge is anchored to the top edge of its container.

To anchor a widget at the upper-left corner, you are free to OR styles together (e.g., AnchorStyles.Top
➤ AnchorStyles.Left). Again, the idea behind the Anchor property is to configure which edges of the
control are anchored to the edges of its container. For example, if you configure a Button with
the following Anchor value:

// Anchor this widget relative to the right position.
myButton.Anchor = AnchorStyles.Right;

you are ensured that as the Form is resized, this Button maintains its position relative to the right
side of the Form.

The Dock Property
Another aspect of Windows Forms programming is establishing the docking behavior of your controls.
If you so choose, you can set a widget’s Dock property to configure which side (or sides) of a Form the
widget should be attached to. The value you assign to a control’s Dock property is honored, regardless
of the Form’s current dimensions. Table 21-14 describes possible options.

Table 21-14. DockStyleValues

Value Meaning in Life

Bottom The control’s bottom edge is docked to the bottom of its containing control.

Fill All the control’s edges are docked to all the edges of its containing control and sized
appropriately.

Left The control’s left edge is docked to the left edge of its containing control.

None The control is not docked.

Right The control’s right edge is docked to the right edge of its containing control.

Top The control’s top edge is docked to the top of its containing control.

So, for example, if you want to ensure that a given widget is always docked on the left side of
a Form, you would write the following:

// This item is always located on the left of the Form, regardless
// of the Form's current size.
myButton.Dock = DockStyle.Left;

4193ch21.qxd 8/14/05 3:01 PM Page 755

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS756

To help you understand the implications of setting the Anchor and Dock properties, the down-
loadable code for this book contains a project named AnchoringControls. Once you build and run
this application, you can make use of the Form’s menu system to set various AnchorStyles and
DockStyle values and observe the change in behavior of the Button type (see Figure 21-37).

Be sure to resize the Form when changing the Anchor property to observe how the Button
responds.

■Source Code The AnchoringControls application is included under the Chapter 21 directory.

Table and Flow Layout
.NET 2.0 offers an additional way to control the layout of a Form’s widgets using one of two layout
managers. The TableLayoutPanel and FlowLayoutPanel types can be docked into a Form’s client area
to arrange the internal controls. For example, assume you place a new FlowLayoutPanel widget onto
the Forms designer and configure it to dock fully within the parent Form (see Figure 21-38).

Figure 21-37. The AnchoringControls application

Figure 21-38. Docking a FlowLayoutPanel into a Form

Now, add ten new Button types within the FlowLayoutPanel using the Forms designer. If you
now run your application, you will notice that the ten Buttons automatically rearrange themselves
in a manner very close to standard HTML.

4193ch21.qxd 8/14/05 3:01 PM Page 756

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS 757

On the other hand, if you create a Form that contains a TableLayoutPanel, you are able to build
a UI that is partitioned into various “cells” (see Figure 21-39).

If you select the Edit Rows and Columns inline menu option using the Forms designer (as
shown in Figure 21-39), you are able to control the overall format of the TableLayoutPanel on a cell-
by-cell basis (see Figure 21-40).

Truth be told, the only way to see the effects of the TableLayoutPanel type is to do so in a hands-
on manner. I’ll let interested readers handle that task.

Figure 21-39. The TableLayoutPanel type

Figure 21-40. Configuring the cells of the TableLayoutPanel type

4193ch21.qxd 8/14/05 3:01 PM Page 757

CHAPTER 21 ■ PROGRAMMING WITH WINDOWS FORMS CONTROLS758

Summary
This chapter rounded off your understanding of the Windows Forms namespace by examining the pro-
gramming of numerous GUI widgets, from the simple (e.g., Label) to the more exotic (e.g., TreeView).
After examining numerous control types, you moved on to cover the construction of custom controls,
including the topic of design-time integration.

In the latter half of this chapter, you learned how to build custom dialog boxes and how to derive
a new Form from an existing Form type using form inheritance. This chapter concluded by briefly
exploring the various anchoring and docking behaviors you can use to enforce a specific layout of
your GUI types, as well as the new .NET 2.0 layout managers.

4193ch21.qxd 8/14/05 3:01 PM Page 758

Database Access with ADO.NET

Unless you are a video game developer by trade, you are probably interested in the topic of data-
base access. As you would expect, the .NET platform defines a number of namespaces that allow
you to interact with local and remote data stores. Collectively speaking, these namespaces are
known as ADO.NET.

In this chapter, once I frame the overall role of ADO.NET (in the next section), I’ll move on to
discuss the topic of ADO.NET data providers. The .NET platform supports numerous data providers,
each of which is optimized to communicate with a specific database management system (Microsoft
SQL Server, Oracle, MySQL, etc.). After you understand how to manipulate a specific data provider,
you will then examine the new data provider factory pattern offered by .NET 2.0. Using types within
the System.Data.Common namespace (and a related app.config file), you are able to build a single
code base that can dynamically pick and choose the underlying data provider without the need to
recompile or redeploy the application’s code base.

The remaining part of this chapter examines how to programmatically interact with relational
databases using your data provider of choice. As you will see, ADO.NET provides two distinct ways
to interface with a data source, often termed the connected layer and disconnected layer. You will
come to know the role of connection objects, command objects, data readers, data adapters,
and numerous types within the System.Data namespace (specifically, DataSet, DataTable, DataRow,
DataColumn, DataView, and DataRelation).

A High-Level Definition of ADO.NET
If you have a background in Microsoft’s previous COM-based data access model (Active Data Objects,
or ADO), understand that ADO.NET has very little to do with ADO beyond the letters “A,” “D,” and
“O.” While it is true that there is some relationship between the two systems (e.g., each has the con-
cept of connection and command objects), some familiar ADO types (e.g., the Recordset) no longer
exist. Furthermore, there are a number of new ADO.NET types that have no direct equivalent under
classic ADO (e.g., the data adapter).

Unlike classic ADO, which was primarily designed for tightly coupled client/server systems,
ADO.NET was built with the disconnected world in mind, using DataSets. This type represents a local
copy of any number of related tables. Using the DataSet, the client tier is able to manipulate and
update its contents while disconnected from the data source, and it can submit the modified data
back for processing using a related data adapter.

Another major difference between classic ADO and ADO.NET is that ADO.NET has deep support
for XML data representation. In fact, the data obtained from a data store is serialized (by default) as
XML. Given that XML is often transported between layers using standard HTTP, ADO.NET is not limited
by firewall constraints.

759

C H A P T E R 2 2

■ ■ ■

4193ch22.qxd 8/14/05 3:03 PM Page 759

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET760

■Note As of .NET 2.0, DataSets (and DataTables) can now be serialized in a binary format via the RemotingFormat
property. This can be helpful when building distributed systems using the .NET remoting layer (see Chapter 18), as
binary data is much more compact than XML data.

Perhaps the most fundamental difference between classic ADO and ADO.NET is that ADO.NET
is a managed library of code, therefore it plays by the same rules as any managed library. The types
that make up ADO.NET use the CLR memory management protocol, adhere to the same type system
(classes, interfaces, enums, structures, and delegates), and can be accessed by any .NET language.

The Two Faces of ADO.NET
The ADO.NET libraries can be used in two conceptually unique manners: connected or discon-
nected. When you are making use of the connected layer, your code base will explicitly connect to
and disconnect from the underlying data store. When you are using ADO.NET in this manner, you
typically interact with the data store using connection objects, command objects, and data reader
objects. As you will see later in this chapter, data readers provide a way to pull records from a data
store using a forward-only, read-only approach (much like a fire-hose cursor).

The disconnected layer, on the other hand, allows you to obtain a set of DataTable objects
(contained within a DataSet) that functions as a client-side copy of the external data. When you
obtain a DataSet using a related data adapter object, the connection is automatically opened and
closed on your behalf. As you would guess, this approach helps quickly free up connections for
other callers. Once the client receives a DataSet, it is able to traverse and manipulate the contents
without incurring the cost of network traffic. As well, if the client wishes to submit the changes back
to the data store, the data adapter (in conjunction with a set of SQL statements) is used once again
to update the data source, at which point the connection is closed immediately.

Understanding ADO.NET Data Providers
ADO.NET does not provide a single set of types that communicate with multiple database manage-
ment systems (DBMSs). Rather, ADO.NET supports multiple data providers, each of which is optimized
to interact with a specific DBMS. The first benefit of this approach is that a specific data provider
can be programmed to access any unique features of the DBMS. Another benefit is that a specific
data provider is able to directly connect to the underlying engine of the DBMS without an interme-
diate mapping layer standing between the tiers.

Simply put, a data provider is a set of types defined in a given namespace that understand how
to communicate with a specific data source. Regardless of which data provider you make use of,
each defines a set of class types that provide core functionality. Table 22-1 documents some (but not
all) of the core common objects, their base class (all defined in the System.Data.Common namespace),
and their implemented data-centric interfaces (each defined in the System.Data namespace).

4193ch22.qxd 8/14/05 3:03 PM Page 760

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 761

Table 22-1. Core Objects of an ADO.NET Data Provider

Object Base Class Implemented Interfaces Meaning in Life

Connection DbConnection IDbConnection Provides the ability to
connect to and
disconnect from the
data store. Connection
objects also provide
access to a related
transaction object.

Command DbCommand IDbCommand Represents a SQL query
or name of a stored
procedure. Command
objects also provide
access to the provider’s
data reader object.

DataReader DbDataReader IDataReader, IDataRecord Provides forward-only,
read-only access to data.

DataAdapter DbDataAdapter IDataAdapter, IDbDataAdapter Transfers DataSets
between the caller and
the data store. Data
adapters contain a set of
four internal command
objects used to select,
insert, update, and
delete information from
the data store.

Parameter DbParameter IDataParameter, Represents a named
IDbDataParameter parameter within

a parameterized query.

Transaction DbTransaction IDbTransaction Performs a database
transaction.

Although the names of these types will differ among data providers (e.g., SqlConnection versus
OracleConnection versus OdbcConnection versus MySqlConnection), each object derives from the same
base class that implements identical interfaces. Given this, you are correct to assume that once you
learn how to work with one data provider, the remaining providers are quite straightforward.

■Note As a naming convention, the objects in a specific data provider are prefixed with the name of the related DBMS.

Figure 22-1 illustrates the big picture behind ADO.NET data providers. Note that in the diagram,
the “Client Assembly” can literally be any type of .NET application: console program, Windows Forms
application, ASP.NET web page, XML web service, .NET code library, and so on.

4193ch22.qxd 8/14/05 3:03 PM Page 761

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET762

Figure 22-1. ADO.NET data providers provide access to a given DBMS.

Now, to be sure, a data provider will supply you with other types beyond the objects shown in
Figure 22-1. However, these core objects define a common baseline across all data providers.

Microsoft-Supplied Data Providers
As of version 2.0, Microsoft’s .NET distribution ships with numerous data providers, including a provider
for Oracle, SQL Server, and ODBC-style connectivity. Table 22-2 documents the namespace and
containing assembly for each Microsoft ADO.NET data provider.

Table 22-2. Microsoft ADO.NET Data Providers

Data Provider Namespace Assembly

OLE DB System.Data.OleDb System.Data.dll

Microsoft SQL Server System.Data.SqlClient System.Data.dll

Microsoft SQL Server Mobile System.Data.SqlServerCe System.Data.SqlServerCe.dll

ODBC System.Data.Odbc System.Data.dll

Oracle System.Data.OracleClient System.Data.OracleClient.dll

■Note There is no specific data provider that maps directly to the Jet engine (and therefore Microsoft Access). If
you wish to interact with an Access data file, you can do so using the OLE DB or ODBC data provider.

4193ch22.qxd 8/14/05 3:03 PM Page 762

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 763

The OLE DB data provider, which is composed of the types defined in the System.Data.OleDb
namespace, allows you to access data located in any data store that supports the classic COM-based
OLE DB protocol. Using this provider, you may communicate with any OLE DB–compliant database
simply by tweaking the “Provider” segment of your connection string. Be aware, however, that the
OLE DB provider interacts with various COM objects behind the scenes, which can affect the per-
formance of your application. By and large, the OLE DB data provider is only useful if you are
interacting with a DBMS that does not define a specific .NET data provider.

The Microsoft SQL Server data provider offers direct access to Microsoft SQL Server data stores,
and only SQL Server data stores (version 7.0 and greater). The System.Data.SqlClient namespace
contains the types used by the SQL Server provider and offers the same basic functionality as the
OLE DB provider. The key difference is that the SQL Server provider bypasses the OLE DB layer and
thus gives numerous performance benefits. As well, the Microsoft SQL Server data provider allows
you to gain access to the unique features of this particular DBMS.

■Note If you are interested in making use of the System.Data.SqlServerCe, System.Data.Odbc, or System.
Data.Oracle namespaces, check out the details as you see fit using the .NET Framework 2.0 SDK documentation.

Select Third-Party Data Providers
In addition to the data providers that ship from Microsoft, numerous third-party data providers
exist for various open source and commercial databases. Table 22-3 documents where to obtain
managed providers for several databases that do not directly ship with Microsoft .NET 2.0 (please
note that the provided URLs are subject to change).

Table 22-3. Third-Party ADO.NET Data Providers

Data Provider Website

Firebird Interbase http://www.mono-project.com/Firebird_Interbase

IBM DB2 Universal Database http://www-306.ibm.com/software/data/db2

MySQL http://dev.mysql.com/downloads/connector/net/1.0.html

PostgreSQL http://www.mono-project.com/PostgreSQL

Sybase http://www.mono-project.com/Sybase

■Note Given the large number of ADO.NET data providers, the examples in this chapter will make use of the
Microsoft SQL Server data provider (System.Data.SqlClient). If you intend to use ADO.NET to interact with
another DBMS, you should have no problem doing so once you understand the material presented in the pages
that follow.

Additional ADO.NET Namespaces
In addition to the .NET namespaces that define the types of a specific data provider, the base class
libraries provide a number of additional ADO.NET-centric namespaces, as shown in Table 22-4.

4193ch22.qxd 8/14/05 3:03 PM Page 763

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET764

Table 22-4. Additional ADO.NET-centric Namespaces

Namespace Meaning in Life

Microsoft.SqlServer.Server This new .NET 2.0 namespace provides types that allow you to
author stored procedures via managed languages for SQL Server
2005.

System.Data This namespace defines the core ADO.NET types used by all data
providers.

System.Data.Common This namespace contains types shared between data providers,
including the .NET 2.0 data provider factory types.

System.Data.Design This new .NET 2.0 namespace contains various types used to
construct a design-time appearance for custom data
components.

System.Data.Sql This new .NET 2.0 namespace contains types that allow you to
discover Microsoft SQL Server instances installed on the current
local network.

System.Data.SqlTypes This namespace contains native data types used by Microsoft
SQL Server. Although you are always free to use the corresponding
CLR data types, the SqlTypes are optimized to work with SQL
Server.

Do understand that this chapter will not examine each and every type within each and every
ADO.NET namespace (that task would require a large book in and of itself). However, it is quite
important for you to understand the types within the System.Data namespace.

The System.Data Types
Of all the ADO.NET namespaces, System.Data is the lowest common denominator. You simply cannot
build ADO.NET applications without specifying this namespace in your data access applications.
This namespace contains types that are shared among all ADO.NET data providers, regardless of the
underlying data store. In addition to a number of database-centric exceptions (NoNullAllowedException,
RowNotInTableException, MissingPrimaryKeyException, and the like), System.Data contains types that
represent various database primitives (tables, rows, columns, constraints, etc.), as well as the com-
mon interfaces implemented by data provider objects. Table 22-5 lists some of the core types to be
aware of.

Table 22-5. Core Members of the System.Data Namespace

Type Meaning in Life

Constraint Represents a constraint for a given DataColumn object

DataColumn Represents a single column within a DataTable object

DataRelation Represents a parent/child relationship between two DataTable objects

DataRow Represents a single row within a DataTable object

DataSet Represents an in-memory cache of data consisting of any number of
interrelated DataTable objects

DataTable Represents a tabular block of in-memory data

DataTableReader Allows you to treat a DataTable as a fire-hose cursor (forward only, read-only
data access); new in .NET 2.0

4193ch22.qxd 8/14/05 3:03 PM Page 764

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 765

Type Meaning in Life

DataView Represents a customized view of a DataTable for sorting, filtering, searching,
editing, and navigation

IDataAdapter Defines the core behavior of a data adapter object

IDataParameter Defines the core behavior of a parameter object

IDataReader Defines the core behavior of a data reader object

IDbCommand Defines the core behavior of a command object

IDbDataAdapter Extends IDataAdapter to provide additional functionality of a data adapter
object

IDbTransaction Defines the core behavior of a transaction object

Later in this chapter, you will get to know the role of the DataSet and its related cohorts
(DataTable, DataRelation, DataRow, etc.). However, your next task is to examine the core interfaces
of System.Data at a high level, to better understand the common functionality offered by any data
provider. You will learn specific details throughout this chapter, so for the time being let’s simply
focus on the overall behavior of each interface type.

The Role of the IDbConnection Interface
First up is the IDbConnection type, which is implemented by a data provider’s connection object.
This interface defines a set of members used to configure a connection to a specific data store, and
it also allows you to obtain the data provider’s transactional object. Here is the formal definition of
IDbConnection:

public interface IDbConnection : IDisposable
{

string ConnectionString { get; set; }
int ConnectionTimeout { get; }
string Database { get; }
ConnectionState State { get; }
IDbTransaction BeginTransaction();
IDbTransaction BeginTransaction(IsolationLevel il);
void ChangeDatabase(string databaseName);
void Close();
IDbCommand CreateCommand();
void Open();

}

The Role of the IDbTransaction Interface
As you can see, the overloaded BeginTransaction() method defined by IDbConnection provides
access to the provider’s transaction object. Using the members defined by IDbTransaction, you are
able to programmatically interact with a transactional session and the underlying data store:

public interface IDbTransaction : IDisposable
{

IDbConnection Connection { get; }
IsolationLevel IsolationLevel { get; }
void Commit();
void Rollback();

}

4193ch22.qxd 8/14/05 3:03 PM Page 765

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET766

The Role of the IDbCommand Interface
Next, we have the IDbCommand interface, which will be implemented by a data provider’s command
object. Like other data access object models, command objects allow programmatic manipulation
of SQL statements, stored procedures, and parameterized queries. In addition, command objects
provide access to the data provider’s data reader type via the overloaded ExecuteReader() method:

public interface IDbCommand : IDisposable
{

string CommandText { get; set; }
int CommandTimeout { get; set; }
CommandType CommandType { get; set; }
IDbConnection Connection { get; set; }
IDataParameterCollection Parameters { get; }
IDbTransaction Transaction { get; set; }
UpdateRowSource UpdatedRowSource { get; set; }
void Cancel();
IDbDataParameter CreateParameter();
int ExecuteNonQuery();
IDataReader ExecuteReader();
IDataReader ExecuteReader(CommandBehavior behavior);
object ExecuteScalar();
void Prepare();

}

The Role of the IDbDataParameter and IDataParameter Interfaces
Notice that the Parameters property of IDbCommand returns a strongly typed collection that implements
IDataParameterCollection. This interface provides access to a set of IDbDataParameter-compliant
class types (e.g., parameter objects):

public interface IDbDataParameter : IDataParameter
{

byte Precision { get; set; }
byte Scale { get; set; }
int Size { get; set; }

}

IDbDataParameter extends the IDataParameter interface to obtain the following additional
behaviors:

public interface IDataParameter
{

DbType DbType { get; set; }
ParameterDirection Direction { get; set; }
bool IsNullable { get; }
string ParameterName { get; set; }
string SourceColumn { get; set; }
DataRowVersion SourceVersion { get; set; }
object Value { get; set; }

}

As you will see, the functionality of the IDbDataParameter and IDataParameter interfaces allows
you to represent parameters within a SQL command (including stored procedures) via specific
ADO.NET parameter objects rather than hard-coded string literals.

4193ch22.qxd 8/14/05 3:03 PM Page 766

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 767

The Role of the IDbDataAdapter and IDataAdapter Interfaces
Data adapters are used to push and pull DataSets to and from a given data store. Given this, the
IDbDataAdapter interface defines a set of properties that are used to maintain the SQL statements
for the related select, insert, update, and delete operations:

public interface IDbDataAdapter : IDataAdapter
{

IDbCommand DeleteCommand { get; set; }
IDbCommand InsertCommand { get; set; }
IDbCommand SelectCommand { get; set; }
IDbCommand UpdateCommand { get; set; }

}

In addition to these four properties, an ADO.NET data adapter also picks up the behavior
defined in the base interface, IDataAdapter. This interface defines the key function of a data adapter
type: the ability to transfer DataSets between the caller and underlying data store using the Fill()
and Update() methods.

As well, the IDataAdapter interface allows you to map database column names to more user-
friendly display names via the TableMappings property:

public interface IDataAdapter
{

MissingMappingAction MissingMappingAction { get; set; }
MissingSchemaAction MissingSchemaAction { get; set; }
ITableMappingCollection TableMappings { get; }
int Fill(System.Data.DataSet dataSet);
DataTable[] FillSchema(DataSet dataSet, SchemaType schemaType);
IDataParameter[] GetFillParameters();
int Update(DataSet dataSet);

}

The Role of the IDataReader and IDataRecord Interfaces
The next key interface to be aware of is IDataReader, which represents the common behaviors
supported by a given data reader object. When you obtain an IDataReader-compatible type from an
ADO.NET data provider, you are able to iterate over the result set in a forward-only, read-only manner.

public interface IDataReader : IDisposable, IDataRecord
{

int Depth { get; }
bool IsClosed { get; }
int RecordsAffected { get; }
void Close();
DataTable GetSchemaTable();
bool NextResult();
bool Read();

}

Finally, as you can see, IDataReader extends IDataRecord, which defines a good number of
members that allow you to extract a strongly typed value from the stream, rather than casting the
generic System.Object retrieved from the data reader’s overloaded indexer method. Here is a partial
listing of the various GetXXX() methods defined by IDataRecord (see the .NET Framework 2.0 SDK
documentation for a complete listing):

4193ch22.qxd 8/14/05 3:03 PM Page 767

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET768

public interface IDataRecord
{

int FieldCount { get; }
object this[string name] { get; }
object this[int i] { get; }
bool GetBoolean(int i);
byte GetByte(int i);
char GetChar(int i);
DateTime GetDateTime(int i);
Decimal GetDecimal(int i);
float GetFloat(int i);
short GetInt16(int i);
int GetInt32(int i);
long GetInt64(int i);

...
bool IsDBNull(int i);

}

■Note The IDataReader.IsDBNull() method can be used to programmatically discover if a specified field is
set to null before obtaining a value from the data reader (to avoid triggering a runtime exception).

Abstracting Data Providers Using Interfaces
At this point, you should have a better idea of the common functionality found among all .NET data
providers. Recall that even though the exact names of the implementing types will differ among
data providers, you are able to program against these types in a similar manner—that’s the beauty
of interface-based polymorphism. Therefore, if you define a method that takes an IDbConnection
parameter, you can pass in any ADO.NET connection object:

public static void OpenConnection(IDbConnection cn)
{

// Open the incoming connection for the caller.
cn.Open();

}

The same holds true for a member return value. For example, consider the following simple C#
program, which allows the caller to obtain a specific connection object using the value of a custom
enumeration (assume you have “used” System.Data):

namespace ConnectionApp
{

enum DataProvider
{ SqlServer, OleDb, Odbc, Oracle }

class Program
{

static void Main(string[] args)
{

// Get a specific connection.
IDbConnection myCn = GetConnection(DataProvider.SqlServer);

// Assume we wish to connect to the SQL Server Pubs database.
myCn.ConnectionString =

"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs";

4193ch22.qxd 8/14/05 3:03 PM Page 768

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 769

// Now open connection via our helper function.
OpenConnection(myCn);

// Use connection and close when finished.
...
myCn.Close();

}

static IDbConnection GetConnection(DataProvider dp)
{

IDbConnection conn = null;
switch (dp)
{

case DataProvider.SqlServer:
conn = new SqlConnection();
break;

case DataProvider.OleDb:
conn = new OleDbConnection();
break;

case DataProvider.Odbc:
conn = new OdbcConnection();
break;

case DataProvider.Oracle:
conn = new OracleConnection();
break;

}
return conn;

}
}

}

The benefit of working with the general interfaces of System.Data is that you have a much bet-
ter chance of building a flexible code base that can evolve over time. For example, perhaps today
you are building an application targeting Microsoft SQL Server, but what if your company switches
to Oracle months down the road? If you hard-code the types of System.Data.SqlClient, you will
obviously need to edit, recompile, and redeploy the assembly.

Increasing Flexibility Using Application
Configuration Files
To further increase the flexibility of your ADO.NET applications, you could incorporate a client-side
*.config file that makes use of custom key/value pairs within the <appSettings> element. Recall
from Chapter 11 that custom data can be programmatically obtained using types within the
System.Configuration namespace. For example, assume you have specified the connection string
and data provider values within a configuration file as so:

<configuration>
<appSettings>
<add key="provider" value="SqlServer" />
<add key="cnStr" value=
"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

</appSettings>
</configuration>

4193ch22.qxd 8/14/05 3:03 PM Page 769

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET770

With this, you could update Main() to programmatically read these values. By doing so, you
essentially build a data provider factory. Here are the relevant updates:

static void Main(string[] args)
{

// Read the provider key.
string dpStr = ConfigurationManager.AppSettings["provider"];
DataProvider dp = (DataProvider)Enum.Parse(typeof(DataProvider), dpStr);

// Read the cnStr.
string cnStr = ConfigurationManager.AppSettings["cnStr"];

// Get a specific connection.
IDbConnection myCn = GetConnection(dp);
myCn.ConnectionString = cnStr;

...
}

■Note The ConfigurationManager type is new to .NET 2.0. Be sure to set a reference to the System.Config-
uration.dll assembly and “use” the System.Configuration namespace.

If the previous example were reworked into a .NET code library (rather than a console applica-
tion), you would be able to build any number of clients that could obtain specific connections using
various layers of abstraction. However, to make a worthwhile data provider factory library, you would
also have to account for command objects, data readers, data adapters, and other data-centric types.
While building such a code library would not necessarily be difficult, it would require a good amount
of code. Thankfully, as of .NET 2.0, the kind folks in Redmond have built this very thing into the base
class libraries.

■Source Code The MyConnectionFactory project is included under the Chapter 22 subdirectory.

The .NET 2.0 Provider Factory Model
Under .NET 2.0, we are now offered a data provider factory pattern that allows us to build a single
code base using generalized data access types. Furthermore, using application configuration files
(and the spiffy new <connectionStrings> section), we are able to obtain providers and connection
strings declaratively without the need to recompile or redeploy the client software.

To understand the data provider factory implementation, recall from Table 22-1 that the
objects within a data provider each derive from the same base classes defined within the
System.Data.Common namespace:

• DbCommand: Abstract base class for all command objects

• DbConnection: Abstract base class for all connection objects

• DbDataAdapter: Abstract base class for all data adapter objects

• DbDataReader: Abstract base class for all data reader objects

• DbParameter: Abstract base class for all parameter objects

• DbTransaction: Abstract base class for all transaction objects

4193ch22.qxd 8/14/05 3:03 PM Page 770

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 771

In addition, as of .NET 2.0, each of the Microsoft-supplied data providers now provides a spe-
cific class deriving from System.Data.Common.DbProviderFactory. This base class defines a number
of methods that retrieve provider-specific data objects. Here is a snapshot of the relevant members
of DbProviderFactory:

public abstract class DbProviderFactory
{
...

public virtual DbCommand CreateCommand();
public virtual DbCommandBuilder CreateCommandBuilder();
public virtual DbConnection CreateConnection();
public virtual DbConnectionStringBuilder CreateConnectionStringBuilder();
public virtual DbDataAdapter CreateDataAdapter();
public virtual DbDataSourceEnumerator CreateDataSourceEnumerator();
public virtual DbParameter CreateParameter();

}

To obtain the DbProviderFactory-derived type for your data provider, the System.Data.Common
namespace provides a class type named DbProviderFactories (note the plural in this type’s name).
Using the static GetFactory() method, you are able to obtain the specific (which is to say, singular)
DbProviderFactory of the specified data provider, for example:

static void Main(string[] args)
{

// Get the factory for the SQL data provider.
DbProviderFactory sqlFactory =

DbProviderFactories.GetFactory("System.Data.SqlClient");
...

// Get the factory for the Oracle data provider.
DbProviderFactory oracleFactory =

DbProviderFactories.GetFactory("System.Data.OracleClient");
...
}

As you might be thinking, rather than obtaining a factory using a hard-coded string literal,
you could read in this information from a client-side *.config file (much like the previous
MyConnectionFactory example). You will do so in just a bit. However, in any case, once you have
obtained the factory for your data provider, you are able to obtain the associated provider-specific
data objects (connections, commands, etc.).

Registered Data Provider Factories
Before you look at a full example of working with ADO.NET data provider factories, it is important
to point out that the DbProviderFactories type (as of .NET 2.0) is able to fetch factories for only
a subset of all possible data providers. The list of valid provider factories is recorded within the
<DbProviderFactories> element within the machine.config file for your .NET 2.0 installation (note
that the value of the invariant attribute is identical to the value passed into the DbProviderFactories.
GetFactory() method):

<system.data>
<DbProviderFactories>
<add name="Odbc Data Provider" invariant="System.Data.Odbc"
description=".Net Framework Data Provider for Odbc"
type="System.Data.Odbc.OdbcFactory,
System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<add name="OleDb Data Provider" invariant="System.Data.OleDb"

4193ch22.qxd 8/14/05 3:03 PM Page 771

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET772

description=".Net Framework Data Provider for OleDb"
type="System.Data.OleDb.OleDbFactory,
System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<add name="OracleClient Data Provider" invariant="System.Data.OracleClient"
description=".Net Framework Data Provider for Oracle"
type="System.Data.OracleClient.OracleClientFactory, System.Data.OracleClient,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="SqlClient Data Provider" invariant="System.Data.SqlClient"
description=".Net Framework Data Provider for SqlServer"
type="System.Data.SqlClient.SqlClientFactory, System.Data,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

</DbProviderFactories>
</system.data>

■Note If you wish to leverage a similar data provider factory pattern for DMBSs not accounted for in the
machine.config file, note that the Mono distribution of .NET (see Chapter 1) provides a similar data factory that
accounts for numerous open source and commercial data providers.

A Complete Data Provider Factory Example
For a complete example, let’s build a console application (named DataProviderFactory) that prints
out the first and last names of individuals in the Authors table of a database named Pubs residing
within Microsoft SQL Server (as you may know, Pubs is a sample database modeling a fictitious
book publishing company).

First, add a reference to the System.Configuration.dll assembly and insert an app.config file
to the current project and define an <appSettings> element. Remember that the format of the “offi-
cial” provider value is the full namespace name for the data provider, rather than the string name of
the ad hoc DataProvider enumeration used in the MyConnectionFactory example:

<configuration>
<appSettings>
<!-- Which provider? -->
<add key="provider" value="System.Data.SqlClient" />
<!-- Which connection string? -->
<add key="cnStr" value=
"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

</appSettings>
</configuration>

Now that you have a proper *.config file, you can read in the provider and cnStr values using the
ConfigurationManager.AppSettings()method. The provider value will be passed to DbProviderFactories.
GetFactory() to obtain the data provider–specific factory type. The cnStr value will be used to set
the ConnectionString property of the DbConnection-derived type. Assuming you have “used” the
System.Data and System.Data.Common namespaces, update your Main() method as follows:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Data Provider Factories *****\n");

// Get Connection string/provider from *.config.
string dp =

ConfigurationManager.AppSettings["provider"];
string cnStr =

4193ch22.qxd 8/14/05 3:03 PM Page 772

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 773

Figure 22-2. Obtaining the SQL Server data provider via the .NET 2.0 data provider factory

ConfigurationManager.AppSettings["cnStr"];

// Make the factory provider.
DbProviderFactory df = DbProviderFactories.GetFactory(dp);

// Now make connection object.
DbConnection cn = df.CreateConnection();
Console.WriteLine("Your connection object is a: {0}", cn.GetType().FullName);
cn.ConnectionString = cnStr;
cn.Open();

// Make command object.
DbCommand cmd = df.CreateCommand();
Console.WriteLine("Your command object is a: {0}", cmd.GetType().FullName);
cmd.Connection = cn;
cmd.CommandText = "Select * From Authors";

// Print out data with data reader.
DbDataReader dr =

cmd.ExecuteReader(CommandBehavior.CloseConnection);
Console.WriteLine("Your data reader object is a: {0}", dr.GetType().FullName);

Console.WriteLine("\n***** Authors in Pubs *****");
while (dr.Read())

Console.WriteLine("-> {0}, {1}", dr["au_lname"], dr["au_fname"]);
dr.Close();

}

Notice that for diagnostic purposes, you are printing out the fully qualified name of the under-
lying connection, command, and data reader using reflection services. If you run this application,
you will find that the Microsoft SQL Server provider has been used to read data from the Authors
table of the Pubs database (see Figure 22-2).

Now, if you change the *.config file to specify System.Data.OleDb as the data provider (and
update your connection string) as follows:

<configuration>
<appSettings>
<!-- Which provider? -->
<add key="provider" value="System.Data.OleDb" />
<!-- Which connection string? -->
<add key="cnStr" value=

4193ch22.qxd 8/14/05 3:03 PM Page 773

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET774

Figure 22-3. Obtaining the OLE DB data provider via the .NET 2.0 data provider factory

"Provider=SQLOLEDB.1;Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>
</appSettings>

</configuration>

you will find the System.Data.OleDb types are used behind the scenes (see Figure 22-3).

Of course, based on your experience with ADO.NET, you may be a bit unsure exactly what the
connection, command, and data reader objects are actually doing. Don’t sweat the details for the
time being (quite a few pages remain in this chapter, after all!). At this point, just understand that
under .NET 2.0, it is possible to build a single code base that can consume various data providers in
a declarative manner.

Although this is a very powerful model, you must make sure that the code base does indeed
make use only of types and methods that are common to all providers. Therefore, when authoring
your code base, you will be limited to the members exposed by DbConnection, DbCommand, and the
other types of the System.Data.Common namespace. Given this, you may find that this “generalized”
approach will prevent you from directly accessing some of the bells and whistles of a particular
DBMS (so be sure to test your code!).

The <connectionStrings> Element
As of .NET 2.0, application configuration files may define a new element named <connectionStrings>.
Within this element, you are able to define any number of name/value pairs that can be pro-
grammatically read into memory using the ConfigurationManager.ConnectionStrings indexer.
The chief advantage of this approach (rather than using the <appSettings> element and the
ConfigurationManager.AppSettings indexer) is that you can define multiple connection strings for
a single application in a consistent manner.

To illustrate, update your current app.config file as follows (note that each connection string is
documented using the name and connectionString attributes rather than the key and value attributes
as found in <appSettings>):

<configuration>
<appSettings>
<!-- Which provider? -->
<add key="provider" value="System.Data.SqlClient" />

</appSettings>
<connectionStrings>
<add name ="SqlProviderPubs" connectionString =
"Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>

4193ch22.qxd 8/14/05 3:03 PM Page 774

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 775

<add name ="OleDbProviderPubs" connectionString =
" Provider=SQLOLEDB.1;Data Source=localhost;uid=sa;pwd=;Initial Catalog=Pubs"/>
</connectionStrings>

</configuration>

With this, you can now update your Main() method as so:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Data Provider Factories *****\n");
string dp =

ConfigurationManager.AppSettings["provider"];
string cnStr =

ConfigurationManager.ConnectionStrings["SqlProviderPubs"].ConnectionString;
...
}

At this point, you should be clear on how to interact with the .NET 2.0 data provider factory
(and the new <connectionStrings> element).

■Note Now that you understand the role of ADO.NET data provider factories, the remaining examples in this
chapter will make explicit use of the types within System.Data.SqlClient and hard-coded connection strings,
just to keep focused on the task at hand.

■Source Code The DataProviderFactory project is included under the Chapter 22 subdirectory.

Installing the Cars Database
Now that you understand the basic properties of a .NET data provider, you can begin to dive into
the specifics of coding with ADO.NET. As mentioned earlier, the examples in this chapter will make
use of Microsoft SQL Server. In keeping with the automotive theme used throughout this text, I have
included a sample Cars database that contains three interrelated tables named Inventory, Orders,
and Customers.

■Note If you do not have a copy of Microsoft SQL Server, you can download a (free) copy of Microsoft SQL
Server 2005 Express Edition (http://lab.msdn.microsoft.com/express). While this tool does not have all the
bells and whistles of the full version of Microsoft SQL Server, it will allow you to host the provided Cars database.
Do be aware, however, that this chapter was written with Microsoft SQL Server in mind, so be sure to consult the
provided SQL Server 2005 Express Edition documentation.

To install the Cars database on your machine, begin by opening the Query Analyzer utility that
ships with SQL Server. Next, connect to your machine and open the provided Cars.sql file. Before
you run the script, make sure that the path listed in the SQL file points to your installation of Microsoft
SQL Server. Edit the following lines (in bold) as necessary:

CREATE DATABASE [Cars] ON (NAME = N'Cars_Data', FILENAME
=N' C:\Program Files\Microsoft SQL Server\MSSQL\Data\Cars_Data.MDF' ,
SIZE = 2, FILEGROWTH = 10%)

4193ch22.qxd 8/14/05 3:03 PM Page 775

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET776

Figure 22-4. The sample Cars database

LOG ON (NAME = N'Cars_Log', FILENAME
= N' C:\Program Files\Microsoft SQL Server\MSSQL\Data\Cars_Log.LDF' ,
SIZE = 1, FILEGROWTH = 10%)
GO

Now run the script. Once you do, open up SQL Server Enterprise Manager. You should see three
interrelated tables (with some sample data to boot) and a single stored procedure. Figure 22-4
shows the tables that populate the Cars database.

Connecting to the Cars Database from Visual Studio 2005
Now that you have the Cars database installed, you may wish to create a data connection to the
database from within Visual Studio 2005. This will allow you to view and edit the various database
objects from within the IDE. To do so, open the Server Explorer window using the View menu. Next,
right-click the Data Connections node and select Add Connection from the context menu. From the
resulting dialog box, select Microsoft SQL Server as the data source. In the next dialog box, select
your machine name (or simply localhost) from the “Server name” drop-down list and specify the
correct logon information. Finally, choose the Cars database from the “Select or enter a database
name” drop-down list (see Figure 22-5).

4193ch22.qxd 8/14/05 3:03 PM Page 776

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 777

Figure 22-5. Connecting to the Cars database from Visual Studio 2005

Figure 22-6. Viewing table data

Once you’ve finished, you should now see a node for Cars under Data Connections. Notice that
you can pull up the records for a given data table simply by right-clicking and selecting Show Table
Data (see Figure 22-6).

4193ch22.qxd 8/14/05 3:03 PM Page 777

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET778

Understanding the Connected Layer of ADO.NET
Recall that the connected layer of ADO.NET allows you to interact with a database using the connec-
tion, command, and data reader objects of your data provider. Although you have already made use
of these objects in the previous DataProviderFactory example, let’s walk through the process once
again in detail. When you wish to connect to a database and read the records using a data reader
object, you need to perform the following steps:

1. Allocate, configure, and open your connection object.

2. Allocate and configure a command object, specifying the connection object as a constructor
argument or via the Connection property.

3. Call ExecuteReader() on the configured command object.

4. Process each record using the Read() method of the data reader.

To get the ball rolling, create a brand-new console application named CarsDataReader. The goal
is to open a connection (via the SqlConnection object) and submit a SQL query (via the SqlCommand
object) to obtain all records within the Inventory table of the Cars database. At this point, you will
use a SqlDataReader to print out the results using the type indexer. Here is the complete code within
Main(), with analysis to follow:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("***** Fun with Data Readers *****\n");

// Create an open a connection.
SqlConnection cn = new SqlConnection();
cn.ConnectionString =
"uid=sa;pwd=;Initial Catalog=Cars; Data Source=(local)";

cn.Open();

// Create a SQL command object.
string strSQL = "Select * From Inventory";
SqlCommand myCommand = new SqlCommand(strSQL, cn);

// Obtain a data reader a la ExecuteReader().
SqlDataReader myDataReader;
myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

// Loop over the results.
while (myDataReader.Read())
{
Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",
myDataReader["Make"].ToString().Trim(),
myDataReader["PetName"].ToString().Trim(),
myDataReader["Color"].ToString().Trim());

}

// Because we specified CommandBehavior.CloseConnection, we
// don't need to explicitly call Close() on the connection.
myDataReader.Close();

}
}

4193ch22.qxd 8/14/05 3:03 PM Page 778

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 779

Working with Connection Objects
The first step to take when working with a data provider is to establish a session with the data source
using the connection object (which, as you recall, derives from DbConnection). .NET connection
types are provided with a formatted connection string, which contains a number of name/value
pairs separated by semicolons. This information is used to identify the name of the machine you
wish to connect to, required security settings, the name of the database on that machine, and other
data provider–specific information.

As you can infer from the preceding code, the Initial Catalog name refers to the database you
are attempting to establish a session with (Pubs, Northwind, Cars, etc.). The Data Source name
identifies the name of the machine that maintains the database (for simplicity, I have assumed no
specific password is required for local system administrators).

■Note Look up the ConnectionString property of your data provider’s connection object in the .NET Framework
2.0 SDK documentation to learn about each name/value pair for your specific DBMS.

Once your construction string has been established, a call to Open() establishes your connection
with the DBMS. In addition to the ConnectionString, Open(), and Close() members, a connection
object provides a number of members that let you configure attritional settings regarding your con-
nection, such as timeout settings and transactional information. Table 22-6 lists some (but not all)
members of the DbConnection base class.

Table 22-6. Members of the DbConnection Type

Member Meaning in Life

BeginTransaction() This method is used to begin a database transaction.

ChangeDatabase() This method changes the database on an open connection.

ConnectionTimeout This read-only property returns the amount of time to wait while
establishing a connection before terminating and generating an error
(the default value is 15 seconds). If you wish to change the default,
specify a “Connect Timeout” segment in the connection string (e.g.,
Connect Timeout=30).

Database This property gets the name of the database maintained by the
connection object.

DataSource This property gets the location of the database maintained by the
connection object.

GetSchema() This method returns a DataSet that contains schema information from
the data source.

State This property sets the current state of the connection, represented by
the ConnectionState enumeration.

As you can see, the properties of the DbConnection type are typically read-only in nature and are
only useful when you wish to obtain the characteristics of a connection at runtime. When you wish
to override default settings, you must alter the construction string itself. For example, the connection
string sets the connection timeout setting from 15 seconds to 30 seconds (via the Connect Timeout
segment of the connection string):

static void Main(string[] args)
{

SqlConnection cn = new SqlConnection();

4193ch22.qxd 8/14/05 3:03 PM Page 779

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET780

cn.ConnectionString =
"uid=sa;pwd=;Initial Catalog=Cars;" +
"Data Source=(local);Connect Timeout=30";

cn.Open();

// New helper function (see below).
ShowConnectionStatus(cn);

...
}

In the preceding code, notice you have now passed your connection object as a parameter to
a new static helper method in the Program class named ShowConnectionStatus(), implemented as so:

static void ShowConnectionStatus(DbConnection cn)
{

// Show various stats about current connection object.
Console.WriteLine("***** Info about your connection *****");
Console.WriteLine("Database location: {0}", cn.DataSource);
Console.WriteLine("Database name: {0}", cn.Database);
Console.WriteLine("Timeout: {0}", cn.ConnectionTimeout);
Console.WriteLine("Connection state: {0}\n", cn.State.ToString());

}

While most of these properties are self-explanatory, the State property is worth special men-
tion. Although this property may be assigned any value of the ConnectionState enumeration

public enum System.Data.ConnectionState
{

Broken, Closed,
Connecting, Executing,
Fetching, Open

}

the only valid ConnectionState values are ConnectionState.Open and ConnectionState.Closed (the
remaining members of this enum are reserved for future use). Also, understand that it is always safe
to close a connection whose connection state is currently ConnectionState.Closed.

Working with .NET 2.0 ConnectionStringBuilders
Working with connection strings programmatically can be a bit clunky, given that they are often
represented as string literals, which are difficult to maintain and error-prone at best. Under .NET 2.0,
the Microsoft-supplied ADO.NET data providers now support connection string builder objects, which
allow you to establish the name/value pairs using strongly typed properties. Consider the following
update to the current Main() method:

static void Main(string[] args)
{

// Create a connection string via the builder object.
SqlConnectionStringBuilder cnStrBuilder =

new SqlConnectionStringBuilder();
cnStrBuilder.UserID = "sa";
cnStrBuilder.Password = "";
cnStrBuilder.InitialCatalog = "Cars";
cnStrBuilder.DataSource = "(local)";
cnStrBuilder.ConnectTimeout = 30;

SqlConnection cn = new SqlConnection();
cn.ConnectionString = cnStrBuilder.ConnectionString;
cn.Open();

4193ch22.qxd 8/14/05 3:03 PM Page 780

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 781

ShowConnectionStatus(cn);
...
}

In this iteration, you create an instance of SqlConnectionStringBuilder, set the properties
accordingly, and obtain the internal string via the ConnectionString property. Also note that you
make use of the default constructor of the type. If you so choose, you can also create an instance of
your data provider’s connection string builder object by passing in an existing connection string as
a starting point (which can be helpful when you are reading these values dynamically from an
app.config file). Once you have hydrated the object with the initial string data, you can change spe-
cific name/value pairs using the related properties, for example:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Data Readers *****\n");

// Assume you really obtained cnStr from a *.config file.
string cnStr = "uid=sa;pwd=;Initial Catalog=Cars;" +

"Data Source=(local);Connect Timeout=30";

SqlConnectionStringBuilder cnStrBuilder =
new SqlConnectionStringBuilder(cnStr);

cnStrBuilder.UserID = "sa";
cnStrBuilder.Password = "";
cnStrBuilder.InitialCatalog = "Cars";
cnStrBuilder.DataSource = "(local)";

// Change timeout value.
cnStrBuilder.ConnectTimeout = 5;

...
}

Working with Command Objects
Now that you better understand the role of the connection object, the next order of business is to
check out how to submit SQL queries to the database in question. The SqlCommand type (which
derives from DbCommand) is an OO representation of a SQL query, table name, or stored procedure.
The type of command is specified using the CommandType property, which may take any value from
the CommandType enum:

public enum System.Data.CommandType
{

StoredProcedure,
TableDirect,
Text // Default value.

}

When creating a command object, you may establish the SQL query as a constructor parame-
ter or directly via the CommandText property. Also when you are creating a command object, you
need to specify the connection to be used. Again, you may do so as a constructor parameter or via
the Connection property:

static void Main(string[] args)
{

SqlConnection cn = new SqlConnection();
...

// Create command object via ctor args.

4193ch22.qxd 8/14/05 3:03 PM Page 781

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET782

string strSQL = "Select * From Inventory";
SqlCommand myCommand = new SqlCommand(strSQL, cn);

// Create another command object via properties.
SqlCommand testCommand = new SqlCommand();
testCommand.Connection = cn;
testCommand.CommandText = strSQL;

...
}

Realize that at this point, you have not literally submitted the SQL query to the Cars database,
but rather prepped the state of the command type for future use. Table 22-7 highlights some addi-
tional members of the DbCommand type.

Table 22-7. Members of the DbCommand Type

Member Meaning in Life

CommandTimeout Gets or sets the time to wait while executing the command before
terminating the attempt and generating an error. The default is 30
seconds.

Connection Gets or sets the DbConnection used by this instance of the DbCommand.

Parameters Gets the collection of DbParameter types used for a parameterized query.

Cancel() Cancels the execution of a command.

ExecuteReader() Returns the data provider’s DbDataReader object, which provides
forward-only, read-only access to the underlying data.

ExecuteNonQuery() Issues the command text to the data store.

ExecuteScalar() A lightweight version of the ExecuteNonQuery() method, designed
specifically for singleton queries (such as obtaining a record count).

ExecuteXmlReader() Microsoft SQL Server (2000 and higher) is capable of returning result
sets as XML. As you might suspect, this method returns
a System.Xml.XmlReader that allows you to process the incoming stream
of XML.

Prepare() Creates a prepared (or compiled) version of the command on the data
source. As you may know, a prepared query executes slightly faster and
is useful when you wish to execute the same query multiple times.

■Note As illustrated later in this chapter, as of .NET 2.0, the SqlCommand object has been updated with additional
members that facilitate asynchronous database interactions.

Working with Data Readers
Once you have established the active connection and SQL command, the next step is to submit the
query to the data source. As you might guess, you have a number of ways to do so. The DbDataReader
type (which implements IDataReader) is the simplest and fastest way to obtain information from
a data store. Recall that data readers represent a read-only, forward-only stream of data returned
one record at a time. Given this, it should stand to reason that data readers are useful only when
submitting SQL selection statements to the underlying data store.

Data readers are useful when you need to iterate over large amounts of data very quickly and
have no need to maintain an in-memory representation. For example, if you request 20,000 records
from a table to store in a text file, it would be rather memory-intensive to hold this information in

4193ch22.qxd 8/14/05 3:03 PM Page 782

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 783

a DataSet. A better approach is to create a data reader that spins over each record as rapidly as pos-
sible. Be aware, however, that data reader objects (unlike data adapter objects, which you’ll examine
later) maintain an open connection to their data source until you explicitly close the session.

Data reader objects are obtained from the command object via a call to ExecuteReader(). When
invoking this method, you may optionally instruct the reader to automatically close down the
related connection object by specifying CommandBehavior.CloseConnection.

The following use of the data reader leverages the Read() method to determine when you have
reached the end of your records (via a false return value). For each incoming record, you are making
use of the type indexer to print out the make, pet name, and color of each automobile. Also note
that you call Close() as soon as you are finished processing the records, to free up the connection
object:

static void Main(string[] args)
{
...

// Obtain a data reader a la ExecuteReader().
SqlDataReader myDataReader;
myDataReader = myCommand.ExecuteReader(CommandBehavior.CloseConnection);

// Loop over the results.
while (myDataReader.Read())
{

Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",
myDataReader["Make"].ToString().Trim(),
myDataReader["PetName"].ToString().Trim(),
myDataReader["Color"].ToString().Trim());

}
myDataReader.Close();
ShowConnectionStatus(cn);

}

■Note The trimming of the string data shown here is only used to remove trailing blank spaces in the database
entries; it is not directly related to ADO.NET!

The indexer of a data reader object has been overloaded to take either a string (representing
the name of the column) or an integer (representing the column’s ordinal position). Thus, you could
clean up the current reader logic (and avoid hard-coded string names) with the following update
(note the use of the FieldCount property):

while (myDataReader.Read())
{

Console.WriteLine("***** Record *****");
for (int i = 0; i < myDataReader.FieldCount; i++)
{

Console.WriteLine("{0} = {1} ",
myDataReader.GetName(i),
myDataReader.GetValue(i).ToString().Trim());

}
Console.WriteLine();

}

If you compile and run your project, you should be presented with a list of all automobiles in
the Inventory table of the Cars database (see Figure 22-7).

4193ch22.qxd 8/14/05 3:03 PM Page 783

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET784

Obtaining Multiple Result Sets Using a Data Reader
Data reader objects are able to obtain multiple result sets from a single command object. For exam-
ple, if you are interested in obtaining all rows from the Inventory table as well as all rows from the
Customers table, you are able to specify both SQL select statements using a semicolon delimiter:

string theSQL = "Select * From Inventory;Select * from Customers";

Once you obtain the data reader, you are able to iterate over each result set via the NextResult()
method. Do be aware that you are always returned the first result set automatically. Thus, if you wish
to read over the rows of each table, you will be able to build the following iteration construct:

do
{

while(myDataReader.Read())
{

// Read the info of the current result set.
}

}while(myDataReader.NextResult());

So, at this point, you should be more aware of the functionality data reader objects bring to the
table. While these objects provide additional bits of functionality than I have shown here (such as
the ability to execute scalars and single-row queries), I’ll leave it to interested readers to consult the
.NET Framework 2.0 SDK documentation for complete details.

■Source Code The CarsDataReader project is included under the Chapter 22 subdirectory.

Modifying Tables Using Command Objects
As you have just seen, the ExecuteReader() method extracts a data reader object that allows you to
examine the results of a SQL Select statement using a forward-only, read-only flow of information.
However, when you wish to submit SQL commands that result in the modification of a given table,
you will call the ExecuteNonQuery() method of your command object. This single method will per-
form inserts, updates, and deletes based on the format of your command text.

Figure 22-7. Fun with data reader objects

4193ch22.qxd 8/14/05 3:03 PM Page 784

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 785

To illustrate how to modify an existing database using nothing more than a call to ExecuteNonQuery(),
you will now build a new console application (CarsInventoryUpdater) that allows the caller to mod-
ify the Inventory table of the Cars database. Like in other examples in this text, the Main() method is
responsible for prompting the user for a specific course of action and executing that request via
a switch statement. This program will allow the user to enter the following commands:

• I: Inserts a new record into the Inventory table

• U: Updates an existing record in the Inventory table

• D: Deletes an existing record from the Inventory table

• L: Displays the current inventory using a data reader

• S: Shows these options to the user

• Q: Quits the program

Each possible option is handled by a unique static method within the Program class. For the
purpose of completion, here is the implementation of Main(), which I assume requires no further
comment:

static void Main(string[] args)
{

Console.WriteLine("***** Car Inventory Updater *****");
bool userDone = false;
string userCommand = "";

SqlConnection cn = new SqlConnection();
cn.ConnectionString =

"uid=sa;pwd=;Initial Catalog=Cars;" +
"Data Source=(local);Connect Timeout=30";

cn.Open();

ShowInstructions();
do
{

Console.Write("Please enter your command: ");
userCommand = Console.ReadLine();
Console.WriteLine();
switch (userCommand.ToUpper())
{

case "I":
InsertNewCar(cn);
break;

case "U":
UpdateCarPetName(cn);
break;

case "D":
DeleteCar(cn);
break;

case "L":
ListInventory(cn);
break;

case "S":
ShowInstructions();
break;

case "Q":
userDone = true;
break;

4193ch22.qxd 8/14/05 3:03 PM Page 785

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET786

default:
Console.WriteLine("Bad data! Try again");
break;

}
} while (!userDone);
cn.Close();

}

The ShowInstructions() method does what you would expect:

private static void ShowInstructions()
{

Console.WriteLine();
Console.WriteLine("I: Inserts a new car.");
Console.WriteLine("U: Updated an existing car.");
Console.WriteLine("D: Deletes an existing car.");
Console.WriteLine("L: List current inventory.");
Console.WriteLine("S: Show these instructions.");
Console.WriteLine("Q: Quits program.");

}

As mentioned, ListInventory() prints out the current rows of the Inventory table using a data
reader object (the code is identical to the previous CarsDataReader example):

private static void ListInventory(SqlConnection cn)
{

string strSQL = "Select * From Inventory";
SqlCommand myCommand = new SqlCommand(strSQL, cn);
SqlDataReader myDataReader;
myDataReader = myCommand.ExecuteReader();
while (myDataReader.Read())
{

for (int i = 0; i < myDataReader.FieldCount; i++)
{

Console.Write("{0} = {1} ",
myDataReader.GetName(i),
myDataReader.GetValue(i).ToString().Trim());

}
Console.WriteLine();

}
myDataReader.Close();

}

Now that the CUI is in place, let’s move on to the good stuff.

Inserting New Records
Inserting a new record into the Inventory table is as simple as formatting the SQL insert statement
(based on user input) and calling ExecuteNonQuery(). To keep the code crisp, I have deleted the nec-
essary try/catch logic that is present in the code download for this text:

private static void InsertNewCar(SqlConnection cn)
{

// Gather info about new car.
Console.Write("Enter CarID: ");
int newCarID = int.Parse(Console.ReadLine());
Console.Write("Enter Make: ");
string newCarMake = Console.ReadLine();
Console.Write("Enter Color: ");

4193ch22.qxd 8/14/05 3:03 PM Page 786

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 787

string newCarColor = Console.ReadLine();
Console.Write("Enter PetName: ");
string newCarPetName = Console.ReadLine();

// Format and execute SQL statement.
string sql = string.Format("Insert Into Inventory" +

"(CarID, Make, Color, PetName) Values" +
"('{0}', '{1}', '{2}', '{3}')", newCarID, newCarMake,
newCarColor, newCarPetName);

SqlCommand cmd = new SqlCommand(sql, cn);
cmd.ExecuteNonQuery();

}

■Note As you may know, building a SQL statement using string concatenation can be risky from a security point
of view (think: SQL injection attacks). While I use this approach during this chapter for purposes of brevity, the pre-
ferred way to build command text is using a parameterized query, which I describe shortly.

Deleting Existing Records
Deleting an existing record is just as simple as inserting a new record. Unlike the code listing for
InsertNewCar(), I will show one important try/catch scope that handles the possibility of attempt-
ing to delete a car that is currently on order for an individual in the Customers table (which will be
used later in this chapter):

private static void DeleteCar(SqlConnection cn)
{

// Get ID of car to delete, then do so.
Console.Write("Enter CarID of car to delete: ");
int carToDelete = int.Parse(Console.ReadLine());
string sql = string.Format("Delete from Inventory where CarID = '{0}'",

carToDelete);
SqlCommand cmd = new SqlCommand(sql, cn);
try { cmd.ExecuteNonQuery(); }
catch { Console.WriteLine("Sorry! That car is on order!"); }

}

Updating Existing Records
If you followed the code behind DeleteCar() and InsertNewCar(), then UpdateCarPetName() is a no-
brainer (again, try/catch logic has been removed for clarity):

private static void UpdateCarPetName(SqlConnection cn)
{

// Get ID of car to modify and new pet name.
Console.Write("Enter CarID of car to modify: ");
string newPetName = "";
int carToUpdate = carToUpdate = int.Parse(Console.ReadLine());
Console.Write("Enter new pet name: ");
newPetName = Console.ReadLine();

// Now update record.
string sql =

string.Format("Update Inventory Set PetName = '{0}' Where CarID = '{1}'",

4193ch22.qxd 8/14/05 3:03 PM Page 787

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET788

newPetName, carToUpdate);
SqlCommand cmd = new SqlCommand(sql, cn);
cmd.ExecuteNonQuery();

}

With this, our application is finished. Figure 22-8 shows a test run.

Working with Parameterized Command Objects
The previous insert, update, and delete logic works as expected; however, note that each of your
SQL queries is represented using hard-coded string literals. As you may know, a parameterized
query can be used to treat SQL parameters as objects, rather than a simple blob of text. Typically,
parameterized queries execute much faster than a literal SQL string, in that they are parsed exactly
once (rather than each time the SQL string is assigned to the CommandText property). As well, para-
meterized queries also help protect against SQL injection attacks (a well-known data access security
issue).

ADO.NET command objects maintain a collection of discrete parameter types. By default this
collection is empty, but you are free to insert any number of parameter objects that map to a “place-
holder parameter” in the SQL query. When you wish to associate a parameter within a SQL query to
a member in the command object’s parameters collection, prefix the SQL text parameter with an at
(@) symbol (at least when using Microsoft SQL Server; not all DBMSs support this notation).

Specifying Parameters Using the DbParameter Type
Before you build a parameterized query, let’s get to know the DbParameter type (which is the base
class to a provider’s specific parameter object). This class maintains a number of properties that
allow you to configure the name, size, and data type of the parameter, as well as other characteris-
tics such as the parameter’s direction of travel. Table 22-8 describes some key properties of the
DbParameter type.

Figure 22-8. Inserting, updating, and deleting records via command objects

4193ch22.qxd 8/14/05 3:03 PM Page 788

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 789

Table 22-8. Key Members of the DbParameter Type

Property Meaning in Life

DbType Gets or sets the native data type from the data source, represented as a CLR
data type

Direction Gets or sets whether the parameter is input-only, output-only, bidirectional, or
a return value parameter

IsNullable Gets or sets whether the parameter accepts null values

ParameterName Gets or sets the name of the DbParameter

Size Gets or sets the maximum parameter size of the data

Value Gets or sets the value of the parameter

To illustrate, let’s rework the previous InsertNewCar() method to make use of parameter
objects. Here is the relevant code:

private static void InsertNewCar(SqlConnection cn)
{
...

// Note the 'placeholders' in the SQL query.
string sql = string.Format("Insert Into Inventory" +

"(CarID, Make, Color, PetName) Values" +
"(@CarID, @Make, @Color, @PetName)");

// Fill params collection.
SqlCommand cmd = new SqlCommand(sql, cn);
SqlParameter param = new SqlParameter();
param.ParameterName = "@CarID";
param.Value = newCarID;
param.SqlDbType = SqlDbType.Int;
cmd.Parameters.Add(param);

param = new SqlParameter();
param.ParameterName = "@Make";
param.Value = newCarMake;
param.SqlDbType = SqlDbType.Char;
param.Size = 20;
cmd.Parameters.Add(param);

param = new SqlParameter();
param.ParameterName = "@Color";
param.Value = newCarColor;
param.SqlDbType = SqlDbType.Char;
param.Size = 20;
cmd.Parameters.Add(param);

param = new SqlParameter();
param.ParameterName = "@PetName";
param.Value = newCarPetName;
param.SqlDbType = SqlDbType.Char;
param.Size = 20;
cmd.Parameters.Add(param);
cmd.ExecuteNonQuery();

}

4193ch22.qxd 8/14/05 3:03 PM Page 789

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET790

While building a parameterized query requires a larger amount of code, the end result is a more
convenient way to tweak SQL statements programmatically as well as better overall performance.
While you are free to make use of this technique whenever a SQL query is involved, parameterized
queries are most helpful when you wish to trigger a stored procedure.

■Note Here, I made use of various properties to establish a parameter object. Do know, however, that parameter
objects support a number of overloaded constructors that allow you to set the values of various properties (which
will result in a more compact code base).

Executing a Stored Procedure Using DbCommand
A stored procedure is a named block of SQL code stored in the database. Stored procedures can be
constructed to return a set of rows or scalar data types and may take any number of optional parame-
ters. The end result is a unit of work that behaves like a typical function, with the obvious difference
of being located on a data store rather than a binary business object.

■Note Although I don’t cover this topic in this chapter, it is worth pointing out that the newest version of Microsoft
SQL Server (2005) is a CLR host! Therefore, stored procedures (and other database atoms) can be authored using
managed languages (such as C#) rather than traditional SQL. Consult http://www.microsoft.com/sql/2005
for further details.

To illustrate the process, let’s add a new option to the CarInventoryUpdate program that allows
the caller to look up a car’s pet name via the GetPetName stored procedure. This database object was
established when you installed the Cars database and looks like this:

CREATE PROCEDURE GetPetName
@carID int,
@petName char(20) output
AS
SELECT @petName = PetName from Inventory where CarID = @carID

First, update the current switch statement in Main() to handle a new case for “P” that calls
a new helper function named LookUpPetName() that takes a SqlConnection parameter and returns
void. Update your ShowInstructions() method to account for this new option.

When you wish to execute a stored procedure, you begin as always by creating a new connec-
tion object, configuring your connection string, and opening the session. However, when you create
your command object, the CommandText property is set to the name of the stored procedure (rather
than a SQL query). As well, you must be sure to set the CommandType property to CommandType.
StoredProcedure (the default is CommandType.Text).

Given that this stored procedure has one input and one output parameter, your goal is to build
a command object that contains two SqlParameter objects within its parameter collection:

private static void LookUpPetName(SqlConnection cn)
{

// Get the CarID.
Console.Write("Enter CarID: ");
int carID = int.Parse(Console.ReadLine());

// Establish name of stored proc.
SqlCommand cmd = new SqlCommand("GetPetName", cn);
cmd.CommandType = CommandType.StoredProcedure;

4193ch22.qxd 8/14/05 3:03 PM Page 790

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 791

Figure 22-9. Triggering a stored proceedure

// Input param.
SqlParameter param = new SqlParameter();
param.ParameterName = "@carID";
param.SqlDbType = SqlDbType.Int;
param.Value = carID;
param.Direction = ParameterDirection.Input;
cmd.Parameters.Add(param);

// Output param.
param = new SqlParameter();
param.ParameterName = "@petName";
param.SqlDbType = SqlDbType.Char;
param.Size = 20;
param.Direction = ParameterDirection.Output;
cmd.Parameters.Add(param);

// Execute the stored proc.
cmd.ExecuteNonQuery();

// Print output param.
Console.WriteLine("Pet name for car {0} is {1}",

carID, cmd.Parameters["@petName"].Value);
}

Notice that the Direction property of the parameter object allows you to specify input and out-
put parameters. Once the stored procedure completes via a call to ExecuteNonQuery(), you are able
to obtain the value of the output parameter by investigating the command object’s parameter col-
lection. Figure 22-9 shows one possible test run.

■Source Code The CarsInventoryUpdater application is included under the Chapter 22 subdirectory.

4193ch22.qxd 8/14/05 3:03 PM Page 791

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET792

Asynchronous Data Access Under .NET 2.0
As of .NET 2.0, the SQL data provider (represented by the System.Data.SqlClient namespace) has
been enhanced to support asynchronous database interactions via the following new members of
SqlCommand:

• BeginExecuteReader()/EndExecuteReader()

• BeginExecuteNonQuery()/EndExecuteNonQuery()

• BeginExecuteXmlReader()/EndExecuteXmlReader()

Given your work in Chapter 14, the naming convention of these method pairs may ring a bell.
Recall that the .NET asynchronous delegate pattern makes use of a “begin” method to execute a task
on a secondary thread, whereas the “end” method can be used to obtain the result of the asynchronous
invocation using the members of IAsyncResult and the optional AsyncCallback delegate. Because the
process of working with asynchronous commands is modeled after the standard delegate patterns,
a simple example should suffice (so be sure to consult Chapter 14 for full details of asynchronous
delegates).

Assume you wish to select the records from the Inventory table on a secondary thread of exe-
cution using a data reader object. Here is the complete Main() method, with analysis to follow:

static void Main(string[] args)
{

Console.WriteLine("***** Fun with ASNYC Data Readers *****\n");

// Create an open a connection that is async-aware.
SqlConnection cn = new SqlConnection();
cn.ConnectionString =

"uid=sa;pwd=;Initial Catalog=Cars;" +
"Asynchronous Processing=true;Data Source=(local)";

cn.Open();

// Create a SQL command object that waits for approx 2 seconds.
string strSQL = "WaitFor Delay '00:00:02';Select * From Inventory";
SqlCommand myCommand = new SqlCommand(strSQL, cn);

// Execute the reader on a second thread.
IAsyncResult itfAsynch;
itfAsynch = myCommand.BeginExecuteReader(CommandBehavior.CloseConnection);

// Do something while other thread works.
while (!itfAsynch.IsCompleted)
{

Console.WriteLine("Working on main thread...");
Thread.Sleep(1000);

}
Console.WriteLine();

// All done! Get reader and loop over results.
SqlDataReader myDataReader = myCommand.EndExecuteReader(itfAsynch);
while (myDataReader.Read())
{

Console.WriteLine("-> Make: {0}, PetName: {1}, Color: {2}.",
myDataReader["Make"].ToString().Trim(),
myDataReader["PetName"].ToString().Trim(),
myDataReader["Color"].ToString().Trim());

4193ch22.qxd 8/14/05 3:03 PM Page 792

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 793

Figure 22-10. Data adapter objects move DataSets to and from the client tier.

}
myDataReader.Close();

}
The first point of interest is the fact that you need to enable asynchronous activity using the

new Asynchronous Processing segment of the connection string. Also note that you have padded
into the command text of your SqlCommand object a new WaitFor Delay segment simply to simulate
a long-running database interaction.

Beyond these points, notice that the call to BeginExecuteDataReader() returns the expected
IasyncResult-compatible type, which is used to synchronize the calling thread (via the IsCompleted
property) as well as obtain the SqlDataReader once the query has finished executing.

■Source Code The AsyncCmdObject application is included under the Chapter 22 subdirectory.

Understanding the Disconnected Layer of ADO.NET
As you have seen, working with the connected layer allows you to interact with a database using
connection, command, and data reader objects. With this small handful of types, you are able to
select, insert, update, and delete records to your heart’s content (as well as trigger stored proce-
dures). In reality, however, you have seen only half of the ADO.NET story. Recall that the ADO.NET
object model can be used in a disconnected manner.

When you work with the disconnected layer of ADO.NET, you will still make use of connection
and command objects. In addition, you will leverage a specific object named a data adapter (which
extends the abstract DbDataAdapter) to fetch and update data. Unlike the connected layer, data obtained
via a data adapter is not processed using data reader objects. Rather, data adapter objects make use
of DataSet objects to move data between the caller and data source. The DataSet type is a container
for any number of DataTable objects, each of which contains a collection of DataRow and DataColumn
objects.

The data adapter object of your data provider handles the database connection automatically.
In an attempt to increase scalability, data adapters keep the connection open for the shortest possi-
ble amount of time. Once the caller receives the DataSet object, he is completely disconnected from
the DBMS and left with a local copy of the remote data. The caller is free to insert, delete, or update
rows from a given DataTable, but the physical database is not updated until the caller explicitly
passes the DataSet to the data adapter for updating. In a nutshell, DataSets allow the clients to pre-
tend they are indeed always connected, when in fact they are operating on an in-memory database
(see Figure 22-10).

Given that the centerpiece of the disconnected layer is the DataSet type, your next task is to
learn how to manipulate a DataSet manually. Once you understand how to do so, you will have no
problem manipulating the contents of a DataSet retrieved from a data adapter object.

4193ch22.qxd 8/14/05 3:03 PM Page 793

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET794

Understanding the Role of the DataSet
Simply put, a DataSet is an in-memory representation of external data. More specifically, a DataSet
is a class type that maintains three internal strongly typed collections (see Figure 22-11).

The Tables property of the DataSet allows you to access the DataTableCollection that contains the
individual DataTables. Another important collection used by the DataSet is the DataRelationCollection.
Given that a DataSet is a disconnected version of a database schema, it can programmatically represent
the parent/child relationships between its tables. For example, a relation can be created between
two tables to model a foreign key constraint using the DataRelation type. This object can then be
added to the DataRelationCollection through the Relations property. At this point, you can navi-
gate between the connected tables as you search for data. You will see how this is done a bit later in
the chapter.

The ExtendedProperties property provides access to the PropertyCollection object, which
allows you to associate any extra information to the DataSet as name/value pairs. This information
can literally be anything at all, even if it has no bearing on the data itself. For example, you can asso-
ciate your company’s name to a DataSet, which can then function as in-memory metadata. Other
examples of extended properties might include timestamps, an encrypted password that must be
supplied to access the contents of the DataSet, a number representing a data refresh rate, and so
forth.

■Note The DataTable class also supports extended properties via the ExtendedProperties property.

Members of the DataSet
Before exploring too many other programmatic details, take a look at some core members of the
DataSet. Beyond the Tables, Relations, and ExtendedProperties properties, Table 22-9 describes
some additional properties of interest.

Figure 22-11. The anatomy of a DataSet

4193ch22.qxd 8/14/05 3:03 PM Page 794

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 795

Table 22-9. Properties of the Mighty DataSet

Property Meaning in Life

CaseSensitive Indicates whether string comparisons in DataTable objects are case
sensitive (or not).

DataSetName Represents the friendly name of this DataSet. Typically this value is
established as a constructor parameter.

EnforceConstraints Gets or sets a value indicating whether constraint rules are followed
when attempting any update operation.

HasErrors Gets a value indicating whether there are errors in any of the rows in
any of the DataTables of the DataSet.

RemotingFormat This new .NET 2.0 property allows you to define how the DataSet
should serialize its content (binary or XML) for the .NET remoting layer.

The methods of the DataSet mimic some of the functionality provided by the aforementioned
properties. In addition to interacting with XML streams, the DataSet provides methods that allow
you to copy/clone the contents of your DataSet, as well as establish the beginning and ending points
of a batch of updates. Table 22-10 describes some core methods.

Table 22-10. Methods of the Mighty DataSet

Methods Meaning in Life

AcceptChanges() Commits all the changes made to this DataSet since it was loaded or
the last time AcceptChanges() was called.

Clear() Completely clears the DataSet data by removing every row in each
DataTable.

Clone() Clones the structure of the DataSet, including all DataTables, as well as
all relations and any constraints.

Copy() Copies both the structure and data for this DataSet.

GetChanges() Returns a copy of the DataSet containing all changes made to it since it
was last loaded or since AcceptChanges() was called.

GetChildRelations() Returns the collection of child relations that belong to a specified table.

GetParentRelations() Gets the collection of parent relations that belong to a specified table.

HasChanges() Overloaded. Gets a value indicating whether the DataSet has changes,
including new, deleted, or modified rows.

Merge() Overloaded. Merges this DataSet with a specified DataSet.

ReadXml() Allow you to read XML data from a valid stream (file based, memory
ReadXmlSchema() based, or network based) into the DataSet.

RejectChanges() Rolls back all the changes made to this DataSet since it was created or
the last time DataSet.AcceptChanges was called.

WriteXml() Allow you to write out the contents of a DataSet into a valid stream.
WriteXmlSchema()

Now that you have a better understanding of the role of the DataSet (and some idea of what
you can do with one), create a new console application named SimpleDataSet. Within the Main()
method, define a new DataSet object that contains two extended properties representing your com-
pany name and timestamp (don’t forget to “use” System.Data):

4193ch22.qxd 8/14/05 3:03 PM Page 795

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET796

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with DataSets *****\n");

// Create the DataSet object.
DataSet carsInventoryDS = new DataSet("Car Inventory");
carsInventoryDS.ExtendedProperties["TimeStamp"] = DateTime.Now;
carsInventoryDS.ExtendedProperties["Company"] = "Intertech Training";

}
}

A DataSet without DataTables is a bit like a workweek without a weekend. Therefore, the next
task is to examine the internal composition of the DataTable, beginning with the DataColumn type.

Working with DataColumns
The DataColumn type represents a single column within a DataTable. Collectively speaking, the set of
all DataColumn types bound to a given DataTable represents the foundation of a table’s schema infor-
mation. For example, if you were to model the Inventory table of the Cars database, you would create
four DataColumns, one for each column (CarID, Make, Color, and PetName). Once you have created
your DataColumn objects, they are typically added into the columns collection of the DataTable type
(via the Columns property).

If you have a background in relational database theory, you know that a given column in a data
table can be assigned a set of constraints (e.g., configured as a primary key, assigned a default value,
configured to contain read-only information, etc.). Also, every column in a table must map to an
underlying data type. For example, the Inventory table’s schema requires that the CarID column
map to an integer, while Make, Color, and PetName map to an array of characters. The DataColumn
class has numerous properties that allow you to configure these very things. Table 22-11 provides
a rundown of some core properties.

Table 22-11. Properties of the DataColumn

Properties Meaning in Life

AllowDBNull This property is used to indicate if a row can specify null values in this
column. The default value is true.

AutoIncrement These properties are used to configure the autoincrement behavior for
AutoIncrementSeed a given column. This can be helpful when you wish to ensure unique
AutoIncrementStep values in a given DataColumn (such as a primary key). By default, a DataColumn

does not support autoincrement behavior

Caption This property gets or sets the caption to be displayed for this column (e.g.,
what the end user sees in a DataGridView).

ColumnMapping This property determines how a DataColumn is represented when a DataSet
is saved as an XML document using the DataSet.WriteXml() method.

ColumnName This property gets or sets the name of the column in the Columns collection
(meaning how it is represented internally by the DataTable). If you do not
set the ColumnName explicitly, the default values are Column with (n+1)
numerical suffixes (i.e., Column1, Column2, Column3, etc.).

DataType This property defines the data type (Boolean, string, float, etc.) stored in
the column.

DefaultValue This property gets or sets the default value assigned to this column when
inserting new rows. This is used if not otherwise specified.

4193ch22.qxd 8/14/05 3:03 PM Page 796

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 797

Properties Meaning in Life

Expression This property gets or sets the expression used to filter rows, calculate
a column’s value, or create an aggregate column.

Ordinal This property gets the numerical position of the column in the Columns
collection maintained by the DataTable.

ReadOnly This property determines if this column can be modified once a row has
been added to the table. The default is false.

Table This property gets the DataTable that contains this DataColumn.

Unique This property gets or sets a value indicating whether the values in each
row of the column must be unique or if repeating values are permissible. If
a column is assigned a primary key constraint, the Unique property should
be set to true.

Building a DataColumn
To continue with the SimpleDataSet project (and illustrate the use of the DataColumn), assume you
wish to model the columns of the Inventory table. Given that the CarID column will be the table’s
primary key, you will configure the DataColumn object as read-only, unique, and non-null (using the
ReadOnly, Unique, and AllowDBNull properties). Update the Main() method to build four DataColumn
objects:

static void Main(string[] args)
{
...

// Create data columns that map to the
// 'real' columns in the Inventory table
// of the Cars database.
DataColumn carIDColumn = new DataColumn("CarID", typeof(int));
carIDColumn.Caption = "Car ID";
carIDColumn.ReadOnly = true;
carIDColumn.AllowDBNull = false;
carIDColumn.Unique = true;

DataColumn carMakeColumn = new DataColumn("Make", typeof(string));
DataColumn carColorColumn = new DataColumn("Color", typeof(string));
DataColumn carPetNameColumn = new DataColumn("PetName", typeof(string));
carPetNameColumn.Caption = "Pet Name";

}

Enabling Autoincrementing Fields
One aspect of the DataColumn you may choose to configure is its ability to autoincrement. Simply
put, autoincrementing columns are used to ensure that when a new row is added to a given table,
the value of this column is assigned automatically, based on the current step of the incrementation.
This can be helpful when you wish to ensure that a column has no repeating values (such as a pri-
mary key).

This behavior is controlled using the AutoIncrement, AutoIncrementSeed, and AutoIncrementStep
properties. The seed value is used to mark the starting value of the column, whereas the step value
identifies the number to add to the seed when incrementing. Consider the following update to the
construction of the carIDColumn DataColumn:

static void Main(string[] args)
{
...

DataColumn carIDColumn = new DataColumn("CarID", typeof(int));

4193ch22.qxd 8/14/05 3:03 PM Page 797

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET798

carIDColumn.ReadOnly = true;
carIDColumn.Caption = "Car ID";
carIDColumn.AllowDBNull = false;
carIDColumn.Unique = true;
carIDColumn.AutoIncrement = true;
carIDColumn.AutoIncrementSeed = 0;
carIDColumn.AutoIncrementStep = 1;

}

Here, the carIDColumn object has been configured to ensure that as rows are added to the
respective table, the value for this column is incremented by 1. Because the seed has been set at 0,
this column would be numbered 0, 1, 2, 3, and so forth.

Adding a DataColumn to a DataTable
The DataColumn type does not typically exist as a stand-alone entity, but is instead inserted into
a related DataTable. To illustrate, create a new DataTable type (fully detailed in just a moment) and
insert each DataColumn object in the columns collection using the Columns property:

static void Main(string[] args)
{
...

// Now add DataColumns to a DataTable.
DataTable inventoryTable = new DataTable("Inventory");
inventoryTable.Columns.AddRange(new DataColumn[]

{ carIDColumn, carMakeColumn, carColorColumn, carPetNameColumn });
}

Working with DataRows
As you have seen, a collection of DataColumn objects represents the schema of a DataTable. In contrast,
a collection of DataRow types represents the actual data in the table. Thus, if you have 20 listings in
the Inventory table of the Cars database, you can represent these records using 20 DataRow types.
Using the members of the DataRow class, you are able to insert, remove, evaluate, and manipulate the
values in the table. Table 22-12 documents some (but not all) of the members of the DataRow type.

Table 22-12. Key Members of the DataRow Type

Members Meaning in Life

HasErrors The HasErrors property returns a Boolean value indicating if there are
GetColumnsInError() errors.
GetColumnError() If so, the GetColumnsInError() method can be used to obtain the
ClearErrors() offending members, and GetColumnError() can be used to obtain the
RowError error description, while the ClearErrors() method removes each

error listing for the row.
The RowError property allows you to configure a textual description of
the error for a given row.

ItemArray This property gets or sets all of the values for this row using an array of
objects.

RowState This property is used to pinpoint the current “state” of the DataRow
using values of the RowState enumeration.

Table This property is used to obtain a reference to the DataTable containing
this DataRow.

AcceptChanges() These methods commit or reject all changes made to this row since the
RejectChanges() last time AcceptChanges() was called.

4193ch22.qxd 8/14/05 3:03 PM Page 798

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 799

Members Meaning in Life

BeginEdit() These methods begin, end, or cancel an edit operation on a DataRow
EndEdit() object.
CancelEdit()

Delete() This method marks this row to be removed when the AcceptChanges()
method is called.

IsNull() This method gets a value indicating whether the specified column
contains a null value.

Working with a DataRow is a bit different from working with a DataColumn, because you cannot
create a direct instance of this type; rather, you obtain a reference from a given DataTable. For example,
assume you wish to insert two rows in the Inventory table. The DataTable.NewRow() method allows
you to obtain the next slot in the table, at which point you can fill each column with new data via
the type indexer, as shown here:

static void Main(string[] args)
{
...

// Now add some rows to the Inventory Table.
DataRow carRow = inventoryTable.NewRow();
carRow["Make"] = "BMW";
carRow["Color"] = "Black";
carRow["PetName"] = "Hamlet";
inventoryTable.Rows.Add(carRow);

carRow = inventoryTable.NewRow();
carRow["Make"] = "Saab";
carRow["Color"] = "Red";
carRow["PetName"] = "Sea Breeze";
inventoryTable.Rows.Add(carRow);

}

Notice how the DataRow class defines an indexer that can be used to gain access to a given
DataColumn by numerical position as well as column name. At this point, you have a single DataTable
containing two rows.

Understanding the DataRow.RowState Property
The RowState property is useful when you need to programmatically identify the set of all rows in
a table that have changed, have been newly inserted, and so forth. This property may be assigned
any value from the DataRowState enumeration, as shown in Table 22-13.

Table 22-13. Values of the DataRowState Enumeration

Value Meaning in Life

Added The row has been added to a DataRowCollection, and AcceptChanges() has not
been called.

Deleted The row has been deleted via the Delete() method of the DataRow.

Detached The row has been created but is not part of any DataRowCollection. A DataRow is in
this state immediately after it has been created and before it is added to
a collection, or if it has been removed from a collection.

Modified The row has been modified, and AcceptChanges() has not been called.

Unchanged The row has not changed since AcceptChanges() was last called.

4193ch22.qxd 8/14/05 3:03 PM Page 799

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET800

While you are programmatically manipulating the rows of a given DataTable, the RowState
property is set automatically:

static void Main(string[] args)
{
...

DataRow carRow = inventoryTable.NewRow();
// Prints out: Row State is: Detatched.
Console.WriteLine("Row State is: {0}.", carRow.RowState);
carRow["Make"] = "BMW";
carRow["Color"] = "Black";
carRow["PetName"] = "Hamlet";
inventoryTable.Rows.Add(carRow);

// Prints out: Row State is: Added.
Console.WriteLine("Row State is: {0}.", inventoryTable.Rows[0].RowState);

...
}

As you can see, the ADO.NET DataRow is smart enough to remember its current state of affairs.
Given this, the owning DataTable is able to identify which rows have been modified. This is a key
feature of the DataSet, as when it comes time to send updated information to the data store, only
the modified data is submitted.

Working with DataTables
The DataTable defines a good number of members, many of which are identical in name and func-
tionality to those of the DataSet. Table 22-14 describes some core properties of the DataTable type
beyond Rows and Columns.

Table 22-14. Key Members of the DataTable Type

Property Meaning in Life

CaseSensitive Indicates whether string comparisons within the table are case sensitive (or
not). The default value is false.

ChildRelations Returns the collection of child relations for this DataTable (if any).

Constraints Gets the collection of constraints maintained by the table.

DataSet Gets the DataSet that contains this table (if any).

DefaultView Gets a customized view of the table that may include a filtered view or
a cursor position.

MinimumCapacity Gets or sets the initial number of rows in this table (the default is 25).

ParentRelations Gets the collection of parent relations for this DataTable.

PrimaryKey Gets or sets an array of columns that function as primary keys for the data
table.

RemotingFormat Allows you to define how the DataSet should serialize its content (binary or
XML) for the .NET remoting layer. This property is new in .NET 2.0.

TableName Gets or sets the name of the table. This same property may also be specified
as a constructor parameter.

4193ch22.qxd 8/14/05 3:03 PM Page 800

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 801

For the current example, let’s set the PrimaryKey property of the DataTable to the carIDColumn
DataColumn object:

static void Main(string[] args)
{
...

// Mark the primary key of this table.
inventoryTable.PrimaryKey = new DataColumn[] { inventoryTable.Columns[0] };

}

Once you do this, the DataTable example is complete. The final step is to insert your DataTable
into the carsInventoryDS DataSet object. Then you’ll pass your DataSet to a (yet to be written)
helper method named PrintDataSet():

static void Main(string[] args)
{
...

// Finally, add our table to the DataSet.
carsInventoryDS.Tables.Add(inventoryTable);
// Now print the DataSet.
PrintDataSet(carsInventoryDS);

}

The PrintDataSet() method simply iterates over each DataTable in the DataSet, printing out
the column names and row values using the type indexers:

static void PrintDataSet(DataSet ds)
{

Console.WriteLine("Tables in '{0}' DataSet.\n", ds.DataSetName);
foreach (DataTable dt in ds.Tables)
{

Console.WriteLine("{0} Table.\n", dt.TableName);

// Print out the column names.
for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{

Console.Write(dt.Columns[curCol].ColumnName.Trim() + "\t");
}
Console.WriteLine("\n----------------------------------");

// Print the DataTable.
for (int curRow = 0; curRow < dt.Rows.Count; curRow++)
{

for (int curCol = 0; curCol < dt.Columns.Count; curCol++)
{

Console.Write(dt.Rows[curRow][curCol].ToString() + "\t");
}
Console.WriteLine();

}
}

}

Figure 22-12 shows the program’s output.

4193ch22.qxd 8/14/05 3:03 PM Page 801

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET802

Working with .NET 2.0 DataTableReaders
DataTables provide a number of methods beyond what we’ve examined thus far. For example, like
DataSets, DataTables support AcceptChanges(), GetChanges(), Copy(), and ReadXml()/WriteXml()
methods. As of .NET 2.0, DataTables also now support a method named CreateDataReader(). This
method allows you to obtain the data within a DataTable using a data reader–like navigation
scheme (forward-only, read-only). To illustrate, create a new helper function named PrintTable(),
implemented as so:

private static void PrintTable(DataTable dt)
{

Console.WriteLine("\n***** Rows in DataTable *****");

// Get the new .NET 2.0 DataTableReader type.
DataTableReader dtReader = dt.CreateDataReader();

// The DataTableReader works just like the DataReader.
while (dtReader.Read())
{

for (int i = 0; i < dtReader.FieldCount; i++)
{

Console.Write("{0} = {1} ",
dtReader.GetName(i),
dtReader.GetValue(i).ToString().Trim());

}
Console.WriteLine();

}
dtReader.Close();

}

Notice that the DataTableReader works identically to the data reader object of your data
provider. Using a DataTableReader can be an ideal choice when you wish to quickly pump out the
data within a DataTable without needing to traverse the internal row and column collections. To
call this method, simply pass in the correct table:

static void Main(string[] args)
{
...

// Print out the DataTable via 'table reader'.
PrintTable(carsInventoryDS.Tables["Inventory"]);

}

Figure 22-12. Contents of the example’s DataSet object

4193ch22.qxd 8/14/05 3:03 PM Page 802

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 803

Persisting DataSets (and DataTables) As XML
To wrap up the current example, recall that DataSets and DataTables both support WriteXml() and
ReadXml() methods. WriteXml() allows you to persist the object’s content to a local file (as well as
into any System.IO.Stream-derived type) as an XML document. ReadXml() allows you to hydrate the
state of a DataSet (or DataTable) from a given XML document. In addition, DataSets and DataTables
both support WriteXmlSchema() and ReadXmlSchema() to save or load an *.xsd file. To test this out for
yourself, update your Main() method with the final set of code statements:

static void Main(string[] args)
{
...

// Save this DataSet as XML.
carsInventoryDS.WriteXml("carsDataSet.xml");
carsInventoryDS.WriteXmlSchema("carsDataSet.xsd");

// Clear out DataSet and print contents (which are empty).
carsInventoryDS.Clear();
PrintDataSet(carsInventoryDS);

// Load and print the DataSet.
carsInventoryDS.ReadXml("carsDataSet.xml");
PrintDataSet(carsInventoryDS);

}

If you open the carsDataSet.xml file, you will find that each column in the table has been
encoded as an XML element:

<?xml version="1.0" standalone="yes"?>
<Car_x0020_Inventory>
<Inventory>
<CarID>0</CarID>
<Make>BMW</Make>
<Color>Black</Color>
<PetName>Hamlet</PetName>

</Inventory>
<Inventory>
<CarID>1</CarID>
<Make>Saab</Make>
<Color>Red</Color>
<PetName>Sea Breeze</PetName>

</Inventory>
</Car_x0020_Inventory>

Finally, recall that the DataColumn type supports a property named ColumnMapping, which can be
used to control how a column should be represented in XML. The default setting is MappingType.Element.
However, if you establish the CarID column as an XML attribute as follows by updating your existing
carIDColumn DataColumn object

static void Main(string[] args)
{

...
DataColumn carIDColumn = new DataColumn("CarID", typeof(int));
...
carIDColumn.ColumnMapping = MappingType.Attribute;

}

you will find the following XML:

4193ch22.qxd 8/14/05 3:03 PM Page 803

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET804

<?xml version="1.0" standalone="yes"?>
<Car_x0020_Inventory>
<Inventory CarID="0">
<Make>BMW</Make>
<Color>Black</Color>
<PetName>Hamlet</PetName>

</Inventory>
<Inventory CarID="1">
<Make>Saab</Make>
<Color>Red</Color>
<PetName>Sea Breeze</PetName>

</Inventory>
</Car_x0020_Inventory>

■Source Code The SimpleDataSet application is included under the Chapter 22 subdirectory.

Binding DataTables to User Interfaces
Now that you have been exposed to the process of interacting with DataSets in the raw, let’s see
a Windows Forms example. Your goal is to build a Form that displays the contents of a DataTable
within a DataGridView widget. Figure 22-13 shows the initial UI design.

■Note As of .NET 2.0, the DataGridView widget is the preferred UI control used to bind relational data. Do be
aware, however, that the legacy .NET 1.x DataGrid control is still available.

To begin, create a new Windows Forms application named CarDataTableViewer. Add a Data-
GridView widget (named carInventoryGridView) and descriptive Label to your designer. Next, insert
a new C# class into your project (named Car), which is defined as follows:

public class Car
{

// Made public for ease of use.
public string carPetName, carMake, carColor;

public Car(string petName, string make, string color)
{

carPetName = petName;

Figure 22-13. Binding a DataTable to a DataGridView

4193ch22.qxd 8/14/05 3:03 PM Page 804

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 805

carColor = color;
carMake = make;

}
}

Now, within the Form’s default constructor, populate a List<> member variable with a set of
new Car objects:

public partial class MainForm : System.Windows.Forms.Form
{

// Our list of Cars.
private List<Car> arTheCars = new List<Car>();

public MainForm()
{

InitializeComponent();
CenterToScreen();

// Fill the list with some cars.
arTheCars.Add(new Car("Chucky", "BMW", "Green"));
arTheCars.Add(new Car("Tiny", "Yugo", "White"));
arTheCars.Add(new Car("", "Jeep", "Tan"));
arTheCars.Add(new Car("Pain Inducer", "Caravan", "Pink"));
arTheCars.Add(new Car("Fred", "BMW", "Pea Soup Green"));
arTheCars.Add(new Car("Buddha", "BMW", "Black"));
arTheCars.Add(new Car("Mel", "Firebird", "Red"));
arTheCars.Add(new Car("Sarah", "Colt", "Black"));

}
}

Like the previous SimpleDataSet example, the CarDataTableViewer application will construct
a DataTable that contains four DataColumns to represent the columns of the Inventory table within
the Cars database. As well, this DataTable will contain a set of DataRows to represent a list of automo-
biles. This time, however, you will fill the rows using your generic List<> member variable.

First, add a new member variable named inventoryTable of type DataTable to your Form. Next,
add a new helper function to your Form class named CreateDataTable(), and call this method within
the Form’s default constructor. The code required to add the DataColumns to the DataTable object is
identical to that in the previous example, so I’ll omit it here (consult this book’s code download for
complete details). Do note, though, that you are iterating over each member of the List<> to build
your row set:

private void CreateDataTable()
{

// Create DataColumns and add to DataTable.
...

// Iterate over the array list to make rows.
foreach(Car c in arTheCars)
{

DataRow newRow = inventoryTable.NewRow();
newRow["Make"] = c.carMake;
newRow["Color"] = c.carColor;
newRow["PetName"] = c.carPetName;
inventoryTable.Rows.Add(newRow);

}

// Bind the DataTable to the carInventoryGridView.
carInventoryGridView.DataSource = inventoryTable;

}

4193ch22.qxd 8/14/05 3:03 PM Page 805

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET806

Notice that the final line of code within the CreateDataTable() method assigns the inventoryTable
to the DataSource property. This single property is all you need to set to bind a DataTable to
a DataGridView object. As you might guess, this GUI widget is reading the rows and column collec-
tions internally to establish the UI. At this point, you should be able to run your application and see
the DataTable within the DataGridView control.

Programmatically Deleting Rows
Now, what if you wish to remove a row from a DataTable? One approach is to call the Delete() method
of the DataRow object that represents the row to terminate. Simply specify the index (or DataRow
object) representing the row to remove. Assume you update your GUI as shown in Figure 22-14.

The following logic behind the new Button’s Click event handler removes the specified row
from your in-memory DataTable:

// Remove this row from the DataRowCollection.
private void btnRemoveRow_Click (object sender, EventArgs e)
{

try
{

inventoryTable.Rows[(int.Parse(txtRowToRemove.Text))].Delete();
inventoryTable.AcceptChanges();

}
catch(Exception ex)
{

MessageBox.Show(ex.Message);
}

}

The Delete() method might have been better named MarkedAsDeletable(), as the row is not
literally removed until the DataTable.AcceptChanges() method is called. In effect, the Delete()
method simply sets a flag that says, “I am ready to die when my table tells me to.” Also understand
that if a row has been marked for deletion, a DataTable may reject the delete operation via
RejectChanges(), as shown here:

// Mark a row as deleted, but reject the changes.
private void btnRemoveRow_Click (object sender, EventArgs e)
{

Figure 22-14. Removing rows from the DataTable

4193ch22.qxd 8/14/05 3:03 PM Page 806

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 807

Figure 22-15. Specifying a filter

inventoryTable.Rows[(int.Parse(txtRemove.Text))].Delete();
// Do more work
...
inventoryTable.RejectChanges(); // Restore previous RowState value.

}

Applying Filters and Sort Orders
You may wish to see a small subset of a DataTable’s data, as specified by some sort of filtering crite-
ria. For example, what if you wish to see only a certain make of automobile from the in-memory
Inventory table? The Select() method of the DataTable class provides this very functionality. Update
your GUI once again, this time allowing users to specify a string that represents the make of the
automobile they are interested in viewing (see Figure 22-15). The result will be placed into a Windows
Forms message box.

The Select() method has been overloaded a number of times to provide different selection
semantics. At its most basic level, the parameter sent to Select() is a string that contains some con-
ditional operation. To begin, observe the following logic for the Click event handler of your new
button:

private void btnGetMakes_Click (object sender, EventArgs e)
{

// Build a filter based on user input.
string filterStr = string.Format("Make= '{0}' ", txtMakeToGet.Text);

// Find all rows matching the filter.
DataRow[] makes = inventoryTable.Select(filterStr);

// Show what we got!
if(makes.Length == 0)

MessageBox.Show("Sorry, no cars...", "Selection error!");
else
{

string strMake = null;
for(int i = 0; i < makes.Length; i++)

4193ch22.qxd 8/14/05 3:03 PM Page 807

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET808

{
DataRow temp = makes[i];
strMake += temp["PetName"] + "\n";

}
MessageBox.Show(strMake, txtMakeToGet.Text + " type(s):");

}
}

Here, you first build a simple filter based on the value in the associated TextBox. If you specify
BMW, your filter is Make = 'BMW'. When you send this filter to the Select() method, you get back an
array of DataRow types that represent each row that matches the filter (see Figure 22-16).

As you can see, filtering logic is standard SQL syntax. To prove the point, assume you wish to
obtain the results of the previous Select() invocation alphabetically based on pet name. In terms of
SQL, this translates into a sort based on the PetName column. Luckily, the Select() method has
been overloaded to send in a sort criterion, as shown here:

// Sort by PetName.
makes = inventoryTable.Select(filterStr, "PetName");

If you want the results in descending order, call Select(), as shown here:

// Return results in descending order.
makes = inventoryTable.Select(filterStr, "PetName DESC");

In general, the sort string contains the column name followed by “ASC” (ascending, which is
the default) or “DESC” (descending). If need be, multiple columns can be separated by commas.
Finally, understand that a filter string can be composed of any number of relational operators. For
example, what if you want to find all cars with an ID greater than 5? Here is a helper function that
does this very thing:

private void ShowCarsWithIdLessThanFive()
{

// Now show the pet names of all cars with ID greater than 5.
DataRow[] properIDs;
string newFilterStr = "ID > 5";
properIDs = inventoryTable.Select(newFilterStr);
string strIDs = null;
for(int i = 0; i < properIDs.Length; i++)
{

DataRow temp = properIDs[i];
strIDs += temp["PetName"]

+ " is ID " + temp["ID"] + "\n";
}
MessageBox.Show(strIDs, "Pet names of cars where ID > 5");

}

Figure 22-16. Displaying filtered data

4193ch22.qxd 8/14/05 3:03 PM Page 808

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 809

Updating Rows
The final aspect of the DataTable you should be aware of is the process of updating an existing row
with new values. One approach is to first obtain the row(s) that match a given filter criterion using
the Select() method. Once you have the DataRow(s) in question, modify them accordingly. For
example, assume you have a new Button that (when clicked) searches the DataTable for all rows
where Make is equal to BMW. Once you identify these items, you change the Make from BMW to Colt:

// Find the rows you want to edit with a filter.
private void btnChangeBeemersToColts_Click(object sender, EventArgs e)
{

// Make sure user has not lost his mind.
if (DialogResult.Yes ==

MessageBox.Show("Are you sure?? BMWs are much nicer than Colts!",
"Please Confirm!", MessageBoxButtons.YesNo))

{
// Build a filter.
string filterStr = "Make='BMW'";
string strMake = null;

// Find all rows matching the filter.
DataRow[] makes = inventoryTable.Select(filterStr);

// Change all Beemers to Colts!
for (int i = 0; i < makes.Length; i++)
{

DataRow temp = makes[i];
strMake += temp["Make"] = "Colt";
makes[i] = temp;

}
}

}

The DataRow class also provides the BeginEdit(), EndEdit(), and CancelEdit() methods, which
allow you to edit the content of a row while temporarily suspending any associated validation rules.
In the previous logic, each row was validated with each assignment. (Also, if you capture any events
from the DataRow, they fire with each modification.) When you call BeginEdit() on a given DataRow,
the row is placed in edit mode. At this point you can make your changes as necessary and call either
EndEdit() to commit these changes or CancelEdit() to roll back the changes to the original version,
for example:

private void UpdateSomeRow()
{

// Assume you have obtained a row to edit.
// Now place this row in edit mode.
rowToUpdate.BeginEdit();

// Send the row to a helper function, which returns a Boolean.
if(ChangeValuesForThisRow(rowToUpdate))

rowToUpdate.EndEdit(); // OK!
else

rowToUpdate.CancelEdit(); // Forget it.
}

Although you are free to manually call these methods on a given DataRow, these members are
automatically called when you edit a DataGridView widget that has been bound to a DataTable. For
example, when you select a row to edit from a DataGridView, that row is automatically placed in edit
mode. When you shift focus to a new row, EndEdit() is called automatically.

4193ch22.qxd 8/14/05 3:03 PM Page 809

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET810

Working with the DataView Type
In database nomenclature, a view object is a stylized representation of a table (or set of tables). For
example, using Microsoft SQL Server, you could create a view for your current Inventory table that
returns a new table containing automobiles only of a given color. In ADO.NET, the DataView type
allows you to programmatically extract a subset of data from the DataTable into a stand-alone object.

One great advantage of holding multiple views of the same table is that you can bind these
views to various GUI widgets (such as the DataGridView). For example, one DataGridView might be
bound to a DataView showing all autos in the Inventory, while another might be configured to dis-
play only green automobiles.

To illustrate, update the current UI with an additional DataGridView type named dataGridColtsView
and a descriptive Label. Next, define a member variable named coltsOnlyView of type DataView:

public partial class MainForm : Form
{

// View of the DataTable.
DataView coltsOnlyView; // I only show red colts.

...
}

Now, create a new helper function named CreateDataView(), and call this method within the
Form’s default constructor directly after the DataTable has been fully constructed, as shown here:

public MainForm()
{
...

// Make a data table.
CreateDataTable();
// Make Views.
CreateDataView();

}

Here is the implementation of this new helper function. Notice that the constructor of each
DataView has been passed the DataTable that will be used to build the custom set of data rows.

private void CreateDataView()
{

// Set the table that is used to construct this view.
coltsOnlyView = new DataView(inventoryTable);

// Now configure the views using a filter.
coltsOnlyView.RowFilter = "Make = 'Colt'";

// Bind to grid.
dataGridColtsView.DataSource = coltsOnlyView;

}

As you can see, the DataView class supports a property named RowFilter, which contains the
string representing the filtering criteria used to extract matching rows. Once you have your view
established, set the grid’s DataSource property accordingly. Figure 22-17 shows the completed appli-
cation in action.

4193ch22.qxd 8/14/05 3:03 PM Page 810

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 811

■Source Code The CarDataTableViewer project is included under the Chapter 22 subdirectory.

Working with Data Adapters
Now that you understand the ins and outs of manipulating ADO.NET DataSets, let’s turn our atten-
tion to the topic of data adapters. Recall that data adapter objects are used to fill a DataSet with
DataTable objects and send modified DataTables back to the database for processing. Table 22-15
documents the core members of the DbDataAdapter base class.

Table 22-15. Core Members of the DbDataAdapter Class

Members Meaning in Life

SelectCommand Establish SQL commands that will be issued to the data store when the Fill()
InsertCommand and Update() methods are called.
UpdateCommand
DeleteCommand

Fill() Fills a given table in the DataSet with some number of records based on the
command object–specified SelectCommand.

Update() Updates a DataTable using command objects within the InsertCommand,
UpdateCommand, or DeleteCommand property. The exact command that is
executed is based on the RowState value for a given DataRow in a given
DataTable (of a given DataSet).

Figure 22-17. Displaying filtered data

4193ch22.qxd 8/14/05 3:03 PM Page 811

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET812

In the examples that follow, remember that data adapter objects manage the underlying con-
nection to the database on your behalf; therefore, you will not need to explicitly open or close your
session with the DBMS. However, you will still need to supply the data adapter with a valid connec-
tion object or a connection string (which will be used to build a connection object internally) as
a constructor argument.

Filling a DataSet Using a Data Adapter
Create a new console application named FillDataSetWithSqlDataAdapter and make use of the
System.Data and System.Data.SqlClient namespaces. Update your Main() method as so (try/catch
logic has been omitted here for simplicity):

static void Main(string[] args)
{

Console.WriteLine("***** Fun with Data Adapters *****\n");
string cnStr = "uid=sa;pwd=;Initial Catalog=Cars;Data Source=(local)";

// Fill the DataSet with a new DataTable.
DataSet myDS = new DataSet("Cars");
SqlDataAdapter dAdapt = new SqlDataAdapter("Select * From Inventory", cnStr);
dAdapt.Fill(myDS, "Inventory");

// Display contents.
PrintDataSet(myDS);

}

Notice that the data adapter has been constructed by specifying a SQL Select statement. This
value will be used to build a command object internally, which can be later obtained via the Select-
Command property. Next, notice that the Fill() method takes an instance of the DataSet type and
optionally a string name that will be used to set the TableName property of the new DataTable (if you
do not specify a table name, the data adapter will simply name the table “Table”).

■Note The Fill() method returns an integer that represents the number of rows affected by the SQL query.

As you would expect, when you pass the DataSet to the PrintDataSet() method (implemented
earlier in this chapter), you are presented with a list of all rows in the Inventory table of the Cars
database (see Figure 22-18).

Figure 22-18. Filling a DataSet with a data adapter object

4193ch22.qxd 8/14/05 3:03 PM Page 812

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 813

Mapping Database Names to Friendly Names
As you most certainly know, database administrators (DBAs) tend to create table and column
names that can be less than friendly to end users. The good news is that data adapter objects main-
tain an internal strongly named collection (DataTableMappingCollection) of System.Data.Common.
DataTableMapping types, accessed via the TableMappings property.

If you so choose, you may manipulate this collection to inform a DataTable about which “dis-
play names” it should use when asked to print its contents. For example, assume that you wish to
map the DBMS table name “Inventory” to “Current Inventory” for display purposes. Furthermore,
say you wish to display the CarID column name as “Car ID” (note the extra space) and the PetName
column name as “Name of Car.” To do so, add the following code before calling the Fill() method
of your data adapter object (and be sure to “use” the System.Data.Common namespace):

static void Main(string[] args)
{
...

// Now map DB column names to user-friendly names.
DataTableMapping custMap =

dAdapt.TableMappings.Add("Inventory", "Current Inventory");
custMap.ColumnMappings.Add("CarID", "Car ID");
custMap.ColumnMappings.Add("PetName", "Name of Car");
dAdapt.Fill(myDS, "Inventory");

...
}

If you were to run this program once again, you would find that the PrintDataSet() method
now displays the “friendly names” of the DataTable and DataRow objects, rather than the names
established by the database schema.

■Source Code The FillDataSetWithSqlDataAdapter project is included under the Chapter 22 subdirectory.

Updating a Database Using Data Adapter Objects
Not only do data adapters fill the tables of a DataSet on your behalf, but they are also in charge of
maintaining a set of core SQL command objects used to push updates back to the data store. When
you call the Update() method of a given data adapter, it will examine the RowState property for each
row in the DataTable and use the correct SQL commands assigned to the DeleteCommand, InsertCommand,
and UpdateCommand properties to push the changes within a given DataTable back to the data source.

To illustrate the process of using a data adapter to push back modifications in a DataTable, the
next example will re-engineer the CarsInvertoryUpdater example developed earlier in the chapter
to now make use of DataSet and data adapter objects. Given that you have already created a bulk of
the application, let’s focus on the changes to the DeleteCar(), UpdateCarPetName(), and InsertNewCar()
methods (check out the downloadable code for full details).

The first basic adjustment to make to the application is to define two new static member vari-
ables of the Program class to represent your DataSet and connection object. As well, the Main() method
will be modified to fill the DataSet with the initial data upon startup:

class Program
{

// The applicationwide DataSet.
public static DataSet dsCarInventory = new DataSet("CarsDatabase");

4193ch22.qxd 8/14/05 3:03 PM Page 813

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET814

// The applicationwide connection object.
public static SqlConnection cnObj = new

SqlConnection("uid=sa;pwd=;Initial Catalog=Cars;Data Source=(local)");

static void Main(string[] args)
{

...
// Create the adapter and fill DataSet.
SqlDataAdapter dAdapter =

new SqlDataAdapter("Select * From Inventory", cnObj);
dAdapter.Fill(dsCarInventory, "Inventory");
ShowInstructions();

// Logic to get user command...
}

...
}

Also note in the code that follows that the ListInventory(), DeleteCar(), UpdateCarPetName(),
and InsertNewCar() methods have all been updated to take a SqlDataAdapter as the sole parameter.

Setting the InsertCommand Property
When you are using a data adapter to update a DataSet, the first order of business is to assign the
UpdateCommand, DeleteCommand, and InsertCommand properties with valid command objects (until
you do so, these properties return null!). By “valid” command objects, I am referring to the fact that
the set of command objects you plug into a data adapter will change based on the table you are
attempting to update. In this example, the table in question is Inventory. Here is the modified
InsertNewCar() method:

private static void InsertNewCar(SqlDataAdapter dAdpater)
{

// Gather info about new car.
...

// Format SQL Insert and plug into DataAdapter.
string sql = string.Format("Insert Into Inventory" +

"(CarID, Make, Color, PetName) Values" +
"('{0}', '{1}', '{2}', '{3}')",
newCarID, newCarMake, newCarColor, newCarPetName);

dAdpater.InsertCommand = new SqlCommand(sql);
dAdpater.InsertCommand.Connection = cnObj;

// Update Inventory Table with new row.
DataRow newCar = dsCarInventory.Tables["Inventory"].NewRow();
newCar["CarID"] = newCarID;
newCar["Make"] = newCarMake;
newCar["Color"] = newCarColor;
newCar["PetName"] = newCarPetName;
dsCarInventory.Tables["Inventory"].Rows.Add(newCar);
dAdpater.Update(dsCarInventory.Tables["Inventory"]);

}

Once you have created your command object, you plug it into the adapter via the InsertCommand
property. Next, you add a new row to the Inventory DataTable maintained by the dsCarInventory
object. Once you have added this DataRowback into the DataTable, the adapter will execute the SQL found
within the InsertCommand property, given that the RowState of this new row is DataRowState.Added.

4193ch22.qxd 8/14/05 3:03 PM Page 814

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 815

Setting the UpdateCommand Property
The modification of the UpdateCarPetName() method is more or less identical. Simply build a new
command object and plug it into the UpdateCommand property.

private static void UpdateCarPetName(SqlDataAdapter dAdpater)
{

// Gather info about car to update.
...

// Format SQL Insert and plug into DataAdapter.
string sql = string.Format
("Update Inventory Set PetName = '{0}' Where CarID = '{1}'",

newPetName, carToUpdate);
SqlCommand cmd = new SqlCommand(sql, cnObj);
dAdpater.UpdateCommand = cmd;

DataRow[] carRowToUpdate =
dsCarInventory.Tables["Inventory"].Select(

string.Format("CarID = '{0}'", carToUpdate));
carRowToUpdate[0]["PetName"] = newPetName;
dAdpater.Update(dsCarInventory.Tables["Inventory"]);

}

In this case, when you select a specific row (via the Select() method), the RowState value of
said row is automatically set to DataRowState.Modified. The only other point of interest here is that
the Select() method returns an array of DataRow objects; therefore, you must specify the exact row
you wish to modify.

Setting the DeleteCommand Property
Last but not least, you have the following update to the DeleteCar() method:

private static void DeleteCar(SqlDataAdapter dAdpater)
{

// Get ID of car to delete.
,,,

string sql = string.Format("Delete from Inventory where CarID = '{0}'",
carToDelete);

SqlCommand cmd = new SqlCommand(sql, cnObj);
dAdpater.DeleteCommand = cmd;

DataRow[] carRowToDelete =
dsCarInventory.Tables["Inventory"].Select(string.Format("CarID = '{0}'",
carToDelete));

carRowToDelete[0].Delete();
dAdpater.Update(dsCarInventory.Tables["Inventory"]);

}

In this case, you find the row you wish to delete (again using the Select() method) and then set
the RowState property to DataRowState.Deleted by calling Delete().

■Source Code The CarsInvertoryUpdaterDS project is included under the Chapter 22 subdirectory.

4193ch22.qxd 8/14/05 3:03 PM Page 815

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET816

Autogenerating SQL Commands Using Command-
Builder Types
You might agree that working with data adapters can entail a fair amount of code, given the need to
build each of the four command objects and the associated connection string (or DbConnection-derived
object). To help simplify matters, each of the ADO.NET data providers that ships with .NET 2.0 pro-
vides a command builder type. Using this type, you are able to automatically obtain command objects
that contain the correct Insert, Delete, and Update command types based on the initial Select statement.

The SqlCommandBuilder automatically generates the values contained within the SqlDataAdapter’s
InsertCommand, UpdateCommand, and DeleteCommand properties based on the initial SelectCommand.
Clearly, the benefit is that you have no need to build all the SqlCommand and SqlParameter types by
hand.

An obvious question at this point is how a command builder is able to build these SQL command
objects on the fly. The short answer is metadata. At runtime, when you call the Update() method of
a data adapter, the related command builder will read the database’s schema data to autogenerate
the underlying insert, delete, and update command objects.

Consider the following example, which deletes a row in a DataSet using the autogenerated SQL
statements. Furthermore, this application will print out the underlying command text of each com-
mand object:

static void Main(string[] args)
{

DataSet theCarsInventory = new DataSet();

// Make connection.
SqlConnection cn = new

SqlConnection("server=(local);User ID=sa;Pwd=;database=Cars");

// Autogenerate Insert, Update, and Delete commands
// based on existing Select command.
SqlDataAdapter da = new SqlDataAdapter("SELECT * FROM Inventory", cn);
SqlCommandBuilder invBuilder = new SqlCommandBuilder(da);

// Fill data set.
da.Fill(theCarsInventory, "Inventory");
PrintDataSet(theCarsInventory);

// Delete row based on user input and update database.
try
{

Console.Write("Row # to delete: ");
int rowToDelete = int.Parse(Console.ReadLine());
theCarsInventory.Tables["Inventory"].Rows[rowToDelete].Delete();
da.Update(theCarsInventory, "Inventory");

}
catch (Exception e)
{

Console.WriteLine(e.Message);
}

// Refill and reprint Inventory table.
theCarsInventory = new DataSet();
da.Fill(theCarsInventory, "Inventory");
PrintDataSet(theCarsInventory);

}

4193ch22.qxd 8/14/05 3:03 PM Page 816

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 817

In the previous code, notice that you made no use of the command builder object
(SqlCommandBuilder in this case) beyond passing in the data adapter object as a constructor param-
eter. As odd as this may seem, this is all you are required to do (at a minimum). Under the hood, this
type will configure the data adapter with the remaining command objects.

Now, while you may love the idea of getting something for nothing, do understand that com-
mand builders come with some critical restrictions. Specifically, a command builder is only able to
autogenerate SQL commands for use by a data adapter if all of the following conditions are true:

• The Select command interacts with only a single table (e.g., no joins).

• The single table has been attributed with a primary key.

• The column(s) representing the primary key is accounted for in your SQL Select statement.

In any case, Figure 22-19 verifies that the specified row has been deleted from the physical database
(don’t confuse the CarID value with the ordinal row number value when you run this example code!).

■Source Code The MySqlCommandBuilder project is found under the Chapter 22 subdirectory.

Multitabled DataSets and DataRelation Objects
Currently, all of this chapter’s examples involved DataSets that contained a single DataTable object.
However, the power of the disconnected layer really comes to light when a DataSet object contains
numerous interrelated DataTables. In this case, you are able to insert any number of DataRelation
objects into the DataSet’s DataRelation collection to account for the interdependencies of the tables.
Using these objects, the client tier is able to navigate between the table data without incurring net-
work round-trips.

To illustrate the use of data relation objects, create a new Windows Forms project called
MultitabledDataSet. The GUI is simple enough. In Figure 22-20 you can see three DataGridView
widgets that hold the data retrieved from the Inventory, Orders, and Customers tables of the Cars
database. In addition, the single Button pushes any and all changes back to the data store.

Figure 22-19. Leveraging autogenerated SQL commands

4193ch22.qxd 8/14/05 3:03 PM Page 817

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET818

To keep things simple, the MainForm will make use of command builders to autogenerate the
SQL commands for each of the three SqlDataAdapters (one for each table). Here is the initial update
to the Form-derived type:

public partial class MainForm : Form
{

// Formwide DataSet.
private DataSet carsDS = new DataSet("CarsDataSet");

// Make use of command builders to simplify data adapter configuration.
private SqlCommandBuilder sqlCBInventory;
private SqlCommandBuilder sqlCBCustomers;
private SqlCommandBuilder sqlCBOrders;

// Our data adapters (for each table).
private SqlDataAdapter invTableAdapter;
private SqlDataAdapter custTableAdapter;
private SqlDataAdapter ordersTableAdapter;

// Formwide connection object.
private SqlConnection cn =

new SqlConnection("server=(local);uid=sa;pwd=;database=Cars");
...
}

The Form’s constructor does the grunge work of creating your data-centric member variables and
filling the DataSet. Also note that there is a call to a private helper function, BuildTableRelationship(),
as shown here:

Figure 22-20. Viewing related DataTables

4193ch22.qxd 8/14/05 3:03 PM Page 818

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 819

public MainForm()
{

InitializeComponent();

// Create adapters.
invTableAdapter = new SqlDataAdapter("Select * from Inventory", cn);
custTableAdapter = new SqlDataAdapter("Select * from Customers", cn);
ordersTableAdapter = new SqlDataAdapter("Select * from Orders", cn);

// Autogenerate commands.
sqlCBInventory = new SqlCommandBuilder(invTableAdapter);
sqlCBOrders = new SqlCommandBuilder(ordersTableAdapter);
sqlCBCustomers = new SqlCommandBuilder(custTableAdapter);

// Add tables to DS.
invTableAdapter.Fill(carsDS, "Inventory");
custTableAdapter.Fill(carsDS, "Customers");
ordersTableAdapter.Fill(carsDS, "Orders");

// Build relations between tables.
BuildTableRelationship();

// Bind to grids.
dataGridViewInventory.DataSource = carsDS.Tables["Inventory"];
dataGridViewCustomers.DataSource = carsDS.Tables["Customers"];
dataGridViewOrders.DataSource = carsDS.Tables["Orders"];

}

The BuildTableRelationship() helper function does just what you would expect. Recall that
the Cars database expresses a number of parent/child relationships, accounted for with the follow-
ing code:

private void BuildTableRelationship()
{

// Create CustomerOrder data relation object.
DataRelation dr = new DataRelation("CustomerOrder",

carsDS.Tables["Customers"].Columns["CustID"],
carsDS.Tables["Orders"].Columns["CustID"]);

carsDS.Relations.Add(dr);

// Create InventoryOrder data relation object.
dr = new DataRelation("InventoryOrder",

carsDS.Tables["Inventory"].Columns["CarID"],
carsDS.Tables["Orders"].Columns["CarID"]);

carsDS.Relations.Add(dr);
}

Now that the DataSet has been filled and disconnected from the data source, you can manipulate
each table locally. To do so, simply insert, update, or delete values from any of the three DataGridViews.
When you are ready to submit the data back for processing, click the Form’s Update button. The code
behind the Click event should be clear at this point:

private void btnUpdate_Click(object sender, EventArgs e)
{

try
{

invTableAdapter.Update(carsDS, "Inventory");
custTableAdapter.Update(carsDS, "Customers");

4193ch22.qxd 8/14/05 3:03 PM Page 819

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET820

ordersTableAdapter.Update(carsDS, "Orders");
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

}

Once you update, you will find that each table in the Cars database has been correctly altered.

Navigating Between Related Tables
To illustrate how a DataRelation allows you to move between related tables programmatically,
extend your GUI to include a new Button type and a related TextBox. The end user is able to enter
the ID of a customer and obtain all the information about that customer’s order, which is placed in
a simple message box. The Button’s Click event handler is implemented as so:

private void btnGetInfo_Click(object sender, System.EventArgs e)
{

string strInfo = "";
DataRow drCust = null;
DataRow[] drsOrder = null;

// Get the specified CustID from the TextBox.
int theCust = int.Parse(this.txtCustID.Text);

// Now based on CustID, get the correct row in Customers table.
drCust = carsDS.Tables["Customers"].Rows[theCust];
strInfo += "Cust #" + drCust["CustID"].ToString() + "\n";

// Navigate from customer table to order table.
drsOrder = drCust.GetChildRows(carsDS.Relations["CustomerOrder"]);

// Get order number.
foreach (DataRow r in drsOrder)

strInfo += "Order Number: " + r["OrderID"] + "\n";

// Now navigate from order table to inventory table.
DataRow[] drsInv =

drsOrder[0].GetParentRows(carsDS.Relations["InventoryOrder"]);

// Get Car info.
foreach (DataRow r in drsInv)
{

strInfo += "Make: " + r["Make"] + "\n";
strInfo += "Color: " + r["Color"] + "\n";
strInfo += "Pet Name: " + r["PetName"] + "\n";

}
MessageBox.Show(strInfo, "Info based on cust ID");

}

As you can see, the key to moving between data tables is to use a handful of methods defined
by the DataRow type. Let’s break this code down step by step. First, you obtain the correct customer
ID from the text box and use it to grab the correct row in the Customers table (using the Rows prop-
erty, of course), as shown here:

4193ch22.qxd 8/14/05 3:03 PM Page 820

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 821

// Get the specified CustID from the TextBox.
int theCust = int.Parse(this.txtCustID.Text);
// Now based on CustID, get the correct row in the Customers table.
DataRow drCust = null;
drCust = carsDS.Tables["Customers"].Rows[theCust];
strInfo += "Cust #" + drCust["CustID"].ToString() + "\n";

Next, you navigate from the Customers table to the Orders table, using the CustomerOrder data
relation. Notice that the DataRow.GetChildRows() method allows you to grab rows from your child
table. Once you do, you can read information out of the table:

// Navigate from customer table to order table.
DataRow[] drsOrder = null;
drsOrder = drCust.GetChildRows(carsDS.Relations["CustomerOrder"]);
// Get order number.
foreach(DataRow r in drsOrder)
strInfo += "Order Number: " + r["OrderID"] + "\n";

Your final step is to navigate from the Orders table to its parent table (Inventory), using the
GetParentRows() method. At this point, you can read information from the Inventory table using the
Make, PetName, and Color columns, as shown here:

// Now navigate from order table to inventory table.
DataRow[] drsInv =

drsOrder[0].GetParentRows(carsDS.Relations["InventoryOrder"]);
foreach(DataRow r in drsInv)
{

strInfo += "Make: " + r["Make"] + "\n";
strInfo += "Color: " + r["Color"] + "\n";
strInfo += "Pet Name: " + r["PetName"] + "\n";

}

Figure 22-21 shows one possible output.

Figure 22-21. Navigating data relations

Hopefully, this last example has you convinced of the usefulness of the DataSet type. Given
that a DataSet is completely disconnected from the underlying data source, you can work with an
in-memory copy of data and navigate around each table to make any necessary updates, deletes, or
inserts. Once you’ve finished, you can then submit your changes to the data store for processing.

■Source Code The MultitabledDataSetApp project is included under the Chapter 22 subdirectory.

4193ch22.qxd 8/14/05 3:03 PM Page 821

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET822

We’re Off to See the (Data) Wizard
At this point in the chapter, you have seen numerous ways to interact with the types of ADO.NET in
a “wizard-free” manner. While it is (most definitely) true that understanding the ins and outs of
working with your data provider is quite important, it is also true that this can lead to hand cramps
from typing the large amount of boilerplate code. To wrap things up, therefore, I’d like to point out
a few data-centric wizards you may wish to make use of.

Be aware that I have no intention of commenting on all of the UI-centric data wizards provided
by Visual Studio 2005, but to illustrate the basics, let’s examine some additional configuration options
of the DataGridView widget. Assume you have created a new Windows Forms application that has
a single Form containing a DataGridView control named inventoryDataGridView. Using the designer,
activate the inline editor for this widget, and from the Choose Data Source drop-down listbox, click
the Add Project Data Source link (see Figure 22-22).

This will launch the Data Source Configuration Wizard. On the first step, simply select the
Database icon and click Next. On the second step, click New Connection and establish a connection
to the Cars database (using the same set of steps described earlier in this chapter within the “Connect-
ing to the Cars Database from Visual Studio 2005” section). The third step allows you to inform the
wizard to store the connection string within an external App.config file (which is generally a good
idea) within a properly configured <connectionStrings> element. As the final step, you are able to
select which database objects you wish to account for within the generated DataSet, which for your
purposes here will simply be the Inventory table (see Figure 22-23).

Figure 22-22. Adding a data source

4193ch22.qxd 8/14/05 3:03 PM Page 822

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 823

Once you complete the wizard, you will notice that the DataGridView automatically displays the
column names within the designer. In fact, if you run your application as is, you will find the con-
tents of the Inventory table displayed within the grid’s UI. If you were to examine the code placed in
your Form’s Load event, you would find that the grid is populated with the line of code highlighted
in bold:

public partial class MainForm : Form
{

public MainForm()
{

InitializeComponent();
}

private void MainForm_Load(object sender, EventArgs e)
{

// TODO: This line of code loads data into
// the 'carsDataSet.Inventory' table.
// You can move, or remove it, as needed.
this.inventoryTableAdapter.Fill(this.carsDataSet.Inventory);

}
}

To understand what this line of code is in fact doing, you need to first understand the role of
strongly typed DataSet objects.

Strongly Typed DataSets
Strongly typed DataSets (as the name implies) allow you to interact with a DataSet’s internal tables
using database-specific properties, methods, and events, rather than via the generalized Tables
property. If you activate the View ➤ Class View menu option of Visual Studio 2005, you will find that

Figure 22-23. Selecting the Inventory table

4193ch22.qxd 8/14/05 3:03 PM Page 823

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET824

the wizard has created a new type deriving from DataSet named CarsDataSet. As you can see in
Figure 22-24, this class type defines a number of members that allow you select, modify, and update
its contents.

Once the wizard completes its task, it places a member variable of type CarDataSet within your
Form’s *.Designer.cs file (which is the same member variable manipulated in the Load event of
your Form):

partial class MainForm
{
...

private CarsDataSet carsDataSet;
}

The Autogenerated Data Component
In addition to the strongly typed DataSet, the wizard generated a data component (named
InventoryTableAdapter in this case) that encapsulates the underlying data connection, data
adapter, and command objects used to interact with the Inventory table:

public partial class InventoryTableAdapter : System.ComponentModel.Component
{

// field data for data access.
private System.Data.SqlClient.SqlDataAdapter m_adapter;
private System.Data.SqlClient.SqlConnection m_connection;
private System.Data.SqlClient.SqlCommand[] m_commandCollection;

...
}

As well, this component defines custom Fill() and Update() methods that are tailor-made to
operate on your CarsDataSet, in addition to a set of members used to insert, update, or delete row

Figure 22-24. The strongly typed DataSet

4193ch22.qxd 8/14/05 3:03 PM Page 824

CHAPTER 22 ■ DATABASE ACCESS WITH ADO.NET 825

data from the internal Inventory table. I’ll leave it up to interested readers to dive into the implemen-
tation details of each member. The good news is that after all your work in this chapter, the code
behind each member should look quite familiar.

■Note If you are interested in taking a deeper look at the ADO.NET object model, including the numerous Visual
Studio 2005 designers, check out Pro ADO.NET 2.0 by Sahil Malik (Apress, 2005).

Summary
ADO.NET is a new data access technology developed with the disconnected n-tier application
firmly in mind. The System.Data namespace contains most of the core types you need to program-
matically interact with rows, columns, tables, and views. As you have seen, the .NET platform ships
with numerous data providers that allow you to leverage the connected and disconnected layers of
ADO.NET.

Using connection objects, command objects, and data reader objects of the connected layer,
you are able to select, update, insert, and delete records. As you have seen, command objects support
an internal parameter collection, which can be used to add some type safety to your SQL queries
and are quite helpful when triggering stored procedures.

The centerpiece of the disconnected layer is the DataSet. This type is an in-memory representation
of any number of tables and any number of optional interrelationships, constraints, and expressions.
The beauty of establishing relations on your local tables is that you are able to programmatically
navigate between them while disconnected from the remote data store.

You also examined the role of the data adapter in this chapter. Using this type (and the related
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand properties), the adapter can resolve
changes in the DataSet with the original data store. Also, you learned about the connected layer of
ADO.NET and came to understand the role of data reader types.

4193ch22.qxd 8/14/05 3:03 PM Page 825

4193ch22.qxd 8/14/05 3:03 PM Page 826

Web Applications and XML
Web Services

P A R T 5

■ ■ ■

4193ch23.qxd 8/14/05 3:04 PM Page 827

4193ch23.qxd 8/14/05 3:04 PM Page 828

ASP.NET 2.0 Web Pages and Web
Controls

Until now, all of the example applications in this text have focused on console-based and Windows
Forms front ends. In this chapter and the next, you’ll explore how the .NET platform facilitates the
construction of browser-based presentation layers. To begin, you’ll quickly review a number of key
web-centric concepts (HTTP, HTML, client-side, and server-side script) and the role of the web server
(including the ASP.NET development server, WebDev.WebServer.exe).

With this web primer out of the way, the remainder of this chapter concentrates on the compo-
sition of ASP.NET (including the enhanced code-behind model) and how to work with ASP.NET web
controls. As you will see, ASP.NET 2.0 provides a number of new web controls, a new “master page”
model, and various customization techniques.

The Role of HTTP
Web applications are very different animals from traditional desktop applications (to say the least).
The first obvious difference is that a production-level web application will always involve at least two
networked machines (of course, during development it is entirely possible to have a single machine
play the role of both client and server). Given this fact, the machines in question must agree upon
a particular wire protocol to determine how to send and receive data. The wire protocol that connects
the computers in question is the Hypertext Transfer Protocol (HTTP).

When a client machine launches a web browser (such as Netscape Navigator, Mozilla Firefox,
or Microsoft Internet Explorer), an HTTP request is made to access a particular resource (such
as an *.aspx or *.htm file) on the remote server machine. HTTP is a text-based protocol that is
built upon a standard request/response paradigm. For example, if you navigate to http://www.
IntertechTraining.com, the browser software leverages a web technology termed Domain Name
Service (DNS) that converts the registered URL into a four-part, 32-bit numerical value (aka an IP
address). At this point, the browser opens a socket connection (typically via port 80) and sends the
HTTP request for the default page at the http://www.IntertechTraining.com website.

Once the hosting web server receives the incoming HTTP request, the specified resource may
contain logic that scrapes out any client-supplied input values (such as values within a text box) in
order to format a proper HTTP response. Web programmers may leverage any number of technolo-
gies (CGI, ASP, ASP.NET, Java servlets, etc.) to dynamically generate the content to be emitted into
the HTTP response. At this point, the client-side browser renders the HTML emitted from the web
server. Figure 23-1 illustrates the basic HTTP request/response cycle.

829

C H A P T E R 2 3

■ ■ ■

4193ch23.qxd 8/14/05 3:04 PM Page 829

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS830

Another aspect of web development that is markedly different from traditional desktop pro-
gramming is the fact that HTTP is an essentially stateless wire protocol. As soon as the web server
emits a response to the client, everything about the previous interaction is forgotten. Therefore, as
a web developer, it is up to you take specific steps to “remember” information (such as items in
a shopping cart) about the clients who are currently logged on to your site. As you will see in the
next chapter, ASP.NET provides numerous ways to handle state, many of which are commonplace
to any web platform (session variables, cookies, and application variables) as well as some new
techniques (view state, control state, and the cache).

Understanding Web Applications and Web Servers
A web application can be understood as a collection of files (*.htm, *.asp, *.aspx, image files, etc.)
and related components (such as a .NET code library) stored within a particular set of directories on
a given web server. As shown in Chapter 24, web applications have a specific life cycle and provide
numerous events (such as initial startup or final shutdown) that you can hook into.

A web server is a software product in charge of hosting your web applications, and it typically
provides a number of related services such as integrated security, File Transfer Protocol (FTP)
support, mail exchange services, and so forth. Internet Information Server (IIS) is Microsoft’s
enterprise-level web server product, and as you would guess, it has intrinsic support for classic ASP
as well as ASP.NET web applications.

When you build ASP.NET web applications, you will often need to interact with IIS. Be aware, how-
ever, that IIS is not automatically selected when you install the Windows Server 2003 or Windows XP
Professional Edition (you can’t install IIS on the Home editions of Windows). Therefore, depending
on the configuration of your development machine, you may be required to manually install IIS
before proceeding through this chapter. To do so, simply access the Add/Remove Program applet
from the Control Panel folder and select Add/Remove Windows Components.

■Note Ideally, your development machine will have IIS installed before you install the .NET Framework. If you
install IIS after you install the .NET Framework, none of your ASP.NET web applications will execute correctly (you
will simply get back a blank page). Luckily, you can reconfigure IIS to host .NET applications by running the
aspnet_regiis.exe command-line tool (using the /i flag).

Assuming you have IIS properly installed on your workstation, you can interact with IIS from
the Administrative Tools folder (located in the Control Panel folder). For the purposes of this chap-
ter, you are concerned only with the Default Web Site node (see Figure 23-2).

Figure 23-1. The HTTP request and response cycle

4193ch23.qxd 8/14/05 3:04 PM Page 830

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 831

Working with IIS Virtual Directories
A single IIS installation is able to host numerous web applications, each of which resides in a virtual
directory. Each virtual directory is mapped to a physical directory on the local hard drive. Therefore,
if you create a new virtual directory named CarsRUs, the outside world can navigate to this site using
a URL such as http://www.CarsRUs.com (assuming your site’s IP address has been registered with the
world at large). Under the hood, the virtual directory maps to a physical root directory such as
C:\inetpub\wwwroot\AspNetCarsSite, which contains the content of the web application.

When you create ASP.NET web applications using Visual Studio 2005, you have the option of
generating a new virtual directory for the current website. However, you are also able to manually
create a virtual directory by hand. For the sake of illustration, assume you wish to create a simple
web application named Cars. The first step is to create a new folder on your machine to hold the
collection of files that constitute this new site (e.g., C:\CodeTests\CarsWebSite).

Next, you need to create a new virtual directory to host the Cars site. Simply right-click the Default
Web Site node of IIS and select New ➤ Virtual Directory from the context menu. This menu selection
launches an integrated wizard. Skip past the welcome screen and give your website a name (Cars).
Next, you are asked to specify the physical folder on your hard drive that contains the various files
and images that represent this site (in this case, C:\CodeTests\CarsWebSite).

The final step of the wizard prompts you for some basic traits about your new virtual directory
(such as read/write access to the files it contains, the ability to view these files from a web browser,
the ability to launch executables [e.g., CGI applications], etc.). For this example, the default selec-
tions are just fine (be aware that you can always modify your selections after running this tool using
various right-click Property dialog boxes integrated within IIS). When you are finished, you will see
that your new virtual directory has been registered with IIS (see Figure 23-3).

Figure 23-2. The IIS applet

Figure 23-3. The Cars virtual directory

4193ch23.qxd 8/14/05 3:04 PM Page 831

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS832

The ASP.NET 2.0 Development Server
ASP.NET 2.0 ships with a lightweight web server named WebDev.WebServer.exe. This utility allows
developers host an ASP.NET 2.0 web application outside the bounds of IIS. Using this tool, you can
build and test your web pages from any directory on your machine (which is quite helpful for team
development scenarios and for building ASP.NET 2.0 web programs on Windows XP Home Edition,
which does not support IIS).

■Note WebDev.WebServer.exe cannot be used to test classic ASP web applications.

When building a website with Visual Studio 2005, you have the option of using WebDev.WebServer.exe
to host your pages. However, you are also able to manually interact with this tool from a .NET com-
mand prompt. If you enter the following command:

WebDev.WebServer.exe -?

you will be presented with a message box that describes the valid command-line options. In a nut-
shell, you will need to specify an unused port (via the /port: option), the root directory of the web
application (via the /path: option), and an optional virtual path using the /vpath: option (if you do
not supply a /vpath: option, the default is simply /). Consider the following usage:

WebDev.WebServer.exe /port:12345 /path:"C:\CodeTests\CarsWebSite"

Once you have entered this command, you can launch your web browser of choice to request
pages. Thus, if the CarsWebSite folder had a file named MyPage.aspx, you could enter the following URL:

http://localhost:12345/CarsWebSite/MyPage.aspx

Many of the examples in this chapter and the next will make use of WebDev.WebServer.exe via
Visual Studio 2005. Be aware that this web server is not intended to host production-level web
applications. It is purely intended for development and testing purposes.

■Note The Mono project (see Chapter 1) provides a free ASP.NET plug-in for the Apache web server. Check out
http://www.mono-project.com/ASP.NET for details.

The Role of HTML
Once you have configured a directory to host your web application, you need to create the content
itself. Recall that web application is simply the term given to the set of files that constitute the func-
tionality of the site. To be sure, a vast number of these files will contain syntactic tokens defined by
the Hypertext Markup Language (HTML). HTML is a standard markup language used to describe
how literal text, images, external links, and various HTML-based GUI widgets are rendered by the
client-side browser.

This particular aspect of web development is one of the major reasons why many programmers
dislike building web-based programs. While it is true that modern IDEs (including Visual Studio 2005)
and web development platforms (such as ASP.NET) generate much of the HTML automatically, you
will do well to have a working knowledge of HTML as you work with ASP.NET. While this section will
most certainly not cover all aspects of HTML (by any means), let’s check out some basics.

4193ch23.qxd 8/14/05 3:04 PM Page 832

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 833

HTML Document Structure
An HTML file consists of a set of tags that describe the look and feel of a given web page. As you
would expect, the basic structure of an HTML document tends to remain the same. For example,
*.htm files (or, alternatively, *.html files) open and close with <html> and </html> tags, typically
define a <body> section, and so forth. Keep in mind that HTML is not case sensitive. Therefore, in
the eyes of the hosting browser, <HTML>, <html>, and <Html> are identical.

To illustrate some HTML basics, open Visual Studio 2005, insert an empty HTML file using the
File ➤ New ➤ File menu selection, and save this file under your C:\CodeTests\CarsWebSite direc-
tory as default.htm. As you can see, the initial markup is uneventful:

<html>
<body>
</body>
</html>

The <html> and </html> tags are used to mark the beginning and end of your document. As you
may guess, web browsers use these tags to understand where to begin applying the rendering formats
specified in the body of the document. The <body> scope is where the vast majority of the actual con-
tent is defined. To spruce things up just a bit, define a title for your page as so:

<html>
<head>
<title>This Is the Cars Website</title>

</head>
<body>
</body>
</html>

As you would guess, the <title> tags are used to specify the text string that should be placed in
the title bar of the calling web browser.

HTML Form Development
The real action of an *.htm file occurs within the scope of the <form> elements. An HTML form is
simply a named group of related UI elements used to gather user input, which is then transmitted
to the web application via HTTP. Do not confuse an HTML form with the entire display area shown
by a given browser. In reality, an HTML form is more of a logical grouping of widgets placed in the
<form> and </form> tag set:

<html>
<head>
<title>This Is the Cars Web Site</title>

</head>
<body>
<form id="defaultPage" name="defaultPage">
<!-- Insert web content here ->

</form>
</body>
</html>

This form has been assigned the ID and name of “defaultPage”. Typically, the opening <form>
tag supplies an action attribute that specifies the URL to which to submit the form data, as well as
the method of transmitting that data itself (POST or GET). You will examine this aspect of the <form>

4193ch23.qxd 8/14/05 3:04 PM Page 833

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS834

tag in just a bit. For the time being, let’s look at the sorts of items that can be placed in an HTML
form. Visual Studio 2005 provides an HTML tab on the Toolbox that allows you to select each
HTML-based UI widget (see Figure 23-4).

Building an HTML-Based User Interface
Before you add the HTML widgets to the HTML <form>, it is worth pointing out that Visual Studio
2005 allows you to edit the overall look and feel of the *.htm file itself using the integrated HTML
designer and the Properties window. If you select DOCUMENT from the Properties window (see
Figure 23-5), you are able to configure various aspects of the HTML page, such as the background
color.

Figure 23-4. The HTML controls tab of the Toolbox

Figure 23-5. Editing an HTML document via VS .NET

Now, update the <body> of the default.htm file to display some literal text that prompts the
user to enter a user name and password, and choose a background color of your liking (be aware
that you can enter and format textual content by typing directly on the HTML designer):

<html>
<head>

<title>This Is the Cars Website</title>

4193ch23.qxd 8/14/05 3:04 PM Page 834

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 835

</head>
<body bgcolor="NavajoWhite">

<!-- Prompt for user input-->
<h1 align="center">
The Cars Login Page</h1>

<p align="center">

Please enter your <i>user name</i> and <i>password</i>.</p>

<form id="defaultPage" name="defaultPage">
</form>

</body>
</html>

Now let’s build the HTML form itself. In general, each HTML widget is described using a name
attribute (used to identify the item programmatically) and a type attribute (used to specify which UI
element you are interested in placing in the <form> declaration). Depending on which UI widget
you manipulate, you will find additional attributes specific to that particular item that can be modi-
fied using the Properties window.

The UI you will build here will contain two text fields (one of which is a Password widget) and
two button types (one to submit the form data and the other to reset the form data to the default
values):

<!-- Build a form to get user info -->
<form name="defaultPage" id="defaultPage">
<P align="center">User Name:
<input id="txtUserName" type="text" NAME="txtUserName"></P>
<P align="center">Password:
<input name="txtPassword" type="password" ID="txtPassword"></P>

<P align="center">
<input name="btnSubmit" type="submit" value="Submit" ID="btnSubmit">
<input name="btnReset" type="reset" value="Reset" ID="btnReset">
</P>

</form>

Notice that you have assigned relevant names and IDs to each widget (txtUserName, txtPassword,
btnSubmit, and btnReset). Of greater importance, note that each input item has an extra attribute
named type that marks these buttons as UI items that automatically clear all fields to their initial
values (type = "reset"), mask the input as a password (type="password"), or send the form data to
the recipient (type = "submit"). Figure 23-6 displays the page thus far.

Figure 23-6. The initial crack at the default.htm page

4193ch23.qxd 8/14/05 3:04 PM Page 835

The Role of Client-Side Scripting
A given *.htm file may contain blocks of script code that will be emitted in the response stream and
processed by the requesting browser. There are two major reasons why client-side scripting is used:

• To validate user input before posting back to the web server

• To interact with the Document Object Model (DOM) of the target browser

Regarding the first point, understand that the inherent evil of a web application is the need to
make frequent round-trips (aka postbacks) to the server machine to update the HTML rendered
into the browser. While postbacks are unavoidable, you should always be mindful of ways to mini-
mize travel across the wire. One technique that saves round-trips is to use client-side scripting to
validate user input before submitting the form data to the web server. If an error is found (such as
not specifying data within a required field), you can prompt the user of the error without incurring
the cost of posting back to the web server. (After all, nothing is more annoying to users than posting
back on a slow connection, only to receive instructions to address input errors!)

In addition to validating user input, client-side scripts can also be used to interact with the
underlying object model (the DOM) of the browser itself. Most commercial browsers expose a set of
objects that can be leveraged to control how the browser should behave. One major annoyance is
the fact that different browsers tend to expose similar, but not identical, object models. Thus, if you
emit a block of client-side script code that interacts with the DOM, it may not work identically on all
browsers.

■Note ASP.NET provides the HttpRequest.Browser property, which allows you to determine at runtime the
capacities of the browser that sent the current request.

There are many scripting languages that can be used to author client-side script code. Two of
the more popular are VBScript and JavaScript. VBScript is a subset of the Visual Basic 6.0 program-
ming language. Be aware that Microsoft Internet Explorer (IE) is the only web browser that has
built-in support for client-side VBScript support. Thus, if you wish your HTML pages to work cor-
rectly in any commercial web browser, do not use VBScript for your client-side scripting logic.

The other popular scripting language is JavaScript. Be very aware that JavaScript is in no way,
shape, or form a subset of the Java language. While JavaScript and Java have a somewhat similar
syntax, JavaScript is not a full-fledged OOP language, and thus is far less powerful than Java. The
good news is that all modern-day web browsers support JavaScript, which makes it a natural candi-
date for client-side scripting logic.

■Note To further confuse the issue, recall that JScript .NET is a managed language that can be used to build
valid .NET assemblies using a scripting like syntax.

A Client-Side Scripting Example
To illustrate the role of client-side scripting, let’s first examine how to intercept events sent from
client-side HTML GUI widgets. Assume you have added an HTML Button (btnHelp) type to your
default.htm page that allows the user to view help information. To capture the Click event for this
button, activate the HTML view and select your button from the left drop-down list. Using the right
drop-down list, select the onclick event. This will add an onclick attribute to the definition of the
new Button type:

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS836

4193ch23.qxd 8/14/05 3:04 PM Page 836

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 837

<input id="btnHelp" type="button" value="Help" language="javascript"
onclick="return btnHelp_onclick()" />

Visual Studio 2005 will also create an empty JavaScript function that will be called when the
user clicks the button. Within this stub, simply make use of the alert() method to display a client-
side message box:

<script language="javascript" type="text/javascript">
<!--
function btnHelp_onclick() {

alert("Dude, it is not that hard. Click the darn Submit button!");
}
// -->
</script>

Note that the scripting block has been wrapped within HTML comments (<!-- -->). The rea-
son is simple. If your page ends up on a browser that does not support JavaScript, the code will be
treated as a comment block and ignored. Of course, your page may be less functional, but the upside
is that your page will not blow up when rendered by the browser.

Validating the default.htm Form Data
Now, let’s update the default.htm page to support some client-side validation logic. The goal is to
ensure that when the user clicks the Submit button, you call a JavaScript function that checks each
text box for empty values. If this is the case, you pop up an alert that instructs the user to enter the
required data. First, handle an onclick event for the Submit button:

<input name="btnSubmit" type="submit" value="Submit" id="btnSubmit"
language="javascript" onclick="return btnSubmit_onclick()">

Implement this handler as so:

function btnSubmit_onclick(){
// If they forget either item, pop up a message box.
if((defaultPage.txtUserName.value == "") ||
(defaultPage.txtPassword.value == ""))
{

alert("You must supply a user name and password!");
return false;

}
return true;

}

At this point, you can open your browser of choice and navigate to the default.htm page
hosted by your Cars virtual directory and test out your client-side script logic:

http://localhost/Cars/default.htm

Submitting the Form Data (GET and POST)
Now that you have a simple HTML page, you need to examine how to transmit the form data back
to the web server for processing. When you build an HTML form, you typically supply an action
attribute on the opening <form> tag to specify the recipient of the incoming form data. Possible
receivers include mail servers, other HTML files, an Active Server Pages (ASP; classic or .NET) file,
and so forth. For this example, you’ll use a classic ASP file named ClassicAspPage.asp. Update your
default.htm file by specifying the following attribute in the opening <form> tag:

4193ch23.qxd 8/14/05 3:04 PM Page 837

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS838

<form name="defaultPage" id="defaultPage"
action="http://localhost/Cars/ClassicAspPage.asp" method = "GET">

...
</form>

These extra attributes ensure that when the Submit button for this form is clicked, the form
data should be sent to the ClassicAspPage.asp at the specified URL. When you specify method = "GET"
as the mode of transmission, the form data is appended to the query string as a set of name/value
pairs separated by ampersands:

http://localhost/Cars/ClassicAspPage.asp?txtUserName=
Andrew&txtPassword=abcd123$&btnSubmit=Submit

The other method of transmitting form data to the web server is to specify method = "POST":

< form name="defaultPage" id="defaultPage"
action="http://localhost/Cars/ClassicAspPage.asp" method = "POST">

...
</form>

In this case, the form data is not appended to the query string, but instead is written to
a separate line within the HTTP header. Using POST, the form data is not directly visible to the out-
side world. More important, POST data does not have a character-length limitation (many browsers
have a limit for GET queries). For the time being, make use of HTTP GET to send the form data to the
receiving *.asp page.

Building a Classic ASP Page
A classic ASP page is a hodgepodge of HTML and server-side script code. If you have never worked
with classic ASP, understand that the goal of ASP is to dynamically build HTML on the fly using
server-side script and a small set of classic COM objects. For example, you may have a server-side
VBScript (or JavaScript) block that reads a table from a data source using classic ADO and returns
the rows as a generic HTML table.

For this example, the ASP page uses the intrinsic ASP Request COM object to read the values
of the incoming form data (appended to the query string) and echo them back to the caller (not ter-
ribly exciting, but it makes the point). The server-side script logic will make use of VBScript (as
denoted by the language directive).

To do so, create a new HTML file using Visual Studio .NET and save this file under the
name ClassicAspPage.asp into the folder to which your virtual directory has been mapped
(e.g., C:\CodeTests\CarsWebSite). Implement this page as so:

<%@ language="VBScript" %>
<html>
<head>

<title>The Cars Page</title>
</head>
<body>

<h1 align="center">Here is what you sent me:</h1>
<P align="center"> User Name:
<%= Request.QueryString("txtUserName") %>

Password:
<%= Request.QueryString("txtPassword") %>

</P>

</body>
</html>

4193ch23.qxd 8/14/05 3:04 PM Page 838

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 839

Here, you use the classic ASP Request COM object to call the QueryString() method to examine
the values contained in each HTML widget submitted via method = "GET". The <%= ...%> notation is
a shorthand way of saying, “Insert the following directly into the outbound HTTP response.” To gain
a finer level of flexibility, you could interact with the ASP Response COM object within a full script
block (denoted by the <%, %> notation). You have no need to do so here; however, the following is
a simple example:

<%
Dim pwd
pwd = Request.QueryString("txtPassword")
Response.Write(pwd)

%>

Obviously, the Request and Response objects of classic ASP provide a number of additional
members beyond those shown here. Furthermore, classic ASP also defines a small number of addi-
tional COM objects (Session, Server, Application, and so on) that you can use while constructing
your web application.

■Note Under ASP.NET, these COM objects are officially dead. However, you will see that the System.Web.UI.Page
base class defines identically named properties that expose objects with similar functionality.

To test the ASP logic, simply load the default.htm page from a browser and submit the form
data. Once the script is processed on the web server, you are returned a brand new (dynamically
generated) HTML display (see Figure 23-7).

Figure 23-7. The dynamically generated HTML

Responding to POST Submissions
Currently, your default.htm file specifies HTTP GET as the method of sending the form data to the
target *.asp file. Using this approach, the values contained in the various GUI widgets are appended
to the end of the query string. It is important to note that the ASP Request.QueryString() method is
only able to extract data submitted via the GET method.

If you would rather submit form data to the web resource using HTTP POST, you can use the
Request.Form collection to read the values on the server, for example:

4193ch23.qxd 8/14/05 3:04 PM Page 839

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS840

<body>
<h1 align="center">Here is what you sent me:</h1>
<P align="center">

User Name:
<%= Request.Form("txtUserName") %>

Password:
<%= Request.Form("txtPassword") %>

</P>
</body>

That wraps up our web development primer. Hopefully, if you’re new to web development you
now have a better understanding of the basic building blocks. Before we check out how the .NET
platform improves upon the current state of affairs, let’s take a brief moment to bash (which is to
say, “critique”) classic ASP.

■Source Code The ClassicAspCars example is included under the Chapter 23 subdirectory.

Problems with Classic ASP
While many successful websites have been created using classic ASP, this architecture is not without
its downsides. Perhaps the biggest downfall of classic ASP is the same thing that makes it a powerful
platform: server-side scripting languages. Scripting languages such as VBScript and JavaScript are
interpreted, typeless entities that do not lend themselves to robust OO programming techniques.

Another problem with classic ASP is the fact that an *.asp page does not yield very modularized
code. Given that ASP is a blend of HTML and script in a single page, most ASP web applications are
a confused mix of two very different programming techniques. While it is true that classic ASP allows
you to partition reusable code into distinct include files, the underlying object model does not sup-
port true separation of concerns. In an ideal world, a web framework would allow the presentation
logic (i.e., HTML tags) to exist independently from the business logic (i.e., functional code).

A final issue to consider here is the fact that classic ASP demands a good deal of boilerplate,
redundant script code that tends to repeat between projects. Almost all web applications need to
validate user input, repopulate the state of HTML widgets before emitting the HTTP response, gen-
erate an HTML table of data, and so forth.

Major Benefits of ASP.NET 1.x
The first major release of ASP.NET (version 1.x) did a fantastic job of addressing each of the limita-
tions found with classic ASP. In a nutshell, the .NET platform brought about the following
techniques:

• ASP.NET 1.x provides a model termed code-behind, which allows you to separate presenta-
tion logic from business logic.

• ASP.NET 1.x pages are compiled .NET assemblies, not interpreted scripting languages, which
translates into much faster execution.

• Web controls allow programmers to build the GUI of a web application in a manner similar
to building a Windows Forms application.

• ASP.NET web controls automatically maintain their state during postbacks using a hidden
form field named __VIEWSTATE.

4193ch23.qxd 8/14/05 3:04 PM Page 840

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 841

• ASP.NET web applications are completely object-oriented and make use of the CTS.

• ASP.NET web applications can be easily configured using standard IIS settings or using a web
application configuration file (Web.config).

While ASP.NET 1.x was a major step in the right direction, ASP.NET 2.0 provides even more bells
and whistles.

Major Enhancements of ASP.NET 2.0
ASP.NET 2.0 provides a number of new namespaces, types, utilities, and technologies to the .NET
web development landscape. Consider this partial list:

• ASP.NET 2.0 no longer requires websites to be hosted under IIS during the testing and devel-
opment of your site. You are now able to host your site from any directory on the hard drive.

• ASP.NET 2.0 ships with a large number of new web controls (security controls, new data con-
trols, new UI controls, etc.) that complement the existing ASP.NET 1.x control set.

• ASP.NET 2.0 supports the use of master pages, which allow you to attach a common UI frame
to a set of related pages.

• ASP.NET 2.0 supports themes, which offer a declarative manner to change the look and feel
of the entire web application.

• ASP.NET 2.0 supports web parts, which can be used to allow end users to customize the look
and feel of a web page.

• ASP.NET 2.0 supports a web-based configuration and management utility that maintains
your Web.config files.

The truth of the matter is that if I were to truly do justice to every aspect of ASP.NET 2.0, this
book would double in size. Given that this book is not focused exclusively on web development, be
sure to consult the .NET Framework 2.0 documentation for details of topics not covered here.

The ASP.NET 2.0 Namespaces
As of .NET 2.0, there are no fewer than 34 web-centric namespaces in the base class libraries. From
a high level, these namespaces can be grouped into four major categories:

• Core functionality (e.g., types that allow you to interact with the HTTP request and response,
Web Form infrastructure, theme and profiling support, web parts, etc.)

• Web Form and HTML controls

• Mobile web development

• XML web services

This text will not examine the topic of mobile .NET development (web-based or otherwise);
however, the role of XML web services will be examined in Chapter 25. Table 23-1 describes several
of the core ASP.NET 2.0 namespaces.

4193ch23.qxd 8/14/05 3:04 PM Page 841

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS842

Table 23-1. ASP.NET Web-centric Namespaces

Namespaces Meaning in Life

System.Web Defines types that enable browser/web server communication
(such as request and response capabilities, cookie manipulation,
and file transfer)

System.Web.Caching Defines types that facilitate caching support for a web application

System.Web.Hosting Defines types that allow you to build custom hosts for the
ASP.NET runtime

System.Web.Management Defines types for managing and monitoring the health of an
ASP.NET web application

System.Web.Profile Defines types that are used to implement ASP.NET user profiles

System.Web.Security Defines types that allow you to programmatically secure your site

System.Web.SessionState Defines types that allow you to maintain stateful information on
a per-user basis (e.g., session state variables)

System.Web.UI Define a number of types that allow you to build a GUI front end
System.Web.UI.WebControls for your web application
System.Web.UI.HtmlControls

The ASP.NET Web Page Code Model
ASP.NET web pages can be constructed using one of two approaches. You are free to create a single
*.aspx file that contains a blend of server-side code and HTML (much like classic ASP). Using the
single-file page model, server-side code is placed within a <script> scope, but the code itself is not
script code proper (e.g., VBScript/JavaScript). Rather, the code statements within a <script> block
are written in your managed language of choice (C#, Visual Basic .NET, etc).

If you are building a page that contains very little code (but a good deal of HTML), a single-file
page model may be easier to work with, as you can see the code and the markup in one unified
*.aspx file. In addition, crunching your code and HTML into a single *.aspx file provides a few
other advantages:

• Pages written using the single-file model are slightly easier to deploy or to send to another
developer.

• Because there is no dependency between files, a single-file page is easier to rename.

• Managing files in a source code control system is slightly easier, as all the action is taking
place in a single file.

The default approach taken by Visual Studio 2005 (when creating a new website solution) is to
make use of a technique termed code-behind, which allows you to separate your programming code
from your HTML presentation logic using two distinct files. This model works quite well when your
pages contain significant amounts of code or when multiple developers are working on the same
website. The code-behind model offers a few additional benefits as well:

• Because code-behind pages offer a clean separation of HTML markup and code, it is possible
to have designers working on the markup while programmers author the C# code.

• Code is not exposed to page designers or others who are working only with the page markup
(as you might guess, HTML folks are not always interested in viewing reams of C# code).

• Code files can be used across multiple *.aspx files.

4193ch23.qxd 8/14/05 3:04 PM Page 842

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 843

Regardless of which approach you take, do know that there is no difference in terms of per-
formance. Also be aware that the single-file *.aspx model is no longer considered evil as proclaimed
in .NET 1.x. In fact, many ASP.NET 2.0 web applications will benefit by building sites that make use
of both approaches.

Working with the Single-File Page Model
First up, let’s examine the single-file page model. Our goal is to build an *.aspx file (named
Default.aspx) that displays the Inventory table of the Cars database (created in Chapter 22). While
you could build this page using nothing but Notepad, Visual Studio 2005 can simplify matters via
IntelliSense, code completion, and a visual page designer.

To begin, open Visual Studio 2005 and create a new Web Form using the File ➤ New ➤ File
menu option (see Figure 23-8).

Figure 23-8. Creating a new *.aspx file

Once the page loads into the IDE, notice that the bottom area of the page designer allows you
to view the *.aspx file in two distinct manners. If you select the Design button, you are shown a visual
designer surface that allows you to build the UI of your page much like you would build a Windows
Form (drag widgets to the surface, configure them via the Properties Window, etc.). If you select the
Source button, you can view the HTML and <script> blocks that compose the *.aspx file itself.

■Note Unlike earlier versions of Visual Studio, the Source view of Visual Studio 2005 has full-blown IntelliSense
and allows you to drag and drop UI elements directly onto the HTML.

Using the Visual Studio 2005 Toolbox, select the Standard tab and drag and drop a Button,
Label, and GridView control onto the page designer (the GridView widget can be found under the
Data tab of the Toolbox). Feel free to make use of the Properties window (or the HTML IntelliSense)
to set various UI properties and give each web widget a proper name via the ID property. Figure 23-9
shows one possible design (I kept my look and feel intentionally bland to minimize the amount of
generated control markup).

4193ch23.qxd 8/14/05 3:04 PM Page 843

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS844

Now, click the Source button at the bottom of your code window and locate the <form> section
of your page. Notice how each web control has been defined using an <asp:> tag. Before the closing
tag, you will find a series of name/value pairs that correspond to the settings you made in the Prop-
erties window:

<form id="form1" runat="server">
<div>

<asp:Label ID="lblInfo" runat="server"
Text="Click on the Button to Fill the Grid">

</asp:Label>
<asp:GridView ID="carsGridView" runat="server">
</asp:GridView>
<asp:Button ID="btnFillData" runat="server" Text="Fill Grid" />

</div>
</form>

You will dig into the full details of ASP.NET web controls later in this chapter. Until then, under-
stand that web controls are classes processed on the web server, and they emit back their HTML
representation into the outgoing HTTP response automatically (that’s right—you don’t author the
HTML!).

Beyond this major benefit, ASP.NET web controls support a Windows Forms–like programming
model, given that the names of the properties, methods, and events mimic their Windows Forms
equivalents. To illustrate, handle the Click event for the Button type using either the Visual Studio
Properties window (via the lightning-bolt icon) or using the drop-down boxes mounted at the top of
the Source view window. Once you do, you will find your Button’s definition has been updated with
an OnClick attribute that is assigned to the name of your Click event handler:

<asp:Button ID="btnFillData" runat="server"
Text="Fill Grid" OnClick="btnFillData_Click" />

As well, your <script> block has been updated with a server-side Click event handler (notice that
the incoming parameters are a dead-on match for the target of the System.EventHandler delegate):

<script runat="server">
protected void btnFillData_Click(object sender, EventArgs e)
{
}
</script>

Figure 23-9. The Default.aspx UI

4193ch23.qxd 8/14/05 3:04 PM Page 844

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 845

Implement your server-side event handler to make use of an ADO.NET data reader to fill the
GridView. Also add an import directive (more details on this in just a moment) that specifies you are
using the System.Data.SqlClient namespace. Here is the remaining relevant page logic of the
Default.aspx file:

<%@ Page Language="C#" %>
<%@ Import Namespace = "System.Data.SqlClient" %>
...
<script runat="server">
protected void btnFillData_Click(object sender, EventArgs e)
{
SqlConnection sqlConn =
new SqlConnection("Data Source=.;Initial Catalog=Cars;UID=sa;PWD=");

sqlConn.Open();
SqlCommand cmd =
new SqlCommand("Select * From Inventory", sqlConn);

carsGridView.DataSource = cmd.ExecuteReader();
carsGridView.DataBind();
sqlConn.Close();

}
</script>
<html xmlns="http://www.w3.org/1999/xhtml" >
...
</html>

Before we dive into the details behind the format of this *.aspx file, let’s try a test run. Open
a Visual Studio 2005 command prompt and run the WebDev.WebServer.exe utility, making sure you
specify the path where you saved your Default.aspx file:

webdev.webserver.exe /port:12345 /path:"C:\CodeTests\SinglePageModel"

Now, using your browser of choice, enter the following URL:

http://localhost:12345/

When the page is served, you will initially see your Label and Button types. However, when you
click the Button, a postback occurs to the web server, at which point the web controls render back
their corresponding HTML tags. Figure 23-10 shows the page hosted within Mozilla Firefox.

Figure 23-10. Web-based data access

4193ch23.qxd 8/14/05 3:04 PM Page 845

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS846

That was simple, yes? Of course, as they say, the devil is in the details, so let’s dig a bit deeper
into the composition of this *.aspx file.

The <%@Page%> Directive
The first thing to be aware of is that a given *.aspx file will typically open with a set of directives.
ASP.NET directives are always denoted with <%@ XXX %> markers and may be qualified with various
attributes to inform the ASP.NET runtime how to process the attribute in question.

Every *.aspx file must have at minimum a <%@Page%> directive that is used to define the man-
aged language used within the page (via the language attribute). Also, the <%@Page%> directive may
define the name of the related code-behind file (if any), enable tracing support, and so forth. Table 23-2
documents some of the more interesting <%@Page%>-centric attributes.

Table 23-2. Select Attributes of the <%@Page%> Directive

Attribute Meaning in Life

CompilerOptions Allows you to define any command-line flags (represented as a single
string) passed into the compiler when this page is processed.

CodePage Specifies the name of the related code-behind file.

EnableTheming Establishes if the controls on the *.aspx page support ASP.NET 2.0
themes

EnableViewState Indicates whether view state is maintained across page requests (more
details on this in Chapter 24)

Inherits Defines a class in the code-behind page the *.aspx file derives from,
which can be any class derived from System.Web.UI.Page

MasterPageFile Sets the master page used in conjunction with the current *.aspx page

Trace Indicates whether tracing is enabled

The <%Import%> Directive
In addition to the <%@Page%> directive, a given *.aspx file may specify various <%@Import%> directives
to explicitly state the namespaces required by the current page. Here, you specified you were mak-
ing use of the types within the System.Data.SqlClient namespace. As you would guess, if you need
to make use of additional .NET namespaces, you simply specify multiple <%@Import%> directives.

■Note The <%@Import%> directive is not necessary if you are making use of the code-behind page model. When
you do make use of code-behind, you will specify external namespaces using the C# using keyword.

Given your current knowledge of .NET, you may wonder how this *.aspx file avoided specifying
the System.Data or System namespaces. The reason is that all *.aspx pages automatically have access
to a set of key namespaces, including the following:

• System

• System.Collections

• System.Collections.Generic

• System.Configuration

• System.IO

4193ch23.qxd 8/14/05 3:04 PM Page 846

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 847

• System.Text

• System.Text.RegularExpressions

• All of the System.Web-centric namespaces

ASP.NET does define a number of other directives that may appear in an *.aspx file above and
beyond <%@Page%> and <%@Import%>; however, I’ll reserve commenting on those for the time being.

The “Script” Block
Under the single-file page model, an *.aspx file may contain server-side scripting logic that exe-
cutes on the web server. Given this it is critical that all of your server-side code blocks are defined to
execute at the server, using the runat="server" attribute. If the runat="server" attribute is not sup-
plied, the runtime assumes you have authored a block of client-side script to be emitted into the
outgoing HTTP response:

<script runat="server">
protected void btnFillData_Click(object sender, EventArgs e)
{
}
</script>

The signature of this helper method should look strangely familiar. Recall from our examina-
tion of Windows Forms that a given event handler must match the pattern defined by a related .NET
delegate. And, just like Windows Forms, when you wish to handle a server-side button click, the
delegate in question is System.EventHandler which, as you recall, can only call methods that take
a System.Object as the first parameter and a System.EventArgs as the second.

The ASP.NET Widget Declarations
The final point of interest is the declaration of the Button, Label, and GridViewWeb Form controls.
Like classic ASP and raw HTML, ASP.NET web widgets are scoped within <form> elements. This
time, however, the opening <form> element is marked with the runat="server" attribute. This again
is critical, as this tag informs the ASP.NET runtime that before the HTML is emitted into the response
stream, the contained ASP.NET widgets have a chance to render their HTML appearance:

<form id="form1" runat="server">
...
</form>

ASP.NET web controls are declared with <asp> and </asp> tags, and they are also marked with
the runat="server" attribute. Within the opening tag, you will specify the name of the Web Form
control and any number of name/value pairs that will be used at runtime to render the correct HTML.

■Source Code The SinglePageModel example is included under the Chapter 23 subdirectory.

Working with the Code-behind Page Model
To illustrate the code-behind page model, let’s re-create the previous example using the Visual
Studio 2005 Web Site template (do know that Visual Studio 2005 is not required to build pages using
code-behind). Activate the File ➤ New ➤ Web Site menu option, and select the ASP.NET Web Site
template (see Figure 23-11).

4193ch23.qxd 8/14/05 3:04 PM Page 847

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS848

Notice in Figure 23-11 that you are able to select the location of your new site. If you select File
System, your content files will be placed within a local directory and pages will be served via WebDev.
WebServer.exe. If you select FTP or HTTP, your site will be hosted within a virtual directory maintained
by IIS. For this example, it makes no difference which option you select, but for simplicity I’d suggest
the File System option.

■Note When you create an ASP.NET website, Visual Studio 2005 will place the solution file (*.sln) under the My
Documents\Visual Studio 2005\Projects directory. Your site’s content files (such as the *.aspx files) will be located
under the specified local directory or (if using IIS) within the physical file mapped to the virtual directory.

Once again, make use of the designer to build a UI consisting of a Label, Button, and GridView,
and make use of the Properties window to build a UI of your liking. Now, click the Source button at
the bottom of your code window, and you will see the expected <asp> and </asp> tags. Also note
that the <%@Page%> directive has been updated with two new attributes:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

The CodeFile attribute is used to specify the related external file that contains this page’s cod-
ing logic. By default, these code-behind files are named by suffixing .cs to the name of the *.aspx
file (Default.aspx.cs in this example). If you examine Solution Explorer, you will see this code-behind
file is visible via a subnode on the Web Form icon (see Figure 23-12).

Figure 23-11. The Visual Studio 2005 ASP.NET Web Site template

4193ch23.qxd 8/14/05 3:04 PM Page 848

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 849

■Note The ASP.NET 1.x Codebehind attribute is no longer supported within the <%@Page%> directive.

Beyond a number of using statements to specify several web-centric namespaces, your code-
behind file defines a partial class deriving from System.Web.UI.Page. Notice that the name of this
class (_Default) is identical to the Inherits attribute within the <%@Page%> directive (more details on
Page_Load() a bit later in this chapter):

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{
}

}

Handle the Click event for the Button type (again, just like you would for a Windows Forms
application). As before, the Button definition has been updated with an OnClick attribute. However,
the server-side event handler is no longer placed within a <script> scope of the *.aspx file, but as
a method of the _Default class type. To complete this example, add a using statement for System.Data.
SqlClient inside your code-behind file and implement the handler using the previous ADO.NET logic:

protected void btnFillGrid_Click(object sender, EventArgs e)
{

SqlConnection sqlConn =
new SqlConnection("Data Source=.;Initial Catalog=Cars;UID=sa;PWD=");

sqlConn.Open();
SqlCommand cmd =
new SqlCommand("Select * From Inventory", sqlConn);

carsGridView.DataSource = cmd.ExecuteReader();
carsGridView.DataBind();
sqlConn.Close();

}

If you selected the File System option, WebDev.WebServer.exe starts up automatically when you
run your web application (if you selected IIS, this obviously does not occur). In either case, the
default browser should now display the page’s content.

Debugging and Tracing ASP.NET Pages
By and large, when you are building ASP.NET web projects, you can use the same debugging tech-
niques as you would with any other sort of Visual Studio 2005 project type. Thus, you can set

Figure 23-12. The associated code-behind file for a given *.aspx file

4193ch23.qxd 8/14/05 3:04 PM Page 849

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS850

breakpoints in your code-behind file (as well as embedded “script” blocks in an *.aspx file), start
a debug session (the F5 key by default), and step through your code.

However, to debug your ASP.NET web applications, your site must contain a property-constructed
Web.config file. Chapter 24 will examine various details behind Web.config files, but in a nutshell
these XML files provide the same general purpose as an executable assembly’s app.config file.
Visual Studio 2005 will detect if your project does not currently have a Web.config file and insert
such a file into your project. The relevant element is <compilation>:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
...
<system.web>
<compilation debug="true"/>

</system.web>
</configuration>

You are also able to enable tracing support for an *.aspx file by setting the Trace attribute to
true within the <%@Page%> directive:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" Trace="true" %>

Once you do, the emitted HTML now contains numerous details regarding the previous HTTP
request/response (server variables, session and application variables, request/response, etc.). To
insert your own trace messages into the mix, you can use the Trace property of the System.Web.UI.Page
type. Any time you wish to log a custom message (from a script block or C# source code file), simply
call the Write() method:

protected void btnFillGrid_Click(object sender, EventArgs e)
{

// Emit a custom trace message.
Trace.Write("My Category", "Filling the grid!");

...
}

If you run your project once again and post back to the web server, you will find your custom
category and custom message are present and accounted for. In Figure 23-13, take note of the final
message before the “Control Tree” section.

Figure 23-13. Logging custom trace messages

4193ch23.qxd 8/14/05 3:04 PM Page 850

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 851

■Source Code The CodeBehindPageModel example is included under the Chapter 23 subdirectory.

Details of an ASP.NET Website Directory Structure
If you have created web applications using ASP.NET 1.x, you may be quite surprised to see that
many familiar files (Web.config, Global.asax, AssemblyInfo.cs, and so on) are not included when
creating a new website. As well, the Web Site template contains a folder named App_Data and does
not appear to have References folder within Solution Explorer.

First of all, do know that Web.config and Global.asax files are most certainly supported under
ASP.NET 2.0, but you will need to explicitly add them to your project using the WebSite ➤ Add New
Item menu option. Chapter 24 will examine the role of both of these file types, so don’t sweat the
details for now. Next, be aware that your websites are still able to add references to any number of
external .NET assemblies via the WebSite ➤ Add Reference menu option (the end result is a bit dif-
ferent, however, as you will soon see).

Another significant difference is that under Visual Studio 2005, websites may contain any num-
ber of specifically named subdirectories, each of which has a special meaning to the ASP.NET
runtime. Table 23-3 documents these “special subdirectories.”

Table 23-3. Special ASP.NET 2.0 Subdirectories

Subfolder Meaning in Life

App_Browsers Folder for browser definition files that are used to identify individual
browsers and determine their capabilities.

App_Code Folder for source code for components or classes that you want to
compile as part of your application. ASP.NET compiles the code in this
folder when pages are requested. Code in the App_Code folder is
automatically accessible by your application.

App_Data Folder for storing Access *.mdb files, SQL Express *.mdf files, XML files,
or other data stores.

App_GlobalResources Folder for *.resx files that are accessed programmatically from
application code.

App_LocalResources Folder for *.resx files that are bound to a specific page.

App_Themes Folder that contains a collection of files that define the appearance of
ASP.NET web pages and controls.

App_WebReferences Folder for proxy classes, schemas, and other files associated with using
a web service in your application.

Bin Folder for compiled private assemblies (*.dll files). Assemblies in the
Bin folder are automatically referenced by your application.

If you are interested in adding any of these known subfolders to your current web application,
you may do so explicitly using the WebSite ➤ Add Folder menu option. However, in many cases, the
IDE will automatically do so as you “naturally” insert related files into your site (e.g., adding a new
C# file will automatically add an App_Code folder to your directory structure if one does not cur-
rently exist).

4193ch23.qxd 8/14/05 3:04 PM Page 851

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS852

The Role of the Bin folder
As described in a few pages, ASP.NET web pages are eventually compiled into a .NET assembly.
Given this, it should come as no surprise that your websites can reference any number of private or
shared assemblies. Under ASP.NET 2.0, the manner in which your site’s externally required assem-
blies are recorded is quite different from ASP.NET 1.x. The reason for this fundamental shift is that
Visual Studio 2005 now treats websites in a projectless manner.

Although the Web Site template does generate a *.sln file to load your *.aspx files into the IDE,
there is no longer a related *.csproj file. As you may know, ASP.NET 1.x Web Application projects
recorded all external assemblies within *.csproj. This fact brings up the obvious question, where
are the external assemblies recorded under ASP.NET 2.0?

When you reference a private assembly, Visual Studio 2005 will automatically create a Bin
directory within your directory structure to store a local copy of the binary. When your code base
makes use of types within these code libraries, they are automatically loaded on demand. By way of
a simple test, if you activate the WebSite ➤ Add Reference menu option and select any of the previ-
ous (non–strongly named) *.dlls you created over the course of this text, you will find a Bin folder
is displayed within Solution Explorer (see Figure 23-14).

Figure 23-14. The Bin folder contains copies of all referenced private assemblies.

If you reference a shared assembly, Visual Studio 2005 automatically inserts a Web.config file
into your current web solution (if one is not currently in place) and records the external reference
within the <assemblies> element. For example, if you again activate the WebSite ➤ Add Reference
menu option and this time select a shared assembly (such as System.Drawing.dll), you will find
that your Web.config file has been updated as so:

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<appSettings/>
<connectionStrings/>
<system.web>
<compilation debug="false">
<assemblies>
<add assembly="System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A"/>

</assemblies>
</compilation>
<authentication mode="Windows"/>

</system.web>
</configuration>

As you can see, each assembly is described using the same information required for a dynamic
load via the Assembly.Load() method (see Chapter 12).

4193ch23.qxd 8/14/05 3:04 PM Page 852

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 853

The Role of the App_Code Folder
The App_Code folder is used to place source code files that are not directly tied to a specific web
page (such as a code-behind file) but are to be compiled for use by your website. Code within the
App_Code folder will be automatically compiled on the fly on an as-needed basis. After this point,
the assembly is accessible to any other code in the website. To this end, the App_Code folder is
much like the Bin folder, except that you can store source code in it instead of compiled code. The
major benefit of this approach is that it is possible to define custom types for your web application
without having to compile them independently.

A single App_Code folder can contain code files from multiple languages. At runtime, the
appropriate compiler kicks in to generate the assembly in question. If you would rather partition
your code, however, you can define multiple subdirectories that are used to hold any number of
managed code files (*.cs, *.vb, etc.).

For example, assume you have added an App_Code folder to the root directory of a website
application that contains two subfolders (MyCSharpCode and MyVbNetCode) that contain language-
specific files. Once you do, you are able to author a Web.config file that specifies these subdirectories
using a <codeSubDirectories> element:

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<appSettings/>
<connectionStrings/>
<system.web>
<compilation debug="false">
<assemblies>
<add assembly="System.Drawing, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A"/>

</assemblies>
<codeSubDirectories>
<add directoryName="MyCSharpCode" />
<add directoryName="MyVbNetCode" />

</codeSubDirectories>
</compilation>
<authentication mode="Windows"/>

</system.web>
</configuration>

■Note The App_Code directory will also be used to contain files that are not language files, but are useful
nonetheless (*.xsd files, *.wsdl files, etc.).

The ASP.NET 2.0 Page Compilation Cycle
Regardless of which page model you make use of (single-file or code-behind), your *.aspx files (and
any related code-behind file) are compiled on the fly into a valid .NET assembly. This assembly is
then hosted by the ASP.NET worker process (aspnet_wp.exe) within its own application domain
boundary (see Chapter 13 for details on AppDomains). The manner in which your website’s assem-
bly is compiled under ASP.NET 2.0, however, is quite different.

Compilation Cycle for Single-File Pages
If you are making use of the single-file page model, the HTML markup, <script> blocks, and web
control definitions are dynamically compiled into a class type deriving from System.Web.UI.Page.

4193ch23.qxd 8/14/05 3:04 PM Page 853

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS854

This name of this class is based on the name of the *.aspx file and takes an _aspx suffix (e.g., a page
named MyPage.aspx becomes a class type named MyPage_aspx). Figure 23-15 illustrates the basic
process.

This dynamically compiled assembly is deployed to a runtime-defined subdirectory under the
<%windir%>Microsoft.NET\Framework\v2.0.50215\Temporary ASP.NET Files\root directory. The
path beneath \root will differ based on a number of factors (hash codes, etc.), but eventually you
will find the *.dll (and supporting files) in question. Figure 23-16 shows one such assembly.

Figure 23-15. The compilation model for single-file pages

Figure 23-16. The ASP.NET autogenerated assembly

Compilation Cycle for Multifile Pages
The compilation process of a page making use of the code-behind model is similar to that of the
single-file model. However, the type deriving from System.Web.UI.Page is composed from three
(yes, three) files rather than the expected two.

Looking back at the previous CodeBehindPageModel example, recall that the Default.aspx file
was connected to a partial class named _Default within the code-behind file. If you have a background
in ASP.NET 1.x, you may wonder what happened to the member variable declarations for the various

4193ch23.qxd 8/14/05 3:04 PM Page 854

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 855

web controls as well as the code within InitializeComponent(), such as event handling logic. Under
ASP.NET 2.0, these details are accounted for by a third “file” generated in memory. In reality, of course,
this is not a literal file, but an in-memory representation of the partial class. Consider Figure 23-17.

Figure 23-17. The compilation model for multifile pages

In this model, the web controls declared in the *.aspx file are used to build the additional par-
tial class that defines each UI member variable and the configuration logic that used to be found
within the InitializeComponent() method of ASP.NET 1.x (we just never directly see it). This partial
class is combined at compile time with the code-behind file to result in the base class of the gener-
ated _aspx class type (in the single-file page compilation model, the generated _aspx file derived
directly from System.Web.UI.Page).

In either case, once the assembly has been created upon the initial HTTP request, it will be
reused for all subsequent requests, and thus will not have to be recompiled. Understanding this
factoid should help explain why the first request of an *.aspx page takes the longest, and subse-
quent hits to the same page are extremely efficient.

■Note Under ASP.NET 2.0, it is now possible to precompile all pages (or a subset of pages) of a website using
a command-line tool named aspnet_compiler.exe. Check out the .NET Framework 2.0 SDK documentation for
details.

The Inheritance Chain of the Page Type
As you have just seen, the final generated class that represents your *.aspx file eventually derives
from System.Web.UI.Page. Like any base class, this type provides a polymorphic interface to all
derived types. However, the Page type is not the only member in your inheritance hierarchy. If you

4193ch23.qxd 8/14/05 3:04 PM Page 855

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS856

were to locate the Page type (within the System.Web.dll assembly) using the Visual Studio 2005
object browser, you would find that Page “is-a” TemplateControl, which “is-a” Control, which
“is-a” Object (see Figure 23-18).

As you would guess, each of these base classes brings a good deal of functionality to each
and every *.aspx file. For the majority of your projects, you will make use of the members defined
within the Page and Control parent classes. By and large, the functionality gained from the System.
Web.UI.TemplateControl class is only of interest to you if you are building custom Web Form controls
or interacting with the rendering process. This being said, let’s get to know the role of the Page type.

The System.Web.UI.Page Type
The first parent class of interest is Page itself. Here you will find numerous properties that enable
you to interact with various web primitives such as application and session variables, the HTTP
request/response, theme support, and so forth. Table 23-4 describes some (but by no means all) of
the core properties.

Table 23-4. Properties of the Page Type

Property Meaning in Life

Application Allows you to interact with application variables for the current website

Cache Allows you to interact with the cache object for the current website

ClientTarget Allows you to specify how this page should render itself based on the
requesting browser

IsPostBack Gets a value indicating if the page is being loaded in response to
a client postback or if it is being loaded and accessed for the first time

MasterPageFile Establishes the master page for the current page

Request Provides access to the current HTTP request

Response Allows you to interact with the outgoing HTTP response

Figure 23-18. The derivation of an ASP.NET page

4193ch23.qxd 8/14/05 3:04 PM Page 856

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 857

Property Meaning in Life

Server Provides access to the HttpServerUtility object, which contains
various server-side helper functions

Session Allows you to interact with the session data for the current caller

Theme Gets or sets the name of the theme used for the current page

Trace Provides access to a TraceContext object, which allows you to log
custom messages during debugging sessions

Interacting with the Incoming HTTP Request
As you saw earlier in this chapter, the basic flow of a web session begins with a client logging on to
a site, filling in user information, and clicking a Submit button to post back the HTML form data to
a given web page for processing. In most cases, the opening tag of the form statement specifies an
action attribute and a method attribute that indicates the file on the web server that will be sent the
data in the various HTML widgets, as well as the method of sending this data (GET or POST):

<form name="defaultPage" id="defaultPage"
action="http://localhost/Cars/ClassicAspPage.asp" method = "GET">

...
</form>

Unlike classic ASP, ASP.NET does not support an object named Request. However, all ASP.NET
pages do inherit the System.Web.UI.Page.Request property, which provides access to an instance of
the HttpRequest class type. Table 23-5 lists some core members that, not surprisingly, mimic the
same members found within the legacy classic ASP Request object.

Table 23-5. Members of the HttpRequest Type

Member Meaning in Life

ApplicationPath Gets the ASP.NET application’s virtual application root path on the
server

Browser Provides information about the capabilities of the client browser

Cookies Gets a collection of cookies sent by the client browser

FilePath Indicates the virtual path of the current request

Form Gets a collection of Form variables

Headers Gets a collection of HTTP headers

HttpMethod Indicates the HTTP data transfer method used by the client (GET, POST)

IsSecureConnection Indicates whether the HTTP connection is secure (i.e., HTTPS)

QueryString Gets the collection of HTTP query string variables

RawUrl Gets the current request’s raw URL

RequestType Indicates the HTTP data transfer method used by the client (GET, POST)

ServerVariables Gets a collection of web server variables

UserHostAddress Gets the IP host address of the remote client

UserHostName Gets the DNS name of the remote client

In addition to these properties, the HttpRequest type has a number of useful methods, includ-
ing the following:

4193ch23.qxd 8/14/05 3:04 PM Page 857

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS858

• MapPath(): Maps the virtual path in the requested URL to a physical path on the server for
the current request.

• SaveAs(): Saves details of the current HTTP request to a file on the web server (which can
prove helpful for debugging purposes).

• ValidateInput(): If the validation feature is enabled via the Validate attribute of the page
directive, this method can be called to check all user input data (including cookie data)
against a predefined list of potentially dangerous input data.

Obtaining Brower Statistics
The first interesting aspect of the HttpRequest type is the Browser property, which provides access to
an underlying HttpBrowserCapabilities object. HttpBrowserCapabilities in turn exposes numer-
ous members that allow you to programmatically investigate statistics regarding the browser that
sent the incoming HTTP request.

Create a new ASP.NET website named FunWithPageMembers. Your first task is to build a UI that
allows users to click a Button web control to view various statistics about the calling browser. These
statistics will be generated dynamically and attached to a Label type (named lblOutput). The Button
Click event handler is as follows:

protected void btnGetBrowserStats_Click(object sender, System.EventArgs e)
{

string theInfo = "";
theInfo += String.Format("Is the client AOL? {0}",

Request.Browser.AOL);
theInfo +=

String.Format("Does the client support ActiveX? {0}",
Request.Browser.ActiveXControls);

theInfo += String.Format("Is the client a Beta? {0}",
Request.Browser.Beta);

theInfo +=
String.Format("Dose the client support Java Applets? {0}",
Request.Browser.JavaApplets);

theInfo +=
String.Format("Does the client support Cookies? {0}",
Request.Browser.Cookies);

theInfo +=
String.Format("Does the client support VBScript? {0}",
Request.Browser.VBScript);

lblOutput.Text = theInfo;
}

Here you are testing for a number of browser capabilities. As you would guess, it is (very) help-
ful to discover a browser’s support for ActiveX controls, Java applets, and client-side VBScript code.
If the calling browser does not support a given web technology, your *.aspx page would be able to
take an alternative course of action.

Access to Incoming Form Data
Other aspects of the HttpResponse type are the Form and QueryString properties. These two proper-
ties allow you to examine the incoming form data using name/value pairs, and they function
identically to classic ASP. Recall from our earlier discussion of classic ASP that if the data is submit-
ted using HTTP GET, the form data is accessed using the QueryString property, whereas data
submitted via HTTP POST is obtained using the Form property.

4193ch23.qxd 8/14/05 3:04 PM Page 858

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 859

While you could most certainly make use of the HttpRequest.Form and HttpRequest.QueryString
properties to access client-supplied form data on the web server, these old-school techniques are
(for the most part) unnecessary. Given that ASP.NET supplies you with server-side web controls, you
are able to treat HTML UI elements as true objects. Therefore, rather than obtaining the value within
a text box as follows:

protected void btnGetFormData_Click(object sender, EventArgs e)
{

// Get value for a widget with ID txtFirstName.
string firstName = Request.Form["txtFirstName"];

}

you can simply ask the server-side widget directly via the Text property:

protected void btnGetFormData_Click(object sender, EventArgs e)
{

// Get value for a widget with ID txtFirstName.
string firstName = txtFirstName.Text;

}

Not only does this approach lend itself to solid OO principles, but also you do not need to
concern yourself with how the form data was submitted (GET or POST) before obtaining the values.
Furthermore, working with the widget directly is much more type-safe, given that typing errors are
discovered at compile time rather than runtime. Of course, this is not to say that you will never need
to make use of the Form or QueryString property in ASP.NET; rather, the need to do so has greatly
diminished.

The IsPostBack Property
Another very important member of HttpRequest is the IsPostBack property. Recall that “postback”
refers to the act of returning to a particular web page while still in session with the server. Given this
definition, understand that the IsPostBack property will return true if the current HTTP request has
been sent by a currently logged on user and false if this is the user’s first interaction with the page.

Typically, the need to determine whether the current HTTP request is indeed a postback is
most helpful when you wish to perform a block of code only the first time the user accesses a given
page. For example, you may wish to populate an ADO.NET DataSet when the user first accesses an
*.aspx file and cache the object for later use. When the caller returns to the page, you can avoid the
need to hit the database unnecessarily (of course, some pages may require that the DataSet is always
updated upon each request, but that is another issue):

protected void Page_Load(object sender, EventArgs e)
{

// Only fill DataSet the very first time
// the user comes to this page.
if(!IsPostBack)
{

// Populate DataSet and cache it!
}
// Use cached DataSet.

}

Interacting with the Outgoing HTTP Response
Now that you have a better understanding how the Page type allows you to interact with the incoming
HTTP request, the next step is to see how to interact with the outgoing HTTP response. In ASP.NET,
the Response property of the Page class provides access to an instance of the HttpResponse type. This

4193ch23.qxd 8/14/05 3:04 PM Page 859

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS860

type defines a number of properties that allow you to format the HTTP response sent back to the
client browser. Table 23-6 lists some core properties.

Table 23-6. Properties of the HttpResponse Type

Property Meaning in Life

Cache Returns the caching semantics of the web page (e.g., expiration time,
privacy, vary clauses)

ContentEncoding Gets or sets the HTTP character set of the output stream

ContentType Gets or sets the HTTP MIME type of the output stream

Cookies Gets the HttpCookie collection sent by the current request

IsClientConnected Gets a value indicating whether the client is still connected to the server

Output Enables custom output to the outgoing HTTP content body

OutputStream Enables binary output to the outgoing HTTP content body

StatusCode Gets or sets the HTTP status code of output returned to the client

StatusDescription Gets or sets the HTTP status string of output returned to the client

SuppressContent Gets or sets a value indicating that HTTP content will not be sent to the
client

Also, consider the partial list of methods supported by the HttpResponse type described in
Table 23-7.

Table 23-7. Methods of the HttpResponse Type

Method Meaning in Life

AddCacheDependency() Adds an object to the application catch (see Chapter 24)

Clear() Clears all headers and content output from the buffer stream

End() Sends all currently buffered output to the client, and then closes the
socket connection

Flush() Sends all currently buffered output to the client

Redirect() Redirects a client to a new URL

Write() Writes values to an HTTP output content stream

WriteFile() Writes a file directly to an HTTP content output stream

Emitting HTML Content
Perhaps the most well-known aspect of the HttpResponse type is the ability to write content directly
to the HTTP output stream. The HttpResponse.Write() method allows you to pass in any HTML tags
and/or text literals. The HttpResponse.WriteFile() method takes this functionality one step further,
in that you can specify the name of a physical file on the web server whose contents should be ren-
dered to the output stream (this is quite helpful to quickly emit the contents of an existing *.htm file).

To illustrate, assume you have added another Button type to your current *.aspx file that
implements the server-side Click event handler as so:

protected void btnHttpResponse_Click(object sender, EventArgs e)
{
Response.Write("My name is:
");
Response.Write(this.ToString());

4193ch23.qxd 8/14/05 3:04 PM Page 860

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 861

Response.Write("

Here was your last request:
");
Response.WriteFile("MyHTMLPage.htm");

}

The role of this helper function (which you can assume is called by some server-side event
handler) is quite simple. The only point of interest is the fact that the HttpResponse.WriteFile()
method is now emitting the contents of a server-side *.htm file within the root directory of the website.

Again, while you can always take this old-school approach and render HTML tags and content using
the Write() method, this approach is far less common under ASP.NET than with classic ASP. The reason
is (once again) due to the advent of server-side web controls. Thus, if you wish to render a block of tex-
tual data to the browser, your task is as simple as assigning a string to the Textproperty of a Label widget.

Redirecting Users
Another aspect of the HttpResponse type is the ability to redirect the user to a new URL:

protected void btnSomeTraining_Click(object sender, EventArgs e)
{

Response.Redirect("http://www.IntertechTraining.com");
}

If this event handler was invoked via a client-side postback, the user will automatically be redi-
rected to the specified URL.

■Note The HttpResponse.Redirect() method will always entail a trip back to the client browser. If you simply
wish to transfer control to a *.aspx file in the same virtual directory, the HttpServerUtility.Transfer() method
(accessed via the inherited Server property) will be more efficient.

So much for investigating the functionality of System.Web.UI.Page. We will examine the role of
the System.Web.UI.Control base class in just a bit; however, the next task is to examine the life and
times of a Page-derived object.

■Source Code The FunWithPageMembers files are included under the Chapter 23 subdirectory.

The Life Cycle of an ASP.NET Web Page
Every ASP.NET web page has a fixed life cycle. When the ASP.NET runtime receives an incoming
request for a given *.aspx file, the associated System.Web.UI.Page-derived type is allocated into
memory using the type’s default constructor. After this point, the framework will automatically fire
a series of events.

By default, a Visual Studio 2005–generated code-behind page defines an event handler for the
page’s Load event:

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{
}

}

Beyond the Load event, a given Page is able to intercept any of the core events in Table 23-8,
which are listed in the order in which they are encountered.

4193ch23.qxd 8/14/05 3:04 PM Page 861

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS862

Table 23-8. Events of the Page Type

Event Meaning in Life

PreInit The framework uses this event to allocate any web controls,
apply themes, establish the master page, and set user profiles.
You may intercept this event to customize the process.

Init The framework uses this event to set the properties of web
controls to their previous values via postback or view state
data (more details on this in Chapter 24).

Load When this event fires, the page and its controls are fully
initialized, and their previous values are restored. At this
point, it is safe to interact with each web widget.

“Event that triggered the postback” There is of course, no event of this name. This “event” simply
refers to whichever event caused the browser to perform the
postback to the web server (such as a Button click).

PreRender All control data binding and UI configuration has occurred
and the controls are ready to render their data into the
outbound HTTP response.

Unload The page and its controls have finished the rendering process,
and the page object is about to be destroyed. At this point, it is
a runtime error to interact with the outgoing HTTP response.
You may, however, capture this event to perform any page-
level cleanup (close file or database connections, perform any
form of logging activity, dispose of objects, etc.).

■Note Each event of the Page type works in conjunction with the System.EventHandler delegate.

The Role of the AutoEventWireUp Attribute
When you wish to handle events for your page, you will need to update your <script> block or code-
behind file with an appropriate event handler. Unlike in ASP.NET 1.x, you are not required to rig up
the event logic by hand. All you need to do is define a method using the following pattern:

protected Page_nameOfTheEvent(object sender, EventArgs e)
{
}

For example, the Unload event can be handle this event simply by writing the following:

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{
}
protected void Page_Unload(object sender, EventArgs e)
{
}

}

The reason this method is magically called when the page unloads (despite the fact that you
have not applied the expected C# event syntax) is due to the AutoEventWireUp attribute set to true by
default in the <%@Page%> directive of your *.aspx file:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

4193ch23.qxd 8/14/05 3:04 PM Page 862

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 863

As its name suggests, this attribute (when enabled) will generate the necessary event riggings
within the autogenerated partial class described in earlier in this chapter. If you were to set this
attribute to false, neither the Load nor Unload event handlers of the _Default page will be called by
the framework (you can verify this for yourself by setting breakpoints within the Page_Load() and
Page_Unload() event handlers).

However, if you were to make use of the standard C# event syntax to hook into the Load and
Unload events as shown here:

public partial class _Default : System.Web.UI.Page
{

public _Default()
{

// Explicitly hook into the Load and Unload events.
this.Load +=new EventHandler(Page_Load);
this.Unload += new EventHandler(Page_Unload);

}
protected void Page_Load(object sender, EventArgs e)
{

Response.Write("Load event fired!");
}
protected void Page_Unload(object sender, EventArgs e)
{

// No longer possible to emit data to the HTTP
// response at this point, so we will write to a local file.
System.IO.File.WriteAllText(@"C:\MyLog.txt", "Page unloading!");

}
protected void btnPostback_Click(object sender, EventArgs e)
{

// Nothing happens here; this is just to ensure a
// postback to the page.

}
}

these events will be captured in your page regardless of the value assigned to AutoEventWireup.
As a final note, remember that once the Unload event fires, you are no longer able to interact

with the outbound HTTP response (if you attempt to call members of the HttpResponse object, you
will receive a runtime exception). Given this, your Unload event handler is simply emitting a line of
text to a file on the local C drive.

The Error Event
Another event that may occur during your page’s life cycle is Error, which also works in conjunction
with the System.EventHandler delegate. This event will be fired if a method on the Page-derived type
triggered an exception that was not explicitly handled. Assume that you have handled the Click event
for a given Button on your page, and within the event handler (which I named btnGetFile_Click),
you attempt to write out the contents of a local file to the HTTP response.

Also assume you have failed to test for the presence of this file via standard structured excep-
tion handling. If you have rigged up the page’s Error event, you have one final chance to deal with
the problem before the end user finds an ugly error. Ponder the following code:

public partial class _Default : System.Web.UI.Page
{

public _Default()
{

...

4193ch23.qxd 8/14/05 3:04 PM Page 863

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS864

// Rig up the Error event.
this.Error += new EventHandler(_Default_Error);

}
void _Default_Error(object sender, EventArgs e)
{

// Gut the current response, issue an error,
// and tell the runtime the error has been processed.
Response.Clear();
Response.Write("I am sorry...I can't find a required file.");
Server.ClearError();

}
protected void btnGetFile_Click(object sender, EventArgs e)
{

// Try to open a nonexistent file.
// This will fire the Error event for this page.
System.IO.File.ReadAllText(@"C:\IDontExist.txt");

}
...
}

Notice that your Error event handler begins by clearing out any content currently within
the HTTP response and emits a generic error message. If you wish to gain access to the specific
System.Exception object, you may do so using the HttpServerUtility.GetLastError() method
exposed by the inherited Server property:

void _Default_Error(object sender, EventArgs e)
{

Response.Clear();
Response.Write("I am sorry...I can't find a required file.
");
Response.Write(string.Format("The error was: {0}",

Server.GetLastError().Message));
Server.ClearError();

}

Finally, note that before exiting this generic error handler, you are explicitly calling the
HttpServerUtility.ClearError() method via the Server property. This is required, as it informs the
runtime that you have dealt with the issue at hand and require no further processing. If you forget
to do so, you the end user will be presented with the runtime’s error page. Figure 23-19 shows the
result of this error-trapping logic.

Figure 23-19. Page-level error handling

4193ch23.qxd 8/14/05 3:04 PM Page 864

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 865

At this point, you should feel quite confident with your knowledge of the architecture of an
ASP.NET Page type. Now that you have such a foundation, you can turn your attention to the role of
ASP.NET web controls.

■Source Code The PageLifeCycle files are included under the Chapter 23 subdirectory.

Understanding the Nature of Web Controls
Perhaps the major benefit of ASP.NET is the ability to assemble the UI of your pages using the types
defined in the System.Web.UI.WebControls namespace. As you have seen, these controls (which go
by the names server controls, web controls, or web form controls) are extremely helpful in that they
automatically generate the necessary HTML for the requesting browser and expose a set of events
that may be processed on the web server. Furthermore, because each ASP.NET control has a corre-
sponding class in the System.Web.UI.WebControls namespace, it can be manipulated in an OO
manner from your *.aspx file (within a <script> block) as well as within the associated class defined
in the code-behind file.

As you have seen, when you configure the properties a web control using the Visual Studio 2005
Properties window, your edits are recorded in the open declaration of a given widget in the *.aspx file
as a series of name/value pairs. Thus, if you add a new TextBox to the designer of a given *.aspx file and
change the BorderStyle, BorderWidth, BackColor, Text, and BorderColor properties using the IDE, the
opening <asp:TextBox> tag is modified as follows:

<asp:TextBox id=myTextBox runat="server" BorderStyle="Ridge" BorderWidth="5px"
BackColor="PaleGreen" BorderColor="DarkOliveGreen" Text = "Yo dude" >
</asp:TextBox>

Given that the HTML declaration of a web control eventually becomes a member variable from
the System.Web.UI.WebControls namespace (via the dynamic compilation cycle), you are able to
interact with the members of this type within a server-side <script> block or the page’s code-behind
file, for example:

public partial class _Default : System.Web.UI.Page
{
...

protected void btnChangeTextBoxColor_Click(object sender, EventArgs e)
{

// Modify the HTTP response data for this widget.
this.myTextBox.BackColor = System.Drawing.Color.Red;

}
}

All ASP.NET web controls ultimately derive from a common base class named System.Web.UI.
WebControls.WebControl. WebControl in turn derives from System.Web.UI.Control (which derives
from System.Object). Control and WebControl each define a number of properties common to all
server-side controls. Before we examine the inherited functionality, let’s formalize what it means to
handle a server-side event.

Qualifying Server-Side Event Handling
Given the current state of the World Wide Web, it is impossible to avoid the fundamental nature of
browser/web server interaction. Whenever these two entities communicate, there is always an
underlying, stateless, HTTP request-and-response cycle. While ASP.NET server controls do a great
deal to shield you from the details of the raw HTTP protocol, always remember that treating the

4193ch23.qxd 8/14/05 3:04 PM Page 865

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS866

Web as an event-driven entity is just a magnificent smoke-and-mirrors show provided by the CLR,
and it is not identical to the event-driven model of a Windows-based UI.

Thus, although the System.Windows.Forms and System.Web.UI.WebControls namespaces define
types with the same simple names (Button, TextBox, GridView, Label, and so on), they do not expose
an identical set of events. For example, there is no way to handle a server-side MouseMove event
when the user moves the cursor over a Web Form Button type. Obviously, this is a good thing. (Who
wants to post back to the server each time the mouse moves?)

The bottom line is that a given ASP.NET web control will expose a limited set of events, all of
which ultimately result in a postback to the web server. Any necessary client-side event processing
will require you to author blurbs of client-side JavaScript/VBScript script code to be processed by
the requesting browser’s scripting engine.

The AutoPostBack Property
It is also worth pointing out that many of the ASP.NET web controls support a property named
AutoPostBack (most notably, the CheckBox, RadioButton, and TextBox controls, as well as any widget
that derives from the abstract ListControl type). By default, this property is set to false, which dis-
ables the automatic posting of server-side events (even if you have indeed rigged up the event in the
code-behind file). In many cases, this is the exact behavior you require.

However, if you wish to cause any of these widgets to post back to a server-side event handler,
simply set the value of AutoPostBack to true. This technique can be helpful if you wish to have the
state of one widget automatically populate another value within another widget on the same page.

To illustrate, create a website that contains a single TextBox (named txtAutoPostback) and a sin-
gle ListBox control (named lstTextBoxData). Now, handle the TextChanged event of the TextBox, and
within the server-side event handler, populate the ListBox with the current value in the TextBox (got
all that?):

protected void txtAutoPostback_TextChanged(object sender, EventArgs e)
{

lstTextBoxData.Items.Add(txtAutoPostback.Text);
}

If you run the application as is, you will find that as you type in the TextBox, nothing happens.
Furthermore, if you type in the TextBox and tab to the next control, nothing happens. The reason is
that the AutoPostBack property of the TextBox is set to false by default. However, if you set this prop-
erty to true as follows:

<asp:TextBox ID="txtAutoPostback" runat="server" AutoPostBack="True"
OnTextChanged="txtAutoPostback_TextChanged">
</asp:TextBox>

you will find that when you tab off the TextBox (or press the Enter key), the ListBox is automatically
populated with the current value in the TextBox. To be sure, beyond the need to populate the items
of one widget based on the value of another widget, you will typically not need to alter the state of
a widget’s AutoPostBack property.

The System.Web.UI.Control Type
The System.Web.UI.Control base class defines various properties, methods, and events that allow
the ability to interact with core (typically non-GUI) aspects of a web control. Table 23-9 documents
some, not all, members of interest.

4193ch23.qxd 8/14/05 3:04 PM Page 866

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 867

Table 23-9. Select Members of System.Web.UI.Control

Member Meaning in Life

Controls This property gets a ControlCollection object that represents the child
controls within the current control.

DataBind() This method binds a data source to the invoked server control and all its
child controls.

EnableThemeing This property establishes if the control supports theme functionality.

HasControls() This method determines if the server control contains any child controls.

ID This property gets or sets the programmatic identifier assigned to the
server control.

Page This property gets a reference to the Page instance that contains the server
control.

Parent This property gets a reference to the server control’s parent control in the
page control hierarchy.

SkinID This property gets or sets the “skin” to apply to the control. Under ASP.NET
2.0, it is now possible to establish a control’s overall look and feel on the fly
via skins.

Visible This property gets or sets a value that indicates whether a server control is
rendered as UI element on the page.

Enumerating Contained Controls
The first aspect of System.Web.UI.Control we will examine is the fact that all web controls (includ-
ing Page itself) inherit a custom controls collection (accessed via the Controls property). Much like
in a Windows Forms application, the Controls property provides access to a strongly typed collec-
tion of WebControl-derived types. Like any .NET collection, you have the ability to add, insert, and
remove items dynamically at runtime.

While it is technically possible to directly add web controls directly to a Page-derived type, it is
easier (and a wee bit safer) to make use of a Panel widget. The System.Web.UI.WebControls.Panel
class represents a container of widgets that may or may not be visible to the end user (based on the
value of its Visible and BorderStype properties).

To illustrate, create a new website named DynamicCtrls. Using the Visual Studio 2005 page
designer, add a Panel type (named myPanel) that contains a TextBox, Button, and HyperLink widget
named whatever you choose (be aware that the designer requires that you drag internal items
within the UI of the Panel type). Once you have done so, the <form> element of your *.aspx file has
been updated as so:

<asp:Panel ID="myPanel" runat="server" Height="50px" Width="125px">
<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Button" />

<asp:HyperLink ID="HyperLink1" runat="server">HyperLink
</asp:HyperLink>

</asp:Panel>

Next, place a Label widget outside the scope of the Panel (named lblControlInfo) to hold the
rendered output. Assume in the Page_Load() event you wish to obtain a list of all the controls con-
tained within the Panel and assign the results to the Label type:

4193ch23.qxd 8/14/05 3:04 PM Page 867

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS868

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

ListControlsInPanel();
}
private void ListControlsInPanel()
{

string theInfo;
theInfo = String.Format("Has controls? {0}
",

myPanel.HasControls());
foreach (Control c in myPanel.Controls)
{

if (c.GetType() != typeof(System.Web.UI.LiteralControl))
{

theInfo += "***************************
";
theInfo += String.Format("Control Name? {0}
",

c.ToString());
theInfo += String.Format("ID? {0}
", c.ID);
theInfo += String.Format("Control Visible? {0}
",

c.Visible);
theInfo += String.Format("ViewState? {0}
",

c.EnableViewState);
}

}
lblControlInfo.Text = theInfo;

}
}

Here, you iterate over each WebControl maintained on the Panel and perform a check to see if
the current type is of type System.Web.UI.LiteralControl. This type is used to represent literal
HTML tags and content (such as
, text literals, etc.). If you do not do this sanity check, you
might be surprised to find a total of seven types in the scope of the Panel (given the *.aspx declara-
tion seen previously). Assuming the type is not literal HTML content, you then print out some
various statistics about the widget. Figure 23-20 shows the output.

4193ch23.qxd 8/14/05 3:04 PM Page 868

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 869

Dynamically Adding (and Removing) Controls
Now, what if you wish to modify the contents of a Panel at runtime? The process should look very
familiar to you, given your work with Windows Forms earlier in this text. Let’s update the current
page to support an additional Button (named btnAddWidgets) that dynamically adds five new
TextBox types to the Panel, and another Button that clears the Panel widget of all controls. The Click
event handlers for each are shown here:

protected void btnAddWidgets_Click(object sender, EventArgs e)
{

for (int i = 0; i < 5; i++)
{

// Assign a name so we can get
// the text value out later
// using the HttpRequest.QueryString()
// method.
TextBox t = new TextBox();
t.ID = string.Format("newTextBox{0}", i);
myPanel.Controls.Add(t);
ListControlsInPanel();

}
}

Figure 23-20. Enumerating contained widgets

4193ch23.qxd 8/14/05 3:04 PM Page 869

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS870

protected void btnRemovePanelItems_Click(object sender, EventArgs e)
{

myPanel.Controls.Clear();
ListControlsInPanel();

}

Notice that you assign a unique ID to each TextBox (e.g., newTextBox1, newTextBox2, and so on)
to obtain its contained text programmatically using the HttpRequest.Form collection (shown
momentarily).

To obtain the values within these dynamically generated TextBoxes, update your UI with one
additional Button and Label type. Within the Click event handler for the Button, loop over each item
contained within the HttpRequest.NameValueCollection type (accessed via HttpRequest.Form) and
concatenate the textual information to a locally scoped System.String. Once you have exhausted
the collection, assign this string to the Text property of the new Label widget named lblTextBoxText:

protected void btnGetTextBoxValues_Click(object sender, System.EventArgs e)
{

string textBoxValues = "";
for(int i = 0; i < Request.Form.Count; i++)
{

textBoxValues +=
string.Format("{0}
", Request.Form[i]);

}
lblTextBoxText.Text = textBoxValues;

}

When you run the application, you will find that you are able to view the content of each text
box, including a rather long (unreadable) string. This string contains the view state for each widget
on the page and will be examined later in the next chapter. Also, you will notice that once the request
has been processed, the ten new text boxes disappear. Again, the reason has to do with the stateless
nature of HTTP. If you wish to maintain these dynamically created TextBoxes between postbacks,
you need to persist these objects using ASP.NET state programming techniques (also examined in
the next chapter).

■Source Code The DynamicCtrls files are included under the Chapter 23 subdirectory.

Key Members of the
System.Web.UI.WebControls.WebControl Type
As you can tell, the Control type provides a number of non-GUI-related behaviors. On the other
hand, the WebControl base class provides a graphical polymorphic interface to all web widgets, as
suggested in Table 23-10.

Table 23-10. Properties of the WebControl Base Class

Properties Meaning in Life

BackColor Gets or sets the background color of the web control

BorderColor Gets or sets the border color of the web control

BorderStyle Gets or sets the border style of the web control

BorderWidth Gets or sets the border width of the web control

4193ch23.qxd 8/14/05 3:04 PM Page 870

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 871

Properties Meaning in Life

Enabled Gets or sets a value indicating whether the web control is enabled

CssClass Allows you to assign a class defined within a Cascading Style Sheet to a web
widget

Font Gets font information for the web control

ForeColor Gets or sets the foreground color (typically the color of the text) of the web
control

Height Get or set the height and width of the web control
Width

TabIndex Gets or sets the tab index of the web control

ToolTip Gets or sets the tool tip for the web control to be displayed when the cursor is
over the control

I’d bet that almost all of these properties are self-explanatory, so rather than drill through the
use of all these properties, let’s shift gears a bit and check out a number of ASP.NET Web Form con-
trols in action.

Categories of ASP.NET Web Controls
The types in System.Web.UI.WebControls can be broken down into several broad categories:

• Simple controls

• (Feature) Rich controls

• Data-centric controls

• Input validation controls

• Login controls

The simple controls are so named because they are ASP.NET web controls that map to standard
HTML widgets (buttons, lists, hyperlinks, image holders, tables, etc.). Next, we have a small set of
controls named the rich controls for which there is no direct HTML equivalent (such as the Calendar,
TreeView, Wizard, etc.). The data-centric controls are widgets that are typically populated via a given
data connection. The best (and most exotic) example of such a control would be the ASP.NET
GridView. Other members of this category include “repeater” controls and the lightweight DataList.
The validation controls are server-side widgets that automatically emit client-side JavaScript, for the
purpose of form field validation. Finally, as of ASP.NET 2.0, the base class libraries ship with a number
of security-centric controls. These UI elements completely encapsulate the details of logging into
a site, providing password-retrieval services and managing user roles.

■Note Given that this text does not cover the details of the .NET security system, I will not comment on the new
security controls here. If you require a detailed treatment of ASP.NET 2.0 security, check out Expert ASP.NET 2.0
Advanced Application Design by Dominic Selly, Andrew Troelsen, and Tom Barnaby (Apress, 2006).

A Brief Word Regarding System.Web.UI.HtmlControls
Truth be told, there are two distinct web control toolkits that ship with ASP.NET 2.0. In addition to
the ASP.NET web controls (within the System.Web.UI.WebControls namespace), the base class libraries
also provide the System.Web.UI.HtmlControls widgets.

4193ch23.qxd 8/14/05 3:04 PM Page 871

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS872

The HTML controls are a collection of types that allow you to make use of traditional HTML
controls on a Web Forms page. However, unlike raw HTML tags, HTML controls are OO entities that
can be configured to run on the server and thus support server-side event handling. Unlike ASP.NET
web controls, HTML controls are quite simplistic in nature and offer little functionality beyond
standard HTML tags (HtmlButton, HtmlInputControl, HtmlTable, etc.).

The HTML controls provide a public interface that mimics standard HTML attributes. For exam-
ple, to obtain the information within an input area, you make use of the Value property, rather than
the web control–centric Text property. Given that the HTML controls are not as feature-rich as the
ASP.NET web controls, I won’t make further mention of them in this text. If you wish to investigate
these types, consult the .NET Framework 2.0 SDK documentation for further details.

Building a Simple ASP.NET 2.0 Website
Space does not permit me to walk through the details of each and every web control that ships with
ASP.NET 2.0 (that would require a sizable book in and of itself). However, to illustrate the process of
working with various ASP.NET web controls, the next task of this chapter is to construct a website
that will demonstrate the use of the following techniques:

• Working with master pages

• Working with the Menu control

• Working with the GridView control

• Working with the Wizard control

As you work through this example, remember that Web Form controls encapsulate the process
of generating corresponding HTML tags and follow a Windows Forms model. To begin, create a new
ASP.NET web application named AspNetCarsSite.

Working with Master Pages
As I am sure you are aware, many websites provide a consistent look and feel across multiple pages
(a common menu navigation system, common header and footer content, company logo, etc.).
Under ASP.NET 1.x, developers made extensive use of UserControls and custom web controls to
define web content that was to be used across multiple pages. While UserControls and custom web
controls are still a very valid option under ASP.NET 2.0, we are now provided with the concept of
master pages to address the same issue.

Simply put, a master page is little more than an ASP.NET page that takes a *.master file exten-
sion. On their own, master pages are not viewable from a client-side browser (in fact, the ASP.NET
runtime will not server this flavor of web content). Rather, master pages define a common UI frame
shared by all pages (or a subset of pages) in your site. As well, a *.master page defines various place-
holder tags that contain additional content within an *.aspx file. The end result is a single, unified UI.

Insert a new master page into your website (via the WebSite ➤ Add New Item menu selection)
and observe the initial definition:

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="MasterPage.master.cs" Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

4193ch23.qxd 8/14/05 3:04 PM Page 872

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 873

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:contentplaceholder id="ContentPlaceHolder1" runat="server">
</asp:contentplaceholder>

</div>
</form>

</body>
</html>

The first point of interest is the new <%@Master%> directive. For the most part, this directive sup-
ports the same attributes as <%@Page%>. For example, notice how by default a master page makes use
of a code-behind file (which is technically optional). Like Page types, a master page derives from
a specific base class, which in this case is MasterPage:

public partial class MasterPage : System.Web.UI.MasterPage
{

protected void Page_Load(object sender, EventArgs e)
{
}

}

It is important to know that the attributes defined within the <%@Master%> directive do not “flow
through” to the related *.aspx files. Thus, if you wish to make use of C# within your master page but
author an associated *.aspx file in Visual Basic .NET, you may do so.

The other point of interest is the <asp:contentplaceholder> type. This region of a master page
represents the UI widgets of the related *.aspx file, not the content of the master page itself. If you
do intend to blend an *.aspx file within this region, the scope within the <asp:contentplaceholder>
and </asp:contentplaceholder> tags will be empty. However, if you so choose, you are able to popu-
late this area with various web controls that function as a default UI to use in the event that a given
*.aspx file in the site does not supply specific content. For this example, assume that each *.aspx
page in your site will indeed supply custom content.

■Note A *.master page may define as many content place holders as necessary. As well, a single *.master
page may nest additional *.master pages.

As you would hope, you are able to build a common UI of a *.master file using the same Visual
Studio 2005 designers used to build *.aspx files. For your site, you will add a descriptive Label (to
serve as a common welcome message), an AdRotator control (which will randomly display one of
two images), and a Menu control (to allow the user to navigate to other areas of the site).

Working with the Menu Control
ASP.NET 2.0 ships with several new web controls that allow you to handle site navigation: SiteMapPath,
TreeView, and Menu. As you would expect, these web widgets can be configured in multiple ways. For
example, each of these controls can dynamically generate its nodes via an external XML file or data
source. For your Menu type, you will simply hard-code three values.

Using the page designer, select the Menu control, activate the inline editor (located at the upper
left of the widget), and select the Edit Menu Items option. Add three root items named Home, Build
a Car, and View Inventory. Before dismissing the dialog box, set the NavigateUrl property for each
node to the following (yet to be constructed) pages:

4193ch23.qxd 8/14/05 3:04 PM Page 873

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS874

• Home: Default.aspx

• Build a Car: BuildCar.aspx

• View Inventory: Inventory.aspx

This is all you need to do to configure your Menu widget to navigate to the additional pages on
your site. If you wish to perform additional processing when the user selects a given menu item, you
may do so by handling the MenuItemClick event. There is no need to do so for this example, but be aware
that you are able to determine which menu item was selected using the incoming MenuEventArgs
parameter.

Working with the AdRotator
The role of the ASP.NET AdRotator widget is to randomly display a given image at some position in
the browser. When you first place an AdRotator widget on the designer, it is displayed as an empty
placeholder. Functionally, this control cannot do its magic until you assign the AdvertisementFile
property to point to the source file that describes each image. For this example, the data source will
be a simple XML file named Ads.xml.

Once you have inserted this new XML file to your site, specify a unique <Ad> element for each
image you wish to display. At minimum, each <Ad> element specifies the image to display (ImageUrl),
the URL to navigate to if the image is selected (TargetUrl), mouseover text (AlternateText), and the
weight of the ad (Impressions):

<Advertisements>
<Ad>

<ImageUrl>SlugBug.jpg</ImageUrl>
<TargetUrl>http://www.Cars.com</TargetUrl>
<AlternateText>Your new Car?</AlternateText>
<Impressions>80</Impressions>

</Ad>
<Ad>

<ImageUrl>car.gif</ImageUrl>
<TargetUrl>http://www.CarSuperSite.com</TargetUrl>
<AlternateText>Like this Car?</AlternateText>
<Impressions>80</Impressions>

</Ad>
</Advertisements>

At this point, you can associate your XML file to the AdRotator controls via the AdvertisementFile
property (in the Properties window):

<asp:AdRotator ID="myAdRotator" runat="server"
AdvertisementFile="~/Ads.xml"/>

Later when you run this application and post back to the page, you will be randomly presented
with one of two image files. Figure 23-21 illustrates the initial UI of the master page.

4193ch23.qxd 8/14/05 3:04 PM Page 874

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 875

Defining the Default.aspx Content Page
Now that you have a master page established, you can begin designing the individual *.aspx pages
that will define the UI content to merge within the <asp:contentplaceholder> tag of the master
page. When you created this new website, Visual Studio 2005 automatically provided you with an
initial *.aspx file, but as the file now stands, it cannot be merged within the master page.

The reason is that it is the *.master file that defines the <form> section of the final HTML page.
Therefore, the existing <form> area within the *.aspx file will need to be replaced with an <asp:content>
scope. Flip to the Source view of Default.aspx and replace the existing markup with the following:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.master"
AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" Title="Untitled Page" %>

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">

</asp:Content>

First, notice that the <%@Page%> directive has been updated with a new MasterPageFile attribute
that is assigned to your *.master file. Also note that the ContentPlaceHolderID value is identical to
the <asp:contentplaceholder> widget in the master file.

Given these associations, you will now find that when you switch back to the Design view, the
master’s UI is now visible. The content area is visible as well, although it is currently empty. There is
no need to build a complex UI for your Default.aspx content area, so for this example, simply add
a few Labels to hold some basic site instructions (see Figure 23-22).

Figure 23-21. The master page

4193ch23.qxd 8/14/05 3:04 PM Page 875

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS876

Now, if you run your project, you will find that the UI content of the *.master and Default.aspx
files have been merged into a single stream of HTML. As you can see from Figure 23-23, the end user
is unaware that the master page even exists.

Figure 23-22. The Default.aspx content page

Figure 23-23. The default page of Cars R Us

4193ch23.qxd 8/14/05 3:04 PM Page 876

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 877

Designing the Inventory Content Page
To insert the Inventory.aspx content page into your current project, open the *.master page in the
IDE and select WebSite ➤ Add Content Page (if a *.master file is not the active item in the designer,
this menu option is not present). The role of the Inventory content page is to display the contents of
the Inventory table of the Cars database within a GridView control.

As you may know, the GridView control is not limited to read-only data display. This widget can
be configured to support sorting, paging, and in-place editing. If you wish, you can handle a series
of server-side events and author ADO.NET code to do so; this ASP.NET 2.0 widget supersedes the
ASP.NET 1.x control with a “zero-code” mentality.

With a few simple mouse clicks you can configure the GridView to automatically select, update,
and delete records of the underlying data store. While this zero-code mind-set greatly simplifies the
amount of boilerplate code, understand that this simplicity comes with a loss of control and may
not be the best approach for an enterprise-level application.

Nevertheless, to illustrate how to work with the GridView in this declarative manner, insert a new
content page (Inventory.aspx) and update the content area with a descriptive label and a GridView.
Using the inline editor, select New Data Source from the Choose Data Source drop-down box. This
will activate a wizard that walks you through a series of steps to connect this component to the
required data source. Here are the steps to take for the current example:

1. Select the Database icon and change the name of the data source ID to CarsDataSource.

2. Select the Cars database (create a new connection if required).

3. If you wish, save the connection string data to a Web.config file. Recall from Chapter 22 that
ADO.NET now supports the <connectionStrings> element.

4. Configure your SQL Select statement to select all records from the Inventory table (Figure 23-24
shows the settings I chose).

5. Test your query and click the Finish button.

Figure 23-24. Selecting the Inventory table

4193ch23.qxd 8/14/05 3:04 PM Page 877

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS878

Now, if you examine the opening declaration of the GridView control, you will see that the
DataSourceID property has been set to the SqlDataSource you just defined:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
CellPadding="4" DataKeyNames="CarID" DataSourceID="CarsDataSource"
ForeColor="#333333" GridLines="None">

...
</asp:GridView>

The SqlDataSource type (new to .NET 2.0) is a component that encapsulates the details of
a given data store. Given your work in Chapter 23, the following attributes should be straightforward:

<asp:SqlDataSource ID="CarsDataSource" runat="server"
ConnectionString=

"Data Source=localhost;Initial Catalog=Cars;Integrated Security=True"
ProviderName="System.Data.SqlClient"
SelectCommand="SELECT * FROM [Inventory]">
</asp:SqlDataSource>

At this point, you are able to run your web program, click the View Inventory menu item, and
view your data (see Figure 23-25).

Figure 23-25. The no-code GridView

Enabling Sorting and Paging
The GridView control can easily be configured for sorting (via column name hyperlinks) and paging
(via numeric or next/previous hyperlinks). To do so, activate the inline editor and check the appro-
priate options (see Figure 23-26).

4193ch23.qxd 8/14/05 3:04 PM Page 878

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 879

When you run your page again, you will be able to sort your data by clicking the column names
and scrolling through your data via the paging links (provided you have enough records in the
Inventory table!).

Enabling In-Place Editing
The final detail of this page is to enable the GridView control’s support for in-place activation. To do
so, open the inline editor for the SqlDataSource and select Configure Data Source. Skip past the first
two steps of this wizard, but on Step 3, click the Advanced button and check the first option (see
Figure 23-27).

Figure 23-26. Enabling paging and sorting

Figure 23-27. Generating the remaining SQL statements

If you examine the HTML definition of the control, you will now find the following that the
SqlDataSource has been equipped with a DeleteCommand, InsertCommand, and UpdateCommand (each
of which is making use of parameterized queries):

<asp:SqlDataSource ID="CarsDataSource" runat="server"
ConnectionString=
"Data Source=localhost;Initial Catalog=Cars;Integrated Security=True"

4193ch23.qxd 8/14/05 3:04 PM Page 879

ProviderName="System.Data.SqlClient"
SelectCommand="SELECT * FROM [Inventory]"
DeleteCommand="DELETE FROM [Inventory] WHERE [CarID] = @original_CarID"
InsertCommand="INSERT INTO [Inventory] ([CarID], [Make], [Color], [PetName]) VALUES
(@CarID, @Make, @Color, @PetName)"
UpdateCommand="UPDATE [Inventory] SET
[Make] = @Make, [Color] = @Color, [PetName] = @PetName WHERE [CarID] =
@original_CarID">
...
</asp:SqlDataSource>

As well, you are provided with a SqlDataSource component giving additional markup that
defines the parameter objects for the parameterized queries:

<DeleteParameters>
<asp:Parameter Name="original_CarID" Type="Int32" />

</DeleteParameters>
<UpdateParameters>

<asp:Parameter Name="Make" Type="String" />
<asp:Parameter Name="Color" Type="String" />
<asp:Parameter Name="PetName" Type="String" />
<asp:Parameter Name="original_CarID" Type="Int32" />

</UpdateParameters>
<InsertParameters>

<asp:Parameter Name="CarID" Type="Int32" />
<asp:Parameter Name="Make" Type="String" />
<asp:Parameter Name="Color" Type="String" />
<asp:Parameter Name="PetName" Type="String" />

</InsertParameters>

The final step is to enable editing and deleting support via the inline editor of the GridView (see
Figure 23-28).

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS880

Figure 23-28. Enabling editing and deleting support

4193ch23.qxd 8/14/05 3:04 PM Page 880

Sure enough, when you navigate back to the Inventory.aspx page, you are able to edit and
delete records (see Figure 23-29).

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 881

Figure 23-29. The grids of all grids

Designing the Build a Car Content Page
The final task for this example is to design the BuildCar.aspx content page. Insert this current
project (via the WebSite ➤ Add Content Page menu option). This new page will make use of the
ASP.NET 2.0 Wizard web control, which provides a simple way to walk the end user through a series
of related steps. Here, the steps in question will simulate the act of building an automobile for purchase.

Place a descriptive Label and Wizard control onto the content area. Next, activate the inline
editor for the Wizard and click the Add/Remove WizardSteps link. Add a total of four steps, as shown
in Figure 23-30.

4193ch23.qxd 8/14/05 3:04 PM Page 881

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS882

Once you have defined these steps, you will notice that the Wizard defines an empty content
area where you can now drag and drop controls for the currently selected step. For this example,
update each step with the following UI elements (be sure to provide a descent ID value for each
item using the Properties window):

• Pick Your Model: A single TextBox control

• Pick Your Color: A single ListBox control

• Name Your Car: A single TextBox control

• Delivery Date: A Calendar control

The ListBox control is the only UI element of the Wizard that requires additional steps. Select
this item on the designer (making sure your first select the Pick Your Color link) and fill this widget
with a set of colors using the Items property of the Properties window. Once you do, you will find
markup much like the following within the scope of the Wizard definition:

<asp:ListBox ID="ListBoxColors" runat="server" Width="237px">
<asp:ListItem>Purple</asp:ListItem>
<asp:ListItem>Green</asp:ListItem>
<asp:ListItem>Red</asp:ListItem>
<asp:ListItem>Yellow</asp:ListItem>
<asp:ListItem>Pea Soup Green</asp:ListItem>
<asp:ListItem>Black</asp:ListItem>
<asp:ListItem>Lime Green</asp:ListItem>

</asp:ListBox>

Now that you have defined each of the steps, you can handle the FinishButtonClick event for
the autogenerated Finish button. Within the server-side event handler, obtain the selections from
each UI element and build a description string that is assigned to the Text property of an additional
Label type named lblOrder:

protected void carWizard_FinishButtonClick(object sender,
WizardNavigationEventArgs e)

{
// Get each value.
string order = string.Format("{0}, your {1} {2} will arrive on {3}.",

Figure 23-30. Configuring Wizard steps

4193ch23.qxd 8/14/05 3:04 PM Page 882

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 883

txtCarPetName.Text, ListBoxColors.SelectedValue,
txtCarModel.Text, carCalendar.SelectedDate.ToShortDateString());

// Assign to label
lblOrder.Text = order;

}

At this point your AspNetCarSite is complete. Figure 23-31 shows the Wizard in action.

Figure 23-31. The Wizard in action

That wraps up our examination of various UI web controls. To be sure, there are many other
widgets we haven’t covered here. You should feel comfortable, though, with the basic programming
model. To wrap things up for this chapter, let’s look at the validation controls.

■Source Code The AspNetCarsSite files are included under the Chapter 23 subdirectory.

The Role of the Validation Controls
The final group of Web Form controls we will examine is termed validation controls. Unlike the
other Web Form controls we’ve examined, validator controls are not used to emit HTML, but are used
to emit client-side JavaScript (and possibly server-side operations) for the purpose of form valida-
tion. As illustrated at the beginning of this chapter, client-side form validation is quite useful in that
you can ensure that various constraints are in place before posting back to the web server, thereby
avoiding expensive round-trips. Table 23-11 gives a rundown of the ASP.NET validation controls.

4193ch23.qxd 8/14/05 3:04 PM Page 883

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS884

Table 23-11. ASP.NET Validation Controls

Control Meaning in Life

CompareValidator Validates that the value of an input control is equal to a given
value of another input control or a fixed constant.

CustomValidator Allows you to build a custom validation function that validates
a given control.

RangeValidator Determines that a given value is in a predetermined range.

RegularExpressionValidator Checks if the value of the associated input control matches the
pattern of a regular expression.

RequiredFieldValidator Ensures that a given input control contains a value (i.e., is not
empty).

ValidationSummary Displays a summary of all validation errors of a page in a list,
bulleted list, or single-paragraph format. The errors can be
displayed inline and/or in a pop-up message box.

All of the validator controls ultimately derive from a common base class named
System.Web.UI.WebControls.BaseValidator, and therefore they have a set of common features.
Table 23-12 documents the key members.

Table 23-12. Common Properties of the ASP.NET Validators

Member Meaning in Life

ControlToValidate Gets or sets the input control to validate

Display Gets or sets the display behavior of the error message in
a validation control

EnableClientScript Gets or sets a value indicating whether client-side validation is
enabled

ErrorMessage Gets or sets the text for the error message

ForeColor Gets or sets the color of the message displayed when validation fails

To illustrate the basics of working with validation controls, let’s create a new Web Site project named
ValidatorCtrls. To begin, place four TextBox types (with four corresponding and descriptive Labels)
onto your page. Next, place a RequiredFieldValidator, RangeValidator, RegularExpressionValidator,
and CompareValidator type adjacent to each respective field. Finally, add a single Button and final
Label (see Figure 23-32).

4193ch23.qxd 8/14/05 3:04 PM Page 884

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 885

Now that you have a UI, let’s walk though the process of configuring each member.

The RequiredFieldValidator
Configuring the RequiredFieldValidator is straightforward. Simply set the ErrorMessage and
ControlToValidate properties accordingly using the Visual Studio 2005 Properties window. The
resulting *.aspx definition is as follows:

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"
runat="server" ControlToValidate="txtRequiredField"
ErrorMessage="Oops! Need to enter data.">
</asp:RequiredFieldValidator>

One nice thing about the RequiredFieldValidator is that it supports an InitialValue property.
You can use this property to ensure that the user enters any value other than the initial value in the
related TextBox. For example, when the user first posts to a page, you may wish to configure a TextBox
to contain the value “Please enter your name”. Now, if you did not set the InitialValue property of
the RequiredFieldValidator, the runtime would assume that the string “Please enter your name” is
valid. Thus, to ensure a required TextBox is valid only when the user enters anything other than
“Please enter your name”, configure your widgets as follows:

<asp:RequiredFieldValidator ID="RequiredFieldValidator1"
runat="server" ControlToValidate="txtRequiredField"
ErrorMessage="Oops! Need to enter data."
InitialValue="Please enter your name">
</asp:RequiredFieldValidator>

Figure 23-32. The items to be validated

4193ch23.qxd 8/14/05 3:04 PM Page 885

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS886

The RegularExpressionValidator
The RegularExpressionValidator can be used when you wish to apply a pattern against the charac-
ters entered within a given input field. To ensure that a given TextBox contains a valid U.S. Social
Security number, you could define the widget as follows:

<asp:RegularExpressionValidator ID="RegularExpressionValidator1"
runat="server" ControlToValidate="txtRegExp"
ErrorMessage="Please enter a valid US SSN."
ValidationExpression="\d{3}-\d{2}-\d{4}">
</asp:RegularExpressionValidator>

Notice how the RegularExpressionValidator defines a ValidationExpression property. If you
have never worked with regular expressions before, all you need to be aware of for this example is
that they are used to match a given string pattern. Here, the expression "\d{3}-\d{2}\d{4}" is cap-
turing a standard U.S. Social Security number of the form xxx-xx-xxxx (where x is any digit).

This particular regular expression is fairly self-explanatory; however, assume you wish to
test for a valid Japanese phone number. The correct expression now becomes much more
complex: "(0\d{1,4}-|\(0\d{1,4}\) ?)?\d{1,4}-\d{4}". The good news is that when you select
the ValidationExpression property using the Properties window, you can pick from a predefined
set of common regular expressions (see Figure 23-33).

■Note If you are really into regular expressions, you will be happy to know that the .NET platform supplies two
namespaces (System.Text.RegularExpressions and System.Web.RegularExpressions) devoted to the
programmatic manipulation of such patterns.

The RangeValidator
In addition to a MinimumValue and MaximumValue property, RangeValidators have a property named
Type. Because you are interested in testing the user-supplied input against a range of whole num-
bers, you need to specify Integer (which is not the default!):

<asp:RangeValidator ID="RangeValidator1"
runat="server" ControlToValidate="txtRange"
ErrorMessage="Please enter value between 0 and 100."
MaximumValue="100" MinimumValue="0" Type="Integer">
</asp:RangeValidator>

Figure 23-33. Creating a regular expression via Visual Studio 2005

4193ch23.qxd 8/14/05 3:04 PM Page 886

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS 887

The RangeValidator can also be used to test if a given value is between a currency value, date,
floating-point number, or string data (the default setting).

The CompareValidator
Finally, notice that the CompareValidator supports an Operator property:

<asp:CompareValidator ID="CompareValidator1" runat="server"
ControlToValidate="txtComparison"
ErrorMessage="Enter a value less than 20." Operator="LessThan"
ValueToCompare="20">
</asp:CompareValidator>

Given that the role of this validator is to compare the value in the text box against another value
using a binary operator, it should be no surprise that the Operator property may be set to values
such as LessThan, GreaterThan, Equal, and NotEqual. Also note that the ValueToCompare is used to
establish a value to compare against.

■Note The CompareValidator can also be configured to compare a value within another Web Form control
(rather than a hard-coded value) using the ControlToValidate property.

To finish up the code for this page, handle the Click event for the Button type and inform the
user he has succeeded in the validation logic:

protected void btnPostback_Click(object sender, EventArgs e)
{

lblValidationComplete.Text = "You passed validation!";
}

Now, navigate to this page using your browser of choice. At this point, you should not see any
noticeable changes. However, when you attempt to click the Submit button after entering bogus
data, your error message is suddenly visible. Once you enter valid data, the error messages are removed
and postback occurs.

If you look at the HTML rendered by the browser, you see that the validator controls generate
a client-side JavaScript function that makes use of a specific library of JavaScript functions (contained
in the WebUIValidation.js file) that is automatically downloaded to the user’s machine. Once the
validation has occurred, the form data is posted back to the server, where the ASP.NET runtime will
perform the same validation tests on the web server (just to ensure that no along-the-wire tamper-
ing has taken place).

On a related note, if the HTTP request was sent by a browser that does not support client-side
JavaScript, all validation will occur on the server. In this way, you can program against the validator
controls without being concerned with the target browser; the returned HTML page redirects the
error processing back to the web server.

Creating Validation Summaries
The final validation-centric topic we will examine here is the use of the ValidationSummary widget.
Currently, each of your validators displays its error message at the exact place in which it was posi-
tioned at design time. In many cases, this may be exactly what you are looking for. However, on
a complex form with numerous input widgets, you may not want to have random blobs of red text
pop up. Using the ValidationSummary type, you can instruct all of your validation types to display
their error messages at a specific location on the page.

4193ch23.qxd 8/14/05 3:04 PM Page 887

CHAPTER 23 ■ ASP.NET 2.0 WEB PAGES AND WEB CONTROLS888

The first step is to simply place a ValidationSummary on your *.aspx file. You may optionally set
the HeaderText property of this type as well as the DisplayMode, which by default will list all error
messages as a bulleted list.

<asp:ValidationSummary id="ValidationSummary1"
style="Z-INDEX: 123; LEFT: 152px; POSITION: absolute; TOP: 320px"
runat="server" Width="353px"
HeaderText="Here are the things you must correct.">
</asp:ValidationSummary>

Next, you need to set the Display property to None for each of the individual validators (e.g.,
RequiredFieldValidator, RangeValidator, etc.) on the page. This will ensure that you do not see
duplicate error messages for a given validation failure (one in the summary pane and another at the
validator’s location).

Last but not least, if you would rather have the error messages displayed using a client-side
MessageBox, set the ShowMessageBox property to true and the ShowSummary property to false.

■Source Code The ValidatorCtrls project is included under the Chapter 23 subdirectory.

Summary
Building web applications requires a different frame of mind than is used to assemble traditional desk-
top applications. In this chapter, you began with a quick and painless review of some core web atoms,
including HTML, HTTP, the role of client-side scripting, and server-side scripts using classic ASP.

The bulk of this chapter was spent examining the architecture of an ASP.NET page. As you have
seen, each *.aspx file in your project has an associated System.Web.UI.Page-derived class. Using
this OO approach, ASP.NET allows you to build more reusable and OO-aware systems. This chapter
examined the use of master pages and various Web Form controls (including the new GridView and
Wizard types). As you have seen, these GUI widgets are in charge of emitting HTML tags to the client
side. The validation controls are server-side widgets that are responsible for rendering client-side
JavaScript to perform form validation, without incurring a round-trip to the server.

4193ch23.qxd 8/14/05 3:04 PM Page 888

ASP.NET 2.0 Web Applications

The previous chapter concentrated on the composition and behavior of ASP.NET pages and the web
controls they contain. This chapter builds on these basics by examining the role of the HttpApplication
type. As you will see, the functionality of HttpApplication allows you to intercept numerous events
that enable you to treat your web applications as a cohesive unit, rather than a set of stand-alone
*.aspx files.

In addition to investigating the HttpApplication type, this chapter also addresses the all-
important topic of state management. Here you will learn the role of view state, control state, and
session- and application-level variables, as well as a state-centric entity provided by ASP.NET termed
the application cache. Once you have a solid understanding of the state management techniques
offered by the .NET platform, the chapter wraps up with a discussion of the role of the Web.config
file and shows various configuration-centric techniques.

The Issue of State
At the beginning of the last chapter, I pointed out that HTTP is a stateless wire protocol. This very
fact makes web development extremely different from the process of building an executable assem-
bly. For example, when you are building a Windows Forms application, you can rest assured that
any member variables defined in the Form-derived class will typically exist in memory until the user
explicitly shuts down the executable:

public partial class MainWindow : Form
{

// State data!
private string userFavoriteCar;

...
}

In the world of the World Wide Web, however, you are not afforded the same luxurious assumption.
To prove the point, create a new ASP.NET website (named SimpleStateExample) that has a single
*.aspx file. Within the code-behind file, define a page-level string variable named userFavoriteCar:

public partial class _Default : Page
{

// State data?
private string userFavoriteCar;
...

}

889

C H A P T E R 2 4

■ ■ ■

4193ch24.qxd 8/14/05 3:05 PM Page 889

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS890

Figure 24-1. The UI for the simple state page

Next, construct the web UI as shown in Figure 24-1.

The server-side Click event handler for the Set button will allow the user to assign the string
variable using the value within the TextBox:

protected void btnSetCar_Click(object sender, EventArgs e)
{

// Store favorite car in member variable.
userFavoriteCar = txtFavCar.Text;

}

while the Click event handler for the Get button will display the current value of the member variable
within the page’s Label widget:

protected void btnGetCar_Click(object sender, EventArgs e)
{

// Set label text to value of member variable.
lblFavCar.Text = userFavoriteCar;

}

Now, if you were building a Windows Forms application, you would be right to assume that once
the user sets the initial value, it would be remembered throughout the life of the desktop application.
Sadly, when you run this web application, you will find that each time you post back to the web server,
the value of the userFavoriteCar string variable is set back to the initial empty value; therefore, the
Label’s text is continuously empty.

Again, given that HTTP has no clue how to automatically remember data once the HTTP response
has been sent, it stands to reason that the Page object is destroyed instantly. Therefore, when the client
posts back to the *.aspx file, a new Page object is constructed that will reset any page-level member
variables. This is clearly a major dilemma. Imagine how painful online shopping would be if every time
you posted back to the web server, any and all information you previously entered (such as the items
you wish to purchase) were discarded. When you wish to remember information regarding the users
who are logged on to your site, you need to make use of various state management techniques.

■Note This issue is in no way limited to ASP.NET. Java servlets, CGI applications, classic ASP, and PHP applica-
tions all must contend with the thorny issue of state management.

To remember the value of the userFavoriteCar string type between postbacks, you are required
to store the value of this string type within a session variable. You will examine the exact details of
session state in the pages that follow. For the sake of completion, however, here are the necessary

4193ch24.qxd 8/14/05 3:05 PM Page 890

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 891

updates for the current page (note that you are no longer using the private string member variable,
therefore feel free to comment out or remove the definition altogether):

protected void btnSetCar_Click(object sender, EventArgs e)
{

Session["UserFavCar"] = txtFavCar.Text;
}
protected void btnGetCar_Click(object sender, EventArgs e)
{

lblFavCar.Text = (string)Session["UserFavCar"];
}

If you now run the application, the value of your favorite automobile will be preserved across
postbacks, thanks to the HttpSessionState object manipulated with the inherited Session property.

■Source Code The SimpleStateExample files are included under the Chapter 24 subdirectory.

ASP.NET State Management Techniques
ASP.NET provides several mechanisms that you can use to maintain stateful information in your
web applications. Specifically, you have the following options:

• Make use of ASP.NET view state.

• Make use of ASP.NET control state.

• Define application-level variables.

• Make use of the cache object.

• Define session-level variables.

• Interact with cookie data.

We’ll examine the details of each approach in turn, beginning with the topic of ASP.NET view state.

Understanding the Role of ASP.NET View State
The term view state has been thrown out numerous times here and in the previous chapter without
a formal definition, so let’s demystify this term once and for all. Under classic ASP, web developers
were required to manually repopulate the values of the incoming form widgets during the process
of constructing the outgoing HTTP response. For example, if the incoming HTTP request contained
five text boxes with specific values, the *.asp file needed to extract the current values (via the Form
or QueryString collections of the Request object) and manually place them back into the HTTP
response stream (needless to say, this was a drag). If the developer failed to do so, the caller was pre-
sented with a set of five empty text boxes!

Under ASP.NET, we are no longer required to manually scrape out and repopulate the values
contained within the HTML widgets because the ASP.NET runtime will automatically embed a hid-
den form field (named __VIEWSTATE), which will flow between the browser and a specific page. The
data assigned to this field is a Base64-encoded string that contains a set of name/value pairs that
represent the values of each GUI widget on the page at hand.

The System.Web.UI.Page base class’s Init event handler is the entity in charge of reading the
incoming values found within the __VIEWSTATE field to populate the appropriate member variables
in the derived class (which is why it is risky at best to access the state of a web widget within the
scope of a page’s Init event handler).

4193ch24.qxd 8/14/05 3:05 PM Page 891

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS892

Also, just before the outgoing response is emitted back to the requesting browser, the
__VIEWSTATE data is used to repopulate the form’s widgets, to ensure that the current values of the
HTML widgets appear as they did prior to the previous postback.

Clearly, the best thing about this aspect of ASP.NET is that it just happens without any work on
your part. Of course, you are always able to interact with, alter, or disable this default functionality if
you so choose. To understand how to do this, let’s see a concrete view state example.

Demonstrating View State
First, create a new ASP.NET web application called ViewStateApp. On your initial *.aspx page, add
a single ASP.NET ListBox web control and a single Button type. Handle the Click event for the
Button to provide a way for the user to post back to the web server:

protected void btnDoPostBack_Click(object sender, EventArgs e)
{

// This is just here to allow a postback.
}

Now, using the Visual Studio 2005 Properties window, access the Items property and add four
ListItems to the ListBox. The result looks like this:

<asp:ListBox ID="myListBox" runat="server">
<asp:ListItem>Item One</asp:ListItem>
<asp:ListItem>Item Two</asp:ListItem>
<asp:ListItem>Item Three</asp:ListItem>
<asp:ListItem>Item Four</asp:ListItem>

</asp:ListBox>

Note that you are hard-coding the items in the ListBox directly within the *.aspx file. As you
already know, all <asp:> definitions found within an HTML form will automatically render back
their HTML representation before the final HTTP response (provided they have the runat="server"
attribute).

The <%@Page%> directive has an optional attribute called enableViewState that by default is set
to true. To disable this behavior, simply update the <%@Page%> directive as follows:

<%@ Page EnableViewState ="false"
Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

So, what exactly does it mean to disable view state? The answer is, it depends. Given the
previous definition of the term, you would think that if you disable view state for an *.aspx file,
the values within your ListBox would not be remembered between postbacks to the web server.
However, if you were to run this application as is, you might be surprised to find that the information
in the ListBox is retained regardless of how many times you post back to the page. In fact, if you
examine the source HTML returned to the browser, you may be further surprised to see that the
hidden __VIEWSTATE field is still present:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUKMTY1MjcxNTcxNmRkOXbNzW5+R2VDhNWtEtHMM+yhxvU=" />

The reason why the view state string is still visible is the fact that the *.aspx file has explicitly
defined the ListBox items within the scope of the HTML <form> tags. Thus, the ListBox items will be
autogenerated each time the web server responds to the client.

However, assume that your ListBox is dynamically populated within the code-behind file
rather than within the HTML <form> definition. First, remove the <asp:ListItem> declarations from
the current *.aspx file:

<asp:ListBox ID="myListBox" runat="server">
</asp:ListBox>

4193ch24.qxd 8/14/05 3:05 PM Page 892

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 893

Next, fill the list items within the Load event handler of within your code-behind file:

protected void Page_Load(object sender, EventArgs e)
{

if(!IsPostBack)
{

// Fill ListBox dynamically!
myListBox.Items.Add("Item One");
myListBox.Items.Add("Item Two");
myListBox.Items.Add("Item Three");
myListBox.Items.Add("Item Four");

}
}

If you post to this updated page, you will find that the first time the browser requests the page,
the values in the ListBox are present and accounted for. However, on postback, the ListBox is sud-
denly empty. The first rule of ASP.NET view state is that its effect is only realized when you have
widgets whose values are dynamically generated through code. If you hard-code values within the
*.aspx file’s <form> tags, the state of these items is always remembered across postbacks (even when
you set enableViewState to false for a given page).

Furthermore, view state is most useful when you have a dynamically populated web widget
that always needs to be repopulated for each and every postback (such as an ASP.NET GridView,
which is always filled using a database hit). If you did not disable view state for pages that contain
such widgets, the entire state of the grid is represented within the hidden __VIEWSTATE field. Given
that complex pages may contain numerous ASP.NET web controls, you can imagine how large this
string would become. As the payload of the HTTP request/response cycle could become quite
heavy, this may become a problem for the dial-up web surfers of the world. In cases such as these,
you may find faster throughput if you disable view state for the page.

If the idea of disabling view state for the entire *.aspx file seems a bit too aggressive, recall that
every descendent of the System.Web.UI.Control base class inherits the EnableViewState property,
which makes it very simple to disable view state on a control-by-control basis:

<asp:GridView id="myHugeDynamicallyFilledDataGrid" runat="server"
EnableViewState="false">
</asp:GridView>

■Note Be aware that ASP.NET pages reserve a small part of the __VIEWSTATE string for internal use. Given this,
you will find that the __VIEWSTATE field will still appear in the client-side browser even when the entire page (and
all the controls) have disabled view state.

Adding Custom View State Data
In addition to the EnableViewState property, the System.Web.UI.Control base class also pro-
vides an inherited property named ViewState. Under the hood, this property provides access to
a System.Web.UI.StateBag type, which represents all the data contained within the __VIEWSTATE
field. Using the indexer of the StateBag type, you can embed custom information within the hidden
__VIEWSTATE form field using a set of name/value pairs. Here’s a simple example:

protected void btnAddToVS_Click(object sender, EventArgs e)
{

ViewState["CustomViewStateItem"] = "Some user data";
lblVSValue.Text = (string)ViewState["CustomViewStateItem"];

}

4193ch24.qxd 8/14/05 3:05 PM Page 893

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS894

Because the System.Web.UI.StateBag type has been designed to operate on any type-derived
System.Object, when you wish to access the value of a given key, you will need to explicitly cast it
into the correct underlying data type (in this case, a System.String). Be aware, however, that values
placed within the __VIEWSTATE field cannot literally be any object. Specifically, the only valid types
are strings, integers, Booleans, ArrayLists, Hashtables, or an array of these types.

So, given that *.aspx pages may insert custom bits of information into the __VIEWSTATE string,
the next logical question is when you would want to do so. Most of the time, custom view state data
is best suited for user-specific preferences. For example, you may establish a point of view-state
data that specifies how a user wishes to view the UI of a GridView (such as a sort order). View state
data is not well suited for full-blown user data, such as items in a shopping cart, cached DataSets, or
whatnot. When you need to store this sort of complex information, you are required to work with
session data. Before we get to that point, you need to understand the role of the Global.asax file.

■Source Code The ViewStateApp files are included under the Chapter 24 subdirectory.

A Brief Word Regarding Control State
As of ASP.NET 2.0, a control’s state data can now be persisted via control state rather than view state.
This technique is most helpful if you have written a custom ASP.NET web control that must remem-
ber data between round-trips. While the ViewState property can be used for this purpose, if view
state is disabled at a page level, the custom control is effectively broken. For this very reason, web
controls now support a ControlState property.

Control state works identically to view state; however, it will not be disabled if view state is
disabled at the page level. As mentioned, this feature is most useful for those who are developing
custom web controls (a topic not covered in this text). Consult the .NET Framework 2.0 SDK docu-
mentation for further details.

The Role of the Global.asax File
At this point, an ASP.NET application may seem to be little more than a set of *.aspx files and their
respective web controls. While you could build a web application by simply linking a set of related
web pages, you will most likely need a way to interact with the web application as a whole. To this
end, your ASP.NET web applications may choose to include an optional Global.asax file via the
WebSite ➤ Add New Item menu option (see Figure 24-2).

4193ch24.qxd 8/14/05 3:05 PM Page 894

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 895

Figure 24-2. The Global.asax file

Simply put, Global.asax is just about as close to a traditional double-clickable *.exe that we
can get in the world of ASP.NET, meaning this type represents the runtime behavior of the website
itself. Once you insert a Global.asax file into a web project, you will notice it is little more than
a <script> block containing a set of event handlers:

<%@ Application Language="C#" %>
<script runat="server">

void Application_Start(Object sender, EventArgs e)
{

// Code that runs on application startup
}
void Application_End(Object sender, EventArgs e)
{

// Code that runs on application shutdown
}
void Application_Error(Object sender, EventArgs e)
{

// Code that runs when an unhandled error occurs
}
void Session_Start(Object sender, EventArgs e)
{

// Code that runs when a new session is started
}
void Session_End(Object sender, EventArgs e)
{

// Code that runs when a session ends
}

</script>

4193ch24.qxd 8/14/05 3:05 PM Page 895

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS896

Looks can be deceiving, however. At runtime, the code within this <script> block is assembled
into a class type deriving from System.Web.HttpApplication. If you have a background in ASP.NET
1.x, you may recall that the Global.asax code-behind file literally did define a class deriving from
HttpApplication.

As mentioned, the members defined inside Global.asax are in event handlers that allow you to
interact with application-level (and session-level) events. Table 24-1 documents the role of each
member.

Table 24-1. Core Types of the System.Web Namespace

Event Handler Meaning in Life

Application_Start() This event handler is called the very first time the web application is
launched. Thus, this event will fire exactly once over the lifetime of
a web application. This is an ideal place to define application-level data
used throughout your web application.

Application_End() This event handler is called when the application is shutting down. This
will occur when the last user times out or if you manually shut down
the application via IIS.

Session_Start() This event handler is fired when a new user logs on to your application.
Here you may establish any user-specific data points.

Session_End() This event handler is fired when a user’s session has terminated
(typically through a predefined timeout).

Application_Error() This is a global error handler that will be called when an unhandled
exception is thrown by the web application.

The Global Last Chance Exception Event Handler
First, let me point out the role of the Application_Error() event handler. Recall that a specific page
may handle the Error event to process any unhandled exception that occurred within the scope of
the page itself. In a similar light, the Application_Error() event handler is the final place to handle
an exception that was not handled by a specific page. As with the page-level Error event, you are
able to access the specific System.Exception using the inherited Server property:

void Application_Error(Object sender, EventArgs e)
{

Exception ex = Server.GetLastError();
Response.Write(ex.Message);
Server.ClearError();

}

Given that the Application_Error() event handler is the last chance exception handler for your
web application, odds are that you would rather not report the error to the user, but you would like
to log this information to the web server’s event log, for example:

<%@ Import Namespace = "System.Diagnostics"%>
...
void Application_Error(Object sender, EventArgs e)
{

// Log last error to event log.
Exception ex = Server.GetLastError();
EventLog ev = new EventLog("Application");
ev.WriteEntry(ex.Message, EventLogEntryType.Error);
Server.ClearError();
Response.Write("This app has bombed. Sorry!");

}

4193ch24.qxd 8/14/05 3:05 PM Page 896

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 897

The HttpApplication Base Class
As mentioned, the Global.asax script is dynamically generated into a class deriving from the
System.Web.HttpApplication base class, which supplies the same sort of functionality as the
System.Web.UI.Page type. Table 24-2 documents the key members of interest.

Table 24-2. Key Members Defined by the System.Web.HttpApplication Type

Property Meaning in Life

Application This property allows you to interact with application-level variables, using the
exposed HttpApplicationState type.

Request This property allows you to interact with the incoming HTTP request (via
HttpRequest).

Response This property allows you to interact with the incoming HTTP response (via
HttpResponse).

Server This property gets the intrinsic server object for the current request (via
HttpServerUtility).

Session This property allows you to interact with session-level variables, using the
exposed HttpSessionState type.

Understanding the Application/Session Distinction
Under ASP.NET, application state is maintained by an instance of the HttpApplicationState type.
This class enables you to share global information across all users (and all pages) who are logged on
to your ASP.NET application. Not only can application data be shared by all users on your site, but
also if one user changes the value of an application-level data point, the change is seen by all others
on their next postback.

On the other hand, session state is used to remember information for a specific user (again, such
as items in a shopping cart). Physically, a user’s session state is represented by the HttpSessionState
class type. When a new user logs on to an ASP.NET web application, the runtime will automatically
assign that user a new session ID, which by default will expire after 20 minutes of inactivity. Thus, if
20,000 users are logged on to your site, you have 20,000 distinct HttpSessionState objects, each of
which is assigned a unique session ID. The relationship between a web application and web ses-
sions is shown in Figure 24-3.

4193ch24.qxd 8/14/05 3:05 PM Page 897

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS898

As you may know, under classic ASP, application- and session-state data is represented using
distinct COM objects (e.g., Application and Session). Under ASP.NET, Page-derived types as well as
the HttpApplication type make use of identically named properties (i.e., Application and Session),
which expose the underlying HttpApplicationState and HttpSessionState types.

Maintaining Application-Level State Data
The HttpApplicationState type enables developers to share global information across multiple
sessions in an ASP.NET application. For example, you may wish to maintain an applicationwide
connection string that can be used by all pages, a common DataSet used by multiple pages, or any
other piece of data that needs to be accessed on an applicationwide scale. Table 24-3 describes
some core members of this type.

Table 24-3. Members of the HttpApplicationState Type

Members Meaning in Life

AllKeys This property returns an array of System.String types that represent all the
names in the HttpApplicationState type.

Count This property gets the number of item objects in the HttpApplicationState type.

Add() This method allows you to add a new name/value pair into the
HttpApplicationState type. Do note that this method is typically not used in
favor of the indexer of the HttpApplicationState class.

Clear() This method deletes all items in the HttpApplicationState type. This is
functionally equivalent to the RemoveAll() method.

Lock() These two methods are used when you wish to alter a set of application
Unlock() variables in a thread-safe manner.

RemoveAll() These methods remove a specific item (by string name) within the
Remove() HttpApplicationState type. RemoveAt() removes the item via a numerical
RemoveAt() indexer.

When you create data members that can be shared among all active sessions, you need to
establish a set of name/value pairs. In most cases, the most natural place to do so is within the
Application_Start() event handler of the HttpApplication-derived type, for example:

void Application_Start(Object sender, EventArgs e)
{

// Set up some application variables.
Application["SalesPersonOfTheMonth"] = "Chucky";
Application["CurrentCarOnSale"] = "Colt";
Application["MostPopularColorOnLot"] = "Black";

}

During the lifetime of your web application (which is to say, until the web application is manu-
ally shut down or until the final user times out), any user (on any page) may access these values as
necessary. Assume you have a page that will display the current discount car within a Label via
a button click:

protected void btnShowCarDiscount_Click(object sender, EventArgs e)
{

// Must cast the returned System.Object
// to a System.String!
lblCurrCarOnSale.Text =

(string)Application["CurrentCarOnSale"];
}

4193ch24.qxd 8/14/05 3:05 PM Page 898

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 899

Like the ViewState property, notice how you must cast the value returned from the
HttpApplicationState type into the correct underlying type. Now, given that the HttpApplicationState
type can hold any type, it should stand to reason that you can place custom types (or any .NET type)
within your site’s application state.

To illustrate this technique, create a new ASP.NET web application named AppState. Assume
you would rather maintain the three current application variables within a strongly typed object
named CarLotInfo:

public class CarLotInfo
{

public CarLotInfo(string s, string c, string m)
{

salesPersonOfTheMonth = s;
currentCarOnSale = c;
mostPopularColorOnLot = m;

}
// Public for easy access.
public string salesPersonOfTheMonth;
public string currentCarOnSale;
public string mostPopularColorOnLot;

}

With this helper class in place, you could modify the Application_Start() event handler as follows:

protected void Application_Start(Object sender, EventArgs e)
{

// Place a custom object in the application data sector.
Application["CarSiteInfo"] =

new CarLotInfo("Chucky", "Colt", "Black");
}

and then access the information using the public field data within a server-side event handler:

protected void btnShowAppVariables_Click(object sender, EventArgs e)
{

CarLotInfo appVars =
((CarLotInfo)Application["CarSiteInfo"]);

string appState =
string.Format("Car on sale: {0}",
appVars.currentCarOnSale);

appState +=
string.Format("Most popular color: {0}",
appVars.mostPopularColorOnLot);

appState +=
string.Format("Big shot SalesPerson: {0}",
appVars.salesPersonOfTheMonth);

lblAppVariables.Text = appState;
}

If you were now to run this page, you would find that a list of each application variable is dis-
played on the page’s Label type.

Modifying Application Data
You may programmatically update or delete any or all members using members of the
HttpApplicationState type during the execution of your web application. For example, to delete
a specific item, simply call the Remove() method. If you wish to destroy all application-level data,
call RemoveAll():

4193ch24.qxd 8/14/05 3:05 PM Page 899

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS900

private void CleanAppData()
{

// Remove a single item via string name.
Application.Remove("SomeItemIDontNeed");

// Destroy all application data!
Application.RemoveAll();

}

If you wish to simply change the value of an existing application-level variable, you only need
to make a new assignment to the data item in question. Assume your page now supports a new Button
type that allows your user to change the current hotshot salesperson. The Click event handler is as
you would expect:

protected void btnSetNewSP_Click(object sender, EventArgs e)
{

// Set the new Salesperson.
((CarLotInfo)Application["CarSiteInfo"]).salesPersonOfTheMonth

= txtNewSP.Text;
}

If you run the web application, you will find that the application-level variable has been
updated. Furthermore, given that application variables are accessible from all user sessions, if
you were to launch three or four instances of your web browser, you would find that if one instance
changes the current hotshot salesperson, each of the other browsers displays the new value on
postback.

Understand that if you have a situation where a set of application-level variables must be
updated as a unit, you risk the possibility of data corruption (given that it is technically possible
that an application-level data point may be changed while another user is attempting to access it!).
While you could take the long road and manually lock down the logic using threading primitives of
the System.Threading namespace, the HttpApplicationState type has two methods, Lock() and
Unlock(), that automatically ensure thread safety:

// Safely access related application data.
Application.Lock();

Application["SalesPersonOfTheMonth"] = "Maxine";
Application["CurrentBonusedEmployee"] = Application["SalesPersonOfTheMonth"];

Application.Unlock();

■Note Much like the C# lock statement, if an exception occurs after the call to Lock() but before the call to
Unlock(), the lock will automatically be released.

Handling Web Application Shutdown
The HttpApplicationState type is designed to maintain the values of the items it contains until
one of two situations occurs: the last user on your site times out (or manually logs out) or someone
manually shuts down the website via IIS. In each case, the Application_Exit() method of the
HttpApplication-derived type will automatically be called. Within this event handler, you are able to
perform whatever sort of cleanup code is necessary:

protected void Application_End(Object sender, EventArgs e)
{

// Write current application variables
// to a database or whatever else you need to do...

}

4193ch24.qxd 8/14/05 3:05 PM Page 900

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 901

■Source Code The AppState files are included under the Chapter 24 subdirectory.

Working with the Application Cache
ASP.NET provides a second and more flexible manner to handle applicationwide data. As you recall,
the values within the HttpApplicationState object remain in memory as long as your web applica-
tion is alive and kicking. Sometimes, however, you may wish to maintain a piece of application data
only for a specific period of time. For example, you may wish to obtain an ADO.NET DataSet that
is valid for only five minutes. After that time, you may want to obtain a fresh DataSet to account for
possible user modifications. While it is technically possible to build this infrastructure using
HttpApplicationState and some sort of handcrafted monitor, your task is greatly simplified using
the ASP.NET application cache.

As suggested by its name, the ASP.NET System.Web.Caching.Cache object (which is accessible
via the Context.Cache property) allows you to define an object that is accessible by all users (from all
pages) for a fixed amount of time. In its simplest form, interacting with the cache looks identical to
interacting with the HttpApplicationState type:

// Add an item to the cache.
// This item will *not* expire.
Context.Cache["SomeStringItem"] = "This is the string item";
string s = (string)Context.Cache["SomeStringItem"];

■Note If you wish to access the Cache from within Global.asax, you are required to use the Context property.
However, if you are within the scope of a System.Web.UI.Page-derived type, you can make use of the Cache
object directly.

Now, understand that if you have no interest in automatically updating (or removing) an
application-level data point (as seen here), the Cache object is of little benefit, as you can directly
use the HttpApplicationState type. However, when you do wish to have a data point destroyed after
a fixed point of time—and optionally be informed when this occurs—the Cache type is extremely
helpful.

The System.Web.Caching.Cache class defines only a small number of members beyond the type’s
indexer. For example, the Add() method can be used to insert a new item into the cache that is not
currently defined (if the specified item is already present, Add() does nothing). The Insert() method
will also place a member into the cache. If, however, the item is currently defined, Insert() will replace
the current item with the new type. Given that this is most often the behavior you will desire, I’ll focus
on the Insert() method exclusively.

Fun with Data Caching
Let’s see an example. To begin, create a new ASP.NET web application named CacheState and insert
a Global.asax file. Like an application-level variable maintained by the HttpApplicationState type, the
Cache may hold any System.Object-derived type and is often populated within the Application_Start()
event handler. For this example, the goal is to automatically update the contents of a DataSet every
15 seconds. The DataSet in question will contain the current set of records from the Inventory table
of the Cars database created during our discussion of ADO.NET. Given these stats, update your Global
class type as so (code analysis to follow):

4193ch24.qxd 8/14/05 3:05 PM Page 901

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS902

<%@ Application Language="C#" %>
<%@ Import Namespace = "System.Data.SqlClient" %>
<%@ Import Namespace = "System.Data" %>

<script runat="server">
// Define a static-level Cache member variable.
static Cache theCache;

void Application_Start(Object sender, EventArgs e)
{

// First assign the static 'theCache' variable.
theCache = Context.Cache;

// When the application starts up,
// read the current records in the
// Inventory table of the Cars DB.
SqlConnection cn = new SqlConnection
("data source=localhost;initial catalog=Cars; user id ='sa';pwd=''");
SqlDataAdapter dAdapt =

new SqlDataAdapter("Select * From Inventory", cn);
DataSet theCars = new DataSet();
dAdapt.Fill(theCars, "Inventory");

// Now store DataSet in the cache.
theCache.Insert("AppDataSet",

theCars, null,
DateTime.Now.AddSeconds(15),
Cache.NoSlidingExpiration,
CacheItemPriority.Default,
new CacheItemRemovedCallback(UpdateCarInventory));

}

// The target for the CacheItemRemovedCallback delegate.
static void UpdateCarInventory(string key, object item,

CacheItemRemovedReason reason)
{

// Populate the DataSet.
SqlConnection cn = new SqlConnection
("data source=localhost;initial catalog=Cars; user id ='sa';pwd=''");
SqlDataAdapter dAdapt =

new SqlDataAdapter("Select * From Inventory", cn);
DataSet theCars = new DataSet();
dAdapt.Fill(theCars, "Inventory");

// Now store in the cache.
theCache.Insert("AppDataSet",

theCars, null,
DateTime.Now.AddSeconds(15),
Cache.NoSlidingExpiration,
CacheItemPriority.Default,
new CacheItemRemovedCallback(UpdateCarInventory));

}
...
</script>

4193ch24.qxd 8/14/05 3:05 PM Page 902

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 903

First, notice that the Global type has defined a static-level Cache member variable. The reason
is that you have also defined a static-level function (UpdateCarInventory()) that needs to access the
Cache (recall that static members do not have access to inherited members, therefore you can’t use
the Context property!).

Inside the Application_Start() event handler, you fill a DataSet and place the object within the
application cache. As you would guess, the Context.Cache.Insert() method has been overloaded
a number of times. Here, you supply a value for each possible parameter:

// Now store in the cache.
theCache.Add("AppDataSet", // Name used to identify item in the cache.

theCars, // Object to put In the cache.
null, // Any dependencies for this object?
DateTime.Now. AddSeconds(15), // How long item will be in cache.
Cache.NoSlidingExpiration, // Fixed or sliding time?
CacheItemPriority.Default, // Priority level of cache item.
// Delegate for CacheItemRemove event
new CacheItemRemovedCallback(UpdateCarInventory));

The first two parameters simply make up the name/value pair of the item. The third parameter
allows you to define a CacheDependency type (which is null in this case, as you do not have any other
entities in the cache that are dependent on the DataSet).

■Note The ability to define a CacheDependency type is quite interesting. For example, you could establish
a dependency between a member and an external file. If the contents of the file were to change, the type can be
automatically updated. Check out the .NET Framework 2.0 documentation for further details.

The next three parameters are used to define the amount of time the item will be allowed to
remain in the application cache and its level of priority. Here, you specify the read-only Cache.
NoSlidingExpiration field, which informs the cache that the specified time limit (15 seconds) is
absolute. Finally, and most important for this example, you create a new CacheItemRemovedCallback
delegate type, and pass in the name of the method to call when the DataSet is purged. As you can see
from the signature of the UpdateCarInventory() method, the CacheItemRemovedCallback delegate
can only call methods that match the following signature:

static void UpdateCarInventory(string key, object item,
CacheItemRemovedReason reason)

{ ... }

So, at this point, when the application starts up, the DataSet is populated and cached. Every 15
seconds, the DataSet is purged, updated, and reinserted into the cache. To see the effects of doing
this, you need to create a Page that allows for some degree of user interaction.

Modifying the *.aspx File
Update the UI of your initial *.aspx file as shown in Figure 24-4.

4193ch24.qxd 8/14/05 3:05 PM Page 903

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS904

Figure 24-4. The cache application GUI

In the page’s Load event handler, configure your GridView to display the current contents of the
cached DataSet the first time the user posts to the page:

protected void Page_Load(object sender, EventArgs e)
{

if(!IsPostBack)
{

carsGridView.DataSource = (DataSet)Cache["AppDataSet"];
carsGridView.DataBind();

}
}

In the Click event handler of the Add this Car button, insert the new record into the Cars
database using an ADO.NET SqlCommand object. Once the record has been inserted, call a helper
function named RefreshGrid(), which will update the UI via an ADO.NET SqlDataReader (so don’t
forget to “use” the System.Data.SqlClient namespace). Here are the methods in question:

protected void btnAddCar_Click(object sender, EventArgs e)
{

// Update the Inventory table
// and call RefreshGrid().
SqlConnection cn = new SqlConnection();
cn.ConnectionString =

"User ID=sa;Pwd=;Initial Catalog=Cars;" +
"Data Source=(local)";

cn.Open();
string sql;
SqlCommand cmd;

4193ch24.qxd 8/14/05 3:05 PM Page 904

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 905

// Insert new Car.
sql = string.Format

("INSERT INTO Inventory(CarID, Make, Color, PetName) VALUES" +
"('{0}', '{1}', '{2}', '{3}')",
txtCarID.Text, txtCarMake.Text,
txtCarColor.Text, txtCarPetName.Text);

cmd = new SqlCommand(sql, cn);
cmd.ExecuteNonQuery();
cn.Close();
RefreshGrid();

}
private void RefreshGrid()
{

// Populate grid.
SqlConnection cn = new SqlConnection();
cn.ConnectionString =

"User ID=sa;Pwd=;Initial Catalog=Cars;Data Source=(local)";
cn.Open();
SqlCommand cmd = new SqlCommand("Select * from Inventory", cn);
carsGridView.DataSource = cmd.ExecuteReader();
carsGridView.DataBind();
cn.Close();

}

Now, to test the use of the cache, launch two instances of your web browser and navigate to
this *.aspx page. At this point, you should see that both DataGrids display identical information.
From one instance of the browser, add a new Car. Obviously, this results in an updated GridView
viewable from the browser that initiated the postback.

In the second browser instance, click the Refresh button. You should not see the new item,
given that the Page_Load event handler is reading directly from the cache. (If you did see the value,
the 15 seconds had already expired. Either type faster or increase the amount of time the DataSet
will remain in the cache.) Wait a few seconds and click the Refresh button from the second browser
instance one more time. Now you should see the new item, given that the DataSet in the cache has
expired and the CacheItemRemovedCallback delegate target method has automatically updated the
cached DataSet.

As you can see, the major benefit of the Cache type is that you can ensure that when a member
is removed, you have a chance to respond. In this example, you certainly could avoid using the
Cache and simply have the Page_Load() event handler always read directly from the Cars database.
Nevertheless, the point should be clear: the cache allows you to automatically refresh data using
.NET delegates.

■Note Unlike the HttpApplicationState type, the Cache class does not support Lock() and Unlock()
methods. If you need to update interrelated items, you will need to directly make use of the types within the
System.Threading namespace or the C# lock keyword.

■Source Code The CacheState files are included under the Chapter 24 subdirectory.

4193ch24.qxd 8/14/05 3:05 PM Page 905

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS906

Maintaining Session Data
So much for our examination of application-level state data. Next, let’s check out the role of per-
user data stores. As mentioned earlier, a session is little more than a given user’s interaction with
a web application, which is represented via the HttpSessionState type. To maintain stateful infor-
mation for a particular user, the HttpApplication-derived type and any System.Web.UI.Page-derived
types may access the Session property. The classic example of the need to maintain per-user data
would be an online shopping cart. Again, if ten people all log on to an online store, each individual
will maintain a unique set of items that she (may) intend to purchase.

When a new user logs on to your web application, the .NET runtime will automatically assign
the user a unique session ID, which is used to identify the user in question. Each session ID is
assigned a custom instance of the HttpSessionState type to hold on to user-specific data. Inserting
or retrieving session data is syntactically identical to manipulating application data, for example:

// Add/retrieve a session variable for current user.
Session["DesiredCarColor"] = "Green";
string color = (string) Session["DesiredCarColor"];

The HttpApplication-derived type allows you to intercept the beginning and end of a session
via the Session_Start() and Session_End() event handlers. Within Session_Start(), you can freely
create any per-user data items, while Session_End() allows you to perform any work you may need
to do when the user’s session has terminated:

<%@ Application Language="C#" %>
<script runat="server">
...

void Session_Start(Object sender, EventArgs e)
{
}
void Session_End(Object sender, EventArgs e)
{
}

</script>

Like the HttpApplicationState type, the HttpSessionState may hold any System.Object-derived
type, including your custom classes. For example, assume you have a new web application (SessionState)
that defines a helper class named UserShoppingCart:

public class UserShoppingCart
{
public string desiredCar;
public string desiredCarColor;
public float downPayment;
public bool isLeasing;
public DateTime dateOfPickUp;

public override string ToString()
{
return string.Format
("Car: {0}
Color: {1}
$ Down: {2}
Lease: {3}
Pick-up Date: {4}",
desiredCar, desiredCarColor, downPayment, isLeasing,
dateOfPickUp.ToShortDateString());

}
}

Within the Session_Start() event handler, you can now assign each user a new instance of the
UserShoppingCart class:

4193ch24.qxd 8/14/05 3:05 PM Page 906

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 907

Figure 24-5. The session application GUI

void Session_Start(Object sender, EventArgs e)
{

Session["UserShoppingCartInfo"]
= new UserShoppingCart();

}

As the user traverses your web pages, you are able to pluck out the UserShoppingCart instance
and fill the fields with user-specific data. For example, assume you have a simple *.aspx page that
defines a set of input widgets that correspond to each field of the UserShoppingCart type and a Button
used to set the values (see Figure 24-5).

The server-side Click event handler is straightforward (scrape out values from TextBoxes and
display the shopping cart data on a Label type):

protected void btnSubmit_Click(object sender, EventArgs e)
{

// Set current user prefs.
UserShoppingCart u =

(UserShoppingCart)Session["UserShoppingCartInfo"];
u.dateOfPickUp = myCalendar.SelectedDate;
u.desiredCar = txtCarMake.Text;
u.desiredCarColor = txtCarColor.Text;

4193ch24.qxd 8/14/05 3:05 PM Page 907

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS908

u.downPayment = float.Parse(txtDownPayment.Text);
u.isLeasing = chkIsLeasing.Checked;
lblUserInfo.Text = u.ToString();

Session["UserShoppingCartInfo"] = u;
}

Within Session_End(), you may wish to persist the fields of the UserShoppingCart to a database
or whatnot. In any case, if you were to launch two or three instances of your browser of choice, you
would find that each user is able to build a custom shopping cart that maps to his unique instance
of HttpSessionState.

Additional Members of HttpSessionState
The HttpSessionState class defines a number of other members of interest beyond the type indexer.
First, the SessionID property will return the current user’s unique ID:

lblUserID.Text = string.Format("Here is your ID: {0}",
Session.SessionID);

The Remove() and RemoveAll() methods may be used to clear items out of the user’s instance of
HttpSessionState:

Session.Remove["SomeItemWeDontNeedAnymore"];

The HttpSessionState type also defines a set of members that control the expiration policy of the
current session. Again, by default each user has 20 minutes of inactivity before the HttpSessionState
object is destroyed. Thus, if a user enters your web application (and therefore obtains a unique ses-
sion ID), but does not return to the site within 20 minutes, the runtime assumes the user is no longer
interested and destroys all session data for that user. You are free to change this default 20-minute
expiration value on a user-by-user basis using the Timeout property. The most common place to do
so is within the scope of your Global.Session_Start() method:

protected void Session_Start(Object sender, EventArgs e)
{

// Each user has 5 minutes of inactivity.
Session.Timeout = 5;
Session["UserShoppingCartInfo"]

= new UserShoppingCart();
}

■Note If you do not need to tweak each user’s Timeout value, you are able to alter the 20-minute default for all
users via the Timeout attribute of the <sessionState> element within the Web.config file (examined at the end
of this chapter).

The benefit of the Timeout property is that you have the ability to assign specific timeout values
discretely for each user. For example, imagine you have created a web application that allows users
to pay cash for a given membership level. You may say that Gold members should time out within
one hour, while Wood members should get only 30 seconds. This possibility begs the question, how
can you remember user-specific information (such as the current membership level) across web
visits? One possible answer is through the user of the HttpCookie type. (And speaking of cookies . . .)

■Source Code The SessionState files are included under the Chapter 24 subdirectory.

4193ch24.qxd 8/14/05 3:05 PM Page 908

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 909

Figure 24-6. Cookie data as persisted under Microsoft Internet Explorer

Understanding Cookies
The final state management technique examined here is the act of persisting data within cookie,
which is often realized as a text file (or set of files) on the user’s machine. When a user logs on to
a given site, the browser checks to see if the user’s machine has a cookie file for the URL in question
and, if so, appends this data to the HTTP request.

The receiving server-side web page could then read the cookie data to create a GUI that may be
based on the current user preferences. I am sure you’ve noticed that when you visit one of your
favorite websites, it somehow just knows the sort of content you wish to see. For example, when
I log on to http://www.ministryofsound.com, I am automatically shown content that reflects my
musical tastes. The reason (in part) has to do with a cookie stored on my computer that contains
information regarding the type of music I tend to play.

The exact location of your cookie files will depend on which browser you happen to be using.
For those using Microsoft Internet Explorer, cookies are stored by default under C:\Documents and
Settings\<loggedOnUser>\Cookies (see Figure 24-6).

The contents of a given cookie file will obviously vary among URLs, but keep in mind that they
are ultimately text files. Thus, cookies are a horrible choice when you wish to maintain sensitive
information about the current user (such as a credit card number, password, or whatnot). Even if
you take the time to encrypt the data, a crafty hacker could decrypt the value and use it for purely
evil pursuits. In any case, cookies do play a role in the development of web applications, so let’s
check out how ASP.NET handles this particular state management technique.

Creating Cookies
First of all, understand that ASP.NET cookies can be configured to be either persistent or temporary.
A persistent cookie is typically regarded as the classic definition of cookie data, in that the set of
name/value pairs is physically saved to the user’s hard drive. Temporary cookies (also termed
session cookies) contain the same data as a persistent cookie, but the name/value pairs are never
saved to the user’s machine; rather, they exist only within the HTTP header. Once the user logs off
your site, all data contained within the session cookie is destroyed.

■Note Most browsers support cookies of up to 4,096 bytes. Because of this size limit, cookies are best used to
store small amounts of data, such as a user ID that can be used to identify the user and pull details from a database.

4193ch24.qxd 8/14/05 3:05 PM Page 909

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS910

The System.Web.HttpCookie type is the class that represents the server side of the cookie data
(persistent or temporary). When you wish to create a new cookie, you access the Response.Cookies
property. Once the new HttpCookie is inserted into the internal collection, the name/value pairs
flow back to the browser within the HTTP header.

To check out cookie behavior firsthand, create a new ASP.NET web application (CookieStateApp)
and create the UI displayed in Figure 24-7.

Within the Button’s Click event handler, build a new HttpCookie and insert it into the
Cookie collection exposed from the HttpRequest.Cookies property. Be very aware that the data will
not persist itself to the user’s hard drive unless you explicitly set an expiration date using the
HttpCookie.Expires property. Thus, the following implementation will create a temporary cookie
that is destroyed when the user shuts down the browser:

protected void btnInsertCookie_Click(object sender, System.EventArgs e)
{

// Make a new (temp) cookie.
HttpCookie theCookie =

new HttpCookie(txtCookieName.Text,
txtCookieValue.Text);

Response.Cookies.Add(theCookie);
}

However, the following generates a persistent cookie that will expire on March 24, 2009:

private void btnInsertCookie_Click(object sender, EventArgs e)
{

// Make a new (persistent) cookie.
HttpCookie theCookie =

new HttpCookie(txtCookieName.Text,
txtCookieValue.Text);

theCookie.Expires = DateTime.Parse("03/24/2009");
Response.Cookies.Add(theCookie);

}

If you were to run this application and insert some cookie data, the browser automatically per-
sists this data to disk. When you open this text file, you will see something similar to Figure 24-8.

Figure 24-7. The UI of CookiesStateApp

4193ch24.qxd 8/14/05 3:05 PM Page 910

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 911

Reading Incoming Cookie Data
Recall that the browser is the entity in charge of accessing persisted cookies when navigating to
a previously visited page. To interact with the incoming cookie data under ASP.NET, access the
HttpRequest.Cookies property. To illustrate, if you were to update your current UI with the means
to obtain current cookie data via a Button widget, you could iterate over each name/value pair and
present the information within a Label widget:

protected void btnShowCookies_Click(object sender, EventArgs e)
{

string cookieData = "";
foreach(string s in Request.Cookies)
{

cookieData +=
string.Format("Name: {0}, Value: {1}",

s, Request.Cookies[s].Value);
}
lblCookieData.Text = cookieData;

}

If you now run the application and click your new button, you will find that the cookie data has
indeed been sent by your browser (see Figure 24-9).

Figure 24-8. The persistent cookie data

Figure 24-9.

4193ch24.qxd 8/14/05 3:05 PM Page 911

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS912

At this point in the chapter, you have examined numerous ways to remember information
about your users. As you have seen, view state and application, cache, session, and cookie data
are manipulated in more or less the same way (via a class indexer). As you have also seen, the
HttpApplication type is often used to intercept and respond to events that occur during your web
application’s lifetime. Next up: the role of the Web.config file.

■Source Code The CookieStateApp files are included under the Chapter 24 subdirectory.

Configuring Your ASP.NET Web Application Using
Web.config
During your examination of .NET assemblies, you learned that client applications can leverage an
XML-based configuration file to instruct the CLR how it should handle binding requests, assembly
probing, and other runtime details. The same holds true for ASP.NET web applications, with the
notable exception that web-centric configuration files (introduced in Chapter 23) are always named
Web.config (unlike *.exe configuration files, which are named based on the related client executable).

When you insert a Web.config file to your site using the WebSite ➤ Add New Item menu option,
the default structure looks something like the following (comments removed for clarity):

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

<appSettings/>
<connectionStrings/>
<system.web>

<compilation debug="false"/>
<authentication mode="Windows"/>

</system.web>
</configuration>

Like any *.config file, Web.config defines the root-level <configuration> element. Nested
within the root is the <system.web> element, which can contain numerous subelements used to
control how your web application should behave at runtime. Under ASP.NET, the Web.config file
can be modified using any text editor. Table 24-4 outlines some of the subelements that can be
found within a Web.config file.

■Note Look up the topic “ASP.NET Settings Schema” within the .NET Framework 2.0 SDK documentation for full
details on the format of Web.config.

Table 24-4. Select Elements of a Web.config File

Element Meaning in Life

<appSettings> This element is used to establish custom name/value pairs that can be
programmatically read in memory for use by your pages.

<authentication> This security-related element is used to define the authentication mode
for this web application.

<authorization> This is another security-centric element used to define which users can
access which resources on the web server.

4193ch24.qxd 8/14/05 3:05 PM Page 912

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 913

Element Meaning in Life

<compilation> This element is used to enable (or disable) debugging and define the
default .NET language used by this web application, and it may
optionally define the set of external .NET assemblies that should be
automatically referenced.

<connectionStrings> This element is used to hold external connection strings used within
this website.

<customErrors> This element is used to tell the runtime exactly how to display errors
that occur during the functioning of the web application.

<globalization> This element is used to configure the globalization settings for this web
application.

<sessionState> This element is used to control how and where session state data will
be stored by the .NET runtime.

<trace> This element is used to enable (or disable) tracing support for this web
application.

A Web.config file may contain additional subelements above and beyond the set presented in
Table 24-4. The vast majority of these items are security-related, while the remaining items are use-
ful only during advanced ASP.NET scenarios such as creating with custom HTTP headers or custom
HTTP modules (not covered here). If you wish to see the complete set of elements that can appear
in a Web.config file, look up the topic “ASP.NET Settings Schema” using the online help.

Enabling Tracing via <trace>
The first aspect of the Web.config file you’ll examine is the <trace> subelement. This XML entity
may take any number of attributes to further qualify its behavior, as shown in the following skeleton:

<trace enabled="true|false"
localOnly="true|false"
pageOutput="true|false"
requestLimit="integer"
traceMode="SortByTime|SortByCategory"/>

Table 24-5 hits the highlights of each attribute.

Table 24-5. Attributes of the <trace> Element

Attribute Meaning in Life

Enabled Specifies whether tracing is enabled for an application as a whole (the default
is false). As you saw in the previous chapter, you can selectively enable tracing
for a given *.aspx file using the @Page directive.

localOnly Indicates that the trace information is viewable only on the host web server
and not by remote clients (the default is true).

pageOutput Specifies how trace output should be viewed.

requestLimit Specifies the number of trace requests to store on the server. The default is
10. If the limit is reached, trace is automatically disabled.

traceMode Indicates that trace information is displayed in the order it is processed. The
default is SortByTime, but it can also be configured to sort by category.

Recall from the previous chapter that individual pages may enable tracing using the <%@Page%>
directive. However, if you wish to enable tracing for all pages in your web application, simply update
<trace> as follows:

4193ch24.qxd 8/14/05 3:05 PM Page 913

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS914

<trace
enabled="true"
requestLimit="10"
pageOutput="false"
traceMode="SortByTime"
localOnly="true"

/>

Customizing Error Output via <customErrors>
The <customErrors> element can be used to automatically redirect all errors to a custom set of *.htm
files. This can be helpful if you wish to build a more user-friendly error page than the default supplied
by the CLR. In its skeletal form, the <customErrors> element looks like the following:

<customErrors defaultRedirect="url" mode="On|Off|RemoteOnly">
<error statusCode="statuscode" redirect="url"/>

</customErrors>

To illustrate the usefulness of the <customErrors> element, assume your ASP.NET web applica-
tion has two *.htm files. The first file (genericError.htm) functions as a catchall error page. Perhaps
this page contains an image of your company logo, a link to e-mail the system administrator, and
some sort of apologetic verbiage. The second file (Error404.htm) is a custom error page that should
only occur when the runtime detects error number 404 (the dreaded “resource not found” error).
Now, if you want to ensure that all errors are handled by these custom pages, you can update your
Web.config file as follows:

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<appSettings/>
<connectionStrings/>
<system.web>
<compilation debug="false"/>
<authentication mode="Windows"/>
<customErrors defaultRedirect = "genericError.htm" mode="On">
<error statusCode="404" redirect="Error404.htm"/>

</customErrors>
</system.web>

</configuration>

Note how the root <customErrors> element is used to specify the name of the generic page for
all unhandled errors. One attribute that may appear in the opening tag is mode. The default setting is
RemoteOnly, which instructs the runtime not to display custom error pages if the HTTP request
came from the same machine as the web server (this is quite helpful for developers, who would like
to see the details). When you set the mode attribute to “on,” this will cause custom errors to be seen
from all machines (including your development box). Also note that the <customErrors> element
may support any number of nested <error> elements to specify which page will be used to handle
specific error codes.

To test these custom error redirects, build an *.aspx page that defines two Button widgets, and
handle their Click events as follows:

private void btnGeneralError_Click(object sender, EventArgs e)
{

// This will trigger a general error.
throw new Exception("General error...");

}
private void btn404Error_Click(object sender, EventArgs e)
{

4193ch24.qxd 8/14/05 3:05 PM Page 914

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 915

// This will trigger 404 (assuming there is no file named MyPage.aspx!)
Response.Redirect("MyPage.aspx");

}

Options for Storing State via <sessionState>
Far and away the most powerful aspect of a Web.config file is the <sessionState> element. By
default, ASP.NET will store session state using an in-process *.dll hosted by the ASP.NET worker
process (aspnet_wp.exe). Like any *.dll, the plus side is that access to the information is as fast as
possible. However, the downside is that if this AppDomain crashes (for whatever reason), all of the
user’s state data is destroyed. Furthermore, when you store state data as an in-process *.dll, you
cannot interact with a networked web farm. By default, the <sessionState> element of your
Web.config file looks like this:

<sessionState
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

This default mode of storage works just fine if your web application is hosted by a single web
server. However, under ASP.NET, you can instruct the runtime to host the session state *.dll in
a surrogate process named the ASP.NET session state server (aspnet_state.exe). When you do so,
you are able to offload the *.dll from aspnet_wp.exe into a unique *.exe. The first step in doing so
is to start the aspnet_state.exeWindows service. To do so at the command line, simply type

net start aspnet_state

Alternatively, you can start aspnet_state.exe using the Services applet accessed from the
Administrative Tools folder of the Control Panel (see Figure 24-10).

Figure 24-10. The Services applet

The key benefit of this approach is that you can configure aspnet_state.exe to start automati-
cally when the machine boots up using the Properties window. In any case, once the session state
server is running, alter the <sessionState> element of your Web.config file as follows:

4193ch24.qxd 8/14/05 3:05 PM Page 915

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS916

<sessionState
mode="StateServer"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

Here, the mode attribute has been set to StateServer. That’s it! At this point, the CLR will host
session-centric data within aspnet_state.exe. In this way, if the AppDomain hosting the web appli-
cation crashes, the session data is preserved. Also notice that the <sessionState> element can also
support a stateConnectionString attribute. The default TCP/IP address value (127.0.0.1) points to
the local machine. If you would rather have the .NET runtime use the aspnet_state.exe service
located on another networked machine (again, think web farms), you are free to update this value.

Finally, if you require the highest degree of isolation and durability for your web application,
you may choose to have the runtime store all your session state data within Microsoft SQL Server.
The appropriate update to the Web.config file is simple:

<sessionState
mode="SQLServer"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

However, before you attempt to run the associated web application, you need to ensure that
the target machine (specified by the sqlConnectionString attribute) has been properly configured.
When you install the .NET Framework 2.0 SDK (or Visual Studio 2005), you will be provided with
two files named InstallSqlState.sql and UninstallSqlState.sql, located by default under
<%windir%>\Microsoft.NET\Framework\<version>. On the target machine, you must run the
InstallSqlState.sql file using a tool such as the SQL Server Query Analyzer (which ships with
Microsoft SQL Server).

Once this SQL script has executed, you will find a new SQL Server database has been created
(ASPState) and that contains a number of stored procedures called by the ASP.NET runtime and
a set of tables used to store the session data itself (also, the tempdb database has been updated with
a set of tables for swapping purposes). As you would guess, configuring your web application to
store session data within SQL Server is the slowest of all possible options. The benefit is that user
data is as durable as possible (even if the web server is rebooted).

■Note If you make use of the ASP.NET session state server or SQL Server to store your session data, you
must make sure that any custom types placed in the HttpSessionState object have been marked with the
[Serializable] attribute.

The ASP.NET 2.0 Site Administration Utility
To finish up this section of the chapter, I’d like to mention the fact that ASP.NET 2.0 now provides
a web-based configuration utility that will manage many settings within your site’s Web.config file.
To activate this utility (see Figure 24-11), select the WebSite ➤ ASP.NET Configuration menu option
of Visual Studio 2005.

4193ch24.qxd 8/14/05 3:05 PM Page 916

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS 917

Most of this tool’s functionality is used to establish security-centric details of your site (authen-
tication mode, user roles, security providers, etc.). In addition, however, this tool allows you to
establish application settings, debugging details, and error pages.

Configuration Inheritance
Last but not least is configuration inheritance. As you learned in the previous chapter, a web appli-
cation can be defined as the set of all files contained within a root directory and any optional
subdirectories. All the example applications in this and the previous chapter have existed on a single
root directory managed by IIS (with the optional Bin folder). However, large-scale web applications
tend to define numerous subdirectories off the root, each of which contains some set of related
files. Like a traditional desktop application, this is typically done for the benefit of us mere humans,
as a hierarchal structure can make a massive set of files more understandable.

When you have an ASP.NET web application that consists of optional subdirectories off the
root, you may be surprised to discover that each subdirectory may have its own Web.config file! By
doing so, you allow each subdirectory to override the settings of a parent directory. If the subdirec-
tory in question does not supply a custom Web.config file, it will inherit the settings of the next
available Web.config file up the directory structure. Thus, as bizarre as it sounds, it is possible to
inject an OO look and feel to a raw directory structure. Figure 24-12 illustrates the concept.

Figure 24-11. The ASP.NET 2.0 site administration utility

4193ch24.qxd 8/14/05 3:05 PM Page 917

CHAPTER 24 ■ ASP.NET 2.0 WEB APPLICATIONS918

Of course, although ASP.NET does allow you to define numerous Web.config files for a single
web application, you are not required to do so. In a great many cases, your web applications func-
tion just fine using nothing else than the Web.config file located in the root directory of the IIS
virtual directory.

■Note Recall from Chapter 11 that the machine.config file defines numerous machine-wide settings, many of
which are ASP.NET-centric. This file is the ultimate parent in the configuration inheritance hierarchy.

That wraps up our examination of ASP.NET. As mentioned in Chapter 23, complete and total
coverage of ASP.NET 2.0 would require an entire book on its own. In any case, I do hope you feel
comfortable with the basics of the programming model.

■Note If you require an advanced treatment of ASP.NET 2.0, check out Expert ASP.NET 2.0 Advanced Application
Development by Dominic Selly et al. (Apress, 2005).

To wrap up our voyage, the final chapter examines the topic of building XML web services
under .NET 2.0.

Summary
In this chapter, you rounded out your knowledge of ASP.NET by examining how to leverage the
HttpApplication type. As you have seen, this type provides a number of default event handlers that
allow you to intercept various application- and session-level events.

The bulk of this chapter was spent examining a number of state management techniques.
Recall that view state is used to automatically repopulate the values of HTML widgets between post-
backs to a specific page. Next, you checked out the distinction of application- and session-level data,
cookie management, and the ASP.NET application cache. Finally, you examined a number of elements
that may be contained in the Web.config file.

Figure 24-12. Configuration inheritance

4193ch24.qxd 8/14/05 3:05 PM Page 918

Understanding XML Web Services

Chapter 18 introduced you to the .NET remoting layer. As you have seen, this technology allows
any number of .NET-savvy computers to exchange information across machine boundaries. While
this is all well and good, one possible limitation of the .NET remoting layer is the fact that each
machine involved in the exchange must have the .NET Framework installed, must understand the
CTS, and must speak the same wire format (such as TCP).

XML web services offer a more flexible alternative to distributed application development.
Simply put, an XML web service is a unit of code hosted by a web server that can be accessed using
industry standards such as HTTP and XML. As you would guess, using neutral technologies, XML
web services offer an unprecedented level of operating system, platform, and language interoper-
ability.

In this final chapter, you will learn how to build XML web services using the .NET platform.
Along the way, you will examine a number of related topics, such as discovery services (UDDI and
DISCO), the Web Service Description Language (WSDL), and the Simple Object Access Protocol
(SOAP). Once you understand how to build an XML web service, you will examine various approaches
to generate client-side proxies that are capable of invoking “web methods” in a synchronous and asyn-
chronous fashion.

The Role of XML Web Services
From the highest level, you can define an XML web service as a unit of code that can be invoked via
HTTP requests. Unlike a traditional web application, however, XML web services are not (necessarily)
used to emit HTML back to a browser for display purposes. Rather, an XML web service often exposes
the same sort of functionality found in a standard .NET code library (e.g., crunch some numbers,
fetch a DataSet, return stock quotes, etc.).

Benefits of XML Web Services
At first glance, an XML web services may seem to be little more than just another remoting technology.
While this is true, there is more to the story. Historically speaking, accessing remote objects required
platform-specific (and often language-specific) protocols (DCOM, Java RMI, etc.). The problem with
this approach is not the underlying technology, but the fact that each is locked into a specific (often
proprietary) wire format. Thus, if you are attempting to build a distributed system that involves
numerous operating systems, each machine must agree upon the packet format, transmission pro-
tocol, and so forth. To simplify matters, XML web services allow you to invoke methods and properties
of a remote object using standard HTTP requests. To be sure, of all the protocols in existence today,
HTTP is the one specific wire protocol that all platforms can agree on (after all, HTTP is the back-
bone of the World Wide Web).

919

C H A P T E R 2 5

■ ■ ■

4193ch25.qxd 8/14/05 3:07 PM Page 919

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES920

Figure 25-1. XML web services in action

Another fundamental problem with proprietary remoting architectures is that they require the
sender and receiver to understand the same underlying type system. However, as I am sure you can
agree, a Java arrayList has little to do with a .NET ArrayList, which has nothing to do with a C++
array. XML web services provide a way for unrelated platforms, operating systems, and programming
languages to exchange information in harmony. Rather than forcing the caller to understand a specific
type system, information is passed between systems via XML data representation (which is little
more than a well-formatted string). The short answer is, if your operating system can go online and
parse character data, it can interact with an XML web service.

■Note A production-level Microsoft .NET XML web service is hosted under IIS using a unique virtual directory. As
explained in Chapter 23, however, as of .NET 2.0 it is now possible to load web content from a local directory (for
development and testing purposes) using WebDev.WebServer.exe.

Defining an XML Web Service Client
One aspect of XML web services that might not be readily understood from the onset is the fact that
an XML web service consumer is not limited to a web page. Console-based and Windows Forms–based
clients can use a web service just as easily. In each case, the XML web service consumer indirectly
interacts with the distant XML web service through an intervening proxy type.

An XML web service proxy looks and feels like the actual remote object and exposes the same
set of members. Under the hood, however, the proxy’s implementation code forwards requests to
the XML web service using standard HTTP. The proxy also maps the incoming stream of XML back
into .NET-specific data types (or whatever type system is required by the consumer application).
Figure 25-1 illustrates the fundamental nature of XML web services.

4193ch25.qxd 8/14/05 3:07 PM Page 920

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 921

The Building Blocks of an XML Web Service
In addition to the managed code library that constitutes the exposed functionality, an XML web
service requires some supporting infrastructure. Specifically, an XML web service involves the fol-
lowing core technologies:

• A discovery service (so clients can resolve the location of the XML web service)

• A description service (so clients know what the XML web service can do)

• A transport protocol (to pass the information between the client and the XML web service)

We’ll examine details behind each piece of infrastructure throughout this chapter. However, to
get into the proper frame of mind, here is a brief overview of each supporting technology.

Previewing XML Web Service Discovery
Before a client can invoke the functionality of a web service, it must first know of its existence and
location. Now, if you are the individual (or company) who is building the client and XML web serv-
ice, the discovery phase is quite simple given that you already know the location of the web service
in question. However, what if you wish to share the functionality of your web service with the world
at large?

To do this, you have the option of registering your XML web service with a Universal Description,
Discovery, and Integration (UDDI) server. Clients may submit request to a UDDI catalog to find a list
of all web services that match some search criteria (e.g., “Find me all web services having to do real
time weather updates”). Once you have identified a specific web server from the list returned via the
UDDI query, you are then able to investigate its overall functionality. If you like, consider UDDI to
be the white pages for XML web services.

In addition to UDDI discovery, an XML web service built using .NET can be located using DISCO,
which is a somewhat forced acronym standing for Discovery of Web Services. Using static discovery (via
a *.disco file) or dynamic discovery (via a *.vsdisco file), you are able to advertise the set of XML web
services that are located at a specific URL. Potential web service clients can navigate to a web server’s
*.disco file to see links to all the published XML web services.

Understand, however, that dynamic discovery is disabled by default, given the potential secu-
rity risk of allowing IIS to expose the set of all XML web services to any interested individual. Given
this, I will not comment on DISCO services for the remainder of this text.

■Note If you wish to activate dynamic discovery support for a given web server, look up the Microsoft Knowl-
edge Base article Q307303 on http://support.microsoft.com.

Previewing XML Web Service Description
Once a client knows the location of a given XML web service, the client in question must fully under-
stand the exposed functionality. For example, the client must know that there is a method named
GetWeatherReport() that takes some set of parameters and sends back a given return value before the
client can invoke the method. As you may be thinking, this is a job for a platform-, language-, and
operating system–neutral metalanguage. Specifically speaking, the XML-based metadata used to
describe a XML web service is termed the Web Service Description Language (WSDL).

In a good number of cases, the WSDL description of an XML web service will be automatically
generated by Microsoft IIS when the incoming request has a ?wsdl suffix. As you will see, the primary
consumers of WSDL contracts are proxy generation tools. For example, the wsdl.exe command-line
utility (explained in detail later in this chapter) will generate a client-side C# proxy class from a WSDL
document.

4193ch25.qxd 8/14/05 3:07 PM Page 921

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES922

For more complex cases (typically for the purposes of interoperability), many developers take
a “WSDL first” approach and begin building their web services by defining the WSDL document
manually. As luck would have it, the wsdl.exe command-line tool is also able to generate interface
descriptions for an XML web service based on a WSDL definition.

Previewing the Transport Protocol
Once the client has created a proxy type to communicate with the XML web service, it is able to
invoke the exposed web methods. As mentioned, HTTP is the wire protocol that transmits this data.
Specifically, however, you can use HTTP GET, HTTP POST, or SOAP to move information between
consumers and web services.

By and large, SOAP will be your first choice, for as you will see, SOAP messages can contain
XML descriptions of complex types (including your custom types as well as types within the .NET
base class libraries). On the other hand, if you make use of the HTTP GET or HTTP POST protocols,
you are restricted to a more limited set of core data XML schema types.

The .NET XML Web Service Namespaces
Now that you have a basic understanding of XML web services, we can get down to the business of
building such a creature using the .NET platform. As you would imagine, the base class libraries
define a number of namespaces that allow you to interact with each web service technology (see
Table 25-1).

Table 25-1. XML Web Service–centric Namespaces

Namespace Meaning in Life

System.Web.Services This namespace contains the core types needed to build
an XML web service (including the all-important
[WebMethod] attribute).

System.Web.Services.Configuration These types allow you configure the runtime behavior of
an ASP.NET XML web service.

System.Web.Services.Description These types allow you to programmatically interact with
the WSDL document that describes a given web service.

System.Web.Services.Discovery These types allow a web consumer to programmatically
discover the web services installed on a given machine.

System.Web.Services.Protocols This namespace defines a number of types that
represent the atoms of the various XML web service wire
protocols (HTTP GET, HTTP POST, and SOAP).

■Note All XML web service–centric namespaces are contained within the System.Web.Services.dll assembly.

Examining the System.Web.Services Namespace
Despite the rich functionality provided by the .NET XML web service namespaces, the vast majority of
your applications will only require you to directly interact with the types defined in System.Web.Services.
As you can see from Table 25-2, the number of types is quite small (which is a good thing).

4193ch25.qxd 8/14/05 3:07 PM Page 922

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 923

Table 25-2. Members of the System.Web.Services Namespace

Type Meaning in Life

WebMethodAttribute Adding the [WebMethod] attribute to a method or property in
a web service class type marks the member as invokable via
HTTP and serializable as XML.

WebService This is an optional base class for XML web services built using
.NET. If you choose to derive from this base type, your XML web
service will have the ability to retain stateful information (e.g.,
session and application variables).

WebServiceAttribute The [WebService] attribute may be used to add information to
a web service, such as a string describing its functionality and
underlying XML namespace.

WebServiceBindingAttribute This attribute (new .NET 2.0) declares the binding protocol
a given web service method is implementing (HTTP GET, HTTP
POST, or SOAP) and advertises the level of web services
interoperability (WSI) conformity.

WsiProfiles This enumeration (new to .NET 2.0) is used to describe the web
services interoperability (WSI) specification to which a web
service claims to conform.

The remaining namespaces shown in Table 25-1 are typically only of direct interest to you if
you are interested in manually interacting with a WSDL document, discovery services, or the under-
lying wire protocols. Consult the .NET Framework 2.0 SDK documentation for further details.

Building an XML Web Service by Hand
Like any .NET application, XML web services can be developed manually, without the use of
an IDE such as Visual Studio 2005. In an effort to demystify XML web services, let’s build
a simple XML web service by hand. Using your text editor of choice, create a new file named
HelloWorldWebService.asmx (by convention, *.asmx is the extension used to mark .NET web service
files). Save it to a convenient location on your hard drive (e.g., C:\HelloWebService) and enter the
following type definition:

<%@ WebService Language="C#" Class="HelloWebService.HelloService" %>
using System;
using System.Web.Services;

namespace HelloWebService
{

public class HelloService
{

[WebMethod]
public string HelloWorld()
{

return "Hello!";
}

}
}

For the most part, this *.asmx file looks like any other C# namespace definition. The first
noticeable difference is the use of the <%@WebService%> directive, which at minimum must specify
the name of the managed language used to build the contained class definition and the fully qualified

4193ch25.qxd 8/14/05 3:07 PM Page 923

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES924

Figure 25-2. Testing the XML web service

name of the class. In addition to the Language and Class attributes, the <%@WebService%> directive
may also take a Debug attribute (to inform the ASP.NET compiler to emit debugging symbols) and an
optional CodeBehind value that identifies the associated code file within the optional App_Code
directory (see Chapter 23). In this example, you have avoided the use of a code-behind file and
embedded all required logic directly within a single *.asmx file.

Beyond the use of the <%@WebService%> directive, the only other distinguishing characteristic of
this *.asmx file is the use of the [WebMethod] attribute, which informs the ASP.NET runtime that this
method is reachable via incoming HTTP requests and should serialize any return value as XML.

■Note Only members that are adorned with [WebMethod] are reachable by HTTP. Members not marked with the
[WebMethod] attribute cannot be called by the client-side proxy.

Testing Your XML Web Service Using WebDev.WebServer.exe
Recall (again, from Chapter 23) that WebDev.WebServer.exe is a development ASP.NET web server
that ships with the .NET platform 2.0 SDK. While WebDev.WebServer.exe would never be used to host
a production-level XML web service, this tool does allow you to run web content directly from a local
directory. To test your service using this tool, open a Visual Studio 2005 command prompt and spec-
ify an unused port number and physical path to the directory containing your *.asmx file:

WebDev.WebServer /port:4000 /path:"C:\HelloWebService"

Once the web server has started, open your browser of choice and specify the name of your
*.asmx file exposed from the specified port:

http://localhost:4000/HelloWorldWebService.asmx

At this point, you are presented with a list of all web methods exposed from this URL (see
Figure 25-2).

If you click the HelloWorld link, you will be passed to another page that allows you to invoke
the [WebMethod] you just selected. Once you invoke HelloWorld(), you will be returned not a literal
.NET-centric System.String, but rather the XML data representation of the textual data returned
from the HelloWorld() web method:

4193ch25.qxd 8/14/05 3:07 PM Page 924

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 925

<?xml version="1.0" encoding="utf-8" ?>
<string xmlns="http://tempuri.org/">Hello!</string>

Testing Your Web Service Using IIS
Now that you have tested your XML web service using WebDev.WebServer.exe, you’ll transfer
your *.asmx file into an IIS virtual directory. Using the information presented in Chapter 23,
create a new virtual directory named HelloWS that maps to the physical folder containing the
HelloWorldWebService.asmx file. Once you do, you are able to test your web service by entering the
following URL in your web browser:

http://localhost/HelloWS/HelloWorldWebService.asmx

Viewing the WSDL Contract
As mentioned, WSDL is a metalanguage that describes numerous characteristics of the web meth-
ods at a particular URL. Notice that when you test an XML web service, the autogenerated test page
supplies a link named “Service Description.” Clicking this link will append the token ?wsdl to the cur-
rent request. When the ASP.NET runtime receives a request for an *.asmx file tagged with this suffix, it
will automatically return the underlying WSDL that describes each web method.

At this point, don’t be alarmed with the verbose nature of WSDL or concern yourself with the
format of a WSDL document. For the time being, just understand that WSDL describes how web
methods can be invoked using each of the current XML web service wire protocols.

The Autogenerated Test Page
As you have just witnessed, XML web services can be tested within a web browser using an auto-
generated HTML page. When an HTTP request comes in that maps to a given *.asmx file, the ASP.NET
runtime makes use of a file named DefaultWsdlHelpGenerator.aspx to create an HTML display that
allows you to invoke the web methods at a given URL. You can find this *.aspx file under the follow-
ing directory (substitute <version> with your current version of the .NET Framework, of course):

C:\Windows\Microsoft.NET\Framework\<version>\CONFIG

Providing a Custom Test Page
If you wish to instruct the ASP.NET runtime to make use of a custom *.aspx file for the purposes of
testing your XML web services, you are free to customize this page with additional information (add
your company logo, additional descriptions of the service, links to a help document, etc.). To simplify
matters, most developers copy the existing DefaultWsdlHelpGenerator.aspx to their current project
as a starting point and modify the original HTML and C# code.

As a simple test, copy the DefaultWsdlHelpGenerator.aspx file into the directory containing
HelloWorldWebService.asmx (e.g., C:\HelloWebService). Rename this copy to MyCustomWsdlHelpGenerator.
aspx and update the some aspect of the HTML, such as the <title> tag. For example, change the
following existing markup:

<title><%#ServiceName + " " + GetLocalizedText("WebService")%></title>

to the following:

<title>My Rocking <%#ServiceName + " " + GetLocalizedText("WebService")%></title>

4193ch25.qxd 8/14/05 3:07 PM Page 925

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES926

Once you have modified the HTML content, create a Web.config file and save it to your current
directory. The following XML elements instruct the runtime to make use of your custom *.aspx file,
rather than DefaultWsdlhelpGenerator.aspx:

<!-- Here you are specifying a custom *.aspx file -->
<configuration>
<system.web>
<webServices>
<wsdlHelpGenerator href="MyCustomWsdlHelpGenerator.aspx" />

</webServices>
</system.web>

</configuration>

When you request your web service, you should see that the browser’s title has been updated
with your custom content. On a related note, if you wish to disable help page generation for a given
web service, you can do so using the following <remove> element within the Web.config file:

<!-- Disable help page generation -->
<configuration>
<system.web>
<webServices>
<protocols>
<!-- This element also disables WSDL generation -->
<remove name="Documentation"/>

</protocols>
</webServices>

</system.web>
</configuration>

■Source Code The HelloWorldWebService files are included under the Chapter 25 subdirectory.

Building an XML Web Service Using Visual
Studio 2005
Now that you have created an XML web service by hand, let’s see how Visual Studio 2005 helps get
you up and running. Using the File ➤ New ➤ Web Site menu option, create a new C# XML web ser-
vice project named MagicEightBallWebService and save it to your local file system (see Figure 25-3).

4193ch25.qxd 8/14/05 3:07 PM Page 926

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 927

Figure 25-3. Visual Studio 2005 XML Web Service project

■Note Like an ASP.NET website, XML web service projects created with Visual Studio 2005 place the *.sln file
under My Documents\Visual Studio 2005\Projects.

Once you click the OK button, Visual Studio 2005 responds by generating a Service.asmx file
that defines the following <%@WebService%> directive:

<%@ WebService Language="C#"
CodeBehind="~/App_Code/Service.cs" Class="Service" %>

Note that the CodeBehind attribute is used to specify the name of the C# code file (placed by
default in your project’s App_Code directory) that defines the related class type. By default, Service.cs
is defined as so:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

public Service () {
}

[WebMethod]
public string HelloWorld() {

return "Hello World";
}

}

4193ch25.qxd 8/14/05 3:07 PM Page 927

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES928

Figure 25-4. Invoking the TellFortune() web method

Unlike the previous HelloWorldWebService example, notice that the Service class now derives
from the System.Web.Services.WebService base class. You’ll examine the members defined by this
type in just a moment, but know for now that deriving from this base class is entirely optional.

Also notice that the Service class is adorned with two (also optional) attributes named
[WebService] and [WebServiceBinding]. Again, you’ll examine the role of these attributes a bit
later in this chapter.

Implementing the TellFortune() Web Method
Your MagicEightBall XML web service will mimic the classic fortune-telling toy. To do so, add the
following new method to your Service class (feel free to delete the existing HelloWorld() web method):

[WebMethod]
public string TellFortune(string userQuestion)
{

string[] answers = { "Future Uncertain", "Yes", "No",
"Hazy", "Ask again later", "Definitely" };

// Return a random response to the question.
Random r = new Random();
return string.Format("{0}? {1}",

userQuestion, answers[r.Next(answers.Length)]);
}

To test your new XML web service, simply run (or debug) the project using Visual Studio 2005.
Given that the TellFortune() method requires a single input parameter, the autogenerated HTML
test page provides the required input field (see Figure 25-4).

4193ch25.qxd 8/14/05 3:07 PM Page 928

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 929

Here is a possible response to the question “Will I get the sink fixed this weekend”:

<?xml version="1.0" encoding="utf-8" ?>
<string xmlns="http://tempuri.org/">
Will I get the sink fixed this weekend? Hazy
</string>

So, at this point you have created two simple XML web services: one by hand and the other
using Visual Studio 2005. Now that you know the basics, we can dig into the specifics, beginning
with the role of the WebService base class.

■Source Code The MagicEightBallWebService files are included under the Chapter 25 subdirectory.

The Role of the WebService Base Class
As you saw during the development of the HelloWorldWebService service, a web service can derive
directly from System.Object. However, by default, web services developed using Visual Studio 2005
automatically derive from the System.Web.Service.WebService base class. Table 25-3 documents the
core members of this class type.

Table 25-3. Key Members of the System.Web.Services.WebService Type

Property Meaning in Life

Application Provides access to the HttpApplicationState object for the current HTTP request

Context Provides access to the HttpContext type that encapsulates all HTTP-specific
context used by the HTTP server to process web requests

Server Provides access to the HttpServerUtility object for the current request

Session Provides access to the HttpSessionState type for the current request

SoapVersion Retrieves the version of the SOAP protocol used to make the SOAP request to
the XML web service; new to .NET 2.0

As you may be able to gather, if you wish to build a stateful web service using application and
session variables (see Chapter 24), you are required to derive from WebService, given that this type
defines the Application and Session properties. On the other hand, if you are building an XML web
service that does not require the ability to “remember” information about the external users, extending
WebService is not required. We will revisit the process of building stateful XML web services during
our examination of the EnableSession property of the [WebMethod] attribute.

Understanding the [WebService] Attribute
An XML web service class may optionally be qualified using the [WebService] attribute (not to be
confused with the WebService base class). This attribute supports a few named properties, the first
of which is Namespace. This property can be used to establish the name of the XML namespace to
use within the WSDL document.

As you may already know, XML namespaces are used to scope custom XML elements within
a specific group (just like .NET namespaces). By default, the ASP.NET runtime will assign a dummy
XML namespace of http://tempuri.org for a given *.asmx file. As well, Visual Studio 2005 assigns
the Namespace value to http://tempuri.org by default.

4193ch25.qxd 8/14/05 3:07 PM Page 929

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES930

Assume you have created a new XML web service project with Visual Studio 2005 named
CalculatorService that defines the following two web methods, named Add() and Subtract():

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

[WebMethod]
public int Subtract(int x, int y) { return x - y; }

[WebMethod]
public int Add(int x, int y) { return x + y; }

}

Before you publish your XML web service to the world at large, you should supply a proper
namespace that reflects the point of origin, which is typically the URL of the site hosting the XML
web service. In the following code update, note that the [WebService] attribute also allows you to
set a named property termed Description that describes the overall nature of your web service:

[WebService(Description = "The Amazing Calculator Web Service",
Namespace ="http://www.IntertechTraining.com/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{ ... }

The Effect of the Namespace and Description Properties
If you run the project, you will find that the warning to replace http://tempuri.org is no longer dis-
played in the autogenerated test page. Furthermore, if you click the Service Description link to view
the underlying WSDL, you will find that the TargetNamespace attribute has now been updated with
your custom XML namespace. Finally, the WSDL file now contains a <documentation> element that
is based on your Description value:

<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
The Amazing Calculator Web Service

</wsdl:documentation>

As you might guess, it would be completely possible to build a custom utility that reads the
value contained within the <documentation> element (e.g., an XML web service–centric object
browser). In most cases, however, this value will be used by DefaultWsdlHelpGenerator.aspx.

The Name Property
The final property of the WebServiceAttribute type is Name, which is used to establish the name of
the XML web service exposed to the outside world. By default, the external name of a web service is
identical to the name of the class type itself (Service by default). However, if you wish to decouple
the .NET class name from the underlying WSDL name, you can update the [WebService] attribute
as follows:

[WebService(Description = "The Amazing Calculator Web Service",
Namespace ="http://www.IntertechTraining.com/",
Name = "CalculatorWebService")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{ ... }

Figure 25-5 shows the test page generated by DefaultWsdlHelpGenerator.aspx based on the
[WebService] attribute.

4193ch25.qxd 8/14/05 3:07 PM Page 930

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 931

Figure 25-5. The CalculatorWebService

Understanding the [WebServiceBinding] Attribute
As of .NET 2.0, an XML web service can be attributed with [WebServiceBinding]. Among other things,
this new attribute is used to specify if the XML web service conforms to “Web services interoperabil-
ity (WSI) basic profile 1.1”. So, what exactly does that mean? Well, if you have been actively working
with XML web services, you may know firsthand that one of the frustrating aspects of this technol-
ogy is that early on, WSDL was an evolving specification. Given this fact, it was not uncommon for
the same WSDL element (or attribute) to be interpreted in different manners across development
tools (IIS, WSAD), web servers (IIS, Apache), and architectures (.NET, J2EE).

Clearly this is problematic for an XML web service, as one of the motivating factors is to simplify
the way in which information can be processed in a multiplatform, multi-architecture, and multi-
language universe. To rectify the problem, the WSI initiative offers a nonproprietary web services
specification to promote the interoperability of web services across platforms. Under .NET 2.0, the
ConformsTo property of [WebServiceBinding] can be set to any value of the WsiProfiles enumeration:

public enum WsiProfiles
{

// The web service makes no conformance claims.
None,
// The web service claims to conform to the
// WSI Basic Profile version 1.1.
BasicProfile1_1

}

By default, XML web services generated using Visual Studio 2005 are assumed to conform to
the WSI basic profile 1.1. Of course, simply setting the ConformsTo named property to WsiProfiles.
BasicProfile1_1 does not guarantee each web method is truly compliant. For example, one rule of
BP 1.1 states that every method in a WSDL document must have a unique name (overloading of exposed
web methods is not permitted under BP 1.1). The good news is that the ASP.NET runtime is able to
determine various BP 1.1 validations and will report the issue at runtime.

4193ch25.qxd 8/14/05 3:07 PM Page 931

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES932

Ignoring BP 1.1 Conformance Verification
As of .NET 2.0, XML web services are automatically checked against the WSI basic profile (BP) 1.1. In
most cases, this is a good thing, given that you are able to build software that has the greatest reach
as possible. In some cases, however, you may wish to ignore BP 1.1 conformance (e.g., if you are
building in-house XML web services where interoperability is not much of an issue). To instruct
the runtime to ignore BP 1.1 violations, set the ConformsTo property to WsiProfiles.None and the
EmitConformanceClaims property to false:

[WebService(Description = "The Amazing Calculator Web Service",
Namespace ="http://www.IntertechTraining.com/",
Name = "CalculatorWebService")]

[WebServiceBinding(ConformsTo = WsiProfiles.None ,
EmitConformanceClaims = false)]

public class Service : System.Web.Services.WebService
{...}

As you might suspect, the value assigned to EmitConformanceClaims controls whether the
conformance claims expressed by the ConformsTo property are provided when a WSDL description
of the web service is published. With this, BP 1.1 violations will be permitted, although the auto-
generated test page will still display warnings.

Disabling BP 1.1 Conformance Verification
If you wish to completely disable BP 1.1 verification for your XML web service, you may do so by
defining the following <conformanceWarnings> element within a proper Web.config file:

<configuration>
<system.web>
<webServices>
<conformanceWarnings>
<remove name='BasicProfile1_1'/>

</conformanceWarnings>
</webServices>

</system.web>
</configuration>

■Note The [WebServiceBinding] attribute can also be used to define the intended binding for specific meth-
ods via the Name property. Consult the .NET Framework 2.0 SDK documentation for further details.

Understanding the [WebMethod] Attribute
The [WebMethod] attribute must be applied to each method you wish to expose from an XML web
service. Like most attributes, the WebMethodAttribute type may take a number of optional named
properties. Let’s walk through each possibility in turn.

Documenting a Web Method via the Description Property
Like the [WebService] attribute, the Description property of the [WebMethod] attribute allows you to
describe the functionality of a particular web method:

4193ch25.qxd 8/14/05 3:07 PM Page 932

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 933

public class Service : System.Web.Services.WebService
{

[WebMethod(Description = "Subtracts two integers.")]
public int Subtract(int x, int y) { return x - y; }

[WebMethod(Description = "Adds two integers.")]
public int Add(int x, int y) { return x + y; }

}

Under the hood, when you specify the Description property within a [WebMethod] attribute, the
WSDL contract is updated with a new <documentation> element scoped at the method name level:

<wsdl:operation name="Add">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
Adds two integers.

</wsdl:documentation>
<wsdl:input message="tns:AddSoapIn" />
<wsdl:output message="tns:AddSoapOut" />

</wsdl:operation>

Avoiding WSDL Name Clashes via the MessageName Property
One of the rules of WSI BP 1.1 is that each method within a WSDL document must be unique.
Therefore, if you wish your XML web services to conform to BP 1.1, you should not overload meth-
ods in your implementation logic. For the sake of argument, however, assume that you have
overloaded the Add() method so that the caller can pass two integer or float data types. You would
find the following runtime error:

Both Single Add(Single, Single) and Int32 Add(Int32, Int32)
use the message name 'Add'. Use the MessageName property
attribute to specify unique of the WebMethod
custom message names for the methods.

Again, the best approach is to simply not overload the Add() method in the first place. If you
must do so, the MessageName property of the [WebMethod] attribute can be used to resolve name
clashes in your WSDL documents:

public class Service : System.Web.Services.WebService
{
...

[WebMethod(Description = "Adds two float.",
MessageName = "AddFloats")]

public float Add(float x, float y) { return x + y; }

[WebMethod(Description = "Adds two integers.",
MessageName = "AddInts")]

public int Add(int x, int y) { return x + y; }
}

Once you have done so, the generated WSDL document will internally refer to each overloaded
version of Add() uniquely (AddFloats and AddInts). As far as the client-side proxy is concerned,
however, there is only a single overloaded Add() method.

Building Stateful Web Services via the EnableSession Property
As you may recall from Chapter 24, the Application and Session properties allow an ASP.NET web
application to maintain stateful data. XML web services gain the exact same functionality via the

4193ch25.qxd 8/14/05 3:07 PM Page 933

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES934

System.Web.Services.WebService base class. For example, assume your CalculatorService maintains
an application-level variable (and is thus available to each session) that holds the value of PI, as
shown here:

public class CalcWebService: System.Web.Services.WebService
{

// This web method provides access to an app-level variable
// named SimplePI.
[WebMethod(Description = "Get the simple value of PI.")]
public float GetSimplePI()
{ return (float)Application["SimplePI"]; }
...

}

The initial value of the SimplePI application variable could be established with the
Application_Start() event handler defined in the Global.asax file. Insert a new global application
class to your project (by right-clicking your project icon within Solution Explorer and selecting Add
New Item) and implement Application_Start() as so:

<%@ Application Language="C#" %>
<script runat="server">

void Application_Start(Object sender, EventArgs e)
{

Application["SimplePI"] = 3.14F;
}

...
</script>

In addition to maintaining applicationwide variables, you may also make use of Session to
maintain session-centric information. For the sake of illustration, implement the Session_Start()
method in your Global.asax to assign a random number to each user who is logged on:

<%@ Application Language="C#" %>
<script runat="server">
...

void Session_Start(Object sender, EventArgs e)
{

// To prove session state data is available from a web service,
// simply assign a random number to each user.
Random r = new Random();
Session["SessionRandomNumber"] = r.Next(1000);

}
...
</script>

For testing purposes, create a new web method in your Service class that returns the user’s
randomly assigned value:

public class Service : System.Web.Services.WebService
{
...

[WebMethod(EnableSession = true,
Description = "Get your random number!")]
public int GetMyRandomNumber()
{ return (int)Session["SessionRandomNumber"]; }

}

Note that the [WebMethod] attribute has explicitly set the EnableSession property to true. This
step is not optional, given that by default each web method has session state disabled. If you were

4193ch25.qxd 8/14/05 3:07 PM Page 934

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 935

now to launch two or three browsers (to generate a set of session IDs), you would find that each
logged-on user is returned a unique numerical token. For example, the first caller may receive the
following XML:

<?xml version="1.0" encoding="utf-8" ?>
<int xmlns="http://www.IntertechTraining.com/WebServers">931</int>

while the second caller may find her value is 472:

<?xml version="1.0" encoding="utf-8" ?>
<int xmlns="http://www.IntertechTraining.com/WebServers">472</int>

Configuring Session State via Web.config
Finally, recall that a Web.config file may be updated to specify where state should be stored for the
XML web service using the <sessionState> element (described in the previous chapter).

<sessionState
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

■Source Code The CalculatorService files are included under the Chapter 25 subdirectory.

Exploring the Web Service Description Language
(WSDL)
Over the last several examples, you have been exposed to partial WSDL snippets. Recall that WSDL
is an XML-based grammar that describes how external clients can interact with the web methods at
a given URL, using each of the supported wire protocols. In many ways, a WSDL document can be
viewed as a contract between the web service client and the web service itself. To this end, it is yet
another metalanguage. Specifically, WSDL is used to describe the following characteristics for each
exposed web method:

• The name of the XML web methods

• The number of, type of, and ordering of parameters (if any)

• The type of return value (if any)

• The HTTP GET, HTTP POST, and SOAP calling conventions

In most cases, WSDL documents are generated automatically by the hosting web server. Recall
that when you append the ?wsdl suffix to a URL that points to an *.asmx file, the hosting web server
will emit the WSDL document for the specified XML web service:

http://localhost/SomeWS/theWS.asmx?wsdl

Given that IIS will automatically generate WSDL for a given XML web service, you may wonder
if you are required to deeply understand the syntax of the generated WSDL data. The answer typically
depends on how your service is to be consumed by external applications. For in-house XML web
services, the WSDL generated by your XML web server will be sufficient most of the time.

4193ch25.qxd 8/14/05 3:07 PM Page 935

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES936

However, it is also possible to begin an XML web service project by authoring the WSDL document
by hand (as mentioned earlier, this is termed the WSDL first approach). The biggest selling point for
WSDL first has to do with interoperability concerns. Recall that prior to the WSI specification, it was
not uncommon for various web service tools to generate incompatible WSDL descriptions. If you take
a WSDL first approach, you can craft the document as required.

As you might imagine, taking a WSDL first approach would require you to have a very intimate
view of the WSDL grammar, which is beyond the scope of this chapter. Nevertheless, let’s get to know
the basic structure of a valid WSDL document. Once you understand the basics, you’ll better under-
stand the usefulness of the wsdl.exe command-line utility.

■Note To see the most recent information on WSDL, visit http://www.w3.org/tr/wsdl.

Defining a WSDL Document
A valid WSDL document is opened and closed using the root <definitions> element. The opening
tag typically defines various xmlns attributes. These qualify the XML namespaces that define various
subelements. At a minimum, the <definitions> element will specify the namespace where the WSDL
elements themselves are defined (http://schemas.xmlsoap.org/wsdl). To be useful, the opening
<definitions> tag will also specify numerous XML namespaces that define simple data WSDL types,
XML schema types, SOAP elements, and the target namespace. For example, here is the <definitions>
section for CalculatorService:

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://www.IntertechTraining.com/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://www.IntertechTraining.com/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
...
</wsdl:definitions>

Within the scope of the root element, you will find five possible subelements. Thus, a bare-bones
WSDL document would look something like the following:

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions ...>

<wsdl:types>
<!-- List of types exposed from WS ->

<wsdl:/types>
<wsdl:message>

<!-- Format of the messages ->
<wsdl:/message>
<wsdl:portType>

<!-- Port information ->
<wsdl:/portType>
<wsdl:binding>

<!-- Binding information ->
<wsdl:/binding>
<wsdl:service>

<!-- Information about the XML web service itself ->

4193ch25.qxd 8/14/05 3:07 PM Page 936

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 937

<wsdl:/service>
< wsdl:/definitions>

As you would guess, each of these subelements will contain additional elements and attributes
to further describe the intended functionality. Let’s check out the key nodes in turn.

The <types> Element
First, we have the <types> element, which contains descriptions of any and all data types exposed
from the web service. As you may know, XML itself defines a number of “core” data types, all of
which are defined within the XML namespace: http://www.w3.org/2001/XMLSchema (which appears
in your <definitions> root element). For example, recall the Subtract() method of CalculatorService
took two integer parameters. In terms of WSDL, the CLR System.Int32 is described within
a <complexType> element:

<s:element name="Subtract">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="x" type="s:int" />
<s:element minOccurs="1" maxOccurs="1" name="y" type="s:int" />

</s:sequence>
</s:complexType>

</s:element>

The integer that is returned from the Subtract() method is also described within the <types>
element:

<s:element name="SubtractResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="SubtractResult" type="s:int" />

</s:sequence>
</s:complexType>

</s:element>

If you have a web method that returns or receives custom data types, they will also appear
within a <complexType> element. You will see the details of how to expose custom .NET data types
via a given web method a bit later in this chapter. For the sake of illustration, assume you have
defined a web method that returns a structure named Point:

public struct Point
{

public int x;
public int y;
public string pointName;

}

The WSDL description of this “complex type” would look like the following:

<s:complexType name="Point">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="x" type="s:int" />
<s:element minOccurs="1" maxOccurs="1" name="y" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="pointName" type="s:string" />

</s:sequence>
</s:complexType>

4193ch25.qxd 8/14/05 3:07 PM Page 937

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES938

The <message> Element
The <message> element is used to define the format of the request and response exchange for a given
web method. Given that a single web service allows multiple messages to be transmitted between the
sender and receiver, it is permissible for a single WSDL document to define multiple <message>
elements. Typically, these message definitions use the types defined in the <types> element.

Regardless of how many <message> elements are defined within a WSDL document, they tend
to occur in pairs. The first definition represents the input-centric format of the message, while the
second defines the output-centric format of the same message. For example, the Subtract() method
of CalculatorService is defined by the following <message> element:

<wsdl:message name="SubtractSoapIn">
<wsdl:part name="parameters" element="tns:Subtract" />

</wsdl:message>
<wsdl:message name="SubtractSoapOut">
<wsdl:part name="parameters" element="tns:SubtractResponse" />

</wsdl:message>

Here, you are only viewing the SOAP binding of the service. As you may recall from the begin-
ning of this chapter, XML web services can be invoked via SOAP, HTTP GET, and HTTP POST. Thus, if
you were to enable HTTP POST bindings (explained later), the generated WSDL would also show the
following <message> data:

<wsdl:message name="SubtractHttpPostIn">
<part name="n1" type="s:string" />
<part name="n2" type="s:string" />

<wsdl:/message>
<wsdl:message name="SubtractHttpPostOut">
<part name="Body" element="s0:int" />

<wsdl:/message>

In reality, <message> elements are not all that useful in and of themselves. However, these mes-
sage definitions are referenced by other aspects of a WSDL document.

■Note Not all web methods require both a request and response. If a web method is a one-way method, then
only a request <message> element is necessary. You can mark a web method as a one-way method by applying
the [SoapDocumentMethod] attribute.

The <portType> Element
The <portType> element defines the characteristics of the various correspondences that can occur
between the client and server, each of which is represented by an <operation> subelement. As you
might guess, the most common operations would be SOAP, HTTP GET, and HTTP POST. Additional
operations do exist, however. For example, the one-way operation allows a client to send a message
to a given web server but does not receive a response (sort of a fire-and-forget method invocation).
The solicit/response operation allows the server to issue a request while the client responds (which
is the exact opposite of the request/response operation).

To illustrate the format of a possible <operation> subelement, here is the WSDL definition for
the Subtract() method:

<wsdl:portType name="CalculatorWebServiceSoap">
<wsdl:operation name="Subtract">
<wsdl:input message="tns:SubtractSoapIn" />
<wsdl:output message="tns:SubtractSoapOut" />

</wsdl:operation>
<wsdl:/portType>

4193ch25.qxd 8/14/05 3:07 PM Page 938

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 939

Note how the <input> and <output> elements make reference to the related message name
defined within the <message> element. If HTTP POST were enabled for the Subtract() method, you
would find the following additional <operation> element:

<wsdl:portType name="CalculatorWebServiceHttpPost">
<wsdl:operation name="Subtract">
<wsdl:input message="s0:SubtractHttpPostIn" />
<wsdl:output message="s0:SubtractHttpPostOut" />

<wsdl:/operation>
<wsdl:/portType>

Finally, be aware that if a given web method has been described using the Description prop-
erty, the <operation> element will contain an embedded <documentation> element.

The <binding> Element
This element specifies the exact format of the HTTP GET, HTTP POST, and SOAP exchanges. By far
and away, this is the most verbose of all the subelements contained in the <definition> root. For
example, here is the <binding> element definition that describes how a caller may interact with the
MyMethod() web method using SOAP:

<wsdl:binding name="CalculatorWebServiceSoap12"
type="tns:CalculatorWebServiceSoap">
<soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="Subtract">
<soap12:operation soapAction="http://www.IntertechTraining.com/Subtract"
style="document" />

<wsdl:input>
<soap12:body use="literal" />

</wsdl:input>
<wsdl:output>
<soap12:body use="literal" />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

The <service> Element
Finally we have the <service> element, which specifies the characteristics of the web service itself
(such as its URL). The chief duty of this element is to describe the set of ports exposed from a given
web server. To do so, the <services> element makes use of any number of <port> subelements (not
to be confused with the <portType> element). Here is the <service> element for CalculatorService:

<wsdl:service name="CalculatorWebService">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
The Amazing Calculator Web Service

</wsdl:documentation>
<wsdl:port name="CalculatorWebServiceSoap"
binding="tns:CalculatorWebServiceSoap">
<soap:address location="http://localhost:1109/CalculatorService/Service.asmx" />

</wsdl:port>
<wsdl:port name="CalculatorWebServiceSoap12"
binding="tns:CalculatorWebServiceSoap12">
<soap12:address location=
"http://localhost:1109/CalculatorService/Service.asmx" />

</wsdl:port>
</wsdl:service>

4193ch25.qxd 8/14/05 3:07 PM Page 939

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES940

So, as you can see, the WSDL automatically returned by IIS is not rocket science, but given that
WSDL is an XML-based grammar, it is a bit on the verbose side. Nevertheless, now that you have
a better understanding of WSDL’s place in the world, let’s dig a bit deeper into the XML web service
wire protocols.

■Note Recall that the System.Web.Services.Description namespace contains a plethora of types that allow
you to programmatically read and manipulate raw WSDL (so check it out if you are so interested).

Revisiting the XML Web Service Wire Protocols
Technically, XML web services can use any RPC protocol to facilitate communication (such as
DCOM or CORBA). However, most web server bundles this data into the body of an HTTP request
and transmits it to the consumer using one of three core bindings (see Table 25-4).

Table 25-4. XML Web Service Bindings

Transmission Binding Meaning in Life

HTTP GET GET submissions append parameters to the query string of the URL.

HTTP POST POST transmissions embed the data points into the header of the HTTP
message rather than appending them to the query string.

SOAP SOAP is a wire protocol that specifies how to submit data and invoke
methods across the wire using XML.

While each approach leads to the same result (invoking a web method), your choice of wire
protocol determines the types of parameters (and return types) that can be sent between each
interested party. The SOAP protocol offers you the greatest flexibility, given that SOAP messages
allow you to pass complex data types (as well as binary files) between the caller and XML web ser-
vice. However, for completeness, let’s check out the role of standard HTTP GET and POST.

HTTP GET and HTTP POST Bindings
Although GET and POST verbs may be familiar constructs, you must be aware that this method of trans-
portation is not rich enough to represent such complex items as structures or classes. When you use
GET and POST verbs, you can interact with web methods using only the types listed in Table 25-5.

Table 25-5. Supported POST and GET Data Types

Data Types Meaning in Life

Enumerations GET and POST verbs support the transmission of .NET System.Enum types,
given that these types are represented as a static constant string.

Simple arrays You can construct arrays of any primitive type.

Strings GET and POST transmit all numerical data as a string token. String really
refers to the string representation of CLR primitives such as Int16,
Int32, Int64, Boolean, Single, Double, Decimal, and so forth.

By default, HTTP GET and HTTP POST bindings are not enabled for remote XML web service
invocation. However, HTTP POST is enabled to allow a machine to invoke local web services (in fact,
this is exactly what the autogenerated help page is leveraging behind the scenes). These settings are
established in the machine.config file using the <protocols> element. Here is a partial snapshot:

4193ch25.qxd 8/14/05 3:07 PM Page 940

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 941

<!-- In the machine.config file! -->
<webServices>
<protocols>
<add name="HttpSoap1.2" />
<add name="HttpSoap" />
<add name="Documentation" />
<!-- HTTP GET/POST disabled! -->
<!-- <add name="HttpPost"/> -->
<!-- <add name="HttpGet"/> -->
<!-- Used by the web service test page -->
<add name="HttpPostLocalhost" />

</protocols>
</webServices>

To re-enable HTTP GET or HTTP POST for a given web service, explicitly add in the HttpPost and
HttpGet names within a local Web.config file:

<configuration>
<system.web>
<webServices>
<protocols>
<add name="HttpPost"/>
<add name="HttpGet"/>

</protocols>
</webServices>

</system.web>
</configuration>

Again, recall that if you make use of standard HTTP GET or HTTP POST, you are not able to build
web methods that take complex types as parameters or return values (e.g., an ADO.NET DataSet or
custom structure type). For simple web services, this limitation may be acceptable. However, if you
make use of SOAP bindings, you are able to build much more elaborate XML web services.

SOAP Bindings
Although a complete examination of SOAP is beyond the scope of this text, understand that SOAP
itself does not define a specific protocol and can thus be used with any number of existing Internet
protocols (HTTP, SMTP, and others). The general role of SOAP, however, remains the same: provide
a mechanism to invoke methods using complex types in a language- and platform-neutral manner.
To do so, SOAP encodes each complex method with a SOAP message.

A SOAP message defines two core sections. First, we have the SOAP envelope, which can be
understood as the conceptual container for the relevant information. Second, we have the rules
that are used to describe the information in said message (placed into the SOAP body). An optional
third section (the SOAP header) may be used to specify general information regarding the message
itself, such as security or transactional information.

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<!-- Optional header information -->

</soap:Header>
<soap:Body>

<!-- Method invocation information -->
</soap:Body>

</soap:Envelope>

4193ch25.qxd 8/14/05 3:07 PM Page 941

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES942

Viewing a SOAP Message
Although you are not required to understand the gory details of SOAP to build XML web services
with the .NET platform, you are able to view the format of the SOAP message for each exposed web
method using the autogenerated test page. For example, if you were to click the link for the Add()
method of CalculatorService, you would find the following SOAP 1.1 request:

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Add xmlns="http://www.IntertechTraining.com ">
<x>int</x>
<y>int</y>

</Add>
</soap:Body>

</soap:Envelope>

The corresponding SOAP 1.1 response looks like this:

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<AddResponse xmlns="http://www.IntertechTraining.com ">
<AddResult>int</AddResult>

</AddResponse>
</soap:Body>

</soap:Envelope>

The wsdl.exe Command-Line Utility
Now that you’ve completed a primer on WSDL and SOAP, let’s begin to examine how to build client
programs that communicate with remote XML web services using the wsdl.exe command-line tool.
In a nutshell, wsdl.exe performs two major tasks:

• Generates a server-side file that functions as skeleton for implementing an XML web service

• Generates a client-side file that functions as the proxy to a remote XML web service

wsdl.exe supports a number of command-line flags, all of which can be viewed at the command
prompt by specifying the -? option. Table 25-6 points out some of the more common arguments.

Table 25-6. Select Options of wsdl.exe

Command-Line Flag Meaning in Life

/appsettingurlkey Instructs wsdl.exe to build a proxy that does not make use of hard-
coded URLs. Instead, the proxy class will be configured to read the URL
from a client-side *.config file.

/language Specifies the language to use for the generated proxy class:
CS (C#; default)
VB (Visual Basic .NET)
JS (JScript)
VJS (Visual J#)
The default is C#.

/namespace Specifies the namespace for the generated proxy or template. By
default, your type will not be defined within a namespace definition.

4193ch25.qxd 8/14/05 3:07 PM Page 942

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 943

Command-Line Flag Meaning in Life

/out Specifies the file in which to save the generated proxy code. If the file is
not specified, the file name is based on the XML web service name.

/protocol Specifies the protocol to use within the proxy code; SOAP is the default.
However, you can also specify HttpGet or HttpPost to create a proxy that
communicates using simple HTTP GET or POST verbs.

/serverInterface Generates server-side interface bindings for an XML web service based
on the WSDL document.

■Note The /server flag of wsdl.exe has been deprecated under .NET 2.0. /serverInterface is now the
preferred method to generate server-side skeleton code.

Transforming WSDL into a Server-Side XML Web Service Skeleton
One interesting use of the wsdl.exe utility is to generate server-side skeleton code (via the
/serverInterface option) based on a WSDL document. Clearly, if you are interested in taking a WSDL
first approach to building XML web services, this would be a very important option. Once this source
code file has been generated, you have a solid starting point to provide the actual implementation
of each web method.

Assume you have created WSDL document (CarBizObject.wsdl) that describes a single method
named DeleteCar() that takes a single integer as input and returns nothing. This method is exposed
from an XML web service named CarBizObject, which can be invoked using SOAP bindings.

To generate a server-side C# code file from this WSDL document, open a .NET-aware command
window and specify the /serverInterface flag, followed by the name of the WSDL document you wish
to process. Note that the WDSL document may be contained in a local *.wsdl file:

wsdl /serverInterface CarBizObject.wsdl

or it can be obtained dynamically from a given URL via the ?wsdl suffix:

wsdl /serverInterface http://localhost/CarService/CarBizObject.asmx?wsdl

Once wsdl.exe has processed the XML elements, you are presented with interface descriptions
for each web method:

[System.Web.Services.WebServiceBindingAttribute(Name="CarBizObjectSoap",
Namespace="http://IntertechTraining.com/")]

public partial interface ICarBizObjectSoap
{
...

void RemoveCar(int carID);
}

Using these interfaces, you can define a class that implements the various methods of the XML
web service.

■Source Code The CarBizObject.wsdl file is included under the Chapter 25 subdirectory.

4193ch25.qxd 8/14/05 3:07 PM Page 943

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES944

Transforming WSDL into a Client-Side Proxy
Although undesirable, it is completely possible to construct a client-side code base that manually
opens an HTTP connection, builds the SOAP message, invokes the web method, and translates the
incoming stream of XML back into CTS data types. A much-preferred approach is to leverage
wsdl.exe to generate a proxy class that maps to the web methods defined by a given *.asmx file.

To do so, you will specify (at a minimum) the name of the proxy file to be generated (via the
/out flag) and the location of the WSDL document. By default, wsdl.exe will generate proxy code
written in C#. However, if you wish to obtain proxy code in an alternative .NET language, make use
of the /language flag. You should also be aware that by default, wsdl.exe generates a proxy that
communicates with the remote XML web service using SOAP bindings. If you wish to build a proxy that
leverages straight HTTP GET or HTTP POST, you may make use of the /protocol flag.

Another important point to be made regarding generating proxy code via wsdl.exe is that this
tool truly needs the WSDL of the XML web service, not simply the name of the *.asmx file. Given
this, understand that if you make use of WebDev.WebServer.exe to develop and test your services,
you will most likely want to copy your project’s content to an IIS virtual directory before generating
a client-side proxy.

For the sake of illustration, assume that you have created a new IIS virtual directory (CalcService),
which contains the content for the CalculatorService project. Once you have done so, you can gen-
erate the client proxy code as so:

wsdl /out:proxy.cs http://localhost/CalcService/Service.asmx?wsdl

As a side note, be aware that wsdl.exe will not define a .NET namespace to wrap the generated
C# types unless you specify the /n flag at the command prompt:

wsdl /out:proxy.cs /n:CalculatorClient
http://localhost/CalcService/Service.asmx?wsdl

Examining the Proxy Code
If you open up the generated proxy file, you’ll find a type that derives from System.Web.Services.
Protocols.SoapHttpClientProtocol (unless, of course, you specified an alternative binding via the
/protocols option):

public partial class CalculatorWebService :
System.Web.Services.Protocols.SoapHttpClientProtocol

{
...

}

This base class defines a number of members leveraged within the implementation of the
proxy type. Table 25-7 describes some (but not all) of these members.

Table 25-7. Core Members of the SoapHttpClientProtocol Type

Inherited Members Meaning in Life

BeginInvoke() This method starts an asynchronous invocation of the web method.

CancelAsync() This method (new to .NET 2.0) cancels an asynchronous call to an XML
web service method, unless the call has already completed.

EndInvoke() This method ends an asynchronous invocation of the web method.

Invoke() This method synchronously invokes a method of the web service.

4193ch25.qxd 8/14/05 3:07 PM Page 944

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 945

Inherited Members Meaning in Life

InvokeAsync() This method (new to .NET 2.0) is the preferred way to synchronously
invoke a method of the web service.

Proxy This property gets or sets proxy information for making a web service
request through a firewall.

Timeout This property gets or sets the timeout (in milliseconds) used for
synchronous calls.

Url This property gets or sets the base URL to the server to use for requests.

UserAgent This property gets or sets the value for the user agent header sent with
each request.

The Default Constructor
The default constructor of the proxy hard-codes the URL of the remote web service and stores it in
the inherited Url property:

public CalculatorWebService()
{

this.Url = "http://localhost/CalcService/Service.asmx";
}

The obvious drawback to this situation is that if the XML web service is renamed or relocated,
the proxy class must be updated and recompiled. To build a more flexible proxy type, wsdl.exe provides
the /appsettingurlkey flag (which may be abbreviated to /urlkey). When you specify this flag at the
command line, the proxy’s constructor will contain logic that reads the URL using a key contained
within a client-side *.config file.

wsdl /out:proxy.cs /n:CalcClient /urlkey:CalcUrl
http://localhost/CalcService/Service.asmx?wsdl

If you now check out the default constructor of the proxy, you will find the following logic (note
that if the correct key cannot be found, the hard-coded URL will be used as a backup):

public CalculatorWebService()
{
string urlSetting =
System.Configuration.ConfigurationManager.AppSettings["CalcUrl"];
if ((urlSetting != null))
{

this.Url = urlSetting;
}
else
{

this.Url = "http://localhost/CalcService/Service.asmx";
}

}

The corresponding client-side app.config file will look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CalcUrl" value="http://localhost/CalcService/Service.asmx"/>

</appSettings>
</configuration>

4193ch25.qxd 8/14/05 3:07 PM Page 945

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES946

Synchronous Invocation Support
The generated proxy also defines synchronous support for each web method. For example, the syn-
chronous implementation of the Subtract() method is implemented as so:

public int Subtract(int x, int y)
{

object[] results = this.Invoke("Subtract", new object[] {x, y});
return ((int)(results[0]));

}

Notice that the caller passes in two System.Int32 parameters that are packaged as an array of
System.Objects. Using late binding, the Invoke() method will pass these arguments to the Subtract
method located at the established URL. Once this (blocking) call completes, the incoming XML is
processed, and the result is cast back to the caller as System.Int32.

Asynchronous Invocation Support
Support for invoking a given web method asynchronously has changed quite a bit from .NET 1.x.
As you might recall from previous experience, .NET 1.1 proxies made use of BeginXXX()/EndXXX()
methods to invoke a web method on a secondary thread of execution. For example, consider the
following BeginSubtract() and EndSubtract() methods:

public System.IAsyncResult BeginSubtract(int x, int y,
System.AsyncCallback callback, object asyncState)

{
return this.BeginInvoke("Subtract", new object[] {x, y},
callback, asyncState);

}
public int EndSubtract(System.IAsyncResult asyncResult)
{

object[] results = this.EndInvoke(asyncResult);
return ((int)(results[0]));

}

While wsdl.exe still generates these familiar Begin/End methods, under .NET 2.0 they have
been deprecated and are replaced by the new XXXAsync() methods:

public void SubtractAsync(int x, int y)
{

this.SubtractAsync(x, y, null);
}

These new XXXAsync() methods (as well as a related CancelAsync() method) work in conjunction
with an autogenerated helper method (being an overloaded version of a specific XXXAsync() method)
which handles the asynchronous operation using C# event syntax. If you examine the proxy code,
you will see that wsdl.exe has generated (for each web method) a custom delegate, custom event,
and custom “event args” class to obtain the result.

4193ch25.qxd 8/14/05 3:07 PM Page 946

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 947

Building the Client Application
Now that you better understand the internal composition of the generated proxy, let’s put it to use.
Create a new console application named CalculatorClient, insert your proxy.cs file into the project
using Project ➤ Add Existing Item, and add a reference to the System.Web.Services.dll assembly.
Next, update your Main() method as so:

class Program
{

static void Main(string[] args)
{

Console.WriteLine("***** Fun with WS Proxies *****\n");
// Make the proxy.
CalculatorWebService ws = new CalculatorWebService();

// Call the Add() method synchronously.
Console.WriteLine("10 + 10 = {0}", ws.Add(10, 10));

// Call the Subtract method asynchronously
// using the new .NET 2.0 event approach.
ws.SubtractCompleted += new

SubtractCompletedEventHandler(ws_SubtractCompleted);
ws.SubtractAsync(50, 45);

// Keep console running to make sure we get our subtraction result.
Console.ReadLine();

}

static void ws_SubtractCompleted(object sender, SubtractCompletedEventArgs e)
{

Console.WriteLine("Your answer is: {0}", e.Result);
}

}

Notice that the new .NET 2.0 asynchronous invocation logic does indeed directly map to the C#
event syntax, which as you might agree is cleaner than needing to work with BeginXXX()/EndXXX()
method calls, the IAsyncResult interface, and the AsyncCallback delegate.

■Source Code The CalculatorClient project can be found under the Chapter 25 subdirectory.

Generating Proxy Code Using Visual Studio 2005
Although wsdl.exe provides a number of command-line arguments that give you ultimate control
over how a proxy class will be generated, Visual Studio 2005 also allows you to quickly generate a proxy
file using the Add Web Reference dialog box (which you can activated from the Project menu). As
you can see from Figure 25-6, you are able to obtain references to existing XML web services located
in a variety of places.

4193ch25.qxd 8/14/05 3:07 PM Page 947

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES948

Figure 25-6. The Add Web Reference dialog box

■Note The Add Web Reference dialog box cannot reference XML web services hosted with WebDev.WebServer.exe.

Notice that not only are you able to obtain a list of XML web services on your local development
machine, but you may also query various UDDI catalogs (which you’ll do at the end of this chapter).
In any case, once you type a valid URL that points to a given *.wsdl or *.asmx file, your project will
contain a new proxy class. Do note that the proxy’s namespace (which is based on the URL of origin)
will be nested within your client’s .NET namespace. Thus, if you have a client named MyClientApp
that added a reference to a web service on your local machine you would need to specify the follow-
ing C# using directive:

using MyClientApp.localhost;

■Note As of Visual Studio 2005, the Add Web Reference dialog box automatically adds an app.config file to
your project that contains the URL of the referenced XML web service or updates an existing app.config file.

Exposing Custom Types from Web Methods
In the final example of this chapter, you’ll examine how to build web services that expose custom
types as well as more exotic types from the .NET base class libraries. To illustrate this, you’ll create
a new XML web service that is capable of processing arrays, custom types, and ADO.NET DataSets.
To begin, create a new XML web service named CarSalesInfoWS that is hosted under an IIS virtual
directory.

4193ch25.qxd 8/14/05 3:07 PM Page 948

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 949

Exposing Arrays
Create a web method named GetSalesTagLines(), which returns an array of strings that represent
the current sales for various automobiles, and another named SortCarMakes(), which allows the
caller to pass in an array of unsorted strings and obtain a new array of sorted strings:

[WebService(Namespace = "http://IntertechTraining.com/",
Description = "A car-centric web service",
Name = "CarSalesInfoWS")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

[WebMethod(Description = "Get current discount blurbs")]
public string[] GetSalesTagLines()
{

string[] currentDeals = {"Colt prices slashed 50%!",
"All BMWs come with standard 8-track",
"Free Pink Caravans...just ask me!"};

return currentDeals;
}

[WebMethod(Description = "Sorts a list of car makes")]
public string[] SortCarMakes(string[] theCarsToSort)
{

Array.Sort(theCarsToSort);
return theCarsToSort;

}
}

■Note The default test page generated by DefaultWsdlHelpGenerator.aspx cannot invoke methods that
take arrays of types as parameters.

Exposing Structures
The SOAP protocol is also able to transport XML representations of custom data types (both classes
and structures). XML web services make use of the XmlSerializer type to encode the type as XML
(see Chapter 17 for details). Recall that the XmlSerializer

• Cannot serialize private data. It serializes only public fields and properties.

• Requires that each serialized class provide a default constructor.

• Does not require the use of the [Serializable] attribute.

This being said, our next web method will return an array of SalesInfoDetails structures,
defined as so:

// A custom type.
public struct SalesInfoDetails
{

public string info;
public DateTime dateExpired;
public string Url;

}

4193ch25.qxd 8/14/05 3:07 PM Page 949

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES950

Another point of interest regarding the XmlSerializer is the fact that it allows you to have
fine-grained control over how the type is represented. By default, the SalesInfoDetails structure
is serialized by encoding each piece of field data as a unique XML element:

<SalesInfoDetails>
<info>Colt prices slashed 50%!</info>
<dateExpired>2004-12-02T00:00:00.0000000-06:00</dateExpired>
<Url>http://www.CarsRUs.com</Url>

</SalesInfoDetails>

If you wish to change this default behavior, you can adorn your type definitions using attributes
found within the System.Xml.Serialization namespace (again, see Chapter 17 for full details):

public struct SalesInfoDetails
{

public string info;
[XmlAttribute]
public DateTime dateExpired;
public string Url;

}

This yields the following XML data representation:

<SalesInfoDetails dateExpired="2004-12-02T00:00:00">
<info>Colt prices slashed 50%!</info>
<Url>http://www.CarsRUs.com</Url>

</SalesInfoDetails>

The implementation of GetSalesInfoDetails() returns a populated array of this custom struc-
ture as follows:

[WebMethod(Description="Get details of current sales")]
public SalesInfoDetails[] GetSalesInfoDetails()
{

SalesInfoDetails[] theInfo = new SalesInfoDetails[3];
theInfo[0].info = "Colt prices slashed 50%!";
theInfo[0].dateExpired = DateTime.Parse("12/02/04");
theInfo[0].Url= "http://www.CarsRUs.com";
theInfo[1].info = "All BMWs come with standard 8-track";
theInfo[1].dateExpired = DateTime.Parse("8/11/03");
theInfo[1].Url= "http://www.Bmws4U.com";
theInfo[2].info = "Free Pink Caravans...just ask me!";
theInfo[2].dateExpired = DateTime.Parse("12/01/09");
theInfo[2].Url= "http://www.AllPinkVans.com";
return theInfo;

}

Exposing ADO.NET DataSets
To wrap up your XML web service, here is one final web method that returns a DataSet populated
with the Inventory table the Cars database you created during our examination of ADO.NET in
Chapter 22:

// Return all cars in inventory table.
[WebMethod(Description =
"Returns all autos in the Inventory table of the Cars database")]

public DataSet GetCurrentInventory()
{

// Fill the DataSet with the Inventory table.

4193ch25.qxd 8/14/05 3:07 PM Page 950

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 951

SqlConnection sqlConn = new SqlConnection();
sqlConn.ConnectionString = "data source=localhost; initial catalog=Cars;" +

"uid=sa; pwd=";
SqlDataAdapter myDA=

new SqlDataAdapter("Select * from Inventory", sqlConn);
DataSet ds = new DataSet();
myDA.Fill(ds, "Inventory");
return ds;

}

■Source Code The CarsSalesInfoWS files can be found under the Chapter 25 subdirectory.

A Windows Forms Client
To test your new XML web service, create a Windows Forms application and reference CarsSalesInfoWS
using the Visual Studio 2005 Add Web References dialog box (see Figure 25-7).

Figure 25-7. Referencing CarsSalesInfoWS

At this point, simply make use of the generated proxy to invoke the exposed web methods.
Here is one possible Form implementation:

using CarsSalesInfoClient.localhost;
...
namespace CarsSalesInfoClient
{

public partial class MainWindow : Form
{

4193ch25.qxd 8/14/05 3:07 PM Page 951

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES952

Figure 25-8. The CarsSalesInfo client

private CarSalesInfoWS ws = new CarSalesInfoWS();
...

private void MainWindow_Load(object sender, EventArgs e)
{

// Bind DataSet to grid.
inventoryDataGridView.DataSource

= ws.GetCurrentInventory().Tables[0];
}

private void btnGetTagLines_Click(object sender, EventArgs e)
{

string[] tagLines = ws.GetSalesTagLines();
foreach (string tag in tagLines)

listBoxTags.Items.Add(tag);
}
private void btnGetAllDetails_Click(object sender, EventArgs e)
{

SalesInfoDetails[] theSkinny = ws.GetSalesInfoDetails();
foreach (SalesInfoDetails s in theSkinny)
{

string d = string.Format("Info: {0}\nURL:{1}\nExpiration Date:{2}",
s.info, s.Url, s.dateExpired);

MessageBox.Show(d, "Details");
}

}
}

}

Figure 25-8 shows a possible test run.

Client-Side Type Representation
When clients set a reference to a web service that exposes custom types, the proxy class file also
contains language definitions for each custom public type. Thus, if you were to examine the client-
side representation of SalesInfoDetails (within the generated Reference.cs file), you would see that
each field has been encapsulated by a strongly typed property (also note that this type is now defined
as a class rather than a structure):

4193ch25.qxd 8/14/05 3:07 PM Page 952

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES 953

[System.SerializableAttribute()]
[System.Xml.Serialization.XmlTypeAttribute
(Namespace="http://IntertechTraining.com/")]

public partial class SalesInfoDetails {
private string infoField;
private string urlField;
private System.DateTime dateExpiredField;

public string info
{

get { return this.infoField; }
set { this.infoField = value; }

}
public string Url
{

get { return this.urlField; }
set { this.urlField = value; }

}
[System.Xml.Serialization.XmlAttributeAttribute()]
public System.DateTime dateExpired
{

get { return this.dateExpiredField; }
set { this.dateExpiredField = value; }

}
}

Now, understand, of course, that like .NET remoting, types that are serialized across the wire as
XML do not retain implementation logic. Thus, if the SalesInfoDetails structure supported a set of
public methods, the proxy generator will fail to account for them (as they are not expressed in the
WSDL document in the first place!). However, if you were to distribute a client-side assembly that
contained the implementation code of the client-side type, you would be able to leverage the type-
specific logic. Doing so would require a .NET-aware machine, though.

■Source Code The CarSalesInfoClient projects can be found under the Chapter 25 subdirectory.

Understanding the Discovery Service Protocol
(UDDI)
It is a bit ironic that the typical first step taken by a client to chat with a remote web service is the
final topic of this chapter. The reason for such an oddball flow is the fact that the process of identify-
ing whether or not a given web service exists using UDDI is not only optional, but also unnecessary
in a vast majority of cases.

Until XML web services becomes the de facto standard of distributed computing, most web serv-
ices will be leveraged by companies tightly coupled with a given vendor. Given this, the company
and vendor at large already know about each other, and therefore have no need to query a UDDI
server to see if the web service in question exists. However, if the creator of an XML web service
wishes to allow the world at large to access the exposed functionality to any number of external
developers, the web service may be posted to a UDDI catalog.

UDDI is an initiative that allows web service developers to post a commercial web service to
a well-known repository. Despite what you might be thinking, UDDI is not a Microsoft-specific
technology. In fact, IBM and Sun Microsystems have an equal interest in the success of the UDDI
initiative. As you would expect, numerous vendors host UDDI catalogs. For example, Microsoft’s

4193ch25.qxd 8/14/05 3:07 PM Page 953

CHAPTER 25 ■ UNDERSTANDING XML WEB SERVICES954

official UDDI website can be found at http://uddi.microsoft.com. The official website of UDDI
(http://www.uddi.org) provides numerous white papers and SDKs that allow you to build internal
UDDI servers.

Interacting with UDDI via Visual Studio 2005
Recall that the Add Web Reference dialog box allows you not only to obtain a list of all XML web
services located on your current development machine (as well as a well-known URL) but also to
submit queries to UDDI servers. Basically, you have the following options:

• Browse for a UDDI server on your company intranet.

• Browse the Microsoft-sponsored UDDI production server.

• Browse the Microsoft-sponsored UDDI test server.

Assume that you are building an application that needs to discover the current weather forecast
on a per–zip code basis. Your first step would be to query a UDDI catalog with the following question:

• “Do you know of any web services that pertain to weather data?”

If it is the case that the UDDI server has a list of weather-aware web services, you are returned
a list of all registered URLs that export the functionality of your query. Referencing this list, you are
able to pick the specific web service you wish to communicate with and eventually obtain the WSDL
document that describes the functionality of the weather-centric functionality.

As a quick example, create a brand-new console application project and activate the Add Web
Reference dialog box. Next, select the Test Microsoft UDDI Directory link, which will bring you to
the Microsoft UDDI test server. At this point, enter weather as a search criterion. Once the UDDI
catalog has been queried, you will receive a list of all relevant XML web services. When you find
an XML web service you are interested in programming against, add a reference to your current proj-
ect. As you would expect, the raw WSDL will be parsed by the tool to provide you with a C# proxy.

■Note Understand that the UDDI test center is just that: a test center. Don’t be too surprised if you find a number
of broken links. When you query production-level UDDI servers, URLs tend to be much more reliable, given that
companies typically need to pay some sort of fee to be listed.

Summary
This chapter exposed you to the core building blocks of .NET web services. The chapter began by
examining the core namespaces (and core types in these namespaces) used during web service
development. As you learned, web services developed using the .NET platform require little more
than applying the [WebMethod] attribute to each member you wish to expose from the XML web
service type. Optionally, your types may derive from System.Web.Services.WebService to obtain
access to the Application and Session properties (among other things). This chapter also examined
three key related technologies: a lookup mechanism (UDDI), a description language (WSDL), and
a wire protocol (GET, POST, or SOAP).

Once you have created any number of [WebMethod]-enabled members, you can interact with
a web service through an intervening proxy. The wsdl.exe utility generates such a proxy, which can
be used by the client like any other C# type. As an alternative to the wsdl.exe command-line tool,
Visual Studio 2005 offers similar functionality via the Add Web Reference dialog box.

4193ch25.qxd 8/14/05 3:07 PM Page 954

■Special Characters
#elif, preprocessor directive, 317–18
#else, preprocessor directive, 317–18
#endif, preprocessor directive, 317–18
#endregion, preprocessor directive, 317
#if, preprocessor directive, 317–18
#region, preprocessor directive, 317
#undef, preprocessor directive, 317–19
& operator, pointer types, 312–13
* operator, pointer types, 312–13
?? operator, 133
+= operator, 610
<%@Page%> directive, ASP.NET, 846
<%Import%> directive, ASP.NET, 846–47
? suffix, nullable types, 131

■A
A# programming language, 8
Abort() method, Thread type, 460
abstract base classes contrasted with interfaces,

224
abstract classes, 16, 164–65, 166
abstract members (interface), 221
abstract methods, 166–69
AcceptChanges(), RejectChanges() methods,

ADO.NET, 795–98
AcceptsReturn property, Textbox, 705
access modifiers, 76–78
Add Reference dialog box, 356, 359–60
AddCacheDependency() method, ASP.NET

HTTP Response, 860
adding controls, ASP.NET, 869–70
AddRange() method, ControlCollection, 702
ADO.NET

additional namespaces, 763–64
vs. ADO classic, 759–60
application configuration files, 769–70
asynchronous data access, 792–93
autogenerated data components, 824–25
autogenerating SQL commands, 816–17
autoincrementing, 797
binding DataTables to user interfaces, 804, 806
Command object, 781–82
connected layer, 778
connected vs. disconnected layer, 760
connecting to database, Visual Studio 2005,

776
connection objects, 779–80
ConnectionStringBuilder object, 780–81
connectionStrings element, application

configuration, 774–75

data adapter objects, 811–12
data providers overview, 759–62
data wizards, 822–25
DataColumn objects, 796, 798
DataRelation objects, 817–20
DataRow objects, 798–99, 801
DataRow.RowState property, 799–800
DataSet class, 794–96
datasets in XML web services, 950
DataTable objects, 800
DataTableReader objects, 802
DataView objects, 810
DbDataReader object, 782–83
definition, 759–60
deleting records, 787
deleting rows, 806–7
disconnected layer, 793
example database, 775
example, data provider factory, 772–74
filling DataSet, 812
filters, 807–8
Firebird Interbase data provider, 763
IBM DB2 Universal Database data providers,

763
IDbCommand interface, 766
IDbConnection interface, 765
IDbDataAdapter, IDataAdapter interface, 767
IDbDataParameter, IDataParameter

interface, 766
IDbDataReader, IDataReader interface,

767–68
IDbTransaction interface, 765
inserting records, 786
mapping DBMS names, 813
Microsoft data providers, 762–63
modifying tables, Command object, 784–86
multiple result sets, DbDataReader object,

784
multitabled DataSet objects, 817–20
MySQL data providers, 763
navigating between related tables, 820–21
overview, 759
parameterized command objects, 788
persisting datasets as XML, 803
PostgreSQL providers, 763
provider factory model, 770–72
sort order, 807–8
specifying DbParameter parameters, 788–90
stored procedures using DbCommand,

790–91
strongly typed datasets, 823–24

Index

955

4193chIDX.qxd 8/14/05 3:21 PM Page 955

System.Data, 764
third-party data providers, 763
updating records, 787
updating rows, 809
updating using data adapter objects, 813–15
using interfaces, 768–69
view objects, 810

AdRotator example, ASP.NET, 874
AllKeys property, ASP.NET HttpApplicationState

members, 898
AllowDBNull property, ADO.NET DataColumn

object, 796
AnchorStyles enumeration values, 755
animation in controls, 743
anonymous methods

description, 282
example, 283–84

App_Browsers, ASP.NET 2.0 subdirectories, 851
App_Code, ASP.NET 2.0 subdirectories, 851, 853
App_Data, ASP.NET 2.0 subdirectories, 851
App_GlobalResources, ASP.NET 2.0

subdirectories, 851
App_LocalResources, ASP.NET 2.0

subdirectories, 851
App_Themes, ASP.NET 2.0 subdirectories, 851
App_WebReferences, ASP.NET 2.0

subdirectories, 851
AppDomains

advantages, 435
creation example code, 437
loading example code, 438
manipulation example code, 436–37
overview, 425
relationship to processes, 435
thread relationship, 449
unloading example code, 439–40

AppendText() method, FileInfo class,
System.IO, 526, 528–29

Application, ASP.NET HttpApplication
members, 897

application cache, ASP.NET, 901
Application class

ApplicationExit event, 609
CompanyName property, 609
DoEvents() method, 609
EnableVisualStyles() method, 609
ExecutablePath property, 609
Exit() method, 609
Idle event, 609
ProductName property, 609
ProductVersion property, 609
StartupPath property, 609
ThreadExit event, 609

Application class, System.Windows.Forms, 606
application configuration files, ADO.NET,

769–70
application development

cordbg.exe debugger, 33, 40–41
csc.exe compiler, 33–36
.NET 2.0 Framework SDK, general guide, 33

notepad.exe development editor, 33
overview, 33
SharpDevelop, 33
TextPad development editor, 41
Visual C# 2005 Express, 33

application domain, garbage collection, 188
application level state data, ASP.NET, 898–99
Application, Page Type properties, 856
Application property, WebService base class,

929
application root categories, 182–83
application shutdown, ASP.NET, 900
Application_End(), Global.asax event handlers

in ASP.NET, 896
Application_Error(), Global.asax event handlers

in ASP.NET, 896
Application_Start(), Global.asax event handlers

in ASP.NET, 896
ApplicationExit event, Application class, 609
ApplicationId, RemotingConfiguration, 580
ApplicationName, RemotingConfiguration, 580
applications vs. sessions, ASP.NET, 897
appSetting element, Web.config, ASP.NET, 912
array types, 127–28
ArrayList System.Collections class type, 250–51
arrays

jagged, 129–30
multidimensional, 128
as parameters and return values, 128
using interface types in, 228
in XML web services, 949

as keyword
determining interface support, 225
determining type, 172

ASP.NET
<%@Page%> directive, 846
<%Import%> directive, 846–47
adding and removing controls, 869–70
AdRotator example, 874
AutoEventWireUp attribute, 862–63
AutoPostBack property, 866
browser statisics in HTTP Request

processing, 858
categories of web controls, 871–72
classic ASP, 838, 840
client-side scripting, 836
client-side scripting example, 836–37
code-behind, description, 842
code-behind page model, 847–49
compilation cycle

multifile pages, 854–55
single-file pages, 853–54

debugging and tracing, 849–50
default.aspx content page example, 875–76
detailed content page example, 881–83
Document Object Model (DOM), 836
Emitting HTML, 860
enumerating controls with Panel control,

867–68
Error event, 863–64

■INDEX956

4193chIDX.qxd 8/14/05 3:21 PM Page 956

form control declarations, 847
GET and POST, 837–38
HTML

document structure, 833
form development, 833
overview, 832
web controls, 871

HTTP
overview, 829–30
Request members, 857
Request processing, 857–59
Response members, 860
Response processing, 859–61

IIS virtual directories, 831
incoming form data, 858–59
inheritance chain, page type, 855–56
in-place editing example, 879–80
Internet Information Server (IIS),

description, 830
inventory content page example, 877–78
IsPostBack property in HTTP Request

processing, 859
life cycle of web page, 861–63, 865
master pages example, 872–73
menu control example, 873
overview, 829
page type inheritance chain, 855–56
redirecting users, 861
request/response cycle, HTTP, 829
round-trips (postbacks), 836
runat attribute, 847
script block, 847
server-side event handling, 865
simple web controls, 871
simple website example, 872–75, 877–83
single file code model, 842–43
sorting and paging example, 878–79
stateless, description, 830
submitting form data, 837–38
System.Web.UI.Control, 866–67, 869–70
System.Web.UI.Page, 856
System.Web.UI.WebControls namespace,

865–66
System.Web.UI.WebControls.WebControl,

870
user interface in HTML, 834–35
using web controls, 865–66
validating form data, 837
validation controls, 883, 885–88
version 1.x benefits, 840
version 2.0 benefits, 841
version 2.0 namespaces overview, 841
web application, description, 830
web development server, 832
web page code model, 842–46
web server, description, 830
WebControl base class properties, 870–71
website directory structure, 851

ASP.NET 2.0 namespaces, 842
ASP.NET 2.0 subdirectories, 851–53

assemblies
Add Reference dialog box, 356, 359–60
app.config file, 368
binary code reuse, 347
CIL code, 351, 358
client application example, 359–60
CLR file header, 350–51
code base config file element, 385, 387
code library, 347
compared with legacy executables, 347
consuming shared assemblies, 376–77
cross-language inheritance, 362
definition, 347
delayed digital signing, 375–76
dependentAssembly config file element, 381–82
download cache, 352
dynamic redirection to a specific version,

381–82
embedded resources, 352
example of version updating, 379–82
explicit load request, 366, 368
flow of CLR external reference resolution, 388
global assembly cache (GAC), 25, 348
ildasm exploration of manifest, 357
implicit load request, 366, 368
internal format, 349
language integration, 360, 362, 364–65
manifest, 348, 351, 357
manifest description, 11
metadata description, 10
module-level manifest, 364
modules, 11, 352
multifile, 352, 362–65
.NET Framework Configuration utility,

369–70, 382
netmodule file extension, 352, 362–64
overview, 10, 347
private, 365–66, 368
probing process, 366, 368
publisher policy assemblies, 384–85
referencing external, 25
and resource files, 693
satellite assemblies, 352
self-describing, 348
shared assemblies, 371

configuration, 378–79
and the GAC, 374

shared assembly manifest, 378
single-file, 352

example, 354–56
vs. multifile, 11

strong names, 348, 357, 371, 373–74
assigning using Visual Studio 2005, 374
code example, 373

type metadata, 348, 351, 358
updating applications using shared

assemblies, 378–79
version number, 348
Visual Studio 2005 configuration, 368
Win32 file header, 349

■INDEX 957

4193chIDX.qxd 8/14/05 3:21 PM Page 957

Assembly class, System.Reflection, 396, 402–6
assembly directive, common intermediate

language (CIL), 488
assembly manifest, 15
assembly metadata, const values, 81
AssemblyBuilder, System.Reflection.Emit

namespace, 505
AssemblyCompanyAttribute attribute, 415
AssemblyCopyrightAttribute attribute, 415
AssemblyCultureAttribute attribute, 415
AssemblyDescriptionAttribute attribute, 415
AssemblyInfo.cs file, 415
AssemblyKeyFileAttribute attribute, 416
AssemblyLoad event, System.AppDomain, 436
AssemblyName class, System.Reflection

namespace, 396
assembly/namespace/type distinction, 22
AssemblyOperatingSystemAttribute attribute,

416
AssemblyProcessorAttribute attribute, 416
AssemblyProductAttribute attribute, 416
AssemblyRef, 394
AssemblyResolve event, System.AppDomain,

436
AssemblyTrademarkAttribute attribute, 416
AssemblyVersionAttribute attribute, 416
AsyncCallback delegate, multithreaded

applications, 456–57
asynchronous data access, ADO.NET, 792–93
asynchronous delegate call, 260–61
asynchronous I/O, 542–43
asynchronous multithreading using delegates,

260–61
AsyncResult class, multithreaded applications,

457–58
attribute-based programming

assembly, module level attributes, 415
attribute key points, 412
AttributeUsage attribute, 414
C# attribute notation, 411
CLSCompliant attribute, 408–9
COM vs. .NET attributes, 408
constructor parameters, 411
custom attributes, 412
description, 408
DllImport attribute, 409
early binding, 416–17
example of custom attributes, 413
extensibility, 418–24
late binding, 417–18
multiple attributes, 410–11
NonSerialized attribute, 409
Obsolete attribute, 408–9, 411
overview, 391
restricting attributes, 414
Serializable attribute, 409
serializing example, 409–10
Visual Basic snap-in example, 420–21
WebMethod attribute, 409
Windows forms example, 421–22

attributes, assembly, module level, 415
Attributes property, FileSystemInfo class, 519,

521
AttributeUsage attribute, 414
authentication element, Web.config, ASP.NET,

912
authorization element, Web.config, ASP.NET,

912
AutoCheck property, Button, 711
AutoEventWireUp attribute, ASP.NET, 862–63
autogenerating SQL commands, ADO.NET,

816–17
AutoIncrement- property, ADO.NET

DataColumn object, 796
autoincrementing, ADO.NET, 797
AutoPostBack property, ASP.NET web controls,

866

■B
base keyword in class creation, 156–57
BaseDirectory(), System.AppDomain, 436
BasePriority, ProcessThread type, 432
BaseStream property, BinaryReader class, 538
BaseStream property, BinaryWriter class, 538
basic string operations, 123–24
BeginCatchBlock() method,

System.Reflection.Emit.ILGenerator,
506

BeginExceptionBlock() method,
System.Reflection.Emit.ILGenerator,
506

BeginFinallyBlock() method,
System.Reflection.Emit.ILGenerator,
506

BeginInvoke() method, multithreaded
applications, 453–58

BeginInvoke() method,
SoapHttpClientProtocol class, 944

BeginLabel() method,
System.Reflection.Emit.ILGenerator,
506

BeginLocal() method,
System.Reflection.Emit.ILGenerator,
506

BeginScope() method,
System.Reflection.Emit.ILGenerator,
506

BeginTransaction() method, DbConnection,
ADO.NET, 779

Bin, ASP.NET 2.0 subdirectories, 851–52
binary code reuse, 347
binary opcodes, 479
BinaryFormatter

deserialization, 551
serialization, 548, 550–51

BinaryReader, BinaryWriter, System.IO, 538–39
BinaryReader, BinaryWriter types,

input/output, System.IO, 517
BinaryReader class, 538

■INDEX958

4193chIDX.qxd 8/14/05 3:21 PM Page 958

BinaryWriter class, 538
binding DataTables to user interfaces,

ADO.NET, 804, 806
binding element, WSDL document elements,

939
boxing and unboxing

CIL code, 322
generics issues, 321–22
InvalidCastException, 322
.NET 1.1 solution, 323–24
.NET 2.0 solution, 104–6

BrowsableAttribute, System.ComponentModel,
746

Browser controls, 736–37
browser statisics in HTTP Request processing,

ASP.NET, 858
BufferedStream type, input/output, System.IO,

517
bugs, description, 197
Button control

AutoCheck property, 711
CheckAlign property, 711
Checked property, 711
CheckState property, 711
FlatStyle property, 709, 711
Image property, 709
ImageAlign property, 709
TextAlign property, 709
ThreeState property, 711

by value parameter passing, 89–90

■C
C language deficiencies, 3
C# benefits and features, 7–8
C++

program structure compared with C#, 65
Cache, Page Type properties, ASP.NET, 856
callback interfaces

event interface, 256–57, 259
overview, 255
sink object, 256–57, 259
two-way conversation, 255

Cancel(), DbCommand, ADO.NET, 782
CancelAsync() method,

SoapHttpClientProtocol class, 944
CanRead, CanSeek, CanWrite, Stream class,

System.IO, 532
CAO activation, remoting, 572–73
Caption property, ADO.NET DataColumn

object, 796
Cars example database, ADO.NET, 775
CaseSensitive property, ADO.NET DataSet class,

795
CaseSensitive property, ADO.NET DataTable

object, 800
casting operations, 170–71
CategoryAttribute, System.ComponentModel,

746
CausesValidation, control class property, 730

ChangeDatabase() method, DbConnection,
ADO.NET, 779

channels, remoting, 568–69
CharacterCasing property, Textbox, 705
CheckAlign property, Button, 711
CheckBox AddRange() method,

ControlCollection type, 702
CheckBox control, 711, 713
checked compiler flag, 308
checked keyword, 307–9
Checked property, Button, 711
CheckedListBox control, 714–15
CheckState property, Button, 711
child class, description, 146
child controls, System.Windows.Forms, 606
child forms in MDI applications, 647
ChildRelations property, ADO.NET DataTable

object, 800
CIL compiler directives, 478
CIL language and programming, 477–504
CIL overview, 477–78
class

comparison with objects and references, 179
containment/delegation model, 146
definition, 69
instantiation, 72
member variable default values, 78
public interfaces, 144–45
types, 16

class directive, common intermediate language
(CIL), 489–90

class library, definition, 347
classic ASP and ASP.NET, 838, 840
Clear() method

ADO.NET DataSet class, 795
ASP.NET HttpApplicationState members, 898
ASP.NET HTTP Response, 860
ControlCollection, 702

client and server definitions, 565
client-activated remoting, 590–91
client-side configuration files, remoting, 585–86
client-side representation of XML web services,

952–53
client-side scripting in ASP.NET, 836–37
ClientTarget, Page Type properties, ASP.NET,

856
Clone() method, ADO.NET DataSet class, 795
cloneable objects (ICloneable), 238–42
Close() method

BinaryReader class, 538
BinaryWriter class, 538
Stream class, System.IO, 532
TextWriter, System.IO, 534

CloseMainWindow(),
System.Diagnostics.Process, 429

CLSCompliant attribute, 408–9
COBOL .NET programming language, 8
code comment XML format characters, 177
code DOM provider, 513
code libraries and assemblies, 347

■INDEX 959

4193chIDX.qxd 8/14/05 3:21 PM Page 959

code-behind, description, ASP.NET, 842
code-behind page model, ASP.NET, 847–49
CodePage, ASP.NET <%@Page%> directive

attribute, 846
collections

ICollection interface, 248
IDictionary interface, 248
IDictionaryEnumerator interface, 249
IList interface, 249
overview, 221

CollectionsUtil, System.Collections.Specialized,
253

colon operator, 111
color values, GDI+, 663
ColorDialog class, GDI+, 664–65
ColumnMapping property, ADO.NET

DataColumn object, 796
ColumnName property, ADO.NET DataColumn

object, 796
Combine() method,

System.MulticastDelegate/System
Delegate, 263

ComboBox control, 716–17
Command object, ADO.NET, 781–82
Command object, ADO.NET data providers, 761
CommandTimeout, DbCommand, ADO.NET,

782
common intermediate language (CIL)

advantages of learning, 477–78
assembly directive, 488
attributes, 479
benefits, 13
binary opcodes, 479
C# vs. VB.NET, 11–12
class directive, 489–90
code explained, 482–83
code labels, 483–84
compiler flags, 485
compiling CIL code, 485–86
compiling to specific platforms, 14
complete example program, 500–504
current object parameter, 499
defining current assembly, 488
directives, 478
enums, 491
externally referenced assemblies, 488
field directive, 493
ilasm.exe compiler, 477
interfaces, 490
iteration, 499
just-in-time (JIT) compiler, 14
locals directive, 498
mapping C# types to CIL types, 492–93
mapping parameters to variables, 498
maxstack directive, 497
method parameters, 495
methods, 494–95
mnemonics, 479
modifying CIL code, 481–85
module directive, 488

mresources directive, 489
vs. MSIL, 10
namespace directive, 489
new keyword, 181
opcodes, 479, 495
overview, 11, 477
peverify.exe tool, 487
as programming language, 477
properties, 494–95
pushing and popping from the stack, 480
round-trip engineering, 481–85
saving CIL code using ildasm.exe, 481–83
stack-based programming, 480
structures, 491
subsystem directive, 489
token set of CIL, 478
type constructors, 494
using ILIDE#, 486
using SharpDevelop, 486
variables, local, 498
virtual execution stack, 480

Common Language Runtime (CLR)
file header in assemblies, 350–51
hosts

CLR versions, 446
dotnetfx.exe, 444
multiple .NET Framework versions, 445
.NET assembly activation under Windows

XP, 444–45
overview, 425
requiredRuntime config specification, 446
side-by-side execution, 445
specific CLR version specification, 446

mscoree.dll, 20
mscorlib.dll, 21
overview, 20

Common Language Specification (CLS), 19–20
Common Type System (CTS)

adornments, 18
class types, 16
delegate types, 17
enumeration types, 17
interface types, 17
intrinsic types, 18
overview, 15
structure types, 16
type members, 18

CompanyName property, Application class,
609

comparable objects (IComparable), 242–44
CompareExchange() method, Interlocked type,

multithreaded applications, 472
CompareValidator control, ASP.NET, 884, 887
compilation cycle, ASP.NET 2.0

multifile pages, 854–55
overview, 853
single-file pages, 853–54

compilation element, Web.config, ASP.NET, 913
CompilerOptions, ASP.NET <%@Page%>

directive attribute, 846

■INDEX960

4193chIDX.qxd 8/14/05 3:21 PM Page 960

compiling common intermediate language
(CIL), 485–87

Component Object Model (COM), 5
concurrency, multithreaded applications, 450,

467–71
conditional compile, 318–19
configuration files, remoting, 584
configuration inheritance, ASP.NET, 917–18
Configure() method, RemotingConfiguration,

580
connected layer, ADO.NET, 778
Connection, DbCommand, ADO.NET, 782
Connection object, ADO.NET data providers,

761
connection objects, ADO.NET, 779–80
ConnectionStringBuilder object, ADO.NET,

780–81
connectionStrings element, ADO.NET

application configuration, 774–75
connectionStrings element, Web.config,

ASP.NET, 913
ConnectionTimeout() method, DbConnection,

ADO.NET, 779
const keyword (constant data), 80
Constraints property, ADO.NET DataTable

object, 800
ConstructorBuilder, System.Reflection.Emit

namespace, 505
constructors, 70–71
containers for ToolStrips, Visual Studio 2005,

643, 645
Context property, WebService base class, 929
context-agile, 441
context-bound, 441–42
Contraint, System.Data, ADO.NET, 764
contravariance, delegates, 276
control class properties, 730
control state, state management in ASP.NET, 894
ControlCollection, 702
controls

adding, using Visual Studio 2005, 702–3
animation, 743
ASP.NET, adding and removing, 869–70
basic, 703–4
Button, 709–10
CheckBox, 711, 713
CheckedListBox, 714–15
ComboBox, 716–17
ControlCollection, 701–2
custom, 737–43

appearance of, 746
design time attributes of, 746
hosts for, 744–45
icon, 748–49

custom events, 741
custom properties, 741–44
DateTimePicker, 721
default input button, 719
DefaultEvent attribute, 748
DefaultProperty attribute, 748

DefaultValue attribute, 747
Designer.cs file, 702–3
Dock property, 755–56
dynamic positioning, 754
ErrorBlinkStyle properties, 730
ErrorProviders, 729–31
events, 741
GroupBox, 711, 713
image processing, 739–41
InitializeComponent() method, 703
Label, 704–5
ListBox, 715–16
manually adding controls to forms, 700–701
MaskedTextBox, 707, 709
mnemonic keys in Label, 704–5
MonthCalendar, 719–21
node images in TreeViews, 734, 736
overview, 699
Panel, 726–27
properties, 741–44
RadioButton, 711, 713
tab order, 718
TabControl, 722–23
table and flow layout, 756–57
TabStop, TabIndex properties, 718
TextBox, 705–7
ToolTip, 721–22
TrackBar, 724–26
TreeView, 731–36
UpDown, 727, 729
UserControl Test Container, 743
using custom controls, 744–45
WebControl, 736–37

Controls property, System.Web.UI.Control in
ASP.NET, 867

cookies, ASP.NET, 909–10
coordinate systems, GDI+, 659–60
Copy() method, ADO.NET DataSet class, 795
CopyTo() method, FileInfo class, System.IO, 526
cordbg.exe command-line debugger, 40–41
Count, ControlCollection, 702
Count property, ASP.NET HttpApplicationState

members, 898
covariance, delegates, 275–76
Create() method

DirectoryInfo class, 519, 522–23
FileInfo class, System.IO, 526

CreateDomain(), System.AppDomain, 435, 437
CreateInstance(), System.AppDomain, 436
CreateObjRef(), System.MarshalByRefObject,

572
CreateSubdirectory() method, DirectoryInfo

class, 519, 522–23
CreateText() method, FileInfo class, System.IO,

526, 528–29
CreationTime property, FileSystemInfo class,

519
csc.exe compiler, 33

@ symbol (response files), 39
command-line flags, 36

■INDEX 961

4193chIDX.qxd 8/14/05 3:21 PM Page 961

compile parameters, 36
configuration, 34–35
/debug command-line flag, 41
default response file (csc.rsp), 40
a first C# application, 36
GAC utility, gacutil.exe, 35
mscorlib.dll, 37
multiple external assemblies, 39
multiple source files, 38–39
/noconfig command-line flag, 40
/nostdlib command-line flag, 37
/out command-line flag, 36
Path, setting, 34–35
reasons for using, 34
/reference command-line flag, 37
referencing external assemblies, using

keyword, 37
response files, 39
/target command-line flag, 36
wildcard character, 38

CurrentContext property, Thread type, 460
CurrentLeaseTime, ILease interface remoting,

593
CurrentPriority, ProcessThread type, 432
CurrentState, ILease interface remoting, 593
CurrentThread property, Thread type, 460–61
custom, 846–47
custom controls, 737–43

design time appearance, 746
hosts, 744–45

custom dialog boxes, 750–52
custom events, 741
custom exceptions, structured exception

handling, 209–10
custom namespaces, 133–34
custom properties, 741–44
custom type conversion

CIL special names, 306
conversions among related class types, 301–2
explicit keyword, 302–4
implicit conversions, 301
implicit keyword, 302–6
numerical converstions, 301

custom types in XML web services, 948
custom view states, state management in

ASP.NET, 893–94
CustomAttributeBuilder, System.Reflection.

Emit namespace, 505
customErrors element, Web.config, ASP.NET,

913–15
CustomValidator control, ASP.NET, 884

■D
data caching, ASP.NET, 901, 903–5
Data property, System.Exception, 200, 206–7
data providers

abstracting using interfaces, 768–69
asynchronous, .NET 2.0, 792–93
command builder type, 816

core objects, 761
factory pattern, .NET 2.0, 770–74
overview, 759–61

DataAdapter object, ADO.NET data providers,
761

Database property, DbConnection, ADO.NET,
779

DataBind() method, System.Web.UI.Control in
ASP.NET, 867

DataColumn, ADO.NET, 796–97
DataColumn objects, ADO.NET, 796, 798
DataColumn, System.Data, ADO.NET, 764
DataReader object, ADO.NET data providers,

761
DataRelation objects in multitabled DataSet

objects, ADO.NET, 817–20
DataRelation, System.Data, ADO.NET, 764
DataRow objects, ADO.NET, 798–801
DataRow, System.Data, ADO.NET, 764
DataRow.RowState property, ADO.NET, 799–800
DataRowState enumeration values, ADO.NET,

799
DataSet class, ADO.NET, 764, 794–96
DataSetName property, ADO.NET DataSet class,

795
Datasource property, DbConnection, ADO.NET,

779
DataTable class, ADO.NET, 764, 800
DataTableReader objects, ADO.NET, 802
DataTableReader, System.Data, ADO.NET, 764
DataType property, ADO.NET DataColumn

object, 796
DataView class, ADO.NET, 765, 810
DateTimePicker control, 721
DbCommand, ADO.NET, 782
DbConnection, ADO.NET, 779
DbDataAdapter members, 811
DbDataReader object, ADO.NET, 782–83
DbParameter, ADO.NET, 789
DbType property, ADO.NET DbParameter, 789
debug vs release build, 318–19
debugging and tracing, ASP.NET, 849–50
DecimalPlaces property, NumericUpDown, 728
decisions and relational/equality operators,

94–96
Decrement() method, Interlocked type,

multithreaded applications, 472
deep copy, cloneable objects (ICloneable), 242
default constructor, 70–71
default input button, 719
default keyword, generics, 333
default.aspx content page example, ASP.NET,

875–76
DefaultEvent attribute, controls, 748
DefaultEventAttribute,

System.ComponentModel, 746
DefaultProperty attribute, controls, 748
DefaultPropertyAttribute,

System.ComponentModel, 746
DefaultValue attribute, controls, 747

■INDEX962

4193chIDX.qxd 8/14/05 3:21 PM Page 962

DefaultValue property, ADO.NET DataColumn
object, 796

DefaultValueAttribute,
System.ComponentModel, 746

DefaultWsdlHelpGenerator.aspx, 925–26
DefineEnum() method, ModuleBuilder type,

510
DefineResource() method, ModuleBuilder type,

510
DefineType() method, ModuleBuilder type, 510
delayed digital signing of assemblies, 375–76
delegates

asynchronous call, 260–61
CIL code for simple example, 264
compared with C-style callbacks, 259
complex example, 270–71
contravariance, 276
covariance, 275–76
delegate keyword, 259
description, 259
example, 266–68
information in, 259
multicast, 262, 268–70
and multithreaded applications, 451, 453
NullReferenceException, 267–68
overview, 255
as parameters, 271–73, 275
simple example, 263–64
synchronous call, 260
type safe, 264–65
types, 17

delegation, description, 160
Delete() method

ADO.NET DataRow object, 799
DirectoryInfo class, 519
FileInfo class, System.IO, 526

DeleteCommand property in updating,
ADO.NET, 815

deleting
records, ADO.NET, 787
rows, ADO.NET, 806–7

deployment, .NET runtime, 29
derived class, description, 146
DescriptionAttribute,

System.ComponentModel, 746
Designer.cs file, 702–3
detailed content page example, ASP.NET,

881–83
developing software, 3–5
device coordinates, GDI+ coordinate systems,

659–60
dialog boxes, custom, 750–52
differences, classes, objects, references, 179
digital signatures, and strong names, 371, 373
Direction property, ADO.NET DbParameter, 789
directives, compiler, 478
Directory

DirectoryInfo types, input/output,
System.IO, 517–19

FileInfo class, System.IO, 526

Directory type, System.IO, 523–24
DirectoryInfo class

Create(), CreateSubdirectory() methods,
519, 522–23

Delete() method, 519
GetDirectories() method, 519
GetFiles() method, 520–22
MoveTo() method, 520
Parent property, 520
Root property, 520

DirectoryName, FileInfo class, System.IO, 526
dirty windows, Paint event, GDI+, 656
DISCO web service UDDI directory, 921
disconnected layer, ADO.NET, 793
DispatchMessage() method, remoting

ChannelServices, 579
disposable objects

code example, 191
Dispose() method, 191
IDisposable interface, 191–93

disposing Graphics objects, GDI+, 658–59
dll, 485
DLL hell, 5
DllImport attribute, 409
/doc compiler flag, 177
Dock property, controls, 755–56
DockStyles enumeration values, 755
Document Object Model (DOM), ASP.NET, 836
documentation of source code, with XML,

175–77
DoEvents() method, Application class, 609
DomainUnload event, System.AppDomain,

436, 439–40
DomainUpDown, 728
dot operator and references, 180
dotnetfx.exe, .NET runtime deployment, 29
download cache, 352
DriveInfo class, System.IO, 517, 524–25
dynamic assemblies

code DOM provider, 513
ConstructionBuilder example, 511–12
definition, 505
emitting a method, 512
emitting type and member variables

examples, 510
overview, 477
vs. static assemblies, 504–5
using dynamically generated assembly,

512–13
dynamic loading, 402–3
dynamic positioning, controls, 754–55
dynamic web service discovery using DISCO,

921

■E
ECMA standardization, .NET Framework, 29
edit processing members, ADO.NET DataRow

object, 799
Eiffel .NET programming language, 8

■INDEX 963

4193chIDX.qxd 8/14/05 3:21 PM Page 963

Emit() method, System.Reflection.Emit.
ILGenerator, 506

EmitCall() method, System.Reflection.Emit.
ILGenerator, 506

emitting dynamic assembly, 506–13
Emitting HTML, ASP.NET, 860
EmitWriteLine() method,

System.Reflection.Emit.ILGenerator,
506

EnableThemeing property,
System.Web.UI.Control in ASP.NET, 867

EnableTheming, ASP.NET <%@Page%>
directive attribute, 846

EnableViewState, ASP.NET <%@Page%>
directive attribute, 846

EnableVisualStyles() method, Application class,
609

encapsulation
accessor (get) and mutator (set) methods,

148
black box programming, 148
class properties, 149–53
description, 145
get, set keywords for class properties, 149–50
get, set properties vs. accessor and mutator

methods, 150–53
public fields and data validation, 148
read-only class properties, 153–54
static class properties, 154–55
visibility of get/set statements, 153
write-only class properties, 153–54

End() method, ASP.NET HTTP Response, 860
EndExceptionBlock() method,

System.Reflection.Emit.ILGenerator,
506

EndInvoke() method, multithreaded
applications, 453–54

EndInvoke() method, SoapHttpClientProtocol
class, 944

EndScope() method,
System.Reflection.Emit.ILGenerator,
506

EnforceConstraints property, ADO.NET DataSet
class, 795

EnumBuilder, System.Reflection.Emit
namespace, 505

enumerable types (IEnumerable and
IEnumerator), 235–37

enumerating controls with Panel control,
ASP.NET, 867–68

enumeration types, 17
enums, 107–10, 491
Equals(), System.Object instance-level

member, 111
Error event, ASP.NET, 863–64
error processing members, ADO.NET DataRow

object, 798
ErrorBlinkStyle properties, controls, 730
ErrorProviders, 729–31
escape characters, summary, 124

event handling in ToolStrips, Visual Studio 2005,
643

event interface, 256–57, 259
EventBuilder, System.Reflection.Emit

namespace, 505
EventInfo class, System.Reflection namespace,

396
events

adding to custom controls, 741
compared with delegates, 277
event keyword, 277
example, 277
explanation, 278–79
listening to incoming events, 279–80
Microsoft recommended pattern, 281–82
overview, 255
registration, 279–81

exception handling, structured
advantages, 199
application-level exceptions, 208–10
bugs, description, 197
catching exceptions, 203–4
configuring exception state, 204
custom exceptions, 209–10
entities used in, 199
exceptions, description, 197
finally block, 215–16
generic exceptions, 202, 213
inner exceptions, 214–15
keywords used, 199
multiple exceptions, 212–13
overview, 197
possible .NET exceptions, 216
rethrowing exceptions, 214
simple example, 200, 202–4
System.Exception, 199–200, 202–4
system-level exceptions, 208
System.Serializable attribute, 211
template, exception, 211
throwing an exception, 202–3
traditional exception handling, 198
try/catch block, 203–4
typed exceptions, 217
unhandled exceptions, 217
user errors, description, 197
Visual Studio 2005 features, 216, 218–19

Exchange() method, Interlocked type,
multithreaded applications, 472

exe compile target, 607
ExecutablePath property, Application class, 609
ExecuteAssembly(), System.AppDomain, 436
ExecuteNonQuery(), DbCommand, ADO.NET,

782
ExecuteReader(), DbCommand, ADO.NET, 782
ExecuteScalar(), DbCommand, ADO.NET, 782
ExecuteXmlReader(), DbCommand, ADO.NET,

782
Exit() method, Application class, 609
ExitCode, System.Diagnostics.Process, 428
ExitTime, System.Diagnostics.Process, 428

■INDEX964

4193chIDX.qxd 8/14/05 3:21 PM Page 964

explicit casting, 170–71, 224–25
explicit interface implementation, 229–31
explicit keyword, custom type conversion,

302–4
Expression property, ADO.NET DataColumn

object, 797
eXtensible Markup Language. See XML
Extension property, FileSystemInfo class, 519
externally referenced assemblies, in common

intermediate language (CIL), 488

■F
field directive, common intermediate language

(CIL), 493
FieldBuilder, System.Reflection.Emit

namespace, 505
FieldInfo class, System.Reflection namespace,

396
File class, System.IO, 529, 531
File, FileInfo types, input/output, System.IO,

518–19
FileAttributes enum, FileSystemInfo class, 521
FileInfo class, System.IO, 526–29
FileStream class, System.IO, 532–33
FileStream type, input/output, System.IO, 518
FileSystemInfo class, 519
FileSystemWatcher class, System.IO, 540–41
FileSystemWatcher type, input/output,

System.IO, 518
Fill() method, ADO.NET, data adapter, 811
filters, ADO.NET, 807–8
finalizable objects, 188
finalization details, 191
finalize(), overriding, 189–90
Finalize(), System.Object instance-level

member, 112
finally block, structured exception handling,

215–16
FindMembers() method, System.Type class,

397
fixed keyword, 315
FlatStyle property, Button, 709, 711
FlowLayoutPanel, controls, 756–57
Flush() method

ASP.NET HTTP Response, 860
BinaryWriter class, 538
Stream class, System.IO, 532
TextWriter, System.IO, 534

FontDialog class, GDI+, 671–72
fonts, GDI+, 665

enumerating, 669–70
faces and sizes, 667, 669
families, 666–67

for loop, 92
forcing garbage collection, 186–88
foreach loop, 93
Form class

events, 618–19
example program, 619–20

life cycle, 619
methods, 618
properties, 618

form control declarations, ASP.NET, 847
form data, access in ASP.NET, 858–59
form inheritance, 752–54
Form object inheritance chain, 612
Form, System.Windows.Forms, 606
Format() method, System.Enum, 109
forms, 605
forms controls, 699
Forth .NET programming language, 8
Fortran .NET programming language, 8
FullName property, FileSystemInfo class, 519
fully qualified type names, 134–36
FxCop development tool, 62

■G
GAC, default location in Windows, 25, 371
GAC utility, gacutil.exe, 35
garbage collection

AddMemoryPressure() method, 185
AddRef() not required, 181
application domain, 188
application roots, 182
code example, 185–87
Collect() method, 185–87
CollectionCount() method, 185
compared with C++, 181
finalizable objects, 188
finalization details, 191
forcing, 186–87
GetGeneration() method, 185
GetTotalMemory() method, 185
MaxGeneration property, 185
memory leaks, 72
object generations, 184
object graph use, 182–83
overriding finalize(), 189–90
overview, 179
PInvoke, 189
reachable objects, 180
Release() not required, 181
SuppressFinalize() method, 185
System.GC, 185
threads suspended, 182
timing of, 181
unmanaged resources, 185, 189–90, 193
WaitForPendingFinalizers() method, 185–86
when heap objects are removed, 180, 182

GDI+
color values, 663
ColorDialog class, 664–65
coordinate systems, 659–60
core namespaces, 649
custom point of origin, 662
disposing graphics objects, 658–59
FontDialog class, 671–72
fonts, 665

■INDEX 965

4193chIDX.qxd 8/14/05 3:21 PM Page 965

enumerating, 669–70
faces and sizes, 667, 669
families, 666–67

hit testing nonrectangular images, 688, 690
hit testing rendered images, 687–88
methods in FontFamily, 666
namespaces, 650
overview, 649
PageUnit property, custom unit of measure,

661–62
Pen properties, 673
Pens collection, 673
PictureBox type, 684–86
System.Drawing namespace, 650
System.Drawing.Brush, 677

HatchBrush, 678–79
LinearGradientBrush, 681
TextureBrush, 679–80

System.Drawing.Drawing2D, 672
Pen types, 673–74
Pens, LineCap, 675–76

System.Drawing.Font, 665
System.Drawing.Graphics class, 653
System.Drawing.Image, 682, 684
unit of measure, 660

generic method
example code, 329–32
type parameter omission, 330–32

generic structures, classes, 332–33
generics

base classes, 339–40
boxing and unboxing issues, 321–25
constraining type parameters using where,

335–38
custom generic collections, 334–35
default keyword, 333
delegates, 341–42
delegates using .NET 1.1, 342–43
generic methods, 329–32
interfaces, 340–41
lack of operator constraints, 338–39
nested delegates, 343
overview, 321
System.Collections.Generic.List<>, 325–26
uses of, 321–25

Gephardt, Sean, 45
GET and POST, ASP.NET, 837–38
GET data type, 940
GetAssemblies(), System.AppDomain, 436
GetChanges() method, ADO.NET DataSet class,

795
GetChannel() method, remoting

ChannelServices, 579
GetChildRelations() method, ADO.NET DataSet

class, 795
GetConstructors() method, System.Type class,

396
GetCurrentProcess(),

System.Diagnostics.Process, 429
GetCurrentThreadId(), System.AppDomain,

435
GetDirectories() method, DirectoryInfo class,

519
GetDomain(), GetDomainD() methods, Thread

type, 460
GetEnumerator() method, ControlCollection,

702
GetEvents() method, System.Type class, 396
GetFactory() method, ADO.NET, 771
GetFields() method, System.Type class, 396
GetFiles() method, DirectoryInfo class, 520–22
GetHashCode(), System.Object instance-level

member, 111
GetInterfaces() method, System.Type class, 396
GetInvocationList() method,

System.MulticastDelegate/System
Delegate, 263

GetLifetimeServices(),
System.MarshalByRefObject, 572

GetMembers() method, System.Type class, 396
GetMethods() method, System.Type class, 396
GetName() method, System.Enum, 109
GetNestedTypes() method, System.Type class,

396
GetObjectData() method, serialization, 558–60
GetParentRelations() method, ADO.NET

DataSet class, 795
GetProcesses(), System.Diagnostics.Process,

429
GetProperties() method, System.Type class, 396
GetRegisteredActivatedClientTypes() method,

RemotingConfiguration, 580
GetRegisteredWellKnownClientTypes()

method, RemotingConfiguration, 580
GetRegisteredWellKnownServiceTypes()

method, RemotingConfiguration, 580
GetSchema() method, DbConnection,

ADO.NET, 779
get/set

accessor and mutator methods comparision,
150–52

visibility of statements, 153
GetType() method

System.Object class, 397
System.Object instance-level member, 111
System.Type class, 397

GetUnderlyingType() method, System.Enum,
109

GetUrlsForObject() method, remoting
ChannelServices, 579

GetValues() method, System.Enum, 109
Global Assembly Cache (GAC)

and assemblies, 348
default location in Windows, 25, 371
internal composition, 382, 384
overview, 25

Global.asax file, ASP.NET, 894–96
globalization element, Web.config, ASP.NET, 913
Globally Unique Identifier (GUID), 240–42, 371,

373

■INDEX966

4193chIDX.qxd 8/14/05 3:21 PM Page 966

Graphics object with no Paint event, GDI+, 657
GraphicsPath class, methods, GDI+, 689
GroupBox control, 711, 713
GUI programming

overview, 605
Visual Studio 2005, 621

■H
Handle, System.Diagnostics.Process, 428
HandleCount, System.Diagnostics.Process, 428
has-a relationship code example, 159–60
HasChanges() method, ADO.NET DataSet

class, 795
HasControls() method, System.Web.UI.Control

in ASP.NET, 867
HasErrors property, ADO.NET DataSet class,

795
Hashtable System.Collections class type, 250
HatchBrush, System.Drawing.Brush, 678–79
heap, and reference types, 98
HelpLink property, System.Exception, 200, 206
Hexadecimal property, NumericUpDown, 728
historical overview of programming

C++/MFC, 4
Component Object Model (COM), 5
C/Win32, 3
Java/J2EE, 4
Visual Basic 6.0, 4
Windows DNA, 5

hit testing
nonrectangular images, 688, 690
rendered images, 687–88

HTML
and ASP.NET, overview, 832
document structure, 833
form development, 833

HTTP channel, remoting, 568
HTTP Request, ASP.NET, 858
HTTP Request processing, ASP.NET, 857–59
HTTP Response processing, ASP.NET, 859–61
HTTP transport of web service, 922
HttpApplication members, ASP.NET, 897
HttpApplication type overview, 889
HttpApplicationState members, ASP.NET, 898
HybridDictionary,

System.Collections.Specialized, 253

■I
IasyncResult interface, 260–61
ICollection System.Collections interface, 247–48
ICollection System.IDictionaryEnumerator

interface, 249
ICollection System.Idictionaryinterface, 248
ICollection System.IList interface, 249
IComparer System.Collections interface, 247
icons, custom controls, 748–49
Id, ProcessThread type, 432
ID property, System.Web.UI.Control in ASP.NET,

867

Id, System.Diagnostics.Process, 428
IDataAdapter, System.Data, ADO.NET, 765
IDataParameter, System.Data, ADO.NET, 765
IDataReader, System.Data, ADO.NET, 765
IDbCommand interface, ADO.NET, 766
IDbCommand, System.Data, ADO.NET, 765
IDbConnection interface, ADO.NET, 765
IDbDataAdapter, IDataAdapter interface,

ADO.NET, 767
IDbDataAdapter, System.Data, ADO.NET, 765
IDbDataParameter, IDataParameter interface,

ADO.NET, 766
IDbDataReader, IDataReader interface,

ADO.NET, 767–68
IDbTransaction interface, ADO.NET, 765
IdealProcessor, ProcessThread type, 432
identity, private assemblies, 365
IDictionary System.Collections interface, 247
IDictionaryEnumerator System.Collections

interface, 247
IDisposable interface, unmanaged resources,

191–93
Idle event, Application class, 609
IEnumerable System.Collections interface, 247
IEnumerator, IEnumerable interfaces, indexer

technique, 290
IEnumerator System.Collections interface, 247
if/else statement, 94
IHashCodePRovider System.Collections

interface, 247
IIS

default web site, 830
deployment, XML web service, 925
description, 830
virtual directories, 831

IKeyComparer System.Collections interface,
247

ilasm.exe compiler, common intermediate
language (CIL), 477

ildasm exploration of manifest, 357
ILease interface remoting, 593
ILGenerator, System.Reflection.Emit

namespace, 505
IList System.Collections interface, 247
image processing in custom controls, 739–41
Image property, Button, 709
Image type core members, 682
ImageAlign property, Button, 709
images in ToolStrips, Visual Studio 2005, 641–43
implicit cast, 171
implicit keyword, custom type conversion,

302–6
Increment() method, Interlocked type,

multithreaded applications, 472
Increment property, NumericUpDown, 728
indexer technique

CIL internal code, 292
example, 290–91
IEnumerator, IEnumerable interfaces, 290
multidimensional collections, 293

■INDEX 967

4193chIDX.qxd 8/14/05 3:21 PM Page 967

overview, 289
System.Collection.ArrayList, 290–91
System.Collections.Specialized.

ListDictionary, 291–92
this[] syntax, 290–91

inheritance, 146, 752–54
base keyword in class creation, 156–57
colon operator, 155
containment/delegation inheritance model,

159–60
description, 146
has-a relationship code example, 159–60
is-a relationship code example, 155–56
multiple base classes not allowed, 157
picker utility, 753–54
protected keyword, 158
sealed classes, 159, 164

inheritance chain, page type in ASP.NET, 855–56
Inherits, ASP.NET <%@Page%> directive

attribute, 846
Init, ASP.NET Page events, 862
InitializeComponent() method, 703
InitializeLifetimeServices(),

System.MarshalByRefObject, 572
InitialLeaseTime, ILease interface remoting, 593
InnerException property, System.Exception,

200
in-place editing example, ASP.NET, 879–80
input/output, System.IO

asynchronous I/O, 542–43
BinaryReader, BinaryWriter, 538–39
BinaryReader, BinaryWriter types, 517
BufferedStream type, 517
Directory, DirectoryInfo types, 517–19
Directory type, 523–24
DriveInfo class, 524–25
DriveInfo type, 517
File class, 529, 531
File, FileInfo types, 518–19
FileInfo class, 525
FileStream class, 532–33
FileStream type, 518
FileSystemWatcher class, 518, 540–41
MemoryStream type, 518
namespace description, 517
overview, 517
Path type, 518
reading from a text file, 535
Stream class, 531
StreamReader, StreamWriter, 533
StreamWriter, StreamReader types, 518
StringReader, StringWriter, 536–37
StringWriter, StringReader types, 518
writing to a text file, 534–35

InsertCommand property in updating,
ADO.NET, 814

inserting records, ADO.NET, 786
installing .NET 2.0 Framework SDK, 33
InterceptArrowKeys property, UpDownBase,

728

interface keyword, 221
interfaces

abstract base class comparison, 224
in arrays, 228
cloneable objects (ICloneable), 238–42
colon operator, 222
common intermediate language (CIL), 490
comparable objects (IComparable), 242–44
custom interface example, 221–22
custom properties and sort types, 246
and data providers, ADO.NET, 768–69
deep copy, 242
definition, 221
determining using as keyword, 225
determining using explicit cast, 224–25
determining using is keyword, 225–26
enumerable types (IEnumerable and

IEnumerator), 235–37
explicit implementation, 229–31
hierarchies, 232
implementing, 223
invoking objects based on, 224
multiple base interfaces, 233
multiple sort orders (IComparer), 245–46
name clashes, 229–31
overview, 221
shallow copy, 238–41
struct, derive from System.ValueType, 222
System.Collections interfaces, 247
System.Object base class, 222
types, 17
using as a parameter, 226–27
using as a return value, 228
Visual Studio 2005, 234–35

Interlocked type, multithreaded applications,
472

Interlocked type, System.Threading
Namespace, 459

Intermediate Language Disassembler utility
(ildasm.exe)

CIL code display, 27
icons, 26
manifest display, 28
overview, 26
type metadata display, 28

intermediate language (IL), 10
internal access modifier, 77
Interrupt() method, Thread type, 460
intrinsic types in CTS, VB.NET, C#, C++, 18
Invalidate() method and Paint event, GDI+,

656–57
InvalidCastException, boxing and unboxing, 322
inventory content page example, ASP.NET,

877–78
Invoke() method, SoapHttpClientProtocol

class, 944
InvokeAsync() method,

SoapHttpClientProtocol class, 945
InvokeMember() method, System.Type class,

397

■INDEX968

4193chIDX.qxd 8/14/05 3:21 PM Page 968

IPC channel, remoting, 568, 583
is keyword, 107

determining interface support, 225–26
determining type, 172

is-a relationship code example, 155–56
IsAbstract, System.Type class, 396
IsAlive method, Thread type, 460
IsArray, System.Type class, 396
IsBackground method, Thread type, 460
IsClass, System.Type class, 396
IsCOMObject, System.Type class, 396
IsDefined() method, System.Enum, 109
IsEnum, System.Type class, 396
ISerializable interface, 557
IsGenericParameter, System.Type class, 396
IsGenericTypeDefinition, System.Type class,

396
IsInterface, System.Type class, 396
IsNestedPrivate, System.Type class, 396
IsNestedPublic, System.Type class, 396
IsNull() method, ADO.NET DataRow object,

799
IsNullable property, ADO.NET DbParameter,

789
IsPostBack property in HTTP Request

processing, ASP.NET, 859
IsPrimitive, System.Type class, 396
IsSealed, System.Type class, 396
IsValueType, System.Type class, 396
IsWellKnownClientType() method,

RemotingConfiguration, 580
ItemArray, ADO.NET DataRow object, 798
Items property, DomainUpDown, 728
iteration, 92–93
iteration, common intermediate language

(CIL), 499

■J
Java/J2EE language deficiencies, 4
Jitter, just-in-time (JIT) compiler, 14
Join() method, Thread type, 460

■K
key, CIL compiler flags, 485
Kill(), System.Diagnostics.Process, 429

■L
Label control, 704–5
language fundamentals

?? operator, 133
arrays, 127–30
basic program structure, 65–66
basic string operations, 123–24
boxing and unboxing, 104–6
C++ program structure compared with C#, 65
class definition and instantiation, 72
class member variable default values, 78
classes, definition, 69
command-line arguments, 67–68

constant data, 80
constructors, 70–71
custom namespaces, 133–34
decisions, 94–96
default constructor, 70–71
defining classes and creating objects, 69–70
destroying objects, 72
enums, 107–10
escape characters, 124
for, foreach looping, 67
foreach loop, 93
fully qualified type names, 134–36
garbage collection, 72
GetCommandLineArgs(), 67
internal vs external constant data, 81
is keyword, 107
iteration, 92–93
local variable default values, 79
for loop, 92
Main() method, 66
member variable initialization syntax, 79–80
member visibility, 76–78
method parameter modifiers, 89
namespaces, default Visual Studio 2005, 138
nested namespaces, 137–38
.NET formatting flags, 75–76
new keyword, 69–70
nullable types, 131, 133
objects, definition, 69
overview, 65
parameter-passing, 89–91
parsing values from string data, 121
passing reference types by reference, 102
passing reference types by value, 101–2
read-only fields, 82–83
relational/equality operators, 94–96
static classes, 88
static constructors, 86–87
static data, 84–86
static keyword, 83–88
static methods, 84
static read-only fields, 83
String.Concat() method, 124
strings, 124
System data types, 117–20
System.Array, 130
System.Boolean, 120
System.Char, 121
System.Console class, 73–75
System.DateTime, 122
System.Environment class, 68–69
System.Nullable<T>, 132
System.Object, 111–17
System.String data type, 123
System.Text.StringBuilder, 126–27
System.TimeSpan, 122
System.ValueType, 97
type visibility, 78
unboxing custom value types, 106
user-defined type (UDT), definition, 69–70

■INDEX 969

4193chIDX.qxd 8/14/05 3:21 PM Page 969

using aliases, 136–37
value types and reference types, 96–100,

103–4
verbatim strings, 125
while, do/while loops, 93

LargeChange property, TrackBar control, 724
LastAccessTime property, FileSystemInfo class,

519
LastWriteTime property, FileSystemInfo class,

519
late binding

description, 406
invoking methods with no parameters, 407
invoking methods with parameters, 407–8
overview, 391
System.Activator class, 406–7

layout components, System.Windows.Forms,
606

layout, controls, 756–57
lease-based lifetimes, remoting, 592–97
Length, FileInfo class, System.IO, 526
Length() method, Stream class, System.IO, 532
life cycle of a web page, ASP.NET, 861–63, 865
LinearGradientBrush, System.Drawing.Brush,

681
ListBox control, 715–16
ListDictionary, System.Collections.Specialized,

253
Load(), System.AppDomain, 436, 438
Load, ASP.NET Page events, 862
local variable default values, 79
LocalBuilder, System.Reflection.Emit

namespace, 505
locals directive, common intermediate

language (CIL), 498
Lock() method, ASP.NET HttpApplicationState

member, 898
lock token and multithreaded applications,

469–71
locking memory (unsafe), 315
looping, 92–93
Lutz Roeder’s Reflector for .NET development

tool, 62

■M
machine.config, 388
MachineName, System.Diagnostics.Process,

428
Main() method, multithreaded applications,

457
MainModule, System.Diagnostics.Process, 428
maintaining session data, ASP.NET, 906–8
MainWindowHandle,

System.Diagnostics.Process, 428
MainWindowTitle, System.Diagnostics.Process,

428
managed code, 8
managed heap, 180–84
manifest, assemblies, 348

MapPath() method, ASP.NET HTTP Request, 858
mapping

C# types to CIL types, 492–93
DBMS names, ADO.NET, 813
parameters to variables, CIL, 498

marshaling, remoting, 570
MaskedTextBox control, 707, 709
master pages example, ASP.NET, 872–73
MasterPageFile, ASP.NET <%@Page%> directive

attribute, 846
MasterPageFile, Page Type properties, ASP.NET,

856
Maximum, Minimum properties, TrackBar

control, 724
Maximum property, NumericUpDown, 728
maxstack directive, common intermediate

language (CIL), 497
MBV remoting, 586–89

client assembly, 588–89
server assembly, 587–88

MDI applications, Visual Studio 2005, 646
member variable initialization syntax, 79–80
member visibility, 76–78
MemberInfo class, System.Reflection

namespace, 396
MemberwiseClone(), System.Object instance-

level member, 112
memory allocation (unsafe), 314–15
memory management

first rule, 180
second rule, 182
third rule, 189
fourth rule, 192
Finalize() vs. IDisposable interface, 194–95
resource wrapper Microsoft code example,

194–95
memory management in CIL, 181–82
MemoryStream type, input/output, System.IO,

518
menu components, System.Windows.Forms,

606
menu control example, ASP.NET, 873
Menu selection prompts, Visual Studio 2005,

639
menu sytems, Visual Studio 2005, 634, 636–37
Merge() method, ADO.NET DataSet class, 795
message element, WSDL document elements,

938
Message property, System.Exception, 200, 210
metadata and type reflection, 392, 398–402
method group conversions, C# 2.0, 285–86
method hiding, description, 169–70
method parameter modifiers, 89
Method property,

System.MulticastDelegate/System
Delegate, 263

MethodBuilder, System.Reflection.Emit
namespace, 505

MethodInfo class, System.Reflection
namespace, 396

■INDEX970

4193chIDX.qxd 8/14/05 3:21 PM Page 970

methods
common intermediate language (CIL),

494–95
in FontFamily, GDI+, 666

Microsoft Express IDEs, overview, 50
Microsoft recommended event pattern, 281–82
Minimum property, NumericUpDown, 728
mnemonic keys in Label control, 704–5
mnemonics, CIL, 479
modifying application data, ASP.NET, 899–900
modifying tables, Command object, ADO.NET,

784–86
Module class, System.Reflection namespace,

396
module directive, common intermediate

language (CIL), 488
module set for a process example code, 432–33
ModuleBuilder, System.Reflection.Emit

namespace, 505, 509–10
Modules, System.Diagnostics.Process, 428
Monitor type, System.Threading Namespace,

459
MonthCalendar control, 719–21
MoveTo() method

DirectoryInfo class, 520
FileInfo class, System.IO, 526

mresources directive, common intermediate
language (CIL), 489

mscoree.dll, Common Language Runtime
(CLR), 20–21, 425

MSIL vs. CIL, 10
multicast delegate call, 262
multicasting, delegates, 268–70
multifile assemblies, 11, 352, 362–65
multiple base classes not allowed, 157
multiple base interfaces, 233
multiple exceptions, 212–13
multiple .NET Framework versions, 445
multiple result sets, DbDataReader object,

ADO.NET, 784
multiple sort orders (IComparer), 245–46
multitabled DataSet objects, ADO.NET, 817–20
multithreaded applications

AsyncCallback delegate, 456–57
asynchronous operations, 453–54
AsyncResult class, 457–58
atomic operations, 450
BeginInvoke(), 453–54, 456–58
CLR thread pool, 475–76
concurrency, 450, 467–70
delegate review, 451, 453
EndInvoke(), 453–54
execution speed vs. responsiveness, 465
foreground vs. background threads, 466–67
lock keyword and synchronization, 469–71
Main() method, 457
overview, 449
secondary thread creation, 462–63
state data, 458
synchronization, 450

synchronization attribute, 472–73
synchronizing threads, 455–56
synchronous operations, 451, 453
System.Threading Namespace, 459
System.Threading.Interlocked type and

synchronization, 471–72
Thread class, 449
thread relationship to process, AppDomain,

and context, 449–51
thread-volatile operations, 450
Timer callbacks, 473–74

Mutex type, System.Threading Namespace,
459

■N
name clashes in interfaces, 229–31
Name, FileInfo class, System.IO, 526
Name method, Thread type, 460–61
Name property, FileSystemInfo class, 519
namespace directive, common intermediate

language (CIL), 489
namespace keyword, 133–34
namespaces, 22–25
namespaces, default Visual Studio 2005, 138
NameValueCollection,

System.Collections.Specialized, 253
Nant development tool, 62
navigating between related tables, ADO.NET,

820–21
NDoc development tool, 62
nested namespaces, 137–38
nested type definitions, 161–62
.NET 1.x controls in Visual Studio 2005, 623
.NET Framework

base class libraries, 7
basic building blocks overview, 6
Common Language Infrastructure(CLI),

29–30
common language runtime (CLR) overview, 6
Common Language Specification (CLS)

overview, 6
Common Type System (CTS) overview, 6
Configuration utility, 369–70, 382
core features, 6
ECMA standardization, 29
interoperability with COM, 6
Mono, 30
.NET-aware programming languages, 8–9
non-Windows platforms, 29–30
overview, 6
Portable .NET, 30
Virtual Execution System (VES), 29
web links to .NET-aware languages, 8–9

.NET runtime deployment, 29

.NET type metadata
initial example, 14–15
overview, 14

.NET, why learn it, 3
netmodule file extension, 352, 362–64

■INDEX 971

4193chIDX.qxd 8/14/05 3:21 PM Page 971

new keyword, 69–70
CIL implementation, 181
references, 180

NewLine, TextWriter, System.IO, 534
newobj CIL instruction, 181
noautoinherit, 485, CIL compiler flags
node images in TreeViews, 734, 736
nonrectangular images, GDI+, 688, 690
nullable types, 131, 133
NullReferenceException, delegates, 267–68
numeric System data types, 120
NumericUpDown, 728
Nunit development tool, 62

■O
Oberon programming language, 8
object contexts

boundaries, 440
context 0, 440
context-agile, 441
context-bound, 441–42
overview, 425
program example, 442–43

object generations, 184
object graph

definition, 546
garbage collection, 182–83
reachable objects, 182–83
relationships, 547
simple example, 546–47

object keyword, boxing, 104–6
object lifetime

object generations, 184
overview, 179
System.GC, 185
when heap objects are removed, 180, 182

object oriented programming, 317–19
class, description, 139
class public interfaces, 144–45
constructors, example Employee class, 140
example Employee class, 139, 141
forwarding constructor calls using this, 143
has-a relationship, 146
is-a relationship, 146
method overloading, 141
overview, 139
Pillars of OOP, 4

encapsulation, 145, 148
inheritance, 146, 155
polymorphism, 147, 162

state of a class instance, description, 139
this keyword, 142–43

ObjectIDGenerator, serialization, 557
objects

definition, 69
differences from classes and references, 179

Obsolete attribute, 408–9
OnDeserializedAttribute, serialization, 557
OnDeserializingAttribute, serialization, 557

OnSerializedAttribute, serialization, 557
OnSerializingAttribute, serialization, 557
opcodes, CIL, 479, 495–97
OpCodes, System.Reflection.Emit namespace,

505
Open() method, FileInfo class, System.IO,

526–27
OpenRead() method, FileInfo class, System.IO,

526, 528
OpenText() method, FileInfo class, System.IO,

526, 528
OpenWrite() method, FileInfo class, System.IO,

526, 528
operator constraints, lack of with generics,

338–39
operator overloading

binary operators, 294–95
C# to CIL special names index, 299
cautions, 301
CIL internal code, 298–99
comparison operators, 297–98
description, 293
equality operators, 296–97
operation overloading in other languages,

299–300
operator keyword, 295
operators that can be overloaded, 293
overview, 289
shorthand assignment operators, 295
unary operators, 296

OptionalFieldAttribute, serialization, 557
Ordinal property, ADO.NET DataColumn

object, 797
Orientation property, TrackBar control, 724
origin point, GDI+, 662
out method parameter modifier, 89–90
outer variables, 284–85
output, CIL compiler flags, 485
overflow/underflow, 307–9
override keyword, description, 163–64

■P
page coordinates, GDI+ coordinate systems, 659
Page events, ASP.NET, 862
Page property, System.Web.UI.Control in

ASP.NET, 867
Page Type properties, ASP.NET, 856–57
PageUnit property, custom unit of measure,

GDI+, 661–62
Paint event, GDI+, 656
Panel control, 726–27
parameter, interface used as, 226–27
Parameter object, ADO.NET data providers, 761
ParameterBuilder, System.Reflection.Emit

namespace, 505
ParameterInfo class, System.Reflection

namespace, 396
parameterized command objects, ADO.NET,

788

■INDEX972

4193chIDX.qxd 8/14/05 3:21 PM Page 972

ParameterizedThreadStart delegate,
System.Threading Namespace, 459,
462–66

ParameterName property, ADO.NET
DbParameter, 789

parameter-passing, 89–91
Parameters, DbCommand, ADO.NET, 782
params method parameter modifier, 89, 91
parent forms in MDI applications, 646
Parent property

DirectoryInfo class, 520
System.Web.UI.Control in ASP.NET, 867

Parse() method, System.Enum, 109
parsing values from string data, 121
partial type modifier, 173–74
passing reference types, 101–2
PasswordChar property, Textbox, 705
Path, setting, 35
Path type, input/output, System.IO, 518
Peek() method, TextReader, System.IO, 535
PeekChar() method, BinaryReader class, 538
Pen properties, GDI+, 673
Pens collection, GDI+, 673
persistence of cookies, ASP.NET, 909–10
persisting datasets as XML, ADO.NET, 803
peverify.exe tool, compiling common

intermediate language (CIL), 487
philosophy of .NET, overview, 3
PictureBox type, 684–86
Pillars of OOP, 4

encapsulation, 145, 148
inheritance, 146, 155
polymorphism, 147, 162

pixel unit of measure, GDI+, 660
Platform Invocation Services (PInvoke), 6
pointer types and operators

& operator, 312–13
* operator, 312–13
> operator, 314
example, swap function, 313
field access, 314
table of operators, 310

Point(F) type, System.Drawing namespace,
651–52

polygons, GDI+, 688, 690
polymorphism

abstract classes, 164, 166
abstract methods, 166–69
description, 147
method hiding, 169–70
override keyword, 163–64
overview, 162
virtual keyword, 163–64

portType element, WSDL document elements,
938–39

Position, Stream class, System.IO, 532
POST data type, 940
PreInit, ASP.NET Page events, 862
preprocessor directives, 289, 316–19
PreRender, ASP.NET Page events, 862

primary thread, 426
Priority method, Thread type, 460, 462
PriorityBoostEnabled,

System.Diagnostics.Process, 429
PriorityClass, System.Diagnostics.Process, 429
PriorityLevel, ProcessThread type, 432
private access modifier, 77
private assemblies

configuration, 366, 368
description, 365
identity, 365
probing, 366, 368

Process class, System.Diagnostics namespace,
428

process identifier (PID), 425, 429–31
processes

definition, 425
module set example code, 432–33
overview, 425
process manipulation example code, 429–30
starting and stopping example code, 434–35
System.Diagnostics namespace, 427
thread examination example code, 430–31

ProcessExit event, System.AppDomain, 436,
439–40

ProcessModule type, System.Diagnostics
namespace, 428

ProcessModuleCollection, System.Diagnostics
namespace, 428

ProcessName, System.Diagnostics.Process, 429
ProcessorAffinity, ProcessThread type, 432
ProcessStartInfo, System.Diagnostics

namespace, 428
ProcessThread, System.Diagnostics namespace,

428
ProcessThread type, 432
ProcessThreadCollection, System.Diagnostics

namespace, 428
ProductName property, Application class, 609
ProductVersion property, Application class, 609
programming. See historical overview of

programming
properties

adding to custom controls, 741–44
common intermediate language (CIL),

494–95
internal representation, 152–53

PropertyBuilder, System.Reflection.Emit
namespace, 505

PropertyInfo class, System.Reflection
namespace, 396

protected access modifier, 77
protected internal access modifier, 77
protected keyword, 158
provider factory model, ADO.NET, 770–72
proxies and messages, remoting, 567–68
proxy code using Visual Studio 2005, XML web

services, 947–48
Proxy() method, SoapHttpClientProtocol class,

945

■INDEX 973

4193chIDX.qxd 8/14/05 3:21 PM Page 973

public access modifier, 77
publisher policy assemblies, 384–85
push and pop, 480, CIL

■Q
Query Analyzer, SQL Server, 775
Queue System.Collections class type, 250–52

■R
RadioButton control, 711, 713
RangeValidator control, ASP.NET, 884, 886
reachable objects, 180
Read() method

BinaryReader class, 538
Stream class, System.IO, 532
TextReader, System.IO, 535

ReadBlock() method, TextReader, System.IO, 535
ReadByte() method, Stream class, System.IO,

532
reading

cookies, ASP.NET, 911–12
resources, 697
from a text file, 535

ReadLine() method, TextReader, System.IO, 535
read-only class properties, 153–54
readonly keyword, 82–83
ReadOnly property

ADO.NET DataColumn object, 797
UpDownBase, 728

ReadToEnd() method, TextReader, System.IO,
535

ReadXml() method, ADO.NET DataSet class,
795

ReadXmlSchema() method, ADO.NET DataSet
class, 795

ready state, Menu selection in Visual Studio
2005, 639

real proxy, remoting, 568
Rectangle(F) type, System.Drawing namespace,

652–53
Redirect() method, ASP.NET HTTP Response,

860
redirecting users, ASP.NET, 861
ref method parameter modifier, 89–91
reference types, 96–100, 103–4
references

differences from classes and objects, 179
memory management using, 180–81
new keyword, 180

reflection, 395
Region class, System.Drawing namespace, 653
Register() method, ILease interface remoting,

593
RegisterActivatedClientType() method,

RemotingConfiguration, 580
RegisterChannel() method, remoting

ChannelServices, 579
registered data provider factories, ADO.NET,

771–72

RegisteredChannels property, remoting
ChannelServices, 579

RegisterWellKnownClientType() method,
RemotingConfiguration, 580

RegisterWellKnownServiceType() method,
RemotingConfiguration, 580

registration of events, 279–81
RegularExpressionValidator control, ASP.NET,

884, 886
RejectChanges() method, ADO.NET DataSet

class, 795
remoting

alternative hosts, 597
assemblies required, 574–75
asynchronous invocation, 602–3
automatic server-side loading, 597
CAO activation, 572–73
channels, 568–69
ChannelServices, 579
client-activated, 590–91
client-side configuration files, 585–86
configuration files, 584
default layers, 570
definition, 565
deploying remote server, 582
deployment, 574–75
determining MBR runtime information,

580–81
dispatcher, 569
example application, 575–78
formatters, 569
garbage collection, 592–97
hosting using IIS, 601–2
HTTP channel, 568
IIS hosting, 597
installing a Windows service, 600–601
IPC channel, 568, 583
lease configuration, 594–96
lease sponsorship, 596
lease-based lifetimes, 592–97
marshaling, 570
MBV objects, 586–89
namespaces, 566–67
.NET Framework architecture, 567
one-way invocation, 604
overview, 565
proxies and messages, 567–68
real proxy, 568
server-side configuration files, 584–85
singleton WKO activation, 573
singleton WKO and multiple clients,

581–82
TCP channel, 568, 582–83
transparent proxy, 567
Windows service construction, 597, 599
WKO activation, 572–73
WKO and CAO configuration summary, 574

RemotingConfiguration, 580
RemotingFormat property, ADO.NET DataSet

class, 795

■INDEX974

4193chIDX.qxd 8/14/05 3:21 PM Page 974

Remove() method
ASP.NET, 908
ASP.NET HttpApplicationState members, 898
ControlCollection, 702
System.MulticastDelegate/System Delegate,

263
RemoveAll() method

ASP.NET, 908
ASP.NET HttpApplicationState members, 898
System.MulticastDelegate/System Delegate,

263
RemoveAt() method

ASP.NET HttpApplicationState members, 898
ControlCollection, 702

removing controls, ASP.NET, 869–70
Renew() method, ILease interface remoting,

593
RenewOnCallTime, ILease interface remoting,

593
Request, ASP.NET HttpApplication members,

897
Request, Page Type properties, ASP.NET, 856
request/response cycle, HTTP, 829
RequiredFieldValidator control, ASP.NET,

884–85
resource writers in .NET, 694
ResourceResolve event, System.AppDomain, 436
resources in .NET, 691–93
resources using Visual Studio 2005, 694–95, 697
Responding, System.Diagnostics.Process, 429
Response

ASP.NET HttpApplication members, 897
Page Type properties, ASP.NET, 856

Resume() method, Thread type, 460
.resx files, 691–93
ResXResourceWriter, 694
return value, interface used as, 228
role of XML web services, 919–20
root, application, 182
Root property, DirectoryInfo class, 520
round-trip engineering, 481–85
RowState, ADO.NET DataRow object, 798
RPC protocol, 940
runat attribute, ASP.NET, 847
runtimes, MFC, VB 6, Java and .NET, 20

■S
SaveAs() method, ASP.NET HTTP Request, 858
saving CIL code using ildasm.exe, 481–83
script block, ASP.NET, 847
ScrollBars property, Textbox, 705
sealed classes, 159, 164
Seek() method

BinaryWriter class, 538
Stream class, System.IO, 532

SelectedIndex property, DomainUpDown, 728
SelectedItem property, DomainUpDown, 728
Semaphore type, System.Threading

Namespace, 459

separation of concerns, objects, 72
Serializable attribute, 409
serialization

BinaryFormatter object graph contents, 557
collections, 555–56
customizing using attributes, 560–61
customizing using ISerializable, 558–60
definition, 545
GetObjectData() method, 558–60
IFormatter interface, 549
ISerializable interface, 557
object graph, 546
ObjectIDGenerator, 557
OnDeserializedAttribute, 557
OnDeserializingAttribute, 557
OnSerializedAttribute, 557
OnSerializingAttribute, 557
OptionalField attribute, 561–63
OptionalFieldAttribute, 557
overview, 545
persisting user preferences example,

545–46
public and private fields, public properties,

548
Serializable attribute, 547–48
SerializationInfo, 557
System.Runtime.Serialization.Formatters.Bin

ary namespace, 548
type fidelity, 550
versioning, 561–63

SerializationInfo, serialization, 557
Serialized attribute, 409
Server

ASP.NET HttpApplication members, 897
Page Type properties, ASP.NET, 857

server controls in ASP.NET, 865–66
Server property, WebService base class, 929
server-side configuration files, remoting,

584–85
service element, WSDL document elements,

939–40
Session, ASP.NET HttpApplication members,

897
session cookies, ASP.NET, 909–10
session data, ASP.NET, 906–8
Session, Page Type properties, ASP.NET, 857
Session property, WebService base class, 929
session state and web.config, XML web services,

935
Session_End(), Global.asax event handlers in

ASP.NET, 896
Session_Start(), Global.asax event handlers in

ASP.NET, 896
SessionID, ASP.NET, 908
sessionState element, Web.config, ASP.NET, 913,

915–16
SetLength() method, Stream class, System.IO,

532
shallow copy, cloneable objects (ICloneable),

238–41

■INDEX 975

4193chIDX.qxd 8/14/05 3:21 PM Page 975

SharpDevelop IDE
Assembly Scouts, 48
compiling common intermediate language

(CIL), 486
download link, 46
features, 47
installing or compiling, 46
overview, 46
Project and Classes Scouts, 47
Windows Forms Designers, 49–50

shopping cart application, ASP.NET, 906–8
single call WKO activation, remoting, 573
single file code model, ASP.NET, 842–43
single-file assemblies, 11
singleton WKO activation, remoting, 573
sink object, callback interfaces, 256–57, 259
Size property, ADO.NET DbParameter, 789
sizeof keyword, 316
SkinID property, System.Web.UI.Control in

ASP.NET, 867
Sleep() method, Thread type, 460
SmallChange property, TrackBar control, 724
Smalltalk .NET programming language, 8
sn.exe, strong name utility, 371, 373, 375–76
SOAP bindings, 941–42
SOAP transport of web service, 922
SoapFormatter, serialization, 548, 552
SoapHttpClientProtocol class, 944–45
SoapVersion property, WebService base class,

929
software development, 3–5
sort order of tables, ADO.NET, 807–8
Sorted property, DomainUpDown, 728
SortedList System.Collections class type, 250
sorting and paging example, ASP.NET, 878–79
spawning child forms in MDI applications,

647–48
SponsorshipTimeout, ILease interface

remoting, 593
SQL command autogenerating, ADO.NET,

816–17
SQL for Fill() and Update(), ADO.NET, data

adapter, 811
stack, and value based types, 96
Stack System.Collections class type, 250, 252–53
stackalloc keyword, 314–15
stack-based programming, 480, CIL
StackTrace property, System.Exception, 200, 205
standard dialogs, System.Windows.Forms, 606
Start() method

System.Diagnostics.Process, 429
Thread type, 460

StartAddress, ProcessThread type, 432
starting and stopping a process example code,

434–35
StartTime

ProcessThread type, 432
System.Diagnostics.Process, 429

StartupPath property, Application class, 609
state data, multithreaded applications, 458

state management, 889–91
State property, DbConnection, ADO.NET, 779
stateful data, XML web services, 933, 935
stateless, description, HTTP, 830
static assemblies, 504
static class properties, 154–55
static keyword, 83–88
static readonly keywords, 83
static web service discovery using DISCO, 921
StatusBar vs. StatusStrip, 633
StatusStrip, Visual Studio 2005, 633–34, 636–37
stored procedures using DbCommand,

ADO.NET, 790–91
Stream class, System.IO, 531–32
StreamReader, StreamWriter

direct creation, 536
System.IO, 533

StreamWriter, StreamReader types,
input/output, System.IO, 518

StringCollection,
System.Collections.Specialized, 253

String.Concat() method, 124
StringDictionary,

System.Collections.Specialized, 253
StringEnumerator,

System.Collections.Specialized, 253
String.Format() method, 76
StringReader, StringWriter, System.IO, 536–37
strings

comparing, 124
internal .NET string processing, 126
iterating over, 124

StringWriter, StringReader types, input/output,
System.IO, 518

strong names in assemblies, 348, 357, 371,
373–74

structures
common intermediate language (CIL), 491
and enumerations, value based types, 97
types, 16
in XML web services, 949–50

submitting form data, ASP.NET, 837–38
subsystem directive, common intermediate

language (CIL), 489
Suspend() method, Thread type, 460
switch statement, 95–96
Synchronization attribute

context bound objects, 442
multithreaded applications, 472–73

synchronizing threads, 455–56
synchronous delegate call, 260
System data types, 117–18
System.Activator class, late binding, 406–7
System.AppDomain class

AssemblyLoad event, 436
AssemblyResolve event, 436
BaseDirectory(), 436
CreateDomain(), 435, 437
CreateInstance(), 436
DomainUnload event, 436

■INDEX976

4193chIDX.qxd 8/14/05 3:21 PM Page 976

ExecuteAssembly(), 436
GetAssemblies(), 436
GetCurrentThreadId(), 435
Load(), 436, 438
ProcessExit event, 436
ResourceResolve event, 436
TypeResolve event, 436
UnhandledException event, 436
Unload(), 436, 439–40

System.ApplicationException, structured
exception handling, 208–10

System.Array, 130
System.Boolean, 120
System.Char, 121
SystemCLSCompliant(), CLS compliance

verification, 20
System.Collection.ArrayList, indexer technique,

290–91
System.Collections class types, 249

ArrayList, 250–51
Hashtable, 250
Queue, 250–52
SortedList, 250
Stack, 250, 252–53

System.Collections interfaces, 247–49
System.Collections.Generic class overview, 321
System.Collections.Generic.List<>

CIL code, 326
classes, 327
generics, 325
naming convention, 327
nongeneric namespaces, 327
nongeneric namespaces mimiced, 326

System.Collections.Specialized, 253
System.Collections.Specialized.ListDictionary,

indexer technique, 291–92
System.ComponentModel, 746
System.ComponentModel.Component, Form

object inheritance chain, 612
System.Configuration namespace, 387
System.Console class, 73–75

basic I/O, 73
formatting output, 74–75

System.ContextBoundObject, 441
System.Data, ADO.NET, 764–65

Contraint, 764
DataColumn, 764
DataRelation, 764
DataRow, 764

System.DateTime, 122
System.Delegate base class, 262
System.Diagnostics namespace, 428
System.Diagnostics.Process, 428–29
System.Drawing, GDI+ namespaces, 650
System.Drawing namespace

core types, 650–51
Point(F) type, 651–52
Rectangle(F) type, 652–53
Region class, 653
utility types, 651

System.Drawing.Brush, 677
System.Drawing.Drawing2D

core classes, 672
GDI+ namespaces, 650
Pen types, 673–74
Pens, LineCap, 675–76

System.Drawing.Font, GDI+, 665
System.Drawing.Graphics class

methods, 653
Paint sessions, 655–56
properties, 654

System.Drawing.Image, 682, 684
System.Drawing.Imaging, GDI+ namespaces,

650
System.Drawing.Printing, GDI+ namespaces,

650
System.Drawing.Text, GDI+ namespaces, 650
System.Enum, 109–10
System.Environment class, 68–69
System.EventHandler, Application Exit, 611
System.Exception

Data property, 200, 206–7
HelpLink property, 200, 206
InnerException property, 200
Message property, 200, 210
StackTrace property, 200, 205
TargetSite property, 200, 204

System.GC, 185–87
System.Guid, 240–42
System.MarshalByRefObject

CreateObjRef(), 572
Form object inheritance chain, 612
GetLifetimeServices(), 572
InitializeLifetimeServices(), 572

System.MulticastDelegate base class, 262
System.MulticastDelegate/System Delegate

members, 263
System.Nullable<T>, 132
System.Object, 111

default behavior, 112–13
Equals(), 117
Equals(), operator overloading, 296–97
Form object inheritance chain, 612
GetType() method, 397
instance-level members, 111
overriding default behavior, 113
overriding Equals(), 114–15
overriding GetHashCode(), 115–16
overriding members example, 116
overriding ToString(), 114
ReferenceEquals(), 117
static members, 117
vs. System.ValueType, 97

System.OverflowException, 307–9
System.Reflection, 396
System.Reflection.Emit namespace

creating dynamic CIL assemblies, 505
overview, 477

System.Reflection.Emit.ILGenerator, 506
System.Resources namespace, 691

■INDEX 977

4193chIDX.qxd 8/14/05 3:21 PM Page 977

System.Runtime.Remoting, remoting
namespace, 566

System.Runtime.Remoting.Activation, remoting
namespace, 566

System.Runtime.Remoting.Channels, remoting
namespace, 566

System.Runtime.Remoting.Channels.Http,
remoting namespace, 566

System.Runtime.Remoting.Channels.Ipc,
remoting namespace, 566

System.Runtime.Remoting.Channels.Tcp,
remoting namespace, 566

System.Runtime.Remoting.Contexts, remoting
namespace, 566

System.Runtime.Remoting.Lifetime, remoting
namespace, 566

System.Runtime.Remoting.Messaging,
remoting namespace, 566

System.Runtime.Remoting.Metadata, remoting
namespace, 566

System.Runtime.Remoting.MetadataServices,
remoting namespace, 566

System.Runtime.Remoting.Metadata.
W3cXsd2001, remoting namespace,
566

System.Runtime.Remoting.Proxies, remoting
namespace, 567

System.Runtime.Remoting.Services, remoting
namespace, 567

System.Serializable attribute, structured
exception handling, 211

System.String data type, 123
System.SystemException, structured exception

handling, 208
System.Text.StringBuilder, 126–27
System.Threading Namespace

Interlocked type, 459
Monitor type, 459
Mutex type, 459
ParameterizedThreadStart delegate, 459,

462–63, 465–66
Semaphore type, 459
Thread type, 459–60
ThreadPool type, 459, 475–76
ThreadPriority enum, 459
ThreadStart delegate, 459, 463–64
ThreadState enum, 459
Timer type, 459
TimerCallback delegate, 459, 473–74

System.TimeSpan, 122
System.Type class, 396–97
System.ValueType, 97
System.ValueType, struct default base, 222
System.Web namespace, ASP.NET 2.0, 842
System.Web.Caching namespace, ASP.NET 2.0,

842
System.Web.Hosting namespace, ASP.NET 2.0,

842
System.Web.Management namespace, ASP.NET

2.0, 842

System.Web.Profile namespace, ASP.NET 2.0,
842

System.Web.Security namespace, ASP.NET 2.0,
842

System.Web.Services.Configuration, XML web
services namespaces, 922

System.Web.Services.Description, XML web
services namespaces, 922

System.Web.Services.Discover, XML web
services namespaces, 922

System.Web.Services.Protocols, XML web
services namespaces, 922

System.Web.ServicesXML web services
namespaces, 922

System.Web.SessionState namespace, ASP.NET
2.0, 842

System.Web.UI.Control in ASP.NET, 867
System.Web.UI.Page, ASP.NET, 856
System.Web.UI.x namespace, ASP.NET 2.0, 842
System.Windows.Forms, 605–6, 699
System.Windows.Forms.ContainerControl,

Form object inheritance chain, 612
System.Windows.Forms.Control

core properties, 612–13
events, 613
Form object inheritance chain, 612
methods, 613–14

System.Windows.Forms.Form, Form object
inheritance chain, 612

System.Windows.Forms.ScrollableControl,
Form object inheritance chain, 612

■T
tab order for controls, 718
TabControl control, 722–23
Table, ADO.NET DataRow object, 798
Table property, ADO.NET DataColumn object,

797
TableLayoutPanel, controls, 756–57
Target property,

System.MulticastDelegate/System
Delegate, 263

TargetSite property, System.Exception, 200, 204
TCP channel, remoting, 568, 582–83
template, exception code expansion, 211
text based Windows.Forms coding, 606
Text property, UpDownBase, 728
TextAlign property

Button, 709
Textbox, 705
UpDownBase, 728

TextBox control, 705–7
TextPad development editor, 41

C Shart Helpers clip library, 45
configuring for C#, 42–43
executing programs, 44
predefined run commands, 44–45

TextReader, System.IO, 535
TextureBrush, System.Drawing.Brush, 679–80

■INDEX978

4193chIDX.qxd 8/14/05 3:21 PM Page 978

TextWriter, System.IO, 534
Theme, Page Type properties, ASP.NET, 857
this keyword, 142–43
this[] syntax, indexer technique, 290–91
ThousandsSeparator property,

NumericUpDown, 728
Thread type, 449, 459–62
ThreadExit event, Application class, 609
Thread.GetDomain(), 449
ThreadPool type, System.Threading

Namespace, 459, 475–76
ThreadPriority enum, System.Threading

Namespace, 459
threads

example code, 430–31
hyperthreading, 427
multithreading, 426
overview, 426
suspended during garbage collection, 182
Thread Local Storage (TLS), 427
time slice, 427

Threads, System.Diagnostics.Process, 429
ThreadStart delegate, System.Threading

Namespace, 459, 463–64
ThreadState enum, System.Threading

Namespace, 459
ThreadState method, Thread type, 460
ThreeState property, Button, 711
ThrowException() method,

System.Reflection.Emit.ILGenerator,
506

TickFrequency property, TrackBar control, 724
TickStyle property, TrackBar control, 724
time slice, 427
Timeout() method, SoapHttpClientProtocol

class, 945
Timer type, System.Threading Namespace, 459
Timer, Visual Studio 2005, 637–38
TimerCallback delegate, System.Threading

Namespace, 459, 473–74
tokens

formatting output, 74–75
in MaskedTextBox control, 707

ToolBar components in ToolStrips, 639–41
ToolStripMenuItem types, Visual Studio 2005,

632–33
ToolStrips in Visual Studio 2005, 639–41
ToolTip control, 721–22
ToString(), System.Object instance-level

member, 112
TotalProcessorTime, ProcessThread type, 432
Trace, ASP.NET <%@Page%> directive attribute,

846
trace element attributes, Web.config, ASP.NET,

913
trace element, Web.config, ASP.NET, 913–14
Trace, Page Type properties, ASP.NET, 857
TrackBar control, 724–26
Transaction object, ADO.NET data providers,

761

transforming XML documentation to HTML,
177

transparent proxy, remoting, 567
TreeView controls, 731–36
type constructors, common intermediate

language (CIL), 494
type reflection

AssemblyRef, 394
description, 395
example metadata, 393–94
external private assemblies, 402–3
fields and properties, 398
implemented interfaces, 399
metadata and type reflection, 391–92
method parameters and return values, 401–2
methods, 398
other metadata, 399
overview, 391
shared assemblies, 404–6
TypeDef, 392
TypeRef, 392
User Strings, 395

TypeBuilder, System.Reflection.Emit
namespace, 505

typed exceptions, structured exception
handling, 217

TypeDef, 392
typeof operator, 398
TypeRef, 392
TypeResolve event, System.AppDomain, 436
types

access modifiers, 78
definition, 15
determining, 172
five categories of, 15–17
parameters, 321
visibility, 78

types element, WSDL document elements, 937

■U
UDDI discovery of XML web services, 953–54
UDDI web service discovery, 921
unbound type parameters, 335–36
unboxing. See boxing and unboxing
unchecked keyword, 309
unhandled exceptions, structured exception

handling, 217
UnhandledException event,

System.AppDomain, 436
Unique property, ADO.NET DataColumn

object, 797
unit of measure, GDI+, 660
Unload(), System.AppDomain, 436
Unload, ASP.NET Page events, 862
Unlock() method, ASP.NET

HttpApplicationState member, 898
unmanaged resources, 185, 189–95
Unregister() method, ILease interface

remoting, 593

■INDEX 979

4193chIDX.qxd 8/14/05 3:21 PM Page 979

UnregisterChannel() method, remoting
ChannelServices, 579

unsafe compiler flag, 310
unsafe keyword, 311–12
Update() method, ADO.NET, data adapter, 811
UpdateCommand property in updating,

ADO.NET, 815
updating

applications using shared assemblies, 378–79
records, ADO.NET, 787
rows, ADO.NET, 809
using data adapter objects, ADO.NET, 813–15

UpDown control, 727, 729
UpDownAlign property, UpDownBase, 728
UpDownBase, 728
Url() method, SoapHttpClientProtocol class,

945
user errors, 197
user interface in HTML, 834–35
UserAgent() method, SoapHttpClientProtocol

class, 945
UserControl Test Container, 743
user-defined type (UDT), definition, 69–70
using keyword, 136–37, 192–93
UsingNamespace() method,

System.Reflection.Emit.ILGenerator,
506

■V
Validated, control class property, 730
ValidateInput() method, ASP.NET HTTP

Request, 858
Validating, control class property, 730
validating form data, ASP.NET, 837
validation controls, ASP.NET, 884–87
ValidationSummary control, ASP.NET, 884, 887
value and reference types, conversion, 104–6
value, contentual keyword, 151
Value property

ADO.NET DbParameter, 789
NumericUpDown, 728
TrackBar control, 724

value types, 96–100, 103–4
variables, local, common intermediate

language (CIL), 498
VB6 language deficiencies, 4
VB.NET operator overloading, 300
verbatim strings, 125
version number of assemblies, 348
view objects, ADO.NET, 810
view state, state management in ASP.NET, 891–93
Vil development tool, 62
virtual execution stack, 480, CIL
virtual keyword, description, 163–64
Visible property, System.Web.UI.Control in

ASP.NET, 867
Visual Basic .NET integration with C#, 360, 362,

364–65
Visual Basic snap-in example, 420–21

Visual C# 2005 Express, 51
Visual Studio 2005

additions available, 52
automated coding support, 57
Class View, 53
Code Definition window, 54
code refactoring support, 55
ContextMenuStrip controls, 626, 630–32
deprecated controls, 623
designer.cs form file, 624
event handling in ToolStrips, 643
event registration, 280–81
form files in a project, 623
forms designer, 621
FxCop, 62
generating resources, 694–95, 697
handling events, 625
images in ToolStrips, 641–43
integrated Help system, 60–61
interface implementation, 234–35
Lutz Roeder’s Reflector for .NET, 62
MDI applications, 646
menu items in controls, 632
Menu selection prompts, 639
Menu selection ready state, 639
menu systems, 634, 636–37
MenuStrip controls, 626–28, 630
NAnt, 62
NDoc, 62
.NET 1.x controls, 623
Nunit, 62
Object Browser, 54
Object Test Bench, 60
overview, 51, 621
Program class, 625
project configuration (Project Properties), 53
project templates, 621
properties window, 622
refactoring example, 56
refactoring techniques available, 55
Snippets automated coding, 57
Solution Explorer, 52
StatusStrip, 633–34, 636–37
Surround With automated coding, 57
Timer, 637–38
Toolbox, 621
ToolStrip containers, 643, 645
ToolStripMenuItem types, 632–33
ToolStrips, 639–41
Vil, 62
Visual Class Designer, 57–59

■W
WaitReason, ProcessThread type, 432
Web Application Administration utility,

ASP.NET, 916–17
web applications in ASP.NET

application cache, 901
application level state data, 898–99

■INDEX980

4193chIDX.qxd 8/14/05 3:21 PM Page 980

application shutdown, 900
applications vs. sessions, 897
configuration inheritance, 917–18
control state, state management, 894
cookies creation, 909–10
custom view states, state management,

893–94
data caching, 901, 903–5
Global.asax file, 894–96
HttpApplication type overview, 889
HttpSessionState members, 908
maintaining session data, 906–8
modifying application data, 899–900
overview, 889
per user data stores, 906–8
persistence of cookies, 909–10
problems in state management, 889–91
reading cookies, 911–12
session cookies, 909–10
session data, 906–8
site administration utility, 916–17
state management overview, 889
state management techniques, 891
view state, state management, 891–93
Web Application Administration utility,

916–17
Web.config, 912–16

web controls in ASP.NET, 865–66
web page code model, ASP.NET, 842–46
Web Server, .NET platform SDK, 924
web service client architecture, 920
Web.config, ASP.NET

appSetting element, 912
authentication element, 912
authorization element, 912
compilation element, 913
connectionStrings element, 913
customErrors element, 913–15
globalization element, 913
sessionState element, 913, 915–16
trace element, 913–14

WebControl base class properties, ASP.NET,
870–71

WebControl controls, 736–37
WebDev.WebServer.exe, 832
WebMethod attribute, 409
WebMethod attribute, XML web services,

932–33, 935
WebMethodAttribute, XML

System.Web.Services namespace, 923
WebService base class, 929
WebService base class, XML

System.Web.Services namespace, 923
WebServiceAttribute, XML System.Web.Services

namespace, 923, 929–30
WebServiceBindingAttribute, XML

System.Web.Services namespace, 923
website directory structure, ASP.NET, 851
where keyword, generics, 337
while, do/while loops, 93

Win 32 binaries (*.dll or *.exe), 10
Win32 file header in assemblies, 349
Windows Distributed interNet Applications

Architecture (DNA) deficiencies, 5
Windows forms controls, 699
Windows forms snap-in example, 421–22
Windows objects and Graphics objects, GDI+,

657
Windows service installation, 600–601
Windows XP Home Edition and ASP.NET, 832
Windows.Forms coding

+= operator, 610
Application class, 609
ApplicationExit event, 609–10
coding the main window, 607–8
Form class, 607
Form object inheritance chain, 611
keyboard input, 614, 617
mouse events, 615–17
overview, 606
reflecting static attributes, 609
responding to events, 614–17
separating Main() method from main

window, 608
System.EventHandler, 611

winexe compile target, 607
wizards, ADO.NET, 822–25
WKO activation, remoting, 572–73
worker thread, 426
world coordinates, GDI+ coordinate systems, 659
Wrap property, DomainUpDown, 728
Write() method

ASP.NET HTTP Response, 860
BinaryWriter class, 538
Stream class, System.IO, 532
TextWriter, System.IO, 534

WriteByte() method, Stream class, System.IO,
532

WriteFile() method, ASP.NET HTTP Response,
860

WriteLine() method, TextWriter, System.IO, 534
write-only class properties, 153–54
WriteXml() method, ADO.NET DataSet class,

795
WriteXmlSchema() method, ADO.NET DataSet

class, 795
writing to a text file, 534–35
WSDL (Web Service Description Language),

921, 925, 935
document elements

binding element, 939
message element, 938
portType element, 938–39
service element, 939–40
types element, 937
XML web services, 936–39, 940

name clashes, XML web services, 933
wsdl.exe utility, XML web services

/appsettingurlkey flag, 942
creating a client-side proxy, 944

■INDEX 981

4193chIDX.qxd 8/14/05 3:21 PM Page 981

generating server-side code, 943
/language flag, 942, 944
/namespace flag, 942
/out flag, 943
/protocol flag, 943–44
/serverInterface flag, 943

WSI basic profile (BP 1.1) conformance, XML
web services, 932

WsiProfiles enumeration, XML
System.Web.Services namespace, 923

■X
Xcopy deployment, 365
XML

and ADO.NET, 759
code comment format characters, 177
/doc compiler flag, 177
documentation elements, 175
source code documentation, 175–77
transforming to HTML, 177

XML System.Web.Services namespace, 923
XML web services. See also WSDL (Web Service

Description Language)
<%@WebService%> directive, 923
ADO.NET datasets using web methods, 950
arrays using web methods, 949
asynchronous invocation, wsdl.exe utility,

946–47
autogenerated test page, 925
benefits, 919–20
client architecture, 920
client-side representation, 952–53
custom test page, 925–26
custom types using web methods, 948
default constructor, wsdl.exe utility, 945
DefaultWsdlHelpGenerator.aspx, 925–26
Description property, 930
description service, description, 921
DISCO UDDI directory, 921
discovery service, description, 921
dynamic web service discovery using DISCO,

921
example application, wsdl.exe utility, 947
example web service, 928–29
HTTP GET, 940
HTTP POST, 940
HTTP SOAP, 940

HTTP transport, 922
HTTP use, 919–20
IIS deployment, 925
machine.config file, 940
manual web service coding, 923
Name property, 930
Namespace property, 930
namespaces, 922
overview, 919
vs. proprietary wire protocols, 919–20
proxy code using Visual Studio 2005, 947–48
role, 919–20
session state and web.config, 935
SOAP body, 941
SOAP envelope, 941–42
SOAP transport, 922
stateful data, 933, 935
static web service discovery using DISCO,

921
structures using web methods, 949–50
synchronous invocation, wsdl.exe utility, 946
System.Web.Services namespace, 922
transport protocal, description, 921
UDDI and Visual Studio .NET, 954
UDDI discovery, 921, 953–54
using Visual Studio.NET, 926–28
viewing SOAP messages, 942
Web Service Description Language (WSDL),

935
web.config and session state, 935
web.config file, 941
WebDev.WebServer.exe, 924
WebMethod attribute, 923, 932
WebService base class, 929
WebServiceAttribute, 929–30
WebServiceBinding attribute, 931
Windows Forms clients, 951–52
wire protocols, 940
wsdl.exe utility, 942–47
WSI basic profile (BP 1.1) conformance, 932

XmlAttributeAttribute, XmlSerializer, 554
XmlElementAttribute, XmlSerializer, 554
XmlEnumAttribute, XmlSerializer, 554
XmlRootAttribute, XmlSerializer, 554
XmlSerializer, 548–49, 553–55
XmlTextAttribute, XmlSerializer, 554

■INDEX982

4193chIDX.qxd 8/14/05 3:21 PM Page 982

4193chIDX.qxd 8/14/05 3:21 PM Page 983

4193chIDX.qxd 8/14/05 3:21 PM Page 984

4193chIDX.qxd 8/14/05 3:21 PM Page 985

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

4193chIDX.qxd 8/14/05 3:21 PM Page 986

CONGRATULATIONS!
You are holding one of the very first copies of

Pro C# 2005 and the .NET 2.0 Platform, Third Edition.

We believe this complete guide to C# 2005 and the .NET 2.0 platform will

prove so indispensable that you’ll want to carry it with you everywhere.

Which is why, for a limited time, we are offering the identical eBook absolutely free—

a $30 value—to customers who purchase the book now. This fully searchable PDF

will be your constant companion for quick code and topic searches.

Once you purchase your book, getting the free eBook is simple:

1 Visit www.apress.com/promo/free.

2 Complete a basic registration form to receive a randomly

generated question about this title.

3 Answer the question correctly in 60 seconds, and you will

receive a promotional code to redeem for the free eBook.

For more information about Apress eBooks, contact pr@apress.com.

2560 Ninth Street • Suite 219 • Berkeley, CA 94710

ABC Apress Beta Community
Your Ultimate Source for .NET 2.0

powered by ASP Today

	Cover
	Six
	Pro C# 2005 and the .NET 2.0 Platform
	Table of Content
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	PART 1 Introducing C# and the .NET Platform
	Chapter 1 The Philosophy of .NET
	Chapter 2 Building C# Applications
	Chapter 3 C# Language Fundamentals

	PART 2 The C# Programming Language
	Chapter 4 Object-Oriented Programming with C#
	Chapter 5 Understanding Object Lifetime.
	Chapter 6 Understanding Structured Exception Handling
	Chapter 7 Interfaces and Collections
	Chapter 8 Callback Interfaces, Delegates, and Events.
	Chapter 9 Advanced C# Type Construction Techniques
	Chapter 10 Understanding Generics
	Chapter 11 Introducing .NET Assemblies

	PART 3 Programming with .NET Assemblies
	Chapter 12 Type Reflection, Late Binding, and Attribute-Based Programming
	Chapter 13 Processes, AppDomains, Contexts, and CLR Hosts
	Chapter 14 Building Multithreaded Applications
	Chapter 15 Understanding CIL and the Role of Dynamic Assemblies
	Chapter 16 The System.IO Namespace

	PART 4 Programming with the .NET Libraries
	Chapter 17 Understanding Object Serialization
	Chapter 18 The .NET Remoting Layer
	Chapter 19 Building a Better Window with System.Windows.Forms
	Chapter 20 Rendering Graphical Data with GDI+
	Chapter 21 Programming with Windows Forms Controls
	Chapter 22 Database Access with ADO.NET
	Chapter 23 ASP.NET 2.0 Web Pages and Web Controls

	PART 5 Web Applications and XML Web Services
	Chapter 24 ASP.NET 2.0 Web Applications
	Chapter 25 Understanding XML Web Services

	Index

