
i

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Programming Windows

Games with Borland C++

ii

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

iii

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

A Division of Prentice Hall Computer Publishing
11711 North College, Carmel, Indiana, 46032 USA

PUBLISHING
S MS

Programming
Windows Games

with Borland C++
Nabajyoti Barkakati

iv

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

To Leha, Ivy, Emily, and Ashley

Copyright  1993 by Sams Publishing
FIRST EDITION

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without written permission from the publisher. No patent liability
is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained herein. For
information, address Sams Publishing, 11711 N. College Ave., Carmel, IN 46032.

International Standard Book Number: 0-672-30292-6

Library of Congress Catalog Card Number: 92-82084

96 95 94 93 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is the year of
the book’s printing; the rightmost single-digit, the number of the book’s printing. For
example, a printing code of 93-1 shows that the first printing of the book occurred in
1993.

Composed in Palatino and MCPdigital by Prentice Hall Computer Publishing

Printed in the United States of America

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark. Borland C++ is a registered trademark of
Borland International, Inc. Windows is a trademark of Microsoft Corporation.

v

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Publisher
Richard K. Swadley

Acquisitions Manager
Jordan Gold

Acquisitions Editor
Stacy Hiquet

Development Editor
Dean Miller

Senior Editor
Tad Ringo

Production Editor
Nancy Albright

Editorial Coordinators
Rebecca S. Freeman
Bill Whitmer

Editorial Assistants
Rosemarie Graham
Sharon Cox

Technical Reviewer
Tim Moore

Marketing Manager
Greg Wiegand

Cover Designers
Tim Amrhein
Kathy Hanley

Director of Production and
Manufacturing
Jeff Valler

Production Manager
Corinne Walls

Imprint Manager
Matthew Morrill

Book Designer
Michele Laseau

Production Analyst
Mary Beth Wakefield

Proofreading/Indexing
Coordinator
Joelynn Gifford

Graphics Image Specialists
Dennis Sheehan
Sue VandeWalle

Production
Christine Cook
Mitzi F. Gianakos
Howard Jones
John Kane
Sean Medlock
Roger Morgan
Juli Pavey
Angela M. Pozdol
Linda Quigley
Michelle M. Self
Suzanne Tully
Barbara Webster
Phil Worthington

Indexer
John Sleeva

vi

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Overview

Preface xiii

Introduction xvii

Part I
Basics of Game Programming with Borland C+

1 Game Programming for Windows 3

2 Windows Programming with Borland C++ 21

3 Graphics Programming with the Windows API 57

4 Understanding Image File Formats 95

5 Animating Images 149

6 Generating Sound 189

Part II
Sample Games

7 SPUZZLE—A Spelling Puzzle 205

8 3-D Graphics 275

9 BLOCKADE—A Game of Modern Naval Simulation 317

Index 495

vii

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Contents

Introduction xvii

Part I
Basics of Game Programming with Borland C++

1 Game Programming for Windows 3
An Overview of Computer Games ... 5

Common Themes in Computer Games ... 8
Common Elements of Computer Games .. 15

Issues in Game Programming for Windows 18
Color ... 18
Multimedia Games for Windows... 19

Summary .. 20
Further Reading ... 20

2 Windows Programming with Borland C++ 21
Microsoft Windows Programming

with Borland C++ Classes ... 23
Model-View-Controller (MVC) Architecture 24
A Windows Application

Using OWL and CLASSLIB .. 26
Borland C++ Class Libraries .. 40

Breakdown of the CLASSLIB Classes.. 41
Template-Based Container Classes .. 46
OWL Classes ... 50

Summary .. 54
Further Reading ... 54

3 Graphics Programming with the Windows API 57
Windows Graphics Device Interface .. 58

Device Context .. 59
GDI Coordinate Systems ... 65

viii

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Drawing with GDI Functions .. 68
Drawing Points ... 69
Drawing Lines ... 69
Drawing Closed Figures .. 70
Manipulating Rectangles ... 72
Regions ... 74
Drawing Mode .. 76
Text Output ... 77

Handling Color .. 80
System Palette ... 81
Logical Palette ... 81

Bitmaps ... 86
Device-Dependent Bitmaps .. 86
Device-Independent Bitmap (DIB) Format 92

Summary .. 93
Further Reading ... 94

4 Understanding Image File Formats 95
Image File Formats .. 96

Common Characteristics of Image Files ... 97
Some Common Formats .. 99

C++ Classes for Handling Image Files ... 100
ImageData Class ... 101
Image Class ... 105
BMPImage Class .. 113
TGAImage Class ... 119
PCXImage Class ... 125

ImageView—A Windows Image Viewer .. 136
Running ImageView .. 136
ImageViewApp Class ... 136
ImageViewFrame and

ImageViewWindow Classes... 139
Building ImageView .. 145

Summary .. 146
Further Reading ... 146

5 Animating Images 149
Animation Techniques ... 150

Sprite Animation .. 150

ix

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

C++ Classes for Sprite Animation .. 152
Sprite Class ... 152
SpriteAnimation Class ... 162

A Sample Animation Program .. 178
AnimationWindow Class ... 178
The ANIMATE Application .. 186
Building ANIMATE.EXE .. 187

Summary .. 188
Further Reading ... 188

6 Generating Sound 189
Sound under Windows .. 190

Programming for Sound.. 190
A Sample Program .. 197
Summary .. 201
Further Reading ... 201

Part II
Sample Games

7 SPUZZLE—A Spelling Puzzle 205
Playing SPUZZLE ... 206

Starting SPUZZLE .. 207
Building a Puzzle .. 208
Keeping Score ... 209
Controlling Sound Output .. 209
Adding a New Word ... 210

Designing SPUZZLE ... 211
Window Hierarchy... 212
Assigning the Responsibilities .. 213
Maintaining Information about the Puzzles 213

Implementing SPUZZLE .. 214
SpuzzleApp Class ... 214
PuzzleFrame Class ... 216
PuzzleWindow Class .. 232
LetterWindow Class ... 245
ToolWindow Class .. 252
StatusWindow Class .. 259
Data Structures for Puzzle Information .. 265

x

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

High Scores Dialog Box ... 267
Resources for SPUZZLE .. 271
Help File ... 272
Other Files ... 273

Summary .. 273

8 3-D Graphics 275
Modeling 3-D Objects ... 276

3-D Cartesian Coordinates .. 276
Boundary Representation of 3-D Objects 277
Constructing Objects with Polygons ... 278
3-D Coordinate Transformations ... 280
Rotation .. 282
A Few More Vector Operations ... 283

Viewing a 3-D Scene ... 284
Transforming to View Coordinates ... 285
Perspective Projection .. 285

C++ Classes for 3-D Modeling .. 286
Defining the Primitive 3-D Classes .. 286
Defining the 3-D Scene .. 301
Loading a 3-D Scene from a File... 311
Viewing a 3-D Scene .. 313

Summary .. 314
Further Reading ... 315

9 BLOCKADE—A Game of Modern Naval Simulation 317
Playing BLOCKADE ... 318

Overview of BLOCKADE ... 318
Starting BLOCKADE ... 319
Terminology of BLOCKADE .. 320
Components of the BLOCKADE Screen 321
Views in BLOCKADE .. 321
Controlling Simulation Speed .. 324
Launching Weapons .. 325

Designing BLOCKADE .. 325
Simulating the Scenario ... 326
Viewing the Scenario ... 326
Game Definition Files .. 327

Implementing BLOCKADE ... 327

xi

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Taking Stock of the Source Files ... 328
The Application Class .. 331
BlockadeFrame Class .. 333
LogoWindow Class ... 353
DisplayWindow Classes .. 355
ToolWindow Classes .. 386
StatusWindow Class .. 402
InfoWindow Class .. 411
Scenario Class ... 427
Platform Class .. 450
Sensor Class .. 466
Weapon Class ... 472
Other Files ... 482
Building BLOCKADE .. 492

Summary .. 493

Index 495

xii

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

xiii

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Preface
Computer games are by far the most popular type of software. The market for
game software is huge—practically anyone with a PC can use games. If you
are like me, you probably play your share of computer games and have your
own favorite categories. And because you are a programmer, you might have
thought of many ideas that could be the basis of a game—if only you knew
how to get started on the project. As you will see after reading this book, writ-
ing a computer game is not as difficult as you might have imagined. In fact,
once you see how a game is written, you have a number of well-defined steps
that you can follow to create your own game. After you have had some fun
writing your own game, it may even become a source of income for you.

The basic premise of Programming Windows Games with Borland C++ is that
whether entertaining or educational, all computer games have certain common
elements: graphics, sound, and a mouse- or keyboard-based user interface.
Thus, any programmer (with some imagination) who masters the basic tech-
niques of manipulating images, generating sound, and controlling the mouse
or keyboard can write a computer game. The best way to learn how to pro-
gram games is to see working examples that illustrate how an imaginative idea
can come alive in a computer game with graphics and sound.

Programming Windows Games with Borland C++ teaches intermediate to ad-
vanced level C++ programmers how to use object-oriented programming tech-
niques to write computer games. Borland C++ offers exceptional support for
Microsoft Windows programming, includes the ObjectWindows Library
(OWL)—a comprehensive C function library—and provides a full set of pro-
gramming tools such as MAKE, TLINK, TLIB, and the Turbo Debugger. The
games presented in this book are meant to run under Microsoft Windows 3.1
because Windows offers a rich graphical user interface for the games and, more
importantly, because there is a shortage of games that run under Windows.

xiv

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Programming Windows Games with Borland C++ features the following:

A quick overview of Windows programming with Borland C++ and
ObjectWindows Library (OWL)

C++ classes for image animation and sound generation

Full source code for SPUZZLE, a spelling puzzle for young children

Full source code for BLOCKADE, a game of strategy that simulates
a naval blockade

Disk with source and executable versions of SPUZZLE and
BLOCKADE

Programming Windows Games with Borland C++ starts with an overview of
Windows programming with Borland C++ and OWL followed by several chap-
ters on graphics, image manipulation, and sound generation under Windows.
Then the book presents SPUZZLE—an educational spelling puzzle for young
children. This game teaches spelling through a simple jigsaw puzzle that has
one or more letters associated with each piece of the puzzle. The child has to
place the pieces of the puzzle in the right order (by dragging them around with
the mouse) to complete an image, which spells the word and rewards the child
with a musical tune. SPUZZLE illustrates the basic programming techniques
for animating images and generating sound. This game makes use of a num-
ber of C++ classes that are designed to support image manipulation and sound
generation. A significant aspect of image manipulation is the ability to read,
interpret, and display image files of several common formats (PCX, BMP, and
Truevision Targa). These techniques are described in the book.

The latter part of Programming Windows Games with Borland C++ sketches the
design and development of another more elaborate game called BLOCKADE,
which is a modern naval simulation in which the player commands a combat
ship as it enforces a naval blockade. As commander of the ship, the player
relies on the ship’s sensor systems to decide how to intercept, track, and stop
“blockade runners.”

Programming Windows Games with Borland C++ includes a bound-in disk that
contains the complete source code for the games appearing in the book. This
disk makes it easy for you to try out the games and even enhance them.

xv

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Acknowledgments
I am grateful to Stacy Hiquet for suggesting the idea of this exciting book con-
cept—a book that shows the complete development of realistic computer games
that run under Microsoft Windows. Thanks to Wayne Blankenbeckler for
making the necessary arrangements to prepare the companion disk complete
with a Windows installation utility.

Thanks to Nan Borreson of Borland International for keeping me supplied
with the latest copies of the Borland C/C++ compiler and Application Frame-
work.

As usual, the production team at Sams Publishing did an excellent job of
turning my raw manuscript into this well-edited, beautifully packaged book.
Thanks to all of you at Sams for doing your part with such dedication and
perfection. In particular, thanks to Nancy Albright of Albright Communica-
tions for the thorough editing of the manuscript, and to Dean Miller at Sams
for managing the development of the book.

Finally, my greatest thanks go to my wife, Leha, for her love and support
and for taking care of everything while I went into hibernation with this book
project. My daughters, Ivy, Emily, and Ashley, did more than simply encour-
age me during the project. This being a computer game book, Ivy and Emily
were able to help me by testing the games and providing feedback while Ashley
supervised the entire operation by roaming the halls with her no-nonsense
attitude.

xvi

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

About the Author
Naba Barkakati, Ph.D., is an expert computer programmer and a successful
author. He has written some of the most popular programming titles on the
market, including X Window System Programming; Object-Oriented Programming
in C++; The Waite Group’s Microsoft C Bible, Second Edition; The Waite Group’s
Turbo C++ Bible, Second Edition; and Microsoft C/C++ 7 Developer’s Guide.

xvii

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Introduction
Programming Windows Games with Borland C++ is a book for intermediate-to-
advanced C++ programmers that covers all aspects of writing computer games
under Microsoft Windows. As the book’s title implies, I used Borland C++ and
the C++ classes in the ObjectWindows Library (OWL) to write the games that
I describe in this book. Because graphics (especially image display and anima-
tion) and sound are at the heart of all computer games, I cover image display,
animation, and sound generation in detail. In particular, I discuss how to read
and interpret image files of several formats because you are likely to use
scanned images or images drawn with a paint program as the graphics elements
in a computer game.

I also developed C++ classes that provide the graphics and sound capabili-
ties required by the games. Instead of many small games, I chose to develop
two reasonably complex computer games:

SPUZZLE, a spelling puzzle game for children

BLOCKADE, a naval simulation game for kids of all ages

You will find ready-to-run copies of these games as well as their full source
code in the companion disk.

What You Need
To make the best use of this book, you should have access to a system with
Microsoft Windows 3.1 and the Borland C++ compiler. Then, you can test the
example programs and run the games as you progress through the book. Ad-
ditionally, you will want the following:

A fast 80386/80486 system with a VGA or better display

As much memory as possible (4MB or more)

A reasonably large hard disk (100MB or more)

xviii

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

The system should be fast because the Windows environment puts a lot of
demand on the processor. The extra memory helps, because Windows can use
it with the 80386/80486 processor operating in what is known as the protected
mode. The large hard disk is necessary because all software development tools
seem to require a large amount of storage.

All examples in this book were tested with Borland C++ on an Intel 80386-
based ISA (Industry Standard Architecture) PC with 8MB of memory, a 650MB
hard disk, and a 640x480 resolution 16-color VGA display.

Conventions Used
in This Book
Programming Windows Games with Borland C++ uses a simple notational style.
All listings are typeset in a monospace font for ease of reading. All file names,
function names, variable names, and keywords appearing in text are also in
the same monospace font. The first occurrence of a new term or concept is in
italic.

How to Use This Book
If you are a newcomer to Borland C++ and Windows programming, you should
first get up to speed by using other resources such as Borland’s manuals or one
of the many books on Windows programming with Borland C++.

Once you are comfortable with Windows programming, you should browse
through Chapters 1 through 3 to see how to use Borland C++ and the OWL
classes. Chapter 1, in particular, provides an overview of the different types of
games that are currently on the market.

If you are interested in reading and interpreting image files and animating
images, you should consult Chapters 4 and 5. Chapter 6 gives a brief descrip-
tion of sound generation under Windows.

xix

Contents

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

Chapters 7 and 9 present sample games (SPUZZLE and BLOCKADE) with
full source code. If you want to learn game programming from these chapters,
start by installing and playing the games—they are on the companion disk.
Once you have seen what the game does, you can go to the appropriate chap-
ter to see how a specific feature is implemented.

How to Contact the Author
If you have any questions or suggestions, or if you want to report any errors,
please feel free to contact me either by mail or through electronic mail. Here is
how:

Write to LNB Software, Inc., 7 Welland Court, North Potomac, MD
20878-4847, USA.

If you have access to an Internet node, send e-mail to:

naba@grebyn.com

If you use CompuServe, specify the following as SEND TO:

>INTERNET:naba@grebyn.com

From MCIMAIL, specify the following when sending mail:

EMS: INTERNET

MBX: naba@grebyn.com

Please do not phone, even if you happen to come across my telephone num-
ber. Instead, drop me a letter or send an e-mail message for a prompt reply.

Introduction

xx

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 FM LP#6

1

D2 Prog Win Games Borland C++ 30292-6 MAL 3-24-93 Sample Part LP#1

IPART

Basics of Game
Programming

with Borland C++

2

D2 Prog Win Games Borland C++ 30292-6 MAL 3-24-93 Sample Part LP#1

3

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Chapter

1

Game
Programming
for Windows

4

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

If you have browsed through the shelves in a software store recently, you know
the tremendous variety of computer games available on the market. The offer-
ings run the gamut from simple games such as Tic Tac Toe, pinball, and puzzles,
to sophisticated simulations of real and make-believe worlds. Some of the lat-
ter include animated graphics with digitized voices and music generated by
sound boards. Most of the games are designed to run under MS-DOS and only
a few work under Windows. But this situation is bound to change as Windows
gains popularity and game developers see the benefits of writing Windows
versions of their games. In particular, with the multimedia extensions in Win-
dows 3.1, game developers can begin using CD-ROM media and sound boards
to bring a new level of sophistication to computer games.

The device-independent manner in which Windows allows an application
to handle graphical output is another advantage of writing computer games
for Windows. With minimal effort on your part, you can ensure that the same
Windows game works properly on a 16-color EGA display as well as a 256-
color Super VGA display and even the newer XGA display. This device inde-
pendence comes at a price; animation under Windows is slower than that
designed to work in a specific mode of a video adapter. For instance, most
interactive DOS games display fast animated graphics scenes in a specific video
mode of a display adapter, usually mode 13H of the VGA (the 256-color 320x200
resolution mode). The game programmer can exploit all nuances of the adapter,
including the fact that a 256-color 320x200 image fits in exactly 64K—less than
the maximum size of a single segment of memory in 80x86 processors—which
makes image manipulation fast. You cannot use intimate knowledge of the
display when programming a game for Windows, but the speed disadvantage
is gradually disappearing as PCs and display adapters become faster.

This book looks to the future and, in anticipation of a large and profitable
market for Windows games, shows you how to develop computer game ap-
plications designed to run under Microsoft Windows. There are three features
common to all computer games:

Two-dimensional (2-D) and three-dimensional (3-D) graphics

Image manipulation

Sound generation

Of course, you also have to come up with an idea for a game and design the
game; these topics are illustrated through two complete sample games in Chap-
ters 7 and 9.

5

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

This chapter starts with an overview of some popular computer games.
These are mostly DOS games, but they should give you an idea of the types
that are available on the market and even trigger some ideas for new games
that you might want to write. The brief overview of computer games includes
a classification of the current crop of games, the graphics and sound capabili-
ties that each type of game uses, and the major steps in developing a game.
Chapter 2 introduces the topic of Windows programming with Borland C++
and describes Windows graphics capabilities and how to use Windows Ap-
plication Programming Interface (API) functions for the graphics needed in a
game program. Chapters 3 through 6 cover the subjects of graphics, image
manipulation, and sound generation—the features that are at the heart of any
computer game.

An Overview of
Computer Games
The following is a list of the current crop of computer games divided into seven
categories:

Educational Games. Slowly the line between educational and entertain-
ment game software is getting blurred because developers realize that
an entertaining educational game is a better teacher than a dull one.
Some of the popular educational games are:

Where in the World is Carmen Sandiego? and Where in the U.S.A. is
Carmen Sandiego? from Broderbund Software, Inc., which teach
geography through a game

New Math Blaster Plus from Davidson & Associates, Inc., which
teaches mathematical skills through simple games

Learning Company’s Math Rabbit and Reader Rabbit, which include a
variety of activities to teach young children math and reading skills

Traditional Games. These are the computerized versions of traditional
games such as chess, card games (bridge, poker, solitaire), GO, mah-
jongg, and a variety of puzzles.

6

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Arcade Games. These are games offered in dedicated game machines
that you see in places such as shopping center arcades. This category
includes the PC versions of arcade games such as pinball, Tetris, Pac
Man, and a variety of games where you shoot down space invaders.
The games in this category use fast-paced animation of small images
called sprites. They also include music and other sound effects.

Sports. This category consists of software implementations of real
sports such as golf, boxing, football, and baseball. These games include
a moderate level of animation and sound. Some popular sports games
are:

Links 386 Pro golf game from Access Software, Inc.

Jack Nicklaus Signature Edition Golf from Accolade

NFL Pro League Football from Micro Sports

Adventure and Role Playing Games. These are the “dungeons and
dragons” games. You play the role of a character in a specific scenario
(usually a dungeon), and move from level to level collecting weapons,
potions, and spells. You encounter many nasty characters that you
have to defeat using the weapons and spells. Some of the best known
games of this genre are the Ultima series from Origin Systems, Inc.
These games sport continuously moving 3-D graphics and realistic
sounds, including digitized voice (on PCs equipped with special
sound boards).

Real-Time Action Simulations. These are the fast-paced simulations of
airplanes, helicopters, and spaceships with reasonable renderings of
3-D scenarios. As you manipulate the controls of the craft (the airplane
or the helicopter), the craft moves according to the current settings and
the 3-D view reflects the motion. I classify these computer games as
real-time action simulations because they simulate the behavior of the
airplane or helicopter and the simulation reacts to the player’s inputs
as they are received (through keyboard, mouse, or joystick). These
games are popular because the real-time feedback makes them excit-
ing. Some of the games in this category are:

Microsoft Flight Simulator from Microsoft Corporation, which
simulates a number of airplanes

7

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Wing Commander II from Origin, a space flight simulation game with
very good graphics and sound effects

Gunship 2000 from MicroProse Software, Inc., a simulation of
helicopter combat

Strategic Simulations. These are simulations of large-scale systems such
as cities, railroad systems, naval campaigns, and, in the case of a recent
game called SimAnt, even ant colonies. In these simulations, you
devise a strategy for the problem at hand and see the entire system
evolve as time passes. Viewed from the perspective of time scales, real-
time action simulations model systems that change fast—in seconds
and minutes. In contrast, the strategic simulations are concerned with
long-term reactions of a system, those occurring in hours or days—
even years. In a strategic simulation game you do not get the thrill of
immediate response to your actions, but you do get to think through
problems and devise strategies. In fact, some of the war games have
been used to train naval officers. Most of these games have 2-D graph-
ics and minimal sound effects. Here are some of the popular titles in
this category:

SimCity for Windows from Maxis, which puts you in the role of a city
planner

Harpoon from Three-Sixty Pacific, Inc., a highly acclaimed naval war
game

Great Naval Battles, North Atlantic 1939-1943 from Strategic Simula-
tion, Inc., which lets you command a battleship and participate in
one of several naval battles of World War II

Carriers at War from Strategic Studies Group, another simulation of
World War II air and naval operations in the Pacific Ocean

Railroad Tycoon from MicroProse Software, Inc., which lets you
manage a railroad system

SimAnt by Maxis, which lets you control an ant colony that has to
fight for its survival in a suburban home’s backyard

8

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Common Themes in Computer Games
All computer games have two common elements: graphics and sound. Here is
a quick look at some of the popular games from the real-time and strategy simu-
lation categories. I selected games from these two categories because simula-
tion games have some of the most demanding graphics, algorithmic, and sound
requirements of all games. The details are omitted except for the basic idea and
the graphics and sound elements of each game.

Microsoft Flight Simulator
Microsoft Flight Simulator is a best-selling, real-time game that simulates the
flight of several types of aircraft from take-off to landing. The simulation takes
into account a large number of aircraft characteristics, shows a standardized
instrument panel, implements all necessary aircraft controls, and provides a
number of 3-D views from different perspectives. As shown in Figure 1.1, the
3-D view is realistic enough to identify specific airports (from landmarks and
runway layouts), yet fast enough to work on all Intel 80x86-based MS-DOS PCs
with graphics adapters from CGA to VGA.

Microsoft Flight Simulator also provides sound effects to simulate the
ambient noise inside a flying aircraft.

Figure 1.1. View from the cockpit in Microsoft Flight Simulator.

9

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Gunship 2000
Gunship 2000 is a real-time simulation of helicopter combat from MicroProse
Software, Inc. The version of this game designed for the VGA display adapter
uses the 256-color 320x200 resolution mode of the VGA to display very realis-
tic 3-D scenery as the helicopter flies. The game accepts input from the key-
board as well as a joystick. Also, Gunship 2000 can generate digitized sound
using one of several popular sound boards, if your system has such a board.
Otherwise, Gunship 2000 uses PC’s internal speaker for sound effects.

As you can see from Gunship 2000’s opening screen (Figure 1.2), the game
emphasizes realistic 3-D graphics within the limits of a typical PC’s display
system. Although you cannot fly a real helicopter without extensive training,
Gunship 2000 provides simplified controls to make flying easy. Once airborne,
the helicopter flies within a few hundred feet from the ground or sea and you
see a 3-D view of the terrain or water outside. As the at-sea view in Figure 1.3
shows, the 3-D rendering of the scene is reasonably realistic. Note the ship ahead
of the helicopter in Figure 1.3.

Figure 1.2. Opening screen of Gunship 2000, a helicopter combat simulation game.

10

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Figure 1.3. View from the cockpit for an at-sea mission in Gunship 2000.

SimCity for Windows
SimCity for Windows is a strategic simulation game—one of the few that runs
under Microsoft Windows. Figure 1.4 shows the opening screen of the game.
As you can see from the menu options listed on the sign, you can start a simu-
lation of a new city, load an existing city’s simulation into the game, or select
to start with a predefined city’s scenario. Figure 1.5 shows the windows after
you load one of the predefined cities—Boston in the year 2010—and continue
the simulation for a while.

In SimCity, you play as the planner for a city—you are responsible for set-
ting up residential, commercial, and industrial zones. You also plan and build
the roads, railroads, power plants, power lines, police stations, and fire stations.
As you build these, money is expended from a budget. Once the infrastruc-
ture is in place, the city’s simulation proceeds to build up population, traffic
begins to flow on the roads, roads deteriorate, crimes and natural disasters
happen. You have to tax the residents to raise money for the upkeep of the city.
If you have excess revenues, you can spend the funds to help the city grow. As
you might gather from this brief description, you have to attend to numerous
details just to keep the infrastructure from collapsing. The game is fun, which
is why it appears to be popular among strategy enthusiasts.

11

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Figure 1.4. Opening screen of SimCity for Windows.

Figure 1.5. View of Boston in SimCity for Windows.

12

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

SimCity for Windows has good maplike views, but there are no demand-
ing real-time 3-D graphics in the game. The only aspect of animation is the
movement of some sprites representing vehicles such as cars, airplanes, and
helicopters.

This game includes sound effects, but the sound is more of a distraction than
an aid to the game.

Harpoon
Harpoon is another game of strategy that simulates naval war games.
Harpoon’s simulation of large-scale naval scenarios is accurate enough for
evaluating naval strategies. As a player, you are given a geopolitical scenario
with a need for naval intervention, and you get to command anything from a
single ship to an entire group of ships with a specified mission. Figure 1.6 shows
the main screen of Harpoon, where you play the game.

Figure 1.6. Main screen of Harpoon.

This game is the computer version of a naval war game by Larry Bond that
appeared as a board game in 1980. Larry Bond’s game gained fame when au-
thor Tom Clancy revealed that he used Harpoon as a source of information
when writing the novel The Hunt for Red October. You use Harpoon’s database
of information on ships and aircraft to decide how to make the best use of the

13

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

naval and air units under your command. Figure 1.7 shows a typical screen
that shows information on a specific class of ships, in this case, the Arleigh Burke
class destroyer of the U.S. Navy. The player can get further information through
the menu options at the bottom of the screen shown in Figure 1.7.

Harpoon includes sound effects for certain events such as missile warnings
and ships taking hits from missiles.

Figure 1.7. Displaying information on a ship class in Harpoon.

Great Naval Battles, North Atlantic 1939-1943
Great Naval Battles, North Atlantic 1939-1943 is a recent strategic simulation
game depicting naval warfare during World War II, specifically the years 1939
through 1943. In contrast to Harpoon, this game emphasizes realistic graphics
and sound as it offers a number of predefined encounters between British and
German battleships. The scenarios are historically accurate except that, in the
game, you get to command one of the sides and get a chance to change history
by blasting the other side with your ship’s guns and torpedoes. The game pro-
vides a number of 3-D views of the ships at sea, but there is no real-time ani-
mation as in a flight simulator or helicopter simulation. Figure 1.8 shows the
opening screen of Great Naval Battles, North Atlantic 1939-1943; Figure 1.9
shows a view from the main gunnery station of one of the ships.

14

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Figure 1.8. Opening screen of Great Naval Battles, North Atlantic 1939-1943.

Figure 1.9. View from the main gunnery station of a ship.

15

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Common Elements of Computer Games
From the brief overview of some of the current computer games, you can see
the common features of these games: a central theme that tells us what the game
does (for example, a naval war game or a helicopter combat simulation), 2-D
and 3-D graphics, and sound effects to make the game seem realistic. Addi-
tionally, most games include some sort of copy protection scheme to deter
unauthorized copying of the game software.

The game’s main story line determines the types of programming you have
to do to implement the game. For instance, realism in graphics and sound ef-
fects is very important in a role-playing game. A war game such as Harpoon,
however, does not need much realism; a simplified display suffices in a game
that emphasizes strategy over real-time simulation. Even with the differences
in the exact requirements, the main story line, the graphics, and the sound ef-
fects are definitely the most important components of any game.

Story Line
Before you start developing a game, you must develop the story line, which
dictates the details of the other programming requirements of the game. The
game’s story line should answer the following questions for the prospective
player:

What is this game? This clearly identifies the category of the game. Is it a
role-playing adventure game? A real-time flight simulation with 3-D
graphics? An educational game that teaches reading skills?

What is the goal of the game? The answer tells the player what to do to
succeed in the game. In an arcade game, the goal might be to shoot
down as many space invaders as possible. In an educational game that
teaches spelling, the goal is to correctly spell as many words as pos-
sible. For a helicopter combat simulation, the goal is to fly into enemy
territory, destroy a specified target, and fly back without getting killed.

How does the game provide feedback on the player’s performance? This
feature indicates how close the player is to achieving the game’s goal.
In an arcade game, a total score might indicate performance, whereas a
flight simulator might provide feedback through a detailed 3-D view
from the cockpit plus a view of the aircraft’s instrumentation.

16

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

How does the game reward the player? This tells the player what to expect
once the game’s goal is met. For a children’s game, the reward might
be an animation of some cartoon figures with an accompanying
musical score. Arcade games maintain a list with names of the high-
scoring players and their scores.

How is the game played? This feature tells the player how to play the
game. The story line does not have to provide the full details at this
point, but the overall idea should be explained. For instance, in many
arcade games, you basically point and shoot at targets with your
weapons. In most flight simulators, you control the flight of the aircraft
through the keyboard, and the instrument panel and outside view tell
you whether you are controlling the aircraft properly.

Graphics
All computer games rely on the visual effects of graphics to establish the story
line and provide the illusions needed to make the player feel like a part of the
game. Computer games employ several different types of graphics techniques:

2-D Graphics. This type includes points, lines, and outline and filled
shapes such as rectangles, polygons, and ellipses—in a plane. Many
simple games rely almost solely on 2-D figures. The Windows API
provides functions for 2-D graphics.

3-D Graphics. This type refers to the techniques used to display 2-D
views of 3-D objects. One approach is to specify a 3-D object by many
flat surfaces (defined by polygons) that represent the boundaries of the
object. Mathematical algorithms are used to derive a 2-D view of the
object for a given viewing location. The 2-D view is also a collection of
color-filled polygons that are displayed using standard 2-D graphics
primitives. Computer games often include many 3-D objects and
require that these objects be redrawn many times a second, which may
not be possible with a typical PC. Most commercially available games
handle this requirement by using a limited number of 3-D objects and
by representing each object with as few polygonal surfaces as possible.

Image Display and Manipulation. An image is a 2-D array of points with
each point drawn in a specific color and can represent a complex
drawing. Images are useful because you can use a scanner to digitize
detailed pictures and use them as graphical elements in your game’s
display screens. Image manipulation refers to the scaling and rotation

17

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

of images. Animation of images—moving one image over another
without disturbing the background image—is another technique used
in computer games. The Windows API includes functions to display
and manipulate bitmaps—rectangular arrays of pixels.

Sound Effects
After graphics, sound is the element that makes a computer game come alive.
Unfortunately, most MS-DOS PCs have very limited hardware support to gen-
erate sound. The speaker that is standard on most PCs can generate only a single
tone at a time. Although programmers have found ways to generate complex
sound with the PC’s limited sound hardware, the Windows API supports the
capability to generate only one tone at a time. However, most computer games
can generate more complex sound (including digitized voice and music) us-
ing an optional sound board installed in the PC. These sound boards are plug-
in cards that include hardware to generate more complex sound. Windows 3.1
also supports these additional sound boards. See Chapter 6 for more informa-
tion about generating sound with the Windows API functions.

Copy Protection
Although copy protection has all but disappeared from mainstream appli-
cations such as word processors and spreadsheets, it is commonplace in
computer games. One of these annoying techniques requires you to place
the original diskette in the PC’s drive even though you might have installed
theprogram on your system’s hard disk. A more palatable form of copy pro-
tection is based on the user’s manual accompanying the game software. For
instance, Great Naval Battles, North Atlantic 1939-1943 displays the dialog box
shown in Figure 1.10, prompting you for a specific word from the user’s manual.
Once you type in the requested word, the game starts; otherwise the program
terminates.

Figure 1.10. Copy protection scheme that relies on the user’s manual.

18

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Issues in Game Programming
for Windows
One of the reasons most of the current crop of computer games do not run under
Windows is that they existed before Windows became popular and they have
not yet been ported to Windows. Another reason is that Windows adds a
device-independent layer of functions that you must use to control the PC’s
hardware such as the display adapter, the keyboard and mouse, and the
speaker. This device independence lets you write a single application that can
run on many PCs with differing hardware configurations, but it also denies
you access to the registers and ports on the display adapters. Many games are
able to provide fast display only because they can manipulate the display
adapter directly. It is difficult to port such games to Windows and achieve the
same performance as under DOS. However, the speed disadvantage should
gradually disappear as PC processors become faster and the display adapters
are optimized for Windows.

Color
For striking graphics, a computer game needs to use color. In some ways, be-
ing able to display at least 256 colors is better than having high resolution. When
the VGA display adapter was introduced for the IBM PC family of computers,
the adapter came with enough memory to support, at most, 16 simultaneous
colors at a 640x480 resolution. Although the 640x480 is an adequate resolution
for the typical 13-inch or 14-inch monitor, the 16-color limit made it difficult to
display good color images on a VGA display at its highest resolution. Only one
mode of the VGA, mode 13H, provides more colors—256—but does so at a
320x200 resolution. Most DOS games use this VGA mode. The lower resolu-
tion is offset by the ability to display many shades of colors, which adds greatly
to the realism of an image. The lower resolution also has an added advantage
in this case. Because a byte is enough to hold any one of 256 colors, a 256-color
320x200 image can be stored in exactly 320x200 (64K). Because this image size
is less than a 64K segment of memory addressable by the Intel 8086 processor,
the processor can efficiently access and manipulate individual colored dots
called pixels (picture elements) in the image.

19

Game Programming for Windows

Chapter

1

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Luckily for us, additional memory in the VGA cards soon provided many
other video modes, including one at 640x480 with 256 colors and many others
at varying combinations of resolution and colors. These so-called super VGA
cards were difficult to support under DOS because the video modes were not
standard, but Windows solved this problem in one fell swoop. Because Win-
dows programs access the display adapter through a driver, Windows can use
a super VGA card at any of its supported color-resolution combinations—as
long as the VGA card’s vendor provides a driver for the card. Thus, with Win-
dows you should be able to write games that exploit, at a minimum, the 256-
color 640x480 resolution of super VGA cards. In fact, many systems now sport
other video adapters such as XGA and graphics accelerator chips that are de-
signed to provide fast graphics output under Windows. Thanks to the device
independence of Windows, your Windows games can support these advanced
video cards as easily as the standard VGA adapters.

Multimedia Games for Windows
Starting with version 3.1, Windows supports multimedia—a collection of input
and output capabilities including audio and video that go beyond the standard
keyboard, mouse, and graphics display that have been part of PCs all along.
Windows provides drivers for multimedia devices such as CD-ROM drive,
sound board, image scanner, and videotape player, and an API for controlling
any of these devices.

If you turn the pages of Computer Shopper magazine, you see a definite up-
surge in advertisements for CD-ROM and sound boards such as the Sound
Blaster or AdLib. Games such as Where in the World is Carmen Sandiego? and
BattleChess are already beginning to take advantage of these multimedia de-
vices to bring detailed images, interactive video, and digitized voices to their
games. Although most of the games are still DOS-based, if you are planning a
new multimedia game, you might want to write the game for Windows be-
cause the Windows API includes good support for multimedia programming.

20

Programming Windows Games with Borland C++

TWO/NS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH 01 LP#5

Summary
Computer games are always popular and there are many computer games for
the PC. You can organize the current crop of computer games into seven cat-
egories: educational, traditional, arcade, sports, adventures and role playing,
real-time action simulations, and strategic simulations. All computer games use
graphics and sound to create the special effects that make the games entertain-
ing. If you have a good idea for a game, you can implement it by using a stan-
dard set of techniques for graphics and sound generation.

Most of the games run under MS-DOS and many games with good color
graphics make use of the 256-color 320x200 resolution mode of the VGA dis-
play adapter. However, Microsoft Windows offers a unique opportunity to
exploit advanced display adapters (with greater than 640x480 resolution and
more than 256 colors) in a device-independent manner. Also, Windows sup-
ports devices such as CD-ROM and sound cards that you can use to enhance
your computer game. The rest of this book focuses on illustrating how to de-
velop games for Windows using Borland C++ and the Windows API.

Further Reading
Michael Young’s book covers game programming with Microsoft Visual Ba-
sic. He describes and implements several traditional games such as Tic Tac Toe,
a Fractal Puzzle, a Tetris-like game called TriPack, and a variation of Solitaire
called Peg Solitaire.

To keep up with recent commercial computer game offerings and to learn
more about the trends in popularity of different types of games, consult
magazines such as Computer Gaming World (published monthly by Golden
Empire Publications, Inc., Anaheim Hills, CA) and PC Games (published eight
times a year by A+ Publishing, a subsidiary of Macworld Communications,
Peterborough, NH).

Young, Michael J. Visual Basic—Game Programming for Windows.
Redmond, WA: Microsoft Press, 1992.

21

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Chapter

2

Windows
Programming

with
Borland C++

22

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Windows applications are easy to use and they have a rich graphical user in-
terface; unfortunately for software developers, the ease of use comes at the
expense of a complex Application Programming Interface (API), the collection of
functions that programmers use to write Windows applications. For example,
the Windows API contains over 600 functions. Although you can get by with
a small fraction of these, you are never quite sure if you are overlooking some
function that does exactly what your application needs to do. In addition to
the sheer volume of information, you have to follow an entirely different ap-
proach when you write Windows applications. Despite these drawbacks, writ-
ing games for Windows does offer several advantages:

Windows offers device independence. The same Windows game should
display its output on any monitor from EGA to VGA and print on any
printer from dot-matrix to laser.

For the developer, Windows offers a variety of predefined user-
interface components such as pushbuttons, menus, dialog boxes, lists,
and edit windows.

Windows includes an extensive interface to any graphics device (called
Graphics Device Interface, GDI) for drawing graphics and text. In par-
ticular, the GDI lets you draw in your own coordinate system.

Until now, C has been the programming language of choice for writing
Windows applications. Meanwhile, C++ has been steadily gaining in popularity
and many programmers are now interested in using it to write Windows ap-
plications. However, calling Windows functions from a C++ program is not as
simple as calling, for instance, the functions from the standard C library. This
is because the compiler has to generate special object code when calling Win-
dows functions, and Windows uses a different method of passing arguments
to its functions. In other words, the C++ compiler has to support the require-
ments imposed by Windows. Like most MS-DOS C++ compilers, Borland C++
supports Windows programming. In particular, Borland C++ comes with the
ObjectWindows Library (OWL), a library of C++ classes that makes it easier to
write Windows applications.

This chapter is a quick introduction to writing Windows programs with
Borland C++, OWL, and the utility class library often referred to as CLASSLIB,
but it is not a complete tutorial. If you need further information on object-
oriented programming or Windows programming, consult one of the books
listed at the end of this chapter. Although the example program in this chap-
ter is simple, it provides you with a complete framework for developing a
Windows application with Borland C++.

23

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Note that Borland C++ includes the full source code for the OWL and the
class library. Therefore, if you want, you can always browse through the source
code of the OWL classes to see exactly how the classes are defined and imple-
mented.

Isn’t Microsoft Windows Already Object-Oriented?

From the early years, books on Microsoft Windows have described its
object-oriented architecture. Then why do programmers access the
Windows environment through a layer of C++ classes such as those in
the Borland’s OWL? Because even though Windows supports the
concept of certain objects, the data encapsulation and inheritance rely
on the programmer’s discipline. After all, when you write Windows
programs in C, you can access and modify all parts of the structures
that represent the “objects.” Even if this were not an issue, anyone who
has written a Windows program in C knows that the programmer has
to attend to a myriad of details to get the application and its windows
to “look” and “behave” properly. An object-oriented layer, in an
object-oriented programming language such as C++, can help tremen-
dously by hiding many unnecessary details. Basically, that’s what you
get when you use C++ classes that support Windows programming.
You might say that the Windows environment has an underlying
object-oriented architecture, but the Windows “programming inter-
face” is procedural. By using a properly designed set of C++ classes,
you are making the programming interface more object-oriented.

Microsoft Windows
Programming with
Borland C++ Classes
The primary purpose of the OWL classes is to provide a complete application
framework for building Microsoft Windows applications. The collection of
classes in OWL are referred to as a framework because they essentially

NOTE

24

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

provide all the components for skeletal programs that can be easily fleshed out
into complete Windows applications.

Even though the Borland class libraries (CLASSLIB and OWL) include most
classes necessary to build the user interface and represent various data types,
it is easier to build an application if you follow a well-defined architecture
(structural model) for the application. The Model-View-Controller (MVC) archi-
tecture prevalent in the Smalltalk-80 programming language is a good candi-
date for Windows applications.

Model-View-Controller (MVC)
Architecture
The MVC architecture separates the application into three separate layers (see
Figure 2.1):

Model refers to the application layer where all application-dependent
objects reside. For example, in a drawing program, this is the layer that
maintains the graphics objects.

View is the presentation layer which presents the application’s data to
the user. This layer extracts information from the model and displays
the information in windows. In a drawing program, this layer gets the
list of graphics objects from the model and renders them in a window.
Also, the view provides the windows in the application’s graphical
user interface.

Controller is the interaction layer which provides the interface between
the input devices (such as keyboard and mouse) and the View and
Model layers.

The MVC architecture does an excellent job of separating the responsibili-
ties of the objects in the system. The application-specific details are insulated
from the user interface. Also, the user interface itself is broken down into two
parts: the presentation is handled by the view and the interaction is handled
by the controller.

When building Windows applications using OWL and CLASSLIB, you do
not have to follow the MVC model strictly. For instance, when you use OWL
classes, it is difficult to separate the view and controller layers. As shown in

25

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Figure 2.2, your application consists of a model and an associated view-
controller pair. The figure also shows the usual interactions in Smalltalk-80’s
MVC architecture. The controller accepts the user’s inputs and invokes the
appro-priate function from the model to perform the task requested by the user.
When the work is done, the function in the model sends messages to the view
and controller. The view updates the display in response to this message, ac-
cessing the model for further information if necessary. Thus, the model has a
view and a controller, but it never directly accesses them. The view and con-
troller, on the other hand, access the model’s functions and data, when neces-
sary.

✢❁❒❒❙ ✦❉■▲▼❅❒❒❈❅❒❒
✒✔✕✑✙ ✬❙■❄❏■ ✬❁■❅
★❏◆▲▼❏■✌ ✴❅❘❁▲ ✒✖✔✐✘✍✐✙✑✕
✪◆■❅ ✒✓✌ ✑✙✙✓

✭▲✎ ★❅●❅■❁ ✭❏■▼❁■❁
✴❈❅ ✦❅▼❃❈ ✰❁❐❐❙ ✳❈❏◗
✓✑ ✲❏❃❋❅❆❅●●❅❒ ✰●❁❚❁✌ ✳◆❉▼❅ ✑✔✑✐✥
✮❅◗ ✹❏❒❋✌ ✮❅◗ ✹❏❒❋ ✑✐✑✑✒

✤❅❁❒ ✭▲✎ ✭❏■▼❁■❁✚

✢❅▲▼ ◗❉ ❏❆ ❏■❅ ❏■▼❉■◆❅❄ ❅■❊❏❙❍❅■▼ ❏❆ ❏■❅ ❏❆ ❏◆❒ ❆❉■❅▲▼ ❐❉❁■❏▲✎✢❅▲▼ ◗❉▲❈❅▲ ❏■ ❙❏◆ ❃❏■▼❉■◆❅❄
❅■❊❏❙❍❅■▼ ❏❆ ❏■❅ ❏❆ ❏◆❒ ❆❉■❅▲▼ ❐❉❁■❏▲✎

✢❅▲▼ ◗❉▲❈❅▲ ❏■ ❙❏◆ ❃❏■▼❉■◆❅❄ ❅■❊❏❙❍❅■▼ ❏❆ ❏■❅ ❏❆ ❏◆❒ ❆❉■❅▲▼ ❐❉❁■❏▲✎

✳❉■❃❅❒❅●❙✌
✢❁❒❒❙ ✦❉■▲▼❅❒❒❈❅❒

c:\>

MouseKeyboard

Graphics display

Send messages
to View

Display
outputInvoke

Model
functions

Controller

Model View

Maintain problem-related
information

 dx
---- = f(x) + w(t)
 dt

y(t) = h(x) + v(t)

File Edit Settings

Call model
functions
to handle
these

Position
Velocity
Transform

Figure 2.1. Model-View-Controller (MVC) architecture of Smalltalk-80.

26

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

User inputs To display

View-Controller pair

Access Model

Controller

Accepts user
input

Messages

Model

Maintains application-
specific info

Broadcasts messages
to View-Controller pair

View

Displays output

Figure 2.2. Interactions among model, view, and controller in the MVC model.

As you can see in the examples that follow, most of the OWL classes con-
tribute to the view and controller pair. You typically use your own classes as
well as the general-purpose classes such as strings, lists, and arrays in the
application’s model layer.

A Windows Application
Using OWL and CLASSLIB
A simple example shows how to employ the MVC architecture to build a Win-
dows application with the Borland C++ class libraries. This application uses
OWL displaying Hello, World! in a window. Even with OWL, you have to
attend to many details when writing a Microsoft Windows application. This
simple example illustrates the steps, which you follow even when writing a
more complex Windows application such as a game.

27

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

HelloApp Class
As a consequence of the concept of an application framework, all OWL-based
Microsoft Windows applications rely on a class derived from the TApplication
class that models the entire application. Listing 2.1 shows the file hello.cpp.
This implements the class HelloApp that models our sample application. In the
HelloApp class, you define at least two member functions: InitInstance to ini-
tialize an instance of the application and InitMainWindow to initialize the main
window of the application. When you use the MVC architecture, the basic steps
for your application are

1. Create a model for the application. For this application, the model is a
class named HelloModel, defined in the header file hellomdl.h (Listing
2.2). The model class holds all application-specific data—in this case,
the data is a string to be displayed in a window.

2. Create a view and store a pointer to the model in the view. In this case,
the view class is named HelloView and is declared in the header file
hellovw.h (Listing 2.3).

3. Derive an application class from TApplication, and in the
InitMainWindow function of the application class, create the model and
the view.

4. Write a WinMain function. In that function create an instance of the
application class and call the Run function to get the application going.
Essentially, the application class, derived from TApplication, provides
the functionality of the controller in the MVC architecture.

Listing 2.1. hello.cpp—
The hello application based on the MVC architecture.

//--
// File: hello.cpp
//
// A Windows application that uses the ObjectWindows Library
//--
#include “hellovw.h”
#include “hellomdl.h”

class HelloApp: public TApplication
{

continues

28

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Listing 2.1. continued

public:
// Constructor that simply calls the base class constructor

 HelloApp(LPSTR name, HINSTANCE instance,
 HINSTANCE prev_instance, LPSTR cmdline, int show) :

 TApplication(name, instance, prev_instance,
 cmdline, show) {}
 ~HelloApp() { delete m;}

// Define function to initialize application’s main window
 void InitMainWindow();

// Define function to initialize an instance of this application
 void InitInstance();

private:
 HelloModel *m;
};
//--
// H e l l o A p p : : I n i t M a i n W i n d o w

void HelloApp::InitMainWindow()
{
 m = new HelloModel();
 MainWindow = new HelloView(m);
}
//--
// H e l l o A p p : : I n i t I n s t a n c e

void HelloApp::InitInstance()
{
 TApplication::InitInstance();
 HAccTable = LoadAccelerators(hInstance, “MainAccelTable”);
}
//--
// W i n M a i n
//
// Create an instance of the application and “run” it.

int PASCAL WinMain(HINSTANCE instance, HINSTANCE prev_instance,
 LPSTR cmdline, int show)

29

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

{
 HelloApp hello_world(“Hello, World!”, instance,
 prev_instance, cmdline, show);

 hello_world.Run();

 return hello_world.Status;
}

HelloModel Class
An application’s model is supposed to store data unique to the application. In
this case, the application is simple enough that you can display the Hello,
World! string directly from the view class. However, creating a model class
illustrates how to build a realistic application using the MVC architecture. This
application’s model, the HelloModel class (Listing 2.2), contains the string to be
displayed in the window. The string is stored in an instance of a String class
(from Borland CLASSLIB) that is created in the constructor of the HelloModel
class. The view class uses the member function named get_string to obtain a
pointer to this String instance.

Listing 2.2. hellomdl.h—Definition of the HelloModel class.

 //--
// File: hellomdl.h
//
// The “model” for the “hello” application. In this case,
// the model simply stores a string to be displayed in a window.

#if !defined(_ _HELLOMDL_H)
#define _ _HELLOMDL_H

#include <owl.h>
#include <strng.h>
#include <string.h>

class HelloModel
{

continues

30

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Listing 2.2. continued

public:
 HelloModel() { p_str = new String(“Hello, World!”);}

 ~HelloModel() { delete p_str;}

 String* get_string() { return p_str;}

private:
 String *p_str;
};

#endif

HelloView Class
The HelloView class, declared in the file hellovw.h (Listing 2.3) and implemented
in hellovw.cpp (Listing 2.4), provides the view for this application. The HelloView
class is responsible for displaying in a window the message stored in the
HelloModel class. HelloView is derived from the TWindow class which is designed
to serve as the main window of an application. The view class stores a pointer
to the model; through this pointer the view can access the model as needed.

The most important function of the HelloView class is called Paint. OWL
automatically calls the Paint function for a window whenever the window
needs repainting.

The About function is a Windows message response function as indicated
by the way it is declared:

void About(RTMessage msg) = [CM_FIRST + IDM_ABOUT];

Notice the unusual [CM_FIRST + IDM_ABOUT] syntax. This is an extension to C++
indicating that About is a message response function that OWL calls to handle
the Windows message identified by [CM_FIRST + IDM_ABOUT]. The constant
CM_FIRST is defined in the header file <owldefs.h> and refers to the WM_COMMAND
message. The constant IDM_ABOUT identifies this message as the one that Win-
dows sends to your application’s window when the user selects the About
menu item in the Help menu. Note that you indicate the association between
a menu item and a constant (such as IDM_ABOUT) in the resource file, in this case
HELLO.RC (Listing 2.8).

31

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

As you can see in Listing 2.4, the About function displays a dialog box with
information about the application.

Microsoft Windows works by sending messages to the windows that
constitute an application’s user interface. OWL uses the idea of mes-
sage response functions, each of which is associated with a specific
Windows message. OWL automatically calls that response function
when the corresponding Windows message occurs. Borland has
extended the syntax of C++ function declaration to provide a way to
associate a function with a Windows message. For example, to declare
WMTimer as the function to be called in response to the WM_TIMER mes-
sage, write

void WMTimer(RTMessage msg) = [WM_FIRST + WM_TIMER];

where RTMessage is a reference to a TMessage structure and the expres-
sion [WM_FIRST + WM_TIMER] evaluates to a message number that
identifies the WM_TIMER message. You have to declare these message
response functions in your application’s window class, which is
derived from the OWL class TWindow.

Listing 2.3. hellovw.h—Declaration of the HelloView class.

//--
// File: hellovw.h
//
// The “view” for the “hello” application. In this case,
// the view is a window where the string from the model
// is displayed.

#if !defined(_ _HELLOVW_H)
#define _ _HELLOVW_H

// Include necessary header files
#include <owl.h>
#include “hellores.h” // Resource identifiers for application

class HelloModel;

continues

TIP

32

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Listing 2.3. continued

class HelloView : public TWindow
{
public:
 HelloView(HelloModel *a_model);

// The following is needed to set up an icon for the application
 void GetWindowClass(WNDCLASS _FAR &wc);

// Declare functions for handling messages from Windows
 void Paint(HDC hdc, PAINTSTRUCT &ps);
 void About(RTMessage msg) = [CM_FIRST + IDM_ABOUT];

private:
 HelloModel *model;
};

#endif

Listing 2.4 shows the implementation of the HelloView class. In Listing 2.4,
the Paint function contains the code that displays a message in the application’s
main window. In the Paint function, we get the message string from the model
by calling the get_string function of the HelloModel class as follows:

void HelloView::Paint(HDC hdc, PAINTSTRUCT&)
{

// Get the message to be displayed
 String* p_string = model->get_string();

// Display the message ...
}

The actual rendering of the string is done by calling a text drawing function
from the Windows API. Notice that the Paint function is called with a handle—
an integer identifier— to a device context (DC) as an argument. The device con-
text holds information that controls the appearance of drawings created by
Windows drawing functions. In Paint, the device context is used as follows:

 SetTextAlign(hdc, TA_BASELINE | TA_CENTER);
 SetBkMode(hdc, TRANSPARENT);

//...

33

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

// Draw the string
 TextOut(hdc, xpos, h/2, *p_string, len);

Graphics attributes such as alignment of text and the background mode are
set by calling the Windows API functions SetTextAlign and SetBkMode, respec-
tively.

The text string is displayed by calling the TextOut function. In the call to
TextOut, xpos denotes the x-coordinate of the location in the window where
the text output starts, h denotes the height of the window, and len is the num-
ber of characters in the text string being displayed. You can get the size (width
and height) of the window and the length of a String object as follows:

// Get window size
 RECT r;
 GetClientRect(HWindow, &r);

 int w = r.right - r.left;
 int h = r.bottom - r.top;

// Get number of characters in string
 int len = strlen(*p_string);

If you want to draw other graphics in the window, you can call other draw-
ing functions from the Windows API.

Listing 2.4. hellovw.cpp—
Implementation of the HelloView class.

//--
// File: hellovw.cpp
//
// The “view” layer for the “hello” application
//--
#include “hellovw.h”
#include “hellomdl.h”

//--
// H e l l o V i e w : : H e l l o V i e w
// Constructor for HelloView class

continues

34

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Listing 2.4. continued

HelloView::HelloView(HelloModel* a_model) : model(a_model),
 TWindow(NULL, “Hello”)
{
 AssignMenu(“MainMenu”);
}
//--
// H e l l o V i e w : : G e t W i n d o w C l a s s
// Set up icon for this application

void HelloView::GetWindowClass(WNDCLASS &wc)
{
// First call the GetWindowClass function of the base class
 TWindow::GetWindowClass(wc);

// Set up icon for this application
 wc.hIcon = LoadIcon(wc.hInstance, “HELLO_ICON”);
}
//--
// H e l l o V i e w : : P a i n t
// Draw contents of window

void HelloView::Paint(HDC hdc, PAINTSTRUCT&)
{
 SetTextAlign(hdc, TA_BASELINE | TA_CENTER);
 SetBkMode(hdc, TRANSPARENT);

// Get the message to be displayed
 String* p_string = model->get_string();

// Get window size
 RECT r;
 GetClientRect(HWindow, &r);

 int w = r.right - r.left;
 int h = r.bottom - r.top;

// Get number of characters in string
 int len = strlen(*p_string);

// Display string roughly at the center of window
 int xpos = w/2;
 if(xpos < 0) xpos = 0;
 TextOut(hdc, xpos, h/2, *p_string, len);
}
//--
// H e l l o A p p : : A b o u t
// Display the “About...” box

35

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

void HelloView::About(RTMessage)
{
 TDialog *p_about = new TDialog(this, “ABOUTHELLO”);
 GetApplication()->ExecDialog(p_about);
}

Building the Application
Once you have the header files and source files ready, you have to compile and
link them to create a Microsoft Windows application. I use the MAKE utility that
comes with the Borland C++ compiler, but you can build the executable by
defining a project within Borland’s Windows-based development environment.

The input to the MAKE utility is called a makefile. For the hello application, the
makefile (named MAKEFILE) is shown in Listing 2.5. Given the makefile of List-
ing 2.5, the following command builds the file HELLO.EXE:

make

Notice that the makefile shown in Listing 2.5 creates a configuration file,
HELLO.CFG, with a list of options for the Borland C++ compiler. Nowadays the
compiler options are so numerous and lengthy that if you were to run the
Borland C++ compiler (bcc) by specifying the options on the command-line,
the number of characters on the command-line exceeds 128—the maximum
allowed by MS-DOS. The configuration file avoids this limitation because you
only specify the name of the configuration file on the command-line that runs
bcc.

You need a few more files to complete the process specified in the makefile:

HELLO.DEF (Listing 2.6). This file is known as the module definition file
and is needed to build Microsoft Windows applications.

HELLORES.H (Listing 2.7). This file defines constants that identify
resources such as menu item numbers.

HELLO.RC (Listing 2.8). This file is known as the resource file and is a text
file that specifies the layouts and contents of menus and dialog boxes.
The Microsoft resource compiler (invoked by the RC command) com-
piles this file into a binary form and appends it to the executable file.

36

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

HELLO.DLG (Listing 2.9). This file contains the actual layout of the About
Hello dialog box displayed by the HELLO application. The resource file,
HELLO.RC, incorporates the contents of HELLO.DLG into HELLO.RC by using
the rcinclude directive of the resource compiler.

HELLO.ICO. This is a small image (32 pixels by 32 pixels) that you
should prepare using the Resource Workshop application
(WORKSHOP.EXE) that comes with the Borland C++ compiler. The
icon file, HELLO.ICO, is referenced in the resource file HELLO.RC.

Listing 2.5. Makefile for building HELLO.EXE.

###
Makefile : Builds the Hello application
#
Usage: MAKE
#
NOTE: Change the INCLUDES and LIBS symbols so that the
pathnames are consistent with the drive and
directory where you installed Borland C++.
#

.AUTODEPEND
INCLUDES =
e:\bc31\include;e:\bc31\classlib\include;e:\bc31\owl\include

LIBS = e:\bc31\lib;e:\bc31\owl\lib;e:\bc31\classlib\lib

CC = bcc +hello.cfg

LINK = tlink

OBJ = hello.obj hellovw.obj

Explicit rule to build the executable file

hello.exe: $(OBJ) hello.def hello.res hello.cfg
 $(LINK) /x/c/Twe/P-/C/L$(LIBS) @&&|
c0wl.obj+
$(OBJ)
hello
 # no map file
owl.lib+
import.lib+

37

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

tclasdll.lib+
mathwl.lib+
crtldll.lib+
cwl.lib
hello.def
|
 rc hello.res hello.exe

Other dependencies
hello.res: hello.rc hello.dlg hello.ico hello.cfg
 rc -r -I$(INCLUDES) -FO hello.res hello.rc

hello.obj: hello.cpp hellovw.h hellomdl.h hellores.h hello.cfg

hellovw.obj: hellovw.cpp hellovw.h hellomdl.h hellores.h hello.cfg

Compiler configuration file
hello.cfg: makefile
 copy &&|
-ml
-2
-C
-d
-Fc
-WS
-vi
-H=HELLO.SYM
-DWIN31
-D_CLASSDLL
-I$(INCLUDES)
-L$(LIBS)
| hello.cfg

Listing 2.6. HELLO.DEF—Module definition file for HELLO.EXE.

NAME Hello
DESCRIPTION ‘Hello from ObjectWindows Library (OWL)’
EXETYPE WINDOWS
STUB ‘WINSTUB.EXE’

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 8192
STACKSIZE 8192

38

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Listing 2.7. hellores.h—Resource identifiers for HELLO.EXE.

//--
// File: hellores.h
//
// Declare the resource IDs for the Hello application
// In this case, we have only one.

#define IDM_ABOUT 100

Listing 2.8. HELLO.RC—Resource file for HELLO.EXE.

//--
// File: hello.rc
//
// Declare the resources for the Hello application
//--
#include <windows.h>
#include “hellores.h”

MainMenu MENU
{
 POPUP “&Help”
 {
 MENUITEM “&About Hello...\tF1”, IDM_ABOUT
 }
}

MainAccelTable ACCELERATORS
{
 VK_F1, IDM_ABOUT, VIRTKEY
}

HELLO_ICON ICON hello.ico

rcinclude hello.dlg

39

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Listing 2.9. HELLO.DLG—
Definition of the dialogs used in HELLO.EXE.

//--
// File: hello.dlg
//
// Define the dialogs used in the Hello application.
// In this case, we have only the “About Hello” dialog.

ABOUTHELLO DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION “About Hello”
BEGIN
 CTEXT “Hello, World! from”, -1, 0, 2, 144, 8
 CTEXT “ObjectWindows Library (OWL)”, -1, 0, 12, 144, 8
 CTEXT “Version 1.0”, -1, 0, 22, 144, 8
 DEFPUSHBUTTON “OK”, IDOK, 56, 56, 32, 14, WS_GROUP
END

Testing HELLO.EXE
Once you successfully compile and link the sample application HELLO.EXE, you
can run it under Microsoft Windows by typing the following command at the
DOS prompt:

win hello

Or, if you are already running Windows, you can start HELLO.EXE from the Run
option in the File menu of the Program Manager.

Figure 2.3 shows the output from the program. If you resize the window,
Hello, World! should appear centered in the window. Note that a minimized
version of a second copy of HELLO also appears in Figure 2.3.

40

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Figure 2.3. Hello, World! from OWL-based HELLO.EXE.

Borland C++ Class Libraries
Now that you have seen an example of a Microsoft Windows application built
using classes from CLASSLIB and OWL, here is an overview of the entire class
hierarchy that accompanies Borland C++. You should know about the classes
because your game application might need data types (strings, date, and time)
as well as containers (arrays, lists, and queues) capable of holding a variety of
objects. Of course, the OWL classes are useful for building the Windows inter-
face for your game.

In addition to the CLASSLIB and OWL classes, Borland C++ 3.1 introduced
another set of classes. These use class templates to define a variety of flexible
container classes that can store anything from built-in C++ types, such as int
and float, to your own class types. Class templates are class definitions pa-
rameterized by a data type. Borland calls these classes the Borland International
Data Structures (BIDS). The BIDS classes are summarized later in this chapter.
First let us look at the more conventional CLASSLIB and OWL classes.

41

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Breakdown of the CLASSLIB Classes
There are three categories of classes in CLASSLIB:

Container classes that are meant to hold one or more objects (or pointers
to objects)

Simple classes that represent new data types such as string, date, and
time

Iterator classes that allow you to access the contents of a container, one
after another

Container Class Hierarchy
Figure 2.4 shows the inheritance hierarchy of the container classes in CLASSLIB.
As you can see, all classes in this category inherit from both the Object class
and the TShouldDelete class. The Object class is an abstract base class, which
means that you cannot create an instance of this class. The purpose of the
Object class is to provide a common set of member functions for all the classes
in the hierarchy.

Figure 2.4. Container class hierarchy in Borland CLASSLIB.

SortedArrayArraySet

Bag HashTableListAbstractArrayBTree DoubleList

Queue

Dictionary

Deque

ContainerAssociation

Object

PriorityQueueStack Collection

TShouldDelete

42

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

The TShouldDelete class provides a mechanism for the programmer to indi-
cate what should happen when you store pointers to objects in a container and
the container is destroyed. By calling the ownsElements member function of the
TShouldDelete class, you can indicate whether the container should delete the
objects or leave them alone. By default, a container deletes the objects it con-
tains. Table 2.1 summarizes the container classes in Borland CLASSLIB.

Table 2.1. Container classes in Borland CLASSLIB.

Class Description

AbstractArray An abstract class that represents an array

Array An array that can grow at runtime

Association A pair of objects (the first denotes a key, the second
denotes the value associated with that key)

Bag An unordered collection of objects that can have
multiple instances of the same object

BTree A B -Tree data structure

Collection An abstract class representing a container that can
keep track of the objects it holds

Container An abstract class that models an object capable of
holding many different types of objects

Deque A variation of the well-known queue data structure
allowing objects to be inserted and removed at both
ends of the queue (a double-ended queue, pro-
nounced “deck”)

Dictionary An unordered collection of association objects that
provides a member function to look up associations
using keys

DoubleList A doubly-linked list data structure

HashTable An unordered collection of objects that allows fast
access through a hash function (the location of an
object is computed directly from the data represent-
ing the object)

43

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

List A singly-linked list data structure

PriorityQueue A queue that maintains objects in a specific order
according to the priority assigned to each object (the
order is determined by applying the < operator of
the queued objects)

Queue A FIFO (first-in first-out) data structure that allows
you to insert objects at the tail of the queue and
remove them from the head

Set An unordered collection of objects in which only
one occurrence of an object is allowed in the set

SortedArray An array that keeps its contents sorted in ascending
order (where the ascending order is defined by the
operator < of the objects in the array)

Stack A LIFO (last-in first-out) data structure

Simple Classes in CLASSLIB
Simple classes are the noncontainer classes that include the following:

BaseDate An abstract class that provides the basic date manipulation
functions.

BaseTime An abstract class that provides the basic time manipulation
functions.

Date A class derived from BaseDate that provides the function
used to print a date. This separation of responsibility
between BaseDate and Date allows you to easily customize
the way a date is displayed.

Error A class that provides a mechanism to indicate error condi-
tions that might occur in the library during memory alloca-
tions. There is a single instance of an Error object in a
program and when memory allocation fails, the pointer
returned by the new operator points to this global instance of
the Error object. You can detect an error by comparing the
pointer with the macro called NOOBJECT that is defined as a
reference to the global Error object.

44

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Sortable An abstract class that encapsulates the property that objects
can be compared. Classes derived from the Sortable class
have to define the isEqual and isLessThan member func-
tions.

String An array of characters representing a C-style, null-
terminated array of characters. The String class lets you
define and manipulate strings without worrying about
how the memory for the character array is managed.

Time A class derived from BaseDate that provides the function
used to print a time. This separation of responsibility
between BaseTime and Time allows you to easily customize
the way a time is displayed.

Figure 2.5 shows the class hierarchy of the simple classes in CLASSLIB.

Sortable

BaseDate BaseTime String

Error

Date Time

Object

Figure 2.5. Simple classes in CLASSLIB.

45

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Iterator Classes in CLASSLIB
With the variety of containers available in CLASSLIB, you need a way to ac-
cess the contents of a container. The iterator classes provide the ability to do
this. As shown in Figure 2.6, the iterator classes form a simple hierarchy with
the ContainerIterator class as the common base class. Here is a simple pro-
gram that illustrates the use of the ListIterator to access each element in a list:

// Sample program that illustrates the use of iterators

#include <list.h>
#include <strng.h>
#include <iostream.h>

void main()
{
 List l;
 String *s1 = new String(“One”);
 String *s2 = new String(“Two..”);
 String *s3 = new String(“Three...”);

 l.add(*s1);
 l.add(*s2);
 l.add(*s3);

// Iterate over list
 ListIterator li(l);

 while(li)
 {
 cout << li++ << endl;
 }
}

When compiled and run, this program prints

Three...
Two..
One

These are all the String objects in the List. The printed order is the reverse of
the order of insertion because the add member function of the List class adds
an object to the head of the list.

46

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

ArrayIterator

BTreeIterator

DoubleListIterator

Hash TableIterator

ListIterator

ContainerIterator

Figure 2.6. Iterator classes in CLASSLIB.

Template-Based Container Classes
One problem with the container classes in CLASSLIB (Figure 2.4) is that they
can store only objects that are derived from the Object class. For instance, you
cannot store any of the built-in data types such as float, int, or double in the
CLASSLIB container classes. The template keyword that is part of AT&T C++
Release 3.0 provides a much better method of defining container classes that
can hold any type of objects, including char, float, double, and int.

The BIDS classes offer two levels of abstraction:

Fundamental Data Structure (FDS)

Abstract Data Structure (ADT)

Consult the Borland C++ Programmer’s Guide for more information on these
template classes. The following is a brief description to refresh your memory.

Fundamental Data Structure (FDS)
FDSs are data structures at a lower-level of abstraction with close ties to the
specific way they are implemented. The available FDSs are

Vectors

Singly-linked lists

Doubly-linked lists

47

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Borland calls this data structure an FDS because each implies a specific way
of implementation: a vector is a contiguous sequence of memory locations
and the lists are implemented as a collection of nodes connected by pointers.
Table 2.2 lists the FDS class templates. Note that T denotes any type of object
including built-in types such as int and float or your own class.

Table 2.2. Fundamental Data Structure FDS) container classes
in Borland C++.

Class Template Description

BI_VectorImp<T> A vector of objects of type T

BI_VectorIteratorImp<T> An iterator for BI_VectorImp<T>

BI_CVectorImp<T> A counted vector of objects of type T

BI_SVectorImp<T> A sorted vector of objects of type T

BI_IVectorImp<T> A vector of pointers to objects of type T

BI_IVectorIteratorImp<T> An iterator for a vector of pointers
to type T

BI_ICVectorImp<T> A counted vector of pointers to objects
of type T

BI_ISVectorImp<T> A sorted vector of pointers to objects
of type T

BI_ListImp<T> A list of objects of type T

BI_SListImp<T> A sorted list of objects of type T

BI_IListImp<T> A list of pointers to objects of type T

BI_ISListImp<T> A sorted list of pointers to objects
of type T

BI_DoubleListImp<T> A doubly-linked list of objects of type T

BI_SDoubleListImp<T> A sorted doubly-linked list of objects
of type T

continues

48

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Table 2.2. continued

Class Template Description

BI_IDoubleListImp<T> A doubly-linked list of pointers to
objects of type T

BI_ISDoubleListImp<T> A sorted doubly-linked list of pointers to
objects of type T

Abstract Data Type (ADT)
To distinguish from the fundamental data structures, Borland uses the term
ADT to denote containers at a higher level of abstraction. The ADT containers
include

Array

Bag

Deque

Queue

Set

Sorted Array

Stack

Note that these ADT containers provide the same functionality as the Object-
based container classes in CLASSLIB. Each is implemented using one or more
of the FDSs. For instance, a stack can be implemented as a vector or a singly-
linked list. The names of ADT container class templates listed in Table 2.3
indicate which FDS each ADT class uses for its implementation.

49

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Table 2.3. Abstract Data Type (ADT) container classes
in Borland C++.

Class Template Description

BI_StackAsVector<T> A stack implemented as a vector

BI_QueueAsVector<T> A queue implemented as a vector

BI_DequeAsVector<T> A deque (double-ended queue) imple-
mented as a vector

BI_BagAsVector<T> A bag implemented as a vector

BI_SetAsVector<T> A set implemented as a vector

BI_ArrayAsVector<T> An array implemented as a vector

BI_SArrayAsVector<T> A sorted array implemented as a vector

BI_IStackAsVector<T> A stack of pointers to T implemented as a
vector

BI_IQueueAsVector<T> A queue of pointers to T implemented as
a vector

BI_StackAsList<T> A stack implemented as a list

BI_IStackAsList<T> A stack of pointers to T implemented
as a list

BI_QueueAsDoubleList<T> A stack implemented as a doubly-
linked list

BI_DequeAsDoubleList<T> A deque (double-ended queue) imple-
mented as a doubly-linked list

BI_IQueueAsDoubleList<T> A stack of pointers to T implemented as a
doubly-linked list

BI_IDequeAsDoubleList<T> A deque (double-ended queue) of
pointers to T implemented as a doubly-
linked list

50

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

OWL Classes
The sample Windows application presented in the early part of this chapter
uses a number of OWL classes, including TApplication which provides the
framework for a complete Windows program. Figure 2.7 shows the OWL class
hierarchy. As you can see, like the CLASSLIB hierarchy, all classes in the OWL
hierarchy are derived from the Object class. The TApplication class is used to
represent the full application and the TWindowsObject classes provide the user-
interface objects—windows, dialog boxes, and controls.

Window Classes
The classes TWindow, TEditWindow, and TFileWindow represent different types of
windows. TWindow is a general-purpose window that can be the main, pop-up,
or child window of an application—the main window of OWL applications is
typically derived from the TWindow class. A TEditWindow is a specialized TWindow
that allows text editing in the window. TFileWindow behaves like TEditWindow,
but also allows loading text from and saving text to a file.

Dialog Classes
Dialogs are used to solicit input from the user. A dialog window displays a
collection of controls such as buttons, list boxes, and scroll bars. The dialog
classes make it very easy to display and use a dialog. For instance, with the
TDialog class, here is what you have to write to display the About box in the
sample application shown earlier in this chapter:

TDialog *p_about = new TDialog(this, “ABOUTHELLO”);
GetApplication()->ExecDialog(p_about);

ABOUTHELLO is the name of the dialog box, as defined in the application’s resource
file.

The dialog classes in OWL include TDialog, TFileDialog, and TInput Dia-
log. As you have noticed from the sample usage above, TDialog represents a
generic dialog. TFileDialog provides a dialog box that allows the user to choose
a file from a directory listing. The TInputDialog class represents a dialog box
that prompts the user for a single text item.

51

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

T
B
R
a
d
i
o
B
u
t
t
o
n

T
R
a
d
i
o
B
u
t
t
o
n

T
B
C
h
e
c
k
B
o
x

T
B
B
u
t
t
o
n

T
C
h
e
c
k
B
o
x

T
C
o
m
b
o
B
o
x

T
E
d
i
t

T
B
S
t
a
t
i
c

T
L
i
s
t
B
o
x

T
B
S
t
a
t
i
c
B
m
p

T
S
t
a
t
i
c

T
B
D
i
v
i
d
e
r

T
B
u
t
t
o
n

T
S
c
r
o
l
l
B
a
r

T
G
r
o
u
p
B
o
x

T
F
i
l
e
W
i
n
d
o
w

T
C
o
n
t
r
o
l

T
B
W
i
n
d
o
w

T
E
d
i
t
W
i
n
d
o
w

T
M
D
I
F
r
a
m
e

T
M
D
I
C
l
i
e
n
t

T
W
i
n
d
o
w

T
F
i
l
e
D
i
a
l
o
g

T
S
e
a
r
c
h
D
i
a
l
o
g

T
I
n
p
u
t
D
i
a
l
o
g

T
D
i
a
l
o
g

T
S
c
r
o
l
l
e
r

T
A
p
p
l
i
c
a
t
i
o
n

T
M
o
d
u
l
e

T
W
i
n
d
o
w
s
O
b
j
e
c
t

T
S
t
r
e
a
m
a
b
l
e

O
b
j
e
c
t

T
B
G
r
o
u
p
B
o
x

Figure 2.7. OWL class hierarchy.

52

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Borland Windows Custom Controls (BWCC) are a set of controls with a
sophisticated 3-D look that accompanies Borland C++. You can conve-
niently create the BWCC controls by using the OWL classes: TBButton,
TBCheckBox, TBDivider, TBGroupBox, TBRadioBox, TBStatic, and
TBStaticBmp.

Control Classes
Controls refer to user-interface items such as buttons and scroll bars that the
user manipulates with the mouse to supply input to the application. The six-
teen control classes in OWL are derived from the abstract base class TControl:

TBButton A pushbutton with the look and feel of BWCC

TButton A Windows pushbutton

TBCheckBox A box that can display check marks depending on
the value of an internal variable (the style conforms
to that of BWCC)

TBDivider A class that displays a horizontal or vertical
divider—a straight line

TBGroupBox A class that behaves like TGroupBox but uses the
BWCC style

TBRadioButton A class that behaves like a TRadioButton but uses
the BWCC style

TBStatic A class that, like the TStatic class, displays a text
string in a window using the BWCC style

TBStaticBmp A class that behaves like the TStatic class, but
displays a bitmap instead of a text string

TCheckBox A box that displays a check mark if an internal
variable is set

TComboBox A Windows combo box control, which consists of
an edit control with a drop-down list box for
making selections

NOTE

53

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

TEdit A Windows edit control with extensive text editing
capabilities

TGroupBox A class that, like a Windows group box, draws a
frame around a set of radio buttons or check boxes
(unlike a Windows group box, a TGroupBox also
manages the group of controls that it contains)

TListBox A Windows list box that displays a scrolling list of
text strings in a window

TRadioButton A Windows radio button that the user can turn on
or off

TScrollBar A Windows scroll bar control

TStatic A Windows static control that displays a text string
(cannot be edited by user) in a window

Multiple Document Interface (MDI)
There are two more important classes in the TWindow hierarchy—TMDIClient

and TMDIFrame—that are meant to support the Windows multiple document in-
terface (MDI). MDI refers to the technique of managing several child windows
by an outer frame window. For example, the Windows Program Manager uses
MDI to display the program groups in various child windows.

The TMDIFrame class, derived from TWindow, represents the frame window that
serves as the main window in an application that uses MDI. The TMDIFrame class
provides member functions, such as TileChildren and CloseChildren, that
manipulate MDI child windows.

TMDIClient is also derived from TWindow. The TMDIClient class represents the
client window that manages the child windows in an MDI frame.

TScroller Class
The TScroller class in OWL provides an automated way to scroll the contents
of a window. A TScroller can scroll windows that are created with one or both
of these styles: WS_HSCROLL and WS_VSCROLL. Additionally, a TScroller object can
scroll its associated window even if the window does not have any scroll bars.

54

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Summary
Windows programming is difficult because of the large number of functions
(over 600) in the Windows API and because you have to attend to a myriad of
details to get a Windows application up and running. C++ class libraries such
as Borland’s OWL help you manage the complexity by encapsulating many
details of the user interface in a set of C++ classes. Note, however, that even
when you use C++ and class libraries such as OWL, you have to use Windows
API functions for graphics output and define other C++ classes that may be
required by your application.

Although class libraries such as OWL provide the building blocks for your
application, you also need an overall structure. For this you can use the Model-
View-Controller (MVC) architecture of Smalltalk-80. In MVC, the classes are
grouped by specific and well-defined tasks with the application-specific data
encapsulated in a model class. The next chapter focuses on graphics program-
ming with the Windows API functions.

Further Reading
If you are beginning to learn object-oriented programming (OOP) and C++,
this author’s recent book, Object-Oriented Programming in C++, is useful. It ex-
plains how C++ supports data abstraction, inheritance, and polymorphism, the
major features of OOP. The list of references in that book guides you to other
resources that teach C++ and OOP.

For more information on B-Trees, mentioned in Table 2.1, see Donald E.
Knuth’s classic book.

There are a host of books on Windows programming with Borland C++. Ted
Faison’s book covers programming with OWL and CLASSLIB in detail. Peter
Norton and Paul Yao focus exclusively on Windows programming with OWL.

55

Windows Programming with Borland C++

Chapter

2

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

Barkakati, Nabajyoti. Object-Oriented Programming in C++. Carmel, IN:
SAMS Publishing, 1991.

Faison, Ted. Borland C++ 3.1 Object-Oriented Programming, Second
Edition. Carmel, IN: SAMS Publishing, 1992.

Knuth, Donald E. The Art of Computer Programming, Volume 3: Sorting
and Searching. Reading, MA: Addison-Wesley Publishing, 1973.

Norton, Peter, and Paul Yao. Borland C++ Programming for Windows.
New York: Bantam, 1992.

56

Programming Windows Games with Borland C++

TWO/NRS 6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 02 LP#8rf p.21—dch)

57

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Chapter

3

Graphics
Programming

with the
Windows API

58

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

The OWL and CLASSLIB classes provide the framework to build the applica-
tion and define any internal data structures. In a Windows game, however, you
have to display graphics in your application’s window and for this you use
functions from the Windows Graphics Device Interface (GDI). This chapter
briefly describes the GDI functions for drawing graphics and text. Chapters 4
and 5 cover specific techniques for displaying images, and Chapter 8 describes
how to render views of 3-D objects.

Windows Graphics
Device Interface
GDI refers to the graphics output functions of Windows, and is designed to
isolate a Windows program from the physical output device such as the dis-
play or the printer. The basic idea is that you call GDI functions for all graph-
ics output and they access specific device drivers. In addition to producing
output on physical devices, GDI also supports output to two pseudodevices:
bitmaps and metafiles (stored collections of GDI function calls). Bitmaps are
useful for displaying and animating images—tasks that are commonly needed
in computer games. Therefore, a Windows game typically needs to draw in
bitmaps and manipulate them. See Chapters 4 and 5 for further information
about bitmaps.

Many GDI functions are important when writing game software. In particu-
lar, you need the following categories:

Vector drawing functions that can draw graphical objects such as lines,
rectangles, and ellipses

Bitmap manipulation functions to display and manipulate images

Text output functions to display text in a window

Palette management functions to exploit the colors supported by a
display adapter

Palette management functions are useful in systems with super VGA or
better display adapters that support more than the 16 colors supported by stan-
dard VGA. The next sections provide an overview of these functions, but
before you proceed, you have to understand the device context.

59

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Device Context
Recall that the device context (DC) is the key to the GDI’s support for device-
independent graphics in Windows. All GDI functions require a handle to a DC
as an argument. You can think of the DC as a generalized model of a graphics
output device. In reality, the DC is a data structure that holds all information
needed to generate graphics output. In particular, the DC contains graphics
attributes, such as background color, pen, fill style, and font, that control the
appearance of graphics and text.

Because the DC represents a graphics device, you have to treat it as a shared
resource. When using a DC for graphics output, you first call an appropriate
GDI function to access the DC, use that DC to draw, and immediately release
the DC. Note that Windows allows, at most, five DCs to be open at any one
time—that’s five DCs for the entire Windows system, not per application. This
is not a limitation because at any instant only one process is displaying graph-
ics output on a device. The only important point is that the process must re-
lease the DC as soon as it is done.

Contents of a DC
The DC contains drawing objects, such as brush, pen, and bitmap, and draw-
ing attributes, such as background color, text color, and font. Table 3.1 sum-
marizes the contents of the DC and provides the default value of each item in
it. Note that the constants appearing in the default values column are defined
in the include file windows.h.

Table 3.1. Contents of a DC and their default values.

Item Default Value Comments

Background color White

Background mode OPAQUE Background areas in
drawings are filled with
the background color as
opposed to being left
untouched

continues

60

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Bitmap No default Used when selecting a
bitmap into a memory
device context

Brush WHITE_BRUSH Defines a fill style

Brush origin (0,0)

Clipping region Entire client area Drawing operations
affect the area within the
clipping region only

Color palette DEFAULT_PALETTE

Current pen position (0,0)

Device origin Upper left corner

Drawing mode R2_COPYPEN Specifies how to
combine the pen’s color
with the color that
already exists on the
drawing surface

Font SYSTEM_FONT

Intercharacter spacing 0

Mapping mode MM_TEXT One logical unit equals
one pixel

Pen BLACK_PEN

Polygon fill mode ALTERNATE

Stretching mode BLACKONWHITE Used by StretchBlt
when copying bitmaps
from one device to
another

Text alignment TA_LEFT, TA_TOP,
and TA_NOUPDATECP

Table 3.1. continued

Item Default Value Comments

61

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Text color Black

Viewport extent (1,1) Viewport refers to a
rectangle in the device
coordinate system

Viewport origin (0,0)

Window extent (1,1) Window refers to a
rectangle in the logical
coordinate system (the
mapping mode maps the
window to the viewport)

Window origin (0,0)

Getting a DC
Your Windows game application probably will acquire a DC in response to
the WM_PAINT message because that’s when an application’s window has to be
redrawn. If you use OWL classes and you derive your application’s main win-
dow from the TWindow class, you can handle all graphics output in a member
function named Paint, which has the following prototype:

void Paint(HDC hdc, PAINTSTRUCT& ps);

OWL calls the Paint function whenever Windows sends a message to the win-
dow. As you can see, the function is called with a valid DC as an argument, so
you do not have to explicitly get a DC. The second argument is a reference to
a PAINTSTRUCT structure that contains information about the area of the screen
that needs to be redrawn.

There is, however, another way to handle graphics in an OWL-based appli-
cation. In your window class you can define a message-handler for the WM_PAINT
function like this:

void draw_window(RTMessage msg) = [WM_FIRST + WM_PAINT];

Item Default Value Comments

62

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

In this case, you have to first get a DC in the draw_window function. Use the
BeginPaint function to get a DC that you can use to draw in your window and
after you are done, call EndPaint to release the DC.

Both of the approaches mentioned so far require that you get a DC when
Windows sends a WM_PAINT message to your application’s window. If you need
to update the window as soon as possible without waiting for a WM_PAINT mes-
sage, you can call the GetDC function to get a DC. The corresponding function
to release the DC is ReleaseDC. By the way, you can also force an immediate
WM_PAINT event by calling the UpdateWindow function.

Persistent DC
When you get the handle to a DC and make changes to the attributes, these
changes are lost as soon as you release the DC. There is a way to create a pri-
vate DC for a window so that the contents of the DC persist until the window
is destroyed. To do this in a window class MyWindow derived from the OWL class
TWindow, override the GetWindowClass function and add the CS_OWNDC flag to the
class—the Windows class representing the type of a window that is not a C++
class—style as follows:

// Assume that MyWindow: public TWindow

void MyWindow::GetWindowClass(WNDCLASS& wclass)
{
 TWindow::GetWindowClass(wclass);
 wclass.style |= CS_OWNDC;
}

Now the window associated with each instance of MyWindow class has its own
private DC that exists until the window is destroyed. You still have to call GetDC
(or BeginPaint) to get a handle to this DC, but you do not have to call ReleaseDC
(or EndPaint) to release it. The penalty you pay for this convenience is about
800 bytes of storage for the DC for each window with the CS_OWNDC style.

If you need to store a DC temporarily (perhaps to change some attributes,
do some drawing with the changed attributes, and revert back to the original
attributes), you can do so by calling SaveDC like this:

 int saved_DC_id;
 saved_DC_id = SaveDC(hdc);
// Make changes to DC and use it...
// After you are through using the changed DC, restore the DC
 RestoreDC(hdc, saved_DC_id);

63

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

If you simply want to revert a DC back to the state that existed before the last
call to SaveDC, call

RestoreDC(hdc, -1); // No need for exact ID

Using a DC for Graphics Output
The primary use of a DC is to draw graphics output. In fact, each GDI function
expects the handle to a DC as the first argument of the function. Here is the
typical sequence you follow when using a DC for graphics output:

1. Get the DC.

2. Set up the graphics attributes.

3. Call GDI drawing functions.

4. Release the DC.

Setting up the graphics attributes involves selecting one of the six DC draw-
ing objects into the DC:

Pen controls the appearance of lines and borders of rectangles, ellipses,
and polygons.

Brush provides a fill pattern used to draw filled figures.

Font specifies the shape and size of textual output.

Palette is an array of colors—the array index identifies each color. For
display adapters that can display more than 16 colors, Windows uses
a palette to pick the current selection of displayable colors out of the
millions of colors that a display can represent.

Bitmap is used to draw images.

Region is a combination of rectangles, ellipses, and polygons that you
can use for drawing or clipping.

At any time, the DC can have one copy of each type of graphics object. Use the
SelectObject function to select a graphics object into a DC. For instance, to draw
a rectangle filled with a specific fill pattern, you might write

// Draw a filled rectangle with specific pen and brush
 HPEN old_pen = SelectObject(hdc, GetStockObject(WHITE_PEN));
 HBRUSH hatch_brush = CreateHatchBrush(HS_DIAGCROSS,
 RGB(0, 255, 255));

64

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

 HBRUSH old_brush = SelectObject(hdc, hatch_brush);
 Rectangle(hdc, 20, 10, 80, 50);

 SelectObject(hdc, old_pen);

// Reset the brush and delete the newly-created brush
 SelectObject(hdc, old_brush);
 DeleteObject(hatch_brush);

Notice how the first call to SelectObject selects a stock pen, one of the pre-
defined graphics objects that are always available. The brush, hatch_brush, is
created by calling CreateHatchBrush. Once you are finished using the graphics
objects, you have to delete the objects that you created. In this example, the
brush is deleted by calling DeleteObject. Note that you should not delete an
object while it is selected in a DC and you must not delete a stock object.

Determining Device Capabilities with a DC
In addition to drawing with a DC, you can also determine the capabilities of a
device through the DC. Specifically, you can call the GetDeviceCaps function
to get a value for a specified capability code. For instance, to determine the
number of color planes available in the display device, call GetDeviceCaps with
the handle to a display DC:

int nplanes = GetDeviceCaps(hdc, PLANES);

PLANES denotes the capability that you are querying.

You can also use GetDeviceCaps to determine if a device supports enough
colors or specific types of graphic operations—copying bitmaps, for instance,
or drawing curves such as circles and ellipses. For example, in a Windows game
you might want to use as many colors as the display adapter supports. If a
display adapter supports 256 colors, the DC supports a logical palette. To de-
termine this, write

 if(GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE)
 {
// Yes, device supports logical palette
//...
 }

65

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

You can even test if the device driver associated with a DC is written for Win-
dows 3.0 or later:

 if(GetDeviceCaps(hdc, DRIVERVERSION) >= 0x300)
 {
// Yes, device driver is for Windows 3.0 or later.
//...
 }

GDI Coordinate Systems
The GDI supports the notion of two coordinate systems: physical and logical.
The physical or device coordinate system is fixed for a device. For a window
on the display screen, the physical coordinate system’s origin is at the upper
left corner of a window’s client area with positive x-axis extending to the right
and positive y-axis going down.

The logical coordinate system can be one of several, and Windows maps each
logical coordinate system onto the physical one before displaying any graph-
ics output. All GDI drawing functions accept logical coordinates as arguments.
The mapping mode—the way a logical coordinate system is scaled to the physi-
cal one —identifies the types of logical coordinate systems that Windows sup-
ports. Table 3.2 lists the mapping modes available in Windows GDI.

Table 3.2. Mapping modes in Windows GDI.

Mapping Mode Identifier Description

MM_ANISOTROPIC Logical units along x- and y-axes can be
set independently. Use SetViewportExt
(set viewport extent) and SetWindowExt
(set window extent) to set up the x- and
y-ratios of logical-to-physical units. (A
viewport is a rectangular area in physical
coordinate space and a window is a
rectangle in logical coordinates.) The
viewport extent is the width and height

continues

66

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

of the viewport. The scaling along x- and
y-axes are set so that the specified win-
dow in logical coordinates is mapped to
the viewport in physical coordinates.

MM_HIENGLISH Each logical unit is 0.001 inch, with the
positive x-axis extending to the right and
positive y-axis going up.

MM_HIMETRIC Each logical unit is 0.01 millimeter; the
x-axis increases to the right and the
positive y-axis extends upward.

MM_ISOTROPIC This is like MM_ANISOTROPIC except that
the x- and y-scalings must be the same.

MM_LOENGLISH This is like MM_HIENGLISH but each logical
unit is 0.01 inch.

MM_LOMETRIC This is like MM_HIMETRIC but each logical
unit is 0.1 millimeter.

MM_TEXT This is the default mapping mode where
the logical coordinate system is the same
as the physical one—each logical unit is
one pixel with the x-axis increasing to
the right and the y-axis increasing
downward.

MM_TWIPS Each logical unit is 1/20 of a point,
where a point is 1/72 inch. Thus, each
logical unit is 1/1440 inch. The positive
x-axis extends to the right and the y-axis
increases upward.

Table 3.2. continued

Mapping Mode Identifier Description

67

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Setting a Mapping Mode
Use the SetMapMode function to set a mapping mode. At any time, you can get
the current mapping mode with GetMapMode. For example, to set the mapping
mode to MM_TWIPS, write

int old_mapmode = SetMapMode(hdc, MM_TWIPS);

Specifying the mapping mode may not be enough to draw in a window. After
setting a mapping mode such as MM_TWIPS, you have the situation shown in
Figure 3.1. A portion of the lower right quadrant from the logical coordinate
space is mapped to the display screen (or the device’s work area, in case of
devices other than the display). This means that drawings with positive x- and
negative y-coordinates are the only ones that get displayed because the logical
frame’s y-axis increases upward and the physical frame’s y-axis increases
downward. This is true for all mapping modes except MM_TEXT.

Physical
(or viewport)
coordinates

(0,0)

(0,0)
-x

-y

+x

+y

+y

+x

Logical (or window)
coordinates

Figure 3.1. Default mapping from logical to physical coordinates.

If you want to work with positive logical coordinates, you have to move
the origin of the logical coordinate frame to an appropriate location in the
physical space so that the positive quadrant (the quadrant where both x- and
y-coordinates are positive) of the logical frame is mapped to the visible

68

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

quadrant of the physical coordinate frame. You can use the SetViewportOrg to
relocate the origin of the logical frame. Figure 3.2 illustrates the effect of chang-
ing the origin of the logical coordinate axes.

Physical
(or viewport)
coordinates

(0,0)

(0,0)
-x

-y

+x

+y

+y

+x

Logical (or window)
coordinates

(xv,yv)

SetViewOrg(hdc, xv, yv);

Figure 3.2. Effect of aligning the window origin with a point in the viewport.

Note that you have to follow these steps whenever you are using one of the
device-independent modes: MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
MM_LOMETRIC, or MM_TWIPS. They are device-independent because they express
the logical units in absolute measurements such as millimeters and inches.

Drawing with GDI Functions
The GDI provides a large number of drawing functions, including functions
to draw individual pixels, lines, rectangles and polygons, and ellipses.

69

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Drawing Points
You can draw a single point in a specified color with the SetPixel function,
which you would call as follows:

COLORREF actual_RGB = SetPixel(hdc, x, y, color);

This paints the point at the logical coordinates (x,y) with the specified color.
The color argument to the SetPixel function is a 32-bit value whose least sig-
nificant 3 bytes represent the red (R), green (G), and blue (B) components of a
color. You can specify the color using the RGB macro as follows:

SetPixel(hdc, x, y, RGB(r, g, b));

where r, g, and b are integers between 0 and 255 representing the intensity of
red, green, and blue components, respectively. Windows uses the nearest avail-
able color and paints the pixel with that color. SetPixel returns the RGB value
of the actual color used by Windows.

Although SetPixel can be used to draw an image directly on the display
screen, you should use the bitmap manipulation functions to display images
in Windows because the bitmap functions are much faster than SetPixel.

Drawing Lines
The GDI functions MoveTo and LineTo are meant for drawing lines. To draw a
line from the logical point (x1, y1) to (x2, y2), write the following:

MoveTo(hdc, x1, y1);
LineTo(hdc, x2, y2);

Windows draws all the pixels starting at (x1, y1) up to, but not including, (x2,
y2). The MoveTo and LineTo functions draw lines with the currently selected pen.
The MoveTo function moves the pen to a new location without drawing any-
thing and LineTo draws a line to a specified point with the pen. The pen deter-
mines the appearance of the line being drawn. You can either call SelectObject
to select a predefined pen into the device context or call CreatePen to create a
new pen with a specific style, color, and width. To use the pen, you have to
select it into the DC and, when you no longer need the pen, you must destroy
it by calling DeleteObject with the handle to the pen as an argument.

70

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

To draw multiple line segments, you should use the Polyline function, stor-
ing the end points of all the line segments in an array. For example, to join the
points (x1, y1), (x2, y2), and (x3, y3) with line segments, write

POINT points[3] = {x1, y1, x2, y2, x3, y3};
Polyline(hdc, points, 3);

Note that to draw a closed polygon using Polyline, you have to explicitly close
the figure by specifying the same coordinates for the first and the last point in
the array of points.

In addition to straight lines, the GDI includes the Arc function to draw a
curved line that is part of an ellipse. Arc requires four sets of x-y coordinates as
its arguments:

// Prototype of Arc
BOOL Arc(
 HDC hdc, // Handle to device context
 short x1, short y1, // Upper left corner of bounding box
 short x2, short y2, // Lower right corner of bounding box
 short xs, short ys, // Defines start point of arc
 short xe, short ye); // Defines end point of arc

The points (x1, y1) and (x2, y2) are the opposite corners of a rectangle that
encloses the ellipse to which the arc belongs. The starting point of the arc is
where a line joining the center of the ellipse and (xs, ys) intersects the ellipse’s
boundary. The end point is defined similarly by the line joining the ellipse’s
center and (xe, ye). The arc is drawn counterclockwise from the starting point
up to, but not including, the end point.

Drawing Closed Figures
The GDI provides the following functions to draw closed figures:

Rectangle(HDC hdc, int x1, int y1, int x2, int y2); draws a
rectangle whose upper left corner is (x1, y1) and lower right corner is
(x2, y2). Note that the right and bottom edges of the rectangle are one
pixel less than the corner (x2, y2).

RoundRect(HDC hdc, int x1, int y1, int x2, int y2, int x_ellipse,

int y_ellipse); draws a rectangle with rounded corners. The
rectangle’s bounding box is specified by the upper left corner (x1, y1)

71

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

and lower right corner (x2, y2). Each corner is rounded by drawing a
small ellipse whose width and height are x_ellipse and y_ellipse,
respectively.

Ellipse(HDC hdc, int x1, int y1, int x2, int y2); draws an ellipse
bounded by the rectangle whose opposite corners are (x1, y1) and
(x2, y2).

Pie(HDC hdc, int x1, int y1, int x2, int y2, int x_start, int

y_start, int x_end, int y_end); draws a pie-shaped wedge whose
curved edge is a segment of the ellipse bounded by the rectangle
defined by the corners (x1, y1) and (x2, y2). The two straight edges of
the pie are defined by the line joining the center of the ellipse and the
points (x_start, y_start) and (x_end, y_end). The pie slice starts at the
point where the line from the center to (x_start, y_start) intersects the
ellipse and continues counterclockwise to the point where the line
from the center to (x_end, y_end) cuts the ellipse.

Chord(HDC hdc, int x1, int y1, int x2, int y2, int x_start, int

y_start, int x_end, int y_end); draws a segment of an ellipse as
Pie does, but unlike Pie, Chord joins the end points of the arc with a
straight line.

Polygon(HDC hdc, LPPOINT pt, int numpt); draws a polygon by
joining the points in the array pt. Polygon automatically joins the first
and last points in the array to form a closed figure.

Note that all drawing functions expect logical coordinates. For each of these
closed figures, the Windows GDI draws the outline with the current pen style
and fills the inside of the figures with the current brush. There are seven stock
brush objects, which you can use by creating an instance of the brush. Call
GetStockObject with one of the following as argument:

BLACK_BRUSH

DKGRAY_BRUSH

GRAY_BRUSH

HOLLOW_BRUSH

LTGRAY_BRUSH

NULL_BRUSH

WHITE_BRUSH

72

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

You can create your own brush objects by using one of these functions:

CreateBrushIndirect

CreateDIBPatternBrush

CreateHatchBrush

CreatePatternBrush

CreateSolidBrush

CreateSolidBrush is particularly useful for creating a brush of a specified color:

HBRUSH red_brush = CreateSolidBrush(RGB(255, 0, 0));

The color is specified by an RGB triplet. If you specify a color that is not sup-
ported by hardware, Windows uses dithering—the process of combining neigh-
boring pixels of different colors to create unique shades—to produce a close
approximation to the requested color.

Manipulating Rectangles
Rectangles play an important part in the GDI. Accordingly, the GDI includes
several functions that manipulate rectangles. You have already seen the func-
tions Rectangle and RoundRect meant for drawing rectangles. Table 3.3 lists
several other rectangle functions. Most of these use the RECT structure, which
is defined in the header file <windows.h> as

typedef struct tagRECT
{
 int left; // Upper left corner of rectangle
 int top;
 int right; // Lower right corner of rectangle
 int bottom;
} RECT;

73

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Table 3.3. GDI functions that manipulate rectangles.

Name Description

CopyRect Copy from one RECT structure to another:
CopyRect(&dest_rect, &src_rect);

EqualRect Returns TRUE if two RECT structures are equal:
if(EqualRect(&rect1, &rect2)) { /* Rectangles

are equal */ }

FillRect Fills a rectangle, up to but not including the right
and bottom coordinates, with the specified brush:
FillRect(hdc, &rect, hbrush);

FrameRect Uses the current brush (not the pen) to draw a
rectangular frame: FrameRect(hdc, &rect, hbrush);

InflateRect Increases or decreases the size of a rectangle:
InflateRect(&rect, x, y);

InvertRect Inverts all the pixels in a rectangle: InvertRect(hdc,
&rect);

OffsetRect Moves a rectangle along x- and y-axes:
MoveRect(&rect, x, y);

PtInRect Returns TRUE if a point is in a rectangle:
if(PtInRect(&rect, point)) { /* Point is in

rectangle */ }

SetRect Sets the fields of a RECT structure: SetRect(&rect,
left, top, right, bottom);

SetRectEmpty Sets the fields in a RECT structure to zero:
SetRectEmpty(&rect);

UnionRect Sets the fields of a RECT structure to be the union of
two other rectangles: UnionRect(&result_rect,
&rect1, &rect2);

74

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Regions
Regions are areas of the drawing surface. The GDI allows you to define a re-
gion as a combination of rectangles, polygons, and ellipses. You can use a re-
gion to draw—by filling the region with the current brush— or use it as the
clipping region—the area where the drawing appears. Table 3.4 lists the GDI
functions meant for defining and using regions. Note that to use a region, you
must have a handle to it. Also, when using a region as a clipping region, you
have to call SetClipRgn to select the region into the device context.

Table 3.4 GDI functions that manipulate regions.

Name Description

CreateRectRgn Creates a rectangular region using
specified coordinates for the opposite
corners of the rectangle:
CreateRectRgn(left, top, right,

bottom);

CreateRectRgnIndirect Creates a rectangular region using the
fields of a RECT structure:
CreateRectRgnIndirect(&rect);

CreateRoundRectRgn Creates a rectangular region with
rounded corners, specified the same way
as the RoundRect function

CreateEllipticRgn Creates an elliptic region:
CreateEllipticRgn(left, top, right,

bottom);

CreateEllipticRgnIndirect Creates an elliptic region using the fields
in a RECT structure:
CreateEllipticRgnIndirect(&rect);

CreatePolygonRgn Creates a polygon region:
CreatePolygonRgn(points, npoints,

fill_mode); where fill_mode is
ALTERNATE or WINDING

CreatePolyPolygonRgn Creates a region out of multiple
polygons

75

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

CombineRgn Combines two regions into one accord-
ing to a specified combining mode which
can be one of the following: RGN_AND,
RGN_COPY, RGN_DIFF, RGN_OR, RGN_XOR:
CombineRgn(hresult_rgn, hrgn1, hrgn2,

combine_flag);

EqualRgn Returns TRUE if two regions are equal:
if(EqualRgn(hrgn1, hrgn2)) { /*

regions are equal */}

FillRgn Fills a region with the current brush:
FillRgn(hdc, hrgn, hbrush);

FrameRgn Draws a frame around a region with the
current brush: FrameRgn(hdc, hrgn,
hbrush, xframe, yframe);

GetRgnBox Returns the bounding box (largest
rectangle enclosing the region) of a
region: GetRgnBox(hrgn, &rect);

InvalidateRgn Marks the specified region for repaint-
ing: InvalidateRgn(hwnd, hrgn,
erase_flag);

InvertRgn Inverts the pixels in a region:
InvertRgn(hdc, hrgn);

OffsetRgn Moves a region by specified x- and y-
offsets: OffsetRgn(hrgn, x, y);

PaintRgn Fills the region with the current brush:
PaintRgn(hdc, hrgn);

SelectClipRgn Uses the specified region as the clipping
region: SelectClipRgn(hdc, hrgn);

ValidateRgn Removes the region from the area to be
repainted: ValidateRgn(hwnd, hrgn);

Name Description

76

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Drawing Mode
When drawing lines and filled figures, the drawing mode controls the way
the pen color is combined with the existing colors. This is referred to as a
raster operation, or ROP for short. The GDI defines sixteen ROPs identified by
symbols that start with the R2 prefix. The default ROP is R2_COPYPEN, which
means that the pen simply overwrites whatever exists on the drawing surface.
Table 3.5 lists the names of the ROP codes that apply when drawing with the
GDI functions. Note that there is another set of ROP codes that apply when
copying a bitmap to a device context.

Table 3.5. Drawing modes in Windows GDI.

Mode Boolean Operation Comments

R2_BLACK all bits zero Draws in black, ignoring pen
color and existing color

R2_COPYPEN pen Draws with the pen color (the
default drawing mode)

R2_MASKNOTPEN (NOT pen) AND dest Inverts the bits in the pen
color and performs a bitwise-
AND with existing color

R2_MASKPEN pen AND dest Performs bitwise-AND of pen
color and existing color

R2_MASKPENNOT pen AND (NOT dest) Inverts existing color and
performs bitwise-AND with
pen color

R2_MERGENOTPEN (NOT pen) OR dest Inverts pen color and per-
forms bitwise-OR with
existing color

R2_MERGEPEN pen OR dest Performs bitwise-OR of pen
color and existing color

R2_MERGEPENNOT pen OR (NOT dest) Inverts existing color and
performs bitwise-OR with
pen color

77

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

R2_NOP dest Leaves existing color un-
changed (hence the name
NOP for “no operation”)

R2_NOT NOT dest Inverts existing color

R2_NOTCOPYPEN NOT pen Draws with inverted pen
color

R2_NOTMASKPEN NOT (pen AND dest) Performs bitwise-AND of pen
and existing color and inverts
the result

R2_NOTMERGEPEN NOT (pen OR dest) Performs bitwise-OR of pen
and existing color and inverts
the result

R2_NOTXORPEN NOT (pen XOR dest) Performs bitwise exclusive-
OR of pen and existing color
and inverts the result

R2_WHITE all bits 1 Draws in white color

R2_XORPEN pen XOR dest Performs bitwise exclusive-
OR of pen color and existing
color

Use the SetROP2 function to specify a new drawing mode:

int previous_ROP = SetROP2(hdc, R2_XORPEN);

In this case, SetROP2 sets the ROP code to R2_XORPEN and returns the old ROP
code, which is stored in the variable named previous_ROP.

Text Output
The Windows GDI provides several functions for displaying text. Here are the
three prominent text output functions:

Mode Boolean Operation Comments

78

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

DrawText(hdc, str, nchars, &rect, format_flag); displays nchars
characters from the text string str inside the rectangle defined by a
RECT structure specified by rect. The format_flag indicates the posi-
tioning and formatting of the string.

TabbedTextOut(hdc, x, y, str, nchars, ntabs, tabpos, tab_origin);

displays nchars characters from the string str at the logical coordinates
(x, y). Embedded tabs (‘\t’) in the string are interpreted according to
the tab positions specified (in terms of pixels) in the array of integers
tabpos with ntabs entries. The tab_origin argument is the logical x-
coordinate where the tabs begin. This function returns a 32-bit value
(DWORD) whose low-order word holds the width of the string in pixels
and the high-order word the height.

TextOut(hdc, x, y, str, nchars); displays nchars characters from the
text string str at the logical coordinate (x, y). The positioning of the
characters with respect to (x, y) depends on the current text alignment
specified by the SetTextAlign function.

You specify the text alignment by calling the SetTextAlign function:

SetTextAlign(hdc, TA_BOTTOM | TA_LEFT);

The second argument is a bitwise-OR of flags indicating the location of the text
string with respect to the output position. In this case, the text output position
is at the top left corner of the string. The vertical alignment can be one of the
following:

TA_BASELINE Baseline of text is aligned with the y-coordinate of
the output position

TA_BOTTOM Bottom of text is aligned with the y-coordinate of
the output position

TA_TOP Top of text is aligned with the y-coordinate of
the output position

The horizontal alignment can be one of the following:

TA_CENTER Horizontal center of text is aligned with the
x-coordinate of the output position

TA_LEFT Left side of text is aligned with the x-coordinate of
the output position

79

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

TA_RIGHT Right side of text is aligned with the x-coordinate of
the output position

The default alignment is TA_TOP | TA_LEFT. Also, by default, TextOut does not
update the current position after the text output. If you want the current posi-
tion updated, include the TA_UPDATECP flag with a bitwise-OR operator in the
call to SetTextAlign.

In addition to the text alignment, several other attributes in the DC affect
text output. By default, the text color is black, but you can set it to any RGB
value:

SetTextColor(hdc, RGB(255, 0, 0)); // Set text color to red.

The background mode determines whether the spaces between the characters
are filled in with the current background color. By default, the background
mode is OPAQUE, which means Windows uses the background color to fill in
the spaces between the character strokes. You can set the background mode to
TRANSPARENT and display the characters without affecting the pixels in
between:

SetBkMode(hdc, TRANSPARENT);

The font is another important attribute that determines the appearance
(shape and size) of the text output. By default, Windows displays the text in
the system font, but you can create and use a new font. Here is an example that
displays a text string in bold Helvetica font with characters 60 logical units tall
(thus font size depends on the mapping mode):

HFONT hfont = CreateFont(
 60, // height (logical units)
 0, // width (0 means
 // Windows chooses width)
 0, // escapement
 0, // orientation
 FW_BOLD, // weight
 0, // italic - off
 0, // underline - off
 0, // strikeout - off
 ANSI_CHARSET, // character set
 OUT_DEFAULT_PRECIS, // output precision
 CLIP_DEFAULT_PRECIS, // clipping precision
 PROOF_QUALITY,
 VARIABLE_PITCH, // pitch and family
 “Helv”); // name of font face

80

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

// Select the font into the DC (save old font handle).
HFONT oldfont = SelectObject(hdc, hfont);

// Now display the text string using the selected font.
TextOut(hdc, 100, 100, “Test”, strlen(“Test”));

// Reset font in DC and delete the font
SelectObject(hdc, oldfont);
DeleteObject(hfont);

This brief overview of the Windows text output functions should be enough
to display any needed text in a Windows game. For more details on text out-
put and fonts, consult the Windows API Reference Guides that accompany
Borland C++ 3.1.

Handling Color
Prior to Windows 3.0, the only way to represent a color was to express it in
terms of the red (R), green (G), and blue (B) intensities of the color. To repre-
sent the RGB value, the Windows API defines the COLORREF type, which is a
32-bit integer value with the red, green, and blue intensities stored in the low-
order bytes (see Figure 3.3). The most significant byte of the COLORREF type
indicates whether to interpret the value as a color or a palette entry—a topic
that is discussed in the next section.

31 24 23 16 15 8 7 0• • • • • • • • •• • •

Type Blue (B) Green (G) Red (R)

Type = 0 explicit RGB color
1 logical palette index
2 RGB from palette

Figure 3.3. Interpreting the contents of a COLORREF value.

You can use the RGB macro to represent an RGB color. For instance, RGB(255,
0, 0) denotes a full-intensity red color. Because each intensity is an 8-bit value,
the intensity can range from 0 to 255.

Note that if Windows uses dithering to display colors, it may not be sup-
ported by the display hardware. Because dithering requires a collection of pixels

81

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

to work, Windows uses dithering only when filling an area, not when draw-
ing points, lines, and text.

System Palette
Display adapters such as VGA, XGA, and 8514/A can generate the necessary
signals to display a large number of colors on a color display, but only a small
number of these colors are available at any one time. The number of colors that
can be displayed at a time is determined by the number of bits of storage allo-
cated for each pixel. In a standard VGA in 640x480 mode, each pixel has 4 bits
of storage—this means the standard VGA can display 24 = 16 simultaneous
colors. On the other hand, a super VGA adapter with enough memory may
support a mode where each pixel can have an 8-bit value. In this case, the dis-
play adapter can show 28=256 simultaneous colors.

Although the number of simultaneous colors is limited, the display adapter
represents each color in terms of the red (R), green (G), and blue (B) intensities
of the color and uses several bits to represent the R, G, and B components. For
instance, a VGA display adapter that uses 6 bits per R, G, and B component
allows up to 26 x 26 x 26 = 262,144 distinct colors from which you can display
any 16 colors if the display adapter supports 4 bits per pixel. It displays 256
colors if the adapter supports 8 bits per pixel. The display adapter converts each
pixel’s contents into a color by interpreting the pixel’s value as an index into a
table. This table is known as the color palette and its entries are RGB values.

In keeping with the hardware palette in display adapters, Windows also
defines a palette called the system palette that has 16 predefined colors for EGA
and VGA displays and 20 predefined colors on displays that support 256 col-
ors or more.

Logical Palette
Starting with Version 3.0, Windows supports the notion of a logical palette that
allows applications to take advantage of the large number of colors available
in a system. Provided the display hardware supports more that 20 colors,
Windows provides an extended system palette that mimics the hardware pal-
ette. Windows automatically sets aside 20 entries in the extended system

82

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

palette—the 20 default colors. When you define a logical palette (a table of RGB
colors), Windows maps it to the extended system palette as follows:

1. If a color in the logical palette already exists in the system palette, that
color is mapped to the matching color index in the system palette.

2. A logical palette color with no match in the system palette is added to
the system palette, provided there is room.

3. When the system palette becomes full, a logical palette color is mapped
to the closest matching color in the system palette.

When there are several applications with logical palettes, Windows maps the
logical palette of the topmost window into the system palette.

If you write a Windows game and want to use all 256 colors in a super VGA
adapter, you have to use a logical palette; otherwise you can use only the 20
default colors in the system palette.

Creating and Using Logical Palettes
Like a hardware palette, a logical palette is simply a table of RGB colors. Each
entry in the table is a PALETTEENTRY structure, defined in <windows.h> as

typedef struct tagPALETTEENTRY
{
 BYTE peRed;
 BYTE peGreen;
 BYTE peBlue;
 BYTE peFlags;
} PALETTEENTRY;

The logical palette itself is a LOGPALETTE structure, declared in <windows.h> as

typedef struct tagLOGPALETTE
{
 WORD palVersion; // Windows version
 WORD palNumEntries; // Number of palette entries
 PALETTEENTRY palPalEntry[1]; // Array of palette entries
} LOGPALETTE;

Here are the steps to creating and using a logical palette:

1. Check if the display driver supports logical palettes:

if((GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE) &&
 (GetDeviceCaps(hdc, DRIVERVERSION) >= 0x0300))

83

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

{
// Supports logical palettes.
}
else
{
// Does not support logical palettes.
}

2. Allocate room for a palette and define the palette entries. For example,
here is the C++ code to allocate a logical palette with 16 entries (de-
fined to be shades of red):

const int ncolors = 16;
LPLOGPALETTE lpal = (LPLOGPALETTE) new char[sizeof(LOGPALETTE) +
 (ncolors - 1) *
sizeof(PALETTEENTRY)];

lpal->palVersion = 0x030a; // Windows 3.10
lpal->palNumEntries = ncolors;

int i;
for(i = 0; i < ncolors; i++)
{
 lpal->palPalEntry[i].peRed = 16*i;
 lpal->palPalEntry[i].peGreen = 0;
 lpal->palPalEntry[i].peBlue = 0;
 lpal->palPalEntry[i].peFlags = 0;
}

The peFlags field in each palette entry can be one of the following:

Value Meaning

0 The entry is a normal palette entry.

PC_EXPLICIT Treat the low-order 16-bit word as an index to
the hardware palette.

PC_NOCOLLAPSE Do not map this entry to any existing color in the
system palette.

PC_RESERVED This entry will be used for palette animation (the
entry will be changed often). Do not map colors
from other logical palettes with this entry.

3. Call CreatePalette with a pointer to the LOGPALETTE structure to get a
handle to a logical palette:

HPALETTE hpal = CreatePalette(lpal);

84

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

4. Call SelectPalette to select the new palette into the device context:

HPALETTE old_pal = SelectPalette(hdc, hpal, 0);

Note that a zero for the last argument to SelectPalette specifies that
the palette is to be used as a foreground palette; otherwise the palette
is used for background. SelectPalette returns the handle of the
previously selected palette.

5. Before using the colors in the palette, call RealizePalette to install the
logical palette into the system palette and make the colors available:

RealizePalette(hdc);

6. Specify colors from the palette using the PALETTEINDEX or PALETTERGB
macros. For example, PALETTEINDEX(10) evaluates to a COLORREF value
that matches the color at index 10 of the logical palette (as defined by
you in step 1). PALETTERGB is similar to the RGB macro, except that it
defines a COLORREF value representing a color from the logical palette.

7. Before exiting the program, call delete to free the memory allocated
for the logical palette and discard the palette by calling DeleteObject:

delete lpal;

DeleteObject(hpal);

You may want to do this cleanup in the handler for the WM_DESTROY
event that Windows sends when a window is being closed.

Manipulating Logical Palettes
The Windows GDI provides a number of functions for manipulating logical
and system palettes. Table 3.6 summarizes these functions.

Table 3.6. Windows functions that manipulate palettes.

Name Description

AnimatePalette Changes entries in a logical palette,
resulting in instant changes to colors on
the display

85

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

CreatePalette Creates a logical palette and returns a
handle to the palette

GetNearestPaletteIndex Returns index of palette entry that most
closely matches a specified RGB color

GetPaletteEntries Retrieves the color values for a specified
number of entries in a logical palette

GetSystemPaletteEntries Retrieves the color values for a specified
number of entries in the system palette

GetSystemPaletteUse Returns a flag indicating whether an
application can change the system
palette

RealizePalette Maps the entries of the currently selected
logical palette into the system palette

ResizePalette Enlarges or reduces the size of a logical
palette after it has been created (by
calling CreatePalette)

SelectPalette Selects a logical palette into a device
context

SetPaletteEntries Changes the color values of a specified
number of entries in the logical palette

SetSysColors Sets one or more colors in the system
palette, identified by constants such as
COLOR_ACTIVEBORDER, COLOR_MENU, and
COLOR_WINDOW

SetSystemPaletteUse Allows the currently active application
to change the entries in the system
palette

UpdateColors Updates the color of the pixels in the
client area of a window to reflect the
current entries in the system palette

Name Description

,

86

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Bitmaps
Recall that a bitmap is a rectangular array of bits that represents an image. Each
pixel in the image corresponds to one or more bits in the bitmap. In a mono-
chrome bitmap, corresponding to a black-and-white image, each bit in the
bitmap represents a pixel in the image. For color images, each pixel requires
more than one bit in the bitmap to indicate the color of the pixel. Additionally,
the mapping of the bits in a pixel to a specific color depends on a color map.

Prior to version 3.0, Windows supported a single bitmap format, the Device
Dependent Bitmap (DDB), that made certain assumptions about the display
device. Windows 3.0 introduced a new version, the Device Independent Bitmap
(DIB), that stores the bitmap information in a device-independent manner—
primarily by adding a color table (a palette) to the old DDB format.

You can think of a bitmap as a canvas in memory where you can draw im-
ages. The Windows GDI includes functions such as BitBlt and StretchBlt that
can quickly copy a bitmap to the display device. Bitmaps are very useful in
games that require animating images. For instance, if you have to move a small
image around on the display screen, you can store that image in a bitmap and
use BitBlt to copy the image to the display screen as needed. See Chapters 4
and 5 for further information about interpreting image file formats and ani-
mating images.

Device-Dependent Bitmaps
You can derive the bitmap of a monochrome image directly from the image by
assigning a 1 to each white pixel and 0 to the black ones. Figure 3.4 shows how
to write the hexadecimal values representing an 8x8 image. Note that Windows
requires that the width (in pixels) of each row of the image be a multiple of
16—each row must have an even number of bytes. Thus, in the example of
Figure 3.4, each row is padded with a null byte.

87

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Figure 3.4. Monochrome bitmap format.

Displaying a Bitmap
Once you have the bitmap data, you can display it by following these steps:

1. Define an array of bytes with the bitmap data—simply write down the
hexadecimal values row by row:

static BYTE image1[] = // This is the image from Figure 3.4

{

 0x9a, 0x00, // Pad with zeros to get an even

 0x6a, 0x00, // number of bytes per row of image

 0x6a, 0x00,

 0x69, 0x00,

 0x69, 0x00,

 0x6a, 0x00,

 0x6a, 0x00,

 0x9a, 0x00

};

2. Create a monochrome bitmap from the bitmap data:

// Create the bitmap from the image data

 HBITMAP hbm = CreateBitmap(

8x8 monochrome image Binary Hexadecimal

1001 1010

0110 1010

0110 1010

0110 1001

0110 1001

0110 1010

0110 1010

1001 1010

0x9a 0x00

0x6a 0x00

0x6a 0x00

0x69 0x00

0x69 0x00

0x6a 0x00

0x6a 0x00

0x9a 0x00

Pad with zeros to ensure
an even number of bytes
per row of image

88

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

 8, // Width of bitmap (in pixels)

 8, // Width of bitmap (in pixels)

 1, // Number of planes

 1, // Bits per pixel

 image1); // Bitmap data

3. Create a memory device context that is compatible with the device
where you plan to display the bitmap, and select the bitmap into the
memory DC:

// Create a memory device context compatible with

// the display device context (whose handle is assumed

// to be hdc)

 HDC hmemdc = CreateCompatibleDC(hdc);

// Select bitmap into memory device context

 SelectObject(hmemdc, hbm);

4. Transfer the bitmap from the memory DC to the display device context
by calling BitBlt:

// Copy bitmap into the display device context

BitBlt(

 hdc, // Copy to this device context (destination)

 10, 10, // Copy to this logical x,y coordinate

 8, 8, // Width, height of destination rectangle

 hmemdc, // Copy from this device context (source)

 0, 0, // Copy from this logical x,y coordinate

 SRCCOPY // One of 256 raster operation codes

);

5. Delete the memory device context:

DeleteDC(hmemdc);

If you are going to use a bitmap throughout your program, you should
create the bitmap at the beginning (in response to the WM_CREATE
message) and delete it before exiting (in response to the WM_DESTROY
message). To delete the bitmap, call DeleteObject as follows:

DeleteObject(hbm); // hbm is the handle to the bitmap

 // that you can derive directly from

 // the image

89

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Stretching a Bitmap
The BitBlt function copies a bitmap from one device context to an identically
sized rectangle in another DC. The StretchBlt function is another block trans-
fer function that can shrink or stretch a bitmap to fit a specified rectangle in
the destination DC. For example, if you want to stretch the 8x8 bitmap of Fig-
ure 3.4 to 64x64, you can do so with the following call to StretchBlt:

StretchBlt(
 hdc, // Copy to this device context (destination)
 10, 10, // Copy to this logical x,y coordinate
 64, 64, // Width, height of destination rectangle
 hmemdc, // Copy from this device context (source)
 0, 0, // Copy from this logical x,y coordinate
 8, 8, // Width and size of source rectangle
 SRCCOPY // One of 256 raster operation codes
);

Drawing on a Bitmap
Sometimes you want to prepare a drawing in memory before copying it to a
device for displaying or printing. One good place to use this technique is when
you are repeatedly drawing the same figure over and over. Keeping the draw-
ing in memory and copying it to the device with a call to BitBlt is much faster
than drawing everything directly on the device. This technique is useful for
animation as well—the animation looks smoother when you prepare the ani-
mated drawing offscreen in memory and copy the drawing to the display.

To prepare a drawing in memory, you have to create a bitmap of specified
size, select it into a memory DC, and draw using that memory DC. The bitmap
must be compatible with the device where you plan to display it. Here are the
steps to follow:

1. Create a bitmap compatible with the display device context. You have
to specify the size of the bitmap:

HBITMAP hbm1 = CreateCompatibleBitmap(

 hdc, // compatible with this DC

 64, 64); // width and height in pixels

2. Select the bitmap into a memory DC that is compatible with the
display DC:

SelectObject(hmemdc, hbm1);

90

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

3. Fill the bitmap with a background color (otherwise the bitmap will
have a random bit pattern):

// Fill the bitmap with white color

 HBRUSH holdbr = SelectObject(hmemdc,

 GetStockObject(WHITE_BRUSH));

 PatBlt(

 hmemdc, // Copy pattern to this DC

 0, 0, // Copy to this logical x,y coordinate

 64, 64, // Width and height of rectangle to

 // be filled with pattern

 PATCOPY); //

 SelectObject(hmemdc, holdbr); // Reset the brush

4. Draw in the bitmap using GDI drawing functions:

// Draw in the bitmap with GDI drawing functions

 Rectangle(hmemdc, 4, 4, 40, 20);

 TextOut(hmemdc, 10, 40, “Hello”, 5);

5. Display the bitmap by calling BitBlt as shown in earlier sections.

Because bitmaps use memory, you should call DeleteObject to delete the bitmap
when no longer needed.

ROP Codes
The last argument to the block transfer functions, BitBlt, StretchBlt, and PatBlt,
is an ROP code that specifies how the source bitmap is combined with the brush
pattern and the destination pixels. There are 256 possible ROP codes, of which
the 15 most common ones have names as shown in Table 3.7. In these, the logi-
cal operations between the source (S), destination (D), and pattern (P) are ex-
pressed using the C++ bitwise logical operators: invert(~), AND(&), OR(|), XOR (^).

91

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

Table 3.7. Some raster operation codes
used by the block transfer functions.

Constant Operation Meaning

BLACKNESS 0 Sets all destination pixels to zero (black)

DSTINVERT ~D Inverts the destination pixels

MERGECOPY P&S Performs bitwise-AND of source bitmap
and brush pattern

MERGEPAINT ~S|D Performs bitwise-OR of the inverted source
bitmap and the destination pixels

NOTSRCCOPY ~S Copies the inverted source bitmap to the
destination

NOTSRCERASE ~(S|D) Inverts the result of bitwise-OR of the
source and destination

PATCOPY P Copies the brush pattern to the destination

PATINVERT P^D Performs exclusive-OR of the pattern and
the destination

PATPAINT P|(~S)|D Inverts the source bitmap and performs
bitwise-OR of the result with the pattern
and the destination

SRCAND S&D Performs bitwise-AND of source bitmap
and destination

SRCCOPY S Copies the source bitmap to the destination

SRCERASE S&(~D) Performs bitwise-OR of the source and the
inverted destination

SRCINVERT S^D Performs exclusive-OR of the source and
the destination

SRCPAINT S|D Performs bitwise-OR of the source and the
destination

WHITENESS 1 Sets all bits of the destination pixels to 1
(white)

92

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

The BITMAP Structure
Device-dependent bitmaps are represented in memory by a BITMAP structure,
which is defined in <windows.h> as

typedef struct tagBITMAP
{
 int bmType; // Always set to zero
 int bmWidth; // Width of bitmap (in pixels)
 int bmHeight; // Height of bitmap (in pixels)
 int bmWidthBytes; // Bytes per row of bitmap data
 // (must be even)
 BYTE bmPlanes; // Number of bit planes
 BYTE bmBitsPixel; // Number of bits per pixel
 void FAR* bmBits; // Array of bitmap data
} BITMAP;

For color bitmaps, each pixel requires multiple bits of data, which may be stored
as a number of planes or as groups of bits per pixel. The fields bmPlanes and
bmBitsPixel determine how the bitmap data bmBits is interpreted.

When the data is organized as planes, bmBitsPixel is set to 1 and the bmPlanes
field has the number of planes. The bmBits array starts with the first line of the
image: all the bits of the first plane for the first line followed by the bits for that
line from the second plane, and so on.

On the other hand, if the bitmap is meant for a device that stores all bits for
a pixel contiguously, the bmPlanes field of the BITMAP structure is 1, but the
bmBitsPixel is set to the number of bits used for each pixel. The bmBits array
then stores the data for the image line by line, with each group of bmBitsPixel
bits representing the color of consecutive pixels on a line.

The exact storage format for color bitmaps depends on the type of device
where the bitmap is to be displayed. Apart from the device-dependent man-
ner of storing the image data, the BITMAP structure has no provision for indi-
cating how the pixel values are mapped to actual colors. The DIB format,
described next, corrects this shortcoming of the DDB format.

Device-Independent Bitmap (DIB)
Format
DIB format solves some of the device dependencies of the old-style bitmap
format. Here are the specific differences:

93

Graphics Programming with the Windows API

Chapter

3

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

The internal representation of bitmap data is standardized— color
bitmaps are stored as multiple bits per pixel with only one plane per
pixel. The number of bits per pixel can be one of the following:

1 for monochrome bitmaps

4 for 16-color bitmaps

8 for 256-color bitmaps

24 for 16,777,216 or 16 million color bitmaps

The array of bits stores the image data from the bottom row to the top
(in DDB format, the data starts from the top row).

The DIB format includes information about the resolution of the image.

The bitmap data for 16- and 256-color bitmaps may be compressed
using a run-length encoding (RLE) algorithm.

The DIB format is useful for storing images in files. The Windows PaintBrush
application can store bitmaps in DIB format (with the .BMP file extension).

Summary
The C++ classes in OWL and CLASSLIB provide the framework for a Windows
application, but you have to use the Windows Graphical Device Interface (GDI)
for displaying graphics, text, and images in your application’s windows. The
device context, DC, is the key to device-independent graphics in Windows. The
DC holds drawing tools and attributes such as pen, brush, background color,
and font that affect all graphics and text output.

The Windows GDI also supports drawing to bitmaps. You can define a
memory DC with an associated bitmap and load images or draw in the bitmap
with GDI drawing functions. The GDI includes several block transfer functions
such as BitBlt and StretchBlt that can efficiently copy bitmaps from memory
to a device.

There are two types of bitmaps: the device-dependent bitmaps (DDB) from
Windows versions prior to 3.0, and device-independent bitmaps (DIB) intro-
duced in Windows 3.0. The DIB format is used to store images in files—the

94

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH3 LP#6

.BMP files created by Windows PaintBrush use the DIB format. The next chap-
ter describes how to interpret and display image files of various formats,
including the DIB format.

Further Reading
Loren Heiny’s book shows examples of graphics programming for Windows
using Borland C++ and OWL. Brian Myers and Chris Doner provide very good
tutorial coverage of graphics programming with the Windows API and
Microsoft C. Although Myers and Doner do not cover Windows programming
with Borland C++, you can readily adapt the information from their book for
use in your Borland C++ programs.

For reference information on Windows API functions, James Conger’s
recent book is handy. And last but not least, there is Charles Petzold’s classic
book on Windows programming. Petzold’s book is another good tutorial on
programming in C with the Windows API.

Conger, James L. The Waite Group’s Windows API Bible. Corte Madera,
CA: Waite Group Press, 1992.

Heiny, Loren. Windows Graphics Programming with Borland C++. New
York: Wiley, 1992.

Myers, Brian, and Chris Doner. Programmer’s Introduction to Windows
3.1. Alameda, CA: SYBEX, 1992.

Petzold, Charles. Programming Windows. Redmond, WA: Microsoft
Press, 1992.

95

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Chapter

4

Understanding
Image File

Formats

96

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Computer games need images. Almost all games use images in their opening
screen and as integral elements of a game. Arcade games might use an image
as a background on which sprites—other smaller images—are animated. Role-
playing games use many images to provide realistic settings and get the player
into the mood of the game. Educational games use images extensively to cap-
ture the child’s attention and achieve the game’s goal of teaching something.

To use an image, you need it in an electronic form. Many commercial game
publishers employ professional artists who draw the images for a game —
either directly on a computer or on paper. For conventional hard copy draw-
ings, you have to use a scanner to convert the images into electronic form.
Whether drawn with a paint program or scanned from a hard copy, the image
is stored in a disk file with its file contents interpreted before you use it in your
game. This chapter introduces a number of common image file formats that
describe the layout of the pixels in the file, and also presents a number of C++
classes that can read image files and display images in Windows. The chapter
ends with a Windows application, ImageView, that lets you open image files and
view them.

Image File Formats
Recall that an image is a 2-D array of pixels, often called a raster. Each hori-
zontal line is called a scan line or a raster line. In the computer, the color of each
pixel is represented in one of the following ways:

If the image is monochrome, the color of each pixel is expressed as a
1-bit value: a 1 or a 0.

For a true color image, each pixel’s color is expressed in terms of red
(R), green (G), and blue (B) intensities that make up the color. Typi-
cally, each component of the color is represented by a byte—thus
providing 256 levels for each color component. This approach requires
3 bytes for each pixel and allows up to 256x256x256 = 16,777,216 or
nearly 17 million distinct combinations of RGB values (colors).

For a palette-based image, each pixel’s value is interpreted as an index
to a table of RGB values known as a color palette or colormap. For each
pixel, you are supposed to display the RGB value corresponding to

97

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

that pixel’s contents. The number of bits needed to store each pixel’s
value depends on the number of colors in the color palette. The
common sizes of color palettes are 16 (needs 4 bits per pixel) and 256
(needs 8 bits per pixel).

Figure 4.1 shows some of the components of an image. The width and height
are expressed in terms of number of pixels along the horizontal and vertical
directions, respectively.

Height

Width

Raster line

Pixel array

Figure 4.1. Elements of an image.

Common Characteristics of Image Files
When storing an image in a file, you have to make sure that you can later in-
terpret and display the image. Thus, the image file must contain the following
information:

The dimensions of the image—the width and the height

The number of bits per pixel

The type of image—whether pixel values should be interpreted as RGB
colors or indexes to a color palette

The color palette, or colormap, if the image uses a color palette

The image data, which is the array of pixel values

98

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Almost all image files contain this information, but each specific file format
organizes it in a different way. Figure 4.2 shows the layout of a typical image
file. The file starts with a short header—anywhere from a few to 128 or so bytes.
The header contains any information besides the image data and the color
palette. Next comes a color palette—if the pixel values in the image require one.
The image data—the array of pixel values—appear after the palette. Usually,
the pixel array is stored line by line.

Header

Color palette
(if any)

Image data
(pixel array)

Figure 4.2. Typical image file format.

The array of pixels constitutes the bulk of the image file. For instance, a
256-color 640x480 image requires 640x480 = 307,200 bytes of storage because
each pixel’s value occupies 1 byte. Of course, the storage requirements of the
image data can be reduced by compressing the data, either by run-length en-
coding or some other compression scheme.

Note that even though most image files have a layout similar to the one
shown in Figure 4.2, there is still room for many possible variations:

The order of information in the header can vary from one file format to
another.

Some display-dependent image file formats skip the color palette
entirely and store only the pixel array.

The pixel array might be stored from top to bottom or bottom to top.

If the pixel values are RGB components, the order of red, green, and
blue may vary.

99

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

The pixel values may be stored in packed format or as bit planes. In the
packed format, all bits belonging to a pixel are stored contiguously.
When the image is stored according to bit planes, the bits for each pixel
are split according to the bit position; the least significant bits of all
pixels are stored line by line, then come the bits for the next bit posi-
tion, and so on.

Some Common Formats
As you can see, there are a variety of ways to store an image in a file, which is
why you find so many different types of image file formats. Here are some of
the popular ones:

PCX format, originally used by ZSoft’s PC PaintBrush, is a popular
image file format that many drawing programs and scanners support.
PCX files use a run-length encoding (RLE) scheme to store the image in
a compressed form.

The Windows BMP format stores an image as a Device Independent
Bitmap (DIB), a format introduced in Microsoft Windows 3.0. As
described briefly in Chapter 3, the DIB format includes a color palette
and stores the image data in a standard manner to make the image file
device-independent. The Windows BMP format can store images with
1 (monochrome), 4 (16-color), 8 (256-color), or 24 (16 million-color) bits
per pixel. The BMP format is not as efficient as PCX and other formats,
but it is relatively easy to interpret a BMP file.

The 24-bit Truevision Targa file format originated with Truevision’s
high-performance display adapters for PCs. There are several different
types of Targa files; the most popular one is the 24-bit/pixel version
that uses 8 bits for each of the R, G, and B components. This format can
store image files with up to 16 million colors. However, the file size for
a 24-bit image is very large—a 640x480 24-bit image requires
3x640x480 = 921,600 bytes or almost 1M.

TIFF or Tagged Image File Format was developed jointly by Microsoft
Corporation and Aldus Corporation as a flexible, system-independent
file format to store monochrome through 24-bit color images. Most
desktop publishing and word processing software can read and use
TIFF images. Additionally, all scanners provide control software that
can save images in TIFF.

100

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

GIF (pronounced “jif”) or Graphics Interchange Format was developed
by CompuServe for compact storage of images with up to 256 colors.
GIF files store images using LZW (Lempel-Ziv and Welsh) compres-
sion schemes.

C++ Classes for Handling
Image Files
Because all images have a common set of information, the starting point of the
C++ class hierarchy is an abstract base class named Image. The Image class stores
the image in a standard internal format and provides pure virtual functions
write and read to transfer an image to and from disk files. Note that a pure
virtual function refers to a virtual function that is set equal to zero:

// Functions to load and save images
 virtual int read(const char* filename) = 0;
 virtual int write(const char* filename) = 0;

The C++ compiler does not allow you to create instances of a class with pure
virtual functions. Thus, to actually use the Image class, you have to first derive
a class from Image and define the read and write functions in that class. My
idea for this design is that each class responsible for handling a specific image
type is derived from Image. For instance, a 24-bit Truevision Targa image file
(which usually has a .TGA file extension) is handled by the TGAImage class, which
includes concrete implementations of the read and write member functions to
load and save a Targa image. Similarly, classes such as PCXImage and BMPImage
can handle PCX and Windows BMP images, respectively. Figure 4.3 shows the
Image class hierarchy for the classes needed to handle Targa, PCX, and Win-
dows BMP images.

I have also decided to make the Image class dependent on Microsoft Win-
dows by selecting the Windows DIB format for the internal representation of
an image in the Image class. This makes it easy to display the image because
the Image class itself can include a member function that: accepts a device con-
text as an argument, converts the internal DIB into a device-dependent bitmap,
and displays the bitmap by calling Windows API functions. (Details are ex-
plained in subsequent sections.)

101

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Figure 4.3. Image class hierarchy to handle Targa, PCX, and BMP images.

Another important design decision is to use an ImageData class to encapsu-
late the image’s pixel array and then use a pointer to an ImageData object in
each Image class (see Figure 4.3). Here is why I made this decision. The DIB
format, used for internal representation of images, requires a considerable
amount of memory for any reasonably sized color image. When equating one
image to another, I do not want to make a complete copy of the image’s pixel
array. Instead, I want to copy a pointer to the pixel array and keep a count of
how many Image class instances are sharing a specific pixel array. When an Image
is destroyed, the destructor decrements the pixel array’s count and destroys
the array only when the count is zero, which indicates that the pixel array is
not referenced by any Image object. This scheme is known as reference counting.

ImageData Class
The ImageData class represents all data necessary to represent an image—the
pixel array as well as other pertinent information about the image. Because I
am using a Windows DIB format to represent the image, the definition of the
ImageData class (Listing 4.1) is very simple. The most important data in ImageData
is the pointer (declared with the type LPVOID) p_dib. This is a pointer to a Win-
dows DIB—a block of memory that has the layout shown in Figure 4.4. The
BITMAPINFOHEADER, a structure at the beginning of the DIB, contains all relevant
information, such as image dimensions and number of bits per pixel, that you
need to interpret the image’s pixel array. You see more about the fields of the
BITMAPINFOHEADER in the PCXImage class. In this class, the read member function
initializes the fields after reading an image in the PCX format and converting
it to the internal DIB format.

Image
has a

TGAImage PCXImage BMPImage

ImageData

102

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Figure 4.4. Layout of a DIB in memory.

Listing 4.1. image.h—
Header file for the ImageData and Image classes.

//--
// File: image.h
//
// Defines the Image class.
//
//--
#if !defined(__IMAGE_H)
#define __IMAGE_H

#include <windowsx.h>

// This class represents the data for an image
class ImageData
{
friend Image;
friend TGAImage;
friend BMPImage;
friend PCXImage;
friend TIFImage;

protected:
 ImageData() : p_dib(0), count(1), hpal(0), hbm_ddb(0),
 bytes_per_line(0), w(0), h(0) {}

 ~ImageData();

protected:

Color palette
(array of RGBQUAD
structures)

Start of
array

BITMAPINFOHEADER Pixel array

103

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// This points to a BITMAPINFOHEADER followed by the
// image data.
 LPVOID p_dib; // Device independent bitmap
 HPALETTE hpal; // Color palette
 HBITMAP hbm_ddb; // Device dependent bitmap

 unsigned short w, h; // Width and height
 unsigned short bytes_per_line;

 unsigned short count;
};

// Abstract base class for all images
class Image
{
public:
// Constructors
 Image()
 {
 imdata = new ImageData;
 }
 Image(HBITMAP hbm, unsigned short w, unsigned short h)
 {
 imdata = new ImageData;
 imdata->hbm_ddb = hbm;
 imdata->w = w;
 imdata->h = h;
 }

 Image(HDC hdc, Image *img, short x, short y,
 unsigned short w, unsigned short h);

// Copy Constructor
 Image(const Image& img);

 virtual ~Image()
 {
 if(--imdata->count <= 0) delete imdata;
 }

// Operators
 Image& operator=(const Image& img);

// Copy the imdata pointer from another image
 void image_data(const Image* img);

continues

104

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Functions to load and save images
 virtual int read(const char* filename){ return 0;};
 virtual int write(const char* filename){ return 0;};

// Returns pointer to the Windows Device Independent
// Bitmap (DIB).
 LPVOID get_dib() { return imdata->p_dib;}

// Function to return the handle to the device dependent
// bitmap.
 HBITMAP get_ddb() { return imdata->hbm_ddb;}

 unsigned short width()
 {
 if(imdata->p_dib != 0)
 return((LPBITMAPINFOHEADER)imdata->p_dib)->biWidth;
 return imdata->w;
 }
 unsigned short height()
 {
 if(imdata->p_dib != 0)
 return ((LPBITMAPINFOHEADER)imdata->p_dib)->biHeight;
 return imdata->h;
 }

 int image_loaded()
 {
 if(imdata->p_dib == 0) return 0;
 else return 1;
 }

 void detach()
 {
 if(--imdata->count == 0) delete imdata;
 imdata = new ImageData;
 }

// Functions to make palette and convert to DDB
 void make_palette();
 void DIBtoDDB(HDC hdc);

// Function that displays the DIB on a Windows device
// specified by a device context.
 void show(HDC hdc, short xfrom = 0, short yfrom = 0,

Listing 4.1. continued

105

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 short xto = 0, short yto = 0,
 short width = 0, short height = 0,
 DWORD ropcode = SRCCOPY);

 unsigned int numcolors();

protected:
 ImageData* imdata;
};

#endif

The ImageData class also includes two important member variables:

HPALETTE hpal; is a handle to a Windows color palette—an array of
PALETTEENTRY structures (defined in <windows.h>) that associates an
index with an RGB color. The make_palette member function of the
Image class creates the palette.

HBITMAP hbm_ddb; is the handle to the Device Dependent Bitmap (DDB)
corresponding to the DIB. The DIBtoDDB member function of the Image
class creates the DDB (for a specified device) from the DIB.

Encapsulating the image’s data in the ImageData class allows sharing of the
data between images, but I do not want to give up the ability to directly access
and manipulate the image’s pixel array from other image classes. One way to
provide this access is to declare as friend all classes that have to manipulate
the private and protected member variables of ImageData. In this case, the
Image and its derived classes such as PCXImage, BMPImage, and TGAImage are de-
clared with the friend keyword in the ImageData class.

Image Class
The Image class, declared in the file image.h (Listing 4.1), is an abstract base class
that encapsulates the common features of all images. Because all images
are internally maintained in the Windows DIB format, the Image class can take
care of displaying the image instead of delegating that responsibility to the
derived classes. The show member function of Image displays the image on a
device specified by a DC. The Windows API provides a function,
SetDIBitsToDevice, that lets you directly display a DIB on a device, but this

106

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

function is comparatively slow. A faster approach is to convert the DIB into a
DDB and use the BitBlt function to display the DDB. The drawback is that
creating the DDB requires memory. Consult the listing of the show function
(Listing 4.2) for complete details of how to display a DIB. The general steps to
convert the DIB to a DDB and display the DDB are as follows:

1. Set up a color palette if the image needs one. DIBs with 1, 4, or 8 bits
per pixel use color palettes. The make_palette function in Listing 4.2
illustrates how to create a palette. Before converting a DIB to a DDB,
you have to realize the color palette.

2. Call the CreateDIBitmap function to get back a handle to a DDB created
from the DIB for a specified device. The DIBtoDDB function performs
this task by calling CreateDIBitmap as follows:

// Note: imdata is a pointer to an ImageData object

// hbm_ddb is a handle to a bitmap (HBITMAP)

 imdata->hbm_ddb = CreateDIBitmap(

 hdc, // Device context handle

 p_bminfo, // Pointer to BITMAPINFOHEADER

 CBM_INIT, // Initialize DDB from DIB

 p_image, // Pointer to image data

 (LPBITMAPINFO)p_bminfo, // Pointer to

 // a BITMAPINFO structure

 DIB_RGB_COLORS); // Interpret palette

 // entries as RGB colors

As indicated by the comments, the DIB is specified by three pointers: a
pointer to the BITMAPINFOHEADER, a pointer to the image’s pixel array,
and a pointer to a BITMAPINFO structure with the color palette. In this
case, the BITMAPINFO and BITMAPINFOHEADER structures overlap and the
image data follows the BITMAPINFOHEADER.

3. Call CreateCompatibleDC to get back a handle to a memory device
context (DC) compatible with a specified DC.

4. If the compatible DC is created successfully (the handle is nonzero),
select the DDB into the DC by calling the Windows API function
named SelectBitmap.

5. Call BitBlt to copy the bitmap from the memory DC to the actual
device. The sample call

107

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

BitBlt(hdc, xto, yto, wdth, hght,

 memdc, xfrom, yfrom, ropcode);

copies from the memdc device context to hdc. The wdth and hght repre-
sent the width and height of the bitmap being copied to the screen.

6. Clean up by deleting the memory DC. The DDB should be deleted
also—this is done by the destructor of the ImageData class when the
image is no longer needed.

Listing 4.2. image.cpp—Member functions of the Image class.

//--
// File: image.cpp
//
// Image manipulation functions
//--
#include <fstream.h>
#include “image.h”

//--
// I m a g e D a t a : : ~ I m a g e D a t a
// Destructor for an Image.

ImageData::~ImageData()
{
// If a DIB exists, delete it.
 if(p_dib != 0) GlobalFreePtr(p_dib);

// If a palette exists, free it also.
 if(hpal != 0) DeletePalette(hpal);

// If a DDB exists, destroy it.
 if(hbm_ddb != 0) DeleteBitmap(hbm_ddb);
}
//--
// I m a g e : : I m a g e
// Copy constructor

Image::Image(const Image& img)
{
 img.imdata->count++;
 if(--imdata->count <= 0) delete imdata;
 imdata = img.imdata;
}

continues

108

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

//--
// I m a g e : : i m a g e _ d a t a
// Copy the ImageData pointer from another image

void Image::image_data(const Image* img)
{
 img->imdata->count++;
 if(--imdata->count <= 0) delete imdata;
 imdata = img->imdata;
}
//--
// I m a g e : : o p e r a t o r =
// Assignment operator

Image& Image::operator=(const Image& img)
{
 img.imdata->count++;
 if(--imdata->count <= 0) delete imdata;
 imdata = img.imdata;
 return *this;
}
//--
// I m a g e : : n u m c o l o r s
// Returns the number of colors used. Returns 0 if image uses
// 24-bit pixels.

unsigned int Image::numcolors()
{
 if(imdata->p_dib == 0) return 0;
 LPBITMAPINFOHEADER p_bminfo =
 (LPBITMAPINFOHEADER)(imdata->p_dib);

// If the biClrUsed field is nonzero, use that as the number of
// colors
 if(p_bminfo->biClrUsed != 0)
 return (unsigned int)p_bminfo->biClrUsed;

// Otherwise, the number of colors depends on the bits per pixel
 switch(p_bminfo->biBitCount)
 {
 case 1: return 2;
 case 4: return 16;
 case 8: return 256;
 default: return 0; // Must be 24-bit/pixel image
 }
}

Listing 4.2. continued

109

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

//--
// I m a g e : : m a k e _ p a l e t t e
// Create a color palette using information in the DIB

void Image::make_palette()
{
// Set up a pointer to the DIB
 LPBITMAPINFOHEADER p_bminfo =
 (LPBITMAPINFOHEADER)(imdata->p_dib);
 if(p_bminfo == 0) return;

// Free any existing palette
 if(imdata->hpal != 0) DeletePalette(imdata->hpal);

// Set up the palette, if needed
 if(numcolors() > 0)
 {
 LPLOGPALETTE p_pal = (LPLOGPALETTE) GlobalAllocPtr(GHND,
 sizeof(LOGPALETTE) +
 numcolors() * sizeof(PALETTEENTRY));

 if(p_pal)
 {
 p_pal->palVersion = 0x030a;
 p_pal->palNumEntries = numcolors();

// Set up palette entries from DIB
 LPBITMAPINFO p_bi = (LPBITMAPINFO)p_bminfo;
 int i;
 for(i = 0; i < numcolors(); i++)
 {
 p_pal->palPalEntry[i].peRed =
 p_bi->bmiColors[i].rgbRed;
 p_pal->palPalEntry[i].peGreen =
 p_bi->bmiColors[i].rgbGreen;
 p_pal->palPalEntry[i].peBlue =
 p_bi->bmiColors[i].rgbBlue;
 p_pal->palPalEntry[i].peFlags = 0;
 }
 imdata->hpal = CreatePalette(p_pal);
 GlobalFreePtr(p_pal);
 }
 }
}
//--
// I m a g e : : D I B t o D D B
// Create a device dependent bitmap from the DIB

continues

110

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

void Image::DIBtoDDB(HDC hdc)
{
// Set up a pointer to the DIB
 LPBITMAPINFOHEADER p_bminfo =
 (LPBITMAPINFOHEADER)(imdata->p_dib);
 if(p_bminfo == 0) return;

// If a DDB exists, destroy it first.
 if(imdata->hbm_ddb != 0) DeleteBitmap(imdata->hbm_ddb);

// Build the device dependent bitmap.

// Set up pointer to the image data (skip over BITMAPINFOHEADER
// and palette).
 LPSTR p_image = (LPSTR)p_bminfo +
 sizeof(BITMAPINFOHEADER) +
 numcolors() * sizeof(RGBQUAD);

// Realize palette, if there is one. Note that this does not do
// anything on the standard 16-color VGA driver because that
// driver does not allow changing the palette, but the new palette
// should work on Super VGA displays.

 HPALETTE hpalold = NULL;
 if(imdata->hpal)
 {
 hpalold = SelectPalette(hdc, imdata->hpal, FALSE);
 RealizePalette(hdc);
 }

// Convert the DIB into a DDB (device dependent bitmap) and
// block transfer (blt) it to the device context.
 HBITMAP hbm_old;
 imdata->hbm_ddb = CreateDIBitmap(hdc,
 p_bminfo,
 CBM_INIT,
 p_image,
 (LPBITMAPINFO)p_bminfo,
 DIB_RGB_COLORS);

// Don’t need the palette once the bitmap is converted to DDB
// format.
 if(hpalold)
 SelectPalette(hdc, hpalold, FALSE);
}

Listing 4.2. continued

111

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

//--
// I m a g e : : s h o w
// Display a DIB on a Windows device specified by a
// device context

void Image::show(HDC hdc, short xfrom, short yfrom,
 short xto, short yto,
 short wdth, short hght,
 DWORD ropcode)
{
// Set up a pointer to the DIB
 LPBITMAPINFOHEADER p_bminfo =
 (LPBITMAPINFOHEADER)(imdata->p_dib);
 if(p_bminfo != NULL)
 {
// Set up the palette, if needed
 if(imdata->hpal == 0 && numcolors() > 0) make_palette();

// Convert to DDB, if necessary
 if(imdata->hbm_ddb == 0) DIBtoDDB(hdc);
 }

// “Blit” the DDB to hdc
 if(imdata->hbm_ddb != 0)
 {
 HDC memdc = CreateCompatibleDC(hdc);
 if(memdc != 0)
 {
 HBITMAP hbm_old = SelectBitmap(memdc,
 imdata->hbm_ddb);
// If width or height is zero, use corresponding dimension
// from the image.
 if(wdth == 0) wdth = width();
 if(hght == 0) hght = height();

 BitBlt(hdc, xto, yto, wdth, hght,
 memdc, xfrom, yfrom, ropcode);
 SelectBitmap(memdc, hbm_old);
 DeleteDC(memdc);
 }
 }
}
//--
// Image::I m a g e
// Construct an image by copying a portion of the bitmap from
// another image

continues

112

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Image::Image(HDC hdc, Image *img, short x, short y,
 unsigned short w, unsigned short h)
{
 imdata = new ImageData;
 if(img == NULL) return;

 unsigned short iw = img->width();
 unsigned short ih = img->height();

 if(x < 0) x = 0;
 if(y < 0) y = 0;

// If width or height is 0, adjust them
 if(w == 0) w = iw;
 if(h == 0) h = ih;

// Make sure width and height are not too large
 if((w+x) > iw) w = iw - x;
 if((h+y) > ih) h = ih - y;

// Save width and height
 imdata->w = w;
 imdata->h = h;

// Create a new bitmap for the new image
 imdata->hbm_ddb = CreateCompatibleBitmap(hdc, w, h);
 if(imdata->hbm_ddb != 0)
 {
 HDC memdcn = CreateCompatibleDC(hdc);
 HDC memdco = CreateCompatibleDC(hdc);
 if(memdcn != 0 && memdco != 0)
 {
 HBITMAP ohbm = SelectBitmap(memdco, img->get_ddb());
 HBITMAP nhbm = SelectBitmap(memdcn, imdata->hbm_ddb);
 BitBlt(memdcn, 0, 0, w, h, memdco, x, y, SRCCOPY);
 SelectBitmap(memdco, ohbm);
 SelectBitmap(memdcn, nhbm);
 DeleteDC(memdco);
 DeleteDC(memdcn);
 }
 }
}

Listing 4.2. continued

113

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

BMPImage Class
The BMPImage class handles Windows DIB images. These are usually stored in
files with the .BMP file extension and thus go by the name of BMP images. A
BMP image file is the same as the in-memory representation of a DIB, shown
in Figure 4.4, with a file header prefix added to the DIB. The header is repre-
sented by a BITMAPFILEHEADER structure defined in <windows.h> as follows:

typedef struct tagBITMAPFILEHEADER
{
 UINT bfType; // File type. Should be ‘BM’
 DWORD bfSize; // Size of file in bytes
 UINT bfReserved1; // 0
 UINT bfReserved2; // 0
 DWORD bfOffBits; // Offset to the start of image data
} BITMAPFILEHEADER;

A BITMAPINFOHEADER structure follows the file header. The color palette, if any,
and the image’s pixel array come after the BITMAPINFOHEADER.

Listing 4.3 shows the declaration of the BMPImage class. As you can see, the
BMPImage class provides the read and write member functions and defines one
additional member variable. BITMAPFILEHEADER bmphdr; is an instance of a
BITMAPFILEHEADER structure that is used when reading or writing a BMP image
file.

Listing 4.3. bmpimage.h—Declaration of the BMPImage class.

//--
// File: bmpimage.h
//
// Defines the BMPImage class representing a Windows BMP image.
//
//--
#if !defined(_ _BMPIMAGE_H)
#define _ _BMPIMAGE_H

#include “image.h”

class BMPImage: public Image
{
public:
 BMPImage() {}

continues

114

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Listing 4.3. continued

 ~BMPImage() {}

 int read(const char* filename);
 int write(const char* filename);

private:
 BITMAPFILEHEADER bmphdr;
};

#endif

Reading a BMP Image
Listing 4.4 shows the file bmpimage.cpp that implements the member func-
tions, read and write, of the BMPImage class. Reading a BMP image into a BMPImage
object is straightforward because the internal data format of the Image class
hierarchy is the DIB and because a BMP image file is a file header followed by
a DIB. As you can see from the read function, reading the BMP image file
requires the following steps:

1. Read the file header into the bmphdr member of the BMPImage class.
If ifs represents the input file stream, you can read the header as
follows:

// Read the file header

 ifs.read((unsigned char*)&bmphdr,

 sizeof(BITMAPFILEHEADER));

2. Check that the bfType field of the header contains the characters BM,
which indicates that this is a BMP image.

3. Determine the number of bytes remaining in the file—these are the
bytes that make up the DIB stored in the BMP image file. You can
position the file pointer at the end of the file and read the byte offset
to determine the file size. Subtracting the size of the file header from
the length of the file gives you the number of bytes in the DIB that
you want to read. Here is how:

115

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Determine size of DIB to read

// (that’s file length - size of BITMAPFILEHEADER)

 ifs.seekg(0, ios::end);

 long bmpsize = ifs.tellg() - sizeof(BITMAPFILEHEADER);

// Reset file pointer...

 ifs.seekg(sizeof(BITMAPFILEHEADER), ios::beg);

4. Allocate memory for the DIB by calling the GlobalAlloc function:

// Allocate space for the bitmap

 imdata->p_dib = GlobalAllocPtr(GHND, bmpsize);

5. Read the bytes from the file into this memory. For efficient file I/O,
you should read from the file in large chunks. The BMPImage::read
function reads the image in blocks that are up to 30K in size as defined
by the constant maxread declared at the beginning of the bmpimage.cpp
file (Listing 4.4).

Note that I had to use an intermediate buffer when reading the image because
the read function of the ifstream class (from the C++ iostream library) did not
work properly with the pointer imdata->p_dib that was returned by GlobalAlloc.

Listing 4.4. bmpimage.cpp—
Member functions of the BMPImage class.

//--
// File: bmpimage.cpp
//
// Image manipulation functions for Windows BMP images.
//--
#include <fstream.h>
#include <limits.h>
#include “bmpimage.h”

const size_t maxread = 30*1024; // Read 30K at a time
const size_t maxwrite = 30*1024; // Write 30K at a time
//--
// B M P I m a g e : : r e a d
// Read and interpret a Windows .BMP image (Device Independent
// Bitmap).

continues

116

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Listing 4.4. continued

int BMPImage::read(const char* filename)
{
// If there is an existing image, detach the image data
// before reading a new image
 if(imdata->p_dib != 0) detach();

// Open file for reading
 ifstream ifs(filename, ios::in | ios::binary);
 if(!ifs)
 {
// Error reading file. Return 0.
 return 0;
 }

// Read the file header
 ifs.read((unsigned char*)&bmphdr, sizeof(BITMAPFILEHEADER));

// Check if image file format is acceptable (the type
// must be ‘BM’
 if(bmphdr.bfType != ((‘M’ << 8) | ‘B’)) return 0;

// Determine size of DIB to read (that’s file length - size of
// BITMAPFILEHEADER)
 ifs.seekg(0, ios::end);
 long bmpsize = ifs.tellg() - sizeof(BITMAPFILEHEADER);

// Reset file pointer...
 ifs.seekg(sizeof(BITMAPFILEHEADER), ios::beg);

// Allocate space for the bitmap
 imdata->p_dib = GlobalAllocPtr(GHND, bmpsize);

// If memory allocation fails, return 0
 if(imdata->p_dib == 0) return 0;

// Load the file in big chunks. We don’t have to interpret
// because our internal format is also BMP.

// Allocate a large buffer to read from file
 unsigned char *rbuf = new unsigned char[maxread];
 if(rbuf == NULL)
 {
 detach();
 return 0;
 }

117

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 unsigned char huge *data =
 (unsigned char huge*)imdata->p_dib;
 unsigned int chunksize;
 unsigned int i;

 while(bmpsize > 0)
 {
 if(bmpsize > maxread)
 chunksize = maxread;
 else
 chunksize = bmpsize;
 ifs.read(rbuf, chunksize);

// Copy into DIB
 for(i = 0; i < chunksize; i++) data[i] = rbuf[i];
 bmpsize -= chunksize;
 data += chunksize;
 }
 delete rbuf;

 return 1;
}
//--
// B M P I m a g e : : w r i t e
// Write a Windows .BMP image to a file (in Device Independent
// Bitmap format)

int BMPImage::write(const char* filename)
{
// If there is no image, return without doing anything
 if(imdata->p_dib == 0) return 0;

// Open file for binary write operations.
 ofstream ofs(filename, ios::out | ios::binary);
 if(!ofs) return 0;

// Set up BMP file header
 bmphdr.bfType = (‘M’ << 8) | ‘B’;
 bmphdr.bfReserved1 = 0;
 bmphdr.bfReserved2 = 0;
 bmphdr.bfOffBits = sizeof(BITMAPFILEHEADER) +
 sizeof(BITMAPINFOHEADER) +
 numcolors() * sizeof(RGBQUAD);
 bmphdr.bfSize = (long) height() *
 (long) imdata->bytes_per_line +
 bmphdr.bfOffBits;

continues

118

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Write the file header to the file
 ofs.write((unsigned char*)&bmphdr, sizeof(BITMAPFILEHEADER));

// Save the file in big chunks.

// Allocate a large buffer to be used when transferring
// data to the file

 unsigned char *wbuf = new unsigned char[maxwrite];
 if(wbuf == NULL) return 0;

 unsigned char huge *data =
 (unsigned char huge*)imdata->p_dib;
 unsigned int chunksize;
 long bmpsize = bmphdr.bfSize - sizeof(BITMAPFILEHEADER);

 unsigned int i;

 while(bmpsize > 0)
 {
 if(bmpsize > maxwrite)
 chunksize = maxwrite;
 else
 chunksize = bmpsize;
// Copy image from DIB to buffer
 for(i = 0; i < chunksize; i++) wbuf[i] = data[i];
 ofs.write(wbuf, chunksize);
 bmpsize -= chunksize;
 data += chunksize;
 }
 delete wbuf;
 return 1;
}

Writing a BMP Image
To save a DIB in a BMP format image file, you must first prepare a header by
initializing the fields of the bmphdr member variable, which is a BITMAPFILEHEADER
structure. As shown in the write function in Listing 4.4, you can initialize the
file header as follows:

Listing 4.4. continued

119

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Set up BMP file header
 bmphdr.bfType = (‘M’ << 8) | ‘B’;
 bmphdr.bfReserved1 = 0;
 bmphdr.bfReserved2 = 0;
 bmphdr.bfOffBits = sizeof(BITMAPFILEHEADER) +
 sizeof(BITMAPINFOHEADER) +
 numcolors() * sizeof(RGBQUAD);
 bmphdr.bfSize = (long) height() *
 (long) imdata->bytes_per_line +
 bmphdr.bfOffBits;

Once the file header is set up, save the header in this file:

// Write the file header to the file
 ofs.write((unsigned char*)&bmphdr, sizeof(BITMAPFILEHEADER));

Then you can write the entire DIB to the file in large chunks from imdata->p_dib.

TGAImage Class
The Truevision Targa file format originated with Truevision’s display hard-
ware—one of the first video adapters capable of displaying 24-bit RGB color.
Although the Targa file format can store images with 1, 8, 16, or 24 bits per pixel,
I focus on the 24-bit format because it is the most commonly used 24-bit color
format for IBM-compatible PCs. Almost any application that deals with 24-bit
RGB colors supports the 24-bit Targa file format. For instance, the Targa for-
mat is the output format of choice among the popular ray-tracing software such
as DKBTrace by David Buck and Aaron Collins.

Listing 4.5 shows the declaration of the TGAImage class representing a Targa
24-bit color image. Most Targa files are stored with the .TGA file extension;
hence the class name TGAImage. Note that the TGAImage class defines the read
member function only. The read function reads a Targa 24-bit RGB image and
converts it into a Windows DIB. I did not develop a write function because I
did not need that function to write computer games. But the write function may
be important if you are contemplating converting images from other formats
to the Targa format.

Like the BMPImage class, the TGAImage class includes a new member variable,
hdr—an instance of a TARGAHeader structure—which is defined in Listing 4.5 as
follows:

120

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 struct TARGAHeader
 {
 char offset;
 char cmap_type;
 char image_type;
 unsigned short cmap_start;
 unsigned short cmap_length;
 char cmap_bits;
 unsigned short hoffset;
 unsigned short voffset;
 unsigned short width;
 unsigned short height;
 char bits_per_pixel;
 char flags;
 };

This structure represents the header of a Targa image file. The meanings of the
fields of TARGAHeader are

char offset; specifies the number of bytes to skip after reading the
header. Usually this field is zero.

char cmap_type; indicates the type of colormap being used. For 24-bit
color images, this field should be zero.

char image_type; defines the way the image’s data is stored (whether
it is uncompressed or run-length encoded). A value of 2 indicates an
uncompressed RGB color image, which is the only image type that the
TGAImage class can handle.

unsigned short cmap_start, cmap_length; char cmap_bits; specify the
colormap, if there is one. There is no colormap for 24-bit RGB color
images.

unsigned short hoffset, voffset; specifies the offset between the
upper left corner of the screen and the upper left corner of the image to
be displayed. These fields are usually zero.

unsigned short width, height; are the width and height of the image
in pixel.

char bits_per_pixel; indicates the number of bits used to represent
the color of each pixel. For 24-bit color images, this field is 24.

char flags; specifies how to interpret the image’s data. The TGAImage
class handles the case when flags is 0x20, which implies that the image
is stored in a top-down format starting with the first scan line.

121

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Listing 4.5. tgaimage.h—Declaration of the TGAImage class.

//--
// File: tgaimage.h
//
// Defines the TGAImage class representing Targa True
// Color images (handles only 24-bit color formats).
//
//--
#if !defined(_ _TGAIMAGE_H)
#define _ _TGAIMAGE_H

#include “image.h”

class TGAImage: public Image
{
public:
 TGAImage() {}
 TGAImage(Image& img) : Image(img) {}

 ~TGAImage() {}

 int read(const char* filename);
 int write(const char* filename)
 { return 1;} // Do nothing for now

private:
// A structure for the file header
 struct TARGAHeader
 {
 char offset;
 char cmap_type;
 char image_type;
 unsigned short cmap_start;
 unsigned short cmap_length;
 char cmap_bits;
 unsigned short hoffset;
 unsigned short voffset;
 unsigned short width;
 unsigned short height;
 char bits_per_pixel;
 char flags;
 };
 TARGAHeader hdr;
};

#endif

122

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

After the file header comes the image’s pixels, one scan line after another.
For 24-bit RGB color images, each pixel’s color is stored in 3 bytes: first a byte
for the blue (B) component, then the green (G), then the red (R). (Yes, it is op-
posite of the red-green-blue RGB order that you might have expected.)

The read function in Listing 4.6 shows how to load a Targa 24-bit RGB color
image into a DIB. The first task is to read the header of the Targa file and ini-
tialize the fields of a BITMAPINFOHEADER structure. Reading the actual image data
is straightforward because Windows 24-bit DIBs use the same layout for im-
age data as the 24-bit Targa format except that DIBs expect the image data
bottom-to-top with the pixels of the last scan line appearing first. Another
important point to note is that the number of bytes in each scan line of a DIB
must be a multiple of 4. Thus, you may have to pad the scan lines of the Targa
image to meet this requirement.

Listing 4.6. tgaimage.cpp—
Implementation of the TGAImage class.

//--
// File: tgaimage.cpp
//
// Image manipulation functions for 24-bit Targa TrueColor
// images.
//--
#include <fstream.h>
#include “tgaimage.h”
//--
// T G A I m a g e : : r e a d
// Read a Targa image (only 24-bit TrueColor images handled)

int TGAImage::read(const char* filename)
{
// If there is an existing image, detach the image data
// before reading a new image
 if(imdata->p_dib != 0) detach();

// Open file for reading
 ifstream ifs(filename, ios::in | ios::binary);
 if(!ifs)
 {
// Error reading file. Return 0.
 return 0;
 }

123

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Read TARGA header
 ifs.read((unsigned char*)&hdr, sizeof(TARGAHeader));

// Check if image file format is acceptable
 if(hdr.cmap_type) return 0; // We don’t handle colormaps

// Allocate memory for the device independent bitmap (DIB)
// Note that the number of bytes in each line of a DIB image
// must be a multiple of 4.
 imdata->bytes_per_line = 3 * hdr.width;
 if(imdata->bytes_per_line % 4)
 imdata->bytes_per_line = 4 *
 (imdata->bytes_per_line/4 + 1);

 imdata->p_dib = GlobalAllocPtr(GHND,
 sizeof(BITMAPINFOHEADER) +
 (long) imdata->bytes_per_line *
 (long) hdr.height);

// If memory allocation fails, return 0
 if(imdata->p_dib == 0) return 0;

// Set up bitmap info header
 LPBITMAPINFOHEADER p_bminfo = (LPBITMAPINFOHEADER)imdata->p_dib;
 p_bminfo->biSize = sizeof(BITMAPINFOHEADER);
 p_bminfo->biWidth = hdr.width;
 p_bminfo->biHeight = hdr.height;
 p_bminfo->biPlanes = 1;
 p_bminfo->biBitCount = hdr.bits_per_pixel;
 p_bminfo->biCompression = BI_RGB;
 p_bminfo->biSizeImage = (long)hdr.height *
 (long)imdata->bytes_per_line;
 p_bminfo->biXPelsPerMeter = 0;
 p_bminfo->biYPelsPerMeter = 0;
 p_bminfo->biClrUsed = 0;
 p_bminfo->biClrImportant = 0;

// Skip “offset” bytes from current position to find image
// data. Usually, offset is zero, in which case this call
// to seekg does nothing.

 ifs.seekg(hdr.offset, ios::cur);

// Load image data into the DIB. Note the DIB image must be
// stored “bottom-to-top” line order. That’s why we position
// data at the end of the array so that the image can be
// stored backwards--from the last line to the first.

continues

124

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 unsigned char huge *data =
 (unsigned char huge*)imdata->p_dib +
 sizeof(BITMAPINFOHEADER) +
 (unsigned long)(hdr.height - 1) *
 (unsigned long)(imdata->bytes_per_line);

// Need a buffer to read each line because the read function of
// the ifstream class does not work with huge pointers

 unsigned char *rbuf = new unsigned char[imdata->bytes_per_line];
 if(rbuf == NULL)
 {
 detach();
 return 0;
 }

 int i, j;
 unsigned short actual_bytes_per_line = 3*hdr.width;

// Pad part of rbuf beyond actual_bytes_per_line with zeros
 if(actual_bytes_per_line < imdata->bytes_per_line)
 {
 for(i = actual_bytes_per_line;
 i < imdata->bytes_per_line;
 i++) rbuf[i] = 0;
 }

// Now read the image data...
 for(i = 0; i < hdr.height; i++, data -= imdata->bytes_per_line)
 {
// Read a line of image data into the buffer
 ifs.read(rbuf, actual_bytes_per_line);

// Copy from buffer into DIB’s image data area
 for(j = 0; j < actual_bytes_per_line; j++)
 data[j] = rbuf[j];
 }
 delete rbuf;
// Success!
 return 1;
}

Listing 4.6. continued

125

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

PCXImage Class
The PCX file format was developed by ZSoft to store images created by the PC
PaintBrush paint program. The name PCX comes from the file extension .PCX
used for PC PaintBrush files. The PCX file format is as follows:

The file starts with a 128-byte header (described later). The header is
followed by encoded scan lines of the image.

Each scan line in the PCX file is created by first laying out the scan
lines of individual bit planes one after another. Then the entire line is
encoded using a run-length encoding scheme that works like this: if
the two highest order bits of a byte are set, the low-order six bits
indicate how many times the following byte must be repeated. If the
two highest order bits are not both 1, the byte represents the bitmap
data.

Examine the read function (Listing 4.8) of the PCXImage class to understand this
better.

PCX File Header
As you can see from the declaration of the PCXImage class in Listing 4.7, the PCX
file’s header is represented by the following PCXHeader structure:

 struct PCXHeader
 {
 unsigned char manufacturer;
 unsigned char version;
 unsigned char encoding;
 unsigned char bits_per_pixel_per_plane;
 short xmin;
 short ymin;
 short xmax;
 short ymax;
 unsigned short hresolution;
 unsigned short vresolution;
 unsigned char colormap[48];
 unsigned char reserved;
 unsigned char nplanes;
 unsigned short bytes_per_line;
 short palette_info;
 unsigned char filler[58]; // Header is 128 bytes
 };

126

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Here are the meanings of some of the important fields of the PCX file header:

unsigned char manufacturer; is always set to 0x0a for a valid PCX file.
You can use this information to verify that a file contains a PCX format
image.

unsigned char version; indicates the version of PC PaintBrush that
created the image file. Note that if version is greater than 5 and bits
per pixel per plane*nplanes is 8, the file has a 256-entry color palette
(consisting of 256 RGB bytes occupying 256x3 = 768 bytes) appended
at the end of the image.

unsigned char encoding; should always be 1 to indicate that the image
is stored using run-length encoding.

unsigned char bits_per_pixel_per_plane; is the number of bits for
each pixel in each bit plane. For instance, a 256-color image would
have 1 bit plane with 8 bits per pixel per plane.

short xmin, ymin, xmax, ymax; specifies the dimensions of the image.
The width is (xmax - xmin + 1) and the height is (ymax - ymin + 1).

unsigned char colormap[48]; is a 16-entry colormap with a
3-byte RGB value per entry. This colormap is valid if
bits_per_pixel_per_plane*nplanes is less than or equal to 4.

unsigned char nplanes; is the number of bit planes.

Note that the PCX file header is always 128 bytes long, so you have to pad the
structure with enough bytes to make the total size.

Listing 4.7. pcximage.h—Declaration of the PCXImage class.

//--
// File: pcximage.h
//
// Defines the PCXImage class representing PCX images.
//
//--
#if !defined(_ _PCXIMAGE_H)
#define __PCXIMAGE_H

#include “image.h”

127

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

class PCXImage: public Image
{
public:
 PCXImage() {}
 PCXImage(Image& img) : Image(img) {}

 ~PCXImage() {}

 int read(const char* filename);
 int write(const char* filename)
 { return 1;} // Do nothing for now

private:
// A structure for the file header
 struct PCXHeader
 {
 unsigned char manufacturer;
 unsigned char version;
 unsigned char encoding;
 unsigned char bits_per_pixel_per_plane;
 short xmin;
 short ymin;
 short xmax;
 short ymax;
 unsigned short hresolution;
 unsigned short vresolution;
 unsigned char colormap[48];
 unsigned char reserved;
 unsigned char nplanes;
 unsigned short bytes_per_line;
 short palette_info;
 unsigned char filler[58]; // Header is 128 bytes
 };
 PCXHeader hdr;

};

#endif

Reading a PCX File
Conceptually, reading the PCX file is simple—you simply read one byte at a
time and repeat the byte a specified number of bytes when the byte indicates
run-length encoding. The early part of the read function in Listing 4.8 shows

128

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

the loop that unpacks the PCX image by undoing the effect of run-length en-
coding. Written in C++-like pseudocode, the loop looks like this:

while (file has not ended)
{
 read a byte
 if(byte & 0xc0) // Are 2 high bits set?
 {
 count = byte & 0x3f;
 copy the byte count number of times
 }
 else
 copy the byte once
}

Decoding the run-length encoding is the easy part of reading a PCX image.
Because of the design of our Image class hierarchy, you also have to convert
the PCX image from its bit plane oriented structure to a packed format Win-
dows DIB. The code to this conversion is somewhat messy because to store as
a DIB, you have to combine bits from each bit plane of the PCX image into a
packed format representing a pixel’s value. Figure 4.5 illustrates the process
of converting a PCX image into a Windows DIB format.

Plane 3 dd
Plane 2 cc

Plane 1 bb
Plane 0 aa

HEADER

aabbccdd

Pixel 0 Pixel 1 • • •

Device Independent Bitmap (DIB)
(packed pixel format)

Equivalent Windows DIB with
8 bits per pixel

Fictitious 2 bits/pixel/plane
PCX image with 4 bit planes

Line 0

Line 1
•
•
•

Figure 4.5. Converting a PCX image into a Windows DIB.

The first step in converting the image to a DIB is to initialize the
BITMAPINFOHEADER that precedes the image in a DIB. The BITMAPINFOHEADER
structure is defined in <windows.h> as

129

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

typedef struct tagBITMAPINFOHEADER
{
 DWORD biSize; // Size of this structure
 LONG biWidth; // Width in pixels
 LONG biHeight; // Height in pixels
 WORD biPlanes; // Number of planes (always 1)
 WORD biBitCount; // Bits per pixel
 DWORD biCompression; // One of: BI_RGB, BI_RLE4 or
 // BI_RLE8
 DWORD biSizeImage; // Number of bytes in image
 LONG biXPelsPerMeter; // Horizontal resolution
 LONG biYPelsPerMeter; // Vertical resolution
 DWORD biClrUsed; // Number of colors used
 DWORD biClrImportant; // How many colors important?
} BITMAPINFOHEADER;
typedef BITMAPINFOHEADER* PBITMAPINFOHEADER;
typedef BITMAPINFOHEADER FAR* LPBITMAPINFOHEADER;

The read function of the PCXImage class intializes these fields of the
BITMAPINFOHEADER with information derived from the header of the PCX file.

After setting the BITMAPINFOHEADER, the read function initializes the color
palette that follows the BITMAPINFOHEADER in a DIB. The color palette consists
of an array of RGBQUAD structures, each with the following fields:

typedef struct tagRGBQUAD
{
 BYTE rgbBlue; // Intensity of blue component (0-255)
 BYTE rgbGreen; // Intensity of green component (0-255)
 BYTE rgbRed; // Intensity of red component (0-255)
 BYTE rgbReserved;// Reserved (set to zero)
} RGBQUAD;

Each RGBQUAD structure defines an RGB color for an entry in the color palette.

Once the color palette is initialized, the read function proceeds to convert
the PCX bit planes into a packed pixel format image representing a DIB. The
pseudocode for this operation looks like this (mask refers to a black silhouette
of the image):

Create a mask with the high-order
 “bits_per_pixel_per_plane” bits set
Loop over (all lines in the PCX image)
{
 Loop over (all bytes in each plane)
 {
 Loop over (“8/bits_per_pixel_per_plane” times)
 {

130

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 Loop over (all planes)
 {
 Pack bits from each plane into a byte
 If all 8bits are filled, copy byte to
 appropriate location in DIB
 }
 Shift mask to right by
 “bits_per_pixel_per_plane” bits
 }
 }
}

To understand this operation, you should carefully study the corresponding
loops in the read function shown in Listing 4.8. As you can see from the sample
programs in the companion disk, the conversion from the PCX format to DIB
works perfectly for monochrome, 4-, 8-, and even 24-bit color images.

Listing 4.8. pcximage.cpp—
Implementation of the PCXImage class.

//--
// File: pcximage.cpp
//
// Image manipulation functions for PCX format images.
//--
#include <fstream.h>
#include “pcximage.h”
//--
// P C X I m a g e : : r e a d
// Read a PCX image.

int PCXImage::read(const char* filename)
{
// If there is an existing image, detach the image data
// before reading a new image
 if(imdata->p_dib != 0) detach();

// Open file for reading
 ifstream ifs(filename, ios::in | ios::binary);
 if(!ifs)
 {
// Error reading file. Return 0.
 return 0;
 }

// Read PCX header
 ifs.read((unsigned char*)&hdr, sizeof(PCXHeader));

131

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Check if image file format is acceptable
 if(hdr.manufacturer != 0x0a) return 0;

// We only handle 1, 4, 8, or 24-bit images
 int bits_per_pixel = hdr.nplanes *
 hdr.bits_per_pixel_per_plane;

 if(bits_per_pixel != 1 &&
 bits_per_pixel != 4 &&
 bits_per_pixel != 8 &&
 bits_per_pixel != 24) return 0;

 unsigned short image_width = hdr.xmax - hdr.xmin + 1;
 unsigned short image_height = hdr.ymax - hdr.ymin + 1;

// Allocate space where the PCX image will be unpacked.
// Read in PCX image into this area.
 long pcx_image_size = (long) hdr.nplanes *
 (long) image_height *
 (long) hdr.bytes_per_line;
 unsigned char huge *image = new unsigned char huge
 [pcx_image_size];
 if(image == NULL) return 0;

// Decode run-length encoded image data

 int i, byte, count;
 unsigned long pos = 0L;

 while((byte = ifs.get()) != EOF)
 {
 if((byte & 0xc0) == 0xc0)
 {
 count = byte & 0x3f;
 if((byte = ifs.get()) != EOF)
 {
 for(i = 0; i < count; i++)
 {
 if(pos >= pcx_image_size) break;
 image[pos] = byte;
 pos++;
 }
 }
 }
 else
 {
 if(pos >= pcx_image_size) break;
 image[pos] = byte;

continues

132

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 pos++;
 }
 }

// Allocate memory for the device-independent bitmap (DIB)
// Note that the number of bytes in each line of a DIB image
// must be a multiple of 4.

 unsigned short bytes_per_line_per_plane = (image_width *
 hdr.bits_per_pixel_per_plane + 7) / 8;

 unsigned short actual_bytes_per_line = (image_width *
 hdr.nplanes *
 hdr.bits_per_pixel_per_plane + 7) / 8;
 imdata->bytes_per_line = actual_bytes_per_line;

 if(imdata->bytes_per_line % 4)
 imdata->bytes_per_line = 4 *
 (imdata->bytes_per_line/4 + 1);

// Make room for a palette
 int palettesize = 16;
 if(bits_per_pixel == 1) palettesize = 2;
 if(hdr.version >= 5 && bits_per_pixel > 4)
 {
// Go back 769 bytes from the end of the file
 ifs.seekg(-769L, ios::end);
 if(ifs.get() == 12)
 {
// There is a 256-color palette following this byte
 palettesize = 256;
 }
 }
// If image has more than 256 colors then there is no palette
 if(bits_per_pixel > 8) palettesize = 0;

 imdata->p_dib = GlobalAllocPtr(GHND,
 sizeof(BITMAPINFOHEADER) +
 palettesize * sizeof(RGBQUAD) +
 (long) imdata->bytes_per_line *
 (long) image_height);

// If memory allocation fails, return 0
 if(imdata->p_dib == 0) return 0;

Listing 4.8. continued

133

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Set up bitmap info header
 LPBITMAPINFOHEADER p_bminfo = (LPBITMAPINFOHEADER)imdata->p_dib;
 p_bminfo->biSize = sizeof(BITMAPINFOHEADER);
 p_bminfo->biWidth = image_width;
 p_bminfo->biHeight = image_height;
 p_bminfo->biPlanes = 1;
 p_bminfo->biBitCount = hdr.bits_per_pixel_per_plane *
 hdr.nplanes;
 p_bminfo->biCompression = BI_RGB;
 p_bminfo->biSizeImage = (long)image_height *
 (long)imdata->bytes_per_line;
 p_bminfo->biXPelsPerMeter = 0;
 p_bminfo->biYPelsPerMeter = 0;
 p_bminfo->biClrUsed = 0;
 p_bminfo->biClrImportant = 0;

// Set up the color palette
 if(palettesize > 0)
 {
 RGBQUAD *palette = (RGBQUAD*) ((LPSTR)imdata->p_dib
 + sizeof(BITMAPINFOHEADER));

 int palindex;
 for(palindex = 0; palindex < palettesize; palindex++)
 {
 if(palettesize == 256)
 {
// Read palette from file
 palette[palindex].rgbRed = ifs.get();
 palette[palindex].rgbGreen = ifs.get();
 palette[palindex].rgbBlue = ifs.get();
 palette[palindex].rgbReserved = 0;
 }
 if(palettesize == 16)
 {
// 16-color palette from PCX header
 palette[palindex].rgbRed =
 hdr.colormap[3*palindex];
 palette[palindex].rgbGreen =
 hdr.colormap[3*palindex+1];
 palette[palindex].rgbBlue =
 hdr.colormap[3*palindex+2];
 palette[palindex].rgbReserved = 0;
 }
 if(palettesize == 2)
 {
// Set up palette for black-and-white images
 palette[palindex].rgbRed =
 palindex * 255;

continues

134

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Listing 4.8. continued

 palette[palindex].rgbGreen =
 palindex * 255;
 palette[palindex].rgbBlue =
 palindex * 255;
 palette[palindex].rgbReserved = 0;
 }
 }
 }

// Load image data into the DIB. Note the DIB image must be
// stored in “bottom-to-top” line order. That’s why we position
// data at the end of the array so that the image can be
// stored backwards--from the last line to the first.
 unsigned char huge *data =
 (unsigned char huge*)imdata->p_dib +
 sizeof(BITMAPINFOHEADER) +
 palettesize * sizeof(RGBQUAD) +
 (unsigned long)(image_height - 1) *
 (unsigned long)(imdata->bytes_per_line);

// Define a macro to access bytes in the PCX image according
// to specified line and plane index.

 int lineindex, byteindex, planeindex;

#define bytepos(lineindex,planeindex,byteindex) \
 ((long)(lineindex)*(long)hdr.bytes_per_line* \
 (long)hdr.nplanes + \
 (long)(planeindex)*(long)hdr.bytes_per_line + \
 (long)(byteindex))

// Construct packed pixels out of decoded PCX image.

 unsigned short onebyte, bits_copied, loc, few_bits, m,
 k, bbpb = 8/hdr.bits_per_pixel_per_plane;

// Build a mask to pick out bits from each byte of the PCX image
 unsigned short himask = 0x80, mask;
 if(hdr.bits_per_pixel_per_plane > 1)
 for(i = 0; i < hdr.bits_per_pixel_per_plane - 1;
 i++) himask = 0x80 | (himask >> 1);

 for(lineindex = 0; lineindex < image_height;
 lineindex++, data -= imdata->bytes_per_line)
 {
 if(actual_bytes_per_line < imdata->bytes_per_line)
 for(loc = actual_bytes_per_line;

135

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 loc < imdata->bytes_per_line; loc++)
 data[loc] = 0;
 loc = 0;
 onebyte = 0;
 bits_copied = 0;
 for(byteindex = 0;
 byteindex < bytes_per_line_per_plane;
 byteindex++)
 {
 for(k = 0, mask = himask; k < bbpb;
 k++, mask >>= hdr.bits_per_pixel_per_plane)
 {
// Go through all scan lines for all planes and copy bits into
// the data array
 for(planeindex = 0; planeindex < hdr.nplanes;
 planeindex++)
 {
 few_bits = image[bytepos(lineindex,
 planeindex, byteindex)] & mask;

// Shift the selcted bits to the most significant position
 if(k > 0) few_bits <<=
 (k*hdr.bits_per_pixel_per_plane);

// OR the bits with current pixel after shifting them right
 if(bits_copied > 0)
 few_bits >>= bits_copied;

 onebyte |= few_bits;
 bits_copied += hdr.bits_per_pixel_per_plane;

 if(bits_copied >= 8)
 {
 data[loc] = onebyte;
 loc++;
 bits_copied = 0;
 onebyte = 0;
 }
 }
 }
 }
 }
 delete image;

// Success!
 return 1;
}

136

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

ImageView—A Windows
Image Viewer
Now that you have seen an Image class hierarchy for handling BMP, PCX, and
Targa image files, it’s time for an application that uses these classes. The re-
mainder of this chapter presents ImageView, a Windows application with a
multiple-document interface (MDI) that allows the user to open one or more
image files for viewing. ImageView uses the Image class hierarchy developed
earlier in this chapter. You can view PCX, BMP, 24-bit Targa files with ImageView.

This book’s companion disk includes the complete source code for ImageView
together with necessary auxiliary files such as the module definition file
(IMAGEVW.DEF) and the resource file (IMAGEVW.RES). Before reading any more about
ImageView, you should run the program and see how it works. Then you can
read the following descriptions and study the source listings to understand how
the program is implemented.

Running ImageView
If you have added a new program item for the ImageView application in Win-
dows Program Manager, you can start the program by double-clicking on its
icon. Otherwise, you have to start the program by selecting Run from the File
menu in the Program Manager and specifying the application’s name
(IMAGEVW.EXE). To view an image, select Open from ImageView’s File menu. Se-
lect an image file from the file selection dialog box. Each image appears in its
own window inside ImageView’s main window. Figure 4.6 shows the basic fea-
tures of ImageView including a number of images, the About dialog box, and
one minimized window.

ImageViewApp Class
The ImageView application is built from Borland’s OWL classes. As you can see
from Listing 4.9, the main source file imagevw.cpp (the one with the WinMain
function) looks very much like the main source file of any OWL-based appli-
cation.

137

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Figure 4.6. Viewing images with ImageView.

The ImageViewApp class, derived from TApplication, models the ImageView
application. Its InitMainWindow function creates an instance of an ImageViewFrame
class, which is the main window of the ImageView application. The images
are displayed in child windows of ImageViewFrame. The actual image display
is done in an instance of the ImageViewWindow class that is created as a child
window of an ImageViewFrame class.

Listing 4.9. imagevw.cpp—Main source file of ImageView.

//--
// File: imagevw.cpp
//
// A Windows application for viewing images in a variety of
// formats such as Windows bitmap (.BMP), PC PaintBrush (.PCX),
// and Targa (.TGA).
//--
#include “imvwwin.h”

continues

138

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Listing 4.9. continued

class ImageViewApp: public TApplication
{
public:
// Constructor that simply calls the base class constructor

 ImageViewApp(LPSTR name, HINSTANCE instance,
 HINSTANCE prev_instance, LPSTR cmdline, int show) :

 TApplication(name, instance, prev_instance,
 cmdline, show) {}

// Define function to initialize application’s main window
 void InitMainWindow();

// Define function to initialize an instance of this application
 void InitInstance();
};
//--
// I m a g e V i e w A p p : : I n i t M a i n W i n d o w

void ImageViewApp::InitMainWindow()
{
 MainWindow = new ImageViewFrame(“ImageView”, “MainMenu”);
}
//--
// I m a g e V i e w A p p : : I n i t I n s t a n c e

void ImageViewApp::InitInstance()
{
 TApplication::InitInstance();
 HAccTable = LoadAccelerators(hInstance, “MainAccelTable”);
}
//--
// W i n M a i n
//
// Create an instance of the application and “run” it.

int PASCAL WinMain(HINSTANCE instance, HINSTANCE prev_instance,
 LPSTR cmdline, int show)
{
 ImageViewApp ImageView(“ImageView”, instance,
 prev_instance, cmdline, show);

 ImageView.Run();

 return ImageView.Status;
}

139

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

ImageViewFrame and
ImageViewWindow Classes
Listing 4.10 shows the declarations of the ImageViewWindow and ImageViewFrame
classes. The ImageViewWindow class has a member variable, image, which is a
pointer to the Image object that it displays. The ImageViewFrame class represents
the frame window inside which one or more ImageViewWindow objects display
images. As such, the ImageViewFrame class does not have any member vari-
ables—it only provides member functions such as OpenFile and About that
handle menu messages.

Listing 4.10. imvwwin.h—
Declaration of the window classes in ImageView.

//--
// File: imvwwin.h
//
// Classes for an OWL application that lets you open an image
// file and view the image in a window.
//--
#if !defined(_ _IMVWWIN_H)
#define _ _IMVWWIN_H

#include <owl.h>
#include <mdi.h>
#include <strng.h>
#include “imvwres.h” // Resource identifiers for the application
#include “image.h”

class ImageViewWindow : public TWindow
{
public:
 ImageViewWindow(PTWindowsObject parent, LPSTR title,
 LPSTR fname);

 ~ImageViewWindow()
 {
 if(filename != NULL) delete filename;
 if(image != NULL) delete image;
 }

 void GetWindowClass(WNDCLASS _FAR &wc);
 void Paint(HDC hdc, PAINTSTRUCT &ps);

continues

140

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Listing 4.10. continued

 void SaveFile(RTMessage msg) = [CM_FIRST + CM_FILESAVE];

private:
 String *filename;
 Image *image;
};

class ImageViewFrame: public TMDIFrame
{
public:
 ImageViewFrame(LPSTR title, LPSTR menu) :
 TMDIFrame(title, menu)
 {
// Append list of open child windows to the menu at this
// position (0 = first menu, 1 = second, and so on).
 ChildMenuPos = 1;
 }

// The following is needed to set up an icon for the application
 void GetWindowClass(WNDCLASS _FAR &wc);

// Declare functions for handling messages from Windows
 void OpenFile(RTMessage msg) = [CM_FIRST + CM_MDIFILEOPEN];
 void SaveAsFile(RTMessage msg) = [CM_FIRST + CM_FILESAVEAS];
 void About(RTMessage msg) = [CM_FIRST + IDM_ABOUT];
};

#endif

The file imvwres.h, which is included in imvwwin.h (Listing 4.10), defines
certain resource identifiers used in the ImageView application. Listing 4.11 shows
the header file imvwres.h. In this case there is only one identifier—the ID for
the About menu item in ImageView.

Listing 4.11. imvwres.h—Resource identifiers in ImageView.

//--
// File: imvwres.h
// Resource identifiers for the ImageView application
//--
#if !defined(_ _IMVWRES_H)

141

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

#define __IMVWRES_H

#include <owlrc.h> // For definitions of OWL IDs

#define IDM_ABOUT 200

#endif

Remember, the ImageViewWindow class contains information about the image
it is displaying—in the form of a pointer to an Image object as a member vari-
able. The ImageViewWindow constructor expects as an argument the name of an
image file, which it uses to create and intialize the image. Remember, the im-
age file’s extension is used to decide which type of image is created: .BMP
implies a Windows DIB file, .PCX means PC PaintBrush files, and .TGA refers
to a 24-bit Truevision Targa image. Consult Listing 4.12 for further details of
the ImageViewWindow constructor.

You should note that the image is displayed in the window by the Paint
function of the ImageViewWindow class. Listing 4.12 shows the simplicity of the
ImageViewWindow::Paint function—it simply calls the show member function of
the image object. This shows the benefits of developing a C++ class hierarchy
to handle a specific task such as managing and displaying images. (You can
see the benefits even more clearly with the image animation program in Chap-
ter 5, “Animating Images.”)

Listing 4.12. imvwwin.cpp—
Implementation of the window classes in ImageView.

//--
// File: imvwwin.cpp
//
// Member functions of the ImageViewFrame and ImageViewWindow
// classes.
//--
#include <strstrea.h>
#include <string.h>
#include <filedial.h>
#include “imvwwin.h”
#include “bmpimage.h”
#include “pcximage.h”
#include “tgaimage.h”

continues

142

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

//--
// I m a g e V i e w W i n d o w
// Constructor for the ImageViewWindow class

ImageViewWindow::ImageViewWindow(PTWindowsObject parent,
 LPSTR title, LPSTR fname) : TWindow(parent, title)
{
 image = NULL;
 filename = NULL;

// Open the image file. We will decide the file type from
// the file extension:
// .BMP = Windows bitmap file
// .PCX = PC PaintBrush file
// .TGA = 24-bit true color Targa file

// Convert filename to uppercase
 strupr(fname);
 char *ext = strrchr(fname, ‘.’);
 filename = new String(fname);

// Change to an hourglass cursor
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

// Load file
 if(strcmp(ext, “.BMP”) == 0)
 {
 image = new BMPImage;
 image->read(fname);
 }

 if(strcmp(ext, “.PCX”) == 0)
 {
 image = new PCXImage;
 image->read(fname);
 }

 if(strcmp(ext, “.TGA”) == 0)
 {
 image = new TGAImage;
 image->read(fname);
 }
// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();

Listing 4.12. continued

143

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

// Display a message if image format is unknown
 if(image == NULL)
 {
 MessageBox(HWindow, “Unknown image format!”,
 “ImageView”,
 MB_OK | MB_ICONEXCLAMATION);
 }
}
//--
// ImageViewWindow:: P a i n t
// Draw image in the window

void ImageViewWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(image != NULL) image->show(hdc);
}
//--
// ImageViewWindow:: G e t W i n d o w C l a s s
// Set up icon for each image window

void ImageViewWindow::GetWindowClass(WNDCLASS _FAR &wc)
{
// First call the GetWindowClass function of the base class
 TWindow::GetWindowClass(wc);

// Set up icon for this image window
 wc.hIcon = LoadIcon(wc.hInstance, “IMAGEVIEWWIN_ICON”);
}
//--
// ImageViewFrame:: G e t W i n d o w C l a s s
// Set up icon for the application

void ImageViewFrame::GetWindowClass(WNDCLASS _FAR &wc)
{
// First call the GetWindowClass function of the base class
 TMDIFrame::GetWindowClass(wc);

// Set up icon for this application
 wc.hIcon = LoadIcon(wc.hInstance, “IMAGEVIEWAPP_ICON”);
}
//--
// ImageViewFrame:: A b o u t
// Display the “About...” box

void ImageViewFrame::About(RTMessage)
{
 TDialog *p_about = new TDialog(this, “ABOUTIMAGEVIEW”);

continues

144

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Listing 4.12. continued

 PTApplication app = GetApplication();
 app->ExecDialog(p_about);
}
//--
// ImageViewFrame:: O p e n F i l e
// Display file dialog and open requested image file

void ImageViewFrame::OpenFile(RTMessage)
{
 char name[80] = “*.bmp”;

 TFileDialog *p_fd = new TFileDialog(this,
 SD_FILEOPEN, name);
 int status = GetApplication()->ExecDialog(p_fd);

 if (status == IDOK)
 {
 ImageViewWindow* p_iw = new ImageViewWindow(this,
 name, name);
 GetApplication()->MakeWindow(p_iw);
 }
}

//--
// ImageViewWindow:: S a v e F i l e
// Display file dialog and save image in .BMP format in a file
// with the same name as the original, except for a .BMP
// extension.

void ImageViewWindow::SaveFile(RTMessage)
{
 char *ext = strrchr(*filename, ‘.’);
 if(strcmp(ext, “.BMP”) != 0)
 {
// Change to an hourglass cursor
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

 char bmpfilename[128];
 strcpy(bmpfilename, *filename);
 ext = strrchr(bmpfilename, ‘.’);
 strcpy(ext, “.BMP”);
 BMPImage ibmp;
 ibmp.image_data(image);

145

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

 ibmp.write(bmpfilename);
// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
 }
}
void ImageViewFrame::SaveAsFile(RTMessage){}

Building ImageView
The Windows-based development environment of Borland C++ is used to build
the ImageView application. The companion disk has the project file (IMAGEVW.PRJ)
that lists the files necessary to build the application. The disk also includes all
files needed to build the executable, IMAGEVW.EXE. There are a few items in the
project file that reflect the name of the drive and directory where I installed
Borland C++ in my system. Here are the changes you have to make before using
the project file in your system:

1. Open the project file IMAGEVW.PRJ by selecting Open Project... from the
Project menu of Borland C++ for Windows.

2. In the list of items shown in the project window, bwcc.lib is listed with
a specific drive and directory name. Select that line and get rid of the
line by selecting Delete Item... from the menu.

3. Select Add Item... from the Project menu. In the file selection dialog
box that appears, go to the directory where you have installed Borland
C++ and select bwcc.lib (in the LIB subdirectory). Click on the Add
button to add the library to the project. Click on Done to close the
dialog box.

4. Select the Directories item from the Option menu in Borland C++ for
Windows. Edit the pathnames to reflect the drive and directory names
where you have installed Borland C++.

After making these changes, you should be able to build IMAGEVW.EXE by se-
lecting Make from the Compile menu. Once the program is successfully built,
you can add it to Windows Program Manager by selecting New... from the
Program Manager’s File menu.

146

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

One of the files that you need to build a Windows program is a resource
file. For the ImageView application, the resource file, IMAGEVW.RES, is included
in the companion disk. I prepared the resource file using the Resource Work-
shop program included with Borland C++.

Summary
Images are an integral part of games and you need lots of images to create an
exciting game. Whether you draw images in a paint program or scan from a
hard copy, the images are ultimately stored in image files that you have to
interpret and use. The basic information in an image file is the same—the di-
mensions of the image and the pixel array that makes up the image—but there
are many ways to organize this information in a file, including popular image
file formats such as PCX, TIFF, Windows BMP, and Truevision Targa. The next
chapter uses the image classes to define sprites that can be animated—moved
smoothly—over a background image.

Further Reading
For information on displaying and manipulating Windows DIB files (the ones
commonly known as the BMP files), consult the book by Brian Myers and Chris
Doner.

Steve Rimmer has written several books that explain many popular file
formats such as MacPaint, PCX, GIF, TIFF, Truevision Targa, and Microsoft
Windows BMP formats. Rimmer’s books include source code in C and 80x86
assembly language to interpret image files. He also provides code to display
images on display adapters such as EGA, VGA, and super VGA.

David Kay and John Levine have recently written a book on graphics file
formats. Their book describes a large number of image file formats including
PCX, TIFF, Windows DIB, Truevision Targa, GIF, MacPaint, and Macintosh
PICT. This is the book to consult if you have questions about any of the image
file formats described in this chapter.

147

Understanding Image File Formats

Chapter

4

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

Craig Lindley’s books also cover a number of image file formats, most no-
tably, PCX, TIFF, and GIF. Additionally, one of his books, Practical Ray Tracing
in C, describes the public domain ray-tracing program, DKBTrace, which you
can use to create computer-generated imagery.

Kay, David C., and John R. Levine. Graphics File Formats. Blue Ridge
Summit, PA: Windcrest/McGraw-Hill, 1992.

Lindley, Craig A. Practical Image Processing in C. New York: Wiley,
1991.

Lindley, Craig. Practical Ray Tracing in C. New York: Wiley, 1992.

Myers, Brian, and Chris Doner. Programmer’s Introduction to Windows
3.1. Alameda, CA: SYBEX, 1992.

Rimmer, Steve. Bit-Mapped Graphics. Blue Ridge Summit, PA:
Windcrest/McGraw-Hill, 1990.

Rimmer, Steve. Supercharged Bit-Mapped Graphics. Blue Ridge Summit,
PA: Windcrest/McGraw-Hill, 1992.

148

Programming Windows Games with Borland C++

TWO/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH4 LP#7

149

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

Chapter

5

Animating
Images

150

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

Animation is the process of bringing an image to life. We usually associate
animation with movement of images and the good examples pioneered by The
Walt Disney Company. This chapter includes several C++ classes to model and
animate the small images known as sprites. These sprite animation classes rely
on the Image classes developed in Chapter 4. This chapter ends with a Win-
dows program that animates a number of sprites on a background image.

Animation Techniques
The Disney movies use a traditional approach to animation in which each frame
of the movie has to be prepared individually. This style is commonly known
as frame animation or cel animation. (Cel refers to the sheets of acetate on which
the images are drawn.) Cel animation is a discipline by itself and is not cov-
ered in this book.

Sprite Animation
Sprites are used in interactive video games to represent characters and fixtures
that are part of the game. When the player moves an input device, such as a
joystick, trackball, or mouse, the sprite moves over a background. Essentially,
the player plays the video game by manipulating the sprites. Video game
machines usually have graphics hardware with built-in support for sprites. In
IBM-compatible PCs, the display hardware does not support sprites, so you
have to rely on software techniques.

Erase and Redraw Technique
The obvious way to move an image is to erase it at the old location and redraw
it at the new location. In a Windows program, you can use the BitBlt function
for this. If you erase-and-redraw repeatedly, the image appears to move across
the screen. However, a major drawback of this approach is that the display
flickers as the image is erased and redrawn.

151

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

One way to avoid flickers in erase-and-redraw animation is to use video page
flipping, provided the display hardware supports more than one video page.
With multiple video pages, you draw the entire screen in the hidden video page
while the active page is being displayed. Then, you swap the active and hid-
den video pages to display the updated image. To continue the animation, you
simply repeat this process in a loop. Many high-end graphics workstations
(Silicon Graphics workstations, for instance) support animation through page
flipping—or buffer swapping as the technique is known in the workstation world.

Unfortunately, most PC display adapters do not support multiple video
pages in the high-resolution video modes. More importantly, Microsoft Win-
dows does not support multiple video pages. So, you need some other approach
to create flicker-free animation in Windows.

Offscreen Bitmap Technique
Screen flickers occur with the erase-and-redraw animation because all screen
drawing operations are visible. As an image is erased, you see it vanish from
the screen. Then the image appears again at a new location. When two video
pages are used, the flicker goes away because the screen updates are always
done in the hidden page. The fully updated screen appears instantaneously
when the video pages are swapped. By this logic, you should be able to avoid
the flicker as long as the images are prepared offscreen and the updated screen
is redrawn quickly. Luckily, Windows supports drawing on an offscreen
bitmap, which can serve as an ideal canvas for preparing the display screen.
Then a single call to BitBlt can quickly transfer the updated images to the dis-
play screen. Of course, you have to attend to a myriad of details to prepare the
image properly in the offscreen bitmap, but this basic idea works remarkably
well for image animation under Windows.

To see how well the offscreen bitmap animation works, all you need to do
is run the ANIMATE application (ANIMATE.EXE) from the CH05 directory of the
companion disk. The ANIMATE program performs well under Windows even on
a lowly 1984-vintage IBM PC-AT (6MHz 80286) equipped with the original IBM
EGA display adapter.

152

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

C++ Classes for
Sprite Animation
To support a Windows application that animates sprites using an offscreen
bitmap, you need C++ classes to represent the sprites and to animate them.
The animation consists of a fixed background image and zero or more sprites
that can be moved around on the background. In the following sections, a Sprite
class is defined to model a sprite and a SpriteAnimation class is defined to
maintain the sprites and the background image.

Sprite Class
Listing 5.1 shows the declaration of the Sprite class. A Sprite has two Image
objects:

The Sprite’s image in a black background

A black silhouette of the Sprite’s image in a white background (a
mask)

As you can see in the animate function of the SpriteAnimation class, both the
image and the mask are needed to allow drawing the Sprite’s outline without
affecting the background on which the Sprite is drawn. In addition to the image
and the mask, a Sprite has an x- and y-position and several other variables to
keep track of its motion on the background.

A Sprite class also has a display priority associated with it. This is an integer,
stored in the member variable disp_priority, that determines the order in which
overlapping sprites are drawn—a Sprite with a higher priority is drawn over
one with a lower priority.

Another interesting member variable is dproc of type DRAWPROC, which is
declared with this typedef statement:

typedef void (_FAR PASCAL *DRAWPROC)(HDC hdc, short x, short y,
LPVOID data);

As you can see, dproc is a pointer to a function. The function specified by dproc
is called whenever the Sprite’s image needs to be drawn. You can draw ob-
jects—such as a line, a rectangle, an ellipse, or text—so that a sprite can have

153

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

much more than a bitmapped image. The moving text in the sample applica-
tion ANIMATE (in the companion disk) is displayed using this feature of a Sprite.

A Sprite Is a Sortable
I derived the Sprite class from the Sortable class of the Borland class library
(CLASSLIB) because I plan to store Sprite objects in a SortedArray (another
class from Borland’s CLASSLIB), and only Sortable objects can reside in a
SortedArray. As a consequence of deriving from Sortable, the Sprite class must
define the following member functions:

 classType isA() const;

 char _FAR *nameOf() const;

 hashValueType hashValue() const;

 void printOn(ostream _FAR& os);

You can see from Listing 5.1 that these four functions are defined in a straight-
forward manner. The isA function returns a unique integer identifier for the
Sprite class while nameOf returns the string “Sprite” as the name of the class.

Additionally, to properly sort Sprite objects, the Sprite class must include
these member functions:

 int isLessThan(const Object _FAR& ob) const;

 int isEqual(const Object _FAR& ob) const;

The isLessThan function is used to test if one Sprite is “less than” another. As
defined in Listing 5.1, isLessThan compares the display priority of the Sprites
to determine which Sprite is “smaller.”

Listing 5.1. sprite.h—Declaration of the Sprite class.

//--
// File: sprite.h
//
// Declares a Sprite class representing a small image that
// can be animated.
//--

continues

154

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

#if !defined(__SPRITE_H)
#define __SPRITE_H

#include <sortable.h> // So that we can sort the Sprites
#include <strng.h> // For the String class
#include “image.h”

const unsigned short SPRITE_ACTIVE = 1;
const unsigned short SPRITE_UPDATE = 2;
const unsigned short SPRITE_OVERLAP = 4;
const unsigned short SPRITE_ERASE = 8;

typedef void (_FAR PASCAL *DRAWPROC)(HDC hdc, short x, short y,
 LPVOID data);

class Sprite : public Sortable
{
public:
 Sprite() : image(NULL), mask(NULL), disp_priority(1),
 dproc(NULL), dpdata(NULL), status(0), sid(-1),
 image_filename(NULL), mask_filename(NULL)
 {
 curpos.x = curpos.y = 0;
 lastpos.x = lastpos.y = 0;
 }

 Sprite(HDC hdc, LPSTR imagefilename,
 LPSTR maskfilename, short priority = 1);

 Sprite(Image *img, Image *msk, short priority = 1);

 ~Sprite();

// Read in an image and a mask
 void load_images(HDC hdc, LPSTR imagefilename,
 LPSTR maskfilename);

// The next four functions are required because Sprite is
// derived from the Sortable class.

 classType isA() const { return SpriteClass;}

 char _FAR *nameOf() const { return “Sprite”;}

 hashValueType hashValue() const { return 0;}

Listing 5.1. continued

155

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 void printOn(ostream _FAR& os) const
 {
 os << “Sprite : “ << *image_filename << endl;
 }

 short priority() { return disp_priority;}
 void priority(short dp) { disp_priority = dp;}

 unsigned short width() { return w;}
 unsigned short height() { return h;}
 void width(unsigned wdth) { w = wdth;}
 void height(unsigned hght) { h = hght;}

 short xpos() { return curpos.x;}
 short ypos() { return curpos.y;}
 void xpos(short x)
 {
 lastpos.x = curpos.x;
 curpos.x = x;
 }
 void ypos(short y)
 {
 lastpos.y = curpos.y;
 curpos.y = y;
 }
 void newpos(short x, short y)
 {
 lastpos.x = curpos.x;
 lastpos.y = curpos.y;
 curpos.x = x;
 curpos.y = y;
 reset_moves();
 }

 short lastxpos() { return lastpos.x;}
 short lastypos() { return lastpos.y;}

 void reset_moves()
 {
 xdelta = ydelta = 0;
 }
 short xmove() { return xdelta;}
 short ymove() { return ydelta;}

 void move(short x, short y)
 {
 xdelta += x;
 ydelta += y;

continues

156

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// Mark sprite for update
 status |= SPRITE_UPDATE;
 }

// Functions to manipulate the status of a sprite
 unsigned short needs_update()
 { return status & SPRITE_UPDATE;}
 unsigned short is_active()
 { return status & SPRITE_ACTIVE;}
 unsigned short is_overlapping()
 { return status & SPRITE_OVERLAP;}
 unsigned short to_be_erased()
 { return status & SPRITE_ERASE;}
 void active() { status |= SPRITE_ACTIVE | SPRITE_UPDATE;}
 void update() { status |= SPRITE_UPDATE;}
 void erase() { status |= SPRITE_ERASE;}
 void overlaps(){ status |= SPRITE_OVERLAP;}
 void update_done(){ status &= ~SPRITE_UPDATE;}
 void unerase() { status &= ~SPRITE_ERASE;}
 void inactive() { status &= ~SPRITE_ACTIVE;}
 void no_overlap() { status &= ~SPRITE_OVERLAP;}

// Convert the device independent bitmaps to device
// dependent bitmaps
 void make_ddb(HDC hdc)
 {
 if(image != NULL) image->DIBtoDDB(hdc);
 if(mask != NULL) mask->DIBtoDDB(hdc);
 }

// The following function is needed to sort the Sprites
// according to display priority.
 int isLessThan(const Object _FAR& ob) const
 { return disp_priority < ((Sprite&)ob).disp_priority;}

 int isEqual(const Object _FAR& ob) const
 { return disp_priority == ((Sprite&)ob).disp_priority;}

 void drawproc(DRAWPROC dp, LPVOID data)
 {
 dproc = dp;
 dpdata = data;
 }
 DRAWPROC drawproc() { return dproc;}
 LPVOID data() { return dpdata;}

Listing 5.1. continued

157

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 HBITMAP hbm_image()
 {
 if(image != NULL) return image->get_ddb();
 else return NULL;
 }
 HBITMAP hbm_mask()
 {
 if(mask != NULL) return mask->get_ddb();
 else return NULL;
 }

 Image* sprite_image() { return image;}
 Image* sprite_mask() { return mask;}

 void id(short _id) { sid = _id;}
 short id() { return sid;}

 static Image* init_image(LPSTR fname);

protected:
 Image *image; // The sprite’s image
 Image *mask; // The mask: a silhouette of image
 unsigned short w, h; // Width and height of sprite
 short disp_priority;
 POINT curpos;
 POINT lastpos;
 short xdelta;
 short ydelta;
 unsigned short status;
 DRAWPROC dproc; // Pointer to user-supplied
 // function to draw
 LPVOID dpdata; // Argument for drawproc
 String *image_filename;
 String *mask_filename;

 short sid; // Normally unused, but may be
 // used to identify Sprite

 enum { SpriteClass = __firstUserClass + 1};
};

#endif

158

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

Initializing a Sprite
Listing 5.2 shows the file sprite.cpp with several member functions of the Sprite
class. A typical way to create and initialize a Sprite is to use the constructor
that accepts the names of image and mask files as arguments:

Sprite::Sprite(HDC hdc, LPSTR imagefilename,
 LPSTR maskfilename, short priority);

This constructor calls the init_image function to load the bitmaps correspond-
ing to the image and the mask. The constructor also requires the handle to a
DC because the image and mask bitmaps are converted to a device-dependent
format and this step needs a DC.

The init_image function (Listing 5.2) loads an image from a file. It uses the
file name extension to determine the type of image. The extensions it accepts
are

.BMP for Windows DIB files

.PCX for PC PaintBrush files

.TGA for 24-bit Truevision Targa files

Listing 5.2. sprite.cpp—Implementation of the Sprite class.

//--
// File: sprite.cpp
// Member functions of the Sprite class.
//
//--
#include <string.h>
#include “sprite.h”
#include “bmpimage.h”
#include “pcximage.h”
#include “tgaimage.h”
#include <stdio.h> //NBNBNB
//--
// S p r i t e : : S p r i t e
// Constructor for a Sprite

Sprite::Sprite(HDC hdc, LPSTR imagefilename,
 LPSTR maskfilename, short priority):
 disp_priority(priority)
{
 image_filename = mask_filename = NULL;

159

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// Read the image and the mask bitmaps
 image = init_image(imagefilename);
 if(image != NULL)
 {
 w = image->width();
 h = image->height();
 image_filename = new String(imagefilename);
 }

 mask = init_image(maskfilename);
 if(mask != NULL) mask_filename = new String(maskfilename);

// Convert the image and the mask into device dependent bitmaps
 make_ddb(hdc);

// Initialize other member variables
 curpos.x = curpos.y = 0;
 lastpos.x = lastpos.y = 0;
 dproc = NULL;
 dpdata = NULL;
 status = SPRITE_UPDATE | SPRITE_ACTIVE;
}
//--
// Sprite::S p r i t e (I m a g e * , I m a g e * ...)
// Construct a Sprite from an image and a mask.

Sprite::Sprite(Image *img, Image *msk, short priority):
 disp_priority(priority)
{
 image_filename = mask_filename = NULL;

 image = img;
 if(image != NULL)
 {
 w = image->width();
 h = image->height();
 }
 mask = msk;

// Initialize other member variables
 curpos.x = curpos.y = 0;
 lastpos.x = lastpos.y = 0;
 dproc = NULL;
 dpdata = NULL;
 status = SPRITE_UPDATE | SPRITE_ACTIVE;
}
//--

continues

160

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// S p r i t e : : ~ S p r i t e
// Destructor for a Sprite

Sprite::~Sprite()
{
 if(image_filename != NULL) delete image_filename;
 if(mask_filename != NULL) delete mask_filename;
 if(image != NULL) delete image;
 if(mask != NULL) delete mask;
}
//--
// S p r i t e : : l o a d _ i m a g e s
// Read in image and mask from files

void Sprite::load_images(HDC hdc, LPSTR imagefilename,
 LPSTR maskfilename)
{
// Read the image and the mask bitmaps
 image = init_image(imagefilename);
 if(image != NULL)
 {
 w = image->width();
 h = image->height();
 image_filename = new String(imagefilename);
 }

 mask = init_image(maskfilename);
 if(mask != NULL) mask_filename = new String(maskfilename);

// Convert the image and the mask into device dependent bitmaps
 make_ddb(hdc);

// Mark sprite as active and in need of update
 status = SPRITE_UPDATE | SPRITE_ACTIVE;
}
//--
// S p r i t e : : i n i t _ i m a g e
// Read an image from a file

Image* Sprite::init_image(LPSTR fname)
{
 Image *img = NULL;
 if(fname == NULL) return img;

Listing 5.2. continued

161

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// Read the image file. We will decide the file type from
// the file extension:
// .BMP = Windows bitmap file
// .PCX = PC PaintBrush file
// .TGA = 24-bit true color Targa file

// Locate file name extension
 char *ext = strrchr(fname, ‘.’);
 if(ext == NULL) return img;

// Load file
 if(strnicmp(ext, “.BMP”, 4) == 0)
 {
 img = new BMPImage;

 if(!img->read(fname))
 {
 delete img;
 img = NULL;
 }
 }

 if(strnicmp(ext, “.PCX”, 4) == 0)
 {
 img = new PCXImage;
 if(!img->read(fname))
 {
 delete img;
 img = NULL;
 }
 }

 if(strnicmp(ext, “.TGA”, 4) == 0)
 {
 img = new TGAImage;
 if(!img->read(fname))
 {
 delete img;
 img = NULL;
 }
 }
 return img;
}

162

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

SpriteAnimation Class
The SpriteAnimation class, declared in the file spranim.h (Listing 5.3), manages
a number of sprites and a background and also provides the capability to ani-
mate the sprites. The following are its main data members:

SortedArray *sprites; is an array of pointers to sprites that are part of
the animation.

Image *background; is the background image that serves as the canvas
on which the sprites are animated.

HBITMAP hbm_bg; is the DDB of the background image.

HBITMAP hbm_scratch; is a bitmap that serves as the scratch area where
images are prepared before copying to the onscreen window (to be
described later).

Additionally, there are a number of handles to DCs that are kept ready for
copying bitmaps to and from various components of the animation.

Listing 5.3. spranim.h—
Declaration of the SpriteAnimation class.

//--
// File: spranim.h
//
// Classes for animating sprites.
//--
#if !defined(_ _SPRANIM_H)
#define _ _SPRANIM_H

#include <sortarry.h> // For the SortedArray class
#include “sprite.h”

// A class that manages the animation
class SpriteAnimation
{
public:
 SpriteAnimation(HDC hdc, unsigned short w,
 unsigned short h,
 LPSTR filename);
 SpriteAnimation(HDC hdc, unsigned short w,
 unsigned short h, Image* bg);

163

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 ~SpriteAnimation();

// Add a sprite to the animation
 void add(Sprite* s)
 {
 if(sprites != NULL && s != NULL)
 sprites->add(*s);
 }

// Animate the images
 void animate(HDC hdc, short x, short y);

 void draw_bg(HDC hdc, short x, short y);

 void redisplay_all(HDC hdc, short x, short y);

 void set_refresh(BOOL flag) { refresh = flag;}

// Utility functions
 BOOL rects_overlap(short x1, short y1, short w1, short h1,
 short x2, short y2, short w2, short h2)
 {
 if((x2 - x1) > w1) return FALSE;
 if((x1 - x2) > w2) return FALSE;
 if((y2 - y1) > h1) return FALSE;
 if((y1 - y2) > h2) return FALSE;
 return TRUE;
 }

 void set_priority(Sprite* s, short prio)
 {
 if(sprites != NULL && s != NULL)
 {
 if(prio != s->priority())
 {
 sprites->detach(*s);
 s->priority(prio);
 sprites->add(*s);
 }
 }
 }
// Returns sprite of highest priority that encloses point (x,y)
 Sprite* sprite_at(short x, short y);

 Image* bgimage() { return background;}
 HBITMAP bg_bitmap() { return hbm_bg;}

continues

164

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

//Function to scroll the bitmap by changing top and left
 void xbmp_origin(short x) { left = x;}
 void ybmp_origin(short y) { top = y;}
 short xbmp_origin() { return left;}
 short ybmp_origin() { return top;}

// Functions that draw on the background bitmap
 void bg_rect(short x1, short y1, short x2, short y2)
 { Rectangle(hdc_bg, x1, y1, x2, y2);}
 void bg_line(short x1, short y1, short x2, short y2)
 {
 MoveTo(hdc_bg, x1, y1);
 LineTo(hdc_bg, x2, y2);
 }

protected:
 SortedArray *sprites;
 Image *background; // The background image
 HBITMAP hbm_bg; // Bitmap from “background”
 HBITMAP hbm_scratch; // Images prepared here before
 // copying to window
 short top, left; // Top left corner and
 short width; // dimensions of background
 short height; // being displayed
 short ws, hs; // Dimensions of scratch
 // bitmap
 short bg_image;
 HBITMAP hbm_sprite;
 HDC hdc_bg;
 HDC hdc_sprite;
 HDC hdc_scratch;
 HBITMAP old_hbm_bg;
 HBITMAP old_hbm_sprite;
 HBITMAP old_hbm_scratch;
 BOOL refresh;
};

#endif

Setting Up a SpriteAnimation Object
A SpriteAnimation object is designed to manage animation of a number of
sprites on a background image. To use SpriteAnimation, you have to use this
constructor:

Listing 5.3. continued

165

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

SpriteAnimation::SpriteAnimation(HDC hdc,
 unsigned short w,
 unsigned short h,
 LPSTR filename);

The constructor expects a DC, the width and height of the scratch bitmap, and
the name of an image file to be used as the background of the animation. It
loads the background image, sets up a number of bitmaps and DCs, and cre-
ates a SortedArray to hold the Sprite objects.

Once the SpriteAnimation object is created, you can add Sprites to the ani-
mation by calling the add member function of the SpriteAnimation class. You
have to move the Sprites by calling the move function of each Sprite. To up-
date the display, call the animate function of the SpriteAnimation class. A sample
application that uses the SpriteAnimation class appears later in this chapter.

Animating the Sprites
The animate member function of the SpriteAnimation class is at the heart of
animating sprites on a background image. Before looking into the problem of
updating the screen image in an efficient way, consider the problem of redraw-
ing the entire window. If you look at the beginning of the animate function in
Listing 5.4, you see this line:

if(refresh) redisplay_all(hdc, x, y);

When the refresh flag is set, the animate function calls redisplay_all to up-
date the entire window. The next section describes how the sprites are drawn
on the background.

Updating the Entire Window
In Listing 5.4 (presented in the next section), you find the source code for the
function redisplay_all that draws the background and sprites. In a C++-like
pseudocode notation, the steps involved in updating the animation are as fol-
lows:

 Copy designated portion of background into scratch bitmap
 using BitBlt.

 for(all Sprite objects in the animation)
 {
 Copy the Sprite’s mask to the scratch bitmap using
 BitBlt in the SRCAND mode.

166

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 Copy the Sprite’s image to the scratch bitmap using
 BitBlt in the SRCPAINT mode.

 if(Sprite has a dproc)
 Call dproc.
 }

 Copy the scratch bitmap into the window using BitBlt
 in the SRCCOPY mode.

Thus the basic idea is to copy the background into a scratch bitmap and draw
all the sprites on the background. Because SpriteAnimation class stores the
sprites ordered by display priority, this step draws the sprites in the correct
order.

Figure 5.1 illustrates the process of drawing a sprite on a background. The
steps are

1. Combine the sprite’s mask bitmap with the background image using a
bitwise-AND operation. Remember that the mask is a silhouette of the
sprite’s image—it is black (all bits 0) on a white (all bits 1) background.
This step essentially punches a hole the shape of the sprite in the
background image.

2. Combine the sprite’s image with the modified background image
using a bitwise-OR operation. Because the image is on a white (all bits
1) background, this step fills the hole created in the previous step.

Efficient Animation of Overlapping Sprites
When the whole window does not need to be updated, the animate function
draws the sprites using an algorithm that updates the window in an efficient
manner. The basic algorithm for efficient updates is

1. For a sprite S that needs updating, determine all other sprites that
touch sprite S and are also in need of update. Determine the smallest
rectangle that encloses all sprites that satisfy these conditions.

2. Find all stationary sprites that also touch the rectangle and mark them
as overlapping.

3. Copy from the background image to the scratch bitmap an area
corresponding to the rectangle determined in step 1.

4. Draw all overlapping sprites in the scratch bitmap. Set the status of the

167

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

sprites as updated so that they are not included again.

5. Copy the rectangle from the scratch bitmap to the window.

6. Repeat steps 1 through 5 for all sprites.

These steps are implemented in the animate function in Listing 5.4. Figure 5.2

��������
���������

���
����

���
���
���

�Mask Image

OR

AND

depicts the update process for sprite animation.

Figure 5.1. Drawing a sprite on a background.

���
���

�������
�����
���
����
�
���
�����

Background WindowImage Image

Mask
Mask

Scratch bitmap

Sprite bitmaps

168

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

Figure 5.2. Updating the display to animate sprites.

Listing 5.4. spranim.cpp—
Implementation of the SpriteAnimation class.

//--
// File: spranim.cpp
//
// Member functions of the sprite animation classes.
//--
#include <stdlib.h>
#include “spranim.h”

inline short min(short x, short y)
{
 return (((x) < (y)) ? (x) : (y));
}
inline short max(short x, short y)
{
 return (((x) > (y)) ? (x) : (y));
}
//--
// S p r i t e A n i m a t i o n
// Constructor for the SpriteAnimation class

SpriteAnimation::SpriteAnimation(HDC hdc,
 unsigned short w,
 unsigned short h,
 LPSTR filename)
{
// Set up coordinates of rectangle to be displayed
 top = left = 0;
 width = w;
 height = h;
 ws = w;
 hs = h;
 refresh = TRUE;

// Initialize all handles to zero
 sprites = NULL;
 hbm_bg = 0;
 hbm_scratch = 0;
 hbm_sprite = 0;
 old_hbm_bg = 0;
 old_hbm_sprite = 0;

169

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 old_hbm_scratch = 0;
 hdc_bg = 0;
 hdc_sprite = 0;
 hdc_scratch = 0;

// Load the background image from the specified file
 background = Sprite::init_image(filename);
 if(background != NULL)
 {
 background->DIBtoDDB(hdc);
 hbm_bg = background->get_ddb();
 bg_image = 1;
 }
 else
 {
// Create a blank bitmap that’s used as the background
 hbm_bg = CreateCompatibleBitmap(hdc, w, h);
 bg_image = 0;
 }

// Memory device context for the background image
 hdc_bg = CreateCompatibleDC(hdc);
 if(hbm_bg != 0 && hdc_bg != 0)
 old_hbm_bg = SelectBitmap(hdc_bg, hbm_bg);

// Initialize the background bitmap, if it did not come
// from an image.
 if(!bg_image && hbm_bg != 0 && hdc_bg != 0)
 {
 HBRUSH hbrbg = CreateSolidBrush(
 GetSysColor(COLOR_WINDOW));
 HBRUSH oldbr = SelectBrush(hdc_bg, hbrbg);
 PatBlt(hdc_bg, 0, 0, w, h, PATCOPY);
 SelectBrush(hdc, oldbr);
 DeleteBrush(hbrbg);
 }

// Create a scratch bitmap of size w x h
 hbm_scratch = CreateCompatibleBitmap(hdc, w, h);

// Memory device context for the scratch bitmap
 hdc_scratch = CreateCompatibleDC(hdc);
 if(hbm_scratch != 0 && hdc_scratch != 0)
 old_hbm_scratch = SelectBitmap(hdc_scratch, hbm_scratch);

// Create a number of other memory device contexts for use
// during the animation. Select a 1x1 bitmap into each
// device context and save the old bitmaps (to be restored
// in the destructor).
 HBITMAP hbm_sprite = CreateCompatibleBitmap(hdc, 1, 1);

continues

170

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 hdc_sprite = CreateCompatibleDC(hdc);
 if(hdc_sprite != 0 && hbm_sprite != 0)
 old_hbm_sprite = SelectBitmap(hdc, hbm_sprite);

// Create a “sorted array” for the sprites.
// Start with 64 sprites; allow growth 16 sprites at a time.
 sprites = new SortedArray(64, 0, 16);
}
//--
// S p r i t e A n i m a t i o n
// Constructor for the SpriteAnimation class

SpriteAnimation::SpriteAnimation(HDC hdc,
 unsigned short w,
 unsigned short h,
 Image *bg)
{
// Set up coordinates of rectangle to be displayed
 top = left = 0;
 width = w;
 height = h;
 ws = w;
 hs = h;
 refresh = TRUE;

// Initialize all handles to zero
 sprites = NULL;
 hbm_bg = 0;
 hbm_scratch = 0;
 hbm_sprite = 0;
 old_hbm_bg = 0;
 old_hbm_sprite = 0;
 old_hbm_scratch = 0;
 hdc_bg = 0;
 hdc_sprite = 0;
 hdc_scratch = 0;

// Load the background image from the specified file
 background = bg;
 if(background != NULL)
 {
 background->DIBtoDDB(hdc);
 hbm_bg = background->get_ddb();
 bg_image = 1;
 }

Listing 5.4. continued

171

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 else
 {
// Create a blank bitmap that’s used as the background
 hbm_bg = CreateCompatibleBitmap(hdc, w, h);
 bg_image = 0;
 }

// Memory device context for the background image
 hdc_bg = CreateCompatibleDC(hdc);
 if(hbm_bg != 0 && hdc_bg != 0)
 old_hbm_bg = SelectBitmap(hdc_bg, hbm_bg);

// Initialize the background bitmap, if it did not come
// from an image.
 if(!bg_image && hbm_bg != 0 && hdc_bg != 0)
 {
 HBRUSH hbrbg = CreateSolidBrush(
 GetSysColor(COLOR_WINDOW));
 HBRUSH oldbr = SelectBrush(hdc_bg, hbrbg);
 PatBlt(hdc_bg, 0, 0, w, h, PATCOPY);
 SelectBrush(hdc, oldbr);
 DeleteBrush(hbrbg);
 }

// Create a scratch bitmap of size w x h
 hbm_scratch = CreateCompatibleBitmap(hdc, w, h);

// Memory device context for the scratch bitmap
 hdc_scratch = CreateCompatibleDC(hdc);
 if(hbm_scratch != 0 && hdc_scratch != 0)
 old_hbm_scratch = SelectBitmap(hdc_scratch, hbm_scratch);

// Create a number of other memory device contexts for use
// during the animation. Select a 1x1 bitmap into each
// device context and save the old bitmaps (to be restored
// in the destructor).
 HBITMAP hbm_sprite = CreateCompatibleBitmap(hdc, 1, 1);

 hdc_sprite = CreateCompatibleDC(hdc);
 if(hdc_sprite != 0 && hbm_sprite != 0)
 old_hbm_sprite = SelectBitmap(hdc, hbm_sprite);

// Create a “sorted array” for the sprites.
// Start with 64 sprites; allow growth 16 sprites at a time.
 sprites = new SortedArray(64, 0, 16);
}
//--

continues

172

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// ~ S p r i t e A n i m a t i o n
// Destructor for the SpriteAnimation class

SpriteAnimation::~SpriteAnimation()
{
// Deselect the bitmaps and destroy them. Also delete
// the DCs.
 if(hdc_scratch != 0 && old_hbm_scratch != 0)
 SelectBitmap(hdc_scratch, old_hbm_scratch);
 if(hbm_scratch != 0) DeleteBitmap(hbm_scratch);
 if(hdc_scratch != 0) DeleteDC(hdc_scratch);

 if(hdc_bg != 0 && old_hbm_bg != 0)
 SelectBitmap(hdc_bg, old_hbm_bg);
 if(hdc_bg != 0) DeleteDC(hdc_bg);

 if(background != NULL) delete background;
 if(!bg_image) DeleteBitmap(hbm_bg);

 if(hdc_sprite != 0 && old_hbm_sprite != 0)
 SelectBitmap(hdc_sprite, old_hbm_sprite);
 if(hdc_sprite != 0) DeleteDC(hdc_sprite);

 if(hbm_sprite != 0) DeleteBitmap(hbm_sprite);

// Delete the sorted array of sprites--this also deletes the
// sprites currently in the array.
 if(sprites != NULL) delete sprites;
}
//--
// S p r i t e A n i m a t i o n : : a n i m a t e
// Function that animates the sprites. The selected portion
// of the background is displayed at (x,y) in the window.

void SpriteAnimation::animate(HDC hdc, short x, short y)
{
 if(refresh) redisplay_all(hdc, x, y);

 int i, j, numsprites = sprites->getItemsInContainer();
 for(i = 0; i < numsprites; i++)
 {
 Sprite& spr = (Sprite&)(*sprites)[i];
 if(spr.needs_update())
 {
 short xdel = spr.xmove();
 short ydel = spr.ymove();

Listing 5.4. continued

173

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 short w = spr.width() + abs(xdel);
 short h = spr.height() + abs(ydel);
 short xold = spr.xpos();
 short xnew = xold + xdel;
 short yold = spr.ypos();
 short ynew = yold + ydel;
 short xfrom = min(xold, xnew);
 short yfrom = min(yold, ynew);
// Mark this sprite as the lone overlapping sprite
 spr.overlaps();

// Find other moving sprites that intersect this sprite
 for(j = 0; j < numsprites; j++)
 {
 Sprite& spr2 = (Sprite&)(*sprites)[j];
 if(!spr2.is_overlapping() &&
 spr2.needs_update())
 {
 short xdel2 = spr2.xmove();
 short ydel2 = spr2.ymove();
 short w2 = spr2.width() + abs(xdel2);
 short h2 = spr2.height() + abs(ydel2);
 short xold2 = spr2.xpos();
 short xnew2 = xold2 + xdel2;
 short yold2 = spr2.ypos();
 short ynew2 = yold2 + ydel2;
 short xfrom2 = min(xold2, xnew2);
 short yfrom2 = min(yold2, ynew2);

 if(rects_overlap(xfrom, yfrom, w, h,
 xfrom2, yfrom2, w2, h2))
 {
// Adjust dimensions of rectangle to be copied
 short oldw = w;
 w = max(xfrom2+w2,xfrom+w) -
 min(xfrom,xfrom2);
 if(w != oldw) j = 0;
 short oldh = h;
 h = max(yfrom2+h2,yfrom+h) -
 min(yfrom,yfrom2);
 if(h != oldh) j = 0;
 if(xfrom2 < xfrom) xfrom = xfrom2;
 if(yfrom2 < yfrom) yfrom = yfrom2;
 spr2.overlaps();
 }
 }
 }

continues

174

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// Adjust xfrom, yfrom, w, and h by comparing with the region
// of background (top, left, width, height) that is currently
// being displayed
 if(rects_overlap(xfrom, yfrom, w, h,
 left, top, width, height))
 {
 w = min(xfrom+w,left+width) -
 max(xfrom,left);
 h = min(yfrom+h,top+height) -
 max(yfrom,top);
 xfrom = max(xfrom,left);
 yfrom = max(yfrom,top);
 }
 else
 continue;
// Check for intersection of the rectangle xfrom, yfrom, w, h
// with stationary sprites.
 for(j = 0; j < numsprites; j++)
 {
 Sprite& spr2 = (Sprite&)(*sprites)[j];
 if((!spr2.needs_update() ||
 !spr2.is_overlapping()) && spr2.is_active())
 {
 short w2 = spr2.width();
 short h2 = spr2.height();
 short xfrom2 = spr2.xpos();
 short yfrom2 = spr2.ypos();

 if(rects_overlap(xfrom, yfrom, w, h,
 xfrom2, yfrom2, w2, h2))
 spr2.overlaps();
 }
 }

// Get a piece of the background into the scratch bitmap

 BitBlt(hdc_scratch, 0, 0, w, h, hdc_bg,
 xfrom, yfrom, SRCCOPY);
// Loop through all sprites and draw the ones that overlap
 for(j = 0; j < numsprites; j++)
 {
 Sprite& spr2 = (Sprite&)(*sprites)[j];
 if(!spr2.is_overlapping()) continue;
 short xdel2 = spr2.xmove();
 short ydel2 = spr2.ymove();

Listing 5.4. continued

175

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 short w2 = spr2.width() + abs(xdel2);
 short h2 = spr2.height() + abs(ydel2);
 short xold2 = spr2.xpos();
 short xnew2 = xold2 + xdel2;
 short yold2 = spr2.ypos();
 short ynew2 = yold2 + ydel2;
 short xto2 = xnew2 - xfrom;
 short yto2 = ynew2 - yfrom;

// AND sprite’s mask onto the scratch bitmap
 HBITMAP hbm = spr2.hbm_mask();
 if(hbm != NULL)
 {
 SelectBitmap(hdc_sprite, spr2.hbm_mask());
 BitBlt(hdc_scratch, xto2, yto2, w2, h2,
 hdc_sprite, 0, 0, SRCAND);

// Now OR sprite’s image onto the scratch bitmap
 SelectBitmap(hdc_sprite, spr2.hbm_image());
 BitBlt(hdc_scratch, xto2, yto2, w2, h2,
 hdc_sprite, 0, 0, SRCPAINT);
 }
 else
 {
// Copy the image if there is no mask...
 if(spr2.hbm_image() != NULL)
 {
 SelectBitmap(hdc_sprite,
 spr2.hbm_image());
 BitBlt(hdc_scratch, xto2, yto2, w2, h2,
 hdc_sprite, 0, 0, SRCCOPY);
 }
 }
// Call the “draw” function, if any
 if(spr2.is_active() && spr2.drawproc() != NULL)
 (*(spr2.drawproc()))(hdc_scratch, xto2, yto2,
 spr2.data());

// Update the sprite’s position and change its status bits
 spr2.newpos(xnew2, ynew2);
 spr2.update_done();
 spr2.no_overlap();
 }

// BitBlt the scratch area onto the window
 BitBlt(hdc, x+xfrom-left, y+yfrom-top, w, h,
 hdc_scratch, 0, 0, SRCCOPY);
 }
 }

continues

176

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

}
//--
// SpriteAnimation:: r e d i s p l a y _ a l l
// Redisplay the background plus all sprites

void SpriteAnimation::redisplay_all(HDC hdc, short x, short y)
{
// Copy designated portion of background into scratch bitmap
 SelectBitmap(hdc_scratch, hbm_scratch);
 BitBlt(hdc_scratch, 0, 0, ws, hs, hdc_bg, left, top,
 SRCCOPY);

// Draw the active sprites on the scratch bitmap
 int i, numsprites = sprites->getItemsInContainer();
 for(i = 0; i < numsprites; i++)
 {
 Sprite& spr = (Sprite&)(*sprites)[i];
 short xs = spr.xpos() - left;
 short ys = spr.ypos() - top;

 HBITMAP hbm = spr.hbm_mask();
 if(spr.is_active() && hbm != NULL)
 {
// AND the mask
 SelectBitmap(hdc_sprite, spr.hbm_mask());
 BitBlt(hdc_scratch, xs, ys,
 spr.width(), spr.height(), hdc_sprite,
 0, 0, SRCAND);
// OR the image
 SelectBitmap(hdc_sprite, spr.hbm_image());
 BitBlt(hdc_scratch, xs, ys,
 spr.width(), spr.height(), hdc_sprite,
 0, 0, SRCPAINT);
 }
 if(spr.is_active() && hbm == NULL &&
 spr.hbm_image() != NULL)
 {
// Simply copy the image of the sprite
 SelectBitmap(hdc_sprite, spr.hbm_image());
 BitBlt(hdc_scratch, xs, ys,
 spr.width(), spr.height(), hdc_sprite,
 0, 0, SRCCOPY);
 }
 if(spr.is_active() && spr.drawproc() != NULL)
 (*(spr.drawproc()))(hdc_scratch, xs, ys,

Listing 5.4. continued

177

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 spr.data());
 spr.update_done();
 spr.no_overlap();
 }

// Copy the scratch bitmap into the window
 BitBlt(hdc, x, y, ws, hs,
 hdc_scratch, 0, 0, SRCCOPY);

 refresh = FALSE;
}
//--
// S p r i t e A n i m a t i o n : : d r a w _ b g
// Draw the background bitmap

void SpriteAnimation::draw_bg(HDC hdc, short x, short y)
{
 BitBlt(hdc, x, y, width, height, hdc_bg, left, top,
 SRCCOPY);
}
//--
// S p r i t e A n i m a t i o n : : s p r i t e _ a t
// Returns pointer to Sprite that encloses point (x,y)

Sprite* SpriteAnimation::sprite_at(short x, short y)
{
 int i, numsprites = sprites->getItemsInContainer();
 Sprite* rs = NULL;

 for(i = numsprites - 1; i >= 0; i--)
 {
 Sprite& spr = (Sprite&)(*sprites)[i];
 if(!spr.is_active()) continue;
 short xs = spr.xpos();
 short ys = spr.ypos();
 if(x < xs) continue;
 if(y < ys) continue;

 short ws = spr.width();
 short hs = spr.height();
 if(x > (xs + ws - 1)) continue;
 if(y > (ys + hs - 1)) continue;

 rs = &spr;
 break;
 }
 return rs;
}

178

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

A Sample Animation Program
This section describes a sample OWL-based Windows program that makes use
of the Sprite and SpriteAnimation classes to animate a number of sprites on a
background image. You can find the program in the companion directory—it
should be in the CH05 directory after you install the code on your system. When
you run the ANIMATE application, you see a number of sprites, including one
with a text message animated on a complex background image. Figure 5.3
shows a sample output of the program (after you select the About item from
the Help menu).

Figure 5.3. Output of the sample animation program.

AnimationWindow Class
The ANIMATE program uses an AnimationWindow class as its main window. List-
ing 5.5 shows the declaration of the AnimationWindow class, which is derived
from TWindow.

179

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

AnimationWindow has a pointer to the SpriteAnimation object that manages
the animation for the application. The SpriteAnimation object is created and
initialized in the WM_CREATE message-handler of the AnimationWindow class. An
array of pointers to the Sprite objects is also maintained in AnimationWindow
because we have to manipulate the Sprite objects using these pointers.

Listing 5.5. animwin.h—
Declaration of the AnimationWindow class.

//--
// File: animwin.h
//
// Window classes for a sprite animation application.
//--
#if !defined(_ _ANIMWIN_H)
#define _ _ANIMWIN_H
#include <owl.h>
#include <strng.h>
#include “animres.h” // Resource identifiers for the application
#include “spranim.h” // Sprite animation class

#define SPRITE_ANIMATE 1 // ID of timer for moving and
 // drawing sprites

const short AnimBGWidth = 640;
const short AnimBGHeight = 480;

class AnimationWindow : public TWindow
{
public:
 AnimationWindow(PTWindowsObject parent, LPSTR title,
 LPSTR menu): TWindow(parent, title),
 anim(0), top(0), left(0),
 width(AnimBGWidth), height(AnimBGHeight)
 {
 AssignMenu(menu);
 }

 ~AnimationWindow();

 void GetWindowClass(WNDCLASS _FAR &wc);
 void Paint(HDC hdc, PAINTSTRUCT &ps);

continues

180

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

 void WMCreate(RTMessage msg) = [WM_FIRST + WM_CREATE];
 void WMTimer(RTMessage msg) = [WM_FIRST + WM_TIMER];
 void About(RTMessage msg) = [CM_FIRST + IDM_ABOUT];

private:
 SpriteAnimation *anim;
 Sprite **s;
 short top; // The point where the background
 short left; // is displayed
 short width;
 short height;

 void move_sprites();
};

#endif

The resource identifiers for the animation program are declared in the header
file animres.h shown in Listing 5.6.

Listing 5.6. animres.h—
Resource identifiers for the animation example.

//--
// File: animres.h
// Resource identifiers for the Sprite Animation application
//--
#if !defined(_ _ANIMRES_H)
#define __ANIMRES_H

#include <owlrc.h> // For definitions of OWL IDs

#define IDM_ABOUT 200

#endif

Listing 5.5. continued

181

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

Sprites in the Sample Animation
For this sample application, the file animwin.cpp (Listing 5.7) includes the defi-
nition of the sprites. I have defined a SpriteInfo structure to hold the informa-
tion needed to define a Sprite. A static array of SpriteInfo structures, called
sprite_data, defines all the sprites for this application. Notice that the last
SpriteInfo structure in the sprite_data array does not provide any file names
for the image and mask bitmaps. This Sprite is used to illustrate the use of a
drawing procedure (the dproc member variable of a Sprite). I use the function
draw_text (Listing 5.4) to display a text message that can be animated like a
bitmapped sprite.

Initializing the Animation
The entire animation is set up in the WMCreate function (Listing 5.4). This func-
tion handles the WM_CREATE message sent by Windows to the AnimationWindow
when the window is created. The initialization involves creating a
SpriteAnimation object and an array of Sprite objects and adding each Sprite
object to the SpriteAnimation.

Animation Strategy
My strategy for this animation is to use a Windows timer event to move the
sprites and update the display. Thus, I call SetTimer to set up a 50-millisecond
timer in the WMCreate function. Note, however, that Windows delivers at most
18.2 timer events per second or a timer event every 55 milliseconds.

The WM_TIMER events are handled by the WMTimer function (Listing 5.4). WMTimer
first checks to ensure that the timer ID matches the one used when the timer
was started. Then the sprites are moved. Finally, the display is updated by
calling the animate function of the SpriteAnimation object that manages this
animation.

In Listing 5.7, the sprites simply bounce back and forth within the confines
of the animation’s background. Listing 5.4, the move_sprites function, handles
the details of the movement algorithm.

182

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

Listing 5.7. animwin.cpp—
Implementation of the AnimationWindow class.

//--
// File: animwin.cpp
//
// Member functions for the AnimationWindow class.
//--
#include <stdlib.h>
#include <string.h>
#include “animwin.h”

struct SpriteInfo
{
 SpriteInfo(char* imgfname, char* mskfname,
 short xp, short yp, short xv, short yv,
 short prio) :
 imagefilename(imgfname), maskfilename(mskfname),
 xpos(xp), ypos(yp), xvel(xv), yvel(yv),
 priority(prio) {}

 char* imagefilename;
 char* maskfilename;
 short xpos, ypos; // Initial x-y position
 short xvel, yvel; // Initial x- and y-velocity
 short priority;
};
// Declare an array of sprites to be loaded from image files
static SpriteInfo sprite_data[] =
{
 SpriteInfo(“face1.bmp”, “face1m.bmp”, 10, 10, 3, 2, 4),
 SpriteInfo(“ring.bmp”, “ringm.bmp”, 200, 10, -3, 2, 5),
 SpriteInfo(“car.bmp”, “carm.bmp”, 10, 200, -1, -1, 2),
 SpriteInfo(“strange.bmp”,”strangem.bmp”,100, 100, 1, 1, 1),
 SpriteInfo(NULL, NULL, 100, 50, 1, 0, 99)
};
// Total number of sprites
static int numsprites = sizeof(sprite_data) /
 sizeof(sprite_data[0]);

void _FAR PASCAL _export draw_text(HDC hdc, short x, short y,
 LPVOID data);

struct TEXT_DATA
{
 LPSTR text;
 size_t numchars;
};

183

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

static TEXT_DATA dt;
static LPSTR msg = “Hello, There!”;
//--
// A n i m a t i o n : : W M C r e a t e
// Initialize everything for the animation

void AnimationWindow::WMCreate(RTMessage)
{
// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Set timers for moving sprites and displaying them
 SetTimer(HWindow, SPRITE_ANIMATE, 50, NULL);

// Create an instance of the SpriteAnimation class and
// load the images (background plus the sprites)

 anim = new SpriteAnimation(hdc, width, height, “animbg.bmp”);

// Create the array of sprites
 s = new Sprite*[numsprites];
 int i;
 for(i = 0; i < numsprites; i++)
 {
 s[i] = new Sprite(hdc, sprite_data[i].imagefilename,
 sprite_data[i].maskfilename);
 s[i]->priority(sprite_data[i].priority);
 s[i]->newpos(sprite_data[i].xpos, sprite_data[i].ypos);
// Add sprite to animation
 anim->add(s[i]);
 }

// The last sprite is used to display a text string
 s[numsprites-1]->width(100);
 s[numsprites-1]->height(16);
 dt.text = msg;
 dt.numchars = strlen(msg);
 DRAWPROC proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) draw_text,
 GetApplication()->hInstance);
 s[numsprites-1]->drawproc(proc, &dt);
 s[numsprites-1]->active();
 s[numsprites-1]->update();

// Release the DC
 ReleaseDC(HWindow, hdc);

continues

184

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// Initialize the random number generator with a random seed.
 randomize();
}
//--
// ~ A n i m a t i o n W i n d o w
// Destructor for the animation window.

AnimationWindow::~AnimationWindow()
{
 if(anim != NULL) delete anim;
 if(s != NULL) delete s;
 KillTimer(HWindow, SPRITE_ANIMATE);
}
//--
// A n i m a t i o n W i n d o w : : W M T i m e r
// Handle WM_TIMER events

void AnimationWindow::WMTimer(RTMessage msg)
{
 switch(msg.WParam)
 {
 case SPRITE_ANIMATE:
 HDC hdc = GetDC(HWindow);
// Move the sprites
 move_sprites();
 anim->animate(hdc, top, left);
 ReleaseDC(HWindow, hdc);
 break;

 default:
 break;
 }
}
//--
// AnimationWindow:: P a i n t
// Draw everything in the window

void AnimationWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(anim != NULL)
 {
 anim->set_refresh(TRUE);
 anim->animate(hdc, top, left);
 }
}
//--
// AnimationWindow:: G e t W i n d o w C l a s s

Listing 5.7. continued

185

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

// Set up icon for each image window

void AnimationWindow::GetWindowClass(WNDCLASS _FAR &wc)
{
// First call the GetWindowClass function of the base class
 TWindow::GetWindowClass(wc);

// Set up icon for this image window
 wc.hIcon = LoadIcon(wc.hInstance, “ANIMATION_ICON”);
}
//--
// A n i m a t i o n W i n d o w :: A b o u t
// Display the “About...” box

void AnimationWindow::About(RTMessage)
{
 TDialog *p_about = new TDialog(this, “ABOUTANIMATION”);
 PTApplication app = GetApplication();
 app->ExecDialog(p_about);
}
//--
// m o v e _ s p r i t e s
// Move the sprites

void AnimationWindow::move_sprites()
{
 int i;
 for(i = 0; i < numsprites; i++)
 {
 if(s[i]->xpos() <= 0 || s[i]->xpos() >= width)
 sprite_data[i].xvel = -sprite_data[i].xvel;

 if(s[i]->ypos() <= 0 || s[i]->ypos() >= height)
 sprite_data[i].yvel = -sprite_data[i].yvel;

 s[i]->move(sprite_data[i].xvel, sprite_data[i].yvel);
 }
}
//--
void _FAR PASCAL _export draw_text(HDC hdc, short x, short y,
 LPVOID data)
{
 TEXT_DATA *td = (TEXT_DATA*)data;
 SetBkMode(hdc, TRANSPARENT);

 SetTextColor(hdc, RGB(255,255,0));
 TextOut(hdc, x, y, td->text, td->numchars);
}

186

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

The ANIMATE Application
Listing 5.8 shows the main program of the ANIMATE application. Like all OWL-
based Windows programs, the ANIMATE application creates an instance of its
main window, an AnimationWindow object, and starts an event-handling loop
by calling the Run member function of the application class AnimationApp. All
application-specific work is done in the AnimationWindow class, described in
previous sections.

Listing 5.8. animate.cpp—
Main program of the animation application.

//--
// File: animate.cpp
//
// A Windows application that animates a number of sprites
// over a background image. Also allows user to move an
// image around using the mouse.
//--
#include “animwin.h”

//--
class AnimationApp: public TApplication
{
public:
// Constructor that simply calls the base class constructor

 AnimationApp(LPSTR name, HINSTANCE instance,
 HINSTANCE prev_instance, LPSTR cmdline, int show) :

 TApplication(name, instance, prev_instance,
 cmdline, show) {}

// Define function to initialize application’s main window
 void InitMainWindow();

// Define function to initialize an instance of this application
 void InitInstance();
};
//--
// A n i m a t i o n A p p : : I n i t M a i n W i n d o w

void AnimationApp::InitMainWindow()
{
 MainWindow = new AnimationWindow(NULL, “Animation”,
 “MainMenu”);

187

Animating Images

Chapter

5

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

}
//--
// A n i m a t i o n A p p : : I n i t I n s t a n c e

void AnimationApp::InitInstance()
{
 TApplication::InitInstance();
 HAccTable = LoadAccelerators(hInstance, “MainAccelTable”);
}
//--
// W i n M a i n
//
// Create an instance of the application and “run” it.

int PASCAL WinMain(HINSTANCE instance, HINSTANCE prev_instance,
 LPSTR cmdline, int show)
{
 AnimationApp Animation(“Sprite Animation”, instance,

prev_instance, cmdline, show);

 Animation.Run();

 return Animation.Status;
}

Building ANIMATE.EXE
Borland C++ for Windows is used to build the ANIMATE application. The com-
panion disk has all the files needed to build the executable, ANIMATE.EXE. In
particular, the project file ANIMATE.PRJ lists the source files and library neces-
sary to build the application. There are a few items in the project file that re-
flect the name of the drive and directory where I installed Borland C++ in my
system. Make the same changes to the project file as the ones suggested in
Chapter 4 for building the ImageView application.

After making the necessary changes, you should be able to build ANIMATE.EXE
by selecting Make from the Compile menu. Once the program is successfully
built, you can add it to Windows Program Manager by selecting New... from
the Program Manager’s File menu.

One of the files that you need to build ANIMATE.EXE is the resource file
ANIMATE.RES, which is included in the companion disk. I prepared the resource
file using the Resource Workshop program included with Borland C++.

188

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH5 LP#5

Summary
Images used in a computer game are usually animated in some way to sup-
port the interactive nature of the game. One of the common tasks in many games
is to animate (move) small images known as sprites over a background image.
The obvious approach of erasing and redrawing a sprite produces an undesir-
able flicker. One way to get around this problem is to draw the images on an
offscreen bitmap and copy the final image to the screen using the Windows
API function BitBlt. This chapter shows the Sprite and SpriteAnimation classes
that allow you to animate sprites over a background image using the offscreen
bitmap technique. A sample application, ANIMATE, illustrates how to use the
sprite animation classes. The next chapter uses the sprite classes in an educa-
tional game.

Further Reading
If you are interested in cel animation, you might want to try out the animation
studio software from The Walt Disney Company. It runs under DOS and in-
cludes the tools necessary to create the cels for an animation.

For a general discussion of animation, consult Chapter 21 of the classic graph-
ics textbook by Foley, van Dam, Feiner, and Hughes.

The books by Loren Heiny and Myers and Doner cover simple animations
under Windows. However, unlike this book, their books do not describe any
technique to animate several moving sprites without any flickers.

The Animation Studio. Burbank, CA: Walt Disney Computer Software,
Inc., 1991.

Foley, James D., Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics Principles and Practice, Second Edition.
Reading, MA: Addison-Wesley Publishing, 1990.

Heiny, Loren. Windows Graphics Programming with Borland C++. New
York: Wiley, 1992.

Myers, Brian, and Chris Doner. Programmer’s Introduction to Windows
3.1. Alameda, CA: SYBEX, 1992.

189

Generating Sound

Chapter

6

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

Chapter

6

Generating
Sound

190

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

In addition to image manipulation, the generation of sound (a string of notes)
is a common feature of most games, whether they are designed to run under
MS-DOS or Microsoft Windows. The previous chapters covered image mani-
pulation under Windows. This chapter describes how to play musical notes
using a number of Windows API functions.

Sound under Windows
Compared to the Apple Macintosh, the sound generation capabilities of the
IBM-compatible PCs are rather limited. Essentially, all you can do with the PC’s
speaker is play single notes—you cannot even vary the volume (loudness).

One way to improve the sound output under Windows (and DOS) is to in-
stall a sound card that can synthesize a wide range of sounds. Some of the
popular sound cards are Sound Blaster, Media Vision, and Microsoft Windows
Sound System. These cards convert the analog (continuously varying) sound
waves into 8-bit or 16-bit numbers, sampling the wave at rates from 4 to 44KHz
(22,000 times a second). Higher sampling rates and higher number of bits
(16-bit) provide better quality, but you need more disk space to store high-
quality sound.

Programming for Sound
Like any other device, the sound cards are controlled through drivers. The
sound driver provides a standard programming interface for all sound boards.
If you look at the SYSTEM.INI file in your system’s Windows directory, you might
find this line:

sound.drv=sound.drv

This tells Microsoft Windows that the sound output is to be performed through
the driver named sound.drv, which is the default driver for the PC’s built-in
speaker. The right side of the line is different if you have a sound card installed
in your system—it is the name of the driver that Windows uses to control that
sound card.

191

Generating Sound

Chapter

6

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

Once the sound driver is installed, you can use a small set of Windows func-
tions to generate sound. Windows 3.1 includes another simpler API, called the
multimedia API, for sound cards and other multimedia devices such as the CD-
ROM drive and video output device. The multimedia API relies on a dynamic
link library (DLL) MMSYSTEM, which provides a high-level set of commands
called Media Control Interface (MCI). As a programmer, you can control a mul-
timedia device by sending commands using the mciSendCommand function. See
the “Further Reading” section at the end of this chapter for sources of infor-
mation on the MCI functions.

This chapter covers sound generation under Windows with the PC’s built-
in speaker or a sound board with a driver that responds to the Windows sound
functions. Although Microsoft recommends that programmers use the MCI
functions for controlling sound devices, using the old API functions is the only
way to guarantee that sound output will work in all PCs—whether they have
a sound card or they rely on the PC’s built-in speaker.

Windows Sound Model
Whenever a device is controlled through a driver, the driver presents an ab-
stract model of the device to the programmer. The Windows sound drivers
model each sound as a voice. You can think of each voice as a queue with a
number of notes that are to be played in sequence (see Figure 6.1). At any in-
stant of time, the sound card plays notes from all the voices simultaneously.
The PC’s speaker can handle only one voice, but most sound cards can handle
from 8 to 16 voices.

Voice 1

Voice 2

•
•
•

Voice 3

Queues of notes

Figure 6.1. Voices in Windows.

192

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

To generate sound, you have to follow these steps:

1. Open the sound driver by calling OpenSound. If the sound device is not
being used by another application, OpenSound returns the number of
voices available. Otherwise, it returns a negative number. Thus, you
start the sound generation code with

if(OpenSound() > 0)

{

// Sound driver successfully opened. OK to proceed

}

2. Call SetVoiceQueueSize to set the size of queues for each voice. You
have to specify the size in number of bytes. Each note requires 6 bytes
of memory. To make room for n notes in the first voice’s queue, use

SetVoiceQueueSize(1, 6*n);

3. Call SetVoiceAccent to set the tempo, volume, and mode (legato,
normal, or staccato) of the notes in a voice.

4. Call SetVoiceNote to add notes to a voice queue. For each note, you can
specify the following characteristics:

The note number (between 1 and 84)

Duration of the note (1 for a whole note, 2 for a half-note, 4 for a
quarter-note, and so on)

The number of quarter-note durations to add to the note’s
duration

5. Call StartSound to begin the sound output.

6. You can proceed with other programming tasks while the sound plays.
At any time, you can call CountVoiceNotes to check how many notes
remain in a voice’s queue. Once the queue is empty, you should call
StopSound followed by CloseSound to release the sound device for use
by other processes.

C++ Structures for Sound under Windows
For use in C++ programs, it makes sense to define a number of object types to
help with sound output. Listing 6.1 shows the header file sounds.h that defines

193

Generating Sound

Chapter

6

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

the structures Note and Music. Note represents a single note and Music repre-
sents a voice. An important feature of Music is the ability to load a simple piece
of music from a file into a Music object.

Listing 6.1. sounds.h—
Declaration of Note and Music structures.

//--
// File: sounds.h
// Defines arrays of notes for use in Windows programs.
//--

#if !defined __SOUNDS_H
#define _ _SOUNDS_H

#include <windows.h>

struct Note
{
 Note() : number(1), duration(1), dots(0) {}
 Note(short n, short d, short dt) :
 number(n), duration(d), dots(dt) {}

 short number; // Note number (range: 1 to 84)
 short duration; // Note duration (1 = whole note,
 // 2 = half note, 4 = quarter note)
 short dots; // Number of beats to add to duration
};

struct Music
{
 Music() : tempo(120), volume(128), mode(S_NORMAL),
 pitch(0), numnotes(0), notes(NULL) {}

 Music(short tmpo, short vol, short m, short po,
 short nn, Note *nt) : tempo(tmpo), volume(vol),
 mode(m), pitch(po), numnotes(nn), notes(nt) {}

 ~Music()
 {
 if(notes != NULL) delete notes;
 }

 short read(char *filename); // Read music from a file

continues

194

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

 short tempo; // Beats (quarter notes) per minute
 // (default is 120)
 short volume; // From 0 to 255 (ignored by PC speaker)
 short mode; // Legato, Normal, Staccato (ignored by
 // PC speaker)
 short pitch; // Pitch offset to add to notes
 short numnotes; // Number of notes
 Note *notes; // Array of notes
};

#endif

Music File Format
To store the music in a file, I adopted a simple text file format. You can deci-
pher the format by reading the source code of the Music::read function shown
in Listing 6.2. Before making some comments about the format, let me show
you the contents of a sample music file:

SPUZZLE.MUSIC This tune is “Mary Had a Little Lamb”
1 Version
NUMBER_DURATION_DOT Format
100 Tempo
128 Volume
NORMAL Mode
0 Pitch offset
11 Number of notes in this music
43 8 0 First note (Note number, duration, beats to add)
41 8 0 Second note
39 8 0 and so on...
42 8 0
43 8 0
43 8 0
43 8 0
0 8 0
41 8 0
41 8 0
41 8 0

I had developed this format for the SPUZZLE game (described in Chapter 7),
which is why I added an identifying comment referring to SPUZZLE on the

Listing 6.1. continued

195

Generating Sound

Chapter

6

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

first line. The second and third lines specify a version number and the file for-
mat. Next comes the characteristics of the music: tempo, volume, and mode.
Finally, there is a number of notes followed by the individual notes.

Listing 6.2. sounds.cpp—
Implementation of Music’s member function.

//--
// File: sounds.cpp
// Member functions of the Music class
//--
#include <string.h>
#include <stdlib.h>
#include “sounds.h”
#include “fstream.h”

//--
// M u s i c : : r e a d
// Read music from a file

short Music::read(char * filename)
{
// Open file for reading
 ifstream ifs(filename, ios::in);
 if(!ifs)
 {
// Error reading file. Return 0.
 return 0;
 }

// Read and interpret the contents of the file
 char line[81];

// First line should have the string SPUZZLE.MUSIC
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “SPUZZLE.MUSIC”,
 strlen(“SPUZZLE.MUSIC”)) != 0) return 0;

// Second line has a version number--just in case the
// contents have to change in the future
 ifs.getline(line, sizeof(line));
 short version = atoi(line);
 if(version != 1) return 0;

continues

196

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

// Third line has the format type--it’s a string.
// Right now I interpret the “NUMBER_DURATION_DOT” format
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “NUMBER_DURATION_DOT”,
 strlen(“NUMBER_DURATION_DOT”)) != 0) return 0;

// Next few lines...
// Tempo (between 32 to 255)
// Volume (between 0 and 255)
// Mode (a string: NORMAL, LEGATO, or STACCATO)
// Pitch Offset (between 0 and 83)
 ifs.getline(line, sizeof(line));
 tempo = atoi(line);

 ifs.getline(line, sizeof(line));
 volume = atoi(line);

 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strncmp(line, “NORMAL”, strlen(“NORMAL”)))
 mode = S_NORMAL;
 if(strncmp(line, “LEGATO”, strlen(“LEGATO”)))
 mode = S_LEGATO;
 if(strncmp(line, “STACCATO”, strlen(“STACCATO”)))
 mode = S_STACCATO;

 ifs.getline(line, sizeof(line));
 pitch = atoi(line);

// Next comes the number of notes in this piece of music
 ifs.getline(line, sizeof(line));
 numnotes = atoi(line);

// Allocate an array of Note structures
 Note *new_notes = new Note[numnotes];
 if(new_notes == NULL) return 0;

// At this point we have an array of Note structures
// allocated. If there is an existing Note array,
// delete it before loading new value
 if(notes != NULL) delete notes;
 notes = new_notes;

// From this point on each line in the file has the following
// form:

Listing 6.2. continued

197

Generating Sound

Chapter

6

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

// Note #(0-83) Duration (1, 2, 4, 8, ...) Dots (beats)
// example:
// 42 8 0
// 41 8 0
// 39 4 0
// and so on.
 short i;
 char *token;
 for(i = 0; i < numnotes; i++)
 {
 if(ifs.eof())
 {
 numnotes = i;
 break;
 }
 ifs.getline(line, sizeof(line));
// Parse the line...first token
 token = strtok(line, “ “);
 notes[i].number = atoi(token);
// Second token
 token = strtok(NULL, “ “);
 notes[i].duration = atoi(token);
// Third token
 token = strtok(NULL, “ “);
 notes[i].dots = atoi(token);
 }
 return 1;
}

A Sample Program
Listing 6.3 shows the file playsnd.cpp that implements a simple application to
let the user open a sound file and play the notes in that file. All the work of the
application is done in the InitMainWindow function by using the standard file
open dialog (identified by the resource ID SD_FILEOPEN) that comes with Borland
C++. Once the user selects a file from the list of files displayed in this dialog
and clicks on the OK pushbutton, InitMainWindow calls the playmusic function
to open the selected file, interpret the notes, and play them. Then the dialog is
displayed again. The user has to press the Cancel button to exit the applica-
tion. Figure 6.2 shows the single dialog box that constitutes the user interface
of the playsnd.exe program.

198

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

Figure 6.2. Main dialog box of the playsnd.exe application.

All the files needed to build playsnd.exe are in the companion disk. Open
the project file, playsnd.prj, in Borland C++ for Windows and select the Make
option from the Compile menu to build the program. You have to change the
directories for include files and libraries to match your installation of Borland
C++. To do this, select the Directories item from the Options menu in Borland
C++.

Listing 6.3. playsnd.cpp—
Program that plays notes from a sound file.

//--
// File: playsnd.cpp
//
// A simple program that plays musical notes from files.
//
//--
#include <filedial.h>
#include <owl.h>
#include <windobj.h>
#include <owlrc.h>
#include “sounds.h”

static Music m;
static short sound_playing = 0;
void playmusic(Music& m, short wait_till_done);

199

Generating Sound

Chapter

6

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

//--
class PlaySoundApp: public TApplication
{
public:
// Constructor that simply calls the base class constructor

 PlaySoundApp(LPSTR name, HINSTANCE instance,
 HINSTANCE prev_instance, LPSTR cmdline, int show) :

 TApplication(name, instance, prev_instance,
 cmdline, show) {}

// Define function to initialize application’s main window

 void InitMainWindow();

// Define function to initialize an instance of this application
 void InitInstance();
};
//--
// P l a y S o u n d A p p : : I n i t M a i n W i n d o w
// Everything happens in this function. We display a dialog
// box and play the music from the selected file.

void PlaySoundApp::InitMainWindow()
{
 char name[80] = “*.*”;
 int status = IDOK;

 while(status == IDOK)
 {
// Create and display file selection dialog...
 TFileDialog *p_fd = new TFileDialog(NULL, SD_FILEOPEN, name);
 status = ExecDialog(p_fd);

 // Load selected music and play
 if(status == IDOK)
 {
 if(m.read(name)) playmusic(m, 0);
 }
 }
// Quit ...
 PostQuitMessage(0);
}
//--
// P l a y S o u n d A p p : : I n i t I n s t a n c e

continues

200

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

void PlaySoundApp::InitInstance()
{
 TApplication::InitInstance();
}
//--
// W i n M a i n
//
// Create an instance of the application and “run” it.

int PASCAL WinMain(HINSTANCE instance, HINSTANCE prev_instance,
 LPSTR cmdline, int show)
{
 PlaySoundApp PlaySound(“PlaySound”, instance,
 prev_instance, cmdline, show);

 PlaySound.Run();
 return 0;
}
//--
// p l a y m u s i c
// Play the notes specified in a Music structure

void playmusic(Music& m, short wait_till_done)
{
 if((m.notes == NULL) || (m.numnotes == 0)) return;

// Wait if something is already playing...
 if(!wait_till_done && sound_playing)
 {
 while(CountVoiceNotes(1) > 0);
 sound_playing = 0;
 }

// Turn off anything that might be playing now...
 StopSound();
 CloseSound();

// Open sound driver and play the notes...
 if(OpenSound() > 0)
 {
 SetVoiceQueueSize(1, 6*m.numnotes);
 SetVoiceAccent(1, m.tempo, m.volume,
 m.mode, m.pitch);
 short i;
 for(i = 0; i < m.numnotes; i++)

Listing 6.3. continued

201

Generating Sound

Chapter

6

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

 SetVoiceNote(1, m.notes[i].number,
 m.notes[i].duration,
 m.notes[i].dots);
 StartSound();
 sound_playing = 1;

// Wait till music is done (if wait_till_done is TRUE)
 if(wait_till_done)
 {
 while(CountVoiceNotes(1) > 0);
 StopSound();
 CloseSound();
 }
 }
}

Summary
Sound is an integral part of computer games. Until recently, games for
IBM-Compatible PCs had to rely on the simple speaker built into every PC.
Nowadays many PC owners install sound cards capable of generating musi-
cal quality sounds, and many games exploit this capability. Windows provides
a device-independent interface to the sound cards through device drivers.
Windows 3.1 makes programming the sound cards easier through the
Multimedia Control Interface (MCI) of the MMSYSTEM dynamic link library.
This chapter describes how to generate sound using a number of Windows API
functions. Two C++ classes, Note and Music, are used to illustrate how musical
notes can be stored in a file, interpreted, and played.

Further Reading
Popular programming journals are a good source of information on program-
ming with Windows Multimedia Control Interface (MCI). Chapter 15 of the
book by Brian Myers and Chris Doner shows a sample application, written in
C, that plays sound waves using the MCI commands of the MMSYSTEM DLL.

202

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH6 LP#4

James Conger’s book includes a concise description of the Windows API func-
tions for generating sound.

Conger, James L. The Waite Group’s Windows API Bible. Corte Madera,
CA: Waite Group Press, 1992.

Myers, Brian, and Chris Doner. Programmer’s Introduction to Windows
3.1. Alameda, CA: SYBEX, 1992.

203

two Prog Win Games Borland C++ 30292-6 CCook 3-25-93 Part 2 LP#1

PART

Sample
Games

II

204

two Prog Win Games Borland C++ 30292-6 CCook 3-25-93 Part 2 LP#1

205

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Chapter

7

SPUZZLE—
A Spelling

Puzzle

206

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

The previous chapters discuss a number of techniques for image animation and
sound generation. This chapter turns to the practical and shows a working game
that I call SPUZZLE, for Spelling Puzzle. As you might guess, it is meant to
teach children spelling through a jigsaw puzzle. This chapter starts with a
description of the game followed by the game’s design. Finally, the chapter
covers the C++ classes that are used to build SPUZZLE: Borland’s OWL and
CLASSLIB classes and classes shown in Chapters 4, 5, and 6.

After reading this chapter, you can use your own imagination to improve
SPUZZLE or build other new games that rely on image animation techniques.

Playing SPUZZLE
Before reading the description of SPUZZLE, install the contents of the com-
panion disk so that you can follow my description of the game. If you have
any trouble playing SPUZZLE, you can get on-line help from the Help menu
or by pressing the F1 function key. Figure 7.1 shows a help screen for SPUZZLE
with instructions for playing the game.

Figure 7.1. A help screen for SPUZZLE.

207

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Starting SPUZZLE
When you first start SPUZZLE, it displays a full-screen main window with four
distinct child windows (see the layout in Figure 7.2):

A large child window in the middle where the player builds the puzzle

A tool window with a number of pushbuttons to the left of the puzzle
window

A child window along the top edge where the letters of the word
appear and the score is displayed

A status window along the bottom edge where some status
information is displayed

Figure 7.2. Main screen of SPUZZLE.

208

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Building a Puzzle
The initial display shows a picture in the puzzle window and the correspond-
ing word above the picture. To play the game, you click on the button labeled
GO, which is the first pushbutton in the tool window. The picture is sliced into
as many pieces as there are letters in the corresponding word. The puzzle pieces
and the letters are scrambled and shown in random order (see Figure 7.3). You
drag the puzzle pieces and place them next to each other in correct order. As
you move a piece, the corresponding letter also moves in the top window. Thus,
once the puzzle pieces are in correct order, the spelling of the word should be
complete.

Figure 7.3. Scrambled puzzle pieces and letters in SPUZZLE.

After you complete a puzzle you can go on to another puzzle by clicking on
the button labeled NEXT.

209

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Keeping Score
In the right corner of SPUZZLE’s display, you can see a clock, a time counter,
and the current score. Initially, the score is zero and the time counter is set to
99. When you click on the GO pushbutton, the timer begins to count down.
Your score for a puzzle is the sum of the clock count at the time of finishing the
puzzle and the number of letters in the word that you spelled. Thus you get a
higher score if you finish faster. Also, your score for spelling a longer word is
more than that for spelling a shorter word.

Like many other games, SPUZZLE maintains a high scores file. If your score
is one of the 30 best scores thus far, SPUZZLE displays a dialog box when you
exit the game. The dialog prompts for your name and a quotation. When you
click on the OK button, SPUZZLE saves your name, score, and the quotation
in the high scores file.

Controlling Sound Output
By default, SPUZZLE plays some musical notes at certain times in the game:
when you start a new puzzle, when you complete the puzzle, and when you
exit. Also, the clock makes a tick-tock sound all the time. You can turn all this
sound off by clicking on the pushbutton with the picture of a musical note. That
button acts as a toggle—clicking on that button again turns the sound on.

SPUZZLE loads the musical scores from text files that list the notes. For in-
stance, when a puzzle is completed, SPUZZLE plays the notes listed in the file
PZLDONE.SPM. Here is a typical PZLDONE.SPM file:

SPUZZLE.MUSIC Play after a puzzle is done
1 Version
NUMBER_DURATION_DOT Format
120 Tempo (between 32 and 255)
128 Volume (between 0 and 255)
NORMAL Mode (NORMAL, STACCATO, or LEGATO)
0 Pitch offset
6 Number of notes in this music
36 8 0 Note # 1 (Note number, Duration, Dots)
36 8 0
36 8 0
35 8 0
38 8 0
41 8 0

210

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

The file specifies a tempo (quarter-notes per minute), volume (between 0
and 255), mode (NORMAL, STACCATO, or LEGATO), and the number of
notes in the musical score, followed by a list of the notes. Each note has a note
number (between 1 and 84), a duration in quarter-notes, and the number of
beats to add to the note’s duration. Chapter 6 describes the format of the mu-
sic files.

To change the music, you can experiment by changing the notes. To specify
the notes from scratch, you have to be knowledgeable about music as well as
the way sound is played in Windows. Here are the sound files used by
SPUZZLE (the corresponding sound is not played if a file does not exist):

OPEN.SPM Music played when SPUZZLE first starts up

PZLDONE.SPM Music to be played after a puzzle is complete

PZLSTRT.SPM Music played at the start of each puzzle

CLOSE.SPM Music to be played when SPUZZLE exits

TICK.SPM The clock tick (should be a single note)

TOCK.SPM The other note of the clock’s tick-tock sound

Adding a New Word
SPUZZLE is designed to be extensible—you can add new words easily. To add
a word, you need a picture to go along with it. SPUZZLE sets up the puzzles
by reading the text file SPUZZLE.CFG at start-up. Here is the listing of a sample
SPUZZLE.CFG file:

SPUZZLE.CFG
1 The version number
24 Number of puzzles in file
eagle eagle.bmp
cat cat.bmp
elephant eleph1.bmp
chess chess1.bmp
dog dog.bmp
zebra zebra.bmp
horse horse.bmp
mule mule.bmp
panda panda.bmp
kitten kitty.bmp

211

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

tiger tiger.bmp
leopard leop2.bmp
bird bird.bmp
owl owl.bmp
deer deer.bmp
dinosaur dino.bmp
apple apple.bmp
cherry cherry.bmp
rose rose2.bmp
eagle eagle2.bmp
computer compu2.bmp
goat goat.bmp
train train.bmp
ram goat.bmp

As you can see, each word and its related picture are specified on a separate
line in the format:

word imagefile.ext

The extension of the image file determines the type of image. The .BMP exten-
sion implies a Windows BITMAP file (the DIB format). SPUZZLE also accepts
.PCX (PC PaintBrush format) and .TGA (24-bit Truevision Targa format)
image files.

To add a new word to SPUZZLE, you need an image file for the word. You
can either draw a picture in PC PaintBrush and save as a .BMP or .PCX file or
use a scanner to convert a paper image to digital form. Once you have a pic-
ture, use your favorite text editor to add a line at the end of the SPUZZLE.CFG
file listing the word and the image file’s name. Then change the number of
puzzles shown in the third line of the SPUZZLE.CFG file.

If you have both .BMP and .PCX format images, specify the .BMP image file
name in SPUZZLE.CFG. SPUZZLE can load the .BMP files much faster than it loads
.PCX files.

Designing SPUZZLE
By playing the game and reading the description in previous chapters, you
already know most of the features of SPUZZLE. In the following sections, I go
over some of the issues in designing SPUZZLE. The latter part of this chapter
describes the C++ classes that implement the game.

212

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Window Hierarchy
I started SPUZZLE’s design by selecting a hierarchy of windows suitable for
the user interface. I sketched out a layout that made sense to me. Like many
drawing programs, I wanted a work area surrounded by smaller windows that
provide a palette of tools or display status messages. For SPUZZLE, I selected
a work area for the puzzle, a tool window for the bitmap buttons used to ini-
tiate actions, an area for status messages, and a window to display the letters
of the word being spelled. Thus, I decided to divide the client area of the main
window into four different areas, each managed by a child window. When
designing specific features, I always have in mind at least a vague notion of
how to implement the feature. In this case, I intended to derive each of these
child windows as well as the main window from the OWL class TWindow. You
can see SPUZZLE’s window hierarchy in Figure 7.4, which also shows the
correspondence between the screen layout and the windows.

PuzzleFrame

StatusWindow PuzzleWindow ToolWindow LetterWindow

Figure 7.4. Window hierarchy in SPUZZLE.

213

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Assigning the Responsibilities
After settling on the window classes, I assigned specific responsibilities to each
class. Here are the nominal responsibilities of the five window classes in
SPUZZLE (see Figure 7.4):

PuzzleFrame is the main window of the application. All other windows
are contained in PuzzleFrame. The PuzzleFrame class maintains informa-
tion about the current set of puzzles and processes WM_TIMER events to
keep all the child windows animated.

PuzzleWindow class represents the area where the player prepares the
puzzle. This window maintains the puzzle pieces, handles mouse
inputs, and moves the puzzle pieces when the user drags the mouse
with the (left) button pressed down. PuzzleWindow uses the services of
the SpriteAnimation class (see Chapter 5) to animate the puzzle pieces.

ToolWindow class manages a number of bitmap buttons that initiate
actions such as start a puzzle, turn the sound on or off, go to the next
puzzle, and exit SPUZZLE.

LetterWindow class displays the letters of the word being spelled. It also
shows the current score and the current clock count. LetterWindow uses
the SpriteAnimation class to move a number of sprites representing the
letters and the clock count.

StatusWindow class displays a status message animated on an interest-
ing background. It uses an instance of the SpriteAnimation class to
manage the animation.

Maintaining Information
about the Puzzles
SPUZZLE is fun to play only when it offers a large number of words to spell.
For this to happen, I had to ensure that new puzzles could be added with mini-
mal effort. To support this goal, I decided to load the puzzles from a file named
SPUZZLE.CFG. The PuzzleFrame class is responsible for reading the SPUZZLE.CFG
file and loading the information into internal data structures. I decided to use
an array of PuzzleInfo structures to hold the information about all the avail-
able puzzles.

214

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

From the available puzzles, PuzzleFrame picks a small subset for the current
game. PuzzleFrame uses an array of PuzzlePick structures to hold information
about the puzzles that are picked. Finally, each puzzle piece also has a lot of
information, such as the sprite representing the puzzle piece, the letter corre-
sponding to the piece, and a sprite for that letter. The PuzzlePiece structure
holds this sort of information for each puzzle piece.

Implementing SPUZZLE
Although SPUZZLE is conceptually simple, implementing it requires attention
to many details. I started implementing SPUZZLE by defining the classes out-
lined in the design phase. My implementation strategy is to get a bare bones
framework up and running. By framework I mean a working prototype with
just enough code to compile and link without errors. For SPUZZLE, building
the framework required defining the five window classes, PuzzleFrame,
PuzzleWindow, ToolWindow, StatusWindow, and LetterWindow—with a minimal set
of member functions. Most functionality is missing from the framework, but I
have found that having a working prototype lets me build the full application
iteratively a block at a time without being deluged with many issues (and bugs)
at once.

Although the following sections do not focus on the iterative process when
describing the building blocks of SPUZZLE, what you see are the final steps of
an iterative process.

SpuzzleApp Class
Because SPUZZLE is based on Borland’s OWL classes, the application itself is
a class named SpuzzleApp, which is derived from the OWL class TApplication.
Listing 7.1 shows the file spuzzle.cpp that defines the SpuzzleApp class and
provides the WinMain function necessary for any OWL-based application. The
WinMain function creates an instance of SpuzzleApp and calls the Run member
function to begin processing events. SPUZZLE’s main window is displayed
when the Run calls the InitMainWindow function. InitMainWindow creates an in-
stance of PuzzleFrame and this, in turn, displays all the child windows in
SPUZZLE.

215

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.1. spuzzle.cpp—Definition of the SpuzzleApp class.

//--
// File: spuzzle.cpp
//
// An educational game that teaches spelling through puzzles.
//
//--
#include “pzlframe.h”

//--
class SpuzzleApp: public TApplication
{
public:
// Constructor that simply calls the base class constructor

 SpuzzleApp(LPSTR name, HINSTANCE instance,
 HINSTANCE prev_instance, LPSTR cmdline, int show) :

 TApplication(name, instance, prev_instance,
 cmdline, show) {}

// Define function to initialize application’s main window
 void InitMainWindow();

// Define function to initialize an instance of this application
 void InitInstance();
};
//--
// S p u z z l e A p p : : I n i t M a i n W i n d o w

void SpuzzleApp::InitMainWindow()
{
 MainWindow = new PuzzleFrame(NULL, “SPUZZLE”, “MainMenu”);
}
//--
// S p u z z l e A p p : : I n i t I n s t a n c e

void SpuzzleApp::InitInstance()
{
 TApplication::InitInstance();
 HAccTable = LoadAccelerators(hInstance, “MainAccelTable”);
}
//--
// W i n M a i n
//
// Create an instance of the application and “run” it.

continues

216

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

int PASCAL WinMain(HINSTANCE instance, HINSTANCE prev_instance,
 LPSTR cmdline, int show)
{
 SpuzzleApp Spuzzle(“SPUZZLE”, instance,
 prev_instance, cmdline, show);

 Spuzzle.nCmdShow = SW_SHOWMAXIMIZED;
 Spuzzle.Run();

 return Spuzzle.Status;
}

PuzzleFrame Class
The PuzzleFrame class is responsible for creating and initializing the child win-
dows that constitute the user interface of the SPUZZLE game. As you can see
from the header file pzlframe.h (Listing 7.2), The PuzzleFrame keeps track of a
large set of static variables representing global data for the application.
PuzzleFrame stores pointers to all its child windows so that it can control them.

Listing 7.2. pzlframe.h—Declaration of the PuzzleFrame class.

//--
// File: pzlframe.h
//
// Declares the PuzzleFrame class that represents the main
// window of the SPUZZLE application.
//--
#if !defined(_ _PZLFRAME_H)
#define __PZLFRAME_H

#include <owl.h>
#include “pzlwin.h”
#include “toolwin.h”
#include “ltrwin.h”
#include “statwin.h”
#include “spzlres.h”
#include “pzlinfo.h”
#include “sounds.h”

Listing 7.1. continued

217

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

#define DISPLAY_TIMER 1
#define DISP_MILLISECONDS 60

const short maxpzls = 10;
const short bmpheight = 40;
const short toolwidth = 64;

class PuzzleFrame: public TWindow
{
public:
 PuzzleFrame(PTWindowsObject parent, LPSTR title,
 LPSTR menu): TWindow(parent, title),
 puzzle(NULL), letters(NULL),
 status(NULL), tools(NULL)
 {
 AssignMenu(menu);
 }

 ~PuzzleFrame();

 PuzzleWindow* puzzle_window() { return puzzle;}
 LetterWindow* letter_window() { return letters;}
 StatusWindow* status_window() { return status;}
 ToolWindow* tool_window() { return tools;}

 short pzl_wmax() { return wpzl;}
 short pzl_hmax() { return hpzl;}
 short ltr_wmax() { return wltr;}
 short ltr_hmax() { return hltr;}
 short sts_wmax() { return wsts;}
 short sts_hmax() { return hsts;}

 int load_puzzles(const char* filename);
 void load_music();

 void hi_scores(const char* filename);

 void GetWindowClass(WNDCLASS _FAR &wc);
 void WMCreate(RTMessage msg) = [WM_FIRST + WM_CREATE];
 void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];
 void WMTimer(RTMessage msg) = [WM_FIRST + WM_TIMER];
 void About(RTMessage msg) = [CM_FIRST + IDM_ABOUT];
 void Help(RTMessage msg) = [CM_FIRST + IDM_HELP]
 {
 WinHelp(HWindow, “SPZLHLP.HLP”, HELP_INDEX, 0);
 }

continues

218

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

 static PuzzleInfo *puzzle_data;
 static PuzzleInfo *cur_puzzle;
 static PuzzlePiece *pzlpcs;
 static PuzzlePick pzl_todo[maxpzls];
 static short numpuzzles;
 static short numpzl_todo;
 static short numpzl_done;
 static short score;
 static short done_curpzl;
 static short ticks_curpzl;
 static short start_curpzl;
 static short sound_on;
 static short sound_playing;
 static short init_in_progress;

 static Music opening_music;
 static Music puzzle_done_music;
 static Music puzzle_start_music;
 static Music closing_music;
 static Music tick_music;
 static Music tock_music;

 static PuzzleInfo* next_puzzle();
 static void pick_puzzles();
 static short playmusic(Music& m, short wait_till_done);

private:
 PuzzleWindow *puzzle;
 LetterWindow *letters;
 StatusWindow *status;
 ToolWindow *tools;
 unsigned short wmax, hmax; // PuzzleFrame’s dimensions
 unsigned short wpzl, hpzl; // Puzzle window’s dimensions
 unsigned short wltr, hltr; // Letter window’s dimensions
 unsigned short wsts, hsts; // Status window’s dimensions
 short timer_id;
};

#endif

Creating and Initializing Child Windows
Listing 7.3 shows the file pzlframe.cpp, which implements the member func-
tions and initializes a host of static variables of the PuzzleFrame class. One of

Listing 7.2. continued

219

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

the first tasks of the PuzzleFrame class is to create the child windows and posi-
tion them properly. The child windows are created in WMCreate, which handles
the WM_CREATE message that Windows sends when creating the PuzzleFrame
window.

The sizes and positions of the child windows cannot be determined until
the size of PuzzleFrame is known. Because Windows sends a WM_SIZE message
when the PuzzleFrame window is moved or resized, I handle the resizing and
positioning of the child windows in the WMSize function. Note that in spuzzle.cpp
(Listing 7.1), the SPUZZLE application is started with the nCmdShow parameter
set to SW_SHOWMAXIMIZED, which means SPUZZLE’s main window appears full-
screen. This ensures that all available screen area is used by SPUZZLE.

Managing the Puzzles
PuzzleFrame’s load_puzzles function opens the file SPUZZLE.CFG and initializes
an array of PuzzleInfo structures (puzzle_data) with information about all
available puzzles. The pick_puzzles function selects a subset of the puzzles and
stores them in the static array pzl_todo.

A static function, next_puzzle, returns a pointer to the next puzzle to be done.
Here are a few other static member variables that manage information about
the puzzles:

static short numpuzzles; is the total number of available puzzles.

static short numpzl_done; is the total number of puzzles that have
been done.

static short numpzl_todo; is the total number of puzzles to be done.

static PuzzleInfo *cur_puzzle; is a pointer to the current puzzle.

static PuzzlePiece *pzlpcs; is an array of PuzzlePiece structures
with information about the current puzzle pieces.

static short done_curpzl; is nonzero if the current puzzle is done.

static short ticks_curpzl; is the number of clock ticks remaining
(remember, the clock starts counting down from 99).

static short start_curpzl; is nonzero if the current puzzle should be
started (set when the player presses on the GO button).

220

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Playing Music
PuzzleFrame provides the static function playmusic for playing musical tunes.
The load_music function loads the music into a number of static Music struc-
tures. A static variable named sound_on indicates whether music should be
played or not. As the name indicates, when sound_on is nonzero, SPUZZLE plays
music.

Animating the Child Windows
In SPUZZLE, I animate the images in all the windows by using the strategy
demonstrated in Chapter 5. A timer is set up and the images are moved in the
WMTimer function, which handles the WM_TIMER events. PuzzleFrame’s WMTimer
function animates the display by calling the update function of the child win-
dows, PuzzleWindow, LetterWindow, and StatusWindow.

Listing 7.3. pzlframe.cpp—
Implementation of the PuzzleFrame class.

//--
// File: pzlframe.cpp
//
// Implementation of the PuzzleFrame class--the main window of
// the SPUZZLE game.
//--
#include <string.h>
#include <fstream.h>
#include <strng.h>
#include “pzlframe.h”
#include “pzlinfo.h”
#include “hscdial.h”

// Information about the available spelling puzzles
// This is initialized in the load_puzzles function
PuzzleInfo* PuzzleFrame::puzzle_data = NULL;
PuzzleInfo* PuzzleFrame::cur_puzzle = NULL;
PuzzlePiece* PuzzleFrame::pzlpcs = NULL;

PuzzlePick PuzzleFrame::pzl_todo[maxpzls] = { PuzzlePick(0,0) };

short PuzzleFrame::numpuzzles = 0;
short PuzzleFrame::numpzl_todo = 0;

221

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

short PuzzleFrame::numpzl_done = 0;
short PuzzleFrame::score = 0;
short PuzzleFrame::done_curpzl = 0;
short PuzzleFrame::start_curpzl = 0;
short PuzzleFrame::ticks_curpzl = 0;

Music PuzzleFrame::opening_music;
Music PuzzleFrame::puzzle_done_music;
Music PuzzleFrame::puzzle_start_music;
Music PuzzleFrame::closing_music;
Music PuzzleFrame::tick_music;
Music PuzzleFrame::tock_music;

short PuzzleFrame::sound_on = 1;
short PuzzleFrame::sound_playing = 0;
short PuzzleFrame::init_in_progress = 0;

static short first_time = 1;
//--
// P u z z l e F r a m e : : W M C r e a t e
// Initializes everything for the SPUZZLE game

void PuzzleFrame:: WMCreate(RTMessage)
{
// Load music
 load_music();

// Start playing the opening tune...
 playmusic(opening_music, 0);

// Initialize random number generator with a random seed
 randomize();

// Read the list of puzzles from the SPUZZLE.CFG file
 load_puzzles(“SPUZZLE.CFG”);
 pick_puzzles();
 cur_puzzle = next_puzzle();

// Create the other windows
 puzzle = new PuzzleWindow(this, this);
 GetApplication()->MakeWindow(puzzle);

 letters = new LetterWindow(this, this);
 GetApplication()->MakeWindow(letters);

 status = new StatusWindow(this, this);
 GetApplication()->MakeWindow(status);

continues

222

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.3. continued

 tools = new ToolWindow(this, this);
 GetApplication()->MakeWindow(tools);
}
//--
// P u z z l e F r a m e : : l o a d _ p u z z l e s
// Initialize an array of PuzzleInfo by reading from a file

int PuzzleFrame::load_puzzles(const char* filename)
{
// Open file for reading
 ifstream ifs(filename, ios::in);
 if(!ifs)
 {
// Error reading file. Return 0.
 return 0;
 }

// Read and interpret the contents of the file
 char line[81];

// First line should have the string SPUZZLE.CFG
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “SPUZZLE.CFG”,
 strlen(“SPUZZLE.CFG”)) != 0) return 0;

// Second line has a version number--just in case the
// contents have to change in the future
 ifs.getline(line, sizeof(line));
 short version = atoi(line);
 if(version != 1) return 0;

// Third line has the number of puzzles in this file.
 ifs.getline(line, sizeof(line));
 numpuzzles= atoi(line);

// Allocate an array of PuzzleInfo structures
 PuzzleInfo *new_puzzles = new PuzzleInfo[numpuzzles];
 if(new_puzzles == NULL) return 0;

// At this point we have an array of PuzzleInfo structures
// allocated. If there is an existing PuzzleInfo array,
// delete it before loading new values
 if(puzzle_data != NULL) delete puzzle_data;
 puzzle_data = new_puzzles;

223

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// From this point on each line in the file has the following
// form:
// word image_file_name
// example:
// CAT cat.pcx
// HOUSE house.bmp
// and so on.
 short i;
 char *token;
 for(i = 0; i < numpuzzles; i++)
 {
 ifs.getline(line, sizeof(line));
// Parse the line...first token
 token = strtok(line, “ “);
 strupr(token);
 puzzle_data[i].numchars = strlen(token);
 puzzle_data[i].word = new char[puzzle_data[i].numchars+1];
 strcpy(puzzle_data[i].word, token);
// Second token
 token = strtok(NULL, “ “);
 size_t nc = strlen(token);
 puzzle_data[i].imgfname = new char[nc+1];
 strcpy(puzzle_data[i].imgfname, token);
 }
 return 1;
}
//--
// PuzzleFrame:: ~ P u z z l e F r a m e
// Destructor for a PuzzleFrame

PuzzleFrame::~PuzzleFrame()
{
// Delete the puzzle, letters, and status windows
 if(puzzle != NULL) delete puzzle;
 if(letters != NULL) delete letters;
 if(status != NULL) delete status;
 if(tools != NULL) delete tools;
 if(puzzle_data != NULL) delete puzzle_data;

// Kill the timer
 if(timer_id) KillTimer(HWindow, timer_id);

// Clean up sound driver...
 StopSound();
 CloseSound();
}
//--
// PuzzleFrame:: G e t W i n d o w C l a s s

continues

224

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.3. continued

// Set up icon for the Application

void PuzzleFrame::GetWindowClass(WNDCLASS _FAR &wc)
{
// First call the GetWindowClass function of the base class
 TWindow::GetWindowClass(wc);

// Set up icon for this application
 wc.hIcon = LoadIcon(wc.hInstance, “SPUZZLE_ICON”);
}
//--
// PuzzleFrame:: A b o u t
// Display the “About...” box

void PuzzleFrame::About(RTMessage)
{
 TDialog *p_about = new TDialog(this, “ABOUTSPUZZLE”);
 PTApplication app = GetApplication();
 app->ExecDialog(p_about);
}
//--
// PuzzleFrame:: W M S i z e
// Resize/Reposition all child windows when frame changes size

void PuzzleFrame::WMSize(RTMessage)
{
// Get the size of this window
 RECT r;
 GetClientRect(HWindow, &r);

 unsigned short w = r.right - r.left + 1;
 unsigned short h = r.bottom - r.top + 1;

// Resize and reposition child windows
// The letters window is across the top
 if(letters != NULL)
 {
 MoveWindow(letters->HWindow, 0, 0, w, bmpheight, TRUE);
 letters->width(w);
 letters->height(bmpheight);
 }

// The status window is at the bottom
 if(status != NULL)
 {
 MoveWindow(status->HWindow, 0, h - bmpheight, w,
 bmpheight, TRUE);

225

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

 status->width(w);
 status->height(bmpheight);
 }

// The tools window is at the left
 short htool = h - 2*bmpheight;
 if(tools != NULL)
 {
 MoveWindow(tools->HWindow, 0, bmpheight, toolwidth,
 htool, TRUE);
 }

// Puzzle window is the large one in the middle to the right
 if(puzzle != NULL)
 {
 MoveWindow(puzzle->HWindow, toolwidth, bmpheight,
 w - toolwidth, htool, TRUE);
 puzzle->width(w-toolwidth);
 puzzle->height(htool);
 }

 if(first_time)
 {
 first_time = 0;

// Save the maximum dimensions of some windows...
 wmax = w;
 hmax = h;
 wpzl = w-toolwidth;
 hpzl = htool;
 wltr = w;
 hltr = bmpheight;
 wsts = w;
 hsts = bmpheight;

// Initialize the puzzle, letters, and the status windows
 if(numpuzzles > 0 && puzzle != NULL) puzzle->init();
 if(numpuzzles > 0 && letters != NULL) letters->init();
 status->init();

// Set up a timer to update the display and manage the game
 timer_id = SetTimer(HWindow, DISPLAY_TIMER,
 DISP_MILLISECONDS, NULL);
 if(!timer_id)
 MessageBox(HWindow, “Failed to start Timer!”,
 “SPUZZLE: PuzzleFrame”,
 MB_ICONEXCLAMATION | MB_OK);
 }

continues

226

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.3. continued

}
//--
// PuzzleFrame:: p i c k _ p u z z l e s
// Pick a set of new puzzles to do

void PuzzleFrame::pick_puzzles()
{
// How many puzzles to do...
 numpzl_todo = maxpzls;
 if(numpuzzles <= maxpzls) numpzl_todo = numpuzzles;

// Generate randomized indexes from 0 to (numpzl_todo - 1)
 short i, j, index;
 for(i = 0; i < numpzl_todo; i++)
 {
 while(1)
 {
 index = random(numpuzzles);
// Make sure index is not already in pzl_todo array
 for(j = 0; j < i; j++)
 if(pzl_todo[j].index == index) break;
 if(j == i) break;
 }
 pzl_todo[i].index = index;
 pzl_todo[i].done = 0;
 }
}
//--
// PuzzleFrame:: n e x t _ p u z z l e
// Return next puzzle to do

PuzzleInfo* PuzzleFrame::next_puzzle()
{
 if(cur_puzzle == NULL)
 return &puzzle_data[pzl_todo[0].index];

 if(numpzl_done < numpzl_todo)
 {
// Return the next puzzle that’s not yet done
 short i, j;
// First find the index of the current puzzle
 for(i = 0; i < numpzl_done+numpzl_todo; i++)
 {
 if(cur_puzzle == &puzzle_data[pzl_todo[i].index])
 {
// Set current puzzle’s done flag, if puzzle’s done
 if(done_curpzl)

227

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

 {
 pzl_todo[i].done = 1;
 done_curpzl = 0;
 }
 break;
 }
 }
// Find next puzzle that’s not done yet
 for(j = i+1; j < numpzl_done+numpzl_todo; j++)
 {
 if(!pzl_todo[j].done)
 return &puzzle_data[pzl_todo[j].index];
 }
 }
// Pick some more puzzles...
 pick_puzzles();
 numpzl_done = 0;
 return next_puzzle();
}
//--
// PuzzleFrame:: W M T i m e r
// Handle WM_TIMER events

void PuzzleFrame::WMTimer(RTMessage msg)
{
 switch(msg.WParam)
 {
 case DISPLAY_TIMER:
// Call the update function of the two windows...
// (puzzles and letters)
 if(!init_in_progress)
 {
 if(puzzle != NULL) puzzle->update();
 if(letters != NULL) letters->update();
 }
 if(status != NULL) status->update();

// Check if it’s time to turn off sound...
 if(sound_playing && CountVoiceNotes(1) < 1)
 {
 StopSound();
 CloseSound();
 sound_playing = 0;
 }

 break;

 default:

continues

228

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.3. continued

 break;
 }
}
//--
// PuzzleFrame:: p l a y m u s i c
// Play music

short PuzzleFrame::playmusic(Music& m, short wait_till_done)
{
 if((m.notes == NULL) || (m.numnotes == 0)) return 0;

// Do nothing if something is already playing...
 if(!wait_till_done &&
 sound_playing) return wait_till_done;

// Turn off anything that might be playing now...
 StopSound();
 CloseSound();

// Check if sound is allowed, then play.
 if(PuzzleFrame::sound_on && OpenSound() > 0)
 {
 SetVoiceQueueSize(1, 6*m.numnotes);
 SetVoiceAccent(1, m.tempo, m.volume,
 m.mode, m.pitch);
 short i;
 for(i = 0; i < m.numnotes; i++)
 SetVoiceNote(1, m.notes[i].number,
 m.notes[i].duration,
 m.notes[i].dots);
 StartSound();
 sound_playing = 1;

// Wait till music is done (if wait_till_done is TRUE)
 if(wait_till_done)
 {
 while(CountVoiceNotes(1) > 0);
 StopSound();
 CloseSound();
 }
 }
 return wait_till_done;
}
//--
// PuzzleFrame:: l o a d _ m u s i c
// Load some pieces of music used in the game

229

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

void PuzzleFrame::load_music()
{
// Now set up each piece of music
 opening_music.read(“open.spm”);
 puzzle_done_music.read(“pzldone.spm”);
 puzzle_start_music.read(“pzlstrt.spm”);
 closing_music.read(“close.spm”);
 tick_music.read(“tick.spm”);
 tock_music.read(“tock.spm”);
}
//--
// PuzzleFrame:: h i _ s c o r e s
// Display the high scores and enter current score into the
// table (only if the current score is greater than the
// 20 highest scores in the “high score” file).

void PuzzleFrame::hi_scores(const char *filename)
{
// Load the current hi score table from the file
// Open file for reading
 ifstream ifs(filename, ios::in);
 if(!ifs)
 {
// Create a file with a single entry
 ofstream ofs(filename, ios::out);
 if(!ofs) return;
 ofs << “SPUZZLE.HISCORES” << endl;
 ofs << 1 << endl;
 ofs << 1 << endl;
 ofs << “Naba Barkakati” << endl;
 ofs << 999 << endl;
 ofs << “Hope you like SPUZZLE!” << endl;
 ofs.close();
// Reopen it for reading
 ifs.open(filename, ios::in);
 if(!ifs) return;
 }

// Read and interpret the contents of the file
 char line[81];

// First line should have the string SPUZZLE.HISCORES
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “SPUZZLE.HISCORES”,
 strlen(“SPUZZLE.HISCORES”)) != 0) return;

continues

230

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.3. continued

// Second line has a version number--just in case the
// contents have to change in the future
 ifs.getline(line, sizeof(line));
 short version = atoi(line);
 if(version != 1) return;

// Third line has the number of entries in the file
 ifs.getline(line, sizeof(line));
 short numentries = atoi(line);

// Read all the entries into a SortedArray
 SortedArray* hiscores = new SortedArray(32, 0, 8);
 if(hiscores == NULL) return;
 short i;

 for(i = 0; i < numentries; i++)
 {
 HiScore *s = new HiScore;
 if(s == NULL)
 {
 delete hiscores;
 return;
 }
 if(ifs.eof())
 {
 numentries = i;
 }
 ifs.getline(line, sizeof(line));
 s->name = new char[strlen(line) +1];
 strcpy(s->name, line);

 ifs.getline(line, sizeof(line));
 s->score = atoi(line);

 ifs.getline(line, sizeof(line));
 s->quote = new char[strlen(line) +1];
 strcpy(s->quote, line);

// Add the score to the array
 hiscores->add(*s);
 }

// Check if current score is greater than the top 30 scores
 short lastindex = 29;
 if(lastindex > numentries) lastindex = numentries - 1;
 HiScore& last_hi = (HiScore&)(*hiscores)[lastindex];
 if(((lastindex == numentries - 1) && (score > 0)) ||
 (score > last_hi.score))
 {

231

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// Display the dialog box HISCORES
 HiscoreDialog *p_hiscores = new HiscoreDialog(this,
 “HISCORES”, hiscores, lastindex+1);
 PTApplication app = GetApplication();
 short r = app->ExecDialog(p_hiscores);

 if(r == IDOK)
 {
 HiScore *s = p_hiscores->hi_score();
 s->score = score;
// Add this score to the hiscores array
 hiscores->add(*s);

// Now save the top 30 scores back in the file
 ifs.close();
// Open file for reading
 ofstream ofs(filename, ios::out);
 if(!ofs)
 {
// Error opening file. Return.
 return;
 }
 ofs << “SPUZZLE.HISCORES” << endl;
 ofs << 1 << endl;
 short n = hiscores->getItemsInContainer();
 if(n > 30) n = 30;
 ofs << n << endl;
 for(i = 0; i < n; i++)
 {
 HiScore& hi = (HiScore&)(*hiscores)[i];
 ofs << hi;
 }
 }
 }
// Delete the SortedArray hiscores
 delete hiscores;
}

Displaying the High Scores Dialog
The PuzzleFrame class includes the hi_scores function for displaying the high
scores dialog box. As you can see from Listing 7.3, hi_scores gets the top 30
scores from a file and displays them in a list box inside the high scores dialog

232

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

box, which is an instance of the HiscoreDialog class (described later). The
hi_scores function is called from the ToolWindow class when the player clicks
on the EXIT button.

PuzzleWindow Class
The PuzzleWindow class represents the child window where the puzzle’s pic-
ture appears and where the player manipulates the puzzle pieces to play the
game. Listing 7.4 shows the header file pzlwin.h that declares the PuzzleWindow
class and defines a number of inline functions.

The PuzzleWindow class uses an instance of the SpriteAnimation class to ani-
mate the puzzle pieces, and it provides member functions such as init, update,
shuffle, and reposition to initialize and manipulate the animation of the puzzle
pieces.

Listing 7.4. pzlwin.h—Declaration of the PuzzleWindow class.

//--
// File: pzlwin.h
//
// Declares the PuzzleWindow class that represents the window
// where the player puts together the puzzle in the SPUZZLE game.
//--
#if !defined(_ _PZLWIN_H)
#define __PZLWIN_H

#include <owl.h>
#include “spranim.h”
#include “pzlinfo.h”

const short xyerror = 8; // Tolerate this many pixels of error
 // in aligning puzzle pieces

class PuzzleFrame;

class PuzzleWindow: public TWindow
{
public:
 PuzzleWindow(PTWindowsObject parent, PuzzleFrame *pzlf) :
 TWindow(parent, NULL), pf(pzlf),
 top(0), left(0), mouse_captured(0), w(1), h(1),

233

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

 anim(NULL), fullpzl(NULL), spr_current(NULL),
 sound_playing(0)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 }

 ~PuzzleWindow();

 void update(); // Display puzzle pieces
 void init(); // Initialize puzzle
 void shuffle(); // Shuffle the puzzle pieces
 short check_puzzle(); // Check if puzzle is complete
 void reposition(); // Reposition puzzle pieces and letters

 void Paint(HDC hdc, PAINTSTRUCT& ps);
 void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];
 void WMLButtonDown(RTMessage msg) = [WM_FIRST + WM_LBUTTONDOWN];
 void WMLButtonUp(RTMessage msg) = [WM_FIRST + WM_LBUTTONUP];
 void WMMouseMove(RTMessage msg) = [WM_FIRST + WM_MOUSEMOVE];

 unsigned short width() { return w;}
 unsigned short height() { return h;}
 void width(unsigned short _w) { w = _w;}
 void height(unsigned short _h) { h = _h;}

private:
 PuzzleFrame *pf;
 short top, left;
 unsigned short w, h; // Size of client area
 SpriteAnimation *anim;
 Sprite *fullpzl;
 short numpieces;
 short iw, ih;
 short wslice;
 short hslice;
 short mouse_captured;
 Sprite *spr_current;
 short xoff;
 short yoff;
 short xlast;
 short ylast;
 short sound_playing;
};

#endif

234

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Initializing the Current Puzzle
Listing 7.5 shows the file pzlwin.cpp, which implements the member functions
of the PuzzleWindow class. The main responsibility of PuzzleWindow is to prepare
the puzzle and let the player manipulate the puzzle pieces. The init member
function initializes the currently selected puzzle, which is indicated by the
PuzzleFrame::cur_pzl pointer. Here are the major initialization steps that init
performs:

1. If this is the first call to init (indicated by a nonzero firsttime vari-
able), load a number of strings from the STRINGTABLE resource.
These strings are the status messages that appear in the StatusWindow.

2. Delete any existing puzzle.

3. Load the current puzzle’s picture into a Sprite object.

4. Create the SpriteAnimation object that will manage the puzzle pieces.

5. Slice up the puzzle’s picture into as many pieces as there are letters in
the corresponding word, create a Sprite for each piece, and add these
Sprites to the SpriteAnimation.

Once the SpriteAnimation is set up with the Sprite objects corresponding
to the puzzle pieces, the SpriteAnimation will display the puzzle pieces at the
next WM_TIMER event.

Manipulating the Puzzle Pieces
The player moves a puzzle piece by placing the mouse cursor on the piece,
pressing down the left mouse button, and moving the mouse. As the player
drags the mouse around, the puzzle piece should move also. To support this
type of direct manipulation, I defined the member functions WMLButtonDown,
WMMouseMove, and WMLButtonUp, which handle the Windows messages
WM_LBUTTONDOWN, WM_LBUTTONUP, and WM_MOUSEMOVE, respectively. You can see the
details of these functions in Listing 7.5, but the basic idea is to change the po-
sition of the sprite corresponding to the selected puzzle piece as the mouse
moves; the SpriteAnimation object anim takes care of updating the display. Note
that the functions WMMouseMove and WMLButtonUp also must move the sprite of
the letter corresponding to the selected puzzle piece.

235

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.5. pzlwin.cpp—
Implementation of the PuzzleWindow class.

//--
// File: pzlwin.cpp
//
// Implementation of the PuzzleWindow class. This is the window
// where the player constructs the puzzle in the SPUZZLE game.
//--
#include <stdlib.h>
#include “pzlframe.h”
#include “sounds.h”

static char press_go[41];
static short npgo;
static char keep_going[41];
static short nkg;
static char ucandoit[41];
static short nucan;
static char wow[41];
static short nwow;
static char good_job[41];
static ngj;
static char times_up[41];
static short ntu;
static char press_next[41];
static short npn;

static char *curmsg;
static short curlen;

static short firsttime = 1;
static short done_since = 0;
//--
// ~ P u z z l e W i n d o w
// Destructor for the puzzle window.

PuzzleWindow::~PuzzleWindow()
{
 if(anim != NULL) delete anim;
 if(fullpzl != NULL) delete fullpzl;
 if(PuzzleFrame::pzlpcs != NULL) delete PuzzleFrame::pzlpcs;
}
//--
// PuzzleWindow:: P a i n t
// Draw everything in the window

continues

236

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.5. continued

void PuzzleWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(anim != NULL)
 {
 anim->set_refresh(TRUE);
 anim->animate(hdc, top, left);
 }
}
//--
// PuzzleWindow:: u p d a t e
// Animate the sprites in the puzzle window

void PuzzleWindow::update()
{
 if(anim != NULL)
 {
 HDC hdc = GetDC(HWindow);
 anim->animate(hdc, top, left);
 ReleaseDC(HWindow, hdc);
 }

 if(done_since++ < 600) return;

 if(PuzzleFrame::start_curpzl)
 {
 done_since = 0;
 if(curmsg == press_go)
 {
 curmsg = keep_going;
 curlen = nkg;
 pf->status_window()->set_text(curmsg, curlen);
 }
 else
 {
 if(curmsg == keep_going &&
 PuzzleFrame::ticks_curpzl < 75)
 {
 curmsg = ucandoit;
 curlen = nucan;
 pf->status_window()->set_text(curmsg, curlen);
 }
 }
 if(PuzzleFrame::ticks_curpzl < 1)
 {
 curmsg = times_up;
 curlen = ntu;

237

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

 pf->status_window()->set_text(curmsg, curlen);
 }
 }
 else
 {
 if(PuzzleFrame::done_curpzl && curmsg != press_next)
 {
 curmsg = press_next;
 curlen = npn;
 pf->status_window()->set_text(curmsg, curlen);
 }
 }
}
//--
// PuzzleWindow:: i n i t
// Clean up after the last puzzle and initialize the next puzzle

void PuzzleWindow::init()
{
 if(firsttime)
 {
 firsttime = 0;
// Load message strings from the STRINGTABLE resource
 HINSTANCE hinst = GetApplication()->hInstance;

 LoadString(hinst, IDS_PRESSGO, press_go,
 sizeof(press_go));
 npgo = strlen(press_go);

 LoadString(hinst, IDS_KEEPGOING, keep_going,
 sizeof(keep_going));
 nkg = strlen(keep_going);

 LoadString(hinst, IDS_UCANDOIT, ucandoit,
 sizeof(ucandoit));
 nucan = strlen(ucandoit);

 LoadString(hinst, IDS_GOODJOB, good_job,
 sizeof(good_job));
 ngj = strlen(good_job);

 LoadString(hinst, IDS_WOW, wow, sizeof(wow));
 nwow = strlen(wow);

 LoadString(hinst, IDS_PRESSNEXT, press_next,
 sizeof(press_next));
 npn = strlen(press_next);

continues

238

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.5. continued

 LoadString(hinst, IDS_TIMESUP, times_up,
 sizeof(times_up));
 ntu = strlen(times_up);
 }

// Do nothing if the current puzzle is not valid
 PuzzleInfo* pzl = PuzzleFrame::cur_puzzle;
 if(pzl == NULL) return;

// Change the cursor to an hourglass
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

// Clean up existing puzzle, if any
 if(anim != NULL) delete anim;

 if(PuzzleFrame::pzlpcs != NULL) delete PuzzleFrame::pzlpcs;

 if(fullpzl != NULL) delete fullpzl;

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Build puzzle from specified image
 if(pzl != NULL)
 {
 Image *fimg = NULL;

 while(fimg == NULL)
 {
 numpieces = pzl->numchars;
 fullpzl = new Sprite(hdc, pzl->imgfname, NULL);
 fimg = fullpzl->sprite_image();

 if(fimg == NULL)
 {
// Get another puzzle
 PuzzleFrame::cur_puzzle = pf->next_puzzle();
 pzl = PuzzleFrame::cur_puzzle;
 if(pzl == NULL) return;
 }
 }

 iw = fimg->width();
 ih = fimg->height();
 wslice = iw / pzl->numchars;
 hslice = ih;

239

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// Construct a SpriteAnimation with background for the puzzle
 anim = new SpriteAnimation(hdc, pf->pzl_wmax(),
 pf->pzl_hmax(), “spuzzle.bmp”);
 if(anim == NULL) return;

// Draw a grid in which the puzzle is to be constructed

 if(anim->bg_bitmap() != 0)
 {
 anim->bg_rect(0, 0, iw, ih);
 short i;
 for(i = 1; i < numpieces; i++)
 anim->bg_line(i*wslice, 0, i*wslice, ih);
 }

 Image *img;
 short i, x = 0, y = 0;
// Create the array of sprites
 PuzzleFrame::pzlpcs = new PuzzlePiece[numpieces];
 for(i = 0; i < pzl->numchars-1; i++)
 {
 PuzzleFrame::pzlpcs[i].x = x;
 PuzzleFrame::pzlpcs[i].y = y;
 PuzzleFrame::pzlpcs[i].c = pzl->word[i];
 img = new Image(hdc, fimg, x, y, wslice, ih);
 PuzzleFrame::pzlpcs[i].sprite = new
 Sprite(img, NULL, 1);

// Store index of sprite as the Sprite’s id. We need this to
// relate the puzzle pieces to images of the letters
 PuzzleFrame::pzlpcs[i].sprite->id(i);

 PuzzleFrame::pzlpcs[i].sprite->newpos(x, y);
// Add sprite to animation
 anim->add(PuzzleFrame::pzlpcs[i].sprite);
 x += wslice;
 }
// Add the last slice
 img = new Image(hdc, fimg, x, y,
 iw-(pzl->numchars-1)*wslice, ih);
 PuzzleFrame::pzlpcs[i].sprite = new
 Sprite(img, NULL, 1);
 PuzzleFrame::pzlpcs[i].x = x;
 PuzzleFrame::pzlpcs[i].y = y;
 PuzzleFrame::pzlpcs[i].sprite->id(i);
 PuzzleFrame::pzlpcs[i].sprite->newpos(x, y);
 anim->add(PuzzleFrame::pzlpcs[i].sprite);
 }

continues

240

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// Set the text for the status window
 pf->status_window()->set_text(press_go, npgo);
 curmsg = press_go;
 curlen = npgo;

// Remember to release the DC
 ReleaseDC(HWindow, hdc);

// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
}
//--
// PuzzleWindow:: W M S i z e
// Save the location and size of the window

void PuzzleWindow::WMSize(RTMessage)
{
 RECT r;
 GetClientRect(HWindow, &r);
 w = r.left - r.right + 1;
 h = r.bottom - r.top + 1;
}
//--
void PuzzleWindow::WMLButtonDown(RTMessage msg)
{
 if(!PuzzleFrame::start_curpzl) return;

 short x = msg.LP.Lo;
 short y = msg.LP.Hi;
 spr_current = anim->sprite_at(x, y);
 if(spr_current != NULL)
 {
 spr_current->active();
 xlast = x;
 ylast = y;
 SetCapture(HWindow);
 mouse_captured = 1;
 }
}
//--
void PuzzleWindow::WMMouseMove(RTMessage msg)
{
 if(!mouse_captured) return;

 short x = msg.LP.Lo;
 short y = msg.LP.Hi;

Listing 7.5. continued

241

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// Don’t let the image move out of the window...
 short xs = spr_current->xpos();
 short ys = spr_current->ypos();
 short xdel = x - xlast;
 short ydel = y - ylast;
 if(xs + xdel <= 0) xdel = 0;
 if(xs + xdel >= w-wslice) xdel = 0;
 if(ys + ydel <= 0) ydel = 0;
 if(ys + ydel >= h-hslice) ydel = 0;

// Move sprite
 spr_current->move(xdel, ydel);

 xlast = xlast + xdel;
 ylast = ylast + ydel;

// Move the letters also...
 PuzzleFrame::pzlpcs[spr_current->id()].ltr_sprite->
 move(xdel, 0);
}
//--
void PuzzleWindow::WMLButtonUp(RTMessage msg)
{
 if(!mouse_captured) return;

 short x = msg.LP.Lo;
 short y = msg.LP.Hi;

// Don’t let the image move out of the window...
 short xs = spr_current->xpos();
 short ys = spr_current->ypos();

 short xdel = x - xlast;
 short ydel = y - ylast;

 if((xs + xdel >= 0) && (xs + xdel <= w-wslice) &&
 (ys + ydel >= 0) && (ys + ydel <= h-hslice))
 {
// Move sprite representing puzzle piece
 spr_current->move(xdel, ydel);
 xlast = x;
 ylast = y;

// Move corresponding letter
 PuzzleFrame::pzlpcs[spr_current->id()].ltr_sprite->
 move(xdel, 0);
 }

continues

242

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.5. continued

// Check if puzzle is complete...
 check_puzzle();

// De-select the Sprite...and release the mouse
 spr_current = NULL;
 ReleaseCapture();
 mouse_captured = 0;
}
//--
// PuzzleWindow:: s h u f f l e
// Shuffle the puzzle pieces...

void PuzzleWindow::shuffle()
{
 short xrange = width() - wslice;
 if(xrange < 0) xrange = wslice/2;

 short yrange = height() - hslice;
 if(yrange < 0) yrange = hslice/2;

// Now position the puzzle pieces randomly...and the letters too
 short i;
 for(i = 0; i < numpieces; i++)
 {
 short xrnd = random(xrange);
 short xmov = xrnd -
 PuzzleFrame::pzlpcs[i].sprite->xpos();

 short yrnd = random(yrange);
 short ymov = yrnd -
 PuzzleFrame::pzlpcs[i].sprite->ypos();

 PuzzleFrame::pzlpcs[i].sprite->move(xmov, ymov);

// Move the letters to random positions also
 xmov = xrnd -
 PuzzleFrame::pzlpcs[i].ltr_sprite->xpos();

 PuzzleFrame::pzlpcs[i].ltr_sprite->move(xmov, 0);
 }

// Make some sound...
 PuzzleFrame::playmusic(PuzzleFrame::puzzle_start_music, 0);
}
//--
// PuzzleWindow:: c h e c k _ p u z z l e

243

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// Set appropriate flags if puzzle is done. Return 1 if done,
// zero otherwise.

short PuzzleWindow::check_puzzle()
{
 short i;
 short xpli = PuzzleFrame::pzlpcs[0].sprite->xpos();
 short ypli = PuzzleFrame::pzlpcs[0].sprite->ypos();
 short xplip1, yplip1;

 for(i = 1; i < numpieces; i++)
 {
 xplip1 = PuzzleFrame::pzlpcs[i].sprite->xpos();
 if(abs(xpli + wslice - xplip1) > xyerror) return 0;

 yplip1 = PuzzleFrame::pzlpcs[i].sprite->ypos();
 if(abs(ypli - yplip1) > xyerror) return 0;

// Remember this piece’s position
 xpli = xplip1;
 ypli = yplip1;
 }

// If here, all pieces met the positioning requirements
// Puzzle is done. Reposition puzzle pieces to show
// complete puzzle and the letters in correct order
 if(PuzzleFrame::ticks_curpzl > 70)
 {
 curmsg = wow;
 curlen = nwow;
 }
 else
 {
 if(PuzzleFrame::ticks_curpzl > 20)
 {
 curmsg = good_job;
 curlen = ngj;
 }
 }
 pf->status_window()->set_text(curmsg, curlen);

 reposition();
 PuzzleFrame::done_curpzl = 1;
 PuzzleFrame::start_curpzl = 0;
 PuzzleFrame::numpzl_done++;
 PuzzleFrame::numpzl_todo--;

continues

244

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.5. continued

// This puzzle’s done...make some happy sounds
 PuzzleFrame::playmusic(PuzzleFrame::puzzle_done_music, 0);

// Update the score
 PuzzleFrame::score += PuzzleFrame::ticks_curpzl;
 PuzzleFrame::score += numpieces;
 pf->letter_window()->set_score(PuzzleFrame::score);

 return 1;
}
//--
// PuzzleWindow:: r e p o s i t i o n
// Repositions the puzzle pieces and letters

void PuzzleWindow::reposition()
{
 short i;

 for(i = 0; i < numpieces; i++)
 {
// First position the puzzle pieces
 short xs = PuzzleFrame::pzlpcs[i].sprite->xpos();
 short ys = PuzzleFrame::pzlpcs[i].sprite->ypos();
 PuzzleFrame::pzlpcs[i].sprite->move(
 PuzzleFrame::pzlpcs[i].x - xs,
 PuzzleFrame::pzlpcs[i].y - ys);

// Now the letter sprites
 xs = PuzzleFrame::pzlpcs[i].ltr_sprite->xpos();
 ys = PuzzleFrame::pzlpcs[i].ltr_sprite->ypos();
 PuzzleFrame::pzlpcs[i].ltr_sprite->move(
 PuzzleFrame::pzlpcs[i].lx - xs,
 PuzzleFrame::pzlpcs[i].ly - ys);
 }
}

Checking for Puzzle Completion
Whenever the player moves a puzzle piece and releases the mouse button,
Windows sends a WM_LBUTTONUP message that invokes the WMLButtonUp function.
The WMLButtonUp function calls the check_puzzle function to see if the puzzle
is done. The puzzle is considered done if all the pieces are in sequence and

245

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

neighboring pieces are no more than a specified number of pixels apart (deter-
mined by the constant xyerror in pzlwin.h). If the puzzle is considered done,
check_puzzle sets the appropriate flags, places all the puzzle pieces in proper
position, updates the score, and plays some music.

LetterWindow Class
Recall from the description of SPUZZLE that LetterWindow is the narrow strip
of a window above the PuzzleWindow. The primary purpose of LetterWindow is
to display the letters that make up the word corresponding to the current
puzzle. Additionally, LetterWindow also displays the following items:

A clock with an oscillating pendulum

A text string that shows the time of day superimposed on the clock

The two digits of the clock ticks to count down after the puzzle starts

The current score

Listing 7.6 shows the header file ltrwin.h that declares the LetterWindow
class. As you can see from the member variables, LetterWindow uses a
SpriteAnimation object to manage the contents of the window.

Listing 7.6. ltrwin.h—Declaration of the LetterWindow class.

//--
// File: ltrwin.h
//
// Declares the LetterWindow class that represents the window
// where the letters appear in the SPUZZLE game.
//--
#if !defined(_ _LTRWIN_H)
#define _ _LTRWIN_H

#include <owl.h>
#include “spranim.h”
#include “pzlinfo.h”
#include “sounds.h”

const short lbmpwidth = 32;
const short lystart = 4;

continues

246

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.6. continued

class PuzzleFrame;

class LetterWindow: public TWindow
{
public:
 LetterWindow(PTWindowsObject parent, PuzzleFrame* pzlf);

 ~LetterWindow();

 void update();
 void init();
 void set_score(short s);

 void Paint(HDC hdc, PAINTSTRUCT& ps);

 unsigned short width() { return w;}
 unsigned short height() { return h;}
 void width(unsigned short _w) { w = _w;}
 void height(unsigned short _h) { h = _h;}

private:
 PuzzleFrame *pf;

// SpriteAnimation with letters of the word being spelled
 SpriteAnimation *anim;
 Sprite *clock[2];
 Sprite *time; // time of day display
 Sprite *ticklabel; // Label for time display
 Sprite *tickpos0[10]; // These sprites are used
 Sprite *tickpos1[10]; // to display time
 short pos0, pos1;
 short curclock;

 Sprite *score; // To display the current score

 short top, left;
 unsigned short w, h; // Size of client area

 short sound_playing;
 Music *ticktock[2];
};

#endif

247

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.7 shows the implementation of the LetterWindow class. As in
PuzzleWindow, the init is the most important member function in LetterWindow.
The init function creates the SpriteAnimation and adds to it a Sprite object
for each letter of the current puzzle word. All the other sprites, the clocks, the
digits for the clock ticks, and the score are also added to the SpriteAnimation
(described in Chapter 5).

Listing 7.7. ltrwin.cpp—
Implementation of the LetterWindow class.

//--
// File: ltrwin.cpp
//
// Implementation of the LetterWindow class.
//--
#include “pzlframe.h”
#include <time.h>
#include <stdio.h>

static char lfname[] = “?.BMP”; // Filename of letter images

const short tpsec = 1000 / DISP_MILLISECONDS;
const short htpsec = tpsec / 2;
static short tcount = 0;

void _FAR PASCAL _export disp_score(HDC hdc, short x, short y,
LPVOID data);

void _FAR PASCAL _export disp_time(HDC hdc, short x, short y,
LPVOID data);

struct TEXT_DATA
{
 LPSTR text;
 size_t numchars;
};

static TEXT_DATA dt;
static char msg[16] = “Score: 0”;
//--
// LetterWindow:: L e t t e r W i n d o w

LetterWindow::LetterWindow(PTWindowsObject parent,
 PuzzleFrame* pzlf) :

continues

248

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.7. continued

 TWindow(parent, NULL), pf(pzlf),
 top(0), left(0), w(1), h(1), anim(NULL),
 sound_playing(0), curclock(0), pos0(0), pos1(0)
{
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 ticktock[0] = &PuzzleFrame::tick_music;
 ticktock[1] = &PuzzleFrame::tock_music;
}
//--
// LetterWindow:: ~ L e t t e r W i n d o w
// Destructor for the LetterWindow class

LetterWindow::~LetterWindow()
{
 if(anim != NULL) delete anim;
}
//--
// LetterWindow:: P a i n t
// Draw everything in the window

void LetterWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(anim != NULL)
 {
 anim->set_refresh(TRUE);
 anim->animate(hdc, top, left);
 }
}
//--
// LetterWindow:: u p d a t e
// Animate the sprites in the puzzle window

void LetterWindow::update()
{
 if(tcount++ > htpsec)
 {
 tcount = 0;
 clock[curclock]->inactive();
 curclock = 1 - curclock;
 clock[curclock]->active();
 PuzzleFrame::playmusic(*ticktock[curclock], 0);
 if(PuzzleFrame::start_curpzl &&
 PuzzleFrame::ticks_curpzl > 0)
 {

249

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// Show updated count
 tickpos0[pos0]->inactive();
 tickpos1[pos1]->inactive();
 PuzzleFrame::ticks_curpzl--;
 pos1 = PuzzleFrame::ticks_curpzl / 10;
 pos0 = PuzzleFrame::ticks_curpzl - 10*pos1;
 tickpos0[pos0]->active();
 tickpos1[pos1]->active();
 }
 score->move(0, 0);
 time->move(0, 0);
 }
 if(anim != NULL)
 {
 HDC hdc = GetDC(HWindow);
 anim->animate(hdc, top, left);
 ReleaseDC(HWindow, hdc);
 }
}
//--
// LetterWindow:: i n i t
// Initialize the animation for this window

void LetterWindow::init()
{
// Do nothing if the current puzzle is not valid
 PuzzleInfo* pzl = PuzzleFrame::cur_puzzle;
 if(pzl == NULL) return;

// Change the cursor to an hourglass
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

// Clean up existing puzzle, if any
 if(anim != NULL) delete anim;

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Assuming that PuzzleWindow::init has been called,
// Set up the animation with the letters for the
// current word

 if(pzl != NULL)
 {

continues

250

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.7. continued

// Construct a SpriteAnimation with background for the puzzle
 anim = new SpriteAnimation(hdc, pf->ltr_wmax(),
 pf->ltr_hmax(),”ltrbg.bmp”);
 if(anim == NULL) return;
 if(PuzzleFrame::pzlpcs == NULL) return;

 short i, x = toolwidth, y = lystart;
 for(i = 0; i < pzl->numchars; i++)
 {
 lfname[0] = pzl->word[i];
 PuzzleFrame::pzlpcs[i].ltr_sprite = new
 Sprite(hdc, lfname, NULL);
 PuzzleFrame::pzlpcs[i].ltr_sprite->newpos(x, y);
 PuzzleFrame::pzlpcs[i].lx = x;
 PuzzleFrame::pzlpcs[i].ly = y;

// Add sprite to animation
 anim->add(PuzzleFrame::pzlpcs[i].ltr_sprite);
 x += lbmpwidth;
 }
 }
// Add the clock...
 clock[0] = new Sprite(hdc, “clock0.bmp”, NULL, 10000);
 clock[1] = new Sprite(hdc, “clock1.bmp”, NULL, 10000);

 clock[0]->newpos(pf->ltr_wmax() - bmpheight - 4, 0);
 clock[1]->newpos(pf->ltr_wmax() - bmpheight - 4, 0);
 curclock = 0;
 clock[1]->inactive();

 anim->add(clock[0]);
 anim->add(clock[1]);

// Add the time display
 time = new Sprite(hdc, “time.bmp”, NULL, 20000);
 time ->newpos(pf->ltr_wmax() - bmpheight - 4, 0);
 if(time ->width() < 40) time->width(40);
 if(time ->height() < 16) time->height(16);
 DRAWPROC proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_time,
 GetApplication()->hInstance);
 time->drawproc(proc, NULL);
 time->active();
 time->update();

 anim->add(time);

251

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

// Add the sprites to display tick count...
 char fname[8];
 short i;
 for(i = 0; i < 10; i++)
 {
 sprintf(fname, “%d.bmp”, i);
 tickpos0[i] = new Sprite(hdc, fname, NULL, 10000);
 tickpos1[i] = new Sprite(hdc, fname, NULL, 10000);
 tickpos0[i]->newpos(pf->ltr_wmax() - bmpheight - 24, 0);
 tickpos1[i]->newpos(pf->ltr_wmax() - bmpheight - 42, 0);
 tickpos0[i]->inactive();
 tickpos1[i]->inactive();
 anim->add(tickpos0[i]);
 anim->add(tickpos1[i]);
 }

 tickpos0[9]->active();
 tickpos1[9]->active();

// Add a label sprite to the left of the tick display...
 ticklabel = new Sprite(hdc, “ticklbl.bmp”, NULL, 10000);
 ticklabel->newpos(pf->ltr_wmax() - bmpheight - 83, 0);
 anim->add(ticklabel);

// Add the “score display sprite”
 score = new Sprite(hdc, “score.bmp”, NULL, 10000);
 score->newpos(pf->ltr_wmax() - bmpheight - 83, 17);
 if(score->width() < 80) score->width(80);
 if(score->height() < 16) score->height(16);
 dt.text = msg;
 dt.numchars = strlen(msg);
 proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_score,
 GetApplication()->hInstance);
 score->drawproc(proc, &dt);
 score->active();
 score->update();

 anim->add(score);

// Remember to release the DC
 ReleaseDC(HWindow, hdc);

// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
}

continues

252

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.7. continued

//--
void _FAR PASCAL _export disp_time(HDC hdc, short x, short y,
 LPVOID)
{
 SetBkMode(hdc, TRANSPARENT);
 SetTextColor(hdc, RGB(255, 255, 255));

 time_t bintime;
 time(&bintime);
 TextOut(hdc, x, y, ctime(&bintime)+11, 8);
}
//--
void _FAR PASCAL _export disp_score(HDC hdc, short x, short y,
 LPVOID data)
{
 TEXT_DATA *td = (TEXT_DATA*)data;
 SetBkMode(hdc, TRANSPARENT);

 SetTextColor(hdc, RGB(0, 0, 0));
 TextOut(hdc, x, y, td->text, td->numchars);
}
//--
// LetterWindow:: s e t _ s c o r e
// Set the score being displayed

void LetterWindow::set_score(short s)
{
 dt.numchars = sprintf(msg, “Score: %d”, s);
 score->needs_update();
}

ToolWindow Class
The ToolWindow class represents the tall and narrow window to the left of the
PuzzleWindow. This window displays a number of bitmap buttons that the player
can press to initiate actions such as start a new puzzle, turn the sound off or
on, and exit the game.

Listing 7.8 shows the declaration of the ToolWindow class together with a
supporting class, ToolIcon, that represents a small bitmap image. Each button
in the ToolWindow display is a ToolIcon. Unlike the other child windows, I did

253

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

not use a SpriteAnimation to manage the display in the ToolWindow class
because ToolWindow’s contents did not have to animated—they were a static
display of images.

Listing 7.8. toolwin.h—Declaration of the ToolWindow class.

//--
// File: toolwin.h
//
// Declares the ToolWindow class that represents the window
// where a number of buttons for the SPUZZLE game is shown.
//--
#if !defined(_ _TOOLWIN_H)
#define _ _TOOLWIN_H

#include <owl.h>

#define GO_ICON 1
#define QUIT_ICON 2
#define SOUND_ON_ICON 3
#define SOUND_OFF_ICON 4
#define NEXT_PZL_ICON 5

class PuzzleFrame;

struct ToolIcon
{
 ToolIcon() : active(0), id(0), img(NULL),
 xoff(0), yoff(0), x(0), y(0), w(0), h(0) {}

 ToolIcon(char *fname, short nid, short xo, short yo,
 unsigned short wdth, unsigned short hght,
 short xw, short yw, short act) : id(nid),
 xoff(xo), yoff(yo), w(wdth), h(hght),
 x(xw), y(yw), active(act)
 {
 img = Sprite::init_image(fname);
 }

 ~ToolIcon()
 {
 if(img != NULL) delete img;
 }

 short active; // Displayed only if active
 short id; // An integer icon ID

continues

254

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH7 LP#6

Listing 7.8. continued

 Image *img; // The icon’s image
 short xoff, // Align this point of image
 yoff; // with the point (x,y)
 short x, y; // Position in the tools window
 unsigned short w, h; // Width and height of icon
};

class ToolWindow : public TWindow
{
public:
 ToolWindow(PTWindowsObject parent, PuzzleFrame* pzlf) :
 TWindow(parent, NULL), pf(pzlf),
 icon_current(NULL)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 }

 void Paint(HDC hdc, PAINTSTRUCT& ps);
 void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];
 void WMLButtonDown(RTMessage msg) = [WM_FIRST + WM_LBUTTONDOWN];

 unsigned short width() { return w;}
 unsigned short height() { return h;}

 void active(short id);
 void inactive(short id);

private:
 unsigned short w, h; // Size of client area
 ToolIcon *icon_current;
 PuzzleFrame *pf;

 ToolIcon* icon_at(short x, short y);
 short get_index(short id);
};

#endif

Listing 7.9 shows the implementation of the ToolWindow class. Notice that
the icons representing the buttons are defined in a static array of ToolIcon ob-
jects. Each icon’s image comes from a specified file. The position of the image

255

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

is specified and a flag indicates whether to display the icon. You can have sev-
eral icons at a location and turn them on and off to show different buttons. This
is how I implemented the sound on-off button.

When the player presses the left mouse button down with the mouse cur-
sor inside a button, a specified action has to take place. I implemented this
feature by defining the WMLbuttonDown function to handle the WM_LBUTTONDOWN
message that Windows sends when the player presses the left mouse button.
The WMLButtonDown function calls another member function, icon_at, to deter-
mine if the mouse cursor is on an active icon at the time of the button down
event. If icon_at returns a valid icon identifier, WMLButtonDown uses a switch
statement to initiate the action corresponding to the icon. You can see the de-
tails of these actions in the WMLButtonDown function in Listing 7.9.

Listing 7.9. toolwin.cpp—
Implementation of the ToolWindow class.

//--
// File: toolwin.cpp
//
// Implementation of the ToolWindow class.
//--
#include “pzlframe.h”
#include “sounds.h”

#define XSTART 8
#define YSTART 8
#define YSPACE 4
#define ON 1
#define OFF 0

static ToolIcon icons[] =
{
 ToolIcon(“go.bmp”, GO_ICON, 0, 0, 32, 32,
 XSTART, YSTART, ON),
 ToolIcon(“sndon.bmp”, SOUND_ON_ICON, 0, 0, 32, 32,
 XSTART, YSTART+YSPACE+32, OFF),
 ToolIcon(“sndoff.bmp”, SOUND_OFF_ICON, 0, 0, 32, 32,
 XSTART, YSTART+YSPACE+32, ON),
 ToolIcon(“nxtpzl.bmp”, NEXT_PZL_ICON, 0, 0, 32, 32,
 XSTART, YSTART+2*(YSPACE+32), ON),

continues

256

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 ToolIcon(“quit.bmp”, QUIT_ICON, 0, 0, 32, 32,
 XSTART, YSTART+5*(YSPACE+32), ON)
};

static short numicons = sizeof(icons) / sizeof(icons[0]);

static short firsttime = 1;
//--
// ToolWindow:: P a i n t
// Draw everything in the window

void ToolWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
// Draw all active tool icons
 if(icons != NULL)
 {
 short i;
 for(i = 0; i < numicons; i++)
 {
 if(icons[i].active && icons[i].img != NULL)
 icons[i].img->show(hdc, icons[i].xoff,
 icons[i].yoff, icons[i].x, icons[i].y,
 icons[i].w, icons[i].h, SRCCOPY);
 }
 }
}
//--
// ToolWindow:: W M S i z e
// Save the location and size of the window

void ToolWindow::WMSize(RTMessage)
{
 RECT r;
 GetClientRect(HWindow, &r);
 w = r.left - r.right + 1;
 h = r.bottom - r.top + 1;
}
//--
// ToolWindow:: W M L B u t t o n D o w n
// Handle mouse button press

void ToolWindow::WMLButtonDown(RTMessage msg)
{
 short x = msg.LP.Lo;
 short y = msg.LP.Hi;
 icon_current = icon_at(x, y);

Listing 7.9. continued

257

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 if(icon_current != NULL)
 {
 switch(icon_current->id)
 {
 case GO_ICON:
 pf->puzzle_window()->shuffle();
 PuzzleFrame::start_curpzl = 1;
 PuzzleFrame::ticks_curpzl = 99;
 break;

 case SOUND_ON_ICON:
 PuzzleFrame::sound_on = 1;
 inactive(SOUND_ON_ICON);
 active(SOUND_OFF_ICON);
 break;

 case SOUND_OFF_ICON:
 PuzzleFrame::sound_on = 0;
 inactive(SOUND_OFF_ICON);
 active(SOUND_ON_ICON);
 break;

 case NEXT_PZL_ICON:
 PuzzleFrame::cur_puzzle = pf->next_puzzle();
 PuzzleFrame::done_curpzl = 0;
 PuzzleFrame::start_curpzl = 0;
 if(PuzzleFrame::cur_puzzle != NULL &&
 pf->puzzle_window() != NULL)
 pf->puzzle_window()->init();
 if(PuzzleFrame::cur_puzzle != NULL &&
 pf->letter_window() != NULL)
 pf->letter_window()->init();
 break;

 case QUIT_ICON:
// Play the closing music...
 PuzzleFrame::playmusic(
 PuzzleFrame::closing_music, TRUE);
 pf->hi_scores(“HISCORE.SPZ”);
 PostQuitMessage(0);
 break;
 }
 }
}
//--
// ToolWindow:: i c o n _ a t
// Return pointer to ToolIcon (if any) at a specified location

continues

258

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

ToolIcon* ToolWindow::icon_at(short x, short y)
{
 short i;
 ToolIcon *rti = NULL;

 if(icons == NULL) return rti;

 for(i = 0; i < numicons; i++)
 {
 if(!icons[i].active) continue;
 if(icons[i].img == NULL) continue;

 if(x < icons[i].x) continue;
 if(y < icons[i].y) continue;

 if(x > (icons[i].x + icons[i].w - 1)) continue;
 if(y > (icons[i].y + icons[i].h - 1)) continue;

 rti = &icons[i];
 break;
 }
 return rti;
}
//--
// ToolWindow:: g e t _ i n d e x
// Return the index of an icon in the icons array

short ToolWindow::get_index(short id)
{
 short i;
 for(i = 0; i < numicons; i++)
 if(icons[i].id == id) return i;

 return -1;
}
//--
// ToolWindow:: a c t i v e
// Make icon active

void ToolWindow::active(short id)
{
 short i;
 if((i = get_index(id)) >= 0)
 if(!icons[i].active)
 {

Listing 7.9. continued

259

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 icons[i].active = 1;
 InvalidateRect(HWindow, NULL, FALSE);
 }
}
//--
// ToolWindow:: i n a c t i v e
// Make icon inactive

void ToolWindow::inactive(short id)
{
 short i;
 if((i = get_index(id)) >= 0)
 if(icons[i].active)
 {
 icons[i].active = 0;
 InvalidateRect(HWindow, NULL, FALSE);
 }
}

StatusWindow Class
I use the StatusWindow class to liven up SPUZZLE by displaying a grassy scene
with a worm, a butterfly, and some bugs crawling across the screen. Listing
7.10 shows the header file statwin.h that declares the StatusWindow class. A
SpriteAnimation object manages the animation of the insects over the back-
ground scene.

Listing 7.10. statwin.h—
Declaration of the StatusWindow class.

//--
// File: statwin.h
//
// Declares the StatusWindow class that represents the window
// where the progress of the SPUZZLE game is shown.
//--
#if !defined(_ _STATWIN_H)
#define _ _STATWIN_H

#include <owl.h>
#include “spranim.h”

continues

260

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

Listing 7.10. continued

class PuzzleFrame;

class StatusWindow : public TWindow
{
public:
 StatusWindow(PTWindowsObject parent, PuzzleFrame *pzlf) :
 TWindow(parent, NULL), pf(pzlf), anim(NULL), s(NULL),
 w(1), h(1), top(0), left(0)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 }
 ~StatusWindow();

 void init();
 void update();
 void move_sprites();

 void Paint(HDC hdc, PAINTSTRUCT& ps);
 void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];

 unsigned short width() { return w;}
 unsigned short height() { return h;}
 void width(unsigned short _w) { w = _w;}
 void height(unsigned short _h) { h = _h;}

 void set_text(LPSTR t, short n);

private:
 PuzzleFrame *pf;
 unsigned short w, h; // Size of client area

// SpriteAnimation to display status information...
 SpriteAnimation *anim;
 Sprite **s;
 short top, left;
};

#endif

The implementation of the StatusWindow class is somewhat similar to that
of the AnimationWindow class in Chapter 5 (see Listing 7.11). As in
AnimationWindow, the sprites are defined by a static array of SpriteInfo struc-
tures named sprite_data. Most of the work in StatusWindow takes place in the

261

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

init, update, and move_sprites functions. The init function creates the
SpriteAnimation object, creates a Sprite object for each entry in sprite_data,
and adds each Sprite to the SpriteAnimation. The update function, invoked
from PuzzleFrame, moves the sprites by calling move_sprites, and updates the
animation by calling the animate function of the SpriteAnimation class (Chapter
5).

Listing 7.11. statwin.cpp—
Implementation of the StatusWindow class.

//--
// File: statwin.cpp
//
// Implementation of the StatusWindow class.
//--
#include “pzlframe.h”

struct SpriteInfo
{
 SpriteInfo(char* imgfname, char* mskfname,
 short xp, short yp, short xv, short yv,
 short prio, short ia) :
 imagefilename(imgfname), maskfilename(mskfname),
 xpos(xp), ypos(yp), xvel(xv), yvel(yv),
 priority(prio), isactive(ia) {}

 char* imagefilename;
 char* maskfilename;
 short xpos, ypos; // Initial x-y position
 short xvel, yvel; // Initial x- and y-velocity
 short priority;
 short isactive;
};
// Declare an array of sprites to be loaded from image files
static SpriteInfo sprite_data[] =
{
 SpriteInfo(“worm0.bmp”, “worm0m.bmp”, 300, 0, -1, 0, 1, 1),
 SpriteInfo(“worm1.bmp”, “worm1m.bmp”, 300, 0, -1, 0, 1, 0),
 SpriteInfo(“bfly.bmp”, “bflym.bmp”, 640, -4, -3, 0, 1, 1),
 SpriteInfo(“ant.bmp”, “antm.bmp”, 200, 20, -2, 0, 1, 1),
 SpriteInfo(“bug.bmp”, “bugm.bmp”, 400, 24, -1, 0, 1, 1),
 SpriteInfo(NULL, NULL, 200, 0, -1, 0, 99, 1)
};

// Total number of sprites
static int numsprites = sizeof(sprite_data) /

continues

262

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

Listing 7.11. continued
 sizeof(sprite_data[0]);

void _FAR PASCAL _export draw_text(HDC hdc, short x, short y,
 LPVOID data);

struct TEXT_DATA
{
 LPSTR text;
 size_t numchars;
};

static TEXT_DATA dt;
static LPSTR msg = “Click on GO to start puzzle”;

const short tpsec = 1000 / DISP_MILLISECONDS;
const short htpsec = tpsec / 5;
static short tcount = 0;
static short curworm = 0;

//--
// StatusWindow:: ~ S t a t u s W i n d o w
// Destructor for the StatusWindow class

StatusWindow::~StatusWindow()
{
 if(anim != NULL) delete anim;
 if(s != NULL) delete s;
}
//--
// StatusWindow:: P a i n t
// Draw everything in the window

void StatusWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(anim != NULL)
 {
 anim->set_refresh(TRUE);
 anim->animate(hdc, top, left);
 }
}
//--
// StatusWindow:: u p d a t e
// Animate the sprites in the puzzle window

void StatusWindow::update()
{
 if(anim != NULL)

263

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 {
 if(tcount++ > htpsec)
 {
 tcount = 0;
// Turn off the other worm sprite...
 curworm = 1 - curworm;
 sprite_data[curworm].isactive = 0;
 }

 move_sprites();

 HDC hdc = GetDC(HWindow);
 anim->animate(hdc, top, left);
 ReleaseDC(HWindow, hdc);
 }
}
//--
// StatusWindow:: W M S i z e
// Save the location and size of the window

void StatusWindow::WMSize(RTMessage)
{
 RECT r;
 GetClientRect(HWindow, &r);
 w = r.left - r.right + 1;
 h = r.bottom - r.top + 1;
}
//--
// StatusWindow:: i n i t
// Initialize sprites etc. used in the StatusWindow

void StatusWindow::init()
{
// If a SpriteAnimation exists, delete it...
 if(anim != NULL) delete anim;
 if(s != NULL) delete s;

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Construct a SpriteAnimation with background for the puzzle
 anim = new SpriteAnimation(hdc, pf->sts_wmax(),
 pf->sts_hmax(),
 “stsbg.bmp”);
 if(anim == NULL) return;

// Create the array of sprites
 s = new Sprite*[numsprites];

continues

264

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 int i;
 for(i = 0; i < numsprites; i++)
 {
 s[i] = new Sprite(hdc, sprite_data[i].imagefilename,
 sprite_data[i].maskfilename);
 s[i]->priority(sprite_data[i].priority);
 s[i]->newpos(sprite_data[i].xpos, sprite_data[i].ypos);
 if(!sprite_data[i].isactive) s[i]->inactive();
// Add sprite to animation
 anim->add(s[i]);
 }

// The last sprite is used to display a text string
// Set up size of sprite based on current font
 TEXTMETRIC tm;
 GetTextMetrics(hdc, &tm);
 short hchar = tm.tmHeight + tm.tmExternalLeading;
 short wchar = tm.tmAveCharWidth;
 s[numsprites-1]->width(30*wchar);
 s[numsprites-1]->height(hchar);
 dt.text = msg;
 dt.numchars = strlen(msg);
 DRAWPROC proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) draw_text,
 GetApplication()->hInstance);
 s[numsprites-1]->drawproc(proc, &dt);
 s[numsprites-1]->active();
 s[numsprites-1]->update();

// Release the DC
 ReleaseDC(HWindow, hdc);
}
//--
// StatusWindow:: m o v e _ s p r i t e s
// Move the sprites

void StatusWindow::move_sprites()
{
 int i;
 for(i = 0; i < numsprites; i++)
 {
 sprite_data[i].xpos += sprite_data[i].xvel;

 if(i==2) // Butterfly moves up and down...
 sprite_data[i].ypos = random(10) - 7;

 if(i==3) // ant moves up and down a bit

Listing 7.11. continued

265

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 sprite_data[i].ypos = 24 - random(4);

 if(i==4) // bug moves up and down a bit
 sprite_data[i].ypos = 24 - random(2);

 if(sprite_data[i].xpos <= -40)
 sprite_data[i].xpos = width() + 60;

 s[i]->move(sprite_data[i].xpos - s[i]->xpos(),
 sprite_data[i].ypos - s[i]->ypos());

 if(i == curworm)
 {
 s[i]->inactive();
 s[i]->update_done();
 }
 }
}
//--
void _FAR PASCAL _export draw_text(HDC hdc, short x, short y,
 LPVOID data)
{
 TEXT_DATA *td = (TEXT_DATA*)data;
 SetBkMode(hdc, TRANSPARENT);

 SetTextColor(hdc, RGB(0, 0, 255));
 TextOut(hdc, x, y, td->text, td->numchars);
}
//--
// StatusWindow:: s e t _ t e x t
// Set the text to be displayed in the status window

void StatusWindow::set_text(LPSTR t, short n)
{
 dt.text = t;
 dt.numchars = n;
}

Data Structures for Puzzle Information
Apart from the main window and the child windows that manage the user
interface of SPUZZLE, there are some supporting data structures used to rep-
resent the puzzles. Listing 7.12 shows the header file pzlinfo.h that implements
the structures PuzzleInfo, PuzzlePick, and PuzzlePiece that are used to store

266

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

information about the puzzles.

Listing 7.12. pzlinfo.h—Definition of data structure for
storing information about the puzzles.

//--
// File: pzlinfo.h
//
// Defines the structures to hold information about each puzzle.
//--
#if !defined(_ _PZLINFO_H)
#define __PZLINFO_H

class Sprite;

struct PuzzleInfo
{
 PuzzleInfo() : word(NULL), numchars(0), imgfname(NULL) {}

 ~PuzzleInfo()
 {
 if(word != NULL) delete word;
 if(imgfname != NULL) delete imgfname;
 }
 char* word; // Word to spell
 short numchars; // Number of characters in word
 char* imgfname; // Name of image file
};

struct PuzzlePick
{
 PuzzlePick() : index(0), done(0) {}
 PuzzlePick(short i, short d) : index(i), done(d) {}

 short index; // Index of selected puzzle
 short done; // Nonzero when puzzle is finished

};

struct PuzzlePiece
{
 Sprite *sprite; // Sprite denoting this piece
 short x, y; // Location of piece in finished puzzle
 short c; // Character associated with piece
 Sprite *ltr_sprite; // Sprite showing the letter
 short lx, ly; // Location of letter sprite
};

267

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

#endif

High Scores Dialog Box
SPUZZLE maintains a list of the players with the top 30 scores. I added this
feature because many arcade games have it and it illustrates the steps should
you need this for your own games.

The idea of the high scores dialog is to display the top scores in a list and
provide two text input fields: one for the player’s name and the other for a
quotation. Once the player fills in these input fields and presses the OK but-
ton, the name and the quote are entered into a file that stores the highest scores.

Listing 7.13 shows the file hscdial.h that declares the class HiscoreDialog
used to display the dialog box. HiscoreDialog is derived from the OWL class
TDialog. It maintains an array of high scores using the SortedArray container
from Borland’s container class library. Each entry in the SortedArray is a HiScore
structure, also declared in Listing 7.13.

The layout of HiscoreDialog is defined in the resource file SPUZZLE.RES, which
is in the companion disk. The hi_scores function of the PuzzleFrame class cre-
ates and uses the HiscoreDialog.

Listing 7.13. hscdial.h—
Declaration of classes for the high scores dialog.

//--
// File: hscdial.h
// Declaration of the HiscoreDialog class. The primary reason
// for this dialog class is to initialize the dialog properly.
//--
#if !defined _ _HSCDIAL_H
#define _ _HSCDIAL_H

#include <owl.h>
#include <sortarry.h> // For the SortedArray class
#include <sortable.h> // So that we can sort the HiScore entries

continues

268

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

Listing 7.13. continued

struct HiScore : public Sortable
{
 HiScore() : score(0), name(NULL), quote(NULL) {}

 ~HiScore()
 {
 if(name != NULL) delete name;
 if(quote != NULL) delete quote;
 }

// The next four functions are required because Sprite is
// derived from the Sortable class.

 classType isA() const { return HiScoreClass;}

 char _FAR *nameOf() const { return “HiScore”;}

 hashValueType hashValue() const { return 0;}

 void printOn(ostream _FAR& os) const
 {
 os << name << endl;
 os << score << endl;
 os << quote << endl;
 }

// The following function is needed to sort the HiScores
// according to the score.
 int isLessThan(const Object _FAR& ob) const
 { return score > ((HiScore&)ob).score;}

 int isEqual(const Object _FAR& ob) const
 { return score == ((HiScore&)ob).score;}

 Long score;
 char *name;
 char *quote;
 enum { HiScoreClass = __firstUserClass + 2};
};

class HiscoreDialog : public TDialog
{
public:
 HiscoreDialog(PTWindowsObject parent, LPSTR name,
 SortedArray* hi, short n) :

269

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 TDialog(parent, name), numentries(n),
 hiscores(hi) {}

 void WMInitDialog(RTMessage msg) = [WM_FIRST + WM_INITDIALOG];

// The following function takes care of some details when
// the “OK” button is pressed
 virtual void Ok(RTMessage msg) = [ID_FIRST + IDOK];

 HiScore* hi_score() { return hi;}

private:
 SortedArray *hiscores;
 short numentries;
 HiScore *hi;
};

#endif

Listing 7.14 shows the implementation of the two most important functions
of the HiscoreDialog class: WMInitDialog and Ok. Windows calls the WMInitDialog
function when the HiscoreDialog is initialized.

WMInitDialog adds the name, score, and quotation of the 30 players with the
highest scores into the list box that is a part of the dialog. Windows calls the Ok
function when the player presses the OK button in the dialog box. The Ok func-
tion extracts the inputs provided by the player and stores them in a new HiScore
object. The hi_scores function in PuzzleFrame takes care of creating and destroy-
ing the HiScore entries stored in the SortedArray named hiscores.

Listing 7.14. hscdial.cpp—
Implementation of classes for the high scores dialog.

//--
// File: hscdial.cpp
// Member functions of the HiscoreDialog class.
//--
#include “spzlres.h”
#include “hscdial.h”
//--
// HiscoreDialog:: W M I n i t D i a l o g
// Initialize the list box in the dialog...

continues

270

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

Listing 7.14. continued

void HiscoreDialog::WMInitDialog(RTMessage)
{
// Add the scores to the list box
 short i;
 char item[80];
 numentries = hiscores->getItemsInContainer();
 if(numentries > 30) numentries = 30;
 for(i = 0; i < numentries; i++)
 {
 HiScore& hi = (HiScore&)(*hiscores)[i];
 wsprintf(item, “%s\t%ld\t%s”,
 hi.name, hi.score, hi.quote);
 SendDlgItemMsg(ID_LISTBOX, LB_INSERTSTRING, i,
 (LPARAM)((LPSTR)item));
 }
// Limit the name edit box to 20 characters max
 SendDlgItemMsg(ID_NAME, EM_LIMITTEXT, 20, 0);

// and the “quote” edit control to 40 chars max
 SendDlgItemMsg(ID_QUOTE, EM_LIMITTEXT, 40, 0);

}
//--
// HiscoreDialog:: O k
// Called when OK button is pressed

void HiscoreDialog::Ok(RTMessage)
{
// Extract the name and the quote from the edit controls
 short nch = SendDlgItemMsg(ID_NAME, EM_LINELENGTH, 0, 0);

 hi = new HiScore;

 hi->name = new char[nch + 2];
 SendDlgItemMsg(ID_NAME, WM_GETTEXT, nch+1,
 (LPARAM)((LPSTR)hi->name));
 hi->name[nch+1] = ‘\0’;

 nch = SendDlgItemMsg(ID_QUOTE, EM_LINELENGTH, 0, 0);
 hi->quote = new char[nch + 2];
 SendDlgItemMsg(ID_QUOTE, WM_GETTEXT, nch+1,
 (LPARAM)((LPSTR)hi->quote));
 hi->quote[nch+1] = ‘\0’;

// Now exit the dialog...

271

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

 CloseWindow(IDOK);
}

Resources for SPUZZLE
I prepared the resource file for SPUZZLE, SPUZZLE.RES, with Borland’s Resource
Workshop application. SPUZZLE.RES is in the companion disk and contains the
bitmaps, dialog boxes, and menus used in SPUZZLE. To learn more about the
resources, open SPUZZLE.RES from Borland’s Resource Workshop.

Some of the resources, such as menu items and strings, have identifiers as-
sociated with them. These help you determine which string to load and which
menu item is selected, for instance. The header file spzlres.h, shown in List-
ing 7.15, defines symbolic constants for these resource identifiers.

Listing 7.15. spzlres.h—Resource identifiers for SPUZZLE.

//--
// File: spzlres.h
// Resource identifiers for the SPUZZLE game.
//--
#if !defined(_ _SPZLRES_H)
#define _ _SPZLRES_H

#include <owlrc.h> // For definitions of OWL IDs

#define IDM_HELP 200
#define IDM_ABOUT 201
#define ID_LISTBOX 101
#define ID_NAME 102
#define ID_QUOTE 103

// String IDs
#define IDS_PRESSGO 1
#define IDS_KEEPGOING 2
#define IDS_UCANDOIT 3
#define IDS_WOW 4
#define IDS_GOODJOB 5
#define IDS_TIMESUP 6
#define IDS_PRESSNEXT 7

272

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

#endif

Help File
You may have noticed that you can get help in SPUZZLE by pressing the F1
function key or by selecting Index from the Help menu. Adding the help facil-
ity is easy, provided you have a help file ready. As you can see from the Help
function shown in the file pzlframe.h (Listing 7.2), once you have the help file,
SPZLHLP.HLP, you can activate it from the handler for the help menu item as
follows:

WinHelp(HWindow, “SPZLHLP.HLP”, HELP_INDEX, 0);

Preparing the help file involves the following steps:

1. Using a word processor capable of producing a Rich Text Format (RTF)
output, prepare a file with the help information. I used Microsoft Word
for Windows to prepare the help file, which I saved as the RTF file:
SPZLHLP.RTF. Footnotes and hidden text are used to tie keywords and
topics to specific sections of the RTF file. You can find detailed infor-
mation on preparing the help file in the Help Compiler’s documenta-
tion in the Tools and Utilities Guide that accompanies Borland C++.

2. The RTF file has to be compiled by the Help Compiler (HC) before it
can be used by the WinHelp function. Essentially, you have to prepare a
Help Project File that you provide as input to HC. SPUZZLE’s help
project file, spzlhlp.hpj, shown in Listing 7.16. To create the file
SPZLHLP.HLP, you have to invoke HC with the following command:

HC spzlhlp.hpj

Listing 7.16. spzlhlp.hpj—Project file for the Help Compiler.

[OPTIONS]
TITLE=SPUZZLE Help
COMPRESS=true
WARNING=1

273

SPUZZLE—A Spelling Puzzle

Chapter

7

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

[FILES]
spzlhlp.rtf

Other Files
There are a host of other files that SPUZZLE needs. Most are images used for
the puzzles, for which I used scanned images. SPUZZLE also needs a small
bitmap image of each letter of the alphabet and the digits from 0 through 9. I
prepared these images in Borland’s Resource Workshop and saved them as
.BMP files.

The musical notes come from the files with the .SPM extension. The file for-
mat is explained in Chapter 6. I prepared these music files using a text editor.

You can find all these files in this book’s companion disk. Because of lim-
ited disk space, there may be very few puzzles on the disk. You should add
more puzzles to SPUZZLE by editing the SPUZZLE.CFG file as explained in ear-
lier sections of this chapter. If you have access to a scanner, you can scan in the
images for the puzzles; otherwise, simply draw simple images using PC
PaintBrush.

Summary
This chapter uses the image animation and sound generation techniques pre-
sented in the previous chapters and blends everything into an educational game
called SPUZZLE, which stands for Spelling Puzzle. The game teaches young
children spelling through a jigsaw puzzle. After installing the game from the
companion disk and trying it out, you can read this chapter to see how
SPUZZLE is implemented. Study Chapters 4, 5, and 6 before going through
this chapter because SPUZZLE uses many of the C++ classes that appear in
them.

274

Programming Windows Games with Borland C++

Two/NRS6 Prog Win Games Borland C++ 30292-6 angela 4-1-93 CH7 LP#6

275

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Chapter

8

3-D Graphics

276

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

So far you have seen techniques of image animation and how to use them in
games designed to run under Windows. Now it is time to turn to 3-D graph-
ics, the staple of many action games. This chapter develops a few C++ classes
to represent 3-D shapes and uses the classes in the BLOCKADE game in Chapter
9. Although computer graphics can generate realistic renditions of a scene using
ray tracing techniques, this chapter’s focus is only on displaying reasonably
complex shapes that are defined by three- or four-sided polygons. A brief de-
scription of 3-D coordinate transformations and vector operations is provided,
followed by the C++ classes that represent 3-D shapes. For more detailed in-
formation on 3-D graphics and, in particular, 3-D geometry, consult the books
listed at the end of this chapter.

Modeling 3-D Objects
To describe 3-D objects you need a 3-D coordinate system. A good way to de-
scribe a 3-D coordinate system is to start with a 2-D one. You are probably fa-
miliar with the 2-D Cartesian coordinate system. If you think of this page as a
plane, you define the 2-D coordinate system by first selecting a point as the
origin. Following the normal convention, pick the lower left corner of the page
as the origin. Then think of the bottom edge of the page as the x-axis and the
left edge as the y-axis. Note that the two coordinate axes are perpendicular to
each other. Once you have defined the origin and the axes, you can specify the
location of any point on the page by specifying its coordinates—the distances
along the x- and y-axes. As you can see from Figure 8.1, the x-coordinate is the
distance of the point along the x-axis and the y-coordinate is the distance along
the y-axis. The position of a point on the plane is generally expressed as: (x,y)
where x and y are the x- and y-coordinates.

3-D Cartesian Coordinates
The commonly used 3-D Cartesian coordinate system is an extension of the
2-D Cartesian coordinate system with the addition of a third axis—the z-axis—
oriented perpendicular to the plane containing the x- and y-axes. If you think
of the x- and y- axes with the positive x-axis extending to the right of the page
and the positive y-axis extending upward, the positive z-axis could either point

277

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

into the page or extend out of the page. I use the right-handed convention that
requires the positive z-axis to point out of the page (see Figure 8.2). The right-
handed coordinate system is the standard mathematical convention for express-
ing and manipulating 3-D coordinates in graphics and engineering disciplines,
which is why I use it in this book. Note that it does not matter which coordi-
nate convention you use as long as you are consistent and you know the im-
plications of your choice.

y-axis

x-axis

(x,y)

y

x(0,0)

Figure 8.1. 2-D Cartesian coordinate system.

Boundary Representation of 3-D Objects
One way to model 3-D objects is to specify the surfaces that constitute the
boundaries of the object. Although most realistic objects are bounded by curved
surfaces, it is possible to use simple polygons to approximate the boundary of
any object. In this chapter I represent an object’s boundary by a collection of
polygons. Of course many simple objects, such as cubes, are naturally bounded
by planes, but even objects with curved surfaces, such as a cylinder or a sphere,
can be adequately modeled by a large number of planar surfaces. In any case,
my focus is not on realistic object models but on models that are simple enough

278

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

to use in a game. Polygon-bounded objects are used extensively in many com-
puter games such as flight simulators that use 3-D animation. When appro-
priately shaded, polygons provide adequate realism and yet they are
computationally efficient to manipulate.

z-axis

x-axis

(x,y,z)

z

x(0,0,0)

Vector V

V

Projection of Vector
on the x-y plane

y-axis

y

Figure 8.2. Right-handed 3-D Cartesian coordinate system.

Constructing Objects with Polygons
A polygon is defined by its corners—the vertices. Each vertex is a 3-D point.
Like its 2-D counterpart, a 3-D point is expressed in terms of its x-, y-, and z-
coordinates, commonly written as (x,y,z). To define an object with polygons,
you have to start with a 3-D coordinate system for the object. Figure 8.3 shows
how you might define a unit cube—a cube with sides of length “one.”

When constructing a complicated 3-D scene, you might want to place sev-
eral copies of the same object at different locations in the scene. You might also
want to scale and rotate the objects. To do this, you need 3-D coordinate trans-
formations. You have to first define a coordinate system for the scene. Then

279

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

you have to scale, rotate, and translate the individual objects so that they are
positioned the way you want them. For instance, Figure 8.4 shows a 3-D scene
consisting of a plane with two cubes on it—each scaled, rotated, and positioned
in a different way.

z-axis

y-axis

x-axis

8 7

3

21

5
(0,0,1)

(0,1,1) (1,1,1)

(1,1,0)

(1,0,0)(0,0,0)

(1,0,1)
6

(0,1,0)

4

List of Vertices List of Polygons

Vertex No. Coordinates

1

2

3

4

5

6

7

8

(0,0,0)

(1,0,0)

(1,1,0)

(0,1,0)

(0,0,1)

(1,0,1)

(1,1,1)

(0,1,1)

Polygon No. Vertices

1

2

3

4

5

6

(1,2,3,4)

(5,6,7,8)

(1,5,8,4)

(2,3,7,6)

(1,2,6,5)

(4,3,7,8)

Figure 8.3. Vertices and polygons of a unit cube.

280

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

z

y

x

Figure 8.4. A 3-D scene built with transformed 3-D objects.

3-D Coordinate Transformations
Scaling, rotating, or translating a polygon-bound 3-D object involves trans-
forming the coordinates of the vertices. Each of the operations is a type of 3-D
coordinate transformation. A concise mathematical notation for expressing
coordinate transformation is the matrix-vector multiplication. The 3-D point
is represented by a three-dimensional column vector, which is simply the
x-, y-, and z-coordinates arranged in a column. A matrix is a two-dimensional
array of values with a specified number of elements in each row and column.
There are specific algebraic rules for multiplying one matrix with another or a
matrix with a vector. For example, here is how you would multiply a 3-D vec-
tor v by a 3x3 matrix T:

 t11 t12 t13 v1
T = t21 t22 t23 v = v2
 t31 t32 t33 v3

 t11 v1 + t12 v2 + t13 v3
T v = t21 v1 + t22 v2 + t23 v3
 t31 v1 + t32 v2 + t33 v3

281

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

As you can see, the product of a 3x3 matrix and a 3-D vector is another 3-D
vector. You can express any coordinate transformation of a 3-D point in terms
of a 3x3 matrix. Then the transformation can be applied by multiplying the
vector with the transformation matrix. The following sections describe the three
types of coordinate transformations: scaling, translation, and rotation.

Scaling
Scaling the coordinates of a point involves multiplying each coordinate by a
constant factor. For instance, if you multiply each coordinate of the unit cube
by two, the cube becomes twice as large as its previous size. You can also scale
the x-, y-, and z-coordinates unequally to get other effects. If you want to scale
the x-, y-, and z-coordinate of a 3-D point by the factors s1, s2, and s3, respec-
tively, the following 3x3 transformation matrix represents the scaling:

 s1 0 0
T = 0 s2 0
 0 0 s3

You can easily verify that multiplying a vector by this matrix scales the co-
ordinates in the desired manner. Note that although the scaling is shown in
terms of a transformation matrix, you do not have to go through the matrix-
vector multiplication in your programs. All you have to do is multiply each
coordinate by the appropriate factor.

Translation
Translation refers to moving an object to a new point while keeping its orienta-
tion the same. To translate a 3-D point, you simply have to add appropriate
offsets to the x-, y-, and z-coordinates to take into account the effect of the
movement. Thus, translation is basically an addition of two vectors. You can
express translation as a matrix multiplication, but you need another mathemati-
cal crutch—the homogeneous coordinate. You have to augment each 3-D coordi-
nate with an additional coordinate with a value of 1 like this:

 v1
v = v2
 v3
 1

282

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

This is known as a point in a homogeneous coordinate system. With this
definition, you can achieve a translation by multiplying this vector by a 4x4
transformation matrix whose last column represents the amount of translation:

 1 0 0 d1
 0 1 0 d2
T = 0 0 1 d3
 0 0 0 1

If you multiply the four-dimensional vector v by this matrix, you get this
result:

 v1 + d1
 v2 + d2
v = v3 + d3
 1

which represents a translation.

In fact, by using this artifact of homogeneous coordinates, you can express
all transformations as a series of matrix multiplications. In the rest of the dis-
cussion, I revert back to 3x3 transformation matrices.

Rotation
Rotation is the most complicated of the coordinate transformations and the most
important because rotation is what gives us the three-dimensional feeling of
being able to see behind an object by rotating it. The simplest way to specify
rotation is to express it as a sequence of rotations about the x-, y-, and z-axes.
Here are the transformation matrices Θ, Φ, and Ψ denoting rotation about the
x-, y-, and z-axes of a right-handed coordinate system:

 1 0 0 cosø 0 sinø cosÁ -sinÁ 0
 Θ = 0 cosÈ -sinÈ Φ = 0 1 0 Ψ = sinÁ cosÁ 0
 0 sinÈ cosÈ -sinø 0 cosø 0 0 1

Here, È, ø, and Á are the angles of rotation about the x-, y-, and z-axis, respec-
tively. Given these transformation matrices, if you rotate the vector v first about
the x-axis, then about the y-axis, and finally about the z-axis, the transformed
vector is

Ψ.Φ.Θ.v

283

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

You can multiply Ψ, Φ, and Θ to define a composite transformation matrix
R(È,ø,Á) that performs all the rotations:

 cosÁcosø -sinÁcosÈ+cosÁsinøsinÈ sinÁsinÈ+cosÁsinøcosÈ
R(È,ø,Á)= sinÁcosø cosÁcosÈ+sinÁsinøsinÈ -cosÁsinÈ+sinÁsinøcosÈ
 -sinø cosøsinÈ cosøcosÈ

There is only one note of caution in all this. Remember that matrix mul-
tiplication is not commutative—that means if A and B are two matrices, the
product AB is not the same as BA. Thus, if you apply the rotations about the
coordinate axes in a different order, the result is different.

A Few More Vector Operations
In addition to the coordinate transformations, you have to use a few other vector
operations when displaying 3-D graphics. So far I have been depicting a 3-D
vector as a point in space, but if you draw a line between the origin of the co-
ordinate system and the point, you see that the vector has a magnitude and an
orientation (see Figure 8.5). You can compute the magnitude of a vector v as
follows:

 v1
v = v2 ||v|| = sqrt(v1*v1 + v2*v2 + v3*v3)
 v3

where sqrt() denotes the square root.

To normalize a vector, you divide each coordinate of the vector by the mag-
nitude.

The dot product of two vectors, a.b, yields a single number given by the fol-
lowing expression:

 a1 b1
a = a2 b = b2 Dot product: a.b = (a1*b1 + a2*b2 + a3*b3)
 a3 b3

The dot product of two normalized vectors is equal to the cosine of the angle
between the two vectors.

Another important vector operation is the cross product of two vectors, which
is a third vector that is perpendicular to the plane containing the other two
vectors. The expression for the cross product of a and b, a_b is given by the
following:

284

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 ax bx (ay bz - az by)
a = ay b = by a _ b = (az bx - ax bz)
 az bz (ax by - ay bx)

FA

z'
View plane

From

x'

y'

UP

View coordinate axes are x'-y'-z'.

z

y

x

At

Figure 8.5. Specifying the view coordinate system.

If you know the orientation of two axes of a 3-D Cartesian coordinate system,
the third axis can be found by taking the cross product of the first two axes.
You see this property used when transforming a 3-D scene to the coordinate
frame of the viewer.

Viewing a 3-D Scene
So far I have described how you can scale, translate, and rotate objects and place
them in a 3-D scene. Now we turn to generating a 2-D representation of a 3-D
scene when viewed from a specific point. It is as if you are holding a camera,
pointing it toward the scene, and taking a picture. The question is how will
the picture look? To find the answer, you have to transform the entire scene
into the coordinate frame of the camera and project the 3-D points onto a plane.

285

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Transforming to View Coordinates
Using the camera analogy, you can specify the view coordinate frame in terms
of two points and a vector. As shown in Figure 8.5, the two important points
are

The point where the camera is located (the from point)

The point in the scene at which the camera looks (the at point)

The location of the camera is the origin of the camera’s coordinate system. It is
customary to define the z-axis of the camera’s coordinate system to be the line
joining the origin and the point at which the camera is looking. A third param-
eter, the up vector, completely specifies the orientation of the camera’s coordi-
nate frame.

We want the z-axis of the view coordinate system to coincide with the line
joining the from point to the at point—let us call the normalized version of this
vector FA. The plane normal to this axis is the x-y plane of the view coordinate
system. The unit vector along the x-axis of the view coordinate system is given
by the cross product FA✕UP where UP is the normalized up vector. Finally, the
unit vector along the z-axis is UP✕(FA✕UP). As explained in Section 5.7 of the
graphics textbook by Foley, van Dam, and others (1990), the transformation
matrix to convert the points in a scene to the view coordinate system is given
by

R = [FA✕UP UP✕(FA✕UP) UP]

where each entry is a column vector, resulting in a 3x3 matrix R. For a given
viewing direction, you can transform the points in a 3-D scene by multiplying
each point (a 3-D vector) by the transformation matrix R.

Perspective Projection
Once all points in the 3-D scene are transformed into the view coordinate sys-
tem, you can generate the 2-D representation of the scene by a projection, which
transforms 3-D coordinates into 2-D. The simplest projection is to drop
the z-coordinates after the transformation. Remember that the z-axis of the view
coordinate system is along the viewing direction. Thus, dropping the
z-coordinates gives you what is known as an orthographic projection.

286

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Unfortunately, orthographic projections do not provide a sense of depth. Our
visual system shows us what is known as a perspective projection of the 3-D
world around us. A good example of perspective projection is the view of a
straight stretch of railroad tracks. Even though the railroad tracks are parallel
lines, they seem to meet at a distance.

For a point (x,y,z) in the view coordinate system, the projected point is:

x’ = x.d/(d+z)
y’ = y.d/(d+z)

where d is the distance from the viewing point to the origin of the scene.

C++ Classes for 3-D Modeling
When developing a set of classes for 3-D modeling, I wanted to define a Scene3D
class that contained one or more 3-D shapes with each shape represented by a
Shape3D class. Each Shape3D consists of a number of planar facets, each mod-
eled by a Facet3D class. Each Facet3D, in turn, is represented by an ordered list
of vertices. A Vector3D class is used to encapsulate a vertex. Each Shape3D main-
tains its own array of vertices and a Facet3D object refers to its vertices by the
index of each vertex in the array. Keeping all vertices of a shape in a single array
makes it easier to apply the view transform to the vertices.

Defining the Primitive 3-D Classes
Listing 8.1 shows the file shape3d.h that declares the classes Vector3D, Facet3D,
and Shape3D. These classes are the primitive building blocks of any 3-D scene
represented by a Scene3D object.

A Vector3D is defined by three coordinates. I used a typedef to define the
type Coord. For now Coord is the same as float, but this allows us to switch
over to some other computationally efficient representation for the coordinates.
I wanted to leave open the possibility of using fixed-point arithmetic in the
future.

287

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

The Facet3D has up to four vertices. Instead of storing the Vector3D objects
that represent the vertices, Facet3D stores the index of the vertices from the array
of Vector3D maintained by the Shape3D class. This scheme allows us to store the
vertices without any possibility of duplicating them in the Facet3D objects (be-
cause adjacent facets share vertices).

The Shape3D class uses the array named vertices to store Vector3D objects
and the array named facets for Facet3D objects. An additional array of Vector3D
objects, xfrmv, is used to store coordinates of the vertices after transforming them
to the view coordinate system.

The Shape3D class stores the Vector3D and Facet3D objects in container classes
of type Array from the Borland Class Library. Additionally, the Scene3D class
uses an Array to store the Shape3D objects in a scene. To allow this, all three
classes, Vector3D, Facet3D, and Shape3D are derived from the Object class. As a
consequence of this, each of these classes requires a handful of extra member
functions, such as isA, nameOf, hashValue, and printOn.

Listing 8.1. shape3d.h—
Declaration of classes for 3-D primitives.

//--
// File: shape3d.h
// Declares a 3D shape consisting of polygonal facets.
//--
#if !defined(_ _SHAPE3D_H)
#define _ _SHAPE3D_H

#include <windows.h>
#include <fstream.h>
#include <array.h>
#include <math.h>

const unsigned short SHAPE_ACTIVE = 1;
const unsigned short SHAPE_UPDATE = 2;
const unsigned short SHAPE_SCALE = 4;
const unsigned short SHAPE_XLATE = 8;
const unsigned short SHAPE_ROTATE = 16;

// Later on we’ll replace these with sine and cosine tables
#define TabSin(x) sin(x)
#define TabCos(x) cos(x)

continues

288

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.1. continued

#define ToCoord(s) atoi(s)
#define ModCoord(x,y) fmod(x,y)

typedef float Coord;
#define abs_coord(x) fabs(x)
const Coord err = 0.001;

class Scene3D;

class Vector3D : public Object
{
friend Scene3D;
friend Shape3D;
friend View3DWindow;
friend void _FAR PASCAL _export draw_shape(HDC hdc,
 short x, short y,LPVOID data);
public:
 Vector3D() : x(0), y(0), z(0) {}
 Vector3D(Coord a, Coord b, Coord c) :
 x(a), y(b), z(c) {}
 Vector3D(const Vector3D& v) : x(v.x), y(v.y), z(v.z) {}

// The following functions are required because Vector3D is
// derived from Object (which we did to use Borland’s
// container class library)
 classType isA() const { return Vector3DClass;}

 char* nameOf() const { return “Vector3DClass”;}

 hashValueType hashValue() const
 { return (hashValueType)z;}

 int isEqual(const Object _FAR& ob) const;
 void printOn(ostream& os) const
 {
 os << x << “ “ << y << “ “ << z << endl;
 }

// Some operations on Vector3D objects
 Vector3D& operator=(const Vector3D& v)
 {
 if(this != &v)
 {
 x = v.x;
 y = v.y;

289

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 z = v.z;
 }
 return *this;
 }
 Coord abs() { return sqrt(x*x + y*y + z*z);}

 void scale(const Coord s)
 {
 if(abs_coord(s) > 0.0001)
 {
 x /= s;
 y /= s;
 z /= s;
 }
 }

 void diff(const Vector3D& v)
 {
 x -= v.x;
 y -= v.y;
 z -= v.z;
 }
 void normalize()
 {
 Coord s = abs();
 scale(s);
 }
 void cross(const Vector3D& v)
 {
 Coord x1 = y*v.z - v.y*z;
 Coord y1 = z*v.x - v.z*x;
 Coord z1 = x*v.y - v.x*y;
 x = x1;
 y = y1;
 z = z1;
 }
private:
 Coord x, y, z; // 3D coordinates of the vector

 enum { Vector3DClass = _ _firstUserClass + 10};
};

// A facet consists of 3 or 4 indices into an array
// of 3D vectors
class Facet3D : public Object
{
friend Scene3D;
friend Shape3D;

continues

290

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.1. continued

friend void _FAR PASCAL _export draw_shape(HDC hdc,
 short x, short y, LPVOID data);
public:
 Facet3D() : red(0), green(0), blue(0), flags(0), zavg(0)
 {
 vertex[0] = -1;
 vertex[1] = -1;
 vertex[2] = -1;
 vertex[3] = -1;
 }

// The following are required of every class derived from
// Object (which we must do if we want to use the Borland
// container classes).
 classType isA() const { return Facet3DClass;}
 char* nameOf() const { return “Facet3DClass”;}
 hashValueType hashValue() const
 {
 return (hashValueType)(vertex[0] + vertex[1]+
 vertex[2] + vertex[3]);
 }

 int isEqual(const Object _FAR& ob) const;

 void printOn(ostream& os) const
 {
 os << vertex[0] << “ “ << vertex[1] << “ “
 << vertex[2] << “ “ << vertex[3] << endl;
 os << red << “ “ << green << “ “ << blue << endl;
 }

 void rgb(unsigned char r, unsigned char g, unsigned char b)
 {
 red = r;
 green = g;
 blue = b;
 }

private:
 short vertex[4];
 Coord zavg;
 unsigned char red;
 unsigned char green;
 unsigned char blue;
 unsigned char flags; // For future use

 enum { Facet3DClass = __firstUserClass + 11};

291

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

};

// A shape is a collection of facets

class Shape3D : public Object
{
public:
friend Shape3D;
friend Scene3D;
friend void _FAR PASCAL _export draw_shape(HDC hdc,
 short x, short y, LPVOID data);
 Shape3D();

 ~Shape3D();

 classType isA() const { return Shape3DClass;}

 char* nameOf() const { return “Shape3DClass”;}

 hashValueType hashValue() const {return 0;}

 int isEqual(const Object _FAR& ob) const { return 0;}

 void printOn(ostream& os) const
 {
 os << numvertices << endl;
 os << vertices;
 os << numfacets << endl;
 os << facets;
 }

// Functions to manipulate the status of a shape
 unsigned short needs_update()
 { return status & SHAPE_UPDATE;}
 unsigned short is_active()
 { return status & SHAPE_ACTIVE;}
 unsigned short is_scaled()
 { return status & SHAPE_SCALE;}
 unsigned short is_translated()
 { return status & SHAPE_XLATE;}
 unsigned short is_rotated()
 { return status & SHAPE_ROTATE;}

 void active() { status |= SHAPE_ACTIVE | SHAPE_UPDATE;}
 void update() { status |= SHAPE_UPDATE;}
 void mark_scaled()

continues

292

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.1. continued

{ status |= SHAPE_SCALE | SHAPE_UPDATE;}
 void mark_xlated()
 { status |= SHAPE_XLATE | SHAPE_UPDATE;}
 void mark_rotated()
 { status |= SHAPE_ROTATE | SHAPE_UPDATE;}

 void update_done(){ status &= ~SHAPE_UPDATE;}
 void scale_done(){ status &= ~SHAPE_SCALE;}
 void translation_done(){ status &= ~SHAPE_XLATE;}
 void rotation_done(){ status &= ~SHAPE_ROTATE;}
 void inactive() { status &= ~SHAPE_ACTIVE;}

// Read a shape from a file
 read(const char* filename);

// Save a shape in a file
 write(const char* filename);

// Functions to translate and rotate the shapes in the scene.
// These functions simply accumulate in a transformation
// matrix-the actual transformation occurs when you
// call the “do_transform” function

 void scale(Coord sx, Coord sy, Coord sz);
 void translate(Coord tx, Coord ty, Coord tz);
 void rotate(Coord rx, Coord ry, Coord rz);
 void do_transform();
 void find_extents();
 void sort_facets();

 Coord min_xpos() { return xmin;}
 Coord max_xpos() { return xmax;}
 Coord min_ypos() { return ymin;}
 Coord max_ypos() { return ymax;}
 Coord min_zpos() { return zmin;}
 Coord max_zpos() { return zmax;}

private:
 Array *vertices; // Vertices in scene coordinates
 Array *xfrmv; // Temporary storage used after
 // transforming the vertices to
 // the viewer’s coordinate frame

 Array *facets; // Array of facets

 short numfacets;
 short numvertices;

293

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 Coord xmin, xmax;
 Coord ymin, ymax;
 Coord zmin, zmax;

 Coord xlat[3]; // Translation vector
 Coord sc[3]; // Scale factors
 Coord rot3x3[3][3]; // 3x3 rotation matrix
 unsigned short status;

 enum { Shape3DClass = _ _firstUserClass + 12};
};

#endif

Implementing Shape3D
Listing 8.2 shows the file shape3d.cpp that implements the classes Vector3D,
Facet3D, and Shape3D. Shape3D’s member functions scale, translate, and
rotate transform a shape with respect to the 3-D scene’s coordinate frame. These
functions do not actually apply the transformation; they simply accumulate
the specified transformations in a matrix. Then, a call to the do_transform func-
tion is necessary to apply the coordinate transformations.

The find_extents function finds the lower and upper limits of the Shape3D’s
coordinates along the x-, y-, and z-axes. The sort_facets function sorts the facets
in terms of increasing z-coordinates. This function is called before drawing the
facets to ensure that facets nearer to the viewing point hide the ones that are
further away. The read function is meant for loading a 3-D scene from a file.

Listing 8.2. shape3d.cpp—
Implementation of the classes representing 3-D primitives.

//--
// File: shape3d.cpp
// Implementation of the 3D shape classes.
//--
#include <string.h>
#include <stdlib.h>
#include “shape3d.h”

continues

294

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

//--
// Vector3D:: i s E q u a l
// Equality test for 3D vectors

Vector3D::isEqual(const Object _FAR& ob) const
{
 Vector3D v = (Vector3D&)ob;
 if(abs_coord(v.x - x) > err) return 0;
 if(abs_coord(v.y - y) > err) return 0;
 if(abs_coord(v.z - z) > err) return 0;
 return 1;
}
//--
// Facet3D:: i s E q u a l
// Equality test for 3D facets--I consider them equal if all
// vertex indices are equal.

Facet3D::isEqual(const Object _FAR& ob) const
{
 Facet3D f = (Facet3D&)ob;
 return ((f.vertex[0] == vertex[0]) &&
 (f.vertex[1] == vertex[1]) &&
 (f.vertex[2] == vertex[2]) &&
 (f.vertex[3] == vertex[3]));
}
//--
// Shape3D:: S h a p e 3 D
// Default constructor for the Shape3D class

Shape3D::Shape3D() : facets(NULL), vertices(NULL), xfrmv(NULL),
 numvertices(0), numfacets(0)
{
// Initialize the translation, rotation, and scaling transforms
 sc[0] = sc[1] = sc[2] = 1;
 xlat[0] = xlat[1] = xlat[2] = 0;
 short i, j;
 for(i = 0; i < 3; i++)
 for(j = 0; j < 3; j++)
 {
 if(i == j) rot3x3[i][j] = 1;
 else rot3x3[i][j] = 0;
 }
}
//--
// Shape3D:: ~ S h a p e 3 D
// Destructor for the Shape3D class

Listing 8.2. continued

295

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Shape3D::~Shape3D()
{
 if(vertices != NULL) delete vertices;
 if(xfrmv != NULL) delete xfrmv;
 if(facets != NULL) delete facets;
}
//--
// Shape3D:: s c a l e
// Store the scale factor for use during “do_transform”

void Shape3D::scale(Coord sx, Coord sy, Coord sz)
{
 sc[0] *= sx;
 sc[1] *= sy;
 sc[2] *= sz;
// Mark shape for update
 mark_scaled();
}
//--
// Shape3D:: t r a n s l a t e
// Store the translations for use during “do_transform”

void Shape3D::translate(Coord tx, Coord ty, Coord tz)
{
 xlat[0] += tx;
 xlat[1] += ty;
 xlat[2] += tz;
// Mark shape as “translated”
 mark_xlated();
}
//--
// Shape3D:: r o t a t e
// Update the rotational transformation matrix for later use

void Shape3D::rotate(Coord rx, Coord ry, Coord rz)
{
 Coord cosx = TabCos(rx);
 Coord sinx = TabSin(rx);
 Coord cosy = TabCos(ry);
 Coord siny = TabSin(ry);
 Coord cosz = TabCos(rz);
 Coord sinz = TabSin(rz);
 Coord coszcosy = cosz*cosy;
 Coord sinzcosy = sinz*cosy;
 Coord coszsiny = cosz*siny;
 Coord sinzsiny = sinz*siny;

 rot3x3[0][0] = coszcosy;

continues

296

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.2. continued

 rot3x3[0][1] = sinx*coszsiny - sinzcosy;
 rot3x3[0][2] = sinz*sinx + cosx*coszsiny;
 rot3x3[1][0] = sinzsiny;
 rot3x3[1][1] = coszcosy + sinx*sinzsiny;
 rot3x3[1][2] = cosx*sinzsiny - sinx*cosz;
 rot3x3[2][0] = -siny;
 rot3x3[2][1] = sinx*cosy;
 rot3x3[2][2] = cosx*cosy;

// Mark shape as “rotated”
 mark_rotated();
}
//--
// Shape3D:: r e a d
// Read a shape from a file

int Shape3D::read(const char* filename)
{
 ifstream ifs(filename, ios::in);
 if(!ifs) return 0;

 char line[80];
// Read and ignore the first line of comment
 ifs.getline(line, sizeof(line));

// Next comes the number of vertices
 ifs.getline(line, sizeof(line));
 numvertices = atoi(line);
 vertices = new Array(numvertices, 0, 8);
 if(vertices == NULL) return 0;
 xfrmv = new Array(numvertices, 0, 8);
 if(xfrmv == NULL)
 {
 delete vertices;
 return 0;
 }

// Read the vertices
 short i;
 char *token;
 for(i = 0; i < numvertices; i++)
 {
 ifs.getline(line, sizeof(line));
 if(!ifs)
 {
 numvertices = i;

297

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 return 0;
 }
 Vector3D* v = new Vector3D;
// Parse the line...first token
 token = strtok(line, “ “);
 v->x = ToCoord(token);

// Second token
 token = strtok(NULL, “ “);
 v->y = ToCoord(token);

// Third token
 token = strtok(NULL, “ “);
 v->z = ToCoord(token);
// Now insert the vector into the “vertices” array
 vertices->addAt(*v, i);
// Make a copy for the “xfrmv” array
 Vector3D* xv = new Vector3D(*v);
 xfrmv->addAt(*xv, i);
 }

// Now read the facets

 ifs.getline(line, sizeof(line));
 numfacets = atoi(line);
 facets = new Array(numfacets, 0, 8);
 if(facets == NULL) return 0;

 for(i = 0; i < numfacets; i++)
 {
 if(ifs.eof())
 {
 numvertices = i;
 return 0;
 }
 ifs.getline(line, sizeof(line));
 Facet3D* f = new Facet3D;

// Parse the line...first token
 token = strtok(line, “ “);
 f->vertex[0] = atoi(token);
// Second token
 token = strtok(NULL, “ “);
 f->vertex[1] = atoi(token);
// Third token
 token = strtok(NULL, “ “);
 f->vertex[2] = atoi(token);
// Fourth token

continues

298

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 token = strtok(NULL, “ “);
 if(token != NULL) f->vertex[3] = atoi(token);

// Colors of the facet follow on the next line
 ifs.getline(line, sizeof(line));

// Parse the line...first token
 token = strtok(line, “ “);
 f->red = atoi(token);
// Second token
 token = strtok(NULL, “ “);
 f->green = atoi(token);
// Third token
 token = strtok(NULL, “ “);
 f->blue = atoi(token);

// Now insert the vector in the array
 facets->addAt(*f, i);
 }

 return 1;
}
//--
// Shape3D:: w r i t e
// Save a shape in a file

int Shape3D::write(const char* filename)
{
// To be done later...
 return 1;
}
//--
// Shape3D:: d o _ t r a n s f o r m
// Apply any pending transform

void Shape3D::do_transform()
{
 short i, j;
 short nv = vertices->getItemsInContainer();
 if(nv <= 0) return;

// Scale, rotate, and translate shape.
 if(is_scaled())
 {
 if(is_rotated())
 {

Listing 8.2. continued

299

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

// Accumulate scaling into rotation
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 3; j++)
 rot3x3[i][j] *= sc[i];
 }
 }
 else
 {
// Scale all vertices in this shape
 for(i = 0; i < nv; i++)
 {
 Vector3D& v = (Vector3D&)(*vertices)[i];
 v.x *= sc[0];
 v.y *= sc[1];
 v.z *= sc[2];
 }
 }
 sc[0] = sc[1] = sc[2] = 1;
 scale_done();
 }

// Now do the rotation
 if(is_rotated())
 {
 for(i = 0; i < nv; i++)
 {
 Vector3D& v = (Vector3D&)(*vertices)[i];
 Coord x, y, z;
 x = rot3x3[0][0]*v.x + rot3x3[0][1]*v.y +
 rot3x3[0][2]*v.z;
 y = rot3x3[1][0]*v.x + rot3x3[1][1]*v.y +
 rot3x3[1][2]*v.z;
 z = rot3x3[2][0]*v.x + rot3x3[2][1]*v.y +
 rot3x3[2][2]*v.z;
 v.x = x;
 v.y = y;
 v.z = z;
 }
 for(i = 0; i < 3; i++)
 for(j = 0; j < 3; j++)
 {
 if(i == j) rot3x3[i][j] = 1;
 else rot3x3[i][j] = 0;
 }
 rotation_done();
 }

continues

300

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.2. continued

// Finally, the translation
 if(is_translated())
 {
 for(i = 0; i < nv; i++)
 {
 Vector3D& v = (Vector3D&)(*vertices)[i];
 v.x += xlat[0];
 v.y += xlat[1];
 v.z += xlat[2];
 }
 xlat[0] = xlat[1] = xlat[2] = 0;
 translation_done();
 }

}
//--
// Shape3D:: f i n d _ e x t e n t s
// Find the minimum and maximum x-y-z coordinates of all facets
// in the viewer’s coordinate frame.

void Shape3D::find_extents()
{
 short i, j, vindex;
 xmin = ymin = zmin = -32000;
 xmax = ymax = zmax = 32000;

 for(i = 0; i < numfacets; i++)
 {
 Facet3D& f = (Facet3D&)(*facets)[i];
 for(j = 0; j < 4; j++)
 {
 vindex = f.vertex[j];
 if(vindex < 0) break;
 Vector3D& v = (Vector3D&)(*xfrmv)[vindex];
 if(xmin > v.x) xmin = v.x;
 if(xmax < v.x) xmax = v.x;
 if(ymin > v.x) ymin = v.y;
 if(ymax < v.x) ymax = v.y;
 if(zmin > v.x) zmin = v.z;
 if(zmax < v.x) zmax = v.z;
 f.zavg += v.z;
 }
 f.zavg /= (Coord)j;
 }
}
//--

301

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

// Shape3D:: s o r t _ f a c e t s
// Sort the facets in order of descending min-z coord of facets

void Shape3D::sort_facets()
{
// Use a simple bubble sort
 short nf = facets->getItemsInContainer();

 short i, j;
 for(i = 0; i < nf; i++)
 {
 for(j = 0; j < nf-1; j++)
 {
 Facet3D& fj = (Facet3D&)(*facets)[j];
 Facet3D& fjp1 = (Facet3D&)(*facets)[j+1];
 if(fj.zavg < fjp1.zavg)
 {
 facets->detach(fj);
 facets->detach(fjp1);
 facets->addAt(fjp1, j);
 facets->addAt(fj, j+1);
 }
 }
 }
}

Defining the 3-D Scene
The 3-D scene is modeled by the Scene3D class. Listing 8.3 shows the file
scene3d.h that declares the Scene3D class. The most important component of
the Scene3D is the array of 3-D shapes represented by Shape3D objects.

Scene3D also includes a large number of variables for specifying the view-
ing parameters. Here is a partial list of Scene3D’s member variables:

Array *shape_array; is the array of Shape3D objects.

Shape3D **shapes; contains the same shapes as shape_array.

short numshapes; is the number of shapes in the scene.

unsigned short wview; is the width of the viewing window in pixels
(used to ensure that the 3-D view is centered in the window).

302

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

unsigned short hview; is the height of the viewing window in pixels
(used to ensure that the 3-D view is centered in the window).

unsigned short wview_2, hview_2; is half the width and height that are
precomputed to avoid unnecessary computations during display.

Coord view_angle; is an angle in degrees (used to magnify or reduce
the perspective view and in the view_transform function).

Vector3D from; specifies the location of the viewer.

Vector3D at; specifies the point at which the viewer is looking.

Vector3D up; specifies the orientation of the view coordinate system
(see description earlier in this chapter).

Coord max_view_angle, min_view_angle; specify the ranges within
which the view_angle must lie.

Coord max_zoom_range, min_zoom_range; specify the maximum and
minimum distances of the viewing point from the origin of the scene.

Listing 8.3. scene3d.h—Declaration of the Scene3D class.

//--
// File: scene3d.h
// Declarations for the Scene3D class that represents a 3D
// scenario containing Shape3D objects.
//--
#if !defined(_ _SCENE3D_H)
#define __SCENE3D_H

#include <windows.h>

#include “shape3d.h”

#define DEG_TO_RAD 0.0174532

class View3DWindow;

class Scene3D
{
public:
friend View3DWindow;
 Scene3D() : numshapes(0), shape_array(NULL), shapes(NULL),
 wview(640), hview(480), d(0) {}

303

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 Scene3D(unsigned short w, unsigned short h,
 const char* filename) : wview(w),
 hview(h), numshapes(0), shape_array(NULL),
 shapes(NULL), d(0)
 {
 read(filename);
 wview_2 = wview/2;
 hview_2 = hview/2;
 }

 ~Scene3D();

 int read(const char* filename);

 void view_transform();

 void zoomin(short step);
 void zoomout(short step);
 void movein(short step);
 void moveout(short step);
 void calc_from()
 {
// Compute x, y, z coords of “from” point
 Coord elrad = el * DEG_TO_RAD;
 Coord azrad = az * DEG_TO_RAD;
 Coord rcosthta = range * TabCos(elrad);
 from.x = rcosthta * TabCos(azrad);
 from.y = rcosthta * TabSin(azrad);
 from.z = range * TabSin(elrad);
 }
 void azimuth(Coord _az)
 {
 az = _az;
 if(az < min_az) az = min_az;
 if(az > max_az) az = max_az;
 calc_from();
 }
 Coord azimuth() { return az;}
 void az_step(Coord daz)
 {
 az += daz;
 az = ModCoord(az, 360);
 if(az < min_az) az = min_az;
 if(az > max_az) az = max_az;
 calc_from();
 }

 void elevation(Coord _el)

continues

304

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.3. continued

 {
 el = _el;
 if(el < min_el) el = min_el;
 if(el > max_el) el = max_el;
 calc_from();
 }
 Coord elevation() { return el;}
 void el_step(Coord del)
 {
 el += del;
 el = ModCoord(el, 360);
 if(el < min_el) el = min_el;
 if(el > max_el) el = max_el;
 calc_from();
 }

private:
 Array *shape_array; // array of Shape3D objects
 Shape3D **shapes;
 short numshapes;
 unsigned short wview; // Dimensions of view plane
 unsigned short hview;
 unsigned short wview_2, hview_2;
 Coord view_angle;
 Vector3D from;
 Vector3D at;
 Vector3D up;

 Vector3D v1, v2, v3;
 Coord xoffset, yoffset, zoffset;
 Coord d;
 Coord fov;
 Coord max_view_angle;
 Coord min_view_angle;
 Coord max_zoom_range;
 Coord min_zoom_range;
 Coord min_az, max_az;
 Coord min_el, max_el;
 Coord range, az, el;
};

#endif

Listing 8.4 shows the file scene3d.cpp that implements the Scene3D class. The
two most important member functions of Scene3D are: read and view_transform.

305

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Like the Shape3D class, Scene3D provides the read function for loading a scene
from a file.

The view_transform function computes the coordinates of all vertices in the
view coordinate system. If you look at the code in Listing 8.4, you see that
view_transform loops over all the Shape3D objects in the scene and for each
Shape3D, transforms the coordinates in the vertices array. The transformed
coordinates are stored in the xfrmv array in each Shape3D object. Thus, all that
a 3-D viewing program has to do is call view_transform for a given set of
viewing parameters and then draw the facets using the coordinates in the xfrmv
array of each Shape3D object in the 3-D scene.

Listing 8.4. scene3d.cpp—
Implementation of the Scene3D class.

//--
// File: scene3d.cpp
// Implementation of the Scene3D class.
//--
#include <string.h>
#include <stdlib.h>
#include “scene3d.h”
//--
// Scene3D:: ~ S c e n e 3 D
// Destructor for a Scene3D object

Scene3D::~Scene3D()
{
 if(shape_array != NULL) delete shape_array;
 if(shapes != NULL) delete shapes;
}
//--
// Scene3D:: r e a d
// Read a 3D scene from a file.

int Scene3D::read(const char* filename)
{
 if(filename == NULL) return 0;

 if(shape_array != NULL) delete shape_array;
 if(shapes != NULL) delete shapes;
 shape_array = NULL;
 shapes = NULL;

continues

306

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.4. continued

// Open file for input
 ifstream ifs(filename, ios::in);
 if(!ifs) return 0;

// Read the scene
 char line[80];
 char *token;

// Read the first line--a comment
 ifs.getline(line, sizeof(line));

// View angle
 ifs.getline(line, sizeof(line));
 token = strtok(line, “ “);
 min_view_angle = ToCoord(token);
 token = strtok(NULL, “ “);
 max_view_angle = ToCoord(token);
// Set initial view angle to midpoint between max and min
 view_angle = (max_view_angle + min_view_angle) / 2;
 Coord vua_rad = view_angle * DEG_TO_RAD / 2;
 Coord sv = TabSin(vua_rad);
 if(abs_coord(sv) < 0.000001) sv = 0.000001;
 fov = TabCos(vua_rad) / sv;

// Min/Max ranges of “from” point
 ifs.getline(line, sizeof(line));

 token = strtok(line, “ “);
 min_zoom_range = ToCoord(token);
 token = strtok(NULL, “ “);
 max_zoom_range = ToCoord(token);

// Min/max azimuth
 ifs.getline(line, sizeof(line));
 token = strtok(line, “ “);
 min_az = ToCoord(token);
 token = strtok(NULL, “ “);
 max_az = ToCoord(token);

// Min/max elevation
 ifs.getline(line, sizeof(line));
 token = strtok(line, “ “);
 min_el = ToCoord(token);
 token = strtok(NULL, “ “);
 max_el = ToCoord(token);

307

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

// The “From” vector
 ifs.getline(line, sizeof(line));

// Parse the line...first token
 token = strtok(line, “ “);
 range = ToCoord(token);
// Second token
 token = strtok(NULL, “ “);
 az = ToCoord(token);
// Third token
 token = strtok(NULL, “ “);
 el = ToCoord(token);
 calc_from();

// The “At” vector
 ifs.getline(line, sizeof(line));

// Parse the line...first token
 token = strtok(line, “ “);
 at.x = ToCoord(token);
// Second token
 token = strtok(NULL, “ “);
 at.y = ToCoord(token);
// Third token
 token = strtok(NULL, “ “);
 at.z = ToCoord(token);

// The “Up” vector
 ifs.getline(line, sizeof(line));

// Parse the line...first token
 token = strtok(line, “ “);
 up.x = ToCoord(token);
// Second token
 token = strtok(NULL, “ “);
 up.y = ToCoord(token);
// Third token
 token = strtok(NULL, “ “);
 up.z = ToCoord(token);

// Number of shapes
 ifs.getline(line, sizeof(line));
 numshapes = atoi(line);

// Allocate arrays
 shape_array = new Array(numshapes, 0, 8);
 shapes = new Shape3D*[numshapes];

continues

308

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.4. continued

 Coord x, y, z;

// Read the shapes from individual files...
 short i;
 for(i = 0; i < numshapes; i++)
 {
 if(ifs.eof())
 {
 numshapes = i;
 return 0;
 }
// First the file from which to read the shape’s data
 ifs.getline(line, sizeof(line));
 shapes[i] = new Shape3D;

 if(!shapes[i]->read(line))
 {
 numshapes = i;
 return 0;
 }
 while(strnicmp(line, “END”, 3) != 0)
 {
 ifs.getline(line, sizeof(line));
 if(ifs.eof())
 {
 numshapes = i;
 return 0;
 }
 token = strtok(line, “ “);

 if(strnicmp(token, “SCALE”, 5) == 0)
 {
 token = strtok(NULL, “ “);
 x = ToCoord(token);
 token = strtok(NULL, “ “);
 y = ToCoord(token);
 token = strtok(NULL, “ “);
 z = ToCoord(token);
 shapes[i]->scale(x, y, z);
 }
 if(strnicmp(token, “ROTATE”, 6) == 0)
 {
 token = strtok(NULL, “ “);
 x = ToCoord(token);
 token = strtok(NULL, “ “);
 y = ToCoord(token);

309

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 token = strtok(NULL, “ “);
 z = ToCoord(token);
 shapes[i]->rotate(x, y, z);
 }
 if(strnicmp(token, “TRANSLATE”, 9) == 0)
 {
 token = strtok(NULL, “ “);
 x = ToCoord(token);
 token = strtok(NULL, “ “);
 y = ToCoord(token);
 token = strtok(NULL, “ “);
 z = ToCoord(token);
 shapes[i]->translate(x, y, z);
 }
 if(strnicmp(token, “TRANSFORM”, 9) == 0)
 {
 shapes[i]->do_transform();
 }
 }
// Add this shape to the array of shapes
 shape_array->addAt(*(shapes[i]), i);
 }
 return 1;
}
//--
// Scene3D:: z o o m o u t
// Reduce the image by changing field of view

void Scene3D::zoomout(short step)
{
 Coord dv = (max_view_angle - min_view_angle) / (Coord)step;
 view_angle += dv;
 if(view_angle > max_view_angle)
 view_angle = max_view_angle;
 Coord vua_rad = view_angle * DEG_TO_RAD / 2;
 Coord sv = TabSin(vua_rad);
 if(abs_coord(sv) < 0.000001) sv = 0.000001;
 fov = TabCos(vua_rad) / sv;
}
//--
// Scene3D:: z o o m i n
// Enlarge the image by changing field of view

void Scene3D::zoomin(short step)
{
 Coord dv = (max_view_angle - min_view_angle) / (Coord)step;
 view_angle -= dv;
 if(view_angle < min_view_angle)
 view_angle = min_view_angle;

continues

310

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.4. continued

 Coord vua_rad = view_angle * DEG_TO_RAD / 2;
 Coord sv = TabSin(vua_rad);
 if(abs_coord(sv) < 0.000001) sv = 0.000001;
 fov = TabCos(vua_rad) / sv;
}
//--
// Scene3D:: m o v e i n
// Bring the “from” point closer

void Scene3D::movein(short step)
{
 Coord dR = (max_zoom_range - min_zoom_range) / (Coord)step;
 range -= dR;
 if(range < min_zoom_range) range = min_zoom_range;
 calc_from();
}
//--
// Scene3D:: m o v e o u t
// Move the “from” point farther away

void Scene3D::moveout(short step)
{
 Coord dR = (max_zoom_range - min_zoom_range) / (Coord)step;
 range += dR;
 if(range > max_zoom_range) range = max_zoom_range;
 calc_from();
}
//--
// Scene3D:: v i e w _ t r a n s f o r m
// Apply the viewing transform (convert all coordinates
// to the view coordinate frame).

void Scene3D::view_transform()
{
 d = range;

 Vector3D from2at = at;
 from2at.diff(from);
 v3 = from2at;
 v3.normalize();

 v1 = from2at;
 v1.cross(up);
 v1.normalize();

311

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

 v2 = v1;
 v2.cross(v3);
 v2.normalize();

 xoffset = from.x * v1.x + from.y * v1.y + from.z * v1.z;
 yoffset = from.x * v2.x + from.y * v2.y + from.z * v2.z;
 zoffset = from.x * v3.x + from.y * v3.y + from.z * v3.z;

// Apply the transform to all vertices in all shapes

 short i, j;
 Array *va, *xva;
 Coord fp;
 for(i = 0; i < numshapes; i++)
 {
 va = shapes[i]->vertices;
 xva = shapes[i]->xfrmv;
// Loop over all the vertices in this shape
 for(j = 0; j < shapes[i]->numvertices; j++)
 {
 Vector3D& v = (Vector3D&)(*va)[j];
 Vector3D& xv = (Vector3D&)(*xva)[j];
 xv.z = v.x*v3.x + v.y*v3.y + v.z*v3.z - zoffset;

 fp = fov * d/(d+xv.z);

 xv.x = fp*(v.x*v1.x + v.y*v1.y + v.z*v1.z - xoffset)
 + wview_2;
 xv.y = hview_2 -
 fp*(v.x*v2.x + v.y*v2.y + v.z*v2.z - yoffset);
 }
// Sort the facets and find bounding box of the transformed shape
 shapes[i]->find_extents();
 }
}

Loading a 3-D Scene from a File
The Shape3D class provides a read function to initialize a Shape3D object from a
file. The Scene3D class also provides a read function. To initialize a 3-D scene,
you have to use the Scene3D constructor that takes a file name as argument.
The constructor calls Scene3D::read to load the 3-D scene from a file.

312

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

I use a simple text file format to specify the 3-D scene. One reason for pick-
ing this format is that I can create the file with any text editor.

In my scheme, the 3-D scene is specified by two types of files. First a 3-D
scene definition file describes the shapes to be placed in the scene. Each shape
is defined in its own shape definition file.

As an example, consider the problem of creating a scene with two cubes of
different size and orientation. Listing 8.5 shows the file CUBE.SHP that defines
the cube shape. This is the file that Shape3D::read interprets to initialize the cube
shape.

Listing 8.5. CUBE.SHP—Definition of a cube.

This is a 50x50 cube (Naba 2/6/93).
8 Number of vertices
0 0 0 Coordinates of vertex 1
50 0 0 Coordinates of vertex 2
50 50 0 and so on...
0 50 0
0 0 50
50 0 50
50 50 50
0 50 50
6 Number of facets
0 1 2 3 A facet specified by a list of vertices
255 0 0 Color of the facet (R G B)
4 5 6 7
255 255 0
0 4 7 3
0 255 0
1 2 6 5
0 0 255
0 1 5 4
255 255 255
3 2 6 7
0 0 0

Now look at the scene description file, SAMPLE.S3D (Listing 8.6), that creates
two copies of the cube defined in the file CUBE.SHP (Listing 8.5).

313

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

Listing 8.6. SAMPLE.S3D—A sample 3-D scene definition file.

A sample 3D scene file with two cubes. (Naba, 2/6/93)
5 120 Ranges of angle that specifies the field of view
150 300 Min and Max ranges of “from” point
0 360 Min and Max azimuth angle
0 50 Min and Max elevation angle
200 270 30 View from this point (Range, azimuth, elevation)
0 0 0 Look at this point
0 0 1 Direction of the Up vector
2 Number of shapes in the scene
cube.shp ---- A shape ----
scale 2 2 2 Transformations for the shape
translate -150 -150 0
transform Perform the actual transformations
end Indicates end of transformations for shape
cube.shp ---- The next shape ----
translate 100 -20 0
rotate 0 0 45
transform
end

The Scene3D::read function reads and interprets files like the one shown in
Listing 8.6. Notice that each occurrence of a shape includes the name of a shape
definition file (in this case, cube.shp). Scene3D::read calls Shape3D::read to load
the shape’s definition from the shape file. After a shape is loaded, you can trans-
form it with the statements translate, rotate, and scale. Note that you have
to specify the keyword transform to actually apply the transformation. An end
keyword marks the end of the specification of each shape in the scene.

Figure 8.6 shows a view of the 3-D scene defined by the files shown in List-
ings 8.5 and 8.6. This view was generated by a simple viewer application
that is similar to what the View3DWindow class does in Chapter 9.

Viewing a 3-D Scene
Once the 3-D shape classes are defined, viewing the 3-D scene is straight-
forward. The first step is to transform all the vertices in the scene into the view
coordinate system. Next, the facets in each shape are sorted in descending

314

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

order of the average z-coordinate. Then the facets for each shape are drawn
using the Windows API function Polygon. The facets are drawn in the far-to-
near order starting with the ones that are furthest from the viewing point. Al-
though I am not showing any code to display 3-D scenes in this chapter, you
can see an example of displaying a 3-D scene in Listing 9.9 in the next chapter.

Figure 8.6. A view of a 3-D scene with two cubes.

Summary
Many computer games use 3-D representations of objects bound by polygons
because polygons are easy to manipulate and display. A polygon is represented
by three or more vertices. One way to construct a 3-D scene is to define 3-D
shapes with polygons and use 3-D coordinate transformations to place the
shapes in the scene. To view the scene from a specified point, all the vertices in
the 3-D scene are transformed into the view coordinate system. Then the

315

3-D Graphics

Chapter

8

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

transformed 3-D points are projected onto a plane normal to the viewing di-
rection. A simple way to hide any hidden surfaces is to draw the polygons start-
ing with the ones furthest from the viewing point to the nearest. Given the
direction of a light source, and the reflection coefficient of the surface, the poly-
gons can be shaded to create a reasonably realistic rendition of the 3-D scene.

Further Reading
If you are interested in 3-D graphics, you want a copy of the book by Foley,
van Dam, Feiner, and Hughes. This classic textbook covers all aspects of 3-D
graphics, including 3-D coordinate transformations and shading models.

If you want ready-to-use code, there are several books that provide code
listings of 3-D graphics algorithms. Both Angell and Tsoubelis and Watkins
and Sharp include code for generating ray-traced images of 3-D scenes. Both
books also show how to display the resulting images on VGA displays.

Loren Heiny also covers 3-D graphics and provides source code for display-
ing output under Windows.

Angell, Ian O., and Dimitrios Tsoubelis. Advanced Graphics on VGA and
XGA Cards Using Borland C++. New York: Wiley, 1992.

Foley, James D., Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics Principles and Practice, Second Edition.
Reading, MA: Addison-Wesley Publishing, 1990.

Heiny, Loren. Windows Graphics Programming with Borland C++. New
York: Wiley, 1992.

Watkins, Christopher D., and Larry Sharp. Programming in 3 Dimen-
sions. San Mateo, CA: M&T Books, 1992.

316

Programming Windows Games with Borland C++

two/NRS6 prog win games borland c++ #30292-6 BWebster 4-2-93 ch.8 lp#5

317

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Chapter

9

BLOCKADE—
A Game of

Modern Naval
Simulation

318

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

The SPUZZLE game in Chapter 7 illustrates the use of image animation tech-
niques in computer games designed for Windows. Chapter 8 introduces 3 -D
graphics and shows how to display 3-D shapes defined by polygons. This chap-
ter combines the graphics techniques of previous chapters with simulation
techniques to develop a game of modern naval simulation called BLOCKADE—
and includes the source code that implements it.

Before you plunge into the description of BLOCKADE, please note that the
sheer size of the game made it difficult for me to locate all the bugs and fix them.
You are essentially a beta tester for this game. Of course, the difference from
other beta products is that you get access to all the source code of the game.
That lets you fix bugs on your own and enhance the game any way you want.
You also get to see how I implemented some of the features of BLOCKADE.

Playing BLOCKADE
The source code for the BLOCKADE game and an executable version of the
game appears on this book’s companion disk. The code on the disk is orga-
nized by chapter, so the BLOCKADE game appears in the directory named
CH09. You should install the code from the disk, run Windows, and start
BLOCKADE to get a feel for the game. BLOCKADE has online help, which you
can access from the Help menu or by pressing the F1 key.

Overview of BLOCKADE
In BLOCKADE, you command a modern fighting ship assigned to emergency
duty enforcing a naval blockade in a troubled part of the world. Other than
maintaining some semblance of reality, BLOCKADE does not attempt to simu-
late real navy ships or tactics. The focus is more on arcade game-style action
that pits your ship against enemy patrol boats and aircraft as the enemy tries
to protect its cargo ship.

The scenario is as follows: A freighter carrying some valuable cargo is mak-
ing its way along the coast toward the port. You are instructed to proceed to
the general area of the freighter’s last reported position and stop it from

319

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

reaching port—using force, if necessary. You have to rely on your ship’s radar
and electronic listening devices to locate the freighter. You win the game if you
destroy the freighter before it has a chance to reach the port. While you navi-
gate your ship toward the estimated position of the freighter, enemy patrol
boats and attack aircraft try to ambush your ship. As you attempt to locate and
stop the freighter from reaching port, you have to pinpoint any approaching
enemy ships and aircraft. This is where the game is somewhat similar to the
arcade-style “shoot everything in sight” games. You have to use the ship’s
weapons to destroy the enemy as and where you can. BLOCKADE is pro-
grammed to automatically use your ship’s guns and missile defense systems
should your ship detect any incoming missiles.

At this point I should explain how the BLOCKADE game evolved. Origi-
nally I had planned a 3-D simulation of naval combat much like a flight simu-
lator, but as I completed a reasonable simulation of the ships, I realized that it
is difficult to convey a feeling of fast action because of the relatively slow speeds
at which ships move (when compared with the speed of aircraft, for instance).
Also, once I added the map and polar views, the game grew to such a large
size (in terms of lines of code) that I could provide only a simple 3-D viewing
window. Thus the 3-D aspects of the game are not as well developed as I had
originally intended. Even so, BLOCKADE is fairly enjoyable. You play the game
from the two other views—the map window and the polar window. The map
window shows you the geographic location of your ship and all other ships
and aircraft that your ship can detect through its radars. The polar window
shows the detected ships and aircraft with respect to your ship’s heading. When
playing the game, you set course from the map window and shoot at enemy
ships from the polar window.

Starting BLOCKADE
When you first run BLOCKADE, you see a screen similar to the one in Fig-
ure 9.1. Like many other computer games, the opening screen shows a picture
that illustrates the theme of the game. As the opening logo is displayed,
BLOCKADE loads bitmaps, creates the windows, and sets up the display.
The opening logo goes away after a few seconds or when you click on it.

320

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Figure 9.1. Opening screen in BLOCKADE.

Terminology of BLOCKADE
Like any game or software product, there are some terms that have special
meaning in BLOCKADE. The scenario is at the heart of BLOCKADE. A scenario
consists of a map and several platforms. Platforms refer to ships, aircraft, and
any other moving objects, including ammunition rounds and missiles. A plat-
form has sensors and weapons. The sensors refer to radar and other electronic
listening devices that modern ships and aircraft use to monitor the world
around them. The weapons on a ship or aircraft are missiles and various types
of guns. The term engage is often used to refer to the act of using a weapon
against a target.

A scenario may include several missions. A mission places the platforms at
various locations on the map and specifies how the platforms move about. At
start-up, BLOCKADE reads a configuration file named BLOCKADE.CFG and loads
one of the scenarios specified in that file. Then, BLOCKADE picks a mission
from the scenario file. It is the mission file that indicates which platforms are

321

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

part of the scenario. BLOCKADE initializes the platforms, sensors, and weap-
ons by reading the database files PLATFORM.DAT, SENSOR.DAT, and WEAPON.DAT
respectively. These are text files with information on a variety of platforms,
sensors, and weapons.

Components of the BLOCKADE Screen
Once the opening logo is gone, you see a screen like the one in Figure 9.2. The
layout is as follows:

At the top of the screen are a number of controls for adjusting the
simulation speed, setting the ship’s heading and speed, selecting the
weapon and the sensor, and launching the weapon. A counter shows
the current simulation time and the current score.

Status messages are displayed in the window at the bottom of the
screen. Note that the initial display prompts you to go to the polar
window to read a description of the current mission.

The scenario is displayed in a large window occupying most of the
screen. At the beginning, this window shows a map view of the
scenario with icons representing your ship and all other platforms
visible from your ship using the currently selected sensor. Other
possible views of the scenario include a polar view and a 3-D view.

The window along the left edge of the screen has the controls asso-
ciated with the current view, which is initially the map view. The
controls include arrows for scrolling, buttons for zooming into a view,
and buttons to change the current view.

Views in BLOCKADE
Figure 9.2 shows the map view in BLOCKADE. In this view you see the plat-
forms displayed on a map. Your ship appears as an icon, and all other ships
and aircraft that are detected by your ship’s sensors are displayed on the map.
The map view is useful for setting your ship’s heading because you have the
map as a reference to guide you. To set the heading, use the mouse to grab and
drag the heading indicator in the heading display area in the top window of
BLOCKADE. You can set the speed in the same way you set the heading.

322

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Figure 9.2. Map view in BLOCKADE.

3-D View
Figure 9.3 shows a 3-D view of the ship. The 3-D view does not have all the
details of the ship and it does not show shading. You do not need further dis-
cussion of the 3-D view because all interactions for playing the game occur in
the map window or the polar window.

Polar View
The polar view is where you play most of the game. As Figure 9.4 shows, the
polar view displays everything with respect to your ship, which is located at
the center of a circle. Your ship always points straight up, which is bearing zero
degrees. Bearing indicates the direction in which the ship is moving. Zero de-
grees is the bearing convention used by ships and it increases in the clockwise
direction. The tick marks along the edge of the circle help you determine the
bearing of other platforms with respect to your ship.

323

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Figure 9.3. 3-D view in BLOCKADE.

Figure 9.4. Polar view in BLOCKADE.

324

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

In the polar view, the radial direction represents range from your ship. The
entire polar plot is divided into ten circular rings. The range at the outermost
edge of the circle is shown in the window at the left edge of the screen. You
can zoom in or zoom out by clicking on the buttons that appear beneath the
range display.

A window immediately to the left of the polar plot displays some pertinent
information. As shown in Figure 9.4, this window initially displays a brief
description of the current mission. If you click at any point in the polar view,
the window to the left of the polar view displays the range and bearing of this
platform from your ship. If there is a platform at the point where you click, the
name of that platform is also displayed. Figure 9.5 shows an example of select-
ing a platform in the polar view.

Figure 9.5. Selecting a platform in the polar view.

Controlling Simulation Speed
The simulation speed control is at the upper left corner of the main window.
There are four buttons labeled 1x, 10x, 20x, and 30x. When 1x is selected, each

325

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

second of elapsed time is roughly equal to a second of simulation time. On the
other hand, selecting 30x causes the simulation to run 30 times faster than real
time. Because ships move slowly, you might want to run the simulation at 30x
to make everything happen faster.

Launching Weapons
The polar view is where you can select a platform as a target and launch a
weapon against it. Of course, the polar view shows only those platforms that
are detected by your sensors. To select a weapon, click on the Select Weapon
button. The display underneath cycles through all the weapons on your ship.
Once you select a target and a weapon, you can initiate the weapon launch by
clicking on the button labeled WPN LNCH that appears next to the current
weapon display. If the weapon is available, it is used against the selected
target.

The availability of a weapon depends on several factors. The target must be
within the range of the weapon and the target’s bearing must be within the
sectors where the weapon can be engaged. Yellow arcs, drawn around your
ship, indicate the valid sectors. Additionally, there is a limit on the number of
targets that a weapon can engage simultaneously.

There is one condition under which your ship’s weapons automatically
engage a target. If your ship detects a missile (not one launched by your ship),
all available weapon systems engage the missile. This is because missiles move
fast and there is very little time for the player to designate a missile as a target
and shoot it down.

Designing BLOCKADE
If I decompose the application using the model-view-controller model, you can
see that there are two categories of design elements in BLOCKADE:

Classes to model the scenario

Classes to view the scenario

326

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

I need the first set of classes for the simulation of ships, aircraft, and missiles
that are at the heart of the BLOCKADE game. The second set of classes are
derived from Borland’s OWL classes, and these are basically windows where
specific views of the scenario are presented. As much as possible, I tried to keep
the simulation models separate from the views of the scenario.

Simulating the Scenario
C++ is ideal for simulating the scenario because each physical entity can be
represented by a C++ class. In this case, I started with a Platform class that
represents anything that moves in the scenario. Initially I thought of deriving
other platform classes (such as Ship or Aircraft) from Platform, but soon I real-
ized that all platforms can be modeled adequately by a generic platform with
a large number of parameters.

A Platform has arrays of sensors and weapons. Like Platform, an all-
purpose Sensor class models all sensors while a Weapon class models the weap-
ons. One peculiarity of a Weapon is that when the weapon is engaged, it creates
a Platform corresponding to the gun round or the missile fired by the weapon.

A Scenario class models the battle scenario and has an array of Platform
objects.

Viewing the Scenario
All in all there are nine different window classes offering a variety of views in
BLOCKADE. At any time, there are four different windows visible within
BLOCKADE’s main window. Some of the windows share the same area of the
display screen, so only the topmost window is visible. Here are the nine win-
dow classes:

BlockadeFrame is the main window that encloses all other windows.

StatusWindow appears at the bottom part of the main window and it
displays status messages.

InfoWindow is the window at the top—it displays a number of controls
for changing the ship’s speed and course and launching weapons.

327

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

MapWindow, PolarWindow, and View3DWindow share the large display area
in the right middle part of the main window. Each of these window
classes offers a specific view of the scenario.

MapToolWindow, PolarToolWindow, and View3DToolWindow share the space
to the left of the MapWindow, PolarWindow, and View3DWindow, respec-
tively. Each tool window has a number of bitmaps representing tools
useful with the corresponding view window. Thus, MapToolWindow
goes with MapWindow, PolarToolWindow with PolarWindow, and
View3DToolWindow with View3DWindow.

Because the three view windows MapWindow, PolarWindow, and View3DWindow are
for similar purposes, they are all derived from a common base class named
DisplayWindow. Similarly, MapToolWindow, PolarToolWindow, and View3DToolWindow
are all derived from the ToolWindow class.

Game Definition Files
A series of files control the scenario that is simulated in BLOCKADE. The file
BLOCKADE.CFG is the configuration file that contains a list of file names defining
the scenarios that are available in BLOCKADE.

Each scenario file includes a list of platforms in the scenario and another set
of file names—mission files that define specific missions within a scenario. It’s
the mission file that actually specifies the positions of the platforms.

When initializing a platform, the platform’s data comes from a text file
named PLATFORM.DAT, which stores information on each platform by name. Simi-
larly, the file SENSOR.DAT is a text database of sensors and WEAPON.DAT holds in-
formation on weapons.

Implementing BLOCKADE
Given the list of classes listed in the previous sections, implementing BLOCK-
ADE is a matter of defining and implementing the classes. Nevertheless, the
sheer magnitude of the details nearly swamped me. I am convinced that I was
able to do so much only because I used object-oriented techniques and the
Borland C++ Windows-hosted development environment. First of all, I could

328

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

use the image animation classes from the previous chapters without any
change. The modular decomposition of the application into a number of C++
classes allowed me to write and test the application incrementally—a few
classes at a time.

Following the strategy I used when implementing SPUZZLE (see Chapter
7), I started by building a framework for BLOCKADE. My first goal was to get
the display up and running. This required definition of the application class
BlockadeApp and the window classes StatusWindow, InfoWindow, MapWindow,
PolarWindow , View3DWindow , MapToolWindow , PolarToolWindow , and
View3DToolWindow. I could leave many of these classes as bare shells and still
have an operational framework. Once the framework was available, I added
the details in each of the windows. Only after the displays were fairly stable,
did I start work on the Scenario, Platform, Sensor, and Weapon classes that make
up the naval simulation at the heart of BLOCKADE.

In the following sections I present the classes that make up BLOCKADE.
Because of the level of detail and the number of views that BLOCKADE offers,
the source files are rather lengthy. Each class is described briefly, pointing out
the important member functions and variables of each. You have to browse
through the source code for specific details.

Taking Stock of the Source Files
A list of all the source files gives you a feel for the size of the source code nec-
essary to implement a game like BLOCKADE. Table 9.1 shows most of the
header files that BLOCKADE needs. The table also identifies the listing where
the header file appears. This table shows only 15 header files that appear in
the CH09 directory on the companion disk. Note that BLOCKADE also needs
many header files from the previous chapters.

Table 9.1. Partial list of header files used by BLOCKADE.

Name Description

BFRAME.H Defines the BlockadeFrame class, which represents the
main window of BLOCKADE (Listing 9.2)

BLKDRES.H Defines the resource identifiers for the BLOCKADE
application (Listing 9.29)

329

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Name Description

DISPWIN.H Defines the view window classes: DisplayWindow,
MapWindow, PolarWindow, and View3DWindow (Listing 9.5)

INFOWIN.H Defines the InfoWindow class, the window that appears
along the top edge of the screen (Listing 9.15)

LOGOWIN.H Defines the LogoWindow class that represents the
window where the opening logo is displayed
(Listing 9.4) (see Figure 9.1)

PLATFORM.H Defines the Platform class (Listing 9.23)

SCENARIO.H Defines the Scenario class (a Scenario contains several
Platforms, and the Scenario class includes a large
number of static variables that store BLOCKADE’s
global information) (Listing 9.19)

SCENE3D.H Defines the Scene3D class representing a 3-D scene
(Listing 8.3)

SCNINFO.H Defines a number of structures (ScenarioInfo and
MissionInfo) that store information about the current
simulation (Listing 9.20)

SENSOR.H Defines the Sensor class (radars and electronic listen-
ing devices are typical sensors) (Listing 9.25)

SHAPE3D.H Defines 3-D shape classes, Vector3D, Facet3D, and
Shape3D (Listing 8.1)

SIMDEFS.H Defines many macros, typedefs, and the Sector class
(Listing 9.21)

STATWIN.H Defines the StatusWindow class that represents the
window at the bottom edge of BLOCKADE’s screen
(Listing 9.17)

TOOLWIN.H Defines the classes representing the windows that
appear to the left of the view windows: ToolWindow,
MapToolWindow, PolarToolWindow, and View3DToolWindow
(Listing 9.10)

WEAPON.H Defines the Weapon class (platforms have weapons)
(Listing 9.27)

330

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Table 9.2 shows the 18 major source files of BLOCKADE. Each entry briefly
describes what the source file contains and also indicates the listing where you
can find the source code. In addition to these 18 source files, BLOCKADE also
uses the source code for image display and animation from previous chapters.
Note that the source files shown in Table 9.2 appear in the CH09 directory on
the companion disk.

Table 9.2. Partial list of source files for BLOCKADE.

Name Description

BFRAME.CPP Implements the BlockadeFrame class (Listing 9.3)

BLOCKADE.CPP Defines the BlockadeApp class and the WinMain function
(Listing 9.1)

DISPWIN.CPP Implements the view window classes: DisplayWindow,
MapWindow, PolarWindow, and View3DWindow (Listing 9.6)

INFOWIN.CPP Implements the InfoWindow class (Listing 9.16)

MAPTOOL.CPP Implements the MapToolWindow class that provides the
tools to manipulate the map window (Listing 9.12)

MAPWIN.CPP Implements the MapWindow class that provides the map
view in BLOCKADE (Listing 9.7)

PLATFORM.CPP Implements the Platform class (Listing 9.24)

PLRTOOL.CPP Implements the PolarToolWindow class that pro-
vides the tools to interact with the polar view
in BLOCKADE (Listing 9.13)

POLARWIN.CPP Implements the PolarWindow class that displays the
polar view in BLOCKADE (Listing 9.8)

SCENARIO.CPP Implements the Scenario class (Listing 9.22)

SCENE3D.CPP Implements the Scene3D class, which represents a 3-D
scene (Listing 8.4)

SENSOR.CPP Implements the Sensor class (Listing 9.26)

SHAPE3D.CPP Implements the classes (Vector3D, Facet3D, Shape3D)
needed for modeling 3-D shapes (Listing 8.2)

331

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Name Description

STATWIN.CPP Implements the StatusWindow class that displays status
messages in a window along the bottom edge of the
screen (Listing 9.18)

TOOLWIN.CPP Implements the ToolWindow class, which is the base
class of MapToolWindow, PolarToolWindow, and
View3DToolWindow classes (Listing 9.11)

VU3DTOOL.CPP Implements the View3DToolWindow class that provides
the tools to manipulate the 3-D view displayed in
View3DWindow (Listing 9.14)

VU3DWIN.CPP Implements the View3DWindow class that shows a 3-D
view of the scene (Listing 9.9)

WEAPON.CPP Implements the Weapon class (Listing 9.28)

The Application Class
BLOCKADE’s main application class, BlockadeApp, is based on the TApplication
class from Borland’s OWL classes. Listing 9.1 shows the file blockade.cpp that
defines the BlockadeApp class and includes the WinMain function necessary for
any OWL-based application. The WinMain function creates an instance of
BlockadeApp and calls the Run member function to begin processing events.
BLOCKADE’s main window is displayed when the Run calls the InitMainWindow
function. InitMainWindow creates an instance of BlockadeFrame and this, in turn,
creates and displays all the child windows in BLOCKADE. InitMainWindow also
creates the logo window that displays the picture shown in Figure 9.1.

Listing 9.1. blockade.cpp—
The main function of the BLOCKADE application.

//--
// File: blockade.cpp
//
// An educational game that teaches spelling through puzzles.
//

continues

332

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.1. continued

//--
#include “bframe.h”

LogoWindow *logo;
//--
class BlockadeApp: public TApplication
{
public:
// Constructor that simply calls the base class constructor

 BlockadeApp(LPSTR name, HINSTANCE instance,
 HINSTANCE prev_instance, LPSTR cmdline, int show) :

 TApplication(name, instance, prev_instance,
 cmdline, show) {}

// Define function to initialize application’s main window
 void InitMainWindow();

// Define function to initialize an instance of this application
 void InitInstance();
};
//--
// V i e w 3 d A p p : : I n i t M a i n W i n d o w

void BlockadeApp::InitMainWindow()
{
 MainWindow = new BlockadeFrame(NULL, “Blockade”, “MainMenu”);
 logo = new LogoWindow(NULL, (BlockadeFrame*)MainWindow);
 MakeWindow(logo);
}
//--
// V i e w 3 d A p p : : I n i t I n s t a n c e

void BlockadeApp::InitInstance()
{
 TApplication::InitInstance();
 HAccTable = LoadAccelerators(hInstance, “MainAccelTable”);
}
//--
// W i n M a i n
//
// Create an instance of the application and “run” it.

int PASCAL WinMain(HINSTANCE instance, HINSTANCE prev_instance,
 LPSTR cmdline, int show)

333

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

{
 BlockadeApp Blockade(“Blockade”, instance,
 prev_instance, cmdline, show);

 Blockade.nCmdShow = SW_SHOWMAXIMIZED;
 Blockade.Run();

 return Blockade.Status;
}

BlockadeFrame Class
The BlockadeFrame class is responsible for creating and initializing the child
windows that constitute the user interface of the BLOCKADE game. As you
can see from the header file bframe.h (Listing 9.2), the BlockadeFrame class stores
pointers to all its child windows so that it can access and manipulate them. In
addition to the child windows, BlockadeFrame also contains a pointer to a
Scenario object that represents the scenario being simulated in BLOCKADE.

Listing 9.2. bframe.h—Declaration of the BlockadeFrame class.

//--
// File: bframe.h
// Declaration of the BlockadeFrame class, which represents
// the main window of the BLOCKADE game.
//--
#if !defined(_ _BFRAME_H)
#define _ _BFRAME_H

#include <owl.h>
#include “logowin.h”
#include “dispwin.h”
#include “statwin.h”
#include “toolwin.h”
#include “infowin.h”
#include “blkdres.h”

#include “scenario.h”
#include “scninfo.h”
#include “simdefs.h”

continues

334

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.2. continued

const short bmpheight = 40;
const short toolwidth = 64;

#define DISPLAY_TIMER 1

class BlockadeFrame : public TWindow
{
public:
 BlockadeFrame(PTWindowsObject parent, LPSTR title,
 LPSTR menu): TWindow(parent, title),
 view3d(NULL), polar(NULL),
 map(NULL), info(NULL), scene(NULL),
 status(NULL), polar_tools(NULL),
 map_tools(NULL), vu3d_tools(NULL),
 close_logo(-100), logo_displayed(0),
 numscenarios(0), scenario_data(NULL),
 nummissions(0), mission_data(NULL),
 current_scenario(NULL), current_mission(NULL),
 num_scndone(0), num_msndone(0)
 {
 AssignMenu(menu);
 }

 ~BlockadeFrame();

 Scenario* scenario() { return scene;}
 int load_scenarios(const char *filename);
 int load_missions(const char *filename);
 int pick_scenario();
 int pick_mission();
 void new_scenario();
 ScenarioInfo* scenario_info() { return current_scenario;}
 MissionInfo* mission_info() { return current_mission;}

 void GetWindowClass(WNDCLASS _FAR &wc);
 void WMCreate(RTMessage msg) = [WM_FIRST + WM_CREATE];
 void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];
 void WMTimer(RTMessage msg) = [WM_FIRST + WM_TIMER];
 void About(RTMessage msg) = [CM_FIRST + IDM_ABOUT];
 void Help(RTMessage msg) = [CM_FIRST + IDM_HELP]
 {
 WinHelp(HWindow, “BLKDHLP.HLP”, HELP_INDEX, 0);
 }

 View3DWindow* view3d_window() { return view3d;}
 MapWindow* map_window() { return map;}
 PolarWindow* polar_window() { return polar;}

335

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

 InfoWindow* info_window() { return info;}
 StatusWindow* status_window() { return status;}
 View3DToolWindow* view3d_tool_window() { return vu3d_tools;}
 MapToolWindow* map_tool_window() { return map_tools;}
 PolarToolWindow* polar_tool_window() { return polar_tools;}

 short view3d_window_visible() { return view3d_visible;}
 short map_window_visible() { return map_visible;}
 short polar_window_visible() { return polar_visible;}

 short max_width() { return wmax;}
 short max_height() { return hmax;}
 short vu3_wmax() { return wvu3;}
 short vu3_hmax() { return hvu3;}
 short info_wmax() { return winfo;}
 short info_hmax() { return hinfo;}
 short sts_wmax() { return wsts;}
 short sts_hmax() { return hsts;}

 void hide_view3d()
 {
 view3d_visible = FALSE;
 ShowWindow(view3d->HWindow, SW_HIDE);
 ShowWindow(vu3d_tools->HWindow, SW_HIDE);
 }
 void hide_polar()
 {
 polar_visible = FALSE;
 ShowWindow(polar->HWindow, SW_HIDE);
 ShowWindow(polar_tools->HWindow, SW_HIDE);
 }
 void hide_map()
 {
 map_visible = FALSE;
 ShowWindow(map->HWindow, SW_HIDE);
 ShowWindow(map_tools->HWindow, SW_HIDE);
 }
 void show_view3d()
 {
 view3d_visible = TRUE;
 ShowWindow(view3d->HWindow, SW_SHOW);
 ShowWindow(vu3d_tools->HWindow, SW_SHOW);
 InvalidateRect(view3d->HWindow, NULL, FALSE);
 InvalidateRect(vu3d_tools->HWindow, NULL, FALSE);
 }
 void show_polar()
 {

continues

336

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.2. continued

 polar_visible = TRUE;
 ShowWindow(polar->HWindow, SW_SHOW);
 ShowWindow(polar_tools->HWindow, SW_SHOW);
 InvalidateRect(polar->HWindow, NULL, FALSE);
 InvalidateRect(polar_tools->HWindow, NULL, FALSE);
 }
 void show_map()
 {
 map_visible = TRUE;
 ShowWindow(map->HWindow, SW_SHOW);
 ShowWindow(map_tools->HWindow, SW_SHOW);
 InvalidateRect(map->HWindow, NULL, FALSE);
 InvalidateRect(map_tools->HWindow, NULL, FALSE);
 }

 void logo_done() { close_logo = -1;}
 void logo_on() { logo_displayed = TRUE;}
 short hi_scores(const char *filename);

private:
 Scenario *scene; // The scenario being simulated
 View3DWindow *view3d;
 MapWindow *map;
 PolarWindow *polar;
 InfoWindow *info;
 StatusWindow *status;
 PolarToolWindow *polar_tools;
 View3DToolWindow *vu3d_tools;
 MapToolWindow *map_tools;
 unsigned short wmax, hmax; // BlockadeFrame’s dimensions
 unsigned short wvu3, hvu3; // View3DWindow’s dimensions
 unsigned short winfo, hinfo; // InfoWindow’s dimensions
 unsigned short wsts, hsts; // StatusWindow’s dimensions
 short timer_id;

 short view3d_visible;
 short polar_visible;
 short map_visible;
 short close_logo;
 short logo_displayed;

 short numscenarios;
 short nummissions;
 short num_scndone;
 short num_msndone;

337

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

 ScenarioInfo *scenario_data;
 ScenarioInfo *current_scenario;
 MissionInfo *mission_data;
 MissionInfo *current_mission;
};

#endif

Creating and Initializing the Child Windows
Listing 9.3 shows the file bframe.cpp, which implements the member functions
of the BlockadeFrame class. One of the first tasks of the BlockadeFrame class is to
create the child windows and position them properly. The child windows are
created in the WMCreate member function (see Listing 9.3), which handles the
WM_CREATE message that Windows sends when creating the BlockadeFrame
window.

The sizes and positions of the child windows depend on the size of the
BlockadeFrame window. This size is not known when the window is created,
but Windows sends a WM_SIZE message when the BlockadeFrame window is
moved or resized. The WMSize function handles the WM_SIZE function. Thus, a
good way to handle the resizing and positioning of the child windows is dur-
ing the first call to the WMSize function. The positions and sizes of the child
windows depend on the initial size of the BlockadeFrame window.

Note that in blockade.cpp (Listing 9.1), the BLOCKADE application is started
with the nCmdShow parameter set to SW_SHOWMAXIMIZED , which means
BLOCKADE’s main window, BlockadeFrame, uses the entire display screen.

Loading Scenarios and Missions
BlockadeFrame’s WMCreate function calls the load_scenarios function to open
the file BLOCKADE.CFG and initialize an array of ScenarioInfo structures
(scenario_data) with information on all available scenarios. Next the
pick_scenario function selects one of the scenarios and stores a pointer to the
selected scenario in the current_scenario variable.

338

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Once a scenario is picked, a call to the load_missions function loads infor-
mation on all available missions into the mission_data array. Finally, another
function, pick_mission, is called to select one of the missions for the current
game.

Note that the ScenarioInfo and MissionInfo structures are declared in the
header file scninfo.h, shown in Listing 9.20.

The actual initialization of the scenario is done by calling the new_scenario
function from the WMTimer function. A flag, init_done, is used to ensure that
the scenario is initialized only once.

Updating the Child Windows
All the child windows in BLOCKADE are updated using the image animation
techniques illustrated in Chapter 5. I set up a timer and call the update func-
tion of each child window in the WMTimer function (Listing 9.3) of the
BlockadeFrame class.

Displaying the High Scores Dialog
The hi_scores function of the BlockadeFrame class displays the high scores dialog
box using the same technique as the one in the SPUZZLE game (see Chapter
7). As you can see from Listing 9.3, the hi_scores function gets the top 30
scores from a file and displays them in a list box inside the high scores dialog,
which is an instance of the HiscoreDialog class (described in Chapter 7). The
hi_scores function is called from each of the ToolWindow classes when the player
clicks on the EXIT button.

Listing 9.3. bframe.cpp—
Implementation of the BlockadeFrame class.

//--
// File: bframe.cpp
//
// Implementation of the BlockadeFrame class--the main window of
// the BLOCKADE game.
//--

339

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

#include <string.h>
#include <fstream.h>
#include <strng.h>
#include “bframe.h”
#include “hscdial.h”

static short first_time = TRUE;
static short init_done = FALSE;
extern LogoWindow *logo;
static char *whitespace = “ \t”;
//--
// B l o c k a d e F r a m e : : W M C r e a t e
// Initializes the main window of the BLOCKADE game.

void BlockadeFrame:: WMCreate(RTMessage)
{
// Initialize random number generator with a random seed
 randomize();

// Read in scenario definitions from the BLOCKADE.CFG file
 load_scenarios(“BLOCKADE.CFG”);
 pick_scenario();
 load_missions(current_scenario->defnfile);
 pick_mission();

// Create the child windows
 view3d = new View3DWindow(this, this);
 GetApplication()->MakeWindow(view3d);

 polar = new PolarWindow(this, this);
 GetApplication()->MakeWindow(polar);

 map = new MapWindow(this, this);
 GetApplication()->MakeWindow(map);

 info = new InfoWindow(this, this);
 GetApplication()->MakeWindow(info);

 status = new StatusWindow(this, this);
 GetApplication()->MakeWindow(status);

 vu3d_tools = new View3DToolWindow(this, this);
 GetApplication()->MakeWindow(vu3d_tools);

 polar_tools = new PolarToolWindow(this, this);
 GetApplication()->MakeWindow(polar_tools);

continues

340

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.3. continued

 map_tools = new MapToolWindow(this, this);
 GetApplication()->MakeWindow(map_tools);
}
//--
// BlockadeFrame:: ~ B l o c k a d e F r a m e
// Destructor for a BlockadeFrame

BlockadeFrame::~BlockadeFrame()
{
// Kill the timer
 if(timer_id) KillTimer(HWindow, timer_id);

// Delete the child windows
 if(view3d != NULL) delete view3d;
 if(polar != NULL) delete polar;
 if(map != NULL) delete map;
 if(map_tools != NULL) delete map_tools;
 if(polar_tools != NULL) delete polar_tools;
 if(vu3d_tools != NULL) delete vu3d_tools;
 if(info != NULL) delete info;
 if(status != NULL) delete status;

// Delete scenario and mission info structures
 if(scenario_data != NULL) delete scenario_data;
 if(mission_data != NULL) delete mission_data;

// Delete the scenario used in the simulation
 if(scene != NULL) delete scene;
}
//--
// BlockadeFrame:: G e t W i n d o w C l a s s
// Set up icon for the Application

void BlockadeFrame::GetWindowClass(WNDCLASS _FAR &wc)
{
// First call the GetWindowClass function of the base class
 TWindow::GetWindowClass(wc);

// Set up icon for this application
 wc.hIcon = LoadIcon(wc.hInstance, “BLOCKADE_ICON”);
}
//--
// BlockadeFrame:: A b o u t
// Display the “About...” box

341

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

void BlockadeFrame::About(RTMessage)
{
 TDialog *p_about = new TDialog(this, “ABOUTBLOCKADE”);
 PTApplication app = GetApplication();
 app->ExecDialog(p_about);
}
//--
// BlockadeFrame:: W M S i z e
// Resize/Reposition all child windows when frame changes size

void BlockadeFrame::WMSize(RTMessage)
{
 if(IsIconic(HWindow)) return;

// Get the size of this window
 RECT r;
 GetClientRect(HWindow, &r);

 unsigned short w = r.right - r.left + 1;
 unsigned short h = r.bottom - r.top + 1;

// Resize and reposition child windows
// The info window is across the top
 if(info != NULL)
 {
 MoveWindow(info->HWindow, 0, 0, w, bmpheight, TRUE);
 info->width(w);
 info->height(bmpheight);
 }

// The status window is at the bottom
 if(status != NULL)
 {
 MoveWindow(status->HWindow, 0, h - bmpheight, w,
 bmpheight, TRUE);
 status->width(w);
 status->height(bmpheight);
 }

// All the tools windows are on the left
 short htool = h - 2*bmpheight;
 if(vu3d_tools != NULL)
 {
 MoveWindow(vu3d_tools->HWindow, 0, bmpheight, toolwidth,
 htool, TRUE);
 }
 if(polar_tools != NULL)
 {

continues

342

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.3. continued

 MoveWindow(polar_tools->HWindow, 0, bmpheight, toolwidth,
 htool, TRUE);
 }
 if(map_tools != NULL)
 {
 MoveWindow(map_tools->HWindow, 0, bmpheight, toolwidth,
 htool, TRUE);
 if(map_window()->image_ready())
 map_tools->set_scroll_buttons();
 }

// view3d, polar, and map windows share the large area in the
// middle to the right of the tools area
 if(view3d != NULL)
 {
 MoveWindow(view3d->HWindow, toolwidth, bmpheight,
 w - toolwidth, htool, TRUE);
 view3d->width(w-toolwidth);
 view3d->height(htool);
 }
 if(polar != NULL)
 {
 MoveWindow(polar->HWindow, toolwidth, bmpheight,
 w - toolwidth, htool, TRUE);
 polar->width(w-toolwidth);
 polar->height(htool);
 }
 if(map != NULL)
 {
 MoveWindow(map->HWindow, toolwidth, bmpheight,
 w - toolwidth, htool, TRUE);
 map->width(w-toolwidth);
 map->height(htool);
 }

 if(first_time)
 {
 first_time = 0;

// Save the maximum dimensions of some windows...
 wmax = w;
 hmax = h;
 wvu3 = w-toolwidth;
 hvu3 = htool;
 winfo = w;

343

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

 hinfo = bmpheight;
 wsts = w;
 hsts = bmpheight;

 hide_view3d();
 hide_polar();
 hide_map();

// Set up a timer to update the display and manage the game
 timer_id = SetTimer(HWindow, DISPLAY_TIMER,
 DISP_MILLISECONDS, NULL);
 if(!timer_id)
 MessageBox(HWindow, “Failed to start Timer!”,
 “View3D: BlockadeFrame”,
 MB_ICONEXCLAMATION | MB_OK);
 }
}
//--
// BlockadeFrame:: W M T i m e r
// Handle WM_TIMER events

void BlockadeFrame::WMTimer(RTMessage msg)
{
 switch(msg.WParam)
 {
 case DISPLAY_TIMER:
 if(logo_displayed && !init_done)
 {
 new_scenario();
 init_done = TRUE;
 }

// Call the update function of the child windows...
 if(close_logo < 0)
 {
// Make sure the logo window is on the top
 BringWindowToTop(logo->HWindow);
 close_logo++;
 if(close_logo >= 0)
 {
 delete logo;
 Scenario::status = RUNNING;
 }
 }

// Update the scenario
 if(scene != NULL) scene->update();

continues

344

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.3. continued

// If Scenario::refresh is set, ensure a refresh
 if(Scenario::refresh)
 {
 polar->refresh_anim();
 map->refresh_anim();
 Scenario::refresh = 0;
 }

// Then update the visible display
 if(view3d != NULL && view3d_visible)
 view3d->update();
 if(polar != NULL && polar_visible) polar->update();
 if(map != NULL && map_visible) map->update();
 if(info != NULL) info->update();
 if(status != NULL) status->update();
 break;

 default:
 break;
 }
}
//--
// LogoWindow:: W M L B u t t o n D o w n
// Handle button click in the “logo” window

void LogoWindow::WMLButtonDown(RTMessage)
{
 blockade_frame->logo_done();
 Scenario::status = RUNNING;
}
//--
// LogoWindow:: W M C r e a t e
// Resize and position the logo window in the middle of the
// main window.

void LogoWindow::WMCreate(RTMessage)
{
 SetWindowPos(HWindow, HWND_TOPMOST,
 100, 100, width(), height(), SWP_DRAWFRAME);
}
//--
// LogoWindow:: P a i n t
// Draw the logo

345

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

void LogoWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(img != NULL)img->show(hdc);
 blockade_frame->logo_on();
}
//--
// BlockadeFrame : : l o a d _ s c e n a r i o s
// Initialize an array of ScenarioInfo by reading from a file

int BlockadeFrame::load_scenarios(const char* filename)
{
// Open file for reading
 ifstream ifs(filename, ios::in);
 if(!ifs)
 {
// Error reading file. Return 0.
 return 0;
 }

// Read and interpret the contents of the file
 char line[81];

// First line should have the string BLOCKADE.CFG
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “BLOCKADE.CFG”,
 strlen(“BLOCKADE.CFG”)) != 0) return 0;

// Second line has a version number--just in case the
// contents have to change in the future
 ifs.getline(line, sizeof(line));
 short version = atoi(line);
 if(version != 1) return 0;

// Third line has the number of scenarios in this file.
 ifs.getline(line, sizeof(line));
 numscenarios = atoi(line);

// Allocate an array of ScenarioInfo structures
 ScenarioInfo *new_scenarios = new ScenarioInfo[numscenarios];
 if(new_scenarios == NULL) return 0;

// At this point we have an array of ScenarioInfo structures
// allocated. If there is an existing ScenarioInfo array,
// delete it before loading new values
 if(scenario_data != NULL) delete scenario_data;
 scenario_data = new_scenarios;

continues

346

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.3. continued

// Load all the scenario info...
 short i, len;
 char *token;
 for(i = 0; i < numscenarios; i++)
 {
// Ignore first line (it’s used as a separator)
 ifs.getline(line, sizeof(line));
// Scenario’s name
 ifs.getline(line, sizeof(line));
 len = strlen(line);
 scenario_data[i].name = new char[len+1];
 strcpy(scenario_data[i].name, line);

// Name of scenario definition file
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 len = strlen(token);
 scenario_data[i].defnfile = new char[len+1];
 strcpy(scenario_data[i].defnfile, token);

// Name of the map’s image file
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 len = strlen(token);
 scenario_data[i].mapfile = new char[len+1];
 strcpy(scenario_data[i].mapfile, token);

// Name of zoomed-in version of the map
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 len = strlen(token);
 scenario_data[i].zmapfile = new char[len+1];
 strcpy(scenario_data[i].zmapfile, token);

// Map zoom factor
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 scenario_data[i].mapzoom = atoi(token);

// Pixels per degree of latitude and longitude
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 scenario_data[i].pixperlat = atof(token);
 token = strtok(NULL, whitespace);
 scenario_data[i].pixperlng = atof(token);

347

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

// Latitude and longitude of upper left corner of map
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 scenario_data[i].orglat = atof(token);
 token = strtok(NULL, whitespace);
 scenario_data[i].orglng = atof(token);

 scenario_data[i].done = FALSE;
 }
 return 1;
}
//--
// BlockadeFrame : : l o a d _ m i s s i o n s
// Read the missions for the current scenario

int BlockadeFrame::load_missions(const char* filename)
{
 if(current_scenario == NULL) return 0;

// Open file for reading
 ifstream ifs(filename, ios::in);
 if(!ifs)
 {
// Error reading file. Return 0.
 return 0;
 }

// Read and interpret the contents of the file
 char line[81];

// First line should have the string BLOCKADE.BSN
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “BLOCKADE.BSN”,
 strlen(“BLOCKADE.BSN”)) != 0) return 0;

// Second line has a version number--just in case the
// contents have to change in the future
 ifs.getline(line, sizeof(line));
 short version = atoi(line);
 if(version != 1) return 0;

// Read the basic time period for updating platform positions
// Save it in the static variable: “Scenario::BASIC_PERIOD”
 char *token;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);

continues

348

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.3. continued

 Scenario::BASIC_PERIOD = atof(token);
 if(Scenario::BASIC_PERIOD < 0.0001)
 Scenario::BASIC_PERIOD = 0.0001;

// Read in a list of rectangles that define the valid regions
// where a ship can go. This is used to ensure that ships
// stay in the water.
 ifs.getline(line, sizeof(line));
 current_scenario->nrects = atoi(line);
 RECT *r = new RECT[current_scenario->nrects];
 if(r == NULL) return 0;
 if(current_scenario->validsea != NULL)
 delete current_scenario->validsea;
 current_scenario->validsea = r;

 short i;
 for(i = 0; i < current_scenario->nrects; i++)
 {
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 current_scenario->validsea[i].left = atoi(token);
 token = strtok(NULL, whitespace);
 current_scenario->validsea[i].top = atoi(token);
 token = strtok(NULL, whitespace);
 current_scenario->validsea[i].right = atoi(token);
 token = strtok(NULL, whitespace);
 current_scenario->validsea[i].bottom = atoi(token);
 }

// Next read the number of missions in this file.
 ifs.getline(line, sizeof(line));
 nummissions = atoi(line);

// Allocate an array of MissionInfo structures
 MissionInfo *new_missions = new MissionInfo[nummissions];
 if(new_missions == NULL) return 0;

// If there is an existing MissionInfo array,
// delete it before loading new values
 if(mission_data != NULL) delete mission_data;
 mission_data = new_missions;

// Load all the mission info...
 short len;
 for(i = 0; i < nummissions ; i++)
 {

349

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

 ifs.getline(line, sizeof(line));
 len = strlen(line);
 mission_data[i].name = new char[len+1];
 strcpy(mission_data[i].name, line);

// Name of 3D scene file
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 len = strlen(token);
 mission_data[i].s3dfile = new char[len+1];
 strcpy(mission_data[i].s3dfile, token);

// Name of image file for 3D display
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 len = strlen(token);
 mission_data[i].bg3dfile = new char[len+1];
 strcpy(mission_data[i].bg3dfile, token);

// Name of mission definition file
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 len = strlen(token);
 mission_data[i].defnfile = new char[len+1];
 strcpy(mission_data[i].defnfile, token);

 mission_data[i].done = FALSE;
 }
 return 1;
}
//--
// BlockadeFrame:: p i c k _ s c e n a r i o
// Pick a scenario to be played

int BlockadeFrame::pick_scenario()
{
 if(num_scndone == numscenarios) return FALSE;
 short index;
 while(1)
 {
 index = random(numscenarios);
 if(!scenario_data[index].done) break;
 }
 current_scenario = &scenario_data[index];
 return TRUE;
}

continues

350

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.3. continued

//--
// BlockadeFrame:: p i c k _ m i s s i o n
// Pick a mission within a scenario

int BlockadeFrame::pick_mission()
{
 if(num_msndone == nummissions) return FALSE;
 short index;
 while(1)
 {
 index = random(nummissions);
 if(!mission_data[index].done) break;
 }
 current_mission = &mission_data[index];
 return TRUE;
}
//--
// BlockadeFrame:: n e w _ s c e n a r i o
// Load a new scenario

void BlockadeFrame::new_scenario()
{
// Initialize all the child windows
 if(status != NULL)
 {
 status->init();
 status->update();
 }

// Load scenario...
 if(scene != NULL) delete scene;
 scene = new Scenario();
 scene->init(current_scenario, current_mission);

 if(view3d != NULL) view3d->init(
 current_mission->s3dfile,
 current_mission->bg3dfile);
 if(polar != NULL) polar->init();
 if(map != NULL) map->init();
 if(info != NULL) info->init();

 if(map_tools != NULL) map_tools->set_scroll_buttons();
 show_map();
}
//--
// BlockadeFrame:: h i _ s c o r e s
// Display the high scores and enter current score into the

351

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

// table (only if the current score is greater than the
// 30 highest scores in the “high score” file).

short BlockadeFrame::hi_scores(const char *filename)
{
// Load the current hi score table from the file
// Open file for reading
 ifstream ifs(filename, ios::in);
 if(!ifs)
 {
// Create a file with a single entry
 ofstream ofs(filename, ios::out);
 if(!ofs) return 1;
 ofs << “BLOCKADE.HISCORES” << endl;
 ofs << 1 << endl;
 ofs << 1 << endl;
 ofs << “Naba Barkakati” << endl;
 ofs << 999999 << endl;
 ofs << “Hope you like BLOCKADE!” << endl;
 ofs.close();
// Reopen it for reading
 ifs.open(filename, ios::in);
 if(!ifs) return 1;
 }

// Read and interpret the contents of the file
 char line[81];

// First line should have the string BLOCKADE.HISCORES
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “BLOCKADE.HISCORES”,
 strlen(“BLOCKADE.HISCORES”)) != 0) return 1;

// Second line has a version number--just in case the
// contents have to change in the future
 ifs.getline(line, sizeof(line));
 short version = atoi(line);
 if(version != 1) return 1;

// Third line has the number of entries in the file
 ifs.getline(line, sizeof(line));
 short numentries = atoi(line);

// Read all the entries into a SortedArray
 SortedArray* hiscores = new SortedArray(32, 0, 8);
 if(hiscores == NULL) return 1;
 short i;

continues

352

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.3. continued

 for(i = 0; i < numentries; i++)
 {
 HiScore *s = new HiScore;
 if(s == NULL)
 {
 delete hiscores;
 return 1;
 }
 if(ifs.eof())
 {
 numentries = i;
 }
 ifs.getline(line, sizeof(line));
 s->name = new char[strlen(line) +1];
 strcpy(s->name, line);

 ifs.getline(line, sizeof(line));
 s->score = atol(line);

 ifs.getline(line, sizeof(line));
 s->quote = new char[strlen(line) +1];
 strcpy(s->quote, line);

// Add the score to the array
 hiscores->add(*s);
 }

// Check if current score is greater than the top 30 scores
 short lastindex = 29;
 if(lastindex > numentries) lastindex = numentries - 1;
 HiScore& last_hi = (HiScore&)(*hiscores)[lastindex];
 if(((lastindex == numentries - 1) && (Scenario::score > 0)) ||
 (Scenario::score > last_hi.score))
 {
// Display the dialog box HISCORES
 HiscoreDialog *p_hiscores = new HiscoreDialog(this,
 “HISCORES”, hiscores, lastindex+1);
 PTApplication app = GetApplication();
 short r = app->ExecDialog(p_hiscores);

 if(r == IDOK)
 {
 HiScore *s = p_hiscores->hi_score();
 s->score = Scenario::score;
// Add this score to the hiscores array
 hiscores->add(*s);

353

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

// Now save the top 30 scores back in the file
 ifs.close();
// Open file for reading
 ofstream ofs(filename, ios::out);
 if(!ofs)
 {
// Error opening file. Return.
 delete hiscores;
 return 1;
 }
 ofs << “BLOCKADE.HISCORES” << endl;
 ofs << 1 << endl;
 short n = hiscores->getItemsInContainer();
 if(n > 30) n = 30;
 ofs << n << endl;
 for(i = 0; i < n; i++)
 {
 HiScore& hi = (HiScore&)(*hiscores)[i];
 ofs << hi;
 }
// Delete the SortedArray hiscores
 delete hiscores;
 return 1;
 }
 if(r == IDCANCEL)
 {
 if(hiscores != NULL) delete hiscores;
 return 0;
 }
 }
 return 1;
}

LogoWindow Class
The LogoWindow class is derived from the OWL class TWindow. I create an instance
of the LogoWindow class in the InitMainWindow function (see Listing 9.1) to dis-
play the opening logo in BLOCKADE. Listing 9.4 shows how the LogoWindow
class is declared. The member functions of the LogoWindow class are defined in
bframe.cpp (Listing 9.3) together with those of the BlockadeFrame class.

354

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.4. logowin.h—Declaration of the LogoWindow class.

//--
// File: logowin.h
//
// Declares the window where the opening logo of the BLOCKADE
// game is displayed.
//--
#if !defined(_ _LOGOWIN_H)
#define __LOGOWIN_H

#include <owl.h>
#include “sprite.h”

class BlockadeFrame;

class LogoWindow : public TWindow
{
public:
 LogoWindow(PTWindowsObject parent, BlockadeFrame* bf) :
 TWindow(parent, NULL), blockade_frame(bf)
 {
 Attr.Style = WS_POPUP | WS_BORDER | WS_VISIBLE;
 img = Sprite::init_image(“opening.bmp”);
 }

 ~LogoWindow()
 {
 if(img != NULL) delete img;
 }

 void Paint(HDC hdc, PAINTSTRUCT&);

 void WMLButtonDown(RTMessage) = [WM_FIRST + WM_LBUTTONDOWN];

 void WMCreate(RTMessage) = [WM_FIRST + WM_CREATE];

 short width() { return img->width();}
 short height() { return img->height();}

private:
 Image *img;
 BlockadeFrame *blockade_frame;
};

#endif

355

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

DisplayWindow Classes
BLOCKADE’s three view windows: MapWindow, PolarWindow, and View3DWindow,
are derived from the base class named DisplayWindow. The header file dispwin.h
declares these classes. As you can see from Listing 9.5, the base class
DisplayWindow is derived from the OWL class TWindow.

Each window class has an init function to initialize the window and an
update function to update the contents of the window. The new_scenario func-
tion in the BlockadeFrame class Listing 9.3) calls the init function of each of the
view windows. BlockadeFrame’s WMTimer function calls the update functions to
keep the view windows updated.

Each of the view windows uses an instance of the SpriteAnimation class
(described in Chapter 5) to display bitmapped images and other drawings. The
MapWindow class uses two SpriteAnimation objects: one to display the map of
the region where the scenario takes place and the other to display a zoomed-
in version of the map.

Listing 9.5. dispwin.h—
Declaration of the DisplayWindow classes.

//--
// File: dispwin.h
// Declares the window class that displays various views in
// the BLOCKADE game.
//--
#if !defined(_ _DISPWIN_H)
#define _ _DISPWIN_H

#include <owl.h>
#include <bstatic.h>
#include “scene3d.h”
#include “spranim.h”

#define VIEW_WIREFRAME 0
#define VIEW_SOLID 1

class BlockadeFrame;
class Platform;

class DisplayWindow : public TWindow
{
public:

continues

356

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.5. continued

 DisplayWindow(PTWindowsObject parent, BlockadeFrame *bf) :
 TWindow(parent, NULL), blockade_frame(bf),
 top(0), left(0), w(1), h(1),
 anim(NULL), s(NULL), spr_current(NULL)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 }

 virtual ~DisplayWindow();

 virtual void set_currents();
 virtual void get_currents();
 virtual void update() = 0;

 virtual void refresh_anim()
 {
 if(anim != NULL) anim->set_refresh(TRUE);
 }

 virtual unsigned short width() { return w;}
 virtual unsigned short height() { return h;}
 virtual void width(unsigned short _w) { w = _w;}
 virtual void height(unsigned short _h) { h = _h;}

 virtual void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];

protected:
 BlockadeFrame *blockade_frame;
 short top, left;
 unsigned short w, h; // Size of client area
 SpriteAnimation *anim;
 Sprite **s;
 Sprite *spr_current;
 Platform *cp;
 short xp, yp;
 float brg;
 float rng;
};

class View3DWindow : public DisplayWindow
{
public:
 View3DWindow(PTWindowsObject parent, BlockadeFrame *bf) :
 DisplayWindow(parent, bf), scene(NULL)
 {

357

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 }

 ~View3DWindow(){ if(scene != NULL) delete scene;}

 void init(const char* scenefile, char* bgfile);
 void update();

 void Paint(HDC hdc, PAINTSTRUCT&);

 Scene3D* scene3d() { return scene;}
 void adjust_view_angle(Coord a);
 void adjust_at(Coord x, Coord y, Coord z);

 static short view_type;

private:
 Scene3D *scene;
};

class PolarAnimation;

class PolarWindow : public DisplayWindow
{
public:
 PolarWindow(PTWindowsObject parent, BlockadeFrame *bf) :
 DisplayWindow(parent, bf), panim(NULL),
 infowin(NULL), infotext(NULL), nm_radius(40)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPCHILDREN | WS_CLIPSIBLINGS;
 }
 ~PolarWindow();

 void init();
 void update();
 void move_sprites();
 Platform* platform_at(short x, short y);

 void refresh_anim();

 void Paint(HDC hdc, PAINTSTRUCT&);
 void WMLButtonDown(RTMessage) = [WM_FIRST + WM_LBUTTONDOWN];

 short range_scale() { return nm_radius;}
 void range_scale(short n)

continues

358

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.5. continued

 {
 if(n > 0 && n != nm_radius)
 {
 nm_radius = n;
 }
 }
 short xcenter() { return xc;}
 short ycenter() { return yc;}

 void disp_mission();

private:
 PolarAnimation *panim;
 TBStatic *infowin; // Window to display some info
 short nm_radius; // Nautical miles being displayed
 short pix_radius; // Radius in pixels
 short xc, yc; // Center of circle
 short wiwin, hiwin;
 short nciwin;
 char *infotext;
 Sprite *wpncover; // Sprite to show weapon coverage
 Sprite *marker;
};

class MapWindow : public DisplayWindow
{
public:
 MapWindow(PTWindowsObject parent, BlockadeFrame *bf) :
 DisplayWindow(parent, bf), zoom_anim(NULL), zoomed(0),
 mouse_captured(0)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 }
 ~MapWindow()
 {
 if(zoom_anim != NULL) delete zoom_anim;
 }
 void init();
 void update();
 void move_sprites();
 Platform* platform_at(float lat, float lng);
 void mouse_at(short x, short y);

 void refresh_anim()
 {

359

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

 DisplayWindow::refresh_anim();
 if(zoom_anim != NULL) zoom_anim->set_refresh(TRUE);
 }

 void Paint(HDC hdc, PAINTSTRUCT&);
 void WMLButtonDown(RTMessage) = [WM_FIRST + WM_LBUTTONDOWN];
 void WMLButtonUp(RTMessage msg) = [WM_FIRST + WM_LBUTTONUP];
 void WMMouseMove(RTMessage msg) = [WM_FIRST + WM_MOUSEMOVE];

 short image_width() { return anim->bgimage()->width();}
 short image_height() { return anim->bgimage()->height();}
 short image_ready()
 {
 if(anim != NULL) return TRUE;
 else return FALSE;
 }

 void scroll_right();
 void scroll_left();
 void scroll_up();
 void scroll_down();

 void swap_anim()
 {
 if(zoom_anim == NULL) return;
 SpriteAnimation *t = anim;
 anim = zoom_anim;
 zoom_anim = t;
 anim->set_refresh(TRUE);
 zoomed = ~zoomed;
 }

private:
 SpriteAnimation *zoom_anim;
 short zoomed;
 Sprite *marker;
 Sprite *zmarker;

 short mouse_captured;
 short xlo, xhi;
 short ylo, yhi;
 short xlast;
 short ylast;
};

#endif

360

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Implementation of DisplayWindow
Listing 9.6 shows the implementation of the few common functions of the
classes that represent the view windows in BLOCKADE.

Listing 9.6. dispwin.cpp—
Implementation of the DisplayWindow class.

//--
// File: dispwin.cpp
// Implementation of the DisplayWindow class.
//--
#include <stdlib.h>
#include “bframe.h”

//--
// ~ D i s p l a y W i n d o w
// Destructor for the window.

DisplayWindow::~DisplayWindow()
{
 if(anim != NULL) delete anim;
 if(s != NULL) delete s;
}
//--
// DisplayWindow:: W M S i z e
// Save the location and size of the window

void DisplayWindow::WMSize(RTMessage)
{
 RECT r;
 GetClientRect(HWindow, &r);
 w = r.left - r.right + 1;
 h = r.bottom - r.top + 1;
}

Implementation of MapWindow
The MapWindow class represents the map view (see Figure 9.2). In this view of
the scenario, you see a map of the region where the game’s action takes place.
On the map you see the icon of your ship as well as icons representing other
ships and aircraft that are detected by your ship’s sensors.

361

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

The companion class MapToolWindow provides the controls to manipulate the
map view. Among the controls in a MapToolWindow, there are buttons to zoom
in, zoom out, and scroll the map display.

Listing 9.7 shows the member functions of the MapWindow class. Here are the
highlights of this class:

The init function prepares the items to be displayed in the window.
Note that there are two SpriteAnimation objects, one for the map and
the other for a zoomed version of the map.

The variable named anim always points to the current animation. The
member function swap_anim (defined inline in dispwin.h) swaps the
animations when the player clicks on the zoom button in the
MapToolWindow.

The member functions scroll_right, scroll_left, scroll_up, and
scroll_down scroll the map within the window. Scrolling is done by
adjusting what I call the bitmap origin—the point on the background
bitmap of the animation that gets mapped to the origin of the display
window.

The MapWindow class also handles mouse button press and mouse
movement events occurring in its window. The member functions
WMLButtonDown, WMMouseMove, and WMLButtonUp handle these events.
When you press the left mouse button with the mouse pointer on the
map, Windows calls WMLButtonDown, which gets the coordinates of the
mouse and calls the mouse_at function to display a marker at that point
and a status message. Mouse movements and button up events are
handled in a similar manner.

The function platform_at is called by mouse_at to determine the
platform, if any, at a specified location of the map.

Listing 9.7. mapwin.cpp—
Implementation of the MapWindow class.

//--
// File: mapwin.cpp
// Implementation of the MapWindow class.
//--
#include <stdlib.h>
#include “bframe.h”
#include <stdio.h>

continues

362

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.7. continued

#define SCROLL_BY 3

static char none[] = “--- NONE ---”;
//--
// MapWindow:: P a i n t
// Draw everything in the window

void MapWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(anim != NULL)
 {
 move_sprites();
 anim->set_refresh(TRUE);
 anim->animate(hdc, left, top);
 }
}
//--
// MapWindow:: u p d a t e
// Update the view of the scene in the window

void MapWindow::update()
{
 if(anim != NULL)
 {
 move_sprites();
 HDC hdc = GetDC(HWindow);
 anim->animate(hdc, left, top);
 ReleaseDC(HWindow, hdc);
 }
}
//--
// MapWindow:: i n i t
// Initialize the map.

void MapWindow::init()
{
// Change the cursor to an hourglass
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

// Clean up existing map, if any
 if(anim != NULL) delete anim;
 if(zoom_anim != NULL) delete zoom_anim;
 if(s != NULL) delete s;

363

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Construct a SpriteAnimation with the specified background
// image file
 anim = new SpriteAnimation(hdc, blockade_frame->vu3_wmax(),
 blockade_frame->vu3_hmax(),
 blockade_frame->scenario_info()->mapfile);

 if(anim == NULL)
 {
 ReleaseDC(HWindow, hdc);
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
 }

// Add sprites to the map
 short i, xpos, ypos;
 Sprite *spr;
 ScenarioInfo *si = blockade_frame->scenario_info();
 for(i = 0; i < blockade_frame->scenario()->numplatform(); i++)
 {
 spr = blockade_frame->scenario()->platform(i).
 map_sprite();
 xpos = (-si->orglng + blockade_frame->scenario()->
 platform(i).longitude()) * si->pixperlng -
 spr->width() / 2;
 ypos = (si->orglat - blockade_frame->scenario()->
 platform(i).latitude()) * si->pixperlat -
 spr->height() / 2;
 spr->newpos(xpos, ypos);
 if(i > 0) spr->inactive();
// Add sprite to animation
 anim->add(spr);
 }
// Add the sprite to be used as a “marker” in the map
 Platform *po = blockade_frame->scenario()->our_ship();
 marker = new Sprite(hdc, “marker.bmp”, “markerm.bmp”);
 marker->priority(10000);
 marker->id(-1);
 marker->newpos(po->map_sprite()->xpos() -
 po->map_sprite()->width() / 2,
 po->map_sprite()->ypos() -
 po->map_sprite()->height() / 2);
 marker->inactive();
 anim->add(marker);

continues

364

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.7. continued

// Add sprites to the zoomed version of the map
// Create a “zoomed-in” version of the map
 zoom_anim = new SpriteAnimation(hdc,
 blockade_frame->vu3_wmax(),
 blockade_frame->vu3_hmax(),
 blockade_frame->scenario_info()->zmapfile);
 if(zoom_anim != NULL)
 {
 for(i = 0; i < blockade_frame->scenario()->numplatform();
 i++)
 {
 spr = blockade_frame->scenario()->platform(i).
 zmap_sprite();
 xpos = (-si->orglng + blockade_frame->scenario()->
 platform(i).longitude()) * si->pixperlng *
 si->mapzoom - spr->width() / 2;
 ypos = (si->orglat - blockade_frame->scenario()->
 platform(i).latitude()) * si->pixperlat *
 si->mapzoom - spr->height() / 2;
 spr->newpos(xpos, ypos);
 if(i > 0) spr->inactive();
// Add sprite to animation
 zoom_anim->add(spr);
 }
// Add the sprite to be used as a “marker” in the zoomed map
 zmarker = new Sprite(hdc, “marker.bmp”, “markerm.bmp”);
 zmarker->priority(10000);
 zmarker->id(-1);
 zmarker->newpos(po->zmap_sprite()->xpos() -
 po->zmap_sprite()->width() / 2,
 po->zmap_sprite()->ypos() -
 po->zmap_sprite()->height() / 2);
 zmarker->inactive();
 anim->add(zmarker);
 }

// Remember to release the DC
 ReleaseDC(HWindow, hdc);

// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
}
//--
// MapWindow:: s c r o l l _ r i g h t

365

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

void MapWindow::scroll_right()
{
 if(anim == NULL) return;
 short x = anim->xbmp_origin();
 x += w / SCROLL_BY;
 if((x + w) > anim->bgimage()->width())
 x = anim->bgimage()->width() - w;
 anim->xbmp_origin(x);
 anim->set_refresh(1);
}
//--
// MapWindow:: s c r o l l _ l e f t

void MapWindow::scroll_left()
{
 if(anim == NULL) return;
 short x = anim->xbmp_origin();
 x -= w / SCROLL_BY;
 if(x < 0) x = 0;
 anim->xbmp_origin(x);
 anim->set_refresh(1);
}
//--
// MapWindow:: s c r o l l _ d o w n

void MapWindow::scroll_down()
{
 if(anim == NULL) return;
 short y = anim->ybmp_origin();
 y += h / SCROLL_BY;
 if((y + h) > anim->bgimage()->height())
 y = anim->bgimage()->height() - h;
 anim->ybmp_origin(y);
 anim->set_refresh(1);
}
//--
// MapWindow:: s c r o l l _ u p

void MapWindow::scroll_up()
{
 if(anim == NULL) return;
 short y = anim->ybmp_origin();
 y -= h / SCROLL_BY;
 if(y < 0) y = 0;
 anim->ybmp_origin(y);
 anim->set_refresh(1);

continues

366

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09a LP#6

Listing 9.7. continued

}
//--
// MapWindow:: m o v e _ s p r i t e s
// Reposition the platforms in the map window

void MapWindow::move_sprites()
{
 ScenarioInfo *si = blockade_frame->scenario_info();
 short i, xpos, ypos;
 Sprite *spr;
 float scale = 1.0;
 if(zoomed) scale = si->mapzoom;
 for(i = 0; i < blockade_frame->scenario()->numplatform(); i++)
 {
 if(blockade_frame->scenario()->platform(i).is_active())
 {
 spr = blockade_frame->scenario()->platform(i).
 map_sprite();

// Don’t update sprite if it’s not marked active
 if(!spr->is_active()) continue;

 if(zoomed) spr = blockade_frame->scenario()->
 platform(i).zmap_sprite();

 xpos = (-si->orglng + blockade_frame->scenario()->
 platform(i).longitude()) * si->pixperlng *
 scale - spr->width() / 2;
 ypos = (si->orglat - blockade_frame->scenario()->
 platform(i).latitude()) * si->pixperlat *
 scale - spr->height() / 2;
 short xdel = xpos - spr->xpos();
 short ydel = ypos - spr->ypos();
 spr->move(xdel, ydel);
 }
 }
}
//--
// MapWindow:: W M L B u t t o n D o w n
// Handle button down events in this window

void MapWindow::WMLButtonDown(RTMessage msg)
{
 short x = msg.LP.Lo;
 short y = msg.LP.Hi;

367

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 mouse_captured = 1;
 SetCapture(HWindow);

 xlast = x;
 ylast = y;
 spr_current = marker;
 if(zoomed) spr_current = zmarker;
 spr_current->active();
 spr_current->update();

 mouse_at(x,y);
}
//--
// MapWindow:: W M M o u s e M o v e
// Handle mouse movements in this window

void MapWindow::WMMouseMove(RTMessage msg)
{
 if(!mouse_captured) return;

 short x = msg.LP.Lo;
 short y = msg.LP.Hi;
 mouse_at(x,y);
}
//--
// MapWindow:: W M L B u t t o n U p
// Handle button up event.

void MapWindow::WMLButtonUp(RTMessage msg)
{
 if(!mouse_captured) return;

 short x = msg.LP.Lo;
 short y = msg.LP.Hi;

 mouse_at(x,y);

 spr_current->inactive();
 Scenario::refresh = 1;
 spr_current = NULL;

// Clear the status message
 LPSTR msgtxt = blockade_frame->status_window()->
 get_msgbuf(1);
 msgtxt[0] = ‘ ‘;
 msgtxt[1] = ‘\0’;
 blockade_frame->status_window()->set_text(msgtxt, 1, 1);

continues

368

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.7. continued

// Release the mouse
 ReleaseCapture();
 mouse_captured = 0;
}
//--
// MapWindow:: m o u s e _ a t
// Display appropriate information for mouse at (x,y)

void MapWindow::mouse_at(short x, short y)
{
 if(!mouse_captured) return;
 if(spr_current == NULL) return;

 ScenarioInfo *si = blockade_frame->scenario_info();
 Platform *po = blockade_frame->scenario()->our_ship();
 float scale = 1.0;
 if(zoomed) scale = si->mapzoom;

// Convert (x,y) into (lng,lat)
 float lng = (anim->xbmp_origin() + x) / si->pixperlng /
 scale + si->orglng;
 float lat = - (anim->ybmp_origin() + y) / si->pixperlat /
 scale + si->orglat;

// Find range from player’s ship and the heading relative to
// north
 float xdist = lng - po->longitude();
 float ydist = lat - po->latitude();
 float rng;
 float brg;
 if(xdist == 0 && ydist == 0)
 {
 rng = 0;
 brg = 0;
 }
 else
 {
 rng = sqrt(xdist*xdist + ydist*ydist) * DEG2NM;
 brg = atan2(xdist, ydist) * RAD_TO_DEG;
 }
 if(brg < 0) brg += 360;

// Next, find the platform at the position of “mouse click”
 cp = platform_at(lat, lng);

// Display information in status window

369

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 char *nm = none;
 if(cp != NULL) nm = cp->name();

 LPSTR msgtxt = blockade_frame->status_window()->
 get_msgbuf(1);
 short len = sprintf(msgtxt,
 “Platform: %s “
 “Range: %.2f “
 “Bearing: %.2f”, nm, rng, brg);
 blockade_frame->status_window()->set_text(msgtxt, len, 1);

// Move the marker sprite
 short xdel = anim->xbmp_origin() + x
 - spr_current->xpos()
 - spr_current->width() / 2;
 short ydel = anim->ybmp_origin() + y
 - spr_current->ypos()
 - spr_current->height() / 2;
 spr_current->move(xdel, ydel);
}
//--
// MapWindow:: p l a t f o r m _ a t
// Find platform at specified position

Platform* MapWindow::platform_at(float lat, float lng)
{
 int i, np = blockade_frame->scenario()->numplatform();
 Platform *rp = NULL;

 for(i = 0; i < np; i++)
 {
 Platform *p = &(blockade_frame->scenario()->
 platform(i));
 if(!p->is_active()) continue;

 Sprite *spr = p->map_sprite();
 if(zoomed) spr = p->zmap_sprite();
 if(!spr->is_active()) continue;

 if((fabs(lat - p->latitude()) < 0.05) &&
 (fabs(lng - p->longitude()) < 0.05))
 {
 rp = p;
 break;
 }
 }
 return rp;
}

370

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Implementation of PolarWindow
Listing 9.8 shows the implementation of the PolarWindow class that displays a
polar view of the scenario (see Figure 9.4). In the polar view, you see circular
regions around your ship. The view shows, in polar coordinates, all platforms
detected by your ship. The angles in the polar view are with respect to your
ship. Thus, no matter what your ship’s true heading is, the polar view always
shows your ship heading straight up.

The companion class PolarToolWindow provides the controls to manipulate
the polar view. Among the controls in a PolarToolWindow, there are buttons to
zoom in and zoom out of the polar display. The zoom feature changes the range
scale; the current maximum range is displayed in an area above the zoom but-
tons. The following are some of the major features of the PolarWindow class:

The PolarWindow class uses a special version of SpriteAnimation, called
PolarAnimation. I specialized SpriteAnimation (defined in Chapter 5)
with a new member function called draw_polar_bg that draws the tick
marks and circles that I needed for the polar display. This is a good
example of a benefit of object-oriented programming—being able to
add new functionality to an existing class through inheritance.

The init function prepares the items to be displayed in the window.
Note that the sprites for the platforms are created by calling the
make_sprites function of the current Scenario. I store a pointer to
BlockadeFrame in each view window and access the current scenario
through this pointer. For instance, here is how I call the make_sprites
function of the current Scenario:

blockade_frame->scenario()->make_sprites(hdc);

The init function creates a TBStatic window where useful information
is displayed during the game.

The PolarWindow class handles mouse button press events occurring in
its window. The member function WMLButtonDown handles these events.
When you press the left mouse button with the mouse pointer on the
polar view, Windows calls WMLButtonDown, which gets the coordinates
of the mouse, converts them to range and bearing, and calls the
platform_at function to determine the platform, if any, at that location.
Then WMLButtonDown displays a marker at that point and a message in a
TBStatic window showing the range and bearing from your ship to the

371

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

location of the button press and the name of the platform, if any, at
that location.

The disp_mission function is called by init to display a description of
the current mission. This text is loaded by the Scenario::init function
and kept in the static array Scenario::mission_description.

The draw_wpncover function is used as a callback function by a sprite
that displays the sectors where the current weapon can be used. The
information necessary to draw the sectors comes from the Weapon class.

Listing 9.8. polarwin.cpp—
Implementation of the PolarWindow class.

//--
// File: polarwin.cpp
// Implementation of the PolarWindow class.
//--
#include <stdlib.h>
#include “bframe.h”
#include <stdio.h>

#define MAXCONTACTS 64
#define MARGIN 4

#define WPNCOVERSIZE 40

static short firsttime = 1;
static short done_since = 0;

class PolarAnimation : public SpriteAnimation
{
public:
 PolarAnimation(HDC hdc, unsigned short w,
 unsigned short h,
 LPSTR filename) :
 SpriteAnimation(hdc, w, h, filename) {}

 PolarAnimation(HDC hdc, unsigned short w,
 unsigned short h, Image* bg) :
 SpriteAnimation(hdc, w, h, bg) {}

 void draw_polar_bg(short x, short y, short r);
};

continues

372

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.8. continued

void _FAR PASCAL _export draw_wpncover(HDC hdc,short x, short y,
LPVOID data);

static char none[] = “--- None ---”;
//--
// PolarWindow:: ~ P o l a r W i n d o w
// Destructor for a PolarWindow

PolarWindow::~PolarWindow()
{
 if(panim != NULL) delete panim;
 if(infowin != NULL) delete infowin;
 if(infotext != NULL) delete infotext;
}
//--
// PolarWindow:: r e f r e s h _ a n i m
// Make sure animation is refreshed

void PolarWindow::refresh_anim()
{
 if(panim != NULL)
 {
 panim->set_refresh(TRUE);
 }
}
//--
// PolarWindow:: P a i n t
// Draw everything in the window

void PolarWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(panim != NULL)
 {
 blockade_frame->scenario()->ownship_xfrm();
 move_sprites();
 panim->set_refresh(TRUE);
 panim->animate(hdc, left, top);
 }
}
//--
// PolarWindow:: u p d a t e
// Update the view of the scene in the window

void PolarWindow::update()
{
 if(panim != NULL)

373

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 {
 blockade_frame->scenario()->ownship_xfrm();
 move_sprites();
 HDC hdc = GetDC(HWindow);
 panim->animate(hdc, left, top);
 ReleaseDC(HWindow, hdc);
 }
}
//--
// PolarWindow:: i n i t
// Initialize the polar display.

void PolarWindow::init()
{
 get_currents();
// Change the cursor to an hourglass
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

// Clean up existing data, if any
 if(panim != NULL) delete panim;
 if(s != NULL) delete s;
 if(infowin != NULL) delete infowin;
 if(infotext != NULL) delete infotext;

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Construct a PolarAnimation with the specified background
// image file
 panim = new PolarAnimation(hdc, blockade_frame->vu3_wmax(),
 blockade_frame->vu3_hmax(),
 “polar.bmp”);
 if(panim == NULL)
 {
 ReleaseDC(HWindow, hdc);
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
 return;
 }

// Draw the polar display’s background
// I am assuming that the display height is less than the width
 pix_radius = blockade_frame->vu3_hmax() / 2 - MARGIN;
 xc = blockade_frame->vu3_wmax() - pix_radius - MARGIN;
 yc = pix_radius + MARGIN;
 panim->draw_polar_bg(xc, yc, pix_radius);

continues

374

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.8. continued

// Create the window to display info
 wiwin = xc - pix_radius - 2*MARGIN;
 hiwin = blockade_frame->vu3_hmax() - 2*MARGIN;

// Draw a border around info window
 panim->bg_rect(MARGIN-1, MARGIN-1,
 MARGIN+wiwin+1, MARGIN+hiwin+1);

// Determine how many characters would fit into the
// info window
 TEXTMETRIC tm;
 GetTextMetrics(hdc, &tm);
 short hchar = tm.tmHeight + tm.tmExternalLeading;
 short wchar = tm.tmAveCharWidth;
 nciwin = (wiwin/wchar) * (hiwin/hchar) + 1;
 infotext = new char[nciwin];
 infotext[nciwin-1] = ‘\0’;

 infowin = new TBStatic(this, 1, “Selected Contact”,
 MARGIN, MARGIN, wiwin, hiwin,
 nciwin);
 GetApplication()->MakeWindow(infowin);
 disp_mission();

// Create a sprite for each platform
 blockade_frame->scenario()->make_sprites(hdc);
 blockade_frame->scenario()->ownship_xfrm();

// Add the sprites to the polar window’s animation
 short i, xpos, ypos;
 Sprite *s;
 for(i = 0; i < blockade_frame->scenario()->numplatform(); i++)
 {
 s = blockade_frame->scenario()->platform(i).sprite();
 xpos = xc - s->width() / 2 +
 (long) blockade_frame->scenario()->platform(i).
 xo() * (long)pix_radius / (long) nm_radius;
 ypos = yc - s->height() / 2 -
 (long) blockade_frame->scenario()->platform(i).
 yo() * (long)pix_radius / (long) nm_radius;
 s->newpos(xpos, ypos);
 s->priority(1000);
// Hide all but the first sprite
 if(i > 0) s->inactive();
// Add sprite to animation
 panim->add(s);
 }

375

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

// Add a sprite to show the coverage sectors of weapons
 wpncover = new Sprite(hdc, NULL, NULL);
 wpncover->priority(500);
 wpncover->width(2*WPNCOVERSIZE);
 wpncover->height(2*WPNCOVERSIZE);
 wpncover->newpos(xc-WPNCOVERSIZE, yc-WPNCOVERSIZE);
 DRAWPROC proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) draw_wpncover,
 GetApplication()->hInstance);
 wpncover->drawproc(proc, blockade_frame);
 wpncover->active();
 wpncover->update();
 panim->add(wpncover);

// Add the sprite to be used as a “marker”
 marker = new Sprite(hdc, “marker.bmp”, “markerm.bmp”);
 marker->priority(10000);
 marker->id(-1);
 marker->newpos(xc-marker->width()/2, yc-marker->height()/2);
 marker->active();
 marker->update();
 panim->add(marker);

// Remember to release the DC
 ReleaseDC(HWindow, hdc);

// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
}
//--
// PolarWindow:: W M L B u t t o n D o w n
// Handle button down events in the PolarWindow

void PolarWindow::WMLButtonDown(RTMessage msg)
{
 short x = msg.LP.Lo;
 short y = msg.LP.Hi;

// Ignore button presses outside the polar display’s bounds
 long xdel = x - xc;
 long ydel = yc - y;
 unsigned long dist = xdel*xdel + ydel*ydel;
 if(dist > pix_radius*pix_radius) return;

// Compute range and bearing to selected point

continues

376

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.8. continued

 rng = sqrt((double)dist) * (double)nm_radius /
 (double)pix_radius;
 Scenario::range_current = rng;
 if(xdel == 0 && ydel == 0)
 brg = 0;
 else
 brg = atan2(xdel, ydel) * RAD_TO_DEG;
 if(brg < 0) brg = 360 + brg;
 Scenario::bearing_current = brg;

// Find the platform at the position of “mouse click”
 cp = platform_at(x, y);
 Scenario::current_platform = cp;
 char *nm = none;
 if(Scenario::current_platform != NULL)
 {
 nm = Scenario::current_platform->name();
 }
 infowin->Clear();
 sprintf(infotext, “Platform: %s\n”
 “Range: %.2f\n”
 “Bearing: %.2f\n”,
 nm, Scenario::range_current,
 Scenario::bearing_current);
 infowin->SetText(infotext);

// Move the marker sprite
 xdel = x - marker->xpos() - marker->width() / 2;
 ydel = y - marker->ypos() - marker->height() / 2;
 marker->move(xdel, ydel);

 xp = x;
 yp = y;
 Scenario::xpos_current = xp;
 Scenario::ypos_current = yp;
}
//--
// PolarAnimation:: d r a w _ p o l a r _ b g
// Draw the background of the polar display

void PolarAnimation::draw_polar_bg(short xc, short yc, short r)
{
 HBRUSH hbluebrush = CreateSolidBrush(RGB(0, 0, 255));
 HBRUSH holdbrush = SelectBrush(hdc_bg, hbluebrush);
 HPEN hpen = GetStockPen(WHITE_PEN);
 HPEN hdotpen = CreatePen(PS_DOT, 1, RGB(192, 192, 192));

377

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 HPEN holdpen = SelectPen(hdc_bg, hpen);
 SetBkMode(hdc_bg, TRANSPARENT);
 Ellipse(hdc_bg, xc-r, yc-r, xc+r, yc+r);

// Tick marks around the circle
 short i, x1, y1, x2, y2, ticklen = r/60;
 if(ticklen < 6) ticklen = 6;
 Coord cosi, sini, angrad;

 for(i = 0; i < 360; i++)
 {
 angrad = i * DEG_TO_RAD;
 cosi = TabCos(angrad);
 sini = TabSin(angrad);
 x1 = xc + r * sini;
 y1 = yc - r * cosi;
 MoveTo(hdc_bg, x1, y1);

 x2 = xc + (r - ticklen) * sini;
 y2 = yc - (r - ticklen) * cosi;

 if(i % 10 == 0)
 {
 x2 = xc + (r - 2*ticklen) * sini;
 y2 = yc - (r - 2*ticklen) * cosi;
 }
 LineTo(hdc_bg, x2, y2);
 if(i % 30 == 0)
 {
 x2 = xc;
 y2 = yc;
 HPEN hpen_tmp = SelectPen(hdc_bg, hdotpen);
 MoveTo(hdc_bg, x1, y1);
 LineTo(hdc_bg, x2, y2);
 SelectPen(hdc_bg, hpen_tmp);
 }
 }
// Draw range rings...
 short step = r / 10, r1 = 0;
 SelectBrush(hdc_bg, GetStockBrush(NULL_BRUSH));
 SelectPen(hdc_bg, hdotpen);
 for(i = 0; i < 9; i++)
 {
 r1 += step;
 Arc(hdc_bg, xc-r1, yc-r1, xc+r1, yc+r1,
 xc-r1, yc-r1, xc-r1, yc-r1);
 }

continues

378

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.8. continued

// Reset the pen and the brush
 SelectPen(hdc_bg, holdpen);
 SelectBrush(hdc_bg, holdbrush);
 DeletePen(hdotpen);
 DeleteBrush(hbluebrush);
}
//--
// PolarWindow:: m o v e _ s p r i t e s
// Reposition the platforms in the polar window

void PolarWindow::move_sprites()
{
 short i, xpos, ypos;
 Sprite *s;
 float scale = (float)pix_radius / (float)nm_radius;

// Position all the sprites for the active platforms
 for(i = 0; i < blockade_frame->scenario()->numplatform(); i++)
 {
 if(blockade_frame->scenario()->platform(i).is_active())
 {
 s = blockade_frame->scenario()->platform(i).sprite();

// Don’t update sprite if it’s not marked active
 if(!s->is_active()) continue;

 xpos = xc - s->width() / 2 +
 (float) blockade_frame->scenario()->platform(i).
 xo() * scale;
 ypos = yc - s->height() / 2 -
 (float)blockade_frame->scenario()->platform(i).
 yo() * scale;
 short xdel = xpos - s->xpos();
 short ydel = ypos - s->ypos();
 s->move(xdel, ydel);
 }
 }
}
//--
// d r a w _ w p n c o v e r
// Draw the sectors where the current weapon is effective

void _FAR PASCAL _export draw_wpncover(HDC hdc, short x, short y,
 LPVOID p)
{
 BlockadeFrame *bf = (BlockadeFrame*)p;
 Platform *os = bf->scenario()->our_ship();

379

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 HPEN hpen_yellow = CreatePen(PS_SOLID, 2, RGB(255,255,0));
 HPEN holdpen = SelectPen(hdc, hpen_yellow);

// Get coordinates of center point of polar display
 short xc = bf->polar_window()->xcenter();
 short yc = bf->polar_window()->ycenter();

// Get current weapon index
 short i = Scenario::weapon_index;

// Display all sectors covered by this weapon
 float a, b;
 short j, x3, y3, x4, y4;
 for(j = 0; j < os->weapon(i).numsector(); j++)
 {
 a = os->weapon(i).sector(j)->angle2;
 b = os->weapon(i).sector(j)->angle1;
 a *= DEG_TO_RAD;
 b *= DEG_TO_RAD;
 x3 = xc + WPNCOVERSIZE*sin(a);
 y3 = yc - WPNCOVERSIZE*cos(a);
 x4 = xc + WPNCOVERSIZE*sin(b);
 y4 = yc - WPNCOVERSIZE*cos(b);
 Arc(hdc, xc-WPNCOVERSIZE, yc-WPNCOVERSIZE,
 xc+WPNCOVERSIZE, yc+WPNCOVERSIZE,
 x3, y3, x4, y4);
// Pie(hdc, xc-WPNCOVERSIZE, yc-WPNCOVERSIZE,
// xc+WPNCOVERSIZE, yc+WPNCOVERSIZE,
// x3, y3, x4, y4);
 }

// Reset brush and pen
 SelectPen(hdc, holdpen);
 DeletePen(hpen_yellow);
}
//--
// PolarWindow:: p l a t f o r m _ a t
// Find platform at specified position

Platform* PolarWindow::platform_at(short x, short y)
{
 int i, np = blockade_frame->scenario()->numplatform();
 Platform *rp = NULL;

 for(i = 0; i < np; i++)
 {
 Platform *p = &(blockade_frame->scenario()->
 platform(i));

continues

380

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.8. continued

 if(!p->is_active()) continue;
 Sprite *spr = p->sprite();
 if(!spr->is_active()) continue;

 short xs = spr->xpos();
 short ys = spr->ypos();
 if(x < xs) continue;
 if(y < ys) continue;

 short ws = spr->width();
 short hs = spr->height();
 if(x > (xs + ws - 1)) continue;
 if(y > (ys + hs - 1)) continue;

 rp = p;
 break;
 }
 return rp;
}
//--
// DisplayWindow:: s e t _ c u r r e n t s
// Copy current location of marker to static variables of the
// Scenario class

void DisplayWindow::set_currents()
{
 Scenario::current_platform = cp;
 Scenario::range_current = rng;
 Scenario::bearing_current = brg;
 Scenario::xpos_current = xp;
 Scenario::ypos_current = yp;
}
//--
// DisplayWindow:: g e t _ c u r r e n t s
// Copy current location of marker from static variables of the
// Scenario class

void DisplayWindow::get_currents()
{
 cp = Scenario::current_platform;
 rng = Scenario::range_current;
 brg = Scenario::bearing_current;
 xp = Scenario::xpos_current;
 yp = Scenario::ypos_current;
}
//--
// PolarWindow:: d i s p _ m i s s i o n
// Display the mission description in the info window.

381

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

void PolarWindow::disp_mission()
{
 infowin->Clear();
 infowin->SetText(Scenario::mission_description);
}

Implementation of View3DWindow
The View3DWindow class is a 3-D view of your ship (see Figure 9.3). Unfortunately,
the 3-D view is not as sophisticated as it could be. For now, you see a polygon-
bound ship with no shading. The 3-D scene is defined by the classes Vector3D,
Facet3D, Shape3D, and Scene3D. These classes are presented in Chapter 8.

A companion class, View3DToolWindow, provides the controls to manipulate
the 3-D view. Among the controls in a View3DToolWindow, there are buttons to
zoom in, zoom out, and change the viewpoint.

Listing 9.9 shows the implementation of the View3DWindow class. Here are
some of its major features:

The init function initializes the 3-D scene by creating a new Scene3D
object. Then init creates a sprite for each Shape3D object in the 3-D
scene.

The draw_shape function is used as a callback function that is called
when each of the sprites needs updating. The draw_shape function
retrieves the transformed coordinates of the vertices of each facet
and draws a polygon representing the facet.

Listing 9.9. vu3dwin.cpp—
Implementation of the View3DWindow class.

//--
// File: vu3dwin.cpp
// Implementation of the View3DWindow class.
//--
#include <stdlib.h>
#include “scene3d.h”
#include “bframe.h”

continues

382

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.9. continued

static short firsttime = 1;
static short done_since = 0;

short View3DWindow::view_type = VIEW_SOLID;

void _FAR PASCAL _export draw_shape(HDC hdc, short x, short y,
 LPVOID data);

//--
// View3DWindow:: P a i n t
// Draw everything in the window

void View3DWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(anim != NULL)
 {
 if(scene != NULL) scene->view_transform();
 anim->set_refresh(TRUE);
 anim->animate(hdc, left, top);
 }
}
//--
// View3DWindow:: u p d a t e
// Update the view of the scene in the window

void View3DWindow::update()
{
 if(anim != NULL)
 {
 if(scene != NULL) scene->view_transform();
 HDC hdc = GetDC(HWindow);
 anim->animate(hdc, left, top);
 ReleaseDC(HWindow, hdc);
 }
}
//--
// View3DWindow:: i n i t
// Initialize the scene

void View3DWindow::init(const char* scenefile,
 char* bgfile)
{
 if(scenefile == NULL) return;

// Change the cursor to an hourglass
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

383

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

// Clean up existing puzzle, if any
 if(anim != NULL) delete anim;
 if(scene != NULL) delete scene;
 if(s != NULL) delete s;

// Create and initialize the 3D scene
 scene = new Scene3D(blockade_frame->vu3_wmax(),
 blockade_frame->vu3_hmax(), scenefile);
 if(scene == NULL) return;
 if(scene->shape_array == NULL) return;

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Construct a SpriteAnimation with the specified background
// image file
 anim = new SpriteAnimation(hdc, blockade_frame->vu3_wmax(),
 blockade_frame->vu3_hmax(), bgfile);
 if(anim == NULL)
 {
 ReleaseDC(HWindow, hdc);
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
 return;
 }

// Set up a sprite for each shape
 short numshapes = scene->shape_array->getItemsInContainer();

// Create the array of sprites
 s = new Sprite* [numshapes];
 DRAWPROC proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) draw_shape,
 GetApplication()->hInstance);
 short i, xpos, ypos, wdth, hght;
 for(i = 0; i < numshapes; i++)
 {
 scene->view_transform();
 xpos = scene->shapes[i]->min_xpos();
 ypos = width() - scene->shapes[i]->min_ypos();
 wdth = scene->shapes[i]->max_xpos() - xpos;
 hght = scene->shapes[i]->max_ypos() - ypos;

 scene->shapes[i]->sort_facets();

 s[i] = new Sprite(hdc, NULL, NULL);
 s[i]->newpos(xpos, ypos);

continues

384

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.9. continued

 s[i]->width(wdth);
 s[i]->height(hght);
 s[i]->drawproc(proc, scene->shapes[i]);
 s[i]->active();
 s[i]->update();
// Add sprite to animation
 anim->add(s[i]);
 }

// Remember to release the DC
 ReleaseDC(HWindow, hdc);

// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
}
//--
void _FAR PASCAL _export draw_shape(HDC hdc, short x, short y,
 LPVOID data)
{
// Sort the facets in each shape

// Find the minimum z coord for each shape

// Sort the shapes in increasing order of transformed z coord

// Draw facets in each shape using the transformed vertices
 short i, j, vindex, red, green, blue;
 Shape3D *s = (Shape3D*)data;
 POINT pt[4];
 for(i = 0; i < s->numfacets; i++)
 {
 short x, y;
 Facet3D& f = (Facet3D&)(*(s->facets))[i];
 red = f.red;
 green = f.green;
 blue = f.blue;
 for(j = 0; j < 4; j++)
 {
 vindex = f.vertex[j];
 if(vindex < 0) break;
 Vector3D& v = (Vector3D&)(*(s->xfrmv))[vindex];
 if(View3DWindow::view_type == VIEW_WIREFRAME)
 {

385

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 if(j == 0)
 {
 x = v.x;
 y = v.y;
 MoveTo(hdc, x, y);
 }
 if(j > 0) LineTo(hdc, (short)v.x, (short)v.y);
 }
 if(View3DWindow::view_type == VIEW_SOLID)
 {
// Prepare a polygon...
 pt[j].x = v.x;
 pt[j].y = v.y;
 }
 }
 if(View3DWindow::view_type == VIEW_WIREFRAME)
 LineTo(hdc, x, y);
 if(View3DWindow::view_type == VIEW_SOLID)
 {
 HBRUSH hbr = CreateSolidBrush(
 RGB(red, green, blue));
 HBRUSH hbr_old = SelectBrush(hdc, hbr);
 Polygon(hdc, pt, j);
 SelectBrush(hdc, hbr_old);
 DeleteBrush(hbr);
 }
 }
}
//--
void View3DWindow::adjust_view_angle(Coord a)
{
 if(scene != NULL) scene->view_angle += a;
 refresh_anim();
}
//--
void View3DWindow::adjust_at(Coord x, Coord y, Coord z)
{
 if(scene != NULL)
 {
 scene->at.x += x;
 scene->at.y += y;
 scene->at.z += z;
 }
 refresh_anim();
}

386

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

ToolWindow Classes
The ToolWindow class hierarchy mirrors the DisplayWindow hierarchy. Each of
these classes represents the window that appears to the left of the main view
window in BLOCKADE. The classes MapToolWindow, PolarToolWindow, and
View3DToolWindow provide the tools to manipulate the corresponding view
windows MapWindow, PolarWindow, and View3DWindow, respectively.

Listing 9.10 shows the header file toolwin.h that declares the classes
MapToolWindow, PolarToolWindow, and View3DToolWindow. The ToolWindow class
is derived from the OWL class TWindow. ToolWindow manages an array of ToolIcon
objects that represent the icons appearing in the tool windows. The header file
toolwin.h also declares the ToolIcon structure. As you can see, each ToolIcon
is represented by a bitmap image.

Listing 9.10. toolwin.h—
Declaration of the ToolWindow classes.

//--
// File: toolwin.h
//
// Declares the ToolWindow class that represents the window
// where a number of buttons for the application appears.
//--
#if !defined(_ _TOOLWIN_H)
#define __TOOLWIN_H

#include <owl.h>

class BlockadeFrame;

struct ToolIcon
{
 ToolIcon() : active(0), id(0), img(NULL),
 xoff(0), yoff(0), x(0), y(0), w(0), h(0) {}

 ToolIcon(char *fname, short nid, short xo, short yo,
 unsigned short wdth, unsigned short hght,
 short xw, short yw, short act) : id(nid),
 xoff(xo), yoff(yo), w(wdth), h(hght),
 x(xw), y(yw), active(act)
 {
 img = Sprite::init_image(fname);
 }

387

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 ~ToolIcon()
 {
 if(img != NULL) delete img;
 }

 short active; // Displayed only if active
 short id; // An integer icon ID
 Image *img; // The icon’s image
 short xoff, // Align this point of image
 yoff; // with the point (x,y)
 short x, y; // Position in the tools window
 unsigned short w, h; // Width and height of icon
};

class ToolWindow : public TWindow
{
public:
 ToolWindow(PTWindowsObject parent, BlockadeFrame* bf) :
 TWindow(parent, NULL), blockade_frame(bf),
 icon_current(NULL), icons(NULL), numicons(0)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
 }

 virtual void Paint(HDC hdc, PAINTSTRUCT&);
 virtual void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];

 unsigned short width() { return w;}
 unsigned short height() { return h;}

 void active(short id);
 void inactive(short id);

protected:
 ToolIcon *icons;
 unsigned short numicons;
 unsigned short w, h; // Size of client area
 ToolIcon *icon_current;
 BlockadeFrame *blockade_frame;

 ToolIcon* icon_at(short x, short y);
 short get_index(short id);
};

class View3DToolWindow : public ToolWindow
{

continues

388

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.10. continued

public:
 View3DToolWindow(PTWindowsObject parent, BlockadeFrame* bf) :
 ToolWindow(parent, bf) {}

 void WMCreate(RTMessage msg) = [WM_FIRST + WM_CREATE];
 void WMLButtonDown(RTMessage msg) = [WM_FIRST +
 WM_LBUTTONDOWN];
};

class PolarToolWindow : public ToolWindow
{
public:
 PolarToolWindow(PTWindowsObject parent, BlockadeFrame* bf) :
 ToolWindow(parent, bf) {}
 void Paint(HDC hdc, PAINTSTRUCT&);
 void WMCreate(RTMessage msg) = [WM_FIRST + WM_CREATE];
 void WMLButtonDown(RTMessage msg) = [WM_FIRST +
 WM_LBUTTONDOWN];
};

class MapToolWindow : public ToolWindow
{
public:
 MapToolWindow(PTWindowsObject parent, BlockadeFrame* bf) :
 ToolWindow(parent, bf) {}

 void WMCreate(RTMessage msg) = [WM_FIRST + WM_CREATE];
 void WMLButtonDown(RTMessage msg) = [WM_FIRST +
 WM_LBUTTONDOWN];
 void set_scroll_buttons();
};
#endif

Implementation of ToolWindow
Listing 9.11 shows the implementation of the ToolWindow class. Here is a sum-
mary of the functions in this class:

The Paint function handles drawing the image of each active ToolIcon
in the window.

389

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

The icons_at function returns a pointer to the ToolIcon at a specified
point. The function returns NULL if there is no icon at the specified
point.

The active and inactive functions are used to show or hide an icon.

Listing 9.11. toolwin.cpp—
Implementation of the ToolWindow class.

//--
// File: toolwin.cpp
//
// Member functions of the ToolWindow class.
//--
#include “bframe.h”

//--
// ToolWindow:: P a i n t
// Draw everything in the window

void ToolWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
// Draw all active tool icons
 if(icons != NULL)
 {
 short i;
 for(i = 0; i < numicons; i++)
 {
 if(icons[i].active && icons[i].img != NULL)
 icons[i].img->show(hdc, icons[i].xoff,
 icons[i].yoff, icons[i].x, icons[i].y,
 icons[i].w, icons[i].h, SRCCOPY);
 }
 }
}
//--
// ToolWindow:: W M S i z e
// Save the location and size of the window

void ToolWindow::WMSize(RTMessage)
{
 RECT r;
 GetClientRect(HWindow, &r);
 w = r.left - r.right + 1;
 h = r.bottom - r.top + 1;
}

continues

390

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.11. continued

//--
// ToolWindow:: i c o n _ a t
// Return pointer to ToolIcon (if any) at a specified location

ToolIcon* ToolWindow::icon_at(short x, short y)
{
 short i;
 ToolIcon *rti = NULL;

 if(icons == NULL) return rti;

 for(i = 0; i < numicons; i++)
 {
 if(!icons[i].active) continue;
 if(icons[i].img == NULL) continue;

 if(x < icons[i].x) continue;
 if(y < icons[i].y) continue;

 if(x > (icons[i].x + icons[i].w - 1)) continue;
 if(y > (icons[i].y + icons[i].h - 1)) continue;

 rti = &icons[i];
 break;
 }
 return rti;
}
//--
// ToolWindow:: g e t _ i n d e x
// Return the index of an icon in the icons array

short ToolWindow::get_index(short id)
{
 short i;
 for(i = 0; i < numicons; i++)
 if(icons[i].id == id) return i;

 return -1;
}
//--
// ToolWindow:: a c t i v e
// Make icon active

void ToolWindow::active(short id)
{

391

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 short i;
 if((i = get_index(id)) >= 0)
 if(!icons[i].active)
 {
 icons[i].active = 1;
 InvalidateRect(HWindow, NULL, FALSE);
 }
}
//--
// ToolWindow:: i n a c t i v e
// Make icon inactive

void ToolWindow::inactive(short id)
{
 short i;
 if((i = get_index(id)) >= 0)
 if(icons[i].active)
 {
 icons[i].active = 0;
 InvalidateRect(HWindow, NULL, FALSE);
 }
}

Implementation of MapToolWindow
The MapToolWindow class displays the bitmap icons that represent the controls
for manipulating the map view shown in a MapWindow.

Listing 9.12 shows the implementation of the MapToolWindow class. Here are
the highlights of this class:

The static array of ToolIcons, icon_array, represents the icons to be
displayed in the window. The WMCreate function initializes the member
variables icons and numicons with the static array icon_array and the
static variable nicons, respectively.

Each icon has an image and an identifying number (ID). When the
player presses the left mouse button, Windows calls the WMLButtonDown
function, which calls icon_at to determine the icon, if any, at the
location of the button press. If there is a valid icon at the location, the
icon’s ID determines the action to be performed in response to the
button press.

392

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.12. maptool.cpp—
Implementation of the MapToolWindow class.

//--
// File: maptool.cpp
//
// Implementation of the MapToolWindow class.
//--
#include “bframe.h”

#define ZOOMIN 1
#define ZOOMOUT 2
#define UPARROW 3
#define DOWNARROW 4
#define LEFTARROW 5
#define RIGHTARROW 6
#define TOPOLAR 7
#define TO3D 8
#define QUIT_ICON 9
#define AGAIN 10

#define XSTART 16
#define YSTART 8
#define YSPACE 4
#define ON 1
#define OFF 0

static ToolIcon icon_array[] =
{
 ToolIcon(“zoomin.bmp”, ZOOMIN, 0, 0, 32, 32,
 XSTART, YSTART+16, ON),
 ToolIcon(“zoomout.bmp”, ZOOMOUT, 0, 0, 32, 32,
 XSTART, YSTART+16, OFF),
 ToolIcon(“larrow.bmp”, LEFTARROW, 0, 0, 16, 32,
 XSTART-16, YSTART+16, OFF),
 ToolIcon(“rarrow.bmp”, RIGHTARROW, 0, 0, 16, 32,
 XSTART+32, YSTART+16, OFF),
 ToolIcon(“uarrow.bmp”, UPARROW, 0, 0, 32, 16,
 XSTART, YSTART, OFF),
 ToolIcon(“darrow.bmp”, DOWNARROW, 0, 0, 32, 16,
 XSTART, YSTART+48, OFF),

 ToolIcon(“topolar.bmp”, TOPOLAR, 0, 0, 32, 32,
 XSTART, YSTART+2*(YSPACE+32), ON),
 ToolIcon(“to3d.bmp”, TO3D, 0, 0, 32, 32,
 XSTART, YSTART+3*(YSPACE+32), ON),
 ToolIcon(“again.bmp”, AGAIN, 0, 0, 32, 32,
 XSTART, YSTART+4*(YSPACE+32), ON),

393

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 ToolIcon(“quit.bmp”, QUIT_ICON, 0, 0, 32, 32,
 XSTART, YSTART+6*(YSPACE+32), ON)
};

static short nicons = sizeof(icon_array) / sizeof(icon_array[0]);

static short firsttime = 1;
//--
// MapToolWindow:: W M C r e a t e
// Initialize this window

void MapToolWindow::WMCreate(RTMessage)
{
 icons = icon_array;
 numicons = nicons;
}
//--
// MapToolWindow:: W M L B u t t o n D o w n
// Handle mouse button press

void MapToolWindow::WMLButtonDown(RTMessage msg)
{
 short x = msg.LP.Lo;
 short y = msg.LP.Hi;
 icon_current = icon_at(x, y);
 if(icon_current != NULL)
 {
 switch(icon_current->id)
 {
 case ZOOMIN:
 inactive(ZOOMIN);
 active(ZOOMOUT);
 blockade_frame->map_window()->swap_anim();
 break;

 case ZOOMOUT:
 inactive(ZOOMOUT);
 active(ZOOMIN);
 blockade_frame->map_window()->swap_anim();
 break;

 case LEFTARROW:
 blockade_frame->map_window()->scroll_left();
 break;

 case RIGHTARROW:
 blockade_frame->map_window()->scroll_right();
 break;

continues

394

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.12. continued

 case UPARROW:
 blockade_frame->map_window()->scroll_up();
 break;

 case DOWNARROW:
 blockade_frame->map_window()->scroll_down();
 break;

 case TO3D:
// Make simulation slower before switching to 3D view
 blockade_frame->info_window()->
 set_simspeed(1);
 blockade_frame->hide_map();
 blockade_frame->show_view3d();
 break;

 case TOPOLAR:
 blockade_frame->hide_map();
 blockade_frame->show_polar();
 break;

 case AGAIN:
// Restart the game
 blockade_frame->info_window()->
 set_simspeed(1);
// Make all platforms go back to initial conditions
 short i;
 for(i = 0; i < blockade_frame->scenario()->
 numplatform(); i++)
 {
 blockade_frame->scenario()->platform(i).
 goto_stage0();
 }
 Scenario::simulation_running = 1;
 Scenario::status = RUNNING;
 break;

 case QUIT_ICON:
 if(blockade_frame->hi_scores(“HISCORE.BLD”))
 PostQuitMessage(0);
 break;
 }
 }
}

395

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

//--
// MapToolWindow:: s e t _ s c r o l l _ b u t t o n s
// Turn the scroll arrows on or off

void MapToolWindow::set_scroll_buttons()
{
// Check if map scroll buttons should be visible
 if(blockade_frame->map_window()->image_width() >
 blockade_frame->map_window()->width())
 {
 active(LEFTARROW);
 active(RIGHTARROW);
 }
 else
 {
 inactive(LEFTARROW);
 inactive(RIGHTARROW);
 }
 if(blockade_frame->map_window()->image_height() >
 blockade_frame->map_window()->height())
 {
 active(UPARROW);
 active(DOWNARROW);
 }
 else
 {
 inactive(UPARROW);
 inactive(DOWNARROW);
 }
}

Implementation of PolarToolWindow
The PolarToolWindow class displays the bitmap icons that represent the controls
for manipulating the map view shown in a PolarWindow. Listing 9.13 shows the
implementation of the PolarToolWindow class. The PolarToolWindow class is simi-
lar to the MapToolWindow class. Here are the major features of the PolarToolWindow
class:

As in MapToolWindow, the static array of ToolIcons, icon_array, repre-
sents the icons to be displayed in the window. The WMCreate function
initializes the member variables icons and numicons with the static
array icon_array and the static variable nicons, respectively.

396

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Icons are activated by pressing the left mouse button with the mouse
pointer inside the icon. When you press the left mouse button, Win-
dows calls the WMLButtonDown function, which calls icon_at to deter-
mine the icon at the location of the button press. If there is a valid icon
at that location, the icon’s ID is used to determine the action performed
in response to the button press.

Listing 9.13. plrtool.cpp—
Implementation of the PolarToolWindow class.

//--
// File: plrtool.cpp
//
// Implementation of the PolarToolWindow class.
//--
#include “bframe.h”

#define ZOOMIN 1
#define ZOOMOUT 2
#define TOMAP 7
#define TO3D 8
#define QUIT_ICON 9

#define XSTART 16
#define YSTART 8
#define YSPACE 4
#define ON 1
#define OFF 0

static ToolIcon icon_array[] =
{
 ToolIcon(“hzoomi.bmp”, ZOOMIN, 0, 0, 32, 16,
 XSTART, YSTART+32, ON),
 ToolIcon(“hzoomo.bmp”, ZOOMOUT, 0, 0, 32, 16,
 XSTART, YSTART+48, ON),

 ToolIcon(“tomap.bmp”, TOMAP, 0, 0, 32, 32,
 XSTART, YSTART+2*(YSPACE+32), ON),
 ToolIcon(“to3d.bmp”, TO3D, 0, 0, 32, 32,
 XSTART, YSTART+3*(YSPACE+32), ON),

 ToolIcon(“quit.bmp”, QUIT_ICON, 0, 0, 32, 32,
 XSTART, YSTART+5*(YSPACE+32), ON)
};

397

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

static short nicons = sizeof(icon_array) / sizeof(icon_array[0]);
//--
// PolarToolWindow:: W M C r e a t e
// Initialize this window

void PolarToolWindow::WMCreate(RTMessage)
{
 icons = icon_array;
 numicons = nicons;
}
//--
// PolarToolWindow:: P a i n t
// Draw contents of the polar tool window

void PolarToolWindow::Paint(HDC hdc, PAINTSTRUCT& ps)
{
// Call the base class’s Paint function
 ToolWindow::Paint(hdc, ps);

 char buf[20];
 Rectangle(hdc, 4, 4, 60, 40);

// Display the current range scale
 wsprintf(buf, “%d nm”,
 blockade_frame->polar_window()->range_scale());
 short len = strlen(buf);

 SetBkMode(hdc, TRANSPARENT);
// SetTextColor(hdc, RGB(0, 0, 255));
 TextOut(hdc, XSTART/2+2, YSTART/2+2, “Range:”, 6);
 TextOut(hdc, XSTART/2+2, YSTART/2+16, buf, len);
}
//--
// PolarToolWindow:: W M L B u t t o n D o w n
// Handle mouse button press

void PolarToolWindow::WMLButtonDown(RTMessage msg)
{
 short x = msg.LP.Lo;
 short y = msg.LP.Hi;
 icon_current = icon_at(x, y);
 if(icon_current != NULL)
 {
 switch(icon_current->id)
 {
 short r;
 case ZOOMIN:

continues

398

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.13. continued

 r = blockade_frame->polar_window()->
 range_scale();
 if(r > 10)
 {
 r /= 2;
 blockade_frame->polar_window()->
 range_scale(r);
 InvalidateRect(HWindow, NULL, FALSE);
 }
 break;

 case ZOOMOUT:
 r = blockade_frame->polar_window()->
 range_scale();
 if(r < 320)
 {
 r *= 2;
 blockade_frame->polar_window()->
 range_scale(r);
 InvalidateRect(HWindow, NULL, FALSE);
 }
 break;

 case TO3D:
// Make simulation slower before switching to 3D view
 blockade_frame->info_window()->
 set_simspeed(1);
 blockade_frame->hide_polar();
 blockade_frame->show_view3d();
 break;

 case TOMAP:
 blockade_frame->hide_polar();
 blockade_frame->show_map();
 break;

 case QUIT_ICON:
 if(blockade_frame->hi_scores(“HISCORE.BLD”))
 PostQuitMessage(0);
 break;
 }
 }
}

399

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Implementation of View3DToolWindow
The View3DToolWindow class displays the bitmap icons that represent the con-
trols for manipulating the map view shown in a View3DWindow. Listing 9.14
shows the implementation of the View3DToolWindow class, which is very simi-
lar to the PolarToolWindow class. Here are the major features of the
View3DToolWindow class:

As in PolarToolWindow, the static array of ToolIcons, icon_array,
represents the icons to be displayed in the window. The WMCreate
function initializes the member variables icons and numicons with the
static array icon_array and the static variable nicons, respectively.

The icons are activated in the same manner as in PolarToolWindow.

Listing 9.14. vu3dtool.cpp—
Implementation of the View3DToolWindow class.

//--
// File: vu3dtool.cpp
//
// Implementation of the View3DToolWindow class.
//--
#include “bframe.h”

#define ZOOMIN 1
#define ZOOMOUT 2
#define UPARROW 3
#define DOWNARROW 4
#define LEFTARROW 5
#define RIGHTARROW 6
#define TOPOLAR 7
#define TOMAP 8
#define QUIT_ICON 9

#define XSTART 16
#define YSTART 8
#define YSPACE 4
#define ON 1
#define OFF 0

continues

400

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.14. continued

static ToolIcon icon_array[] =
{
 ToolIcon(“hzoomi.bmp”, ZOOMIN, 0, 0, 32, 16,
 XSTART, YSTART+16, ON),
 ToolIcon(“hzoomo.bmp”, ZOOMOUT, 0, 0, 32, 16,
 XSTART, YSTART+32, ON),
 ToolIcon(“larrow.bmp”, LEFTARROW, 0, 0, 16, 32,
 XSTART-16, YSTART+16, ON),
 ToolIcon(“rarrow.bmp”, RIGHTARROW, 0, 0, 16, 32,
 XSTART+32, YSTART+16, ON),
 ToolIcon(“uarrow.bmp”, UPARROW, 0, 0, 32, 16,
 XSTART, YSTART, ON),
 ToolIcon(“darrow.bmp”, DOWNARROW, 0, 0, 32, 16,
 XSTART, YSTART+48, ON),

 ToolIcon(“topolar.bmp”, TOPOLAR, 0, 0, 32, 32,
 XSTART, YSTART+2*(YSPACE+32), ON),
 ToolIcon(“tomap.bmp”, TOMAP, 0, 0, 32, 32,
 XSTART, YSTART+3*(YSPACE+32), ON),

 ToolIcon(“quit.bmp”, QUIT_ICON, 0, 0, 32, 32,
 XSTART, YSTART+5*(YSPACE+32), ON)
};

static short nicons = sizeof(icon_array) / sizeof(icon_array[0]);
//--
// View3DToolWindow:: W M C r e a t e
// Initialize this window

void View3DToolWindow::WMCreate(RTMessage)
{
 icons = icon_array;
 numicons = nicons;
}
//--
// View3DToolWindow:: W M L B u t t o n D o w n
// Handle mouse button press

void View3DToolWindow::WMLButtonDown(RTMessage msg)
{
 short x = msg.LP.Lo;
 short y = msg.LP.Hi;
 icon_current = icon_at(x, y);
 if(icon_current != NULL)

401

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 {
 switch(icon_current->id)
 {
 case ZOOMIN:
 blockade_frame->view3d_window()->scene3d()->
 zoomin(10);
 blockade_frame->view3d_window()->refresh_anim();
 break;

 case ZOOMOUT:
 blockade_frame->view3d_window()->scene3d()->
 zoomout(10);
 blockade_frame->view3d_window()->refresh_anim();
 break;

 case LEFTARROW:
 blockade_frame->view3d_window()->scene3d()->
 az_step(-5);
 blockade_frame->view3d_window()->refresh_anim();
 break;

 case RIGHTARROW:
 blockade_frame->view3d_window()->scene3d()->
 az_step(5);
 blockade_frame->view3d_window()->refresh_anim();
 break;

 case UPARROW:
 blockade_frame->view3d_window()->scene3d()->
 el_step(5);
 blockade_frame->view3d_window()->refresh_anim();
 break;

 case DOWNARROW:
 blockade_frame->view3d_window()->scene3d()->
 el_step(-5);
 blockade_frame->view3d_window()->refresh_anim();
 break;

 case TOMAP:
 blockade_frame->hide_view3d();
 blockade_frame->show_map();
 blockade_frame->info_window()->set_simspeed(
 Scenario::old_simspeed);
 break;

 case TOPOLAR:
 blockade_frame->hide_view3d();

continues

402

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.14. continued

 blockade_frame->show_polar();
 blockade_frame->info_window()->set_simspeed(
 Scenario::old_simspeed);
 break;

 case QUIT_ICON:
 if(blockade_frame->hi_scores(“HISCORE.BLD”))

PostQuitMessage(0);
 break;
 }
 }
}

StatusWindow Class
The StatusWindow class represents the window displaying status messages that
appears at the bottom edge of the BLOCKADE’s main window. Listing 9.15
shows the file statwin.h that declares the StatusWindow class. StatusWindow uses
a SpriteAnimation (see Chapter 5) to display sprites with the status messages.

A SpriteInfo structure, declared in Listing 9.15, is used to store informa-
tion on the sprites that are displayed in the StatusWindow.

Listing 9.15. statwin.h—
Declaration of the StatusWindow class.

//--
// File: statwin.h
//
// Declares the StatusWindow class that represents the window
// where the progress of the application is shown.
//--
#if !defined(_ _STATWIN_H)
#define __STATWIN_H

#include <owl.h>
#include “spranim.h”

#define MSGSIZE 256

403

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

class BlockadeFrame;

// A structure to hold information about sprites used in various
// windows (including the status window)
struct SpriteInfo
{
 SpriteInfo(char* imgfname, char* mskfname,
 short xp, short yp, short xv, short yv,
 short prio, short ia, short _id) :
 imagefilename(imgfname), maskfilename(mskfname),
 xpos(xp), ypos(yp), xvel(xv), yvel(yv),
 priority(prio), isactive(ia), id(_id) {}

 char* imagefilename;
 char* maskfilename;
 short xpos, ypos; // Initial x-y position
 short xvel, yvel; // Initial x- and y-velocity
 short priority;
 short isactive;
 short id;
};

class StatusWindow : public TWindow
{
public:
 StatusWindow(PTWindowsObject parent, BlockadeFrame *bf) :
 TWindow(parent, NULL), blockade_frame(bf), anim(NULL),
 s(NULL), w(1), h(1), top(0), left(0)
 {
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |

WS_CLIPSIBLINGS;
 }
 ~StatusWindow();

 void init();
 void update();
 void move_sprites();
 void update_msgs();

 void Paint(HDC hdc, PAINTSTRUCT& ps);
 void WMSize(RTMessage msg) = [WM_FIRST + WM_SIZE];

 unsigned short width() { return w;}
 unsigned short height() { return h;}
 void width(unsigned short _w) { w = _w;}
 void height(unsigned short _h) { h = _h;}

 void set_text(LPSTR t, short n, short msgid);

continues

404

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.15. statwin.h—
Declaration of the StatusWindow class.

 LPSTR get_msgbuf(short i) { return msgtxt[i];}
 static char msgtxt[2][MSGSIZE];
private:
 BlockadeFrame *blockade_frame;
 unsigned short w, h; // Size of client area

// SpriteAnimation to display status information.
 SpriteAnimation *anim;
 Sprite **s;
 short top, left;
};

#endif

Listing 9.16 shows the file statwin.cpp that implements the StatusWindow
class. At the beginning of the file, a SpriteInfo array named sprite_data is
declared. There are only two SpriteInfo objects in the array—one for each of
the status messages displayed in a StatusWindow.

The init function, called by BlockadeFrame, creates the SpriteAnimation object,
anim, and sets up the sprites to be displayed in the window. The draw_text
function draws the text that constitutes the message.

StatusWindow includes a utility function, set_text, to change the text being
displayed in the status window.

Listing 9.16. statwin.cpp—
Implementation of the StatusWindow class.

//--
// File: statwin.cpp
//
// Implementation of the StatusWindow class.
//--
#include “bframe.h”
#include <stdio.h>

// Declare an array of sprites to be loaded from image files
static SpriteInfo sprite_data[] =
{
// imagefilename, maskfilename, xpos, ypos, xvel, yelv,

405

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

// priority, isactive, id
 SpriteInfo(NULL, NULL, 200, 0, -1, 0, 99, 1, 1),
 SpriteInfo(NULL, NULL, 0, 16, 0, 0, 99, 1, 1)
};

// Total number of sprites
static int numsprites = sizeof(sprite_data) /
 sizeof(sprite_data[0]);

void _FAR PASCAL _export draw_text(HDC hdc, short x, short y,
 LPVOID data);

struct TEXT_DATA
{
 LPSTR text;
 size_t numchars;
};

static TEXT_DATA dt[2];

char StatusWindow::msgtxt[2][MSGSIZE] =
{
 “Status: LOADING...”,
 “Go to POLAR display to read mission description.”
};

static count = 1;
//--
// StatusWindow:: ~ S t a t u s W i n d o w
// Destructor for the StatusWindow class

StatusWindow::~StatusWindow()
{
 if(anim != NULL) delete anim;
 if(s != NULL) delete s;
}
//--
// StatusWindow:: P a i n t
// Draw everything in the window

void StatusWindow::Paint(HDC hdc, PAINTSTRUCT&)
{
 if(anim != NULL)
 {
 anim->set_refresh(TRUE);
 anim->animate(hdc, left, top);
 }
}

continues

406

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.16. continued

//--
// StatusWindow:: u p d a t e
// Animate the sprites in the puzzle window

void StatusWindow::update()
{
 if(anim != NULL)
 {
 if(count++ >= MOTION_UPDATE_COUNT)
 {
 count = 1;
 update_msgs();
 }

 move_sprites();
 HDC hdc = GetDC(HWindow);
 anim->animate(hdc, left, top);
 ReleaseDC(HWindow, hdc);
 }
}
//--
// StatusWindow:: W M S i z e
// Save the location and size of the window

void StatusWindow::WMSize(RTMessage)
{
 RECT r;
 GetClientRect(HWindow, &r);
 w = r.left - r.right + 1;
 h = r.bottom - r.top + 1;
}
//--
// StatusWindow:: i n i t
// Initialize sprites etc. used in the StatusWindow

void StatusWindow::init()
{
// If a SpriteAnimation exists, delete it...
 if(anim != NULL) delete anim;
 if(s != NULL) delete s;

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

407

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

// Construct a SpriteAnimation with background for the puzzle
 anim = new SpriteAnimation(hdc, blockade_frame->sts_wmax(),
 blockade_frame->sts_hmax(),
 “stsbg.bmp”);
 if(anim == NULL) return;

// Create the array of sprites
 s = new Sprite*[numsprites];
 int i;
 for(i = 0; i < numsprites; i++)
 {
 s[i] = new Sprite(hdc, sprite_data[i].imagefilename,
 sprite_data[i].maskfilename);
 s[i]->priority(sprite_data[i].priority);
 s[i]->newpos(sprite_data[i].xpos, sprite_data[i].ypos);
 if(!sprite_data[i].isactive) s[i]->inactive();
// Add sprite to animation
 anim->add(s[i]);
 }

// The first sprite is used to display a text string
// Set up size of sprite based on current font
 TEXTMETRIC tm;
 GetTextMetrics(hdc, &tm);
 short hchar = tm.tmHeight + tm.tmExternalLeading;
 short wchar = tm.tmAveCharWidth;

 s[0]->width(MSGSIZE*wchar);
 s[0]->height(hchar);
 dt[0].text = msgtxt[0];
 dt[0].numchars = strlen(msgtxt[0]);
 DRAWPROC proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) draw_text,
 GetApplication()->hInstance);
 s[0]->drawproc(proc, &dt[0]);
 s[0]->active();
 s[0]->update();

// Second sprite displays another status message
 s[1]->width(MSGSIZE*wchar);
 s[1]->height(hchar);
 dt[1].text = msgtxt[1];
 dt[1].numchars = strlen(msgtxt[1]);
 proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) draw_text,
 GetApplication()->hInstance);

continues

408

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.16. continued

 s[1]->drawproc(proc, &dt[1]);
 s[1]->active();
 s[1]->update();

// Release the DC
 ReleaseDC(HWindow, hdc);
}
//--
// StatusWindow:: m o v e _ s p r i t e s
// Move the sprites

void StatusWindow::move_sprites()
{
 int i;
 for(i = 0; i < numsprites; i++)
 {
 sprite_data[i].xpos += sprite_data[i].xvel;

 if(sprite_data[i].xpos <= –40)
 sprite_data[i].xpos = width() + 60;

 s[i]->move(sprite_data[i].xpos - s[i]->xpos(),
 sprite_data[i].ypos - s[i]->ypos());
 }
}
//--
void _FAR PASCAL _export draw_text(HDC hdc, short x, short y,
 LPVOID data)
{
 TEXT_DATA *td = (TEXT_DATA*)data;
 SetBkMode(hdc, TRANSPARENT);

 SetTextColor(hdc, RGB(0, 0, 255));
 TextOut(hdc, x, y, td->text, td->numchars);
}
//--
// StatusWindow:: s e t _ t e x t
// Set the text to be displayed in the status window

void StatusWindow::set_text(LPSTR t, short n, short msgid)
{
 if(msgid >=0 && msgid < 2)
 {
 dt[msgid].text = t;
 dt[msgid].numchars = n;
 }

409

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

}
//--
// StatusWindow:: u p d a t e _ m s g s
// Update the status messages

void StatusWindow::update_msgs()
{
 short len;
// Set the first status message (depends on Scenario::status)
 switch(Scenario::status)
 {
 case LOADING:
 len =
 sprintf(msgtxt[0], “Status: Loading %s -- %s”,
 blockade_frame->scenario_info()->name,
 blockade_frame->mission_info()->name);
 set_text(msgtxt[0], len, 0);
 break;

 case RUNNING:
 len =
 sprintf(msgtxt[0],
 “Status: Running %s -- %s at %dx”,
 blockade_frame->scenario_info()->name,
 blockade_frame->mission_info()->name,
 Scenario::simulation_speed);
 set_text(msgtxt[0], len, 0);
 break;

 case YOU_WON:
 len =
 sprintf(msgtxt[0],
 “Status: You did well. “
 “You have stopped the cargo ship from “
 “reaching port”);
 set_text(msgtxt[0], len, 0);
 break;

 case YOU_LOST:
 len =
 sprintf(msgtxt[0],
 “Status: You lost. “
 “The cargo ship slipped away.”);
 set_text(msgtxt[0], len, 0);
 break;
 }

continues

410

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.16. continued

// Display the second line of status message

 if(!Scenario::simulation_running)
 {
 len = sprintf(msgtxt[1],
 “Go to the MAP view and click on TRY AGAIN “
 “ to play again.”);
 set_text(msgtxt[1], len, 1);
 }

 if(blockade_frame->polar_window_visible())
 {
 Weapon *w = &(blockade_frame->scenario()->our_ship()->
 weapon(Scenario::weapon_index));
 len = sprintf(msgtxt[1],
 “Current weapon: %s, Range: %.2f (surface)”
 “ %.2f (air), << %d Left >>”,
 w->name(), w->range_against_surface(),
 w->range_against_air(), w->ammo_left());

 set_text(msgtxt[1], len, 1);
 }
 if(blockade_frame->view3d_window_visible())
 {
 len = sprintf(msgtxt[1],
 “This window shows a 3D view of your ship. “
 “Use the zoom and arrow buttons to rotate ship.”);
 set_text(msgtxt[1], len, 1);
 }

// Check if player’s ship is outside the rectangles that define
// the valid region of the sea
 if((blockade_frame->scenario()->ownship_aground() >= 0) &&
 (Scenario::ran_aground >= 0))
 {
 len = sprintf(msgtxt[1],
 “You avoided running aground!”);
 set_text(msgtxt[1], len, 1);
 Scenario::ran_aground = AGROUND_THRESHOLD;
 }
 if(Scenario::ran_aground < 0 &&
 Scenario::ran_aground > AGROUND_THRESHOLD)
 {

411

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

// Display status message
 len = sprintf(msgtxt[1],
 “Change course to avoid running aground!”);
 set_text(msgtxt[1], len, 1);
 }
}

InfoWindow Class
The InfoWindow class represents the window across the top edge of
BLOCKADE’s main window. This window has a host of controls for control-
ling the game. As you might infer from Listing 9.17, the controls are imple-
mented using sprites that are managed by a SpriteAnimation class. Here are
the major controls in InfoWindow:

A set of four buttons to set the simulation speed. The simspeed array of
sprites denotes these buttons. There are eight sprites because each
button uses two sprites—one for the “button active” state and the
other for the “button inactive” state.

A control to select the sensor whose detections are to be shown in the
view window. The pointer to this sprite is selcon. Another sprite,
condisp, displays the name of the currently selected sensor.

A control to select a weapon. The pointer to this sprite is selwpn. A
second sprite named wpndisp displays the name of the currently
selected weapon.

A set of sprites, hdgdisp and hdgpick, that provides a convenient
graphical way to set the ship’s heading.

A set of sprites, spddisp and spdpick, that provides a way to set the
ship’s speed.

A weapon engagement button that the player can press to “shoot”
from the currently selected weapon. The pair of sprites, engbtn and
engbdn, implements this button.

Two more sprites, timedisp and scoredisp, that display the current
timer count and the score.

412

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.17. infowin.h—Declaration of the InfoWindow class.

//--
// File: infowin.h
//
// Declares the InfoWindow class that represents the window
// where some pertinent information about the application
// appears.
//--
#if !defined(__INFOWIN_H)
#define __INFOWIN_H

#include <owl.h>
#include “spranim.h”

const short lbmpwidth = 32;
const short lystart = 4;

class BlockadeFrame;

class InfoWindow: public TWindow
{
public:
 InfoWindow(PTWindowsObject parent, BlockadeFrame* bf);

 ~InfoWindow();

 void update();
 void init();
 void set_score(short s);
 void set_simspeed(short speed);

 void Paint(HDC hdc, PAINTSTRUCT& ps);
 void WMLButtonDown(RTMessage msg) =
 [WM_FIRST + WM_LBUTTONDOWN];
 void WMLButtonUp(RTMessage msg) = [WM_FIRST + WM_LBUTTONUP];
 void WMMouseMove(RTMessage msg) = [WM_FIRST + WM_MOUSEMOVE];

 unsigned short width() { return w;}
 unsigned short height() { return h;}
 void width(unsigned short _w) { w = _w;}
 void height(unsigned short _h) { h = _h;}

private:
 BlockadeFrame *blockade_frame;

 SpriteAnimation *anim;
 Sprite *score; // To display the current score
 Sprite *smslabel;

413

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 Sprite *simspeed[8];
 Sprite *selcon;
 Sprite *condisp;
 Sprite *selwpn;
 Sprite *wpndisp;
 Sprite *hdgdisp;
 Sprite *hdgpick;
 Sprite *spddisp;
 Sprite *spdpick;
 Sprite *engbtn;
 Sprite *engbdn;
 Sprite *timedisp;
 Sprite *scoredisp;

 short mouse_captured;
 Sprite *spr_current;
 short xlo, xhi;
 short ylo, yhi;
 short xlast;
 short ylast;

 short top, left;
 unsigned short w, h; // Size of client area
};

#endif

Listing 9.18 shows the implementation of the InfoWindow class. As in the
StatusWindow class (Listing 9.16), a static array of SpriteInfo structures,
sprite_data, defines the layout of the sprites in the window. Note that some
sprites overlap each other—these sprites are used to change the image in re-
sponse to an event such as a mouse button press. A flag in the SpriteInfo
 structure determines whether a sprite is displayed or not.

The init function, called from BlockadeFrame, sets up the SpriteAnimation
and the sprites specified in the sprite_data array.

The functions WMLButtonDown, WMMouseMove, and WMLButtonUp handle mouse
button press, mouse movement, and button release events, respectively. If the
player presses the left mouse button anywhere in the InfoWindow, Windows calls
the WMLButtonDown function. The action performed by this function depends on
the sprite at the location of the button press. If there is a valid sprite at that
location, the ID of the sprite determines how the event is handled. The other
functions, WMMouseMove and WMLButtonUp, work similarly.

414

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.18. infowin.cpp—
Implementation of the InfoWindow class.

//--
// File: infowin.cpp
//
// Implementation of the InfoWindow class.
//--
#include “bframe.h”
#include <time.h>
#include <stdio.h>

#define SIMSPEED 1
#define CONSELECT 2
#define WPNSELECT 3
#define HDGDISP 4
#define HDGPICK 5
#define SPDDISP 6
#define SPDPICK 7
#define ENGAGE 8
#define TIMEDISP 9
#define SCOREDISP 10

#define PIXPERDEG 0.267
#define DEGPERPIX 3.75
#define KTPERPIX 0.5
#define PIXPERKT 2

#define ENGPOS 300
#define HDGPOS 340
#define SPDPOS 440
#define TIMEPOS 510

// Declare an array of sprites to be loaded from image files
static SpriteInfo sprite_data[] =
{
// image, mask, xpos, ypos, xvel, yvel, priority, isactive, id

 SpriteInfo(“1x.bmp”, NULL, 2, 20, 0, 0, 99, 0, 10*SIMSPEED),
 SpriteInfo(“1xs.bmp”, NULL, 2, 20, 0, 0,99, 1,10*SIMSPEED+1),

 SpriteInfo(“10x.bmp”,NULL, 26, 20,0, 0, 99, 1,10*SIMSPEED+2),
 SpriteInfo(“10xs.bmp”,NULL,26, 20,0, 0, 99, 0,10*SIMSPEED+3),

 SpriteInfo(“20x.bmp”,NULL, 50,20, 0, 0, 99, 1,10*SIMSPEED+4),
 SpriteInfo(“20xs.bmp”,NULL,50,20, 0, 0, 99, 0,10*SIMSPEED+5),

415

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

 SpriteInfo(“30x.bmp”,NULL, 74,20, 0, 0, 99, 1,10*SIMSPEED+6),
 SpriteInfo(“30xs.bmp”,NULL,74,20, 0, 0, 99, 0,10*SIMSPEED+7)
};

// Total number of sprites
static int numsprites = sizeof(sprite_data) /
 sizeof(sprite_data[0]);

void _FAR PASCAL _export disp_contact(HDC hdc, short x, short y,
 LPVOID data);
void _FAR PASCAL _export disp_weapon(HDC hdc, short x, short y,
 LPVOID data);
void _FAR PASCAL _export disp_heading(HDC hdc, short x, short y,
 LPVOID data);
void _FAR PASCAL _export disp_speed(HDC hdc, short x, short y,
 LPVOID data);
void _FAR PASCAL _export disp_time(HDC hdc, short x, short y,
 LPVOID data);
void _FAR PASCAL _export disp_score(HDC hdc, short x, short y,
 LPVOID data);
//--
// InfoWindow:: I n f o W i n d o w

InfoWindow::InfoWindow(PTWindowsObject parent,
 BlockadeFrame *bf) :
 TWindow(parent, NULL), blockade_frame(bf),
 top(0), left(0), w(1), h(1), anim(NULL),
 mouse_captured(0), spr_current(NULL)
{
 Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE |
 WS_CLIPSIBLINGS;
}
//--
// InfoWindow:: ~ I n f o W i n d o w
// Destructor for the InfoWindow class

InfoWindow::~InfoWindow()
{
 if(anim != NULL) delete anim;
}
//--
// InfoWindow:: P a i n t
// Draw everything in the window

void InfoWindow::Paint(HDC hdc, PAINTSTRUCT&)
{

continues

416

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09b LP#5

Listing 9.18. continued

 if(anim != NULL)
 {
 anim->set_refresh(TRUE);
 anim->animate(hdc, left, top);
 }
}
//--
// InfoWindow:: u p d a t e
// Animate the sprites in the puzzle window

void InfoWindow::update()
{
 if(anim != NULL)
 {
 timedisp->move(0,0);
 scoredisp->move(0,0);
 HDC hdc = GetDC(HWindow);
 anim->animate(hdc, left, top);
 ReleaseDC(HWindow, hdc);
 }
}
//--
// InfoWindow:: i n i t
// Initialize the animation for this window

void InfoWindow::init()
{
// Change the cursor to an hourglass
 SetCapture(HWindow);
 SetCursor(LoadCursor(NULL, IDC_WAIT));

// Clean up existing puzzle, if any
 if(anim != NULL) delete anim;

// Get a DC for this window
 HDC hdc = GetDC(HWindow);

// Construct a SpriteAnimation with background for this window
 anim = new SpriteAnimation(hdc, blockade_frame->info_wmax(),
 blockade_frame->info_hmax(), “infobg.bmp”);
 if(anim == NULL) return;

// Add a label sprite for “Simulation Speed”
 smslabel= new Sprite(hdc, “simspeed.bmp”, NULL, 10000);
 smslabel->newpos(0, 0);
 anim->add(smslabel);

417

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 short i;
 for(i = 0; i < numsprites; i++)
 {
 simspeed[i] = new Sprite(hdc,
 sprite_data[i].imagefilename,
 sprite_data[i].maskfilename);
 simspeed[i]->priority(sprite_data[i].priority);
 simspeed[i]->newpos(sprite_data[i].xpos,
 sprite_data[i].ypos);
 simspeed[i]->id(sprite_data[i].id);
 if(!sprite_data[i].isactive) simspeed[i]->inactive();
// Add sprite to animation
 anim->add(simspeed[i]);
 }

// Add contact selection sprites
 selcon = new Sprite(hdc, “selcon.bmp”, NULL);
 selcon->priority(100);
 selcon->newpos(100, 0);
 selcon->id(10*CONSELECT);
 anim->add(selcon);

 condisp = new Sprite(hdc, “txtdisp.bmp”, NULL);
 condisp->priority(100);
 condisp->newpos(100, 20);
 condisp->id(10*CONSELECT+1);
 DRAWPROC proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_contact,
 GetApplication()->hInstance);
 condisp->drawproc(proc, blockade_frame);
 condisp->active();
 condisp->update();
 anim->add(condisp);

// Add weapons selection sprites
 selwpn = new Sprite(hdc, “selwpn.bmp”, NULL);
 selwpn->priority(100);
 selwpn->newpos(200, 0);
 selwpn->id(10*WPNSELECT);
 anim->add(selwpn);

 wpndisp = new Sprite(hdc, “txtdisp.bmp”, NULL);
 wpndisp->priority(100);
 wpndisp->newpos(200, 20);
 wpndisp->id(10*WPNSELECT+1);
 proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_weapon,
 GetApplication()->hInstance);

continues

418

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.18. continued

 wpndisp->drawproc(proc, blockade_frame);
 wpndisp->active();
 wpndisp->update();
 anim->add(wpndisp);

// Add a sprite for launching weapon
 engbtn = new Sprite(hdc, “engup.bmp”, NULL);
 engbtn->priority(300);
 engbtn->newpos(ENGPOS, 4);
 engbtn->id(10*ENGAGE);
 engbtn->active();
 engbtn->update();
 anim->add(engbtn);
// Pushed version of engage button
 engbdn = new Sprite(hdc, “engdn.bmp”, NULL);
 engbdn->priority(300);
 engbdn->newpos(ENGPOS, 4);
 engbdn->id(10*ENGAGE);
 engbdn->inactive();
 anim->add(engbdn);

// Add a sprite for setting the heading...
 hdgdisp = new Sprite(hdc, “heading.bmp”, NULL);
 hdgdisp->priority(100);
 hdgdisp->newpos(HDGPOS, 0);
 hdgdisp->id(10*HDGDISP);
 proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_heading,
 GetApplication()->hInstance);
 hdgdisp->drawproc(proc, blockade_frame);
 hdgdisp->active();
 hdgdisp->update();
 anim->add(hdgdisp);

// And the marker used to pick new headings...
 hdgpick = new Sprite(hdc, “hdgmrk.bmp”, “hdgmrkm.bmp”);
 hdgpick->priority(200);
 float hdg = blockade_frame->scenario()->our_ship()->heading();
 short pos;
 if(hdg > 180) pos = HDGPOS + (hdg-180)*PIXPERDEG;
 if(hdg < 180) pos = HDGPOS + hdg*PIXPERDEG + 48;
 hdgpick->newpos(pos, 10);
 hdgpick->id(10*HDGPICK);
 hdgpick->active();
 hdgpick->update();
 anim->add(hdgpick);

419

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

// Add sprites for setting the speed...
 spddisp = new Sprite(hdc, “speed.bmp”, NULL);
 spddisp->priority(100);
 spddisp->newpos(SPDPOS, 0);
 spddisp->id(10*SPDDISP);
 proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_speed,
 GetApplication()->hInstance);
 spddisp->drawproc(proc, blockade_frame);
 spddisp->active();
 spddisp->update();
 anim->add(spddisp);

// And the marker used to pick new speed
 spdpick = new Sprite(hdc, “hdgmrk.bmp”, “hdgmrkm.bmp”);
 spdpick->priority(200);
 float spd = blockade_frame->scenario()->our_ship()->speed();
 pos = SPDPOS + spd*PIXPERKT - 3;
 spdpick->newpos(pos, 10);
 spdpick->id(10*SPDPICK);
 spdpick->active();
 spdpick->update();
 anim->add(spdpick);

// Add a sprite to display the “simulation time”
 timedisp = new Sprite(hdc, “time.bmp”, NULL);
 timedisp->priority(100);
 timedisp->newpos(TIMEPOS, 0);
 timedisp->id(10*TIMEDISP);
 proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_time,
 GetApplication()->hInstance);
 timedisp->drawproc(proc, blockade_frame);
 timedisp->active();
 timedisp->update();
 anim->add(timedisp);

// Add a sprite to display the score
 scoredisp = new Sprite(hdc, “score.bmp”, NULL);
 scoredisp->priority(100);
 scoredisp->newpos(TIMEPOS, 20);
 scoredisp->id(10*SCOREDISP);
 proc = (DRAWPROC) MakeProcInstance(
 (FARPROC) disp_score,
 GetApplication()->hInstance);
 scoredisp->drawproc(proc, blockade_frame);
 scoredisp->active();
 scoredisp->update();
 anim->add(scoredisp);

continues

420

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.18. continued

// Remember to release the DC
 ReleaseDC(HWindow, hdc);

// Reset cursor to arrow
 SetCursor(LoadCursor(NULL, IDC_ARROW));
 ReleaseCapture();
}
//--
// InfoWindow:: W M L B u t t o n D o w n
// Handle button down events in the InfoWindow

void InfoWindow::WMLButtonDown(RTMessage msg)
{
 short x = msg.LP.Lo;
 short y = msg.LP.Hi;
 Sprite *s = anim->sprite_at(x, y);

 if(s != NULL)
 {
 short type = s->id() / 10;
 short index = s->id() - 10*type;
 switch(type)
 {
 case SIMSPEED: // Simulation speed selection
 if(index % 2 == 0)
 {
// Set new simulation speed...
 short speed = 5*index;
 if(index == 0) speed = 1;
 set_simspeed(speed);
 }
 break;

 case CONSELECT: // Select contacts to be displayed
 short maxsensor =
 blockade_frame->scenario()->our_ship()->
 numsensor();
 if(Scenario::sensor_index < maxsensor)
 Scenario::sensor_index++;
 if(Scenario::sensor_index == maxsensor)
 Scenario::sensor_index = -1;
 Scenario::sensor_changed = 1;
 condisp->move(0,0);
 break;

421

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 case WPNSELECT: // Weapon selection
 short maxweapon =
 blockade_frame->scenario()->our_ship()->
 numweapon();
 if(Scenario::weapon_index < maxweapon)
 Scenario::weapon_index++;
 if(Scenario::weapon_index == maxweapon)
 Scenario::weapon_index = 0;
 Scenario::weapon_changed = 1;
 wpndisp->move(0,0);
 break;

 case HDGPICK: // Move the marker...
 spr_current = s;
 spr_current->active();
 xlast = x;
 ylast = y;
 xlo = HDGPOS;
 xhi = HDGPOS + 96;
 SetCapture(HWindow);
 mouse_captured = 1;
 break;

 case SPDPICK: // Move the marker...
 spr_current = s;
 spr_current->active();
 xlast = x;
 ylast = y;
 xlo = SPDPOS;
 xhi = blockade_frame->scenario()->our_ship()->
 max_speed() * PIXPERKT + SPDPOS;
 SetCapture(HWindow);
 mouse_captured = 1;
 break;

 case ENGAGE: // Engage weapon (only in polar window)
 if(!blockade_frame->polar_window_visible())
 {
// Clear the status message
 LPSTR msgtxt = blockade_frame->
 status_window()->get_msgbuf(1);
 short len = sprintf(msgtxt,
 “Engage weapons from Polar window!”);
 blockade_frame->status_window()->
 set_text(msgtxt, len, 1);
 break;
 }

continues

422

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.18. continued

 spr_current = s;
 xlast = x;
 ylast = y;
 xlo = spr_current->xpos();
 ylo = spr_current->ypos();
 xhi = xlo + spr_current->width();
 yhi = ylo + spr_current->height();
 SetCapture(HWindow);
 mouse_captured = 1;
 engbtn->inactive();
 engbdn->active();
 anim->set_refresh(1);
 break;
 }
 }
}
//--
// InfoWindow:: W M M o u s e M o v e
// Handle mouse move events

void InfoWindow::WMMouseMove(RTMessage msg)
{
 if(!mouse_captured) return;

 short x = msg.LP.Lo;
 short y = msg.LP.Hi;

 if(spr_current->id() == 10*ENGAGE)
 {
 if(x > xlo && x < xhi && y > ylo && y < yhi)
 {
 engbtn->inactive();
 engbdn->active();
 engbdn->move(0,0);
 }
 else
 {
 engbdn->inactive();
 engbtn->active();
 engbtn->move(0,0);
 }
 return;
 }

// Don’t let the marker move out of the specified xlo/xhi area
 short xs = spr_current->xpos();
 short xdel = x - xlast;

423

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 if(xs + xdel <= xlo) xdel = 0;
 if(xs + xdel >= xhi) xdel = 0;

// Move sprite
 spr_current->move(xdel, 0);

 xlast = xlast + xdel;

// Update the heading or speed
 if(spr_current->id() == 10*HDGPICK)
 {
 float hdg = (xlast - HDGPOS) * DEGPERPIX;
 if(hdg > 180) hdg -= 180;
 else hdg += 180;
 blockade_frame->scenario()->our_ship()->heading(hdg);
 hdgdisp->move(0,0); // Move forces update
 }
 if(spr_current->id() == 10*SPDPICK)
 {
 float spd = (xlast - SPDPOS) * KTPERPIX;
 blockade_frame->scenario()->our_ship()->speed(spd);
 spddisp->move(0,0); // Move forces update
 }
}
//--
// InfoWindow:: W M L B u t t o n U p
// Handle button up event

void InfoWindow::WMLButtonUp(RTMessage msg)
{
 if(!mouse_captured) return;

 short x = msg.LP.Lo;
 short y = msg.LP.Hi;

 if(spr_current->id() == 10*ENGAGE)
 {
 if(x > xlo && x < xhi && y > ylo && y < yhi)
 {
// Engage the current weapon of player’s ship aganist the
// current target
 blockade_frame->scenario()->engage_ownship_weapon();
 }
 engbdn->inactive();
 engbtn->active();
 engbtn->move(0,0);
 anim->set_refresh(1);

continues

424

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.18. continued

// Deselect the Sprite...and release the mouse
 spr_current = NULL;
 ReleaseCapture();
 mouse_captured = 0;
 return;
 }

// Don’t let the marker image move out of the window...
 short xs = spr_current->xpos();
 short ys = spr_current->ypos();

 short xdel = x - xlast;

 if((xs + xdel >= xlo) && (xs + xdel <= xhi))
 {
 spr_current->move(xdel, 0);
 xlast = x;

// Update the heading or speed
 if(spr_current->id() == 10*HDGPICK)
 {
 float hdg = (xlast - HDGPOS) * DEGPERPIX;
 if(hdg > 180) hdg -= 180;
 else hdg += 180;
 blockade_frame->scenario()->our_ship()->heading(hdg);
 hdgdisp->move(0,0); // Move forces update
 }
 if(spr_current->id() == 10*SPDPICK)
 {
 float spd = (xlast - SPDPOS) * KTPERPIX;
 blockade_frame->scenario()->our_ship()->speed(spd);
 spddisp->move(0,0); // Move forces update
 }
 }

// De-select the Sprite...and release the mouse
 spr_current = NULL;
 ReleaseCapture();
 mouse_captured = 0;
}
//--
void _FAR PASCAL _export disp_contact(HDC hdc, short x, short y,
 LPVOID p)
{
 BlockadeFrame *bf = (BlockadeFrame*)p;
 char *nm;
 short len;

425

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 SetBkMode(hdc, TRANSPARENT);

// Get current sensor index
 if(Scenario::sensor_index == -1)
 TextOut(hdc, x+2, y+2, “All Sensors”, 11);
 else
 {
 nm = bf->scenario()->our_ship()->
 sensor(Scenario::sensor_index).name();
 len = strlen(nm);
 TextOut(hdc, x+2, y+2, nm, len);
 }

}
//--
void _FAR PASCAL _export disp_weapon(HDC hdc, short x, short y,
 LPVOID p)
{

 BlockadeFrame *bf = (BlockadeFrame*)p;
 char *nm;
 short len;

 SetBkMode(hdc, TRANSPARENT);

// Get current weapon index
 nm = bf->scenario()->our_ship()->
 weapon(Scenario::weapon_index).name();
 len = strlen(nm);
 TextOut(hdc, x+2, y+2, nm, len);
}
//--
void _FAR PASCAL _export disp_heading(HDC hdc, short x, short y,
 LPVOID p)
{
 BlockadeFrame *bf = (BlockadeFrame*)p;
 char buf[8];
 SetBkMode(hdc, TRANSPARENT);

// Get current heading
 float hdg = bf->scenario()->our_ship()->heading();
 wsprintf(buf, “%.3d”, (short)hdg);
 TextOut(hdc, x+63, y+23, buf, 3);
}
//--
void _FAR PASCAL _export disp_speed(HDC hdc, short x, short y,
 LPVOID p)

continues

426

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.18. continued

{
 BlockadeFrame *bf = (BlockadeFrame*)p;
 char buf[8];
 SetBkMode(hdc, TRANSPARENT);

// Get current speed
 float hdg = bf->scenario()->our_ship()->speed();
 wsprintf(buf, “%.2d”, (short)hdg);
 TextOut(hdc, x+43, y+23, buf, 2);
}
//--
void _FAR PASCAL _export disp_time(HDC hdc, short x, short y,
 LPVOID p)
{
 char buf[20];
 SetBkMode(hdc, TRANSPARENT);

// Display the current time in seconds
 short len = sprintf(buf, “%ld”, Scenario::simulation_time);
 TextOut(hdc, x+32, y+2, buf, len);
}
//--
void _FAR PASCAL _export disp_score(HDC hdc, short x, short y,
 LPVOID p)
{
 char buf[20];
 SetBkMode(hdc, TRANSPARENT);

// Display the current score
 short len = sprintf(buf, “%ld”, Scenario::score);
 TextOut(hdc, x+32, y+2, buf, len);
}
//--
// InfoWindow:: s e t _ s i m s p e e d
// Sets the simulation speed and adjusts the buttons that
// indicate the simulation speed

void InfoWindow::set_simspeed(short speed)
{
// Reset the sprite corresponding to the current rate of
// simulation
 short index = Scenario::simulation_speed / 5;
 simspeed[index]->active();
 simspeed[index+1]->inactive();

427

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

// Save current speed...
 Scenario::old_simspeed = Scenario::simulation_speed;

// Set new simulation speed...
 Scenario::simulation_speed = speed;
 Scenario::update_every = 30 /
 Scenario::simulation_speed;
 index = speed / 5;
 simspeed[index]->inactive();
 simspeed[index+1]->active();
}

Scenario Class
The Scenario class is responsible for creating and initializing the naval simu-
lation that is at the heart of the BLOCKADE game. The most important com-
ponent of the Scenario class is the array of Platform objects named platforms.
These denote the ships and aircraft (and any other moving objects such as
missiles and gun ammunition) that populate the scenario.

As you can see from the header file scenario.h (Listing 9.19), the Scenario
class has a large set of static variables representing global data for the game.
These variables are described later.

Listing 9.19. scenario.h—Declaration of the Scenario class.

//--
// File: scenario.h
//
// Declaration of the classes that represent the objects in
// the scenario being simulated in BLOCKADE.
//--
#if !defined(_ _SCENARIO_H)
#define _ _SCENARIO_H

#include <array.h>
#include “platform.h”
#include “scninfo.h”

continues

428

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.19. continued

class Scenario
{
public:
 Scenario() : platforms(NULL), count(0), motion_count(0)
 {}
 ~Scenario();

 void init(ScenarioInfo *current_scenario,
 MissionInfo *current_mission);
 void init_weapons();

 void update();

 short numplatform()
 {
 return platforms->getItemsInContainer();
 }

 Platform& platform(short i)
 { return (Platform&)(*platforms)[i];}

 Platform* our_ship() {return ownship;}

 void make_sprites(HDC hdc);
 void ownship_xfrm();
 void mark_detected_sprites();

 void engage_ownship_weapon();
 void auto_engage_weapon();
 short ownship_aground();

 static float BASIC_PERIOD;
 static SimTime simulation_time;
 static SimTime update_every;
 static short simulation_running;
 static short simulation_speed;
 static short old_simspeed;
 static short sensor_index;
 static short weapon_index;
 static short weapon_changed;
 static short sensor_changed;
 static short weapons_engaged;
 static short status;
 static Platform *current_platform;
 static float bearing_current;
 static float range_current;

429

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 static short xpos_current;
 static short ypos_current;
 static short refresh; // TRUE => animation is redrawn
 static short ran_aground;
 static long score;
 static char mission_description[512];
 static short random_draw(float prob);

protected:
 Array *platforms; // Platforms in the scenario
 Platform *ownship; // Pointer to player’s ship
 ScenarioInfo *sinfo;
 MissionInfo *minfo;
 float future_hdg;
 short count;
 short motion_count;
};

#endif

Header File: scninfo.h
In BLOCKADE, ScenarioInfo and MissionInfo structures are used to store in-
formation on available scenarios as well as information on the missions defined
for the current scenario. The header file scninfo.h, shown in Listing 9.20,
defines these structures.

Listing 9.20. scninfo.h—
Declaration of some structures used in BLOCKADE.

//--
// File: scninfo.h
//
// Defines the structures to hold information about each
// scenario meant for the BLOCKADE game.
//--
#if !defined(_ _SCNINFO_H)
#define _ _SCNINFO_H

#include <windows.h>

continues

430

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.20. continued

struct ScenarioInfo
{
 ScenarioInfo() : name(NULL), defnfile(NULL),
 mapfile(NULL), zmapfile(NULL), done(0),
 validsea(NULL)
 {}

 ~ScenarioInfo()
 {
 if(name != NULL) delete name;
 if(defnfile != NULL) delete defnfile;
 if(mapfile != NULL) delete mapfile;
 if(zmapfile != NULL) delete zmapfile;
 if(validsea != NULL) delete validsea;
 }
 short done; // TRUE = scenario played
 char *name; // Name of scenario
 char *defnfile; // Name of scenario definition file
 char *mapfile; // Map image file
 char *zmapfile; // Map image--zoomed-in version
 float mapzoom; // Magnification of zoomed-in map
 float orglat; // Latitude and longitude of
 float orglng; // map’s upper left corner
 float pixperlat; // Pixels per degree (latitude)
 float pixperlng; // Pixels per degree (longitude)
 short nrects; // Number of rectangles in next array
 RECT *validsea; // Places where ships can go
};

struct MissionInfo
{
 MissionInfo() : name(NULL), defnfile(NULL),
 done(0), s3dfile(NULL), bg3dfile(NULL)
 {}

 ~MissionInfo()
 {
 if(name != NULL) delete name;
 if(defnfile != NULL) delete defnfile;
 if(s3dfile != NULL) delete s3dfile;
 if(bg3dfile != NULL) delete bg3dfile;
 }
 short done; // TRUE = Mission played
 char *name; // Name of mission

431

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 char *defnfile; // Name of mission definition file
 char *s3dfile; // 3D Scenario definition file
 char *bg3dfile; // Background image for 3D display
};

#endif

Header File: simdefs.h
Listing 9.21 shows the header file simdefs.h that declares a number of macros
and structures used in the simulation of a scenario in BLOCKADE. The mac-
ros include conversion factors (DEG_TO_RAD, DEG2NM) and identifiers for platform
types (SURFACE, AIR), platform sizes (SMALL, MEDIUM, LARGE), and other constants
denoting status (LOADING, RUNNING).

Listing 9.21. simdefs.h—
Declaration of macros for BLOCKADE.

//--
// File: simdefs.h
// Definitions for simulation time and events.
//--
#if !defined(__SIMDEFS_H)
#define __SIMDEFS_H

#include <math.h>

#define AGROUND_THRESHOLD -5

#define LOADING 1
#define RUNNING 2
#define YOU_WON 4
#define YOU_LOST 8

#define WPN_TOLERANCE 1.0
#define MAXHITS 16

#define DEG_TO_RAD 0.0174532
#define RAD_TO_DEG 57.29578

// Timer interval for display updates
#define DISP_MILLISECONDS 60

continues

432

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.21. continued

#define PLATFORM 100
#define SENSOR 200
#define WEAPON 300
#define DETECTION 400

#define INACTIVE 0
#define ACTIVE 1

// Define platform types
#define SURFACE 0
#define AIR 1
#define BOTH 2

// Platform size
#define SMALL 0
#define MEDIUM 1
#define LARGE 2

// Define sensor types
#define RADAR 1
#define ESM 2

// Conversion factors...
#define DEG2NM 60
#define NM2DEG 0.167
#define NM2FT 6076
#define FT2NM 0.00016

typedef unsigned long SimTime;

#define SIMTICK_PER_SEC (1000/DISP_MILLISECONDS)

// Defines an angle sector (clockwise positive, 0 degree along
// ship’s axis).
struct Sector
{
 Sector() : angle1(0), angle2(360) {};
 void angles(float a, float b)
 {
 if(a < b)
 {
 angle1 = a;
 angle2 = b;
 }
 else

433

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 {
 angle1 = b;
 angle2 = a;
 }
 }
 short contains(float a)
 {
 if(a > angle1 && a < angle2)
 return 1;
 else
 return 0;
 }
 float angle1;
 float angle2;
};

struct latlng
{
 latlng() : lat(0), lng(0) {}
 float lat;
 float lng;
};

struct Stage
{
 Stage() : npts(0), pt(NULL) {}
 ~Stage() { if(pt != NULL) delete pt;}
 short npts;
 latlng *pt;
};

#endif

Implementation of Scenario
Listing 9.22 shows the file scenario.cpp, which implements the member func-
tions and initializes a host of static variables of the Scenario class. The init
member function initializes the current scenario by reading and interpreting
the current mission file. In the process of initializing the scenario, init creates
and initializes all specified platforms. Each platform, in turn, initializes its sen-
sors and weapons.

434

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

The init_weapons function does further initializations for each weapon.
Specifically, init_weapons creates a platform representing the weapon’s am-
munition (for example, missile or gun projectiles). These platforms (tied to
ammunition) are activated when the weapon is used.

Another useful function is ownship_xfrm, which computes the coordinates
of each platform in terms of the player’s ship. These coordinates are used in
the PolarWindow class to draw the polar display.

Simulating the Scenario
The update function of the Scenario class ensures that the platforms in the simu-
lation move and interact with each other. If you study the update function in
Listing 9.22, you see that the function first calls the update function of each
platform. Then, it loops over the platforms, computes the range between pairs
of platforms and calls the detect function of the sensors to determine whether
a platform “sees” another. It calls the mark_detected_sprites function to en-
sure that the current view window shows only those platforms that are detected
by the current sensor of the player’s ship.

Next, update calls auto_engage_weapon to let all platforms (other than the
player’s) shoot at the player’s ship. Of course, the platforms can use their weap-
ons only if they are able to detect the player’s ship. Finally, update calls the
continue_engagements function of all the weapons in each platform in the sce-
nario. That function determines if a weapon has hit its target or not.

Drawing a Random
Number with Specified Probability
The Scenario class includes a static function, random_draw, that accepts a prob-
ability (between 0 and 1), makes a random draw, and returns TRUE if the draw
occurs with the specified level of probability. In BLOCKADE, weapons hit a
target with a certain probability. I use the random_draw function to determine
the success of a weapon. The idea behind random_draw is the following: If a
uniform random number generator generates numbers between 0 and N-1, each
number between 0 and N-1 can occur with probability 1/N. Then, the prob-
ability that a number is less than M, is equal to M/N. For example, if the ran-
dom number generator generates values between 0 and 999, the probability

435

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

that a number is less than 800 is 800/1000 = 0.8. Thus, to check if a random draw
with probability 0.8 succeeds, all you have to do is generate a uniform random
number between 0 and 999, and return TRUE if the number is less than 800. This
is the idea embodied in the random_draw function. Note that the function call
random(1000) returns a uniform random number between 0 and 999.

Static Member Variables in Scenario
The Scenario class includes the following static member variables that are used
as global variables for the BLOCKADE game:

static float BASIC_PERIOD; is the time step in seconds for every 30
ticks of the timer. Because BLOCKADE is set up for a 60-millisecond
timer, this should be about 1.8 seconds. This variable is read in from
the scenario definition file.

static SimTime simulation_time; is the number of BASIC_PERIOD
seconds that has elapsed so far. Remember that when the simulation is
running 30 times faster, this is one-thirtieth of the specified number of
seconds.

static SimTime update_every; is the number of timer ticks that elapses
between each update of the scenario. This variable is set to 30 divided
by the simulation_speed. Thus, when simulation_speed is 1,
update_every is 30.

static short simulation_running; indicates if simulation is running.
It is initially TRUE and becomes FALSE only when the game ends.

static short simulation_speed; is a factor indicating current speed
of the simulation. It can be one of 1, 10, 20, or 30. Higher simulation
speeds cause the scenario to be updated faster. Initially,
simulation_speed is set to 1.

static short old_simspeed; is the previous setting of
simulation_speed.

static short sensor_index; is the currently selected sensor number
of the player’s ship.

static short weapon_index; is the currently selected weapon number
of the player’s ship.

436

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

static short weapons_engaged; is set to TRUE when any weapon
engagement is in progress.

static short status; denotes the status of the simulation.

static Platform *current_platform; is the currently selected platform
(the platform in the polar view on which the player has clicked).

static float bearing_current; is the bearing from player’s ship to
current_platform.

static float range_current; is the range from player’s ship to
current_platform.

static short xpos_current; is the x-coordinate of the last button
press in the polar window.

static short ypos_current; is the y-coordinate of the last button
press in the polar window.

static short refresh; controls if the display is updated. If you set
this variable to TRUE, all displays are refreshed.

static short ran_aground; indicates if the player’s ship is about to
run aground.

static long score; is the current score.

static char mission_description[512]; holds a description of the
current mission. The description is read from the current mission
file in the init function.

Listing 9.22. scenario.cpp—
Implementation of the Scenario class.

//--
// File: scenario.cpp
//
// Implementation of the Scenario class.
//--
#include <stdlib.h>
#include <fstream.h>
#include “scenario.h”
#include <stdio.h>

437

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

float Scenario::BASIC_PERIOD = 1.0;
SimTime Scenario::simulation_time = 0L;
short Scenario::simulation_running = 1;
short Scenario::simulation_speed = 1;
short Scenario::old_simspeed = 1;
SimTime Scenario::update_every = 30/Scenario::simulation_speed;
short Scenario::sensor_index = -1;
short Scenario::weapon_index = 0;
short Scenario::sensor_changed = 0;
short Scenario::weapon_changed = 0;
short Scenario::weapons_engaged = 0;
short Scenario::status = LOADING;
Platform *Scenario::current_platform = NULL;
short Scenario::xpos_current = 0;
short Scenario::ypos_current = 0;
float Scenario::bearing_current = 0.0;
float Scenario::range_current = 0.0;
short Scenario::refresh = 0;
short Scenario::ran_aground = AGROUND_THRESHOLD;
long Scenario::score = 0L;
char Scenario::mission_description[512] = “ “;

static char *whitespace = “ \t”;
//--
// ~ S c e n a r i o

Scenario::~Scenario()
{
 if(platforms != NULL) delete platforms;
}
//--
// Scenario:: r a n d o m _ d r a w
// Draws a random number and returns 1 if the probability of
// drawing the number is “prob”
short Scenario::random_draw(float prob)
{
 float draw = (float) random(1000);
 if(draw < (float)1000 * prob)
 return 1;
 else
 return 0;
}
//--
// Scenario:: i n i t
// Initialize a scenario by reading from a file

continues

438

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.22. continued

void Scenario::init(ScenarioInfo *si, MissionInfo *mi)

{
 sinfo = si;
 minfo = mi;
 if(sinfo == NULL || minfo == NULL) return;

// Open the mission file and create the specified scenario
 ifstream ifs(mi->defnfile, ios::in);
 if(!ifs)
 {
// Error reading file.
 return;
 }

// Read and interpret the contents of the file
 char line[81];

// First line should have the string BLOCKADE.MSN
 ifs.getline(line, sizeof(line));
 strupr(line);
 if(strnicmp(line, “BLOCKADE.MSN”,
 strlen(“BLOCKADE.MSN”)) != 0) return;

// Second line has a version number--just in case the
// contents have to change in the future
 ifs.getline(line, sizeof(line));
 short version = atoi(line);
 if(version != 1) return;

// Third line has the number of lines that describe the
// mission.
 ifs.getline(line, sizeof(line));
 short nlines = atoi(line);

// Read the comment lines
 short i, len, count = 0;
 if(nlines > 0)
 {
 for(i = 0; i < nlines; i++)
 {
 ifs.getline(line, sizeof(line));
 len = strlen(line);
 if(count + len < 512)
 count += sprintf(&mission_description[count],
 “%s\n”, line);

439

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

 else
 mission_description[count++] = ‘\n’;
 }
 }
// Next line has the number of platforms in this scenario
 ifs.getline(line, sizeof(line));
 short numplat = atoi(line);
 if(numplat == 0) return;

// Allocate an array for the Platforms
 platforms = new Array(numplat, 0, 8);
 if(platforms == NULL) return;

// Set up Platforms
 char *token;
 Platform *p;
 for(i = 0; i < numplat; i++)
 {
// Skip first line
 ifs.getline(line, sizeof(line));

// Next line has name of a platform
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 p = new Platform(token);
// Initialize the platform
 p->init();

// Is platform active now?
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(strnicmp(token, “ACTIVE”, 6) == 0)
 p->active();
 if(strnicmp(token, “INACTIVE”, 8) == 0)
 p->inactive();

// Set its position, speed, and bearing
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 p->lng = atof(token) /
 sinfo->pixperlng + sinfo->orglng;

 token = strtok(NULL, whitespace);
 p->lat = -atof(token) /
 sinfo->pixperlat + sinfo->orglat;
 token = strtok(NULL, whitespace);
 p->alt = atof(token);

continues

440

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.22. continued

 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 p->_speed = atof(token);
 token = strtok(NULL, whitespace);
 p->bearing = atof(token);
 p->bearing_cmd = p->bearing;
 token = strtok(NULL, whitespace);
 p->alt_rate = atof(token);

// Set up the number of stages (these define the motion
// of some platforms), if any.

 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 p->nstages = atoi(token);
 p->curstage = 0;
 if(p->nstages > 0)
 {
 if(p->stages != NULL) delete p->stages;
 p->stages = new Stage[p->nstages];
 short j;
 for(j = 0; j < p->nstages; j++)
 {
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 p->stages[j].npts = atoi(token);
 if(p->stages[j].npts > 0)
 {
 p->stages[j].pt = new latlng[
 p->stages[j].npts];
 short k;
 for(k = 0; k < p->stages[j].npts; k++)
 {
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 p->stages[j].pt[k].lng = atof(token) /
 sinfo->pixperlng + sinfo->orglng;
 token = strtok(NULL, whitespace);
 p->stages[j].pt[k].lat = -atof(token) /
 sinfo->pixperlat + sinfo->orglat;
 }

 }
 }
 }

441

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

// Set platform’s heading to a point in the first stage
 if(p->nstages > 0)
 {
 short ip = random(p->stages[0].npts);
 p->lat = p->stages[0].pt[ip].lat;
 p->lng = p->stages[0].pt[ip].lng;
 if(p->nstages > 1)
 {
 ip = random(p->stages[1].npts);
 p->destlat = p->stages[1].pt[ip].lat;
 p->destlng = p->stages[1].pt[ip].lng;
 p->bearing_cmd = atan2(p->destlng-p->lng,
 p->destlat-p->lat) * RAD_TO_DEG;
 if(p->bearing_cmd < 0)
 p->bearing_cmd = 360 + p->bearing_cmd;
 }
 }
 if(i == 0) ownship = p;
// Add platform to the array of platforms
 platforms->addAt(*p, i);
 }
// Change ownship image file name...
 if(ownship->imgfile != NULL) delete ownship->imgfile;
 if(ownship->mskfile != NULL) delete ownship->mskfile;
 if(ownship->imgmfile != NULL) delete ownship->imgmfile;
 if(ownship->mskmfile != NULL) delete ownship->mskmfile;
 ownship->imgfile = new char[strlen(“OWNSHIP.BMP”)+1];
 strcpy(ownship->imgfile, “OWNSHIP.BMP”);
 ownship->mskfile = new char[strlen(“OWNSHIPM.BMP”)+1];
 strcpy(ownship->mskfile, “OWNSHIPM.BMP”);
 ownship->imgmfile = new char[strlen(“OWNSM.BMP”)+1];
 strcpy(ownship->imgmfile, “OWNSM.BMP”);
 ownship->mskmfile = new char[strlen(“OWNSMM.BMP”)+1];
 strcpy(ownship->mskmfile, “OWNSMM.BMP”);

// Make sure all platforms from the third one onward keep
// repeating themselves
 for(i = 2; i < numplat; i++)
 platform(i).loop_back = 1;

// Initialize the ammo rounds of the weapons on all platforms
 init_weapons();
}
//--
// Scenario:: m a k e _ s p r i t e s
// Create a sprite for each platform.

continues

442

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.22. continued

void Scenario::make_sprites(HDC hdc)
{
 short i;
 for(i = 0; i < numplatform(); i++)
 {
 platform(i).make_sprite(hdc);
 platform(i).sprite()->id(i);
 platform(i).map_sprite()->id(i);
 platform(i).zmap_sprite()->id(i);
 }
}
//--
// Scenario:: o w n s h i p _ x f r m
// Transform all platform’s coordinates to the coordinate
// frame of the player’s ship (which we call “ownship”).

void Scenario::ownship_xfrm()
{
 short i;
 float hdg_rad = ownship->heading() * DEG_TO_RAD;
 float coshdg = cos(hdg_rad);
 float sinhdg = sin(hdg_rad);
 float x, y, xp, yp;

 for(i = 0; i < numplatform(); i++)
 {
 x = DEG2NM * (platform(i).longitude() -
 ownship->longitude());
 y = DEG2NM * (platform(i).latitude() -
 ownship->latitude());
 xp = x*coshdg - y*sinhdg;
 yp = x*sinhdg + y*coshdg;
 platform(i).xo(xp);
 platform(i).yo(yp);
 platform(i).zo(platform(i).altitude() -
 ownship->altitude());
 }
}
//--
// Scenario:: u p d a t e
// Update the scenario (move platforms, make sensor detections,
// and engage weapons,...)

void Scenario::update()
{
// Do nothing if simulation is not running
 if(!simulation_running) return;

443

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

// Update all platforms
 short i;
 for(i = 0; i < numplatform(); i++)
 {
 platform(i).update();
 }

 if(count++ > Scenario::update_every)
 {
// Reset count
 count = 0;
 Scenario::simulation_time++;
 short updtcount = MOTION_UPDATE_COUNT;
 if(weapons_engaged > 0) updtcount = 0;
 if(motion_count++ > updtcount)
 {
 motion_count = 0;
// Make sensor detections...
 short j;
// Reset all sensor detections
 for(i = 0; i < numplatform() - 1; i++)
 {
 for(j = 0; j < platform(i).numsensor(); j++)
 platform(i).sensor(j).reset_detections();
 }

 for(i = 0; i < numplatform() - 1; i++)
 {
 for(j = i+1; j < numplatform(); j++)
 {
 if(!platform(j).is_active()) continue;

// Compute distance between platform i and j in nautical miles
 float x = platform(i).longitude() -
 platform(j).longitude();
 float y = platform(i).latitude() -
 platform(j).latitude();
// Ignore altitude when computing distance
 float r;
 if(x == 0 && y == 0)
 r = 0;
 else
 r = sqrt(x*x+y*y) * DEG2NM;

// Loop over platform i’s sensors
 short k, n = platform(i).numsensor();
 short detected;
 if(n > 0)

continues

444

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.22. continued

 {
 for(k = 0; k < n; k++)
 {
 detected = platform(i).sensor(k).
 detect(r,platform(j).type(),
 platform(j).size(),
 &platform(j));
 if(i==0)
 {
 if(detected)
 {
 platform(j).detected();
 }
 else
 {
 if(platform(j).is_detected())
 {
 platform(j).hide_sprite();
 refresh = 1;
 }
 platform(j).not_detected();
 }
 }
 }
 }
// Loop over platform j’s sensors
 n = platform(j).numsensor();
 if(n > 0)
 {
 for(k = 0; k < n; k++)
 {
 detected = platform(j).sensor(k).
 detect(r,
 platform(i).type(),
 platform(i).size(),
 &platform(i));
 }
 }
 }
 }

// Change course/heading of other ships according to some
// logic. Platform(1) -- the cargo carrier tries to hug the
// coastline. Other ships and planes try to stop Platform(0),
// the player’s ship. This could be better done with some
// sort of a scripting language or “rules” that define the

445

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

// behavior of all computer-controlled platforms. For now, the
// cargo carrier follows a predefined route with some
// randomness.
 if(platform(1).curstage == platform(1).nstages-1)
 {
// Cargo carrier reached detsination. Game’s over.
 status = YOU_LOST;
 }
 }
 }
// Make sure only visible platforms are displayed
 mark_detected_sprites();

// Initiate new weapon engagements and continue ongoing
// engagements

 auto_engage_weapon();
 for(i = 0; i < numplatform(); i++)
 {
 short nw = platform(i).numweapon();
 if(nw <= 0) continue;
 short j;
 for(j = 0; j < nw; j++)
 {
 platform(i).weapon(j).continue_engagements();
 }
 }
}
//--
void Scenario::mark_detected_sprites()
{
// Show the platforms that are visible from the current sensor
// used by the player’s ship
 short i;
 for(i = 1; i < numplatform(); i++)
 platform(i).hide_sprite();

 short maxsensor = ownship->numsensor();
 if(maxsensor <= 0) return;

 if(Scenario::sensor_index == -1)
 {
 for(i = 0; i < maxsensor; i++)
 {
 short j;
 for(j = 0; j < ownship->sensor(i).numdetect(); j++)
 {

continues

446

Programming Windows Games with Borland C++

TWO /ns6 Prog Win Games Borland C++ 30292-6 BWebster 4-2-93 CH 09c LP#5

Listing 9.22. continued

 (ownship->sensor(i).detections())[j].
 platform()->show_sprite();
 }
 }
 }
 else
 {
 i = Scenario::sensor_index;
 short j;
 for(j = 0; j < ownship->sensor(i).numdetect(); j++)
 {
 (ownship->sensor(i).detections())[j].
 platform()->show_sprite();
 }
 }
}
//--
// Scenario:: i n i t _ w e a p o n s
// Initialize the ammo rounds of all weapons on all platforms

void Scenario::init_weapons()
{
 short ip, np = numplatform();
 short pindex = np;
 for(ip = 0; ip < np; ip++)
 {
 Platform *p = &platform(ip);
 if(p->numweapon() <= 0) continue;
 short i;

 for(i = 0; i < p->numweapon(); i++)
 {
 Weapon *w = &(p->weapon(i));

 if(w->engage_count(SURFACE) > 0)
 {
 if(w->ammo[SURFACE] != NULL)
 delete w->ammo[SURFACE];
 w->ammo[SURFACE] = new Ammunition[w->engage_count
 (SURFACE)];
 short j;
 for(j = 0; j < w->numengage[SURFACE]; j++)
 {
 Platform *pa = new Platform
 (w->platform_name());

447

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 pa->init();
 pa->inactive();
 pa->lng = p->lng;
 pa->lat = p->lat;
 pa->alt = p->alt;
 pa->turnrate = 10;
 pa->_speed = pa->max_speed();
 pa->bearing = p->bearing;
 pa->nstages = 0;
 w->ammunition(SURFACE, j)->platform(pa);
// Add platform to the array of platforms
 platforms->addAt(*pa, pindex++);
 }
 }
 if(w->engage_count(AIR) > 0)
 {
 if(w->ammo[AIR] != NULL)
 delete w->ammo[AIR];
 w->ammo[AIR] = new Ammunition[w->engage_count
 (AIR)];
 short j;
 for(j = 0; j < w->numengage[AIR]; j++)
 {
 Platform *pa = new Platform(
 w->platform_name());
 pa->init();
 pa->inactive();
 pa->lng = p->lng;
 pa->lat = p->lat;
 pa->alt = p->alt;
 pa->turnrate = 10;
 pa->_speed = pa->max_speed();
 pa->bearing = p->bearing;
 pa->nstages = 0;
 w->ammunition(AIR, j)->platform(pa);
// Add platform to the array of platforms
 platforms->addAt(*pa, pindex++);
 }
 }
 }
 }
}
//--
// Scenario:: e n g a g e _ o w n s h i p _ w e a p o n
// Use the current weapon against the currently selected target.

continues

448

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

void Scenario::engage_ownship_weapon()
{
// Engage weapon selected by player
 short type = SURFACE;
 if(Scenario::current_platform != NULL)
 type = Scenario::current_platform->type();
 ownship->weapon(weapon_index).engage(
 Scenario::current_platform, type,
 Scenario::range_current,
 Scenario::bearing_current);
}
//--
// Scenario:: a u t o _ e n g a g e _ w e a p o n
// Automatically engage missiles aimed at player’s ship

void Scenario::auto_engage_weapon()
{
// If there is an incoming missile, automatically use a
// weapon against the missile.
 short i, j;
 Platform *p;
 for(i = 0; i < ownship->numsensor(); i++)
 {
 if(ownship->sensor(i).numdetect() <= 0) continue;
 for(j = 0; j < ownship->sensor(i).numdetect(); j++)
 {
 p = (ownship->sensor(i).detections())[j].platform();
 float r = (ownship->sensor(i).detections())[j].
 range();
 if(strncmp(p->name(), “MISSILE”, 7) == 0)
 {
// Make sure this missile is not one of those launched by
// the player’s ship
 short k;
 if(ownship->numweapon() <= 0) break;
 for(k = 0; k < ownship->numweapon(); k++)
 {
 short et;
 for(et = SURFACE; et <= AIR; et++)
 {
 short nmax = ownship->weapon(k).
 engage_count(et);
 if(nmax > 0)
 {
 short n;
 for(n = 0; n < nmax; n++)
 {

Listing 9.22. continued

449

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 Ammunition * am =
 ownship->weapon(k).
 ammunition(et,n);
 if(am->in_use() &&
 am->platform() == p)
 {
 p = NULL;
 break;
 }
 }
 }
 }
 }
 if(p != NULL)
 {
 float brg;
 float dlng = p->lng - ownship->lng;
 float dlat = p->lat - ownship->lat;
 if(dlng == 0 && dlat == 0)
 brg = 0;
 else
 brg = atan2(dlng, dlat) * RAD_TO_DEG;
 if(brg < 0) brg += 360;
 for(k = 0; k < ownship->numweapon(); k++)
 {
// Engage the first available weapon
 if(ownship->weapon(k).engage(
 p, p->type(), r, brg))
 {
 break;
 }
 }
 }
 }
 }
 }
}
//--
// Scenario:: o w n s h i p _ a g r o u n d
// Checks if player’s ship is about to run aground

short Scenario::ownship_aground()
{
// See if player’s ship is in one of the “validsea” rectangles.
 short x = (ownship->longitude() - sinfo->orglng) *
 sinfo->pixperlng;
 short y = (-ownship->latitude() + sinfo->orglat) *
 sinfo->pixperlat;

continues

450

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 short i;
 for(i = 0; i < sinfo->nrects; i++)
 {
 if(x-5 > sinfo->validsea[i].left &&
 x+5 < sinfo->validsea[i].right &&
 y-5 > sinfo->validsea[i].top &&
 y+5 < sinfo->validsea[i].bottom)
 {
 return i;
 }
 }
 Scenario::ran_aground++;
 return -1;
}

Platform Class
The Platform class represents ships, aircraft, and anything that moves in the
scenario, including missiles and projectiles shot by guns. Listing 9.23 shows
the file platform.h that declares the Platform class.

A Platform has a position specified in latitude (degrees), longitude (degrees),
and altitude (feet). It has a speed and a bearing. Also, a Platform has an array
of Sensor objects and an array of Weapon objects. The Sensors are the eyes and
ears of the Platform. Most modern ships and aircraft use radars and electronic
listening devices as sensors. The Platform class uses the Array container class
to store Sensors and Weapons.

The motion of the player’s ship is controlled by the player, but the other
platforms are programmed to move along straight line segments. These seg-
ments are stored in an array of Stage structures (defined in simdefs.h, Listing
9.21) named stages. If the variable named loop_back is TRUE, the platform keeps
repeating through these stages of motion. As you can see from Listing 9.24, the
path taken by a platform is somewhat random because the start and end points
of the path are selected at random from a small set of points.

A Platform also has several bitmap images associated with it. A pair of im-
age and mask bitmaps defines how the Platform appears in the polar view while
another pair of bitmaps defines the Platform’s appearance in the map view.

Listing 9.22. continued

451

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

The Scenario class stores Platforms in a Borland Class Library’s container
class (Array). I derived Platform from the Object class because this is a condi-
tion that must be met for any object stored in the Array container class.

Listing 9.23. platform.h—Declaration of the Platform class.

//--
// File: platform.h
//
// Declaration of the Platform classes.
//--
#if !defined(_ _PLATFORM_H)
#define _ _PLATFORM_H

#include <strng.h>
#include <array.h>
#include “sprite.h”
#include “sensor.h”
#include “weapon.h”

#define MOTION_UPDATE_COUNT 5

#define IS_ACTIVE 1
#define HAS_MOVED 2
#define IS_DETECTED 4

class Platform : public Object
{
friend Scenario;
public:
 Platform() : sensors(NULL), weapons(NULL), _name(NULL),
 imgfile(NULL), mskfile(NULL), flags(0),
 imgmfile(NULL), mskmfile(NULL), turnrate(2),
 count(0), motion_count(0), stages(NULL),
 nstages(0), curstage(0), _strength(0), _speed(0),
 _full_strength(0), _max_speed(0), loop_back(0)
 {
 motion_update_count(MOTION_UPDATE_COUNT);
 }
 Platform(char *_nm) : sensors(NULL),
 weapons(NULL), imgfile(NULL), mskfile(NULL),
 imgmfile(NULL), mskmfile(NULL), turnrate(2),
 count(0), motion_count(0), stages(NULL),
 nstages(0), curstage(0), _strength(0), _speed(0),
 _full_strength(0), _max_speed(0), loop_back(0)
 {

continues

452

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 if(_nm != NULL)
 {
 _name = new char[strlen(_nm) + 1];
 strcpy(_name, _nm);
 }
 motion_update_count(MOTION_UPDATE_COUNT);
 }

 ~Platform();

 void init();
 void update();
 void hit(short hs);

// The following functions are required because Platform
// is derived from Object (the base class of Borland’s
// container class library).

 classType isA() const { return PlatformClass;}

 char* nameOf() const { return “PlatformClass”;}

 hashValueType hashValue() const
 { return (hashValueType)(lat+lng+alt);}

 int isEqual(const Object _FAR& ob) const
 { return 0;}

 void printOn(ostream& os) const
 {
 os << lat << “ “ << lng << “ “ << alt << endl;
 }

 Sprite* sprite() { return psprite;}
 Sprite* map_sprite() { return pmsprite;}
 Sprite* zmap_sprite() { return pzmsprite;}

 void make_sprite(HDC hdc)
 {
 psprite = new Sprite(hdc, imgfile, mskfile);
 pmsprite = new Sprite(hdc, imgmfile, mskmfile);
 pzmsprite = new Sprite(hdc, imgmfile, mskmfile);
 }
 void show_sprite()
 {

Listing 9.23. continued

453

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 psprite->active();
 psprite->move(0,0);
 pmsprite->active();
 pmsprite->move(0,0);
 pzmsprite->active();
 pzmsprite->move(0,0);
 }
 void hide_sprite()
 {
 psprite->inactive();
 pmsprite->inactive();
 pzmsprite->inactive();
 }

 float altitude() { return alt;}
 float latitude() { return lat;}
 float longitude() { return lng;}
 float xo() { return xos;}
 float yo() { return yos;}
 float zo() { return zos;}
 float heading() { return bearing;}
 float speed() { return _speed;}
 float max_speed() { return _max_speed;}

 void altitude(float v) { alt = v;}
 void latitude(float v) { lat = v;}
 void longitude(float v) { lng = v;}
 void xo(float x) { xos = x;}
 void yo(float y) { yos = y;}
 void zo(float z) { zos = z;}
 void heading(float hdg) { bearing_cmd = hdg;}
 void speed(float spd) { _speed = spd;}
 void max_speed(float spd) { _max_speed = spd;}

 short numsensor()
 {
 if(sensors != NULL)
 return sensors->getItemsInContainer();
 else
 return 0;
 }

 short numweapon()
 {
 if(weapons != NULL)
 return weapons->getItemsInContainer();
 else

continues

454

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 return 0;
 }

 Sensor& sensor(short i) { return (Sensor&)(*sensors)[i];}
 Weapon& weapon(short i) { return (Weapon&)(*weapons)[i];}

 void moved() { flags |= HAS_MOVED;}
 void move_done() { flags &= ~HAS_MOVED;}
 void active() { flags |= IS_ACTIVE;}
 void inactive() { flags &= ~IS_ACTIVE;}
 void detected() { flags |= IS_DETECTED;}
 void not_detected() { flags &= ~IS_DETECTED;}
 short is_active() { return (flags & IS_ACTIVE);}
 short has_moved() { return (flags & HAS_MOVED);}
 short is_detected() { return (flags & IS_DETECTED);}

 char *name() { return _name;}

 short strength() { return _strength;}
 short full_strength() { return _full_strength;}
 short type() { return _type;}
 short size() { return _size;}

 short motion_update_count() { return mupdt_count;}
 void motion_update_count(short n);
 float motion_period_hour() { return mperiod_hour;}
 float motion_period_sec() { return mperiod_sec;}
 void goto_stage0();

 void engage_weapons();

protected:
 Sprite *psprite; // Sprite denoting this platform
 Sprite *pmsprite; // Sprite for the map window
 Sprite *pzmsprite; // Sprite for the zoomed map window
 char *imgfile;
 char *mskfile;
 char *imgmfile;
 char *mskmfile;
 float lat, lng; // Latitude and longitude
 float alt; // Altitude in feet
 float _speed; // Speed in knots
 float bearing; // Degrees with respect to north

Listing 9.23. continued

455

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 float bearing_cmd;// Commanded bearing
 float turnrate; // How fast can the ship turn? (deg/sec)
 float alt_rate; // Rate of change of altitude (ft/sec)
 float xos, yos, zos; // This platform’s location
 // with respect to player’s ship
 short curstage;
 short nstages;
 Stage *stages;
 float destlat, destlng;

 float _max_speed; // Maximum speed
 float saved_max_speed;
 short _strength;
 short _full_strength;
 short _type; // SURFACE or AIR
 short _size; // Size of platform as a radar target
 // can be: SMALL, MEDIUM, or LARGE
 Array *sensors;
 Array *weapons;
 char *_name; // Name of platform

 short flags; // Status flags
 short loop_back; // TRUE = platform keeps repeating itself
 short count;
 short motion_count;
 short mupdt_count;
 float mperiod_hour;
 float mperiod_sec;

 enum { PlatformClass = __firstUserClass + PLATFORM};
};

#endif

Implementation of Platform
Listing 9.24 shows the implementation of the Platform class. Two of the im-
portant member functions of Platform are init and update. The init function
initializes a Platform and update moves a Platform. These are further discussed
in the following sections.

456

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Initializing a Platform
The Scenario::init function initializes a Platform by calling its init function.
Before it is called, the name of the Platform must be set. To initialize a
Platform, init opens the platform database file, PLATFORM.DAT. This is a text file
of specified format that stores information on all available platforms. Once init
locates the information on the named platform, it reads and stores the data in
appropriate member variables of the Platform. In the course of initializing a
Platform, the code in init also calls the init functions of any Sensor and Weapon
that the Platform has.

Moving a Platform
The update function moves the Platform. As you can see from Listing 9.24, the
update function first updates the bearing. Then it updates the position of the
Platform, provided enough timer ticks have elapsed since the last update.

If any stages of motion are defined (the stages are defined in the mission
definition file) for the Platform, the update function checks if the Platform should
go on to the next leg of motion. If the Platform is at the last stage and the
loop_back flag is TRUE, the Platform is repositioned at one of the starting points.

Taking a Hit
A Platform object has an associated survival strength. Each Weapon object, on
the other hand, has a kill strength. When a Weapon hits a Platform, the Weapon’s
kill strength is subtracted from the Platform’s survival strength. The
continue_engagements function of the Weapon class calls the hit function of the
Platform to account for the hit. The parameter passed to the hit function is the
amount to be subtracted from the Platform’s strength. After reducing the
Platform’s strength, the hit function tries to assess the damage. The speed is
degraded for nonfatal hits. If strength falls to an eighth of the full strength, the
Platform is considered to be destroyed. If the loop_back flag is TRUE, the plat-
form is revived and placed at the starting position.

457

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.24. platform.cpp—
Implementation of the Platform class.

//--
// File: platform.cpp
//
// Implementation of the Platform class.
//--
#include <stdlib.h>
#include <fstream.h>
#include <string.h>
#include “scenario.h”

#define LINES_PER_PLATFORM 8

static char *whitespace = “ \t”;
//--
// ~ P l a t f o r m

Platform::~Platform()
{
 if(sensors != NULL) delete sensors;
 if(weapons != NULL) delete weapons;
 if(_name != NULL) delete _name;
 if(imgfile != NULL) delete imgfile;
 if(mskfile != NULL) delete mskfile;
 if(imgmfile != NULL) delete imgmfile;
 if(mskmfile != NULL) delete mskmfile;
}
//--
// Platform:: i n i t
// Initialize a Platform by reading from the PLATFORM.DAT file

void Platform::init()
{
 if(_name == NULL) return;

// Open the file PLATFORM.DAT and read in platform data.
 ifstream ifs(“platform.dat”, ios::in);
 if(!ifs)
 {
// Error reading file.
 return;
 }

// Read and interpret the contents of the file
 char line[81];

continues

458

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

// First line is a comment; ignore it.
 ifs.getline(line, sizeof(line));

// Second line has the number of platforms in this file
 ifs.getline(line, sizeof(line));
 short numplat = atoi(line);
 if(numplat == 0) return;

// Search for this platform’s data
 short i, j, len = strlen(_name);
 char *token;
 for(i = 0; i < numplat; i++)
 {
// Ignore first line of each platform record
 ifs.getline(line, sizeof(line));

// Next line should have platform’s name
 ifs.getline(line, sizeof(line));
 if(strnicmp(line, _name, len) != 0)
 {
// Skip the data for this platform
 for(j = 0; j < LINES_PER_PLATFORM; j++)
 ifs.getline(line, sizeof(line));
// Next comes number of sensors
 ifs.getline(line, sizeof(line));
 short n = atoi(line);
 if(n > 0)
 for(j = 0; j < n; j++)
 ifs.getline(line, sizeof(line));
// Next comes number of weapons
 ifs.getline(line, sizeof(line));
 n = atoi(line);
 short k;
 if(n > 0)
 for(j = 0; j < n; j++)
 {
 for(k = 0; k < 3; k++)
 ifs.getline(line, sizeof(line));
 ifs.getline(line, sizeof(line));
 short m = atoi(line);
 for(k = 0; k < m; k++)
 ifs.getline(line, sizeof(line));
 }
 }
 else
 {
// Yes, the name matches. Read in data.

Listing 9.24. continued

459

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

// Platform type (SURFACE or AIR)
 _type = 0;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(strnicmp(token, “SURFACE”, 7) == 0) _type = 0;
 if(strnicmp(token, “AIR”, 3) == 0) _type = 1;

// Platform size as radar target (SMALL, MEDIUM, or LARGE)
 _size = SMALL;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(strnicmp(token, “SMALL”, 5) == 0) _size = SMALL;
 if(strnicmp(token, “MEDIUM”, 6) == 0) _size = MEDIUM;
 if(strnicmp(token, “LARGE”, 5) == 0) _size = LARGE;

// Icon image for the platform (for polar window)
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(imgfile != NULL) delete imgfile;
 imgfile = new char[strlen(token)+1];
 strcpy(imgfile, token);

 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(mskfile != NULL) delete mskfile;
 mskfile = new char[strlen(token)+1];
 strcpy(mskfile, token);

// Icon image for the platform (for the map window)
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(imgmfile != NULL) delete imgmfile;
 imgmfile = new char[strlen(token)+1];
 strcpy(imgmfile, token);

 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(mskmfile != NULL) delete mskmfile;
 mskmfile = new char[strlen(token)+1];
 strcpy(mskmfile, token);

// Survival strength
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 _full_strength = atoi(token);
 _strength = _full_strength;

continues

460

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.24. continued

// Maximum speed in knots
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 _max_speed = atof(token);
 saved_max_speed = _max_speed;
// Set the “motion update count”
 float n = (float)360/(float)_max_speed /
 (float)Scenario::BASIC_PERIOD;
 motion_update_count((short)n);

// Read sensor list
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 short numsensors = atoi(token);
 short j;
 if(numsensors > 0)
 {
// Create an array of sensors
 sensors = new Array(numsensors, 0, 8);
 if(sensors == NULL) return;

 Sensor *s;
 for(j = 0; j < numsensors; j++)
 {
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 s = new Sensor(token, this);
 s->init();
// Add sensor to array of sensors
 sensors->addAt(*s, j);
 }
 }

// Read weapons list
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 short numweapons = atoi(token);
 if(numweapons > 0)
 {
// Create an array of weapons
 weapons = new Array(numweapons, 0, 8);
 if(weapons == NULL) return;

 Weapon *w;
 for(j = 0; j < numweapons; j++)
 {

461

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 w = new Weapon(token, this);
 w->init();
// Set number of weapons
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 w->count = atoi(token);
// How many weapons can be used simultaneously...
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 w->numengage[SURFACE] = atoi(token);
 token = strtok(NULL, whitespace);
 w->numengage[AIR] = atoi(token);

// Coverage sectors (because of ship’s structure, weapons cannot
// always work all around the ship. A list of sectors keeps track
// of the exact areas where the weapon can work.
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 w->nsector = atoi(token);
 w->sectors = new Sector[w->nsector];
 short k;
 float a, b;
 for(k = 0; k < w->nsector; k++)
 {
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 a = atof(token);
 token = strtok(NULL, whitespace);
 b = atof(token);
 w->sectors[k].angles(a, b);
 }
// Add sensor to array of sensors
 weapons->addAt(*w, j);
 }
 }
 }
 }
}
//--
// Platform:: u p d a t e
// Update1 platform position etc.

void Platform::update()
{
// If platform is not active, do nothing.
 if(!is_active()) return;

continues

462

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.24. continued

 if(count++ > Scenario::update_every)
 {
// Reset count
 count = 0;

// The following code simulates a slow change in ship’s heading
 if(fabs(bearing-bearing_cmd) > 0.1)
 {
 if(bearing_cmd > bearing)
 {
 bearing += turnrate * Scenario::BASIC_PERIOD;
 }
 else
 {
 bearing -= turnrate * Scenario::BASIC_PERIOD;
 }
 if(bearing > bearing_cmd) bearing = bearing_cmd;
 if(bearing < bearing_cmd) bearing = bearing_cmd;
 }

// If enough time has elapsed, move the platform...
 if(motion_count++ > mupdt_count)
 {
 motion_count = 0;
 float hdg_rad = bearing * DEG_TO_RAD;
 float coshdg = cos(hdg_rad);
 float sinhdg = sin(hdg_rad);
 float dist = speed() * mperiod_hour * NM2DEG;
 lat += dist*coshdg;
 lng += dist*sinhdg;
 alt += alt_rate * mperiod_sec;

// Engage weapons
 engage_weapons();

// Check if it’s time to move to next stage
 dist *= 2;
 if(nstages > 0 &&
 fabs(destlat - lat) <= dist &&
 fabs(destlng - lng) <= dist)
 {
 if(curstage == nstages-1 && loop_back)
 goto_stage0();
 if(curstage < nstages-1)
 {

463

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

// Set heading to a point in the next stage
 short ip = random(stages[curstage+1].npts);
 destlat = stages[curstage+1].
 pt[ip].lat;
 destlng = stages[curstage+1].
 pt[ip].lng;
 float lngdel = destlng - lng;
 float latdel = destlat - lat;
 if(latdel == 0 && lngdel == 0)
 bearing_cmd = 0;
 else
 bearing_cmd = atan2(lngdel, latdel) *
 RAD_TO_DEG;
 if(bearing_cmd < 0)
 bearing_cmd = 360 + bearing_cmd;
 curstage++;
 }
 }
 }
 }
}
//--
// Platform:: h i t
// Take a specified level of hit from a weapon

void Platform::hit(short hs)
{
 _strength -= hs;
 if(_strength <= 0) _strength = 0;

 if(sprite()->id() == 0)
 {
// This is the player’s ship. Subtract hit from score.
 if(Scenario::score >= hs)
 Scenario::score -= hs;
 }
 else
 {
// Add hit to score.
 Scenario::score += hs;
 }

// Do some damage assessment
// Reduce platform’s maximum speed according to the hit
 _max_speed = saved_max_speed * _strength / _full_strength;
 if(_speed > _max_speed) _speed = _max_speed;

continues

464

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

// If strength is an eighth of its full strength, I consider
// the platform to be “dead”
 if(_strength < _full_strength/8)
 {
 if(sprite()->id() > 1)
 {
 Scenario::score += _full_strength - _strength;
 if(loop_back) goto_stage0();
 else
 {
 inactive();
 hide_sprite();
 Scenario::refresh = 1;
 }
 }
// If cargo ship or player’s ship is dead, then game is over.
 if(sprite()->id() == 1)
 {
 Scenario::status = YOU_WON;
 Scenario::simulation_running = 0;
 }
 if(sprite()->id() == 0)
 {
 Scenario::status = YOU_LOST;
 Scenario::simulation_running = 0;
 }
 }
}
//--
// Platform:: g o t o _ s t a g e 0
// Platform returns to a position in stage 0 of its defined
// motion pattern. The Scenario class calls this function to
// reuse platforms.

void Platform::goto_stage0()
{
// Restore the platform’s strength and max speed
 _strength = _full_strength;
 _max_speed = saved_max_speed;
 _speed = 9*_max_speed / 10;

// Cannot do anything else if there are no “stages” defined
 if(nstages <= 0) return;

 curstage = 0;
 short ip = random(stages[0].npts);

Listing 9.24. continued

465

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 lat = stages[0].pt[ip].lat;
 lng = stages[0].pt[ip].lng;
 if(nstages > 1)
 {
 ip = random(stages[1].npts);
 destlat = stages[1].pt[ip].lat;
 destlng = stages[1].pt[ip].lng;
 bearing_cmd = atan2(destlng-lng,
 destlat-lat) * RAD_TO_DEG;
 if(bearing_cmd < 0)
 bearing_cmd = 360 + bearing_cmd;
 }
}
//--
void Platform::motion_update_count(short n)
{
 if(n < 0) return;
 mupdt_count = n;
 mperiod_sec = Scenario::BASIC_PERIOD * (mupdt_count+1);
 mperiod_hour = mperiod_sec / 3600;
}
//--
// Platform:: e n g a g e _ w e a p o n s
// Automatically engage weapons.

void Platform::engage_weapons()
{
 short index = sprite()->id();

 if(index == 0 || index == 1) return;
 if(numsensor() <= 0) return;
 if(numweapon() <= 0) return;

 short i, j, k;
 Platform *p;
 for(i = 0; i < numsensor(); i++)
 {
 if(sensor(i).numdetect() <= 0) continue;
 for(j = 0; j < sensor(i).numdetect(); j++)
 {
 p = (sensor(i).detections())[j].platform();
 index = p->sprite()->id();
 if(index == 0) break;
 }
 if(index == 0) break;
 }
 if(index != 0) return;

continues

466

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

// Engage weapon
 float r = (sensor(i).detections())[j].range();
 float brg;
 float dlng = p->lng - lng;
 float dlat = p->lat - lat;
 if(dlng == 0 && dlat == 0)
 brg = 0;
 else
 brg = atan2(dlng, dlat) * RAD_TO_DEG;
 if(brg < 0) brg += 360;

 for(k = 0; k < numweapon(); k++)
 {
// Engage the first available weapon
 if(weapon(k).engage(p, p->type(), r, brg))
 {
 break;
 }
 }
}

Sensor Class
Listing 9.25 shows the file sensor.h that declares the Sensor class. A Sensor is
characterized by the following important member variables:

Platform *parent; is the Platform on which the Sensor is located.

short can_detect[2]; are interpreted as two Boolean variables that
respectively determine if the Sensor can detect a SURFACE or an AIR
Platform.

float range[3]; are three ranges (in nautical miles) that respectively
specify the ranges at which the Sensor can detect a SMALL, MEDIUM, or
LARGE Platform.

Detection detection[MAXDETECT]; is an array of detections made by the
Sensor. The Detection structure is defined in Listing 9.25.

short ndetect; is the number of detections in the detection array.

Listing 9.24. continued

467

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

The Platform class stores its Sensor objects in an Array, a container class from
the Borland Class Library. To facilitate this, I derive the Sensor class from the
Object class. A consequence of deriving Sensor from Object is that I had to define
a number of additional member functions such as isA, nameOf, hashValue,
isEqual, and printOn.

Listing 9.25. sensor.h—Declaration of the Sensor class.

//--
// File: sensor.h
//
// Declarations of the Sensor class.
//--
#if !defined(_ _SENSOR_H)
#define _ _SENSOR_H

#include <object.h>
#include <string.h>
#include “simdefs.h”

#define MAXDETECT 16

class Platform;

class Detection
{
public:
 Detection() : p(NULL), t_detect(0) {}

 Detection(Platform *_p, SimTime t) :
 p(_p), t_detect(t) {}

 void platform(Platform *_p) { p = _p;}
 Platform* platform() { return p;}

 float range() { return r;}
 void range(float _r) { r = _r;}

private:
 Platform *p;
 float r; // Range to this platform
 SimTime t_detect; // Tick count at detection

 enum { DetectionClass = _ _firstUserClass + DETECTION};
};

continues

468

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

class Sensor : public Object
{
friend Scenario;
friend Platform;
public:
 Sensor(char *_nm, Platform *p) : parent(p), ndetect(0)
 {
 if(_nm != NULL)
 {
 _name = new char[strlen(_nm) + 1];
 strcpy(_name, _nm);
 }
 }

 ~Sensor();

// The following functions are required because Sensor
// is derived from Object (the base class of Borland’s
// container class library).

 classType isA() const { return SensorClass;}
 char* nameOf() const { return “SensorClass”;}

 hashValueType hashValue() const
 { return (hashValueType)(1);}

 int isEqual(const Object _FAR& ob) const
 { return 0;}

 void printOn(ostream& os) const
 {
 os << *_name << endl;
 }

 void init();
 char *name() { return _name;}
 void numdetect(short n) { ndetect = n;}
 short numdetect() { return ndetect;}
 void reset_detections() { ndetect = 0;}
 Detection* detections() { return detection;}

 short detect(float r, short type, short size, Platform *p);

protected:
 Platform *parent; // Platform where sensor resides
 char *_name; // Sensor’s name

Listing 9.25. continued

469

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 short can_detect[2];
 float range[3]; // Range at which sensor detects small,
 // medium and large platforms
 short type; // Is this is a radar or ESM sensor?
 Detection detection[MAXDETECT];
 short ndetect;

 enum { SensorClass = _ _firstUserClass + SENSOR};
};

#endif

Listing 9.26 shows the file sensor.cpp that implements the member functions
of the Sensor class. The init function is responsible for initializing a Sensor.
The Platform::init function creates a Sensor with a specific name and then
calls its init function. The Sensor::init function opens a database file,
SENSOR.DAT, searches for the sensor by name and, if found, initializes the Sensor’s
member variables.

The detect function is another important member function of Sensor. When
the detect function is called with the range to a Platform and the Platform’s
type and size, the function first checks whether the Sensor can detect that
Platform. If the Platform is detectable, the detect function adds that Platform
to its detection list.

Listing 9.26. sensor.cpp—Implementation of the Sensor class.

//--
// File: sensor.cpp
//
// Implementation of the sensor class.
//--
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include “platform.h”

#define LINES_PER_SENSOR 3

static char *whitespace = “ \t”;
//--

continues

470

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

// ~ S e n s o r

Sensor::~Sensor()
{
 if(_name != NULL) delete _name;
}
//--
// Sensor:: i n i t
// Initialize a Sensor by reading from the SENSOR.DAT file

void Sensor::init()
{
 if(_name == NULL) return;

// Open the file SENSOR.DAT and read in Sensor data.
 ifstream ifs(“SENSOR.DAT”, ios::in);
 if(!ifs)
 {
// Error reading file.
 return;
 }

// Read and interpret the contents of the file
 char line[81];

// First line is a comment; ignore it.
 ifs.getline(line, sizeof(line));

// Second line has the number of Sensors in this file
 ifs.getline(line, sizeof(line));
 short numsensors = atoi(line);
 if(numsensors == 0) return;

// Search for this Sensor’s data
 short i, j, len = strlen(_name);
 char *token;
 for(i = 0; i < numsensors; i++)
 {
// Ignore the first line (it’s used as a separator)
 ifs.getline(line, sizeof(line));

// Next line should have the sensor’s name
 ifs.getline(line, sizeof(line));
 if(strnicmp(line, _name, len) != 0)
 {
// Skip the data for this Sensor
 for(j = 0; j < LINES_PER_SENSOR; j++)

Listing 9.26. continued

471

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 ifs.getline(line, sizeof(line));
 }
 else
 {
// Yes, the name matches. Read in data.

// Sensor type (RADAR, ESM, or BOTH)
 type = RADAR;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(strnicmp(token, “RADAR”, 5) == 0) type = RADAR;
 if(strnicmp(token, “ESM”, 3) == 0) type = ESM;
 if(strnicmp(token, “BOTH”, 4) == 0)
 type = RADAR+ESM;

// What type of platforms does sensor detect (SURFACE, AIR, or BOTH)
 can_detect[SURFACE] = 0;
 can_detect[AIR] = 0;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 if(strnicmp(token, “SURFACE”, 7) == 0)
 can_detect[SURFACE] = 1;
 if(strnicmp(token, “AIR”, 3) == 0) type = 1;
 can_detect[AIR] = 1;
 if(strnicmp(token, “BOTH”, 4) == 0)
 {
 can_detect[SURFACE] = 1;
 can_detect[AIR] = 1;
 }

// Next line has detection ranges (for SMALL, MEDIUM, and LARGE
// targets)
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 range[SMALL] = atof(token);

 token = strtok(NULL, whitespace);
 range[MEDIUM] = atof(token);

 token = strtok(NULL, whitespace);
 range[LARGE] = atof(token);
 }
 }
}
//--
// Sensor:: d e t e c t
// See if sensor can detect specified platform

continues

472

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.26. continued

short Sensor::detect(float r, short type, short size,
 Platform *p)
{
 if(p->is_active() && can_detect[type] && r < range[size])
 {
 if(ndetect < MAXDETECT - 1)
 {
 detection[ndetect].platform(p);
 detection[ndetect].range(r);
 ndetect++;
 return 1;
 }
 }
 else return 0;
}

Weapon Class
Listing 9.27 shows the header file weapon.h with declaration of the Weapon class.
A Weapon is characterized by the following member variables:

Platform *parent; is the Platform on which the Weapon is located.

short strength[2]; are the kill strengths against SURFACE and AIR
targets.

short numengage[2]; are the number of SURFACE and AIR targets that
this Weapon can engage simultaneously.

float range[2]; are the ranges (in nautical miles) at which the Weapon
can engage SURFACE and AIR targets.

float prob_hit[2]; are the probabilities of hitting SURFACE and AIR
targets.

short count; is the number of times the weapon can be engaged.

short nsector; is the number of sectors where the weapon can engage.

Sector *sectors; is the array of sectors where the weapon can engage.

char *pname; is the name of the platform representing ammunition
shot by this Weapon. This platform is created and displayed when the
Weapon is used.

473

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

short tracks; is a flag that indicates if the ammunition shot from the
Weapon can track a target.

Ammunition *ammo[2]; is an array of Ammunition structures (defined in
Listing 9.27) that denote the ammunition shot by the Weapon.

Because the Platform class stores Weapon objects in an Array, a container class
from the Borland Class Library, I had to derive the Weapon class from the
Object class. As a consequence of deriving Weapon from Object, I had to define
a number of additional member functions such as isA, nameOf, hashValue,
isEqual, and printOn.

Listing 9.27. weapon.h—Declaration of the Weapon class.

//--
// File: weapon.h
//
// Declaration of the Weapon classes.
//--
#if !defined(_ _WEAPON_H)
#define _ _WEAPON_H

#include <array.h>
#include “weapon.h”

class Platform;

class Ammunition
{
public:
friend Weapon;
 Ammunition() : p(NULL), t_launch(0), use(0),
 pt(NULL) {}
 ~Ammunition();

 void platform(Platform *_p) { p = _p;}
 Platform* platform() { return p;}
 void target_platform(Platform *_p) { pt = _p;}
 Platform* target_platform() { return pt;}

 float launch_lat() { return latl;}
 float launch_lng() { return lngl;}
 float launch_alt() { return altl;}

continues

474

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 short in_use() { return use;}
 void in_use(short u) { use = u;}

private:
 Platform *p; // Platform representing the ammo
 SimTime t_launch; // Tick count at launch
 short use; // TRUE => this ammo is in use
 Platform *pt; // Targeted platform (or NULL)
 float latl; // Latitude and longitude of the
 float lngl; // launch position
 float altl; // Launch height (in feet)
 // = 0 for launches from ships
 float latt; // Latitude and longitude of
 float lngt; // targeted point
};

class Weapon : public Object
{
friend Scenario;
friend Platform;
public:
 Weapon(char *_nm, Platform *p) :sectors(NULL),
 pname(NULL), parent(p)
 {
 if(_nm != NULL)
 {
 _name = new char[strlen(_nm) + 1];
 strcpy(_name, _nm);
 }
 ammo[SURFACE] = NULL;
 ammo[AIR] = NULL;
 }

 ~Weapon();

// The following functions are required because Weapon
// is derived from Object (the base class of Borland’s
// container class library).

 classType isA() const { return WeaponClass;}

 char* nameOf() const { return “WeaponClass”;}

 hashValueType hashValue() const
 { return (hashValueType)(1);}

 int isEqual(const Object _FAR& ob) const
 { return 0;}

Listing 9.27. continued

475

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 void printOn(ostream& os) const
 {
 os << _name << endl;
 }

 void init();
 short engage(Platform *pt, short type, float r, float b);
 void continue_engagements();

 char *name() { return _name;}
 char *platform_name() { return pname;}
 short numsector() { return nsector;}
 Sector* sector(short i) { return §ors[i];}
 short engage_count(short type) { return numengage[type];}
 Ammunition *ammunition(short type)
 {
 if(ammo != NULL) return ammo[type];
 else return NULL;
 }
 Ammunition *ammunition(short type, short index)
 {
 if(ammo != NULL) return &(ammo[type][index]);
 else return NULL;
 }
 short can_track() { return tracks;}
 short ammo_left() { return count;}
 float range_against_surface() { return range[SURFACE];}
 float range_against_air() { return range[AIR];}

protected:
 Platform *parent; // Platform where weapon resides
 char *_name; // Weapon’s name
 short strength[2]; // Kill strength against air and surface
 short numengage[2];// How many targets at a time?
 float range[2]; // Range at which weapon can engage
 float prob_hit[2]; // Probability of hitting (air, surface)
 short count; // Ammunition count
 short nsector; // Sectors where the weapon can
 Sector *sectors; // engage targets
 char *pname; // Name of platform representing ammo
 short tracks; // TRUE = can track target
 Ammunition *ammo[2];

 enum { WeaponClass = _ _firstUserClass + WEAPON};
};

#endif

476

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.28 shows the file weapon.cpp with an implementation of the Weapon
class. As with the Sensor class, the Platform::init function calls Weapon::init
to read the database file WEAPON.DAT and initialize the Weapon.

The engage function takes care of initiating engagements, which is a euphe-
mism that means shooting at a target. The engage function has to be called with
a target Platform as well as the target’s type (SURFACE or AIR), range, and bear-
ing to the target. If the engage function determines that the Weapon is capable of
attacking the target, it activates an Ammunition object, which, in turn, activates
a Platform representing the Ammunition.

As the attack continues, the Scenario::update function calls the
continue_engagements function to see when to terminate the engagement. As
you can see from Listing 9.28, the continue_engagements function applies sev-
eral tests to determine if an ammunition round has hit its target. When the
ammunition hits the target, the target Platform’s hit function is called and the
ammunition is deactivated.

Listing 9.28. weapon.cpp—Implementation of the Weapon class.

//--
// File: weapon.cpp
//
// Implementation of the Weapon class.
//--
#include <stdlib.h>
#include <fstream.h>
#include <string.h>
#include “scenario.h”

#define LINES_PER_WEAPON 4

static char *whitespace = “ \t”;
//--
// ~ A m m u n i t i o n
Ammunition::~Ammunition()
{
 if(p != NULL) delete p;
}
//--
// ~ W e a p o n

Weapon::~Weapon()
{

477

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 if(sectors != NULL) delete sectors;
 if(_name != NULL) delete _name;
 if(pname != NULL) delete pname;
 if(ammo[SURFACE] != NULL) delete ammo[SURFACE];
 if(ammo[AIR] != NULL) delete ammo[AIR];
}
//--
// Weapon:: i n i t
// Initialize a weapon by reading from the WEAPON.DAT file

void Weapon::init()
{
 if(_name == NULL) return;

// Open the file weapon.DAT and read in weapon data.
 ifstream ifs(“weapon.dat”, ios::in);
 if(!ifs)
 {
// Error reading file.
 return;
 }

// Read and interpret the contents of the file
 char line[81];

// First line is a comment; ignore it.
 ifs.getline(line, sizeof(line));

// Second line has the number of weapons in this file
 ifs.getline(line, sizeof(line));
 short numweapons = atoi(line);
 if(numweapons == 0) return;

// Search for this weapon’s data
 short i, j, len = strlen(_name);
 char *token;
 for(i = 0; i < numweapons; i++)
 {
// Skip first line of each weapon record
 ifs.getline(line, sizeof(line));

// Next line has weapon’s name
 ifs.getline(line, sizeof(line));
 if(strnicmp(line, _name, len) != 0)
 {
// Skip the data for this weapon
 for(j = 0; j < LINES_PER_WEAPON; j++)

continues

478

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.28. continued

 ifs.getline(line, sizeof(line));
 }
 else
 {
// Yes, the name matches. Read in data.

// First the name of platform representing the ammunition
 tracks = 1;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 short len = strlen(token);
 pname = new char[len + 1];
 strcpy(pname, token);

// Range at which weapon can hit SURFACE and AIR targets
 range[SURFACE] = 0;
 range[AIR] = 0;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 range[SURFACE] = atof(token);

 token = strtok(NULL, whitespace);
 range[AIR] = atof(token);

// Probability of hitting SURFACE and AIR targets
 prob_hit[SURFACE] = 0;
 prob_hit[AIR] = 0;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 prob_hit[SURFACE] = atof(token);

 token = strtok(NULL, whitespace);
 prob_hit[AIR] = atof(token);

// Kill strength against SURFACE and AIR targets
 strength[SURFACE] = 0;
 strength[AIR] = 0;
 ifs.getline(line, sizeof(line));
 token = strtok(line, whitespace);
 strength[SURFACE] = atoi(token);

 token = strtok(NULL, whitespace);
 strength[AIR] = atoi(token);
 }
 }
}

479

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

//--
// Weapon:: e n g a g e
// Start shooting at the designated target

short Weapon::engage(Platform *pt, short type, float r, float b)
{
// If weapon does not have any more ammo, return immediately.
 if(count <= 0) return 0;

// If the weapon can fire in this sector and if there is
// ammunition available, go ahead and release the ammunition
// rounds (these are platforms that fly toward the target)
 short i;
 for(i = 0; i < nsector; i++)
 {
 if(sectors[i].contains(b)) break;
 }
 if(i == nsector) return 0;

// Bearing looks good. Check other conditions.
 if(type != SURFACE && type != AIR) return 0;
 if(numengage[type] <= 0) return 0;
 if(r > range[type]) return 0;

// Use any “engageable” ammo
 for(i = 0; i < numengage[type]; i++)
 {
 if((ammo[type] != NULL) &&
 !ammo[type][i].in_use())
 {
 count--;
 ammo[type][i].in_use(1);
 ammo[type][i].pt = pt;
 Platform *p = ammo[type][i].platform();
 p->latitude(parent->latitude());
 p->longitude(parent->longitude());
 p->altitude(parent->altitude());
 ammo[type][i].latl = p->latitude();
 ammo[type][i].lngl = p->longitude();
 ammo[type][i].altl = p->altitude();
// Compute lat-long of targeted point
 b += parent->heading();
 b = fmod(b, 360);
 float hdgrad = b * DEG_TO_RAD;
 float coshdg = cos(hdgrad);
 float sinhdg = sin(hdgrad);
 ammo[type][i].latt = parent->latitude() +
 r*coshdg*NM2DEG;

continues

480

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 ammo[type][i].lngt = parent->longitude() +
 r*sinhdg*NM2DEG;
 p->heading(b);
// Make sure motion updates occur more often
 p->motion_update_count(0);
// Make the platform (representing the round) active
 p->active();
 p->show_sprite();
 Scenario::weapons_engaged++;
 return 1;
 }
 }
 return 0;
}
//--
// Weapon:: c o n t i n u e _ e n g a g e m e n t s
// Check any ammo rounds in flight to see if:
// 1. range has exceeded weapon’s limits
// 2. ammo hits a platform (determined by a random draw)

void Weapon::continue_engagements()
{
 short i, j;
// Check all ammunitions in flight against any target
 for(i = SURFACE; i <= AIR; i++)
 {
 if(numengage[i] > 0)
 {
 for(j = 0; j < numengage[i]; j++)
 {
 short done = 0;
 if(ammo[i] == NULL) continue;
 if(!ammo[i][j].in_use())continue;
 if(!ammo[i][j].p->is_active())
 {
 ammo[i][j].in_use(0);
 Scenario::weapons_engaged--;
 continue;
 }

// If a platform was targeted, set heading toward the current
// location of that platform
 float destlat = ammo[i][j].latt;
 float destlng = ammo[i][j].lngt;

 if(can_track() && ammo[i][j].pt != NULL)
 {

Listing 9.28. continued

481

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

 destlat = ammo[i][j].pt->latitude();
 destlng = ammo[i][j].pt->longitude();
 float latdel = destlat -
 ammo[i][j].p->latitude();
 float lngdel = destlng -
 ammo[i][j].p->longitude();
 float hdg;
 if(lngdel == 0 && latdel == 0)
 hdg = 0;
 else
 hdg = atan2(lngdel, latdel) *
 RAD_TO_DEG;
 if(hdg < 0) hdg = 360 + hdg;
 ammo[i][j].p->heading(hdg);
 }

// Compute distance between current position of ammo and the
// launch position in nautical miles
 float xdel = ammo[i][j].platform()->longitude() -
 ammo[i][j].launch_lng();
 float ydel = ammo[i][j].platform()->latitude() -
 ammo[i][j].launch_lat();
// Note: I am ignoring altitude when computing distance
 float rl = sqrt(xdel*xdel+ydel*ydel) * DEG2NM;

// Find the distance from ammo round to targeted point
 xdel = ammo[i][j].platform()->longitude() -
 destlng;
 ydel = ammo[i][j].platform()->latitude() -
 destlat;
// Note: Again, I am ignoring altitude
 float rt = sqrt(xdel*xdel+ydel*ydel) * DEG2NM;

 if(rl > range[i])
 {
// printf(“Range %f > %f\n”, rl, range[i]);
 done = 1;
 }
 else
 {
 if(rt < WPN_TOLERANCE)
 {
// Draw a random number to determine if the ammo hits the target
 if(Scenario::random_draw(prob_hit[i]))
 {
// A successful hit has occurred. Deduct strength from target
// platform. Scenario checks if strength is too low for
// the platform to survive.

continues

482

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.28. continued

 if(ammo[i][j].pt != NULL)
 {
 ammo[i][j].pt->hit(strength[i]);
 }
 done = 1;
// printf(“Ammo hit platform %s with prob: %f\n”,
// ammo[i][j].pt->name(), prob_hit[i]);
 }
 else
 {
 done = 1;
// printf(“Ammo missed platform %s\n”, ammo[i][j].pt->name());
 }
 }
 }
// Reset the variables of this ammo round
 if(done)
 {
 ammo[i][j].pt = NULL;
 ammo[i][j].p->hide_sprite();
 ammo[i][j].p->inactive();
 ammo[i][j].p->goto_stage0();
 ammo[i][j].in_use(0);
 Scenario::weapons_engaged--;
 Scenario::refresh = 1;
// printf(“Ammo: %s done\n”, ammo[i][j].p->name());
 }
 }
 }
 }
}

Other Files
There are a host of other files needed to build BLOCKADE. You can find all
necessary files in the CH09 directory on the companion disk. The last remain-
ing header file, blkdres.h, is shown in Listing 9.29. It defines the resource iden-
tifiers for the BLOCKADE game.

483

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.29. blkdres.h—
Resource identifiers for BLOCKADE.

//--
// File: blkdres.h
// Resource identifiers for the BLOCKADE game.
//--
#if !defined(_ _BLKDRES_H)
#define _ _BLKDRES_H

#include <owlrc.h> // For definitions of OWL IDs

#define IDM_HELP 200
#define IDM_ABOUT 201

#endif

As I mentioned earlier, BLOCKADE uses a number of text files to set up the
scenario that is simulated in the game. Here is a list of the pertinent data files:

BLOCKADE.CFG is read at the beginning. This file lists all scenarios
available for the game. Listing 9.30 shows a sample BLOCKADE.CFG file
with a single scenario.

Scenario files are listed in BLOCKADE.CFG. For instance, in the
BLOCKADE.CFG file shown in Listing 9.30, the scenario definition file is
PG.BSN. Listing 9.31 shows this scenario file.

Mission files are listed in the scenario file. For instance, in the scenario
file named PG.BSN, shown in Listing 9.31, the mission definition file is
CARGO.MSN. Listing 9.32 shows this mission file.

PLATFORM.DAT is the database file with information on all available
platforms. Listing 9.33 shows a typical PLATFORM.DAT file.

SENSOR.DAT is the database file with information on all available
sensors. Listing 9.34 shows a typical SENSOR.DAT file.

WEAPON.DAT is the database file with information on all available
weapons. Listing 9.35 shows a typical WEAPON.DAT file.

*.BMP files are the bitmap image files.

*.SHP files are the 3-D shape files (described in Chapter 8).

*.S3D files are the 3-D scene files (described in Chapter 8).

484

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.30. BLOCKADE.CFG—
A typical configuration file for BLOCKADE.

BLOCKADE.CFG
1 The version number
1 Number of scenarios in file
///
Persian Gulf
pg.bsn Scenario definition file
map1c.bmp Name of normal map image
s_map1c.bmp Name of “zoomed” map image
2 Map zoomed in by this factor
165 144 Pixels per degree of latitude and longitude
30.5 47.1 Lat-Long of left corner of map (in degrees)
///
XXXX Next scenario starts here

Listing 9.31. PG.BSN—A sample scenario file for BLOCKADE.

BLOCKADE.BSN
1 The version number
1.8 The basic time period for updating positions
10 Number of rectangles that define the valid sea
85 85 340 221 Pixel coordinates of valid rectangles
175 69 241 84
289 76 335 84
340 117 352 155
340 155 368 205
368 191 395 233
90 221 348 288
347 233 400 288
44 176 84 215
115 290 421 425
1 Number of missions in file
Dangerous cargo
spruance.s3d The 3D scene definition file
none Background image for 3D display
cargo.msn

485

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.32. CARGO.MSN—
A sample mission file for BLOCKADE.

BLOCKADE.MSN
1 The version number
16 Number of lines in mission description
You are commanding a Spruance
class destroyer in the Persian
Gulf. Your mission is to stop
a freighter from reaching its
destination in Iraq.

The freighter was last reported
proceeding along the eastern
shores of the gulf steaming north-
north-west.

Use your radars to locate the
freighter and stop it. Watch out
for patrol boats and enemy aircraft.
Launch weapons from the Polar
display.
4 Number of platforms
///
SPRUANCE Ship class (this is player’s ship)
ACTIVE
300 340 0 Position (longitude-latitude (in pixels)-altitude)
25 30 0 Speed (knots) and bearing with respect to north
1
10
152 235
170 263
185 282
211 305
238 319
277 334
317 340
357 342
387 339
416 330
///
FREIGHTER Second ship is the one trying to go through blockade
ACTIVE
395 203 0
20 0 0
4 Number of stages (of motion)
3 Point at first stage

continues

486

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

389 249
396 203
389 219
3
323 133
332 125
332 114
3
219 113
221 91
221 80
3
90 90
93 83
85 99
///
COMBATTANTE Third and following platforms are the enemy.
ACTIVE
395 253 0
35 0 0
4 Number of stages (of motion)
4 Point at first stage
397 252
397 242
395 219
391 206
3
282 296
380 312
278 272
3
263 184
292 178
321 172
3
380 187
384 194
388 206
///
MIRAGE
ACTIVE
200 50 2000
1000 180 0
4 Number of stages (of motion)
7 Point at first stage
198 52

Listing 9.32. continued

487

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

237 51
281 53
326 51
366 51
411 50
18 55
5
125 101
99 170
102 236
111 225
114 277
4
216 440
269 440
318 435
365 435
4
413 306
413 273
396 246
391 202
///

Listing 9.33. PLATFORM.DAT—The platform database file.

Platform Data File
6
///
SPRUANCE
SURFACE Type of platform: SURFACE or AIR
LARGE Platform size as a radar target
ship.bmp Name of image file
shipm.bmp Name of image mask
ship2.bmp Image and mask for
ship2m.bmp the map window
500 Survival strength
33 Maximum speed in knots
4 Number of sensors
SPS-40
SPS-55
SPQ-9
MK23-TAS
4 Number of weapons

continues

488

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.33. continued

5"-GUN
150 How many times can you use it?
2 2 Simultaneous Surface/Air targets
1 Number of sectors that the weapon covers
0 360 Description of sector
PHALANX
10
1 1
2
0 120
180 360
SEA-SPARROW
8
1 1
1
30 330
HARPOON
8
2 0
1
0 360
///
FREIGHTER A generic cargo carrier
SURFACE
LARGE
ship.bmp Image and mask for
shipm.bmp the polar window
ship2.bmp Image and mask for
ship2m.bmp the map window
800 Survival strength
22
1 Sensors
NAV-RADAR
0 Weapons
///
GUN-ROUND
AIR
SMALL
gunr.bmp Image and mask for
gunrm.bmp the polar window
gunr.bmp Image and mask for
gunrm.bmp the map window
30 Survival strength
400
0 Sensors
0 Weapons

489

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

///
MISSILE
AIR
SMALL
missile.bmp Image and mask for
missilem.bmp the polar window
missile.bmp Image and mask for
missilem.bmp the map window
100 Survival strength
600 Maximum speed in knots
0 Sensors
0 Weapons
///
COMBATTANTE
SURFACE Type of platform: SURFACE or AIR
LARGE Platform size as a radar target
ship.bmp Name of image file
shipm.bmp Name of image mask
ship2.bmp Image and mask for
ship2m.bmp the map window
170 Survival strength
38 Maximum speed in knots
1 Number of sensors
DECCA
3 Number of weapons
76MM-GUN
120 How many times can you use it?
1 1 Simultaneous Surface/Air targets
2 Number of sectors that the weapon covers
0 150 Description of sector
210 360
40MM-GUN
120
1 1
1
30 330
HARPOON
2
2 0
2
0 90
270 360
///
MIRAGE
AIR Type of platform: SURFACE or AIR
MEDIUM Platform size as a radar target
airp.bmp Name of image file
airpm.bmp Name of image mask

continues

490

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.33. continued

airp.bmp Image and mask for
airpm.bmp the map window
60 Survival strength
1100 Maximum speed in knots
1 Number of sensors
CYRANO-IV
1 Number of weapons
EXOCET
2 How many times can you use it?
2 0 Simultaneous Surface/Air targets
1 Number of sectors that the weapon covers
0 360 Description of sector

Listing 9.34. SENSOR.DAT—The sensor database file.

Sensor Data File
7 Number of sensors defined in this file
///
SPS-40 Name of sensor
RADAR Type of sensor (RADAR, ESM, or BOTH)
AIR Detects AIR, SURFACE or BOTH types of platforms
60 120 180 Detection range for SMALL, MEDIUM, and LARGE targets
///
SPS-55
RADAR
SURFACE
12 24 36
///
SPQ-9
RADAR
SURFACE
6 12 18
///
MK23-TAS A target acquisition system
BOTH This is a combined radar+ESM system
BOTH Can detect both surface and air targets
30 60 90
///
NAV-RADAR
RADAR
BOTH
10 20 30

491

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

///
DECCA
RADAR
SURFACE
16 32 48
///
CYRANO-IV
RADAR
BOTH
10 20 30

Listing 9.35. WEAPON.DAT—The weapon database file.

Weapons data file (Naba, 2/1/93)
7 Number of weapons defined in this file
///
5"-gun Name
GUN-ROUND Platform representing ammunition
10 5 Range at which it can engage surface and air targets
0.6 0.4 Probablity of hitting surface and air targets
33 9999 Kill strength against surface and air targets
///
Phalanx Anti-air gun
GUN-ROUND
4 4
0.2 0.8
16 9999
///
Sea-Sparrow Missile
MISSILE
8 8
0.5 0.6
16 9999
///
Harpoon Missile
MISSILE
80 0
0.8 0
165 0
///
Exocet Missile
MISSILE
35 0
0.7 0

continues

492

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Listing 9.35. continued

100 0
///
76mm-Gun Gun
GUN-ROUND
4 3
0.4 0.4
30 9999
///
40mm-Gun Gun
GUN-ROUND
2 1
0.4 0.1
16 9999
///

Building BLOCKADE
You need Borland C++ for Windows to build BLOCKADE. The companion disk
has all the files needed to build the executable, BLOCKADE.EXE. In particular, the
project file, BLOCKADE.PRJ, lists the source files and library necessary to build
the application. There are a few items in the project file that reflect the name of
the drive and directory where I installed Borland C++ in my system. Unfortu-
nately, I installed the compiler on a different drive and under a different direc-
tory name than the one Borland recommends (C:\BORLANDC). So, all of you who
like to go with the defaults, have to make some changes to the project file.

Here are the changes you have to make before using the project file in your
system:

1. Run Borland C++ for Windows and open the project file BLOCKADE.PRJ
by selecting Open Project... from the Project menu.

2. In the list of items shown in the project window, you will see bwcc.lib
listed with a specific drive and directory name. Click on that line and
get rid of the line by selecting Delete Item... from the Project Menu.

3. Next select Add Item... from the Project Menu. In the file selection
dialog box that appears, go to the directory where you have installed

493

BLOCKADE—A Game of Modern Naval Simulation

Chapter

9

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

Borland C++ and select the file bwcc.lib (it is in the LIB subdirectory).
Click on the Add button to add the library to the project. Click on
Done to close the dialog box.

4. Select the Directories item from the Option menu in Borland C++ for
Windows. Edit the pathnames to reflect the drive and directory names
where you have installed Borland C++.

After making these changes, you should be able to build BLOCKADE.EXE by
selecting Make from the Compile menu. Once the program is successfully built,
you can install its icon under Windows Program Manager by selecting New...
from the Program Manager’s File menu.

Another file that you need to build a Windows program is a resource file.
For the BLOCKADE program, the resource file BLOCKADE.RES is included in the
companion disk. I prepared the resource file using the Resource Workshop
program included with Borland C++.

Summary
This chapter uses much of the classes presented in the previous chapters and
adds a framework for a naval scenario to create a modern naval simulation
game named BLOCKADE. The theme of the game is that a lone modern com-
bat ship is called upon to enforce a hastily imposed blockade in a troubled re-
gion of the world. As a commander of the combat ship, the player has to stop
a cargo ship that is trying to break through the blockade. The player relies on
the ship’s sensors to detect the cargo ship as well as any other enemy ships
and aircraft in the region. If any enemy ship or aircraft comes close to the com-
bat ship, the player can use the ship’s weapons to attack the enemy. Each en-
emy ship or aircraft hit by the player earns points that add up to a total score
for the game.

The game’s source code with all necessary files appears on this book’s com-
panion disk.

494

Programming Windows Games with Borland C++

TWO/ns6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 CH 09d LP#6

495

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

Index

Symbols
2-D Cartesian coordinate

system, 276
2-D graphics, 16-20
3-D Cartesian coordinate

system, 276-277
3-D graphics, 16-20

2-D Cartesian coordinate
system, 276

3-D Cartesian coordinate
system, 276-277

classes, 286-314
Facet3D, 287-301
Scene3D, 301-311
Shape3D, 287-301
Vector3D, 286-301

coordinate transformations,
280-282

defining 3-D scene, 301-311

496

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

loading 3-D scene, 311-313
modeling objects, 276-284
objects

boundary representation,
277-278

constructing, 278-280
rotating, 282-283
scaling, 281
translating, 281-282

vector operations, 283-284
viewing 3-D scenes, 284-286,

313-314
3-D view (BLOCKADE), 322,

381-385

A
About function, 30-32
abstract base classes

Image, 100-101, 105-112
Object, 41
TControl, 52

Abstract Data Type (ADT), 48-49
AbstractArray container class, 42
active function, 389
adapters, video, 18-19

colors, displaying, 81
super VGA, 19

ADT (Abstract Data Type), 48-49
adventure and role playing games,

6-7
aligning text, 33, 78-79
ANIMATE application, 178-187

animation strategy, 181-185
AnimationWindow class, 178-185
building, 187
defining sprites, 181
initializing animation, 181

main program, 186-187
resource identifiers, 180

animate function, 165
animate.cpp source file, 186-187
ANIMATE.RES resource file, 187
AnimatePalette GDI function, 84
animation (sprites), 150-151

ANIMATE application, 178-187
erase-and-redraw animation,

150-151
initializing, 158-161
offscreen bitmap animation, 151
overlapping, 166-177
Sprite class, 152-161
SpriteAnimation class, 162-177
SPUZZLE game, 220-231
updating sprites, 165-166

AnimationWindow class, 178-185
animres.h header file, 180
animwin.cpp source file, 182-185
animwin.h header file, 179-180
API functions, see GDI functions
application framework, 23
application layer (MVC

architecture), 24
applications

ANIMATE, 178-187
animation strategy, 181-185
building, 187
defining sprites, 181
initializing animation, 181
main program, 186-187
resource identifiers, 180

ImageView, 136-146
building, 145-146
main source file, 137-138
resource identifiers, 140-141
starting, 136

linking files, 35-39

497

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

Arc GDI function, 70
arcade games, 6
architecture, MVC (Model-View-

Controller), 24-40
Array container class, 42
arrays, 48-49
Association container class, 42
attributes, graphics, 33

setting up, 63-64
auto_engage_weapon function, 434

B
Bag container class, 42
bags, 48-49
BaseDate simple class, 43
BaseTime simple class, 43
BeginPaint GDI function, 62
bframe.cpp source file, 338-353
bframe.h header file, 333-337
BIDS classes, 40, 46-49
BitBlt GDI function, 89
Bitmap graphics object, 63
BITMAP structure, 92
BITMAPFILEHEADER structure, 113
BITMAPINFOHEADER structure, 101
bitmaps, 17, 58, 86-93

BITMAP structure, 92
copying, 89
DDB (Device Dependent

Bitmap) format, 86-92
converting from DIB format,

106-107
deleting, 88
DIB (Device Independent

Bitmap) format, 86, 92-93
converting to DDB format,

106-107
displaying, 87-88

drawing on, 89-90
ROP (raster operation) codes,

90-91
shrinking, 89
stretching, 89

blkdres.h header file, 483
BLOCKADE game

building, 492-493
child windows

initializing, 333-353
sizing, 337
updating, 338

classes
BlockadeApp, 331-333
BlockadeFrame, 326, 333-353
InfoWindow, 326, 410-427
LogoWindow, 353-354
MapToolWindow, 327, 391-395
MapWindow, 327, 360-369
Platform, 450-466
PolarToolWindow, 327, 370,

395-398
PolarWindow, 327, 370-381
Scenario, 427-446
Sensor, 466-472
StatusWindow, 326, 402-411
ToolWindow, 386-402
View3DToolWindow, 327, 381,

399-402
View3DWindow, 327, 381-385
Weapons, 472-482

controls, 411
bitmap icons, 391-402

designing, 325-327
game definition files, 327
header files, 328-329
high scores dialog box, 338-353
member variables, 435-446

498

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

missions, 320
database file, 485-487
loading, 337-338

overview, 318-319
platforms, 320, 427-446, 450-466

database file, 487-490
hits, 456
initializing, 456
moving, 456
selecting, 324

resource identifiers, 482-483
scenarios, 320

loading, 337-338
macros, 431-433
simulating, 326, 434
viewing, 326-327

screen components, 321
sensors, 320, 466-472

database file, 490-491
simulation speed, 324-325
source files, 330-331
starting, 319-320
status messages, 402-411
views, 321-324

3-D, 381-385
map, 321-322, 360-369,

391-402
polar, 370-381

weapons, 472-482
database file, 491-492
launching, 325

BLOCKADE.CFG configuration file,
327, 483-484

blockade.cpp source file, 331-333
BlockadeApp class, 331-333
BlockadeFrame class, 326, 333-353
BMP image file format, 99, 113-119

reading, 114-118
writing, 118-119

bmphdr member variable, 118
BMPImage class, 113-119

header file, 113-114
member functions, 115-118

bmpimage.h header file, 113-114
Borland International Data

Structures, see BIDS classes
Borland Windows Custom

Controls (BWCC), 52
boundaries (3-D graphics), 277-278
Brush graphics object, 63
BTree container class, 42
buffer swapping, 151
building

ANIMATE application, 187
BLOCKADE game, 492-493
ImageView application, 145-146
puzzles (SPUZZLE), 208

BWCC (Borland Windows
Custom Controls), 52

C
CARGO.MSN mission file, 485-487
Carriers at War, 7
cel animation, 150
child windows

animating (SPUZZLE), 220-231
initializing

BLOCKADE game, 333-353
SUZZLE game, 216-232

managing, 53
sizing

BLOCKADE game, 337
SPUZZLE game, 219

SPUZZLE game, 207
updating (BLOCKADE), 338

Chord GDI function, 71

499

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

class libraries, 40-53
CLASSLIB, 41-46

container classes, 41-43, 46-49
iterator classes, 45-46
simple classes, 43-44

OWL, 50-53
control classes, 52-53
dialog classes, 50-52
MDI (multiple document

interface), 53
window classes, 50

class templates, 40, 46-49
classes, 23-24

3-D graphics, 286-314
Facet3D, 287-301
Scene3D, 301-311
Shape3D, 287-301
Vector3D, 286-301

AnimationWindow, 178-185
BIDS, 46-49
BLOCKADE game

BlockadeApp, 331-333
BlockadeFrame, 326, 333-353
InfoWindow, 326, 410-427
LogoWindow, 353-354
MapToolWindow, 327, 391-395
MapWindow, 327, 360-369
Platform, 450-466
PolarToolWindow, 327, 370,

395-398
PolarWindow, 327, 370-381
Scenario, 427-446
Sensor, 466-472
StatusWindow, 326, 402-411
ToolWindow, 386-402
View3DToolWindow, 327, 381,

399-402
View3DWindow, 327, 381-385
Weapons, 472-482

container
ADT (Abstract Data Type),

48-49
CLASSLIB class library, 41-43,

46-49
FDS (Fundamental Data

Structure), 47-48
HelloApp, 27-29
HelloModel, 29-30
HelloView, 30-35
image files, 100-135

BMPImage, 113-119
Image, 105-112
ImageData, 101-105
PCXImage, 125-135
TGAImage, 119-124

ImageViewApp, 136-138
ImageViewFrame, 139-145
ImageViewWindow, 139-145
iterator (CLASSLIB class

library), 45-46
Music, 192-197
MVC (Model-View-Controller)

architecture, 24-40
Note, 192-197
Object, 41
OWL (ObjectWindows Library)

control, 52-53
dialog, 50-52
window, 50

simple (CLASSLIB class library),
43-44

sprite animation
Sprite, 152-161
SpriteAnimation, 162-177

SPUZZLE game
HiscoreDialog, 267-270
LetterWindow, 213, 245-252
PuzzleFrame, 213-232

500

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

PuzzlePiece, 214
PuzzleWindow, 213, 232-245
responsibilities, assigning,

213
SpuzzleApp, 214-216
StatusWindow, 213, 259-265
ToolWindow, 213, 252-259

TMDIClient, 53
TMDIFrame, 53
TScroller, 53
TShouldDelete, 42

CLASSLIB class library, 41-46
container classes, 41-43

template-based, 46-49
iterator classes, 45-46
simple classes, 43-44

CLOSE.SPM file, 210
CloseChildren function, 53
closed figures, drawing, 70-72
Collection container class, 42
color, 18-19, 80-85

logical palette, 81-85
pixel, 96-97
system palette, 81

color palette, 81
CombineRgn GDI function, 75
computer games, see games
Computer Gaming World magazine,

20
configuration files

BLOCKADE.CFG, 327, 483-484
HELLO.CFG, 35
SPUZZLE.CFG, 210-211

container classes
ADT (Abstract Data Type), 48-49
CLASSLIB class library, 41-43

template-based, 46-49
FDS (Fundamental Data

Structure), 47-48

Container container class, 42
containers

accessing contents, 45-46
ADT (Abstract Data Type), 48-49

continue_engagements function,
434, 476

control classes, 52-53
controls, 52-53

BLOCKADE game, 411
BWCC (Borland Windows

Custom Controls), 52
coordinate systems

2-D Cartesian coordinate
system, 276

3-D Cartesian coordinate
system, 276-277

GDI (Graphics Device Interface),
65-68

coordinate transformations,
280-282

copy protection, 17
copying bitmaps, 89
CopyRect GDI function, 73
CreateBrushIndirect GDI function,

72
CreateDIBPatternBrush GDI

function, 72
CreateEllipticRgn GDI function,

74
CreateEllipticRgnIndirect GDI

function, 74
CreateHatchBrush GDI function, 72
CreatePalette GDI function, 85
CreatePatternBrush GDI function,

72
CreatePolygonRgn GDI function, 74
CreatePolyPolygonRgn GDI

function, 74

501

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

CreateRectRgn GDI function, 74
CreateRectRgnIndirect GDI

function, 74
CreateRoundRectRgn GDI function,

74
CreateSolidBrush GDI function, 72
cross product of two vectors, 283
CUBE.SHP file, 312

D
data structures

FDS (Fundamental Data
Structure), 46-48

SPUZZLE game, 265-266
Date simple class, 43
DC (device context), 59-65

contents, 59-61
device capabilities, 64-65
for graphics output, 63-64
getting, 61-62
graphics objects, 63-64
persistent, 62-63
reverting, 63
storing temporarily, 62

DDB (Device-Dependent Bitmap)
format, 86-92
BITMAP structure, 92
converting from DIB format,

106-107
displaying bitmaps, 87-88
drawing on bitmaps, 89-90
ROP (raster operation) codes,

90-91
stretching bitmaps, 89

default values, device context,
59-61

DeleteObject GDI function, 64

deleting
bitmaps, 88
graphics objects, 64

Deque container class, 42
deques (double-ended queues),

48-49
detect function, 469
device context, see DC
dialog boxes, 50-52
dialog classes, 50-52
DIB (Device-Independent Bitmap)

format, 86, 92-93
converting to DDB format,

106-107
DIBtoDDB function, 105
Dictionary container class, 42
disp_mission function, 371
display adapters, see video

adapters
displaying

bitmaps, 87-88
images, 105
messages, 30-35
SPUZZLE puzzle information,

213-214
text, 77-80
see also viewing

dispwin.cpp source file, 360
dispwin.h header file, 355-359
dithering, 72
DLLs (dynamic link libraries),

MMSYSTEM, 191
dot product of two vectors, 283
DoubleList container class, 42
draw_shape function, 381
draw_wpncover function, 371
drawing

closed figures, 70-72
drawing mode, 76-77

502

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

ellipses, 71
lines, 69-70
on bitmaps, 89-90
points, 69
polygons, 71
rectangles, 70
regions, 74-75

drawing modes, 76-77
DrawText GDI function, 78
drivers, sound, 190-192

E
educational games, 5

SPUZZLE, see SPUZZLE
Ellipse GDI function, 71
ellipses, drawing, 71
EndPaint GDI function, 62
engage function, 476
EqualRect GDI function, 73
EqualRgn GDI function, 75
Error simple class, 43

F
Facet3D class, 287-301
FDS (Fundamental Data Structure),

46-48
figures, closed, drawing, 70-72
files

CARGO.MSN, 485-487
CLOSE.SPM, 210
configuration

BLOCKADE.CFG, 327, 483-484
HELLO.CFG, 35
SPUZZLE.CFG, 210-211

CUBE.SHP, 312

header
animres.h, 180
animwin.h, 179-180
bframe.h, 333-337
blkdres.h, 483
BLOCKADE game, 328-329
bmpimage.h, 113-114
dispwin.h, 355-359
hellomdl.h, 29-30
hellores.h, 35, 38
hellovw.h, 31-35
hscdial.h, 267-269
image.h, 102-105
imvwres.h, 141-145
imvwwin.h, 139-140
infowin.h, 412-413
linking, 35-39
logowin.h, 354
ltrwin.h, 245-246
pcximage.h, 126-127
platform.h, 451-455
pzlframe.h, 216-218
pzlinfo.h, 266
pzlwin.h, 232-233
scenario.h, 427-429
scene3d.h, 302-304
scninfo.h, 429-431
sensor.h, 467-469
shape3d.h, 287-293
simdefs.h, 431-433
sounds.h, 193-194
spanim.h, 162-164
sprite.h, 153-157
spzlres.h, 271
statwin.h, 259-260, 402-404
tgaimage.h, 121
toolwin.h, 253-254, 386-388
weapon.h, 473-475

503

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

hello.dlg, 36-39
HELLO.DEF, 35-37
HELLO.EXE, 36-37
HELLO.ICO, 36
image

C++ classes, 100-135
characteristics, 97-99
formats, 96-100

OPEN.SPM, 210
PG.BSN, 484
PLATFORM.DAT, 321, 327, 456,

487-490
PZLDONE.SPM, 209-210
PZLSTRT.SPM, 210
resource

ANIMATE.RES, 187
hello.rc, 35-38
IMAGEVW.RES, 146

SAMPLE.S3D, 313
SENSOR.DAT, 321, 327, 490-491
source

animate.cpp, 186-187
animwin.cpp, 182-185
bframe.cpp, 338-353
BLOCKADE game, 330-331
blockade.cpp, 331-333
dispwin.cpp, 360
hello.cpp, 27-29
hellovw.cpp, 32-35
hscdial.cpp, 269-270
image.cpp, 107-112
imagevw.cpp, 137-138
imvwwin.cpp, 141-145
ltrwin.cpp, 247-252
maptool.cpp, 392-395
mbpimage.cpp, 115-118
pcximage.cpp, 130-135
platform.cpp, 457-466

playsnd.cpp, 198-201
plrtool.cpp, 396-398
polarwin.cpp, 371-381
pzlframe.cpp, 220-231
pzlwin.cpp, 235-244
scenario.cpp, 436-446
scene3d.cpp, 305-311
sensor.cpp, 469-472
shape3d.cpp, 293-301
sounds.cpp, 195-197
spranim.cpp, 168-177
sprite.cpp, 158-161
spuzzle.cpp, 215-216
statwin.cpp, 261-265, 404-411
tgaimage.cpp, 122-124
toolwin.cpp, 255-259, 389-391
vu3dtool.cpp, 399-402
vu3dwin.cpp, 381-385
weapon.cpp, 476-482

spzlhlp.hpj, 272
TICK.SPM, 210
TOCK.SPM, 210
WEAPON.DAT, 321, 327, 491-492

FillRect GDI function, 73
FillRgn GDI function, 75
find_extents function, 293
Font graphics object, 63
fonts, 79-81
formats, image file, 96-100

BMP, 99, 113-119
GIF, 100
PCX, 99, 125-135
Targa, 99, 119-124
TIFF, 99

frame animation, 150
FrameRect GDI function, 73
FrameRgn GDI function, 75
friend keyword, 105

504

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

functions
About, 30-32
active, 389
animate, 165
auto_engage_weapon, 434
BMPImage class, 115-118
CloseChildren, 53
continue_engagements, 434, 476
detect, 469
DIBtoDDB, 105
disp_mission, 371
draw_shape, 381
draw_wpncover, 371
engage, 476
find_extents, 293
GDI (Graphics Device Interface),

58
AnimatePalette, 84
Arc, 70
BeginPaint, 62
BitBlt, 89
Chord, 71
CombineRgn, 75
CopyRect, 73
CreateBrushIndirect, 72
CreateDIBPatternBrush, 72
CreateEllipticRgn, 74
CreateEllipticRgnIndirect,

74
CreateHatchBrush, 72
CreatePalette, 85
CreatePatternBrush, 72
CreatePolygonRgn, 74
CreatePolyPolygonRgn, 74
CreateRectRgn, 74
CreateRectRgnIndirect, 74
CreateRoundRectRgn, 74
CreateSolidBrush, 72
DC (device context), 59-65

DeleteObject, 64
DrawText, 78
Ellipse, 71
EndPaint, 62
EqualRect, 73
EqualRgn, 75
FillRect, 73
FillRgn, 75
FrameRect, 73
FrameRgn, 75
GetDC, 62
GetDeviceCaps, 64
GetMapMode,67
GetNearestPaletteIndex, 85
GetPaletteEntries, 85
GetRgnBox, 75
GetStockObject, 71
GetSystemPaletteEntries, 85
GetSystemPaletteUse, 85
InflateRect, 73
InvalidateRgn, 75
InvertRect, 73
InvertRgn, 75
LineTo, 69
MoveTo, 69
OffsetRect, 73
OffsetRgn, 75
PaintRgn, 75
Pie, 71
Polygon, 71, 314
Polyline, 70
PtInRect, 73
RealizePalette, 85
Rectangle, 70
ReleaseDC, 62
ResizePalette, 85
RoundRect, 70
SelectClipRgn, 75
SelectPalette, 85

505

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

SetBkMode, 33
SetDIBitsToDevice, 105
SetMapMode, 67
SetPaletteEntries, 85
SetPixel, 69-82
SetRect, 73
SetRectEmpty, 73
SetROP2, 77
SetSysColors, 85
SetSystemPaletteUse, 85
SetTextAlign, 33, 78
StretchBlt, 89
TabbedTextOut, 78-92
TextOut, 33, 78
UnionRect, 73
UpdateColors, 85
UpdateWindow, 62
ValidateRgn, 75

get_string, 29-30
hi_scores, 231, 267, 338-353
icons_at, 389
Image class, 107-112
inactive, 389
init, 234
init_image, 158-161
init_weapons, 434
InitInstance, 27-29
InitMainWindow, 27-29
isA, 153
isLessThan, 153-157
load_missions, 338
load_music, 220
load_puzzles, 219
load_scenarios, 337
make_palette, 105
mark_detected_sprites, 434
mciSendCommand, 191
Music class, 195-197
nameOf, 153

new_scenario, 338
next_puzzle, 219
Ok, 269-270
ownship_xfrm, 434
Paint, 30-35, 61
pick_mission, 338
pick_puzzles, 219
pick_scenario, 337
playmusic, 220
random_draw, 434-435
read, 305-311
redisplay_all, 165
rotate, 293-301
scale, 293-301
show, 105
sort_facets, 293
TileChildren, 53
ToolWindow class, 388-389
translate, 293-301
view_transform, 305-311
WMCreate, 181
WMInitDialog, 269-270
WMLButtonDown, 234-244, 255-259
WMLButtonUp, 234-244
WMMouseMove, 234-244

Fundamental Data Structure (FDS),
46-48

G
games

adventure and role playing, 6-7
arcade, 6
common elements, 15-17
common themes, 8-14
copy protection, 17
educational, 5
graphics, 16-17
programming, 18-19

506

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

real-time action simulation, 6-14
Gunship 2000, 9-10
Microsoft Flight Simulator, 8

sound effects, 17
sports, 6
SPUZZLE, see SPUZZLE
story line, 15-16
strategic simulation, 7-14

BLOCKADE, see BLOCKADE
Great Naval Battles, North

Atlantic 1939-1943, 13-14
Harpoon, 12-13
SimCity for Windows, 10-12

traditional, 5-6
GDI (Graphics Device Interface),

22, 58
coordinate systems, 65-68
DC (device context), 59-65

contents, 59-61
device capabilities, 64-65
for graphics output, 63-64
getting, 61-62
graphics objects, 63-64
persistent, 62-63
reverting, 63
storing temporarily, 62

drawing functions, 68-80
drawing modes, 76-77
mapping mode, 65-68
ROP (raster operation) codes,

76-77
GDI functions

AnimatePalette, 84
Arc, 70
BitBlt, 89
Chord, 71
CombineRgn, 75
CopyRect, 73
CreateBrushIndirect, 72

CreateDIBPatternBrush, 72
CreateEllipticRgn, 74
CreateEllipticRgnIndirect, 74
CreateHatchBrush, 72
CreatePalette, 85
CreatePatternBrush, 72
CreatePolygonRgn, 74
CreatePolyPolygonRgn, 74
CreateRectRgn, 74
CreateRectRgnIndirect, 74
CreateRoundRectRgn, 74
CreateSolidBrush, 72
DrawText, 78
Ellipse, 71
EqualRect, 73
EqualRgn, 75
FillRect, 73
FillRgn, 75
FrameRect, 73
FrameRgn, 75
GetMapMode, 67
GetNearestPaletteIndex, 85
GetPaletteEntries, 85
GetRgnBox, 75
GetStockObject, 71
GetSystemPaletteEntries, 85
GetSystemPaletteUse, 85
InflateRect, 73
InvalidateRgn, 75
InvertRect, 73
InvertRgn, 75
LineTo, 69
MoveTo, 69
OffsetRect, 73
OffsetRgn, 75
PaintRgn, 75
Pie, 71
Polygon, 71, 314
Polyline, 70

507

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

PtInRect, 73
RealizePalette, 85
Rectangle, 70
ResizePalette, 85
RoundRect, 70
SelectClipRgn, 75
SelectPalette, 85
SetBkMode, 33
SetDIBitsToDevice, 105
SetMapMode, 67
SetPaletteEntries, 85
SetPixel, 69-82
SetRect, 73
SetRectEmpty, 73
SetROP2, 77
SetSysColors, 85
SetSystemPaletteUse, 85
SetTextAlign, 33, 78
StretchBlt, 89
TabbedTextOut, 78-92
TextOut, 33, 78
UnionRect, 73
UpdateColors, 85
ValidateRgn, 75

get_string function, 29-30
GetDC GDI function, 62
GetDeviceCaps GDI function, 64-65
GetMapMode GDI function, 67
GetNearestPaletteIndex GDI

function, 85
GetPaletteEntries GDI function,

85
GetRgnBox GDI function, 75
GetStockObject GDI function, 71
GetSystemPaletteEntries GDI

function, 85
GetSystemPaletteUse GDI function,

85
GIF image file format, 100

graphics, 16-17
2-D, 16-20
3-D, 16-20

2-D Cartesian coordinate
system, 276

3-D Cartesian coordinate
system, 276-277

boundaries, 277-278
classes, 286-314
constructing objects, 278-280
coordinate transformations,

280-282
defining 3-D scene, 301-311
loading 3-D scene, 311-313
rotating objects, 282-283
scaling objects, 281
translating objects, 281-282
vector operations, 283-284
viewing 3-D scenes, 284-286,

313-314
background mode, 33
color, 18-19
drawing mode, 76-77
GDI functions, 58

closed figures, drawing, 70-72
DC (device context), 59-65
lines, drawing, 69-70
logical palettes, manipulating,

84-85
points, drawing, 69
rectangles, manipulating,

72-73
regions, 74-75
system palettes,

manipulating, 84-85
see also GDI functions

images, 16
text alignment, 33

508

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

graphics attributes, setting up,
63-64

Graphics Device Interface, see GDI
Great Naval Battles, North Atlantic

1939-1943, 7, 13-14
Gunship 2000, 7-10

H
Harpoon, 7, 12-13
HashTable container class, 42
hbm_ddb member variable, 105
hdr member variable, 119-121
header files

animres.h, 180
animwin.h, 179-180
bframe.h, 333-337
blkdres.h, 483
BLOCKADE game, 328-329
bmpimage.h, 113-114
dispwin.h, 355-359
hellomdl.h, 29-30
hellores.h, 35-38
hellovw.h, 31-35
hscdial.h, 267-269
image.h, 102-105
imvwres.h, 141-145
imvwwin.h, 139-140
infowin.h, 412-413
linking, 35-39
logowin.h, 354
ltrwin.h, 245-246
pcximage.h, 126-127
platform.h, 451-455
pzlframe.h, 216-218
pzlinfo.h, 266
pzlwin.h, 232-233
scenario.h, 427-429
scene3d.h, 302-304

scninfo.h, 429-431
sensor.h, 467-469
shape3d.h, 287-293
simdefs.h, 431-433
sounds.h, 193-194
spanim.h, 162-164
sprite.h, 153-157
spzlres.h, 271
statwin.h, 259-260, 402-404
tgaimage.h, 121
toolwin.h, 253-254, 386-388
weapon.h, 473-475

HELLO.CFG configuration file, 35
hello.cpp source file, 27-29
HELLO.DEF module definition file,

35-37
hello.dlg file, 36-39
HELLO.EXE file

dialog definitions, 39
makefile, 36-37
module definition file, 37
resource file, 38
resource identifiers, 38
testing, 39-40

HELLO.ICO icon file, 36
hello.rc resource file, 35-38
HelloApp class, 27-29
hellomdl.h header file, 29-30
HelloModel class, 29-30
hellores.h header file, 35-38
HelloView class, 30-35
hellovw.cpp source file, 32-35
hellovw.h header file, 31-35
help (SPUZZLE game), 272
hi_scores function, 231, 267,

338-353
high scores dialog box

SPUZZLE game, 231-232, 267-
270

509

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

BLOCKADE game, 338-353
hierarchy

container classes (CLASSLIB), 41
Image class, 100-101
OWL classes, 50
simple classes (CLASSLIB), 44
SPUZZLE windows, 212

HiscoreDialog class (SPUZZLE),
267-270

homogeneous coordinates, 281-282
hpal member variable, 105
hscdial.cpp source file, 269-270
hscdial.h header file, 267-269

I
icon files, HELLO.ICO, 36
icons_at function, 389
Image class, 100-101, 105-112

header file, 102-105
member functions, 107-112

image files, 96-100
BMP format, 99, 113-119

reading, 114-118
writing, 118-119

characteristics, 97-99
classes, 100-135

BMPImage, 113-119
Image, 105-112
ImageData, 101-105
PCXImage, 125-135
TGAImage, 119-124

GIF format, 100
ImageView application, 136-146
PCX format, 99, 125-135

reading, 127-135
Targa format, 99, 119-124
TIFF format, 99

image member variable, 139
image.cpp source file, 107-112
image.h header file, 102-105
ImageData class, 101-105

header file, 102-105
member variables, 105

images, 16
components, 97
viewing (ImageView), 136-146
sprites, see sprites

ImageView application, 136-146
building, 145-146
main source file, 137-138
resource identifiers, 140-141
starting, 136

ImageViewApp class, 136-138
ImageViewFrame class, 139-145
ImageViewWindow class, 139-145
imagevw.cpp source file, 137-138
IMAGEVW.RES resource file, 146
imvwres.h header file, 141-145
imvwwin.cpp source file, 141-145
imvwwin.h header file, 139-140
inactive function, 389
InflateRect GDI function, 73
infowin.h header file, 412-413
InfoWindow class, 326, 410-427
init function, 234
init_image function, 158-161
init_weapons function, 434
initializing

animation (ANIMATE), 181
child windows (SPUZZLE),

216-232
instance of application, 27-29
main application window, 27-29
platforms (BLOCKADE), 456
sprites, 158-161

510

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

InitInstance function, 27-29
InitMainWindow function, 27-29
interaction layer (MVC

architecture), 24
interfaces

GDI (Graphics Device Interface),
see GDI

MDI (multiple document
interface), 53

InvalidateRgn GDI function, 75
InvertRect GDI function, 73
InvertRgn GDI function, 75
isA function, 153
isLessThan function, 153-157
iterator classes (CLASSLIB class

library), 45-46

J-K
Jack Nicklaus Signature Edition

Golf, 6

keywords, friend, 105

L
languages, see programming

languages
LetterWindow class (SPUZZLE), 213,

245-252
libraries, see class librairies
lines, drawing, 69-70
LineTo GDI function, 69
linking files, 35-39
Links 386 Pro, 6
List container class, 43
listings

2.1 hello.cpp source file, 27-29
2.2 hellomdl.h header file, 29-30

2.3 hellovw.h header file, 31-35
2.4 hellovw.cpp source file, 32-35
2.5 HELLO.EXE file, 36-37
2.6 HELLO.DEF module definition

file, 37
2.7 hellores.h header file, 38
2.8 hello.rc resource file, 38
2.9 hello.dlg file, 39
4.1 image.h header file, 102-105
4.2 image.cpp source file, 107-112
4.3 bmpimage.h header file,

113-114
4.4 mbpimage.cpp source file,

115-118
4.5 tgaimage.h header file, 121
4.6 tgaimage.cpp source file,

122-124
4.7 pcximage.h header file,

126-127
4.8 pcximage.cpp source file,

130-135
4.9 imagevw.cpp source file,

137-138
4.10 imvwwin.h header file,

139-140
4.11 imvwres.h header file,

140-141
4.12 imvwwin.cpp source file,

141-145
5.1 sprite.h header file, 153-157
5.2 sprite.cpp source file,

158-161
5.3 spanim.h header file, 162-164
5.4 spranim.cpp source file,

168-177
5.5 animwin.h header file,

179-180
5.6 animres.h header file, 180
5.7 animwin.cpp source file,

511

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

182-185
5.8 animate.cpp source file,

186-187
6.1 sounds.h header file, 193-194
6.2 sounds.cpp source file,

195-197
6.3 playsnd.cpp source file,

198-201
7.1 spuzzle.cpp source file,

215-216
7.2 pzlframe.h header file,

216-218
7.3 pzlframe.cpp source file,

220-231
7.4 pzlwin.h header file, 232-233
7.5 pzlwin.cpp source file,

235-244
7.6 ltrwin.h header file, 245-246
7.7 ltrwin.cpp source file,

247-252
7.8 toolwin.h header file,

253-254
7.9 toolwin.cpp source file,

255-259
7.10 statwin.h header file,

259-260
7.11 statwin.cpp source file,

261-265
7.12 pzlinfo.h header file, 266
7.13 hscdial.h header file,

267-269
7.14 hscdial.cpp source file,

269-270
7.15 spzlres.h header file, 271
7.16 spzlhlp.hpj file, 272
8.1 shape3d.h header file,

287-293
8.2 shape3d.cpp source file,

293-301
8.3 scene3d.h header file,

302-304
8.4 scene3d.cpp source file,

305-311
8.5 CUBE.SHP file, 312
8.6 SAMPLE.S3D file, 313
9.1 blockade.cpp source file,

331-333
9.2 bframe.h header file, 333-337
9.3 bframe.cpp source file,

338-353
9.4 logowin.h header file, 354
9.5 dispwin.h header file,

355-359
9.6 dispwin.cpp source file, 360
9.7 mapwin.cpp source file,

361-369
9.8 polarwin.cpp source file,

371-381
9.9 vu3dwin.cpp source file,

381-385
9.10 toolwin.h header file,

386-388
9.11 toolwin.cpp source file,

389-391
9.12 maptool.cpp source file,

392-395
9.13 plrtool.cpp source file,

396-398
9.14 vu3dtool.cpp source file,

399-402
9.15 statwin.h header file,

402-404
9.16 statwin.cpp source file,

404-411
9.17 infowin.h header file,

412-413
9.18 infowin.cpp source file,

512

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

414-427
9.19 scenario.h header file,

427-429
9.20 scninfo.h header file,

429-431
9.21 simdefs.h header file,

431-433
9.22 scenario.cpp source file,

436-446
9.23 platform.h header file,

451-455
9.24 platform.cpp source file,

457-466
9.25 sensor.h header file,

467-469
9.26 sensor.cpp source file,

469-472
9.27 weapon.h header file,

473-475
9.28 weapon.cpp source file,

476-482
9.29 blkdres.h header file, 483
9.30 BLOCKADE.CFG configuration

file, 483-484
9.31 PG.BSN scenario file, 484
9.32 CARGO.MSN mission file,

485-487
9.33 PLATFORM.DAT file, 487-490
9.34 SENSOR.DAT file, 490-491
9.35 WEAPON.DAT file, 491-492

load_missions function, 338
load_music function, 220
load_puzzles function, 219
load_scenarios function, 337
loading

3-D scenes, 311-313
missions (BLOCKADE), 337-338
scenarios (BLOCKADE), 337-338

logical coordinate system (GDI), 65

logical palette, 81-85
logowin.h header file, 354
LogoWindow class, 353-354
LOGPALETTE structure, 82
ltrwin.cpp source file, 247-252
ltrwin.h header file, 245-246

M
main application window,

initializing, 27-29
MAKE utility, 35-39
make_palette function, 105
makefiles, 35-39
map view (BLOCKADE), 321-322,

360-369
controls, bitmap icons, 391-402

mapping mode (GDI), 65-68
maptool.cpp source file, 392-395
MapToolWindow class, 327, 391-395
MapWindow class, 327, 360-369
mark_detected_sprites function,

434
Math Rabbit, 5
matrix-vector multiplication,

280-282
mbpimage.cpp source file, 115-118
MCI (Media Control Interface), 191
mciSendCommand function, 191
MDI (multiple document

interface), 53
Media Control Interface (MCI), 191
member variables

bmphdr, 118
hbm_ddb, 105
hdr, 119-121
hpal, 105
image, 139

513

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

Scenario class, 435-446
Scene3D class, 301-302
Sensor class, 466
SPUZZLE game, 219
Weapons class, 472-473

messages
displaying, 30-35
status (BLOCKADE), 402-411

metafiles, 58
Microsoft Flight Simulator, 6-8
Microsoft Windows, see Windows
missions (BLOCKADE), 320

database file, 485-487
loading, 337-338

MM_ANISOTROPIC mapping mode, 65
MM_HIENGLISH mapping mode, 66
MM_HIMETRIC mapping mode, 66
MM_ISOTROPIC mapping mode, 66
MM_LOENGLISH mapping mode, 66
MM_LOMETRIC mapping mode, 66
MM_TEXT mapping mode, 66
MM_TWIPS mapping mode, 66
MMSYSTEM Dynamic Link

Library, 191
Model-View-Controller (MVC)

architecture, 24-40
MoveTo GDI function, 69
moving

platforms (BLOCKADE), 456
puzzle pieces (SPUZZLE),

234-244
multimedia, 19
multiple document interface

(MDI), 53
Music class, 192-197

functions, 195-197
music, see sound effects
MVC (Model-View-Controller)

architecture, 24-40

N
nameOf function, 153
New Math Blaster Plus, 5
new_scenario function, 338
next_puzzle function, 219
NFL Pro League Football, 6
normalizing vectors, 283
Note class, 192-197

O
Object class, 41
objects, 3-D

boundaries, 277-278
constructing, 278-280
modeling, 276-284
rotating, 282-283
scaling, 281
translating, 281-282

ObjectWindows Library, see OWL
OffsetRect GDI function, 73
OffsetRgn GDI function, 75
Ok function, 269-270
OPEN.SPM file, 210
orthographic projections, 285-286
overlapping sprites, 166-177
OWL (ObjectWindows Library)

classes
hierarchy, 50
control, 52-53
dialog, 50-52
window, 50
see also classes

ownship_xfrm function, 434

514

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

P
Paint function, 30-35, 61
PaintRgn GDI function, 75
PAINTSTRUCT structure, 61
Palette graphics object, 63
PALETTEENTRY structure, 82
palettes

color, 81
logical, 81-85
system, 81

PC Games magazine, 20
PCX image file format, 99, 125-135

reading, 127-135
PCXHeader structure, 125
PCXImage class, 125-135

header file, 125-127
pcximage.cpp source file, 130-135
pcximage.h header file, 126-127
Pen graphics object, 63
PG.BSN scenario file, 484
physical coordinate system (GDI),

65
pick_mission function, 338
pick_puzzles function, 219
pick_scenario function, 337
Pie GDI function, 71
pixels, 18

color, 96-97
drawing, 69-82

Platform class, 450-466
platform.cpp source file, 457-466
PLATFORM.DAT file, 321, 327, 456,

487-490
platform.h header file, 451-455
platforms (BLOCKADE), 320,

427-446, 450-466
database file, 487-490
hits, 456

initializing, 456
moving, 456
selecting, 324

playmusic function, 220
playsnd.cpp source file, 198-201
plrtool.cpp source file, 396-398
points, drawing, 69
polar view (BLOCKADE), 322-324,

370-381
PolarToolWindow class, 327, 370,

395-398
polarwin.cpp source file, 371-381
PolarWindow class, 327, 370-381
Polygon GDI function, 71, 314
polygons, drawing, 71
Polyline GDI function, 70
presentation layer (MVC

architecture), 24
PriorityQueue container class, 43
programming games, 18-19

color, 18-19
multimedia, 19
MVC (Model-View-Controller)

architecture, 24-40
programming languages,

Smalltalk-80, 24-40
PtInRect GDI function, 73
PuzzleFrame class (SPUZZLE),

213-232
PuzzlePiece class (SPUZZLE), 214
PuzzleWindow class (SPUZZLE), 213,

232-245
PZLDONE.SPM file, 209-210
pzlframe.cpp source file, 220-231
pzlframe.h header file, 216-218
pzlinfo.h header file, 266
PZLSTRT.SPM file, 210
pzlwin.cpp source file, 235-244
pzlwin.h header file, 232-233

515

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

Q-R
Queue container class, 43
queues, 48-49

Railroad Tycoon, 7
random_draw function, 434-435
raster lines, 96
raster operation (ROP), 76-77
read function, 305-311
Reader Rabbit, 5
reading

BMP image file format, 114-118
PCX image file format, 127-135

real-time action simulation games,
6-14

Gunship 2000, 9-10
Microsoft Flight Simulator, 8

RealizePalette GDI function, 85
RECT structure, 72
Rectangle GDI function, 70
rectangles

drawing, 70
manipulating, 72-73

redisplay_all function, 165
reference counting, 101
Region graphics object, 63
regions, 74-75
ReleaseDC GDI function, 62
ResizePalette GDI function, 85
resource files

ANIMATE.RES, 187
hello.rc, 35-38
IMAGEVW.RES, 146

resource identifiers
ANIMATE application, 180
BLOCKADE game, 482-483
HELLO.EXE file, 38
ImageView application, 140-141
SPUZZLE game, 271

ROP (raster operation), 76-77
rotate function, 293-301
rotating 3-D objects, 282-283
RoundRect GDI function, 70

S
SAMPLE.S3D file, 313
scale function, 293-301
scaling 3-D objects, 281
scan lines, 96
Scenario class, 427-446
scenario.cpp source file, 436-446
scenario.h header file, 427-429
scenarios (BLOCKADE), 320

loading, 337-338
macros, 431-433
simulating, 326, 434
viewing, 326-327

Scene3D class, 301-311
scene3d.cpp source file, 305-311
scene3d.h header file, 302-304
scninfo.h header file, 429-431
screens, BLOCKADE game, 321
scrolling windows, 53
SelectClipRgn GDI function, 75
selecting graphics objects, 63-64
SelectPalette GDI function, 85
Sensor class, 466-472
sensor.cpp source file, 469-472
SENSOR.DAT file, 321, 327, 490-491
sensor.h header file, 467-469
sensors (BLOCKADE), 320, 466-472

database file, 490-491
Set container class, 43
SetBkMode GDI function, 33
SetDIBitsToDevice GDI function,

105
SetMapMode GDI function, 67

516

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

SetPaletteEntries GDI function,
85

SetPixel GDI function, 69-82
SetRect GDI function, 73
SetRectEmpty GDI function, 73
SetROP2 GDI function, 77
sets, 48-49
SetSysColors GDI function, 85
SetSystemPaletteUse GDI function,

85
SetTextAlign GDI function, 33, 78
Shape3D class, 287-301
shape3d.cpp source file, 293-301
shape3d.h header file, 287-293
show function, 105
shrinking bitmaps, 89
SimAnt, 7
SimCity for Windows, 7, 10-12
simdefs.h header file, 431-433
simple classes (CLASSLIB class

library), 43-44
sizing child windows

BLOCKADE game, 337
SPUZZLE game, 219

Smalltalk-80 programming lan-
guage, MVC architecture, 24-40

sort_facets function, 293
Sortable simple class, 44
sorted arrays, 48-49
SortedArray container class, 43
sound cards, 190
sound drivers, 190-192
sound effects, 17

generating, 192
Music class, 192-197
Note class, 192-197
sample program, 197-201
sound cards, 190

sound drivers, 190-192
SPUZZLE game, 209-210

sound.drv driver, 190
sounds.cpp source file, 195-197
sounds.h header file, 193-194
source files

bframe.cpp, 338-353
BLOCKADE game, 330-331
blockade.cpp, 331-333
dispwin.cpp, 360
linking, 35-39
maptool.cpp, 392-395
platform.cpp, 457-466
plrtool.cpp, 396-398
polarwin.cpp, 371-381
scenario.cpp, 436-446
sensor.cpp, 469-472
statwin.cpp, 404-411
toolwin.cpp, 389-391
vu3dtool.cpp, 399-402
vu3dwin.cpp, 381-385
weapon.cpp, 476-482

spanim.h header file, 162-164
Spelling Puzzle, see SPUZZLE
sports games, 6
spranim.cpp source file, 168-177
Sprite class, 152-161

ANIMATE application, 178-187
display priority, 152
header file, 153-157

sprite.cpp source file, 158-161
sprite.h header file, 153-157
SpriteAnimation class, 162-177

ANIMATE application, 178-187
data members, 162
header file, 162-164
objects, setting up, 164-165

SpriteInfo structure, 181

517

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

sprites, 6, 150-151
ANIMATE application, 178-187
animating, 162-177
background drawing, 165
classes

Sprite, 152-161
SpriteAnimation, 162-177

erase-and-redraw animation,
150-151

initializing, 158-161
offscreen bitmap animation, 151
overlapping, 166-177
updating animation, 165-166
see also images

SPUZZLE (Spelling Puzzle) game
bitmap buttons, 252-259
child windows, 207

animating, 220-231
sizing, 219

classes
HiscoreDialog, 267-270
LetterWindow, 213, 245-252
PuzzleFrame, 213-232
PuzzlePiece, 214
PuzzleWindow, 213, 232-245
responsibilities, assigning,

213
SpuzzleApp, 214-216
StatusWindow, 213, 259-265
ToolWindow, 213, 252-259

designing, 211-214
help, 206, 272
high scores dialog box, 231-232,

267-270
implementing, 214-254
keeping score, 209
music, playing, 220

puzzles
building, 208
completion, checking for,

244-245
data structures, 265-266
information about,

displaying, 213-214
initializing current, 234
managing, 219
moving pieces, 234-244

resource identifiers, 271
sound, controlling, 209-210
starting, 207
window hierarchy, 212
words

adding, 210-211
displaying letters, 245-252

SPUZZLE.CFG configuration file,
210-211

spuzzle.cpp source file, 215-216
SpuzzleApp class (SPUZZLE),

214-216
spzlhlp.hpj file, 272
spzlres.h header file, 271
Stack container class, 43
stacks, 48-49
starting

BLOCKADE, 319-320
ImageView, 136
SPUZZLE, 207

status messages (BLOCKADE),
402-411

StatusWindow class, 326, 402-411
SPUZZLE game, 213, 259-265

statwin.cpp source file, 261-265,
404-411

statwin.h header file, 259-260,
402-404

518

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

story lines, 15-16
strategic simulation games, 7-14

Great Naval Battles, North
Atlantic 1939-1943, 13-14

Harpoon, 12-13
SimCity for Windows, 10-12

StretchBlt GDI function, 89
stretching bitmaps, 89
String simple class, 44
structures

BITMAP, 92
BITMAPFILEHEADER, 113
BITMAPINFOHEADER, 101
LOGPALETTE, 82
PAINTSTRUCT, 61
PALETTEENTRY, 82
PCXHeader, 125
RECT, 72
SpriteInfo, 181
TARGAHeader, 119-121

super VGA video adapters, 19
system palette, 81

T
TabbedTextOut GDI function, 78-92
Targa image file format, 99, 119-124
TARGAHeader structure, 119-121
TBButton control class, 52
TBCheckBox control class, 52
TBDivider control class, 52
TBGroupBox control class, 52
TBRadioButton control class, 52
TBStatic control class, 52
TBStaticBmp control class, 52
TButton control class, 52
TCheckBox control class, 52
TComboBox control class, 52

TControl abstract base class, 52
TDialog window class, 50
TEdit control class, 53
TEditWindow class, 50
testing HELLO.EXE file, 39-40
text

alignment, 33, 78-79
background mode, 79
font, 79-81
output functions, 77-80

TextOut GDI function, 33, 78
TFileDialog class, 50
TFileWindow class, 50
TGAImage class, 119-124

header file, 121
tgaimage.cpp source file, 122-124
tgaimage.h header file, 121
TGroupBox control class, 53
three-dimensional graphics,

see 3-D graphics
TICK.SPM file, 210
TIFF image file format, 99
TileChildren function, 53
Time simple class, 44
TInput Dialog class, 50
TListBox control class, 53
TMDIClient class, 53
TMDIFrame class, 53
TOCK.SPM file, 210
toolwin.cpp source file, 255-259,

389-391
toolwin.h header file, 253-254,

386-388
ToolWindow class, 386-402

SPUZZLE game, 213, 252-259
TRadioButton control class, 53
traditional games, 5-6
translate function, 293-301

519

Index

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/3

translating 3-D objects, 281-282
TScrollBar control class, 53
TScroller class, 53
TShouldDelete class, 42
TStatic control class, 53
TWindow class, 50

U
UnionRect GDI function, 73
UpdateColors GDI function, 85
UpdateWindow GDI function, 62
utilities, MAKE, 35-39

V
ValidateRgn GDI function, 75
values, default, device context,

59-61
vector operations (3-D graphics),

283-284
Vector3D class, 286-301
vectors, 46-48
VGA video adapters, 18-19
video adapters, 18-19

colors, displaying, 81
super VGA, 19

view_transform function, 305-311
View3DToolWindow class, 327, 381,

399-402
View3DWindow class, 327, 381-385
viewing

3-D scenes, 284-286, 313-314
images (ImageView

application), 136-146
scenarios (BLOCKADE), 326-327
see also displaying

views (BLOCKADE), 321-324
3-D, 381-385
map, 321-322, 360-369

controls, bitmap icons,
391-402

polar, 370-381
voices, 191-192
vu3dtool.cpp source file, 399-402
vu3dwin.cpp source file, 381-385

W
weapon.cpp source file, 476-482
WEAPON.DAT file, 321, 327, 491-492
weapon.h header file, 473-475
weapons (BLOCKADE), 472-482

database file, 491-492
launching, 325

Weapons class, 472-482
Where in the U.S.A. is Carmen

Sandiego?, 5
Where in the World is Carmen

Sandiego?, 5
window classes, 50
Windows

device independence, 22
programming games, 18-19

windows, 50
child

animating (SPUZZLE),
220-231

initializing, 216-232, 333-353
managing, 53
sizing, 219, 337
SPUZZLE game, 207
updating (BLOCKADE), 338

scrolling, 53
SPUZZLE, hierarchy, 212

520

Programming Windows Games with Borland C++

Two/nrs6 Prog Win Games Borland C++ 30292-6 angela 4-2-93 Index LP#2/

Wing Commander II, 7
WMCreate function, 181
WMInitDialog function, 269-270
WMLButtonDown function, 234-244,

255-259
WMLButtonUp function, 234-244
WMMouseMove function, 234-244
words (SPUZZLE game)

adding, 210-211
displaying letters, 245-252

writing BMP format image files,
118-119

• Advanced C

• Borland C++ Tips, Tricks, and Traps

• Borland C++ Power Programming

• C Programming Just the FAQ's

• C++ Interactive Course

• Crash Course in Borland C++ 4

• Killer Borland C++ 4

• Programming Windows Games with

Borland C++

• Secrets of the Borland C++ Masters

• Teach Yourself ANSI C++ in 21 Days

• Teach Yourself Advanced C in 21

Days

• Special Edition Using Borland C++

	KIT CONTENTS

